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3 Electric Field, Potential, Energy of the Field

3.a Statics

First we consider the time-independent problem: Statics. This means, the quantities depend only on their
location, ρ = ρ(r), j = j(r), E = E(r), B = B(r). Then the equation of continuity (1.12) and M’s
equations (1.13-1.16) separate into two groups

div j(r) = 0
curl B(r) = 4π

c j(r) div E(r) = 4πρ(r)
div B(r) = 0 curl E(r) = 0

magnetostatics electrostatics
kma =

1
c j(r) × B(r) kel = ρ(r)E(r)

(3.1)

The first group of equations contains only the magnetic induction B and the current density j. It describes
magnetostatics. The second group of equations contains only the electric field E and the charge density ρ. It is
the basis of electrostatics. The expressions for the corresponding parts of the force density k is given in the last
line.

3.b Electric Field and Potential

3.b.α Electric Potential

Now we introduce the electric Potential Φ(r). For this purpose we consider the path integral over E along to
different paths (1) and (2) from r0 to r

∫ r

r0
(1)

dr · E(r) =
∫ r

r0
(2)

dr · E(r) +
∮

dr · E(r), (3.2)

where the last integral has to be performed along the closed path from r0 along (1)
to r and from there in opposite direction along (2) to r0.This later integral can be
transformed by means of S’ theorem (B.56) into the integral

∫

df · curl E(r)
over the open surface bounded by (1) and (2), which vanishes due to M’s
equation curl E(r) = 0 (3.1).

r

r

0

F

(1)

(2)

Therefore the integral (3.2) is independent of the path and one defines the electric potential

Φ(r) = −
∫ r

r0

dr · E(r) + Φ(r0). (3.3)

The choice of r0 and of Φ(r0) is arbitrary, but fixed. Therefore Φ(r) is defined apart from an arbitrary additive
constant. From the definition (3.3) we have

dΦ(r) = −dr · E(r), E(r) = − gradΦ(r). (3.4)

9



10 B Electrostatics

3.b.β Electric Flux and Charge

From div E(r) = 4πρ(r), (3.1) one obtains
∫

V
d3r div E(r) = 4π

∫

V
d3rρ(r) (3.5)

and therefore with the divergence theorem (B.59)
∫

∂V
df · E(r) = 4πq(V), (3.6)

id est the electric flux of the field E through the surface equals 4π times the charge q in the volume V.
This has a simple application for the electric field of a rotational invariant charge distribution ρ(r) = ρ(r) with
r = |r|. For reasons of symmetry the electric field points in radial direction, E = E(r)r/r

4πr2E(r) = 4π
∫ r

0
ρ(r′)r′2dr′dΩ = (4π)2

∫ r

0
ρ(r′)r′2dr′, (3.7)

so that one obtains

E(r) =
4π
r2

∫ r

0
ρ(r′)r′2dr′ (3.8)

for the field.
As a special case we consider a point charge in the origin. Then one has

4πr2E(r) = 4πq, E(r) =
q
r2
, E(r) =

r
r3

q. (3.9)

The potential depends only on r for reasons of symmetry. Then one obtains

gradΦ(r) =
r
r

dΦ(r)
dr

= −E(r), (3.10)

which after integration yields

Φ(r) =
q
r
+ const. (3.11)

3.b.γ Potential of a Charge Distribution

We start out from point charges qi at locations ri. The corresponding potential and the field is obtained from
(3.11) und (3.10) by shifting r by ri

Φ(r) =
∑

i

qi

|r − ri|
(3.12)

E(r) = − gradΦ(r) =
∑

i

qi(r − ri)
|r − ri|3

. (3.13)

We change now from point charges to the charge density ρ(r). To do this we perform the transition from
∑

i qi f (ri) =
∑

i ∆Vρ(ri) f (ri) to
∫

d3r′ρ(r′) f (r′), which yields

Φ(r) =
∫

d3r′
ρ(r′)
|r − r′|

(3.14)

From E = − gradΦ and div E = 4πρ one obtains P’s equation

4Φ(r) = −4πρ(r). (3.15)

Please distinguish 4 = ∇ · ∇ and ∆ =Delta. We check eq. (3.15). First we determine

∇Φ(r) =
∫

d3r′ρ(r′)
r′ − r
|r′ − r|3

=

∫

d3a ρ(r + a)
a
a3

(3.16)
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and

4Φ(r) =
∫

d3a(∇ρ(r + a)) · a
a3
=

∫ ∞

0
da

∫

dΩa
∂ρ(r + a)

∂a
=

∫

dΩa(ρ(r +∞ea) − ρ(r)) = −4πρ(r), (3.17)

assuming that ρ vanishes at infinity. The three-dimensional integral over a has been separated by the integral
over the radius a and the solid angle Ωa, d3a = a2dadΩ (compare section 5).
From P’s equation one obtains

4Φ(r) =
∫

d3r′ρ(r′)4
1

|r − r′|
= −4πρ(r) = −4π

∫

d3r′ρ(r′)δ3(r − r′) (3.18)

and from the equality of the integrands

4 1
|r − r′|

= −4πδ3(r − r′). (3.19)

3.c C Force and Field Energy

The force acting on the charge qi at ri is
Ki = qiEi(ri). (3.20)

Here Ei is the electric field without that generated by the charge qi itself. Then one obtains the C force

Ki = qi

∑

j,i

q j(ri − r j)

|ri − r j|3
. (3.21)

From this equation one realizes the definition of the unit of charge in G’s units, 1 dyn1/2 cm is the charge,
which exerts on the same amount of charge in the distance of 1 cm the force 1 dyn.
The potential energy is

U =
1
2

∑

i

∑

j,i

qiq j

|ri − r j|
=

1
2

∑

i

qiΦi(ri). (3.22)

The factor 1/2 is introduced since each pair of charges appears twice in the sum. E.g., the interaction energy
between charge 1 and charge 2 is contained both in i = 1, j = 2 and i = 2, j = 1. Thus we have to divide by 2.
The contribution from qi is excluded from the potential Φi. The force is then as usually

Ki = − grad ri
U. (3.23)

In the continuum one obtains by use of (B.62)

U =
1
2

∫

d3rρ(r)Φ(r) =
1

8π

∫

d3r div E(r)Φ(r) =
1

8π

∫

F
df · E(r)Φ(r) − 1

8π

∫

d3rE(r) · gradΦ(r), (3.24)

where no longer the contribution from the charge density at the same location has to be excluded from Φ, since
it is negligible for a continuous distribution. F should include all charges and may be a sphere of radius R. In
the limit R→ ∞ one obtains Φ ∝ 1/R, E ∝ 1/R2,

∫

F
∝ 1/R→ 0. Then one obtains the electrostatic energy

U =
1

8π

∫

d3rE2(r) =
∫

d3r u(r) (3.25)

with the energy density

u(r) =
1

8π
E2(r). (3.26)

Classical Radius of the Electron As an example we consider the ”classical radius of an electron” R0: One
assumes that the charge is homogeneously distributed on the surface of the sphere of radius R. The electric field
energy should equal the energy m0c2, where m0 is the mass of the electron.

1
8π

∫ ∞

R0

(e0

r2

)2
r2drdΩ =

e2
0

2R0
= m0c2 (3.27)

yields R0 = 1.4 ·10−13 cm. The assumption of a homogeneous distribution of the charge inside the sphere yields
a slightly different result.
From scattering experiments at high energies one knows that the extension of the electron is at least smaller by
a factor of 100, thus the assumption made above does not apply.
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4 Electric Dipole and Quadrupole

A charge distribution ρ(r′) inside a sphere of radius R around the origin
is given. We assume ρ(r′) = 0 outside the sphere.

4.a The Field for r > R

The potential of the charge distribution is

Φ(r) =
∫

d3r′
ρ(r′)
|r − r′|
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R

r’

We perform a T-expansion in r′, i.e. in the three variables x′1, x′2 und x′3

1
|r − r′|

=

∞
∑

l=0

(−r′∇)l

l!
1
r
=

1
r
− (r′∇)

1
r
+

1
2

(r′∇)(r′∇)
1
r
− ... (4.2)

At first we have to calculate the gradient of 1/r

∇1
r
= − r

r3
, since ∇ f (r) =

r
r

f ′(r), (4.3)

solve (B.39, B.42). Then one obtains

(r′∇)
1
r
= −

r′ · r
r3

. (4.4)

Next we calculate (B.47)

∇c · r
r3
=

1
r3

grad (c · r) + (c · r) grad

(

1
r3

)

=
c
r3
− 3(c · r)r

r5
(4.5)

using (B.27) and the solutions of (B.37, B.39). Then we obtain the T-expansion

1
|r − r′|

=
1
r
+

r · r′

r3
+

3(r · r′)2 − r2r′2

2r5
+ ... (4.6)

At first we transform 3(r · r′)2 − r2r′2

3(r · r′)2 − r2r′2 = x′αx′β(3xαxβ − r2δα,β) = (x′αx′β −
1
3

r′2δα,β)(3xαxβ − r2δα,β) (4.7)

because of δα,β(3xαxβ − δα,βr2) = 3xαxα − r2δα,α = 0. Here and in the following we use the summation
convention, i.e. we sum over all indices (of components), which appear twice in a product in (4.7), that is over
α and β.
We now introduce the quantities

q =
∫

d3r′ρ(r′) charge (4.8)

p =
∫

d3r′r′ρ(r′) dipolar moment (4.9)

Qα,β =

∫

d3r′(x′αx′β −
1
3
δα,βr

′2)ρ(r′) components of the quadrupolar moment (4.10)

and obtain the expansion for the potential and the electric field

Φ(r) =
q
r
+

p · r
r3
+ Qα,β

3xαxβ − r2δα,β

2r5
+ O(

1
r4

) (4.11)

E(r) = − gradΦ(r) =
qr
r3
+

3(p · r)r − pr2

r5
+ O(

1
r4

) (4.12)
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4.b Transformation Properties

The multipole moments are defined with respect to a given point, for example with respect to the origin. If one
shifts the point of reference by a, i.e. r′1 = r′ − a, then one finds with ρ1(r′1) = ρ(r′)

q1 =

∫

d3r′1ρ1(r′1) =
∫

d3r′ρ(r′) = q (4.13)

p1 =

∫

d3r′1r′1ρ1(r′1) =
∫

d3r′(r′ − a)ρ(r′) = p − aq. (4.14)

The total charge is independent of the point of reference. The dipolar moment is independent of the point of
reference if q = 0 (pure dipol), otherwise it depends on the point of reference. Similarly one finds that the
quadrupolar moment is independent of the point of reference, if q = 0 and p = 0 (pure quadrupole).
The charge q is invariant under rotation (scalar) x′1,α = Dα,βx′

β
, where D is a rotation matrix, which describes an

orthogonal transformation. The dipole p transforms like a vector

p1,α =

∫

d3r′Dα,βx′βρ(r′) = Dα,βpβ (4.15)

and the quadrupole Q like a tensor of rank 2

Q1,α,β =

∫

d3r′(Dα,γx′γDβ,δx′δ −
1
3
δα,βr

′2)ρ(r′). (4.16)

Taking into account that due to the orthogonality of D

δα,β = Dα,γDβ,γ = Dα,γδγ,δDβ,δ, (4.17)

it follows that
Q1,α,β = Dα,γDβ,δQγ,δ, (4.18)

that is the transformation law for tensors of second rank.

4.c Dipole

The prototype of a dipole consists of two charges of opposite sign, q at r0 + a and −q at r0.

p = qa. (4.19)

Therefore the corresponding charge distribution is

ρ(r) = q(δ3(r − r0 − a) − δ3(r − r0)). (4.20)

We perform now the T expansion in a

ρ(r) = qδ3(r − r0) − qa · ∇δ3(r − r0) +
q
2

(a · ∇)2δ3(r − r0) + ... − qδ3(r − r0), (4.21)

where the first and the last term cancel. We consider now the limit a → 0, where the product qa = p is kept
fixed. Then we obtain the charge distribution of a dipole p at location r0

ρ(r) = −p · ∇δ3(r − r0) (4.22)

and its potential

Φ(r) =

∫

d3r′
ρ(r′)
|r − r′|

= −p ·
∫

d3r′
1

|r − r′|
grad ′δ3(r′ − r0) = p ·

∫

d3r′ grad ′
1

|r − r′|
δ3(r′ − r0)

= p ·
∫

d3r′
r − r′

|r − r′|3
δ3(r′ − r0) =

p · (r − r0)
|r − r0|3

, (4.23)

where equation (B.61) is used and (B.50) has to be solved.
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4.d Quadrupole

The quadrupole is described by the second moment of the charge distribution.

4.d.α Symmetries

Q is a symmetric tensor
Qα,β = Qβ,α. (4.24)

It can be diagonalized by an orthogonal transformation similarly as the tensor of inertia. Further from definition
(4.10) it follows that

Qα,α = 0, (4.25)

that is the trace of the quadrupole tensor vanishes. Thus the tensor does not have six, but only five independent
components.

4.d.β Symmetric Quadrupole

A special case is the symmetric quadrupole. Its charge distribution depends
only on z and on the distance from the z-axis, ρ = ρ(z,

√

x2 + y2). It obeys

Qx,y = Qx,z = Qy,z = 0, (4.26)

because ρ(x, y, z) = ρ(−x, y, z) = ρ(x,−y, z). Furthermore one has

Qx,x = Qy,y = −
1
2

Qz,z =: −
1
3

Q̂. (4.27)

The first equality follows from ρ(x, y, z) = ρ(y, x, z), the second one from the vanishing
of the trace of Q. The last equality-sign gives the definition of Q̂.

z’
r’

θ’

One finds

Q̂ =
3
2

Qz,z =

∫

d3r′(
3
2

z′2 −
1
2

r′2)ρ(r′) =
∫

d3r′r′2P2(cos θ′)ρ(r′) (4.28)

with the L polynomial P2(ξ) = 3
2ξ

2 − 1
2 . We will return to the L polynomials in the next section

and in appendix C.
As an example we consider the stretched quadrupole with two charges q at ±aez and a charge −2q in the origin.
Then we obtain Q̂ = 2qa2. The different charges contribute to the potential of the quadrupole

Φ(r) = −
1
3

Q̂
3x2 − r2

2r5
−

1
3

Q̂
3y2 − r2

2r5
+

2
3

Q̂
3z2 − r2

2r5
=

Q̂P2(cos θ)
r3

. (4.29)

4.e Energy, Force and Torque on a Multipole in an external Field

A charge distribution ρ(r) localized around the origin is considered in an external electric potentialΦa(r), which
may be generated by an external charge distribution ρa. The interaction energy is then given by

U =
∫

d3rρ(r)Φa(r). (4.30)

No factor 1/2 appears in front of the integral, which might be expected in view of this factor in (3.24), since
besides the integral over ρ(r)Φa(r) there is a second one over ρa(r)Φ(r), which yields the same contribution. We
now expand the external potential and obtain for the interaction energy

U =

∫

d3rρ(r)

{

Φa(0) + r∇Φa|r=0 +
1
2

xαxβ ∇α∇βΦa

∣

∣

∣

r=0
+ ...

}

= qΦa(0) + p · ∇Φa|r=0 +
1
2

(

Qα,β +
1
3
δα,β

∫

d3rρ(r)r2

)

∇α∇βΦa

∣

∣

∣

r=0
+ ... (4.31)
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The contribution proportional to the integral over ρ(r)r2 vanishes, since ∇α∇αΦa = 4Φa = −4πρa(r) = 0, since
there are no charges at the origin, which generate Φa. Therefore we are left with the potential of interaction

U = qΦa(0) − p · Ea(0) +
1
2

Qα,β∇α∇βΦa + ... (4.32)

For example we can now determine the potential energy between two dipoles, pb in the origin and pa at r0. The
dipole pa generates the potential

Φa(r) =
pa · (r − r0)
|r − r0|3

. (4.33)

Then the interaction energy yields (compare B.47)

Ua,b = pb · ∇Φa|r=0 =
pa · pb

r3
0

−
3(pa · r0)(pb · r0)

r5
0

. (4.34)

The force on the dipole in the origin is then given by

K =
∫

d3rρ(r)Ea(r) =
∫

d3rρ(r)(Ea(0) + xα∇αEa|r=0 + ...) = qEa(0) + (p · grad )Ea(0) + ... (4.35)

The torque on a dipole in the origin is given by

Mmech =

∫

d3r′ρ(r′)r′ × Ea(r′) = p × Ea(0) + ... (4.36)
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5 Multipole Expansion in Spherical Coordinates

5.a P Equation in Spherical Coordinates

We first derive the expression for the Laplacian
operator in spherical coordinates

x = r sin θ cosφ (5.1)

y = r sin θ sin φ (5.2)

z = r cos θ. (5.3)

Initially we use only that we deal with curvilin-
ear coordinates which intersect at right angles,
so that we may write

dr = grerdr + gθeθdθ + gφeφdφ (5.4)

where the er, eθ and eφ constitute an orthonormal
space dependent basis. Easily one finds

gr = 1, gθ = r, gφ = r sin θ. (5.5)

z

r

θ

φdφeθsinr

er d r

r eθ dθ

dr

The volume element is given by

d3r = grdrgθdθgφdφ = r2dr sin θdθdφ = r2drdΩ (5.6)

with the element of the solid angle

dΩ = sin θdθdφ. (5.7)

5.a.α The Gradient

In order to determine the gradient we consider the differential of the functionΦ(r)

dΦ(r) =
∂Φ

∂r
dr +

∂Φ

∂θ
dθ +

∂Φ

∂φ
dφ, (5.8)

which coincides with ( gradΦ) · dr. From the expansion of the vector field in its components

gradΦ = ( gradΦ)rer + ( gradΦ)θeθ + ( gradΦ)φeφ (5.9)

and (5.4) it follows that

dΦ(r) = ( gradΦ)rgrdr + ( gradΦ)θgθdθ + ( gradΦ)φgφdφ, (5.10)

from which we obtain

( gradΦ)r =
1
gr

∂Φ

∂r
, ( gradΦ)θ =

1
gθ

∂Φ

∂θ
, ( gradΦ)φ =

1
gφ

∂Φ

∂φ
(5.11)

for the components of the gradient.
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5.a.β The Divergence

In order to calculate the divergence we use the divergence theorem (B.59). We integrate the divergence of A(r)
in a volume limited by the coordinates r, r + ∆r, θ, θ + ∆θ, φ, φ + ∆φ. We obtain

∫

d3r div A =

∫

grgθgφ div A drdθdφ

=

∫

A · df =

∫

gθdθgφdφAr

∣

∣

∣

r+∆r

r
+

∫

grdrgφdφAθ

∣

∣

∣

θ+∆θ

θ
+

∫

grdrgθdθAφ

∣

∣

∣

φ+∆φ

φ

=

∫ [

∂

∂r

(

gθgφAr

)

+
∂

∂θ

(

grgφAθ

)

+
∂

∂φ

(

grgθAφ

)

]

drdθdφ (5.12)

Since the identity holds for arbitrarily small volumina the integrands on the right-hand side of the first line and
on the third line have to agree which yields

div A(r) =
1

grgθgφ

[

∂

∂r

(

gθgφAr

)

+
∂

∂θ

(

grgφAθ

)

+
∂

∂φ

(

grgθAφ

)

]

. (5.13)

5.a.γ The Laplacian

Using 4Φ = div gradΦ we obtain finally

4Φ(r) =
1

grgθgφ

[

∂

∂r

(

gθgφ
gr

∂Φ

∂r

)

+
∂

∂θ

(

grgφ
gθ

∂Φ

∂θ

)

+
∂

∂φ

(

grgθ
gφ

∂Φ

∂φ

)]

. (5.14)

This equation holds generally for curvilinear orthogonal coordinates (if we denote them by r, θ, φ). Substituting
the values for g we obtain for spherical coordinates

4Φ =
1
r
∂2

∂r2
(rΦ) +

1
r2
4ΩΦ, (5.15)

4ΩΦ =
1

sin θ
∂

∂θ
(sin θ

∂Φ

∂θ
) +

1

sin2 θ

∂2Φ

∂φ2
. (5.16)

The operator 4Ω acts only on the two angels θ and φ, but not on the distance r. Therefore it is also called
Laplacian on the sphere.

5.b Spherical Harmonics

As will be explained in more detail in appendix C there is a complete set of orthonormal functions Yl,m(θ, φ),
l = 0, 1, 2, ..., m = −l,−l + 1, ...l, which obey the equation

4ΩYl,m(θ, φ) = −l(l + 1)Yl,m(θ, φ). (5.17)

They are called spherical harmonics. Completeness means: If f (θ, φ) is differentiable on the sphere and its
derivatives are bounded, then f (θ, φ) can be represented as a convergent sum

f (θ, φ) =
∑

l,m

f̂l,mYl,m(θ, φ). (5.18)

Therefore we perform the corresponding expansion for Φ(r) and ρ(r)

Φ(r) =
∑

l,m

Φ̂l,m(r)Yl,m(θ, φ), (5.19)

ρ(r) =
∑

l,m

ρ̂l,m(r)Yl,m(θ, φ). (5.20)
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The spherical harmonics are orthonormal, i.e. the integral over the solid angle yields
∫

dΩY∗l,m(θ, φ)Yl′,m′(θ, φ) =
∫

dφ sin θdθY∗l,m(θ, φ)Yl′,m′(θ, φ) = δl,l′δm,m′ . (5.21)

This orthogonality relation can be used for the calculation of Φ̂ and ρ̂
∫

dφ sin θdθY∗l,m(θ, φ)ρ(r) =
∑

l′,m′
ρ̂l′ ,m′(r)

∫

dφ sin θdθY∗l,m(θ, φ)Yl′,m′ (θ, φ)

=
∑

l′ ,m′
ρ̂l′ ,m′(r)δl,l′δm,m′ = ρ̂l,m(r). (5.22)

We list some of the spherical harmonics

Y0,0(θ, φ) =

√

1
4π

(5.23)

Y1,0(θ, φ) =

√

3
4π

cos θ (5.24)

Y1,±1(θ, φ) = ∓
√

3
8π

sin θe±iφ (5.25)

Y2,0(θ, φ) =

√

5
4π

(

3
2

cos2 θ − 1
2

)

(5.26)

Y2,±1(θ, φ) = ∓
√

15
8π

sin θ cos θe±iφ (5.27)

Y2,±2(θ, φ) =
1
4

√

15
2π

sin2 θe±2iφ. (5.28)

In general one has

Yl,m(θ, φ) =

√

2l + 1
4π

(l − m)!
(l + m)!

Pm
l (cos θ)eimφ (5.29)

with the associated L functions

Pm
l (ξ) =

(−)m

2ll!
(1 − ξ2)m/2 dl+m

dξl+m
(ξ2 − 1)l. (5.30)

Generally Yl,m is a product of (sin θ)|m|eimφ and a polynomial of order l− |m| in cos θ. If l− |m| is even (odd), then
this polynomial is even (odd) in cos θ. There is the symmetry relation

Yl,−m(θ, φ) = (−)mY∗l,m(θ, φ). (5.31)

5.c Radial Equation and Multipole Moments

Using the expansion of Φ and ρ in spherical harmonics the P equation reads

4Φ(r) =
∑

l,m

(

1
r

d2

dr2
(rΦ̂l,m(r)) − l(l + 1)

r2
Φ̂l,m(r)

)

Yl,m(θ, φ) = −4π
∑

l,m

ρ̂l,m(r)Yl,m(θ, φ). (5.32)

Equating the coefficients of Yl,m we obtain the radial equations

Φ̂′′l,m(r) +
2
r
Φ̂′l,m(r) − l(l + 1)

r2
Φ̂l,m(r) = −4πρ̂l,m(r). (5.33)

The solution of the homogeneous equation reads

Φ̂l,m(r) = al,mrl + bl,mr−l−1. (5.34)
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For the inhomogeneous equation we introduce the conventional ansatz (at present I suppress the indices l and
m.)

Φ̂ = a(r)rl + b(r)r−l−1. (5.35)

Then one obtains
Φ̂′ = a′(r)rl + b′(r)r−l−1 + la(r)rl−1 − (l + 1)b(r)r−l−2. (5.36)

As usual we require
a′(r)rl + b′(r)r−l−1 = 0 (5.37)

and obtain for the second derivative

Φ̂′′ = la′(r)rl−1 − (l + 1)b′(r)r−l−2 + l(l − 1)a(r)rl−2 + (l + 1)(l + 2)b(r)r−l−3. (5.38)

After substitution into the radial equation the contributions which contain a and b without derivative cancel. We
are left with

la′(r)rl−1 − (l + 1)b′(r)r−l−2 = −4πρ̂, (5.39)

From the equations (5.37) and (5.39) one obtains by solving for a′ and b′

dal,m(r)
dr

= − 4π
2l + 1

r1−lρ̂l,m(r), (5.40)

dbl,m(r)
dr

=
4π

2l + 1
rl+2ρ̂l,m(r). (5.41)

Now we integrate these equations

al,m(r) =
4π

2l + 1

∫ ∞

r
dr′r′1−lρ̂l,m(r′) (5.42)

bl,m(r) =
4π

2l + 1

∫ r

0
dr′r′l+2ρ̂l,m(r′). (5.43)

If we add a constant to al,m(r), then this is a solution of the P equation too, since rlYl,m(θ, φ) is a homoge-
neous solution of the P equation. We request a solution, which decays for large r. Therefore we choose
al,m(∞) = 0. If we add a constant to bl,m, then this is a solution for r , 0. For r = 0 however, one obtains a
singularity, which does not fulfil the P equation. Therefore bl,m(0) = 0 is required.
We may now insert the expansion coefficients ρ̂l,m and obtain

al,m(r) =
4π

2l + 1

∫

r′>r
d3r′r′−1−lY∗l,m(θ′, φ′)ρ(r′) (5.44)

bl,m(r) =
4π

2l + 1

∫

r′<r
d3r′r′lY∗l,m(θ′, φ′)ρ(r′). (5.45)

We may now insert the expressions for al,m und bl,m into (5.19) and (5.35). The r- und r′-dependence is obtained
for r < r′ from the a-term as rl/r′l+1 and for r > r′ from the b-term as r′l/rl+1. This can be put together, if we
denote by r> the larger, by r< the smaller of both radii r and r′. Then one has

Φ(r) =
∞
∑

l=0

4π
2l + 1

l
∑

m=−l

∫

d3r′
rl
<

rl+1
>

ρ(r′)Y∗l,m(θ′, φ′)Yl,m(θ, φ). (5.46)

If ρ(r′) = 0 for r′ > R, then one obtains for r > R

Φ(r) =
∑

l,m

√

4π
2l + 1

ql,m
Yl,m(θ, φ)

rl+1
(5.47)

with the multipole moments

ql,m =

√

4π
2l + 1

∫

d3r′r′lY∗l,m(θ′, φ′)ρ(r′). (5.48)
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For l = 0 one obtains the ”monopole moment” charge, for l = 1 the components of the dipole moment, for l = 2
the components of the quadrupole moment. In particular for m = 0 one has

q0,0 =
√

4π
∫

d3r′
√

1
4π
ρ(r′) = q (5.49)

q1,0 =

√

4π
3

∫

d3r′
√

3
4π

r′ cos θ′ρ(r′) =
∫

d3r′z′ρ(r′) = pz (5.50)

q2,0 =

√

4π
5

∫

d3r′
√

5
4π

r′2(
3
2

cos2 θ′ − 1
2

)ρ(r′) =
∫

d3r′(
3
2

z′2 − 1
2

r′2)ρ(r′) =
3
2

Qzz. (5.51)

5.d Point Charge at r′, Cylindric Charge Distribution

Finally we consider the case of a point charge q located at r′. We start from the potential

Φ(r) =
q

|r − r′|
=

q
√

r2 + r′2 − 2rr′ cosψ
. (5.52)

Here ψ is the angle between r and r′. We expand in r</r>

Φ(r) =
q

r>
√

1 + ( r<
r>

)2 − 2 r<
r>

cosψ
= q

∞
∑

l=0

rl
<

rl+1
>

Pl(cosψ). (5.53)

The Pl(ξ) are called L polynomials. For cosψ = ±1 one sees immediately from the expansion of
1/(r> ∓ r<), that Pl(1) = 1 and Pl(−1) = (−)l hold.
On the other hand we may work with (5.46) and find

Φ(r) = q
∞
∑

l=0

rl
<

rl+1
>

4π
2l + 1

l
∑

m=−l

Yl,m(θ, φ)Y∗l,m(θ′, φ′). (5.54)

By comparison we obtain the addition theorem for spherical harmonics

Pl(cosψ) =
4π

2l + 1

l
∑

m=−l

Yl,m(θ, φ)Y∗l,m(θ′, φ′), (5.55)

where the angle ψ between r and r′ can be expressed by r · r′ = rr′ cosψ and by use of (5.1-5.3)

cosψ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′). (5.56)

We consider now the special case θ′ = 0, i.e. ψ = θ. Then all Yl,m(θ′, φ′) vanish because of the factors sin θ′ with
the exception of the term for m = 0 and the addition theorem is reduced to

Pl(cos θ) =
4π

2l + 1
Yl,0(θ)Yl,0(0) = P0

l (cos θ)P0
l (1). (5.57)

From the representation (5.30) P0
l (ξ) = 1/(2ll!)dl(ξ2 − 1)l/dξl one obtains for ξ = 1 and the decomposition

(ξ2 − 1)l = (ξ + 1)l(ξ − 1)l the result P0
l (1) = [(ξ + 1)l/2l]ξ=1[dl(ξ − 1)l/dξl/l!]ξ=1 = 1. Thus we have

P0
l (ξ) = Pl(ξ). (5.58)

In particular for a cylinder symmetric charge distribution ρ(r), which therefore depends only on r and θ, but not
on φ, one has

Φ(r) =
∑

l

Pl(cos θ)
rl+1

ql,0 (5.59)
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with the moments

ql,0 =

∫

d3r′r′lPl(cos θ′)ρ(r′). (5.60)

All moments with m , 0 vanish for a cylinder symmetric distribution.
Exercise Calculate the vectors er, eθ and eφ from (5.1) to (5.5) and check that they constitute an orthonormal
basis.
Exercise Calculate by means of S’ theorem (B.56) the curl in spherical coordinates.
Exercise Calculate for cylindric coordinates x = ρ cosφ, y = ρ sin φ and z the metric factors gρ, gφ and gz, the
volume element and gradient and divergence.
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6 Electric Field in Matter

6.a Polarization and Dielectric Displacement

The field equations given by now are also valid in matter. In general matter reacts in an external electric field
by polarization. The electrons move with respect to the positively charged nuclei, thus generating dipoles, or
already existing dipoles of molecules or groups of molecules order against thermal disorder. Thus an electric
field displaces the charges qi from ri to ri + ai, i.e. dipoles pi = qiai are induced. One obtains the charge
distribution of the polarization charges (4.22)

ρP(r) = −
∑

i

pi · grad δ3(r − ri). (6.1)

Introducing a density of dipole moments P called polarization

P(r) =
∑

pi

∆V
, (6.2)

where
∑

pi is the sum of the dipole moments in an infinitesimal volume ∆V, one obtains

ρP(r) = −
∫

d3r′P(r′) · grad δ3(r − r′) = − div

(∫

d3r′P(r′)δ3(r − r′)
)

= − div P(r). (6.3)

Let us visualize this equation. We start out
from a solid body, in which the charges
of the ions and electrons (on a scale large
in comparison to the distance between the
atoms) compensate (upper figure).If one ap-
plies a field E then the electrons move
against the ions (second figure). Inside the
bulk the charges compensate. Only at the
boundaries a net-charge is left. In the third
figure the polarization P = ρela is shown,
which has been continuously smeared at the
boundary.The last figure shows the deriva-
tive −dP/dx. One sees that this charge dis-
tribution agrees with that in the second fig-
ure.

P=ρel a
P

P

ρ

ρ

ρ

d

dx
-

x

x

x

E ρel <0 a<0

x

polarized

unpolarizedρ

electrons

ions

Thus the charge density ρ consists of the freely moving charge density ρf and the charge density of the polar-
ization ρP (the first one may be the charge density on the plates of a condensator)

ρ(r) = ρf(r) + ρP(r) = ρf(r) − div P(r). (6.4)

Thus one introduces in M’s equation

div E(r) = 4πρ(r) = 4πρf(r) − 4π div P(r) (6.5)

the dielectric displacement D
D(r) = E(r) + 4πP(r), (6.6)

so that
div D(r) = 4πρf(r) (6.7)

holds. The flux of the dielectric displacement through the surface of a volume yields the free charge qf inside
this volume

∫

∂V
df · D(r) = 4πqf(V). (6.8)



6 Electric Field in Matter 23

For many substances P and E are within good approximation proportional as long as the field intensity E is not
too large

P(r) = χeE(r) χe electric susceptibility (6.9)

D(r) = εE(r) ε relative dielectric constant (6.10)

ε = 1 + 4πχe. (6.11)

χe and ε are tensors for anisotropic matter, otherwise scalars. For ferroelectrica P is different from 0 already for
E = 0. However, in most cases it is compensated by surface charges. But it is observed, when the polarization is
varied by external changes like pressure in the case of quartz (piezo-electricity) or under change of temperature.
In Gian units the dimensions of D, E und P agree to dyn1/2 cm−1. In the SI-system E is measured in V/m, D
and P in As/m2. Since the SI-system is a rational system of units, the Gian an irrational one, the conversion
factors for D and P differ by a factor 4π. Consequently the χe differ in both systems by a factor 4π. However,
the relative dielectric constants ε are identical. For more details see appendix A.

6.b Boundaries between Dielectric Media

We now consider the boundary between two dielectric media or a dielectric material and vacuum. From
M’s equation curl E = 0 it follows that the components of the electric field parallel to the boundary
coincides in both dielectric media

E1,t = E2,t. (6.12)

In order to see this one considers the line integral
∮

dr · E(r) along the closed contour which runs tangential to
the boundary in one dielectric and returns in the other one, and transforms it into the integral

∫

df · curl E(r) = 0
over the enclosed area. One sees that the integral over the contour vanishes. If the paths of integration in both
dielectrica are infinitesimally close to each other, then Et vanishes, since the integral over the contour vanishes
for arbitrary paths.
On the other hand we may introduce a ”pill box” whose covering surface is in one medium, the basal surface
in the other one, both infinitesimally separated from the boundary. If there are no free charges at the boundary,
then

∫

V
d3r div D = 0, so that the integral

∫

df · D = 0 over the surface vanishes. If the surface approaches the
boundary, then it follows that the normal component of D is continuous

D1,n = D2,n. (6.13)

If the angle between the electric field (in an isotropic medium)
and the normal to the boundary are α1 and α2 then one has

E1 sinα1 = E2 sinα2 (6.14)

D1 cosα1 = D2 cosα2 (6.15)
tanα1

ε1
=

tanα2

ε2
. (6.16)

D D

E E
E E

D
D

α α

ε ε1 2

t t

n n

1 2
1

2

1 2

We now consider a cavity in a dielectric medium. If the cavity is very thin in the direction of the field (a) and
large in perpendicular direction like a pill box then the displacement D agrees in the medium and the cavity.

If on the other hand the cavity has the shape of a slot very
long in the direction of the field (b), then the variation
of the potential along this direction has to agree, so that
inside and outside the cavity E coincides. At the edges
of the cavities will be scattered fields. It is possible to
calculate the field exactly for ellipsoidal cavities. See for
example the book by B and S. The field is
homogeneous inside the ellipsoid. The calculation for a
sphere is given below.

a

b

E
D

ε
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6.c Dielectric Sphere in a Homogeneous Electric Field

We consider a dielectric sphere with radius R and dielectric constant
ε2 inside a medium with dielectric constant ε1. The electric field in the
medium 1 be homogeneous at large distances

E(r) = E1 = E1ez r � R. (6.17)

Thus one obtains for the potential

Φ(r) = −E1 · r = −E1r cos θ r � R. (6.18)

R

εε2 1

Since cos θ is the L polynomial P1(cos θ), the ansatz

Φ(r) = f (r) cos θ (6.19)

is successful. The solution of the homogeneous P equation 4( f (r) cos θ) = 0 is a linear combination
(5.34) of f (r) = r (homogeneous field) and f (r) = 1/r2 (dipolar field). Since there is no dipole at the origin we
may assume

Φ(r) = cos θ ·
{

−E2r r ≤ R
−E1r + p/r2 r ≥ R

. (6.20)

At the boundary one has Φ(R + 0) = φ(R − 0), which is identical to E1,t = E2,t and leads to

−E1R +
p

R2
= −E2R. (6.21)

The condition D1,n = D2,n together with Dn = −ε ∂Φ∂r yields

ε1(E1 +
2p
R3

) = ε2E2. (6.22)

From these two equations one obtains

E2 =
3ε1

ε2 + 2ε1
E1 (6.23)

p =
ε2 − ε1

ε2 + 2ε1
R3E1. (6.24)

One obtains in particular for the dielectric sphere (ε2 = ε) in the vacuum (ε1 = 1)

E2 =
3

2 + ε
E1, p =

ε − 1
ε + 2

R3E1. (6.25)

The polarization inside the sphere changes the average field by

E2 − E1 =
1 − ε
2 + ε

E1ez = −
4π
3

P. (6.26)

However, for a spherical cavity (ε2 = 1) in a dielectric medium (ε1 = ε) one obtains

E2 =
3ε

1 + 2ε
E1. (6.27)

6.d Dielectric Constant according to C and M

C and M derive the dielectric constant from the polarizability α of molecules (atoms) as follows:
The average dipole moment in the field Eeff is

p = αEeff . (6.28)
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The density n of the dipoles (atoms) yields the polarization

P = np = nαEeff . (6.29)

Therefore we have to determine the effective field Eeff , which acts on the dipole.
For this purpose we cut a sphere of radius R out of the matter around the dipole. These dipoles generate, as we
have seen in the example of the dielectric sphere in the vacuum (6.26) an average field

ĒP = E2 − E1 = −
4π
3

P. (6.30)

This field is missing after we have cut out the sphere. Instead the rapidly varying field of the dipoles inside the
sphere has to be added (with the exception of the field of the dipole at the location, where the field has to be
determined)

Eeff = E − ĒP +
∑

i

−pir2
i + 3(piri)ri

r5
i

. (6.31)

The sum depends on the location of the dipoles (crystal structure). If the dipoles are located on a cubic lattice,
then the sum vanishes, since the contributions from

∑

α,β

eαpβ
∑

i

−δα,βr2
i + 3xi,αxi,β

r5
i

(6.32)

cancel for α , β, if one adds the contributions for xα and −xα, those for α = β, if one adds the three contributions
obtained by cyclic permutation of the three components. Thus one obtains for the cubic lattice

χeE = P = nαEeff = nα(E +
4π
3

P) = nα(1 +
4π
3
χe)E, (6.33)

from which the relation of C (1850) and M (1879)

χe =
nα

1 − 4πnα
3

or
4π
3

nα =
ε − 1
ε + 2

. (6.34)

follows.
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7 Electricity on Conductors

7.a Electric Conductors

The electric field vanishes within a conductor, E = 0, since a nonvanishing field would move the charges. Thus
the potential within a conductor is constant. For the conductor #i one has Φ(r) = Φi.
Outside the conductor the potential is given by P’s equation

4Φ(r) = −4πρ(r) or div (ε(r) gradΦ(r)) = −4πρf(r). (7.1)

7.a.α Boundary Conditions at the Surface of the Conductor

On the surface of the conductor one has a constant potential (on the side of the dielectric medium, too). Thus
the components of E tangential to the surface vanish

Et(r) = 0, (7.2)

In general there are charges at the surface of the conductor. We denote its density
by σ(r).

n

Conductor

Integration over a small piece of the surface yields
∫

df · Ea(r) = 4πq = 4π
∫

d f σ(r). (7.3)

Therefore the field Ea obeys at the surface in the outside region

Ea(r) = 4πσ(r)n, −∂Φ
∂n
= 4πσ(r). (7.4)

In general the charge densityσ at the surface consists of the free charge densityσf at the surface of the conductor
and the polarization charge density σP on the dielectric medium σ(r) = σf(r) + σP(r) with

Da(r) = 4πσf(r)n, (7.5)

from which one obtains

σf = ε(σf + σP), σP = (
1
ε
− 1)σf . (7.6)

7.a.β Force acting on the Conductor (in Vacuo)

Initially one might guess that the force on the conductor is given by
∫

d f Eaσ(r). This, however, is wrong. By
the same token one could argue that one has to insert the field inside the conductor Ei = 0 into the integral. The
truth lies halfway. This becomes clear, if one assumes that the charge is not exactly at the surface but smeared
out over a layer of thickness l. If we assume that inside a layer of thickness a one has the charge s(a)σ(r)d f
with s(0) = 0 and s(l) = 1, then the field acting at depth a is Ei(r− an) = (1− s(a))Ea(r), since the fraction s(a)
is already screened. With ρ(r − an) = s′(a)σ(r) one obtains

K =
∫

d f daρ(r − an)E(r − an) =
∫

d fσ(r)Ea(r)
∫ l

0
das′(a)(1 − s(a)). (7.7)

The integral over a yields (s(a) − s2(a)/2)|l0 = 1/2, so that finally we obtain the force

K =
1
2

∫

d fσ(r)Ea(r). (7.8)
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7.b Capacities

We now consider several conductors imbedded in the vacuum or in dielectric media. Outside the conductors
there should be no free moving charge densities, ρf = 0. The electric potentials Φi of the conductors #i should
be given. We look for the free charges qi at the conductors. Since M’s equations are linear (and we
assume that there is a linear relation D = εE) we may write the potential as a superposition of solutions Ψi

Φ(r) =
∑

i

ΦiΨi(r). (7.9)

Ψi is the solution which assumes the value 1 at the conductor #i, and 0 at all others

Ψi(r) = δi, j r ∈ conductor j. (7.10)

The charge on conductor #i is then given by

qi = −
1

4π

∫

Fi

d f ε
∂Φ

∂n

∣

∣

∣

∣

∣

a
=

∑

j

Ci, jΦ j (7.11)

with the capacity coefficients

Ci, j = −
1

4π

∫

Fi

d f ε
∂Ψ j

∂n

∣

∣

∣

∣

∣

∣

a

. (7.12)

The capacity has the dimension charge/(electric potential), which in Gian units is a length. The conversion
into the SI-system is by the factor 4πε0, so that 1 cm =̂ 1/9 · 10−11 As/V = 10/9 pF (picofarad).
The electrostatic energy is obtained from

dU =
∑

i

Φidqi =
∑

i, j

ΦiCi, jdΦ j, (7.13)

that is

∂U
∂Φ j
=

∑

i

Ci, jΦi, (7.14)

∂2U
∂Φi∂Φ j

= Ci, j =
∂2U

∂Φ j∂Φi
= C j,i, (7.15)

U =
1
2

∑

i, j

Ci, jΦiΦ j =
1
2

∑

i

Φiqi (7.16)

As an example we consider a spherical capacitor. Two concentric con-
ducting spheres with radii r1, r2 with r1 < r2 carry the charges q1 and
q2, resp. Outside be vacuum. Between the two spheres is a medium
with dielectric constant ε. Then outside the spheres one has

Φ(r) =
q1 + q2

r
r ≥ r2. (7.17)

The potential decays in the space between the two spheres like q1/(εr).
Since the potential is continuous at r = r2, it follows that

Φ(r) =
q1

εr
− q1

εr2
+

q1 + q2

r2
r1 ≤ r ≤ r2. (7.18)

r

r

ε

1

2

Inside the smaller sphere the potential is constant.

Φ(r) =
q1

εr1
− q1

εr2
+

q1 + q2

r2
r ≤ r1. (7.19)
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From this one calculates the charges as a function of the potentials Φi = Φ(ri)

q1 =
εr1r2

r2 − r1
(Φ1 −Φ2) (7.20)

q2 =
εr1r2

r2 − r1
(Φ2 −Φ1) + r2Φ2, (7.21)

from which the capacitor coefficients can be read off immediately. If the system is neutral, q = q1 = −q2, then
q can be expressed by the difference of the potential

q = C(Φ1 −Φ2) (7.22)

and one calls C the capacity. For the spherical capacitor one obtains Φ2 = 0 and Φ1 =
q1

ε
( 1

r1
− 1

r2
), from which

the capacity

C =
εr1r2

r2 − r1
(7.23)

is obtained.
For a single sphere r2 can go to∞ and one finds C = εr1.
We obtain the plate capacitor with a distance d between the plates, by putting r2 = r1 + d in the limit of large r1

C =
(r2

1 + r1d)ε

d
=

4πr2
1ε

d

( 1
4π
+

d
4πr1

)

, (7.24)

which approaches εF
4πd for large r1 with the area F. Therefore one obtains for the plate capac-

itor

C =
εF
4πd

. (7.25)

A different consideration is the following: The charge q generates the flux DF = 4πq.
Therefore the potential difference between the two plates is Φ = D

ε
d = 4πd

εF q, from which
C = q/φ = εF

4πd follows. Be aware that here we have denoted the free charge by q.

d

7.c Influence Charges

If we fix the potentials of all conductors to 0, Φi = 0 in the presence of a free charge q′ at r′, then we write the
potential

Φ(r) = G(r, r′)q′ (7.26)

with the G’s function G. Apparently this function obeys the equation

∇(ε(r)∇G(r, r′)) = −4πδ3(r − r′) (7.27)

for r outside the conductor. For r at the surface of the conductors we have G(r, r′) = 0. The superposition
principle yields for a charge density ρf(r′) located outside the conductors

Φ(r) =
∫

d3r′G(r, r′)ρf(r′) +
∑

i

ΦiΨi(r), (7.28)

where now we have assumed that the conductors have the potential Φi.
We now show that the G’s function is symmetric, G(r, r′) = G(r′, r). In order to show this we start from
the integral over the surfaces of the conductors

∫

df′′ · {G(r′′, r)ε(r′′)∇′′G(r′′, r′) − ε(r′′)[∇′′G(r′′, r)]G(r′′, r′)} = 0, (7.29)

since G vanishes at the surface of the conductors. The area element df ′′ is directed into the conductors. We
perform the integral also over a sphere of radius R, which includes all conductors. Since G ∼ 1/R and since
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∇′′G ∼ 1/R2 the surface integral vanishes for R→ ∞. Application of the divergence theorem yields

∫

d3r′′{G(r′′, r)∇′′[ε(r′′)∇′′G(r′′, r′)] − ∇′′[ε(r′′)∇′′G(r′′, r)]G(r′′, r′)} (7.30)

= −4π
∫

d3r′′{G(r′′, r)δ3(r′′ − r′) − δ3(r′′ − r)G(r′′, r′)} (7.31)

= −4π(G(r′, r) −G(r, r′)) = 0. (7.32)

We consider now a few examples:

7.c.α Space free of Conductors

In a space with constant dielectric constant ε and without conductors one has

G(r, r′) =
1

ε|r − r′|
. (7.33)

7.c.β Conducting Plane

For a conducting plane z = 0 (ε = 1) one solves the problem by mirror charges. If
the given charge q′ is located at r′ = (x′, y′, z′), then one should imagine a second
charge −q′ at r′′ = (x′, y′,−z′). This mirror charge compensates the potential at
the surface of the conductor. One obtains

G(r, r′) =
{ 1
|r−r′ | −

1
|r−r′′ | for sign z = sign z′

0 for sign z = − sign z′.
(7.34)

q’

-q’

Next we consider the force which acts on the charge q′. The potential is Φ(r) = G(r, r′)q′. The contribution
q′/|r − r′| is the potential of q′ itself that does not exert a force on q′ . The second contribution −q′/|r − r′′|
comes, however, from the influence charges on the metal surface and exerts the force

K = −q′ grad
−q′

|r − r′′|
= −q′2ez

4z′2
sign z′. (7.35)

Further one determines the influence charge on the plate. At z = 0 one has 4π sign z′ezσ(r) = E(r) = q′ r−r′

|r−r′ |3 −
q′ r−r′′

|r−r′′ |3 . From this one obtains the density of the surface charge per area

σ(r) = − q′

2π
|z′|

√

(x − x′)2 + (y − y′)2 + z′23
(7.36)

With d f = πd(x2 + y2) one obtains

∫

d fσ(r) = −q′|z′|
2

∫ ∞

z′2

d(x2 + y2 + z′2)
(x2 + y2 + z′2)3/2

= −q′. (7.37)

The force acting on the plate is obtained as

K =
1
2

∫

d f E(r)σ(r) =
q′2z′|z′|

2
ez

∫

d(x2 + y2 + z′2)
(x2 + y2 + z′2)3

=
q′2ez

4z′2
sign z′. (7.38)
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7.c.γ Conducting Sphere

We consider a charge q′ located at r′ in the presence of a conducting
sphere with radius R and center in the origin. Then there is a vector
r′′, so that the ratio of the distances of all points R on the surface of
the sphere from r′ and r′′ is constant. Be

a2 := (R − r′′)2 = R2 + r′′2 − 2R · r′′ (7.39)

b2 := (R − r′)2 = R2 + r′2 − 2R · r′ (7.40)

q’
q’’r’’ r’

R
b

a

This constant ratio of the distances is fulfilled for r ‖ r′′ and

R2 + r′′2

R2 + r′2
=

r′′

r′
. (7.41)

Then one has

R2 = r′r′′ r′′ =
R2

r′2
r′ (7.42)

a2

b2
=

r′′

r′
=

R2

r′2
=

r′′2

R2
. (7.43)

Thus one obtains a constant potential on the sphere with the charge q′ at r′ and the charge q′′ = −q′R/r′ at r′′

G(r, r′) =
{

1
|r−r′ | −

R/r′

|r−r′′ | for sign (r − R) = sign (r′ − R),
0 otherwise .

(7.44)

The potential on the sphere vanishes with this G’s function G. For r′ > R it carries the charge q′′ and for
r′ < R the charge −q′. Thus if the total charge on the sphere vanishes one has to add a potential Φ, which
corresponds to a homogeneously distributed charge −q′′ and q′, resp.
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8 Energy, Forces and Stress in Dielectric Media

8.a Electrostatic Energy

By displacing the charge densities δρ = δρf + δρP the electrostatic energy

δU =
∫

d3rδρfΦ +

∫

d3rδρPΦ (8.1)

will be added to the system. Simultaneously there are additional potentials Φi in the matter guaranteeing that
the polarization is in equilibrium, i. e.

δU =
∫

d3rδρfΦ +

∫

d3rδρP(Φ + Φi). (8.2)

These potentials are so that δU = 0 holds for a variation of the polarization, so that the polarizations are in
equilibrium

Φ + Φi = 0. (8.3)

These considerations hold as long as the process is run adiabatically and under the condition that no mechanical
energy is added. Thus the matter is in a force-free state (equilibrium k = 0) or it has to be under rigid constraints.
Then one obtains with (B.62)

δU =
∫

d3r δρf Φ =
1

4π

∫

d3r div δDΦ = −
1

4π

∫

d3rδD · gradΦ =
1

4π

∫

d3rE · δD, (8.4)

similarly to the matter-free case (3.25). Then one obtains for the density of the energy at fixed density of matter
ρm (we assume that apart from the electric field only the density of matter determines the energy-density; in
general, however, the state of distortion will be essential)

du =
1

4π
E · dD. (8.5)

If D = εE, then one obtains

u = u0(ρm) +
1

4π

∫

ε(ρm)E · dE = u0(ρm) +
1

8π
ε(ρm)E2 = u0(ρm) +

D2

8πε(ρm)
, (8.6)

since the dielectric constant depends in general on the density of mass.

8.b Force Density in Isotropic Dielectric Matter

We may determine the force density in a dielectric medium by moving the masses and free charges from r to
r + δs(r) and calculating the change of energy δU. The energy added to the system is

δU =
∫

d3r ka(r) · δs(r), (8.7)

where ka is an external force density. The internal electric and mechanical force density k acting against it in
equilibrium is

k(r) = −ka(r), (8.8)

so that

δU = −
∫

d3r k(r) · δs(r) (8.9)

holds. We bring now δU into this form

δU =
∫

d3r

(

∂u
∂D
· δD +

∂u
∂ρm

∣

∣

∣

∣

∣

D
δρm

)

, u = u(D, ρm). (8.10)
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Since ∂u/∂D = E/(4π) we rewrite the first term as in the previous section

δU =
∫

d3r

(

Φ(r)δρf(r) +
∂u
∂ρm

∣

∣

∣

∣

∣

D
δρm

)

. (8.11)

From the equation of continuity ∂ρ/∂t = − div j we derive the relation between δρ and δs. The equation has to
be multiplied by δt and one has to consider that jδt = ρvδt = ρδs holds. With (∂ρ/∂t)δt = δρ we obtain

δρ = − div (ρδs). (8.12)

Then we obtain

δU = −
∫

d3r

(

Φ(r) div (ρfδs) +
∂u
∂ρm

div (ρmδs)

)

=

∫

d3r

(

gradΦ(r)ρf(r) +

(

grad
∂u
∂ρm

)

ρm(r)

)

· δs(r), (8.13)

where the divergence theorem (B.62) has been used by the derivation of the last line. This yields

k(r) = ρf(r)E(r) − ρm(r) grad

(

∂u
∂ρm

)

. (8.14)

The first contribution is the C force on the free charges. The second contribution has to be rewritten. We
substitute (8.6) u = u0(ρm) + D2/(8πε(ρm)). Then one has

∂u
∂ρm

=
du0

dρm
+

1
8π

D2 d(1/ε)
dρm

=
du0

dρm
− 1

8π
E2 dε

dρm
. (8.15)

The first term can be written

−ρm grad
du0

dρm
= − grad

(

ρm
du0

dρm
− u0

)

= − grad P0(ρm), (8.16)

where we use that (du0/dρm) gradρm = grad u0. Here P0 is the hydrostatic pressure of the liquid without electric
field

k0,hydro = − grad P0(ρm(r)). (8.17)

The hydrostatic force acting on the volume V can be written in terms of a surface integral

K0 = −
∫

V
d3r grad P0(ρm(r)) = −

∫

∂V
dfP0(ρm(r)). (8.18)

This is a force which acts on the surface ∂V with the pressure P0. There remains the electrostrictive contribution

1
8π
ρm grad

(

E2 dε
dρm

)

=
1

8π
grad

(

E2ρm
dε

dρm

)

− 1
8π

E2 grad ε, (8.19)

where (dε/dρm) gradρm = grad ε has been used. Then the total force density is

k(r) = ρf(r)E(r) + grad

(

−P0(ρm) +
1

8π
E2ρm

dε
dρm

)

− 1
8π

E2 grad ε. (8.20)

Applications:
Dielectric fluid between two vertical capacitor plates. What is the difference h in height between between the
surface of a fluid between the plates of the capacitor and outside the capacitor? For this purpose we introduce
the integral along a closed path which goes up between the plates of the capacitor and outside down

∮

k · dr =
∮

grad

(

−P0 +
1

8π
E2ρm

∂ε

∂ρm

)

· dr − 1
8π

∮

E2 grad ε · dr =
1

8π
E2(ε − 1). (8.21)
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The integral over the gradient along the closed path vanishes, whereas the
integral of E2 grad ε yields a contribution at the two points where the path
of integration intersects the surface. In addition there is the gravitational
force. Both have to compensate each other

k + kgrav = 0, (8.22) h

1

ε

that is
∮

dr · kgrav = −ρmgh = −
∮

dr · k, (8.23)

from which one obtains the height

h =
E2(ε − 1)

8πρmg
. (8.24)

Dielectric fluid between two horizontal capacitor plates

What is the elevation of a dielectric fluid between
two horizontal capacitor plates? The problem can
be solved in a similar way as between two vertical
plates.It is useful, however, to use h

1

ε

− 1
8π

E2 grad ε =
1

8π
D2 grad (

1
ε

). (8.25)

Hydrostatic pressure difference at a boundary

Performing an integration through the boundary from the dielec-
tric medium to air one obtains a

i

1

ε

Air

Dielectric medium

0 =
∫ a

i
k · dr =

∫

grad (−P0 +
1

8π
ρmE2 dε

dρm
) · dr −

1
8π

∫

E2
t grad ε · dr +

1
8π

∫

D2
n grad (

1
ε

) · dr. (8.26)

This yields the difference in hydrostatic pressure at both sides of the boundary

P0,i(ρm) − P0,a =
1

8π

(

ρm
dε

dρm
E2 − (ε − 1)E2

t + (
1
ε
− 1)D2

n

)

(8.27)

Pressure in a practically incompressible dielectric medium
From

k + kgrav = − grad (P0(ρm)) + ρm grad (
1

8π
E2 dε

dρm
) − ρm grad (gz) = 0. (8.28)

one obtains for approximately constant ρm

P0 = ρm(
1

8π
E2 dε

dρm
− gz) + const. (8.29)
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8.c M’s Stress Tensor

Now we represent the force density k as divergence of a tensor

kα = ∇βTα,β. (8.30)

If one has such a representation, then the force acting on a volume V is given by

K =
∫

V
d3rk(r) =

∫

d3reα∇βTα,β =
∫

∂V
d fβ(eαTα,β). (8.31)

The force acting on the volume is such represented by a force acting on the surface. If it were isotropic Tα,β =

−Pδα,β, we would call P the pressure acting on the surface. In the general case we consider here one calls T the
stress tensor, since the pressure is anisotropic and there can be shear stress.
In order to calculate T we start from

kα = ρf Eα − ρm∇α
(

∂u
∂ρm

)

. (8.32)

We transform

ρf Eα =
1

4π
Eα∇βDβ =

1
4π

(

∇β(EαDβ

)

− (∇βEα)Dβ) (8.33)

and use ∇βEα = ∇αEβ because of curl E = 0. This yields

kα = ∇β(
1

4π
EαDβ) − ρm∇α

(

∂u
∂ρm

)

−
1

4π
Dβ∇αEβ. (8.34)

Now there is

∇α
(

u − ρm
∂u
∂ρm
− 1

4π
D · E

)

= −ρm∇α
∂u
∂ρm
− 1

4π
Dβ∇αEβ, (8.35)

since ∂u/∂Dβ = Eβ/(4π). This yields the expression for the stress tensor

Tα,β =
1

4π
EαDβ + δα,β

(

u − ρm
∂u
∂ρm
− 1

4π
D · E

)

. (8.36)

In particular with u = u0(ρm) + D2/(8πε(ρm)), (8.6) one obtains

Tα,β =
1

4π
EαDβ + δα,β

(

−P0(ρm) − 1
8π

D · E + 1
8π

E2ρm
dε

dρm

)

. (8.37)

M’s stress tensor reads in vacuum

Tα,β =
1

4π
EαEβ −

δα,β

8π
E2. (8.38)

As an example we consider the electrostatic force on a plane
piece of metal of area F. We have to evaluate

0

E
n

vacuum

metal

K =
∫

d fβ(eαTα,β) =

(

1
4π

E(En) −
1

8π
nE2

)

F =
1

8π
E2nF. (8.39)

This is in agreement with the result from (7.8).


