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3 Electric Field, Potential, Energy of the Field

3.a Statics

First we consider the time-independent problem: Statics. This means, the quantities depend only on their
location, p = p(r), j = j(r), E = E(r), B = B(r). Then the equation of continuity (1.12) and MAXwWELL’S
equations (1.13-1.16) separate into two groups

divj(r)=0
curl B(r) = £j(r)  divE(r) = 4mp(r)
divB(r) =0 curlE(r) =0 (3.1)
magnetostatics electrostatics

kma = 2J(r) xB(r) ke = p(NE(M)

The first group of equations contains only the magnetic induction B and the current density j. It describes
magnetostatics. The second group of equations contains only the electric field E and the charge density p. It is
the basis of electrostatics. The expressions for the corresponding parts of the force density k is given in the last
line.

3.b Electric Field and Potential

3.b.a Electric Potential

Now we introduce the electric Potential ®(r). For this purpose we consider the path integral over E along to
different paths (1) and (2) fromrgtor

rr dr-E(r) = fr dr-E(r) + 9§dr- E(n), 3.2)

@ @)

where the last integral has to be performed along the closed path from rg along (1)

to r and from there in opposite direction along (2) to ro.This later integral can be 2 r
transformed by means of Stokes’ theorem (B.56) into the integral f df - curl E(r)

over the open surface bounded by (1) and (2), which vanishes due to MaxwgLL’S

equation curl E(r) = 0 (3.1).

., (@
Therefore the integral (3.2) is independent of the path and one defines the electric potential
I
o(r) = —f dr - E(r) + ©(ro). (3.3)
fo

The choice of ry and of ®(rp) is arbitrary, but fixed. Therefore ®(r) is defined apart from an arbitrary additive
constant. From the definition (3.3) we have

do(r) = —dr - E(r), E(r) = —grad @(r). (3.4
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3.b,8 Electric Flux and Charge
From div E(r) = 4mp(r), (3.1) one obtains

f dr divE(r) = 4n f drp(r) (3.5)
\% \%
and therefore with the divergence theorem (B.59)
f df - E(r) = 4nq(V), (3.6)
ov
id est the electric flux of the field E through the surface equals 4wt times the charge g in the volume V.

This has a simple application for the electric field of a rotational invariant charge distribution p(r) = p(r) with
r = |r|. For reasons of symmetry the electric field points in radial direction, E = E(r)r/r

I I
Anr?E(r) = 4nf p(r)r2dr'dQ = (4n)2f p(r)r2dr’, (3.7)
0 0
so that one obtains A )
E() = — f o(r)r2dr’ (3.8)
r<Jo
for the field.
As a special case we consider a point charge in the origin. Then one has
Anr?E(r) = 4ng, E() = 3, E(r)= L 3.9
nrE(r) = dnd. E() = 5. E(N) = q (39)
The potential depends only on r for reasons of symmetry. Then one obtains
()
grado(r) = L9020 _ g, (3.10)
rodr
which after integration yields
D(r) = g + const. (3.11)

3.b.y Potential of a Charge Distribution
We start out from point charges q; at locations r;. The corresponding potential and the field is obtained from
(3.11) und (3.10) by shifting r by r;

o = e 4 (3.12)

r—ril

_grado(r) = S =) (3.13)

=) < -

We change now from point charges to the charge density p(r). To do this we perform the transition from
>iaif(ri) = > AVp(ri)f(ri) to fd3r'p(r’)f(r’), which yields

o(r) = f oo 20 (3.14)

Ir—r|

From E = —grad ® and div E = 4mp one obtains Poisson’s equation
AD(r) = —4mp(r). (3.15)

Please distinguish A = V - V and A =Delta. We check eq. (3.15). First we determine

Vo (r) = f &3 p(r') r,'__rrp - f dsap(r+a)% (3.16)

[r
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and
AD(r) = fdsa(Vp(r+ a))- % = fom dafdﬂaw = fan(p(r+ o0€y) — p(r)) = —4mp(r), (3.17)

assuming that p vanishes at infinity. The three-dimensional integral over a has been separated by the integral
over the radius a and the solid angle Q,, d®a = a?dadQ (compare section 5).
From Poisson’s equation one obtains

1
AD(r) = fd3r’,o(r’)AIr mrh —4mp(r) = —4nfd3r’p(r’)63(r -r) (3.18)
and from the equality of the integrands
1
= —4ns3(r-r'). 1
A|r_ o qoc(r —r’) (3.19)
3.c Couroms Force and Field Energy
The force acting on the charge q; at r; is
Ki = qiEi(ri). (3.20)
Here E; is the electric field without that generated by the charge q; itself. Then one obtains the CouLoms force
q;(ri —rj)
Ki=q > ———=~. 3.21
i =0 TETE (3.21)

j#i
From this equation one realizes the definition of the unit of charge in Gauss’s units, 1 dyn'/2 cm is the charge,
which exerts on the same amount of charge in the distance of 1 cm the force 1 dyn.

The potential energy is
1 Z Z idj 1 Z
U = — = = (D r). 322
2 : jii |ri _ rJ| 2 i ql I( I) ( )

The factor 1/2 is introduced since each pair of charges appears twice in the sum. E.g., the interaction energy
between charge 1 and charge 2 is contained both ini = 1,j = 2andi = 2, j = 1. Thus we have to divide by 2.
The contribution from q; is excluded from the potential @;. The force is then as usually

Ki=—grad, U. (3.23)

In the continuum one obtains by use of (B.62)

U= %fd3rp(r)d)(r) = % fdsrdivE(r)d)(r) = % def- E(r)®(r) - %fd%E(r)- grad d(r), (3.24)

where no longer the contribution from the charge density at the same location has to be excluded from @, since
it is negligible for a continuous distribution. F should include all charges and may be a sphere of radius R. In
the limit R — oo one obtains ® « 1/R, E « 1/R?, fF « 1/R — 0. Then one obtains the electrostatic energy

_ 1 3.2 _f 3
U= 8 fd reE=(r) = | d°ru(r) (3.25)
with the energy density
_leo
u(r) = SnE (n. (3.26)

Classical Radius of the Electron As an example we consider the "classical radius of an electron” Ry: One
assumes that the charge is homogeneously distributed on the surface of the sphere of radius R. The electric field
energy should equal the energy myc?, where mg is the mass of the electron.

1 (/&) &

— =) rdrdQ = =2 = mgc? 3.27

87 Jr, (=) 2Ry O (3.27)
yields Ry = 1.4-107%3 cm. The assumption of a homogeneous distribution of the charge inside the sphere yields
a slightly different result.

From scattering experiments at high energies one knows that the extension of the electron is at least smaller by
a factor of 100, thus the assumption made above does not apply.
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4 Electric Dipole and Quadrupole

A charge distribution p(r”) inside a sphere of radius Raround the origin
is given. We assume p(r’) = 0 outside the sphere.

4.a TheFieldforr >R

The potential of the charge distribution is

, o)
o = [ e

We perform a TavLor-expansion in r’, i.e. in the three variables X}, X; und x;

(4.1)

|
Z( rv) _1 (’V) vz (rV)(r’V)—— 4.2)

|r—r'

At first we have to calculate the gradient of 1/r

1 r r
VI = ——, since Vi(r) = = f’ 4.
- =~ 3, since (r . (n), (4.3)
solve (B.39, B.42). Then one obtains
;a1 r.r
(r V)F =3 (4.4)
Next we calculate (B.47)
c.r 1 1 c 3(c-nr
Vi3 = grad(c )+ (c-r)grad (r_3) =5 3. nr = ) (4.5)
using (B.27) and the solutions of (B.37, B.39). Then we obtain the TayLor-expansion
1 1 rr 3(r-ryP-r¥?
T Tt o + ... (4.6)

At first we transform 3(r - )% — r?r’?

1
27250) (3% — 2609) 47

because of 6, 5(3XXs — 6Qﬁr2) = 3XyXy — %040 = 0. Here and in the following we use the summation
convention, i.e. we sum over all indices (of components), which appear twice in a product in (4.7), that is over
aandpB.

We now introduce the quantities

3(r- )% = r?r? = X, X,(3% Xg — %08) = (X, X} —

q= fdsr'p(r') charge (4.8)
p= fdsr’rp(r) dipolar moment (4.9
Qup = fdsr’(x X — §5aﬁr’2)p(r ) components of the quadrupolar moment (4.10)
and obtain the expansion for the potential and the electric field
o(r) = g + 5 Qaﬁgx“xﬁziz&”’ﬁ + O(r%) (4.11)
E() = —gradd(r) = qr w + 0(%4) (4.12)
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4.b Transformation Properties

The multipole moments are defined with respect to a given point, for example with respect to the origin. If one
shifts the point of reference by a, i.e. r} = r’ — a, then one finds with p1(r}) = p(r’)

@ = [drnr = [Erar-a (4.13)

[ = [ -ape) =p-aa (4.19)

P1

The total charge is independent of the point of reference. The dipolar moment is independent of the point of
reference if g = 0 (pure dipol), otherwise it depends on the point of reference. Similarly one finds that the
quadrupolar moment is independent of the point of reference, if g = 0 and p = 0 (pure quadrupole).

The charge q is invariant under rotation (scalar) x; , = = Da X}, where D is a rotation matrix, which describes an
orthogonal transformation. The dipole p transforms like a vector

P1e = fdsr,Dﬂ,,Bka(r,) = D(t,ﬁ pﬁ (415)

and the quadrupole Q like a tensor of rank 2

’ / / l ’ ’
Ql,(t,ﬁ = fdgr (Da,yXyDﬁ,(SX& - §6a,ﬁr Z)P(r ) (416)
Taking into account that due to the orthogonality of D
6(t,ﬁ = D(r,yDﬁ,y = D(r,yéy,ﬁDﬁ,t?: (417)

it follows that
Ql,a,,B = Da,y D,B,JQ)/,J’ (418)

that is the transformation law for tensors of second rank.

4.c Dipole

The prototype of a dipole consists of two charges of opposite sign, g at ro + a and —q at ro.
p = ga. (4.19)
Therefore the corresponding charge distribution is
p(r) = q(8*(r — ro — @) — 5°(r — ro)). (4.20)
We perform now the TavLor expansion in a
p(r) = gd3(r —ro) — ga- V&3(r — ro) + g(a -V)253(r — ro) + ... — g63(r — ro), (4.21)

where the first and the last term cancel. We consider now the limit a — 0, where the product ga = p is kept
fixed. Then we obtain the charge distribution of a dipole p at location rq

p(r) = —p - V&3(r —ro) (4.22)

and its potential

o(r) = fd3r'|'ro(rr),| = —p-fd3 '| i grad’s3(r' —rg) = p - fd?‘r’grad'| 63(r - o)
— 3 y 270 3 p (r rO)

where equation (B.61) is used and (B.50) has to be solved.
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4.d Quadrupole

The quadrupole is described by the second moment of the charge distribution.

4.d.@ Symmetries
Q is a symmetric tensor

Qup = Qo (4.24)
It can be diagonalized by an orthogonal transformation similarly as the tensor of inertia. Further from definition
(4.10) it follows that

Q(t,(Y = o» (425)

that is the trace of the quadrupole tensor vanishes. Thus the tensor does not have six, but only five independent
components.

4.d.8 Symmetric Quadrupole

A special case is the symmetric quadrupole. Its charge distribution  depends
only on z and on the distance from the =zaxis, p = p(z VX2 +Yy3). It obeys
Qx,y = Qx,z = Qy,z = 0» (4-26) z
because p(x, v, 2) = p(=X,Y, 2) = p(X, —Y, 2). Furthermore one has r
1 1.
Qux=Qy=-5Q:=-3Q (4.27) g

The first equality follows from p(X, Y, 2) = p(Y. X, 2), the second one from the vanishing
of the trace of Q. The last equality-sign gives the definition of Q.

One finds 3 3 1
Q= 5Qzz= f d3r’(§z’2— Er’z)p(r') = f dr'r"2P,(cos 6 )p(r’) (4.28)

with the Legenore polynomial P,(¢) = 252 - % We will return to the Lecenpre polynomials in the next section
and in appendix C.

As an example we consider the stretched quadrupole with two charges q at +ae; and a charge —2q in the origin.
Then we obtain Q = 2qa2. The different charges contribute to the potential of the quadrupole

1.3x2—-r2 1.3y%2-r2 2.32-r2 QP,(cos6)
o(r) = - -z = = :
) 3Q 2r5 3Q T 3Q 2r5 r3

(4.29)

4.e Energy, Force and Torque on a Multipole in an external Field

A charge distribution p(r) localized around the origin is considered in an external electric potential ®4(r), which
may be generated by an external charge distribution p,. The interaction energy is then given by

U= fd3rp(r)d)a(r). (4.30)
No factor 1/2 appears in front of the integral, which might be expected in view of this factor in (3.24), since

besides the integral over p(r)@4(r) there is a second one over p,(r)®(r), which yields the same contribution. We
now expand the external potential and obtain for the interaction energy

U

1
fd?‘rp(r) {(I)a(O) +rV®yi—0 + > XaXp V(,Vﬁd)aL:O + }

1 1
q®a(0) + p - VDal—o + 5 (Q(,,ﬁ + 300 f d3rp(r)r2) Vo VP _o + - (4.31)
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The contribution proportional to the integral over p(r)r? vanishes, since V,V,®, = a®, = —4mp,(r) = 0, since
there are no charges at the origin, which generate ®,. Therefore we are left with the potential of interaction

1
U = q®4(0) — p - Ea(0) + EQQ,[;V(,V[;CDa + ... (4.32)

For example we can now determine the potential energy between two dipoles, py, in the origin and p; at ro. The
dipole p, generates the potential

Dy(r) = w (4.33)

Then the interaction energy yields (compare B.47)

. 3 -T .r
Uab = Po - Valyo = P2 3|ob _ 3(Pa 0)5(pb 0) (4.30)
o "o
The force on the dipole in the origin is then given by
K= f d3rp(nEq(r) = f d3rp(r)(Ea(0) + X Vo Ealr—o0 + ...) = qEa(0) + (p - grad )E4(0) + ... (4.35)

The torque on a dipole in the origin is given by

Mmech = f d3r’p(r)r' x Eo(r’) = p x E4(0) + ... (4.36)
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5 Multipole Expansion in Spherical Coordinates

5.a Poisson Equation in Spherical Coordinates

We first derive the expression for the Laplacian
operator in spherical coordinates

= rsingcos¢ (5.2)
= rsingsing (5.2)
Z = rcoso. (5.3)

Initially we use only that we deal with curvilin-
ear coordinates which intersect at right angles,
so that we may write

dr = grerdr + gyeedd + gye4de (5.4)

where the ey, e, and e, constitute an orthonormal
space dependent basis. Easily one finds

O =1 gy=r, gsy=rsind. (5.5)
The volume element is given by
d®r = grdrgedog,dg = r2dr sin6ddg = r2drdQ (5.6)

with the element of the solid angle
dQ = sin 6dode. (5.7

5.a.@ The Gradient
In order to determine the gradient we consider the differential of the function ®(r)

0] 0D oD
do(r) = Edr + %d9+ %dq&, (5.8)

which coincides with (grad @) - dr. From the expansion of the vector field in its components
grad @ = (grad @).e, + (grad ®)sey + (grad ®),e, (5.9)
and (5.4) it follows that
dd(r) = (grad @),g,dr + (grad ®),g,d6 + (grad @),9,de, (5.10)

from which we obtain

100 1060
rad®)g = —— rad®)y, = ——
(grad @), (grad @), % 99

o 90 (5.11)

100
(grad @), = g or’

for the components of the gradient.
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5.a,8 The Divergence

In order to calculate the divergence we use the divergence theorem (B.59). We integrate the divergence of A(r)
in a volume limited by the coordinates r,r + Ar, 6,0 + A, ¢, ¢ + A¢. We obtain

fdsrdivA
=fA-df

fg,ggg¢ div Adrddde

f godgsdpA | ™ + f grdrg,dpAd, ™ + f grdrgedeAﬁ|Z+A¢

f [% (90gsAY) + %(grgw) - % (grgeAq;)] drdedg (5.12)

Since the identity holds for arbitrarily small volumina the integrands on the right-hand side of the first line and
on the third line have to agree which yields

. 1 [a P P
divA(r) = 500 [E (90gsAY) + % (0rgshe) + % (grgaAﬁ)]. (5.13)

5.a.y The Laplacian
Using A® = div grad @ we obtain finally
1 [0 (99 6d>) 9 (grg¢ 6<D) 0 (grgeacb)]
AD(r) = — — |+ = — |+ = — |- 5.14
® 099 [6r( O or) 00\ g 00) 04\ 9y 09 .19

This equation holds generally for curvilinear orthogonal coordinates (if we denote them by r, 6, ¢). Substituting
the values for g we obtain for spherical coordinates

192 1
AD = Fm(rq)) + r—ZAQ(D, (515)
1 0,. 00 1 0%
Ao = ——(SINO0—) + ————. 5.16
o sm969( 69) " sin2g d¢? (5.16)

The operator Aq acts only on the two angels 8 and ¢, but not on the distance r. Therefore it is also called
Laplacian on the sphere.

5.b Spherical Harmonics

As will be explained in more detail in appendix C there is a complete set of orthonormal functions Y| m(6, ¢),
1=0,1,2,...,m=—l, - + 1, ..., which obey the equation

2aYim(0, ¢) = =I(1 + 1)Yim(0, ¢). (5.17)

They are called spherical harmonics. Completeness means: If (6, ¢) is differentiable on the sphere and its
derivatives are bounded, then f (0, ¢) can be represented as a convergent sum

10.4) = D fimYim(6, ). (5.18)
m
Therefore we perform the corresponding expansion for ®(r) and p(r)
o) = > du(n)Yim(6 ), (5.19)
m
p(r) =

D A Yim(6. 9). (5.20)
I,m
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The spherical harmonics are orthonormal, i.e. the integral over the solid angle yields
f dQY}' (6, #)Yim (6, ¢) = f d¢ sin 6dOY;' (6, #) Y (6, #) = 1.1 Smm- (5.21)

This orthogonality relation can be used for the calculation of ® and p

[ dosinedo;0.000) = Y [ dosince6.0)%m .0
I",my

= > 8 0mm = pum(r). (5.22)
it
We list some of the spherical harmonics
1
Yoo(6,¢) = yr (5.23)
JU
Y10(6,9) = 3 cos o (5.24)
1000,8) = 4 In :
/3 . i
Y1:10,0) = F B sin ge* (5.25)
3 [5(3 , 1
Y20(6,9) = = ( > cos“ 6 2) (5.26)
15 . i
Yo:1(0,¢) = F - sin @ cos fe™'? (5.27)
_ l E 12 natlig
Yo.2(0,9) = ) ’/27: sin“ ge*“'?. (5.28)
In general one has
21+ 1 (1 —m)! i
Y, = pm m 2
.m(6, @) I aml (cos 0)€ (5.29)
with the associated Lecenpre functions
Pm _ (_ m 1 2\m/2 dIer 2 1 | 5 30
|(§)—W -&) dé_u|m(§—)' (5.30)

Generally Y, , is a product of (sin 6)™e™ and a polynomial of order | —|m| in cos 6. If | —|m] is even (odd), then
this polynomial is even (odd) in cos 8. There is the symmetry relation

Yi-m(6: 8) = ()™Y' (6, ). (5.31)

5.c Radial Equation and Multipole Moments

Using the expansion of @ and p in spherical harmonics the Poisson equation reads

1d2 . I(+1) -~ R
AD(r) = ; (;@(rcbl,m(r» - cbl,m(r))vl,m(e, 9) = —4n;pl,m(r)vl,m(e, 0. (532
Equating the coefficients of Y, we obtain the radial equations
- 2. I(1+1) - N
O () + F(D,',m(r) _K = )<I>|,m(r) = —4xp m(r). (5.33)

The solution of the homogeneous equation reads

Dy (r) = Al + byr (5.34)
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For the inhomogeneous equation we introduce the conventional ansatz (at present | suppress the indices | and
m.)

® = a(n)r' + b(r)r'1. (5.35)
Then one obtains A
O =a'(nr' +b/(Nr't +la(r)r'-t - (I + 1)b(r)r'-2. (5.36)
As usual we require
a(nr +b(rr't=0 (5.37)
and obtain for the second derivative
O =la'(r)r't — (1 + Db/ (Nr"2 +1(1 — Dalr)r'2 + (1 + 1) + 2)b(r)r -3, (5.38)

After substitution into the radial equation the contributions which contain a and b without derivative cancel. We
are left with

la/(r)r'=t — (1 + Db'(r)r "2 = —4np, (5.39)
From the equations (5.37) and (5.39) one obtains by solving for a’ and b’
day m(r) 4n N
—— = 5 hal). (5.40)
dby m(r) 0.
T () (5.42)
Now we integrate these equations
_ rprl-l~
an) = 2| [ et (542)
_ ’ /|+2"
bm(r) = o 1f dr'’r m(r’). (5.43)

If we add a constant to ay m(r), then this is a solution of the Porsson equation too, since r'Y; (6, ¢) is a homoge-
neous solution of the Poisson equation. We request a solution, which decays for large r. Therefore we choose
am(o0) = 0. If we add a constant to by, then this is a solution for r # 0. For r = 0 however, one obtains a
singularity, which does not fulfil the Poisson equation. Therefore b ,(0) = 0 is required.

We may now insert the expansion coefficients p; m and obtain

4
anl) = Zlfl [ @@ s (5.44)
0 = 57 [ AN () (5.45)

We may now insert the expressions for a; m und by i into (5.19) and (5.35). The r- und r’-dependence is obtained
for r < r’ from the a-term as r'/r"** and for r > r’ from the b-term as r'/r'*1. This can be put together, if we
denote by r. the larger, by r. the smaller of both radii r and r’. Then one has

0= 5 Z e TSRO0 6) (5.46)
If o(r’) = 0 forr’ > R, then one obtains forr > R
_ 47[ Y|,m(09 ¢)
o(r) = ; TR e (5.47)

with the multipole moments

4JT ! * / ’ ’
Q= \5g | ETViRE 00000, (548)
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For | = 0 one obtains the "monopole moment” charge, for | = 1 the components of the dipole moment, for | = 2
the components of the quadrupole moment. In particular for m = 0 one has

Van f d%',/ip(r') =q (5.49)
4n
to = w/4—nfd%’,/ir’cosé"p(r’):fd3r’z’p(r’)= o8 (5.50)
' 3 Vil
4_JT 3.7 i/ZE 21_} /_f31§2_}/2 /_§
N 5 fd r ,/4nr (2cos 0 2),o(r)_ dr(22' 5" )o(r') = 2sz- (5.51)

5.d Point Charge at r’, Cylindric Charge Distribution

Jo,0

g2,0

Finally we consider the case of a point charge q located at r’. We start from the potential

Q _ q

o= Ir—rl " J/Z+rZ-2rr'cosy (552)
Here y is the angle between r and r’. We expand inr_/r-
o(r) = d - qi il Pi(cos). (5.53)
r

rs \/1+(;—§)2—2:—§ cos =0 '>
The Py(&) are called Legenore polynomials. For cosy = +1 one sees immediately from the expansion of

1/(r> ¥ r.), that Pj(1) = 1 and Py(-1) = (=)' hold.
On the other hand we may work with (5.46) and find

00 | 4 |
o) =a); TR PIRECOLCEY (554)

By comparison we obtain the addition theorem for spherical harmonics

|
47[ * / ’
Pi(cosy) = T n;l Yim(0, #)Y/ (€', 6°), (5.55)
where the angle ¢ between r and r” can be expressed by r - r’ = rr’ cosy and by use of (5.1-5.3)

cosy = cosfcosd +sindsing cos(p — ¢’). (5.56)

We consider now the special case 8’ = 0, i.e. y = 6. Then all Y| (¢, ¢’) vanish because of the factors sin 8" with
the exception of the term for m = 0 and the addition theorem is reduced to

PI(COSE) = 5 Yio(6)Yio(0) = PA(cos )PY(D). (5.57)

From the representation (5.30) P°(¢) = 1/(2'11)d'(£? — 1)'/d¢' one obtains for ¢ = 1 and the decomposition
€ -1) = (€ +1)(¢ - 1) the result PX(1) = [(£ + 1)'/2']¢=a[d'(& - 1)'/d€' /1"]e—1 = 1. Thus we have

PY() = Pi(©). (5.58)

In particular for a cylinder symmetric charge distribution p(r), which therefore depends only on r and 6, but not

on ¢, one has
Pi(cos @
o(r) = Z '(rm )q,,o (5.59)
|
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with the moments
Oio = f dr’r"' P (cos & )p(r’). (5.60)

All moments with m # 0 vanish for a cylinder symmetric distribution.

Exercise Calculate the vectors e, e, and e, from (5.1) to (5.5) and check that they constitute an orthonormal
basis.

Exercise Calculate by means of Stokes’ theorem (B.56) the curl in spherical coordinates.

Exercise Calculate for cylindric coordinates X = pcos¢, y = psin ¢ and z the metric factors g,, gs and g, the
volume element and gradient and divergence.
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6 ElectricFied in Matter

6.a Polarization and Dielectric Displacement

The field equations given by now are also valid in matter. In general matter reacts in an external electric field
by polarization. The electrons move with respect to the positively charged nuclei, thus generating dipoles, or
already existing dipoles of molecules or groups of molecules order against thermal disorder. Thus an electric
field displaces the charges g; from r; to r; + a;, i.e. dipoles p; = gia are induced. One obtains the charge
distribution of the polarization charges (4.22)

pp(r) = — Z pi - grads3(r — ;). (6.1)

Introducing a density of dipole moments P called polarization

P(r) = ZA—S (6.2)

where Y p; is the sum of the dipole moments in an infinitesimal volume AV, one obtains

pp(r) = — fd3r’P(r’) - grad&3(r - r’) = —div (f d*r'P(r)s3(r - r’)) = —divP(r). (6.3)

Let us visualize this equation. We start out

from a solid body, in which the charges p 0 unpolarized
of the ions and electrons (on a scale large Lons X

in comparison to the distance between the Patectrons

atoms) compensate (upper figure).If one ap- i

plies a field E then the electrons move p polarized
against the ions (second figure). Inside the X

bulk the charges compensate. Only at the — E py <0 a<0
boundaries a net-charge is left. In the third =

figure the polarization P = pga is shown, P=pe| a
which has been continuously smeared at the ﬂ X
boundary.The last figure shows the deriva-

tive —dP/dx. One sees that this charge dis- dpP

tribution agrees with that in the second fig- ) dx L X

ure. X —U

Thus the charge density p consists of the freely moving charge density p; and the charge density of the polar-
ization pp (the first one may be the charge density on the plates of a condensator)

p(r) = pr(r) + pp(r) = pr(r) — divP(r). (6.4)

Thus one introduces in MaxwELL’S equation

div E(r) = 4mp(r) = 4mps(r) — 4mdiv P(r) (6.5)
the dielectric displacement D
D(r) = E(r) + 4xP(r), (6.6)
so that
div D(r) = 4mps(r) (6.7)

holds. The flux of the dielectric displacement through the surface of a volume yields the free charge gs inside
this volume

f df - D(r) = 4mp (V). (6.8)
ov
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For many substances P and E are within good approximation proportional as long as the field intensity E is not
too large

P(r) = xeE(r) e electric susceptibility (6.9)
D(r) = €E(r) € relative dielectric constant (6.10)
€ =1+ 4mye. (6.11)

Ye and e are tensors for anisotropic matter, otherwise scalars. For ferroelectrica P is different from 0 already for
E = 0. However, in most cases it is compensated by surface charges. But it is observed, when the polarization is
varied by external changes like pressure in the case of quartz (piezo-electricity) or under change of temperature.
In Gaussian units the dimensions of D, E und P agree to dyn*2 cm=2. In the Sl-system E is measured in \V/m, D
and P in As/m?. Since the Sl-system is a rational system of units, the Gaussian an irrational one, the conversion
factors for D and P differ by a factor 4rt. Consequently the y. differ in both systems by a factor 4st. However,
the relative dielectric constants e are identical. For more details see appendix A.

6.b Boundaries between Dielectric Media

We now consider the boundary between two dielectric media or a dielectric material and vacuum. From
MaxweLL’s equation curl E = 0 it follows that the components of the electric field parallel to the boundary
coincides in both dielectric media

Ey = Ear. (6.12)

In order to see this one considers the line integral ﬁdr - E(r) along the closed contour which runs tangential to
the boundary in one dielectric and returns in the other one, and transforms it into the integral fdf- curlE(r) =0
over the enclosed area. One sees that the integral over the contour vanishes. If the paths of integration in both
dielectrica are infinitesimally close to each other, then E; vanishes, since the integral over the contour vanishes
for arbitrary paths.

On the other hand we may introduce a “pill box” whose covering surface is in one medium, the basal surface
in the other one, both infinitesimally separated from the boundary. If there are no free charges at the boundary,
then L d3r divD = 0, so that the integral fdf - D = 0 over the surface vanishes. If the surface approaches the
boundary, then it follows that the normal component of D is continuous

Dl,n = DZ,n- (613) D2
If the angle between the electric field (in an isotropic medium) D,
and the normal to the boundary are a1 and a» then one has E g
) ) E a & az
Eisinay = Ezsinas (6.14) 5 b
Dicosa; = Dycosaz (6.15) n n
tanay tan as
- , (6.16) € &
€1 €

We now consider a cavity in a dielectric medium. If the cavity is very thin in the direction of the field (a) and
large in perpendicular direction like a pill box then the displacement D agrees in the medium and the cavity.

If on the other hand the cavity has the shape of a slot very
long in the direction of the field (b), then the variation

of the potential along this direction has to agree, so that —E
inside and outside the cavity E coincides. At the edges — D
of the cavities will be scattered fields. It is possible to ]

calculate the field exactly for ellipsoidal cavities. See for b €

example the book by Becker and Sauter. The field is
homogeneous inside the ellipsoid. The calculation for a
sphere is given below.

o)
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6.c Dielectric Sphere in a Homogeneous Electric Field

We consider a dielectric sphere with radius R and dielectric constant
€ inside a medium with dielectric constant ;. The electric field in the

medium 1 be homogeneous at large distances R
E()=E1=Eie, >R (6.17) &1
Thus one obtains for the potential
O(r)=-E;-r=-Ejrcosd r>R (6.18)
Since cos 8 is the Lecenpre polynomial P1(cos 6), the ansatz
@(r) = f(r)cosd (6.19)

is successful. The solution of the homogeneous Poisson equation A(f(r) cosd) = 0 is a linear combination
(5.34) of f(r) = r (homogeneous field) and f(r) = 1/r? (dipolar field). Since there is no dipole at the origin we
may assume

_ —E,r r<RrR
o(r) = cose-{ _Er+p/i? r=R (6.20)
At the boundary one has ®(R + 0) = ¢(R - 0), which is identical to E;; = E,; and leads to
p
-EiR+ =i -E:R (6.21)
The condition Dy, = D, together with Dy, = —€Z2 yields
2
a(E + %)) - &F,. (6.22)
From these two equations one obtains
36]_
E, = E 6.23
2 € + 261 ! ( )
€ — € R3
= E;. 6.24
P € + 261 ! ( )
One obtains in particular for the dielectric sphere (e = €) in the vacuum (e; = 1)
3 e—1
Ey= Ei, p= RE;. 6.25
2T 2+t P e+2  ° (6.25)
The polarization inside the sphere changes the average field by
l-€ dn
E,-E; = mEleZ = —?P. (626)
However, for a spherical cavity (e, = 1) in a dielectric medium (e; = €) one obtains
3e
E; = E;. 6.27
27 Ty2e (6.27)

6.d Dielectric Constant according to Crausius and MossoTTr

Crausius and Mossorti derive the dielectric constant from the polarizability & of molecules (atoms) as follows:
The average dipole moment in the field Ey is

P = aEes. (6.28)
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The density n of the dipoles (atoms) yields the polarization
P = np = naEe. (6.29)

Therefore we have to determine the effective field E¢, which acts on the dipole.
For this purpose we cut a sphere of radius R out of the matter around the dipole. These dipoles generate, as we
have seen in the example of the dielectric sphere in the vacuum (6.26) an average field
— 4
Ep=E,—E; = —?ﬂp. (6.30)
This field is missing after we have cut out the sphere. Instead the rapidly varying field of the dipoles inside the
sphere has to be added (with the exception of the field of the dipole at the location, where the field has to be
determined)
— —pir? + 3(piri)ri
Eqr=E-Ep+ ) ———. 6.31
eff P Z ri5 ( )
The sum depends on the location of the dipoles (crystal structure). If the dipoles are located on a cubic lattice,
then the sum vanishes, since the contributions from

—0a g2 + 3XiaXip
Z €aPs Z 'r—sl (6.32)
op i i

cancel for @ # B, if one adds the contributions for x, and —x,, those for & = 3, if one adds the three contributions
obtained by cyclic permutation of the three components. Thus one obtains for the cubic lattice

4 4
YeE = P = naEer = na(E + ?“P) = no(L + ?n)(e)E, (6.33)

from which the relation of Crausius (1850) and Mossorr (1879)

Na Wik 1 e-1

= or — .
Xem 1 oam 3 c+2

(6.34)

follows.
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7 Electricity on Conductors

7.a Electric Conductors

The electric field vanishes within a conductor, E = 0, since a nonvanishing field would move the charges. Thus
the potential within a conductor is constant. For the conductor #i one has ®(r) = ®;.
Outside the conductor the potential is given by Poisson’s equation

AD(r) = —4mp(r) or div (e(r) grad ®(r)) = —4mps(r). (7.2)

7.a.« Boundary Conditions at the Surface of the Conductor

On the surface of the conductor one has a constant potential (on the side of the dielectric medium, too). Thus
the components of E tangential to the surface vanish

Ei(r) = 0, (7.2)
n
In general there are charges at the surface of the conductor. We denote its density
by o(r).
Conductor

Integration over a small piece of the surface yields

fdf-Ea(r) =4nq = 4nfdf o (r). (7.3)
Therefore the field E, obeys at the surface in the outside region

Ea(r) = 4no(r)n, —(;% = 4zo(r). (7.4)

In general the charge density o at the surface consists of the free charge density o at the surface of the conductor
and the polarization charge density o-p on the dielectric medium o-(r) = o (r) + op(r) with

Da(r) = 4mot(r)n, (7.5)

from which one obtains 1
ot = €(ot + op), 0'P=(Z—1)0'f~ (7.6)

7.a,8 Force acting on the Conductor (in Vacuo)

Initially one might guess that the force on the conductor is given by fdeaa(r). This, however, is wrong. By
the same token one could argue that one has to insert the field inside the conductor E; = 0 into the integral. The
truth lies halfway. This becomes clear, if one assumes that the charge is not exactly at the surface but smeared
out over a layer of thickness I. If we assume that inside a layer of thickness a one has the charge s(a)o(r)df
with s(0) = 0 and s(l) = 1, then the field acting at depth a is E;(r — an) = (1 — s(a))Ex(r), since the fraction s(a)
is already screened. With p(r — an) = s'(a)o(r) one obtains

K= fdf dap(r —an)E(r — an) = fdfo-(r)Ea(r) fol das'(a)(1 - s(a)). (7.7)

The integral over ayields (s(a) — sz(a)/2)|'0 =1/2, so that finally we obtain the force

K = % f dfor(r)Ea(r). (7.8)
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7.b Capacities

We now consider several conductors imbedded in the vacuum or in dielectric media. Outside the conductors
there should be no free moving charge densities, pr = 0. The electric potentials ®; of the conductors #i should
be given. We look for the free charges q; at the conductors. Since MaxweLL’s equations are linear (and we
assume that there is a linear relation D = €E) we may write the potential as a superposition of solutions ¥;

a(r) = Z (). (7.9)

¥; is the solution which assumes the value 1 at the conductor #i, and 0 at all others
WYi(r) =dij re conductor j. (7.10)

The charge on conductor #i is then given by

1 oo
Ch—-EfFvide%

1 oY,
C'»J = —Ef':i de E

The capacity has the dimension charge/(electric potential), which in Gaussian units is a length. The conversion
into the Sl-system is by the factor 4mep, so that 1 cm = 1/9 - 10~ As/V = 10/9 pF (picofarad).
The electrostatic energy is obtained from

= > Cijo; (7.11)
&

with the capacity coefficients

(7.12)

a

du = Z(Didqi = Z ®;C; ;dD;, (7.13)
i 0
that is
% = Zci,jcbi, (7.14)
63?(;;] =Cij= % =Cji, (7.15)
U= %Zci,iq)iq)j = %Z‘DiQi (7.16)

As an example we consider a spherical capacitor. Two concentric con-
ducting spheres with radii rq, ro with ry < r, carry the charges g; and

02, resp. Outside be vacuum. Between the two spheres is a medium €
with dielectric constant e. Then outside the spheres one has
+
o =1%o (7.17)
r r,
The potential decays in the space between the two spheres like qy/(er).
Since the potential is continuous at r = ry, it follows that
+
or=H_d BT oy, (7.18)
er €l 5)
Inside the smaller sphere the potential is constant.
+
o= _& Ht® (7.19)

€rq €l 5)
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From this one calculates the charges as a function of the potentials ®@; = O(r;)

err

h = L2 (01 - D) (7.20)
rr—1rq
€rqro

B = (D2 — @1) + 12D, (7.21)
o —1r1

from which the capacitor coefficients can be read off immediately. If the system is neutral, q = q; = —0_, then
g can be expressed by the difference of the potential

q=C(d1 - Dp) (7.22)

and one calls C the capacity. For the spherical capacitor one obtains ®, = 0 and ®; = %(% - %), from which

the capacity
_ erqro

= 7.23
— (7.23)
is obtained.

For a single sphere r, can go to oo and one finds C = erj.

We obtain the plate capacitor with a distance d between the plates, by putting ro = r; + d in the limit of large ry

(r2+rid)e  4nrie, 1 d
= = — 7.24
c d d (4ﬂ 4nr1)’ ( )

which approaches & for large ry with the area F. Therefore one obtains for the plate capac-

X 4nd
Itor
eF

" 4nd’
A different consideration is the following: The charge q generates the flux DF = 4xq.
Therefore the potential difference between the two plates is ® = %d = “ELF"q, from which
C=q/¢= 4€TFd follows. Be aware that here we have denoted the free charge by g.

(7.25)

7.c Influence Charges

If we fix the potentials of all conductors to 0, ®; = 0 in the presence of a free charge g’ at r’, then we write the
potential
o(r) =G(r,r)q (7.26)

with the Green’s function G. Apparently this function obeys the equation
V(e(r)VG(r, ")) = —4ns3(r - r’) (7.27)

for r outside the conductor. For r at the surface of the conductors we have G(r,r’) = 0. The superposition
principle yields for a charge density p;(r’) located outside the conductors

o(r) = fdsr’G(r, rps(r) + Z(I)i\Pi(r), (7.28)

where now we have assumed that the conductors have the potential ;.
We now show that the Green’s function is symmetric, G(r, r’) = G(r’,r). In order to show this we start from
the integral over the surfaces of the conductors

fdf// . {G(r", r)E(r")V”G(r", r/) _ E(r”)[V"G(r”, r)]G(r", r/)} - O, (729)

since G vanishes at the surface of the conductors. The area element df” is directed into the conductors. We
perform the integral also over a sphere of radius R, which includes all conductors. Since G ~ 1/R and since
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V”G ~ 1/R? the surface integral vanishes for R — co. Application of the divergence theorem yields

fdsr”{G(r”, NV’ [e(r")V'G(r”,r)] - V'[e(r")V'G(r’, N]G(r”, r")} (7.30)
= —4x fdsr”{G(r", NS —r’) = 3" —nNG(r’,r’)} (7.31)
= —4x(G(r’,r) - G(r,r")) = 0. (7.32)

We consider now a few examples:

7.c.a Space free of Conductors

In a space with constant dielectric constant e and without conductors one has

N . 7.
G(r,r’) pr—T (7.33)
7.c8 Conducting Plane
For a conducting plane z = 0 (e = 1) one solves the problem by mirror charges. If ,
the given charge ¢’ is located at r’ = (X', y’, Z), then one should imagine a second q
charge —q’ at r” = (X,y’,—=Z). This mirror charge compensates the potential at
the surface of the conductor. One obtains -
L L1 forsignz=signz o
= =T r=r] )
G(r.r) { 0 for signz = —signz. (7.34) -q

Next we consider the force which acts on the charge g’. The potential is ®(r) = G(r, r’)q’. The contribution
g’ /|r — r’| is the potential of g’ itself that does not exert a force on g’ . The second contribution —q'/|r — r”’|
comes, however, from the influence charges on the metal surface and exerts the force

_q/ _ q/ZeZ

4z signZ. (7.35)

K = -q grad

r-r’_ _
[r=r’|3

Further one determines the influence charge on the plate. At z= 0 one has 4rtsignz'e,o(r) = E(r) = ¢

q Irr:rr,/,/P. From this one obtains the density of the surface charge per area

_a 4
O gy .

With df = wd(x? + y?) one obtains

’ 00 2 2 2
fdfa(r)z—q'zz'f dx+y +29) o (7.37)
Z/Z

(@ +y2+22)32

The force acting on the plate is obtained as

1 _q%z)1Z| dOC+y? +7%) g%, .
K= > fde(r)o-(r) = ez Cry2 1227 472 signZ. (7.38)
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7.c.y Conducting Sphere

We consider a charge g’ located at r’ in the presence of a conducting
sphere with radius R and center in the origin. Then there is a vector
r’’, so that the ratio of the distances of all points R on the surface of
the sphere from r” and r”’ is constant. Be

a?:= (R-r")? R+r"?-2R-r" (7.39)
b2:=(R-r)®> = R+r?-2R-r (7.40)

This constant ratio of the distances is fulfilled for r || r”” and

R2 + r//2 r”

R+r2 (741
Then one has
R?
R2 =r'r” r’ = rTzr/ (742)
a2 r RZ r//2
e_ L. (7.43)

Thus one obtains a constant potential on the sphere with the charge g’ at r’ and the charge q” = -q'R/r” atr”
R/r’ . e ,
G(r.r) = { e — il for sign(r - R) = sign (1’ - R),

7.44
0 otherwise . ( )

The potential on the sphere vanishes with this Green’s function G. For r’ > Rt carries the charge g” and for
r’ < Rthe charge —q'. Thus if the total charge on the sphere vanishes one has to add a potential ®, which
corresponds to a homogeneously distributed charge —q” and ¢/, resp.
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8 Energy, Forcesand Stressin Dielectric Media

8.a Electrostatic Energy
By displacing the charge densities §p = dps + Spp the electrostatic energy

oU = f dBropsd + f dréppd (8.1)

will be added to the system. Simultaneously there are additional potentials ®; in the matter guaranteeing that
the polarization is in equilibrium, i. e.

oU = f droprd + f dBrépp(® + ;). (8.2)

These potentials are so that sU = 0 holds for a variation of the polarization, so that the polarizations are in
equilibrium

o+ @ =0. (8.3)
These considerations hold as long as the process is run adiabatically and under the condition that no mechanical

energy is added. Thus the matter is in a force-free state (equilibrium k = 0) or it has to be under rigid constraints.
Then one obtains with (B.62)

1 1 1
_ 3 _ 3. 4 __ 3 . _ 3. .
oU = fd réps ® = - fd r divsD @ = fd réD - grad @ = fd rE - 6D, (8.4)

similarly to the matter-free case (3.25). Then one obtains for the density of the energy at fixed density of matter
om (we assume that apart from the electric field only the density of matter determines the energy-density; in
general, however, the state of distortion will be essential)

du= iE -dD. (8.5)
4n
If D = €E, then one obtains
u—u(p)+—1f(p)E dE—u(,0)+—1 (p)Ez—u(,o)+—D2 (8.6)
= Uo\Pm an €(Pm = Uo\Om 83‘56 m = Uo(Pm SJ'IZE(pm)’ .

since the dielectric constant depends in general on the density of mass.

8.b Force Density in Isotropic Dielectric Matter

We may determine the force density in a dielectric medium by moving the masses and free charges from r to
r + 6s(r) and calculating the change of energy §U. The energy added to the system is

oU = fd3r Ka(r) - 5s(r), (8.7

where kj is an external force density. The internal electric and mechanical force density k acting against it in
equilibrium is

k(r) = —Ka(r), (8.8)
so that
oU = —fd3r k(r) - 5s(r) (8.9)
holds. We bring now U into this form
U = f (M 5o+ U son). u=uD.pm). (8.10)
aD 9omlo
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Since du/dD = E/(4x) we rewrite the first term as in the previous section

oU = f d3r (cb(r)apf(r)+ 6‘97“

m

5pm) . (8.11)
D

From the equation of continuity dp/ot = — div j we derive the relation between §p and &s. The equation has to
be multiplied by 6t and one has to consider that jot = pvét = pds holds. With (9p/0t)st = 5p we obtain

dp = — div (055). (8.12)

Then we obtain

ouU

—fdsr (d)(r)div(pfés) + :TU div(pmés))

fdsr ( grad @(r)ps(r) + ( grad a%:n)pm(r)) - 6s(r), (8.13)

where the divergence theorem (B.62) has been used by the derivation of the last line. This yields

K(r) = pr(DE(r) — pm(r) grad (%‘n) (6.14)

The first contribution is the Couroms force on the free charges. The second contribution has to be rewritten. We
substitute (8.6) U = Ug(om) + D?/(8mte(om)). Then one has

ou  dup N iDZd(l/E) _ dup iEZ de

- _ = — — S 8.15
dpm dom 8nm  dom dom 8m  dom (8.15)
The first term can be written
d d
pmorad 20 - grag (pmﬁ _ Uo) — _ grad Po(om). (8.16)

where we use that (dug/dom) grad pm = grad ug. Here Py is the hydrostatic pressure of the liquid without electric
field

Kohydro = — grad Po(om(I)). (8.17)

The hydrostatic force acting on the volume V can be written in terms of a surface integral
Ko =- f d3r grad Po(om(r)) = —f dfPo(om(r)). (8.18)

\% ov
This is a force which acts on the surface 9V with the pressure Po. There remains the electrostrictive contribution
1 de 1 de 1

— E2—|=— E2om— | - —E? 8.19
gPm grad ( dpm) B grad ( Om dpm) 8 grade, (8.19)

where (de/dpm) grad pm = grad e has been used. Then the total force density is

1 de 1
k(r) = ps(r)E(r) + grad (—Po(pm) + ﬁEzpmd,Tm) - gEz grade. (8.20)
Applications:
Dielectric fluid between two vertical capacitor plates. What is the difference h in height between between the
surface of a fluid between the plates of the capacitor and outside the capacitor? For this purpose we introduce
the integral along a closed path which goes up between the plates of the capacitor and outside down

- P+ g2y %€ gr_ L L2 dr= L E%e -
9§k dr_gggrad( PO+8nE m@pm) dr SnggE grade dr_SﬂZE(E 1). (8.21)
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The integral over the gradient along the closed path vanishes, whereas the B
integral of E? grad e yields a contribution at the two points where the path O
of integration intersects the surface. In addition there is the gravitational 1
force. Both have to compensate each other

K + Kgas = 0, (8.22) hl | € |
that is
ggdr - Kgrav = —pmgh = — 9§dr -k, (8.23)
from which one obtains the height
E%(e - 1)
h=—", 8.24
87pmg (8.24)

Dielectric fluid between two horizontal capacitor plates

What is the elevation of a dielectric fluid between
two horizontal capacitor plates? The problem can 1 S .
be solved in a similar way as between two vertical ' |
plates.lt is useful, however, to use

1_, 1, 1
8nE grade = 8nD grad(e). (8.25)

Hydrostatic pressure difference at a boundary

Performing an integration through the boundary from the dielec-
tric medium to air one obtains 1 a Air

€ i° Didectric medium

O—fak dr—f rad (—P S EZE) o|r—if|52 rad o|r+ifD2 rad(}) dr. (8.26)
Ui =) 9 0T gfm Om 8 cgrade 8n nd € ’ '

This yields the difference in hydrostatic pressure at both sides of the boundary

1 de 1
Poi(on) - Poa = g (o E2 - (e~ DEZ+ (2 - DY .27

Pressure in a practically incompressible dielectric medium
From

1 d
k + Kgav = —grad (Po(om)) + pm grad (ﬁ EZTE) —pmarad(gz) = 0. (8.28)
m

one obtains for approximately constant pn,

1
Po = pm(g— EZ% — g2) + const. (8.29)
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8.c MAxWwELL’S Stress Tensor

Now we represent the force density k as divergence of a tensor
koz = VﬁTa,ﬁ' (830)

If one has such a representation, then the force acting on a volume V is given by

=fd3rk(r)=fd3reaVﬁTQﬁ=f dfs(eaTap). (8.31)
\% ov

The force acting on the volume is such represented by a force acting on the surface. If it were isotropic T,z =
—Pé,.5, we would call P the pressure acting on the surface. In the general case we consider here one calls T the
stress tensor, since the pressure is anisotropic and there can be shear stress.

In order to calculate T we start from
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ke = ptEqy —pmVa (3 ) (8.32)
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and use VzE, = V,Es because of curl E = 0. This yields
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since 0u/dDg = Eg/(4m). This yields the expression for the stress tensor
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Top = EEdDﬁ + 004 (u _pmé‘me - ED : E)- (8.36)

In particular with u = ug(om) + D?/(8me(om)), (8.6) one obtains
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MaxweLL’S Stress tensor reads in vacuum
1 Sap
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As an example we consider the electrostatic force on a plane
piece of metal of area F. We have to evaluate E n
T vacuum T
I
1
0 metal
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fdfﬁ(e(, wp) = ( E(En) - —nEZ) F= —E’nF. (8.39)

This is in agreement with the result from (7.8).



