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12 F’s Law of Induction

The force acting on charges is q(E + v × B/c). It does not matter for the charges, whether the force is exerted
by the electric field or by the magnetic induction. Thus they experience in a time-dependent magnetic field an
effective electric field

E(ind) = E +
v
c
× B (12.1)

with curl E = −Ḃ/c. Therefore the voltage along a loop of a conductor is given by

V (ind) =

∮

E · dr +
∮

(
v
c
× B) · dr. (12.2)

The first integral gives a contribution due to the variation of the magnetic induction. For a fixed loop and varying
B one obtains (since v ‖ dr)

V (ind) =

∮

E · dr =
∫

curl E · df = −
1
c

∫

∂B
∂t
· df = −

1
c

dΨm

dt

∣

∣

∣

∣

∣

loop fixed
. (12.3)

The second integral in (12.2) gives a contribution due to the motion of the loop. In order to investigate a loop
which moves (and is distorted) we use a parameter representation of the loop r = r(t, p) with the body-fixed
parameter p. For fixed t we have dr = (∂r/∂p)dp and

v =
∂r
∂t
+ λ(p, t)

∂r
∂p

(12.4)

with a λ = dp/dt which depends on the motion of the charges in the conductor. This yields

dt
∮

(v
c
× B

)

· dr = −
1
c

∫

(∂r
∂t
×
∂r
∂p

)

· B dp dt = −
1
c

∫

df · B, (12.5)

since ∂r
∂t ×

∂r
∂p dp dt is the element of the area which in time dt is swept over by the conductor element dp.

Therefore we obtain
∮

(
v
c
× B) · dr = −

1
c

dΨm

dt

∣

∣

∣

∣

∣

Bfixed

. (12.6)

The total induced voltage is composed by the change of the magnetic flux due
to the change of the magnetic induction (12.3) and by the motion of the loop
(12.6)

V (ind) = −
1
c

dΨm

dt
, (12.7)

o)r
o)t

dt
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p
dp

t

t+dt

and is thus given by the total change of the magnetic flux through the loop. Thus it does not matter for a
generator whether the generating magnetic field rotates or whether the coil is rotating.

The betatron (non-relativistic) The electrons move along circular orbits and
are kept on these by the L force exerted by the guide field Bf . Thus the
centrifugal force and the L force have to compensate each other

mv2

r
= e0

v
c

Bf → mv =
e0

c
Bfr. (12.8)
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The electrons are accelerated by the induction

d
dt

(mv) = −e0E =
e0

2πr
d
dt

1
c

∫

Bd f =
e0

2πrc
r2
π

dB̄
dt
. (12.9)

Here B̄ is the averaged magnetic induction inside the circle. Thus one has

mv =
e0

2
B̄

r
c
=

e0

c
Bfr, (12.10)

from which the betatron condition Bf = B̄/2 follows.
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13 Inductances and Electric Circuits

13.a Inductances

The magnetic flux through a coil and a circuit # j, resp. is given by

Ψm
j =

∫

df j · B(r j) =
∫

df j · curl A(r j) =
∮

dr j · A(r j). (13.1)

Several circuits generate the vector-potential

A(r) =
∑

k

Ik

c

∮

drk

|r − rk|
. (13.2)

Therefore the magnetic flux can be expressed by

1
c
Ψm

j =
∑

k

L j,kIk (13.3)

with

L j,k =
1
c2

∫

dr j · drk

|r j − rk|
. (13.4)

Therefore one has L j,k = Lk, j. For j , k they are called mutual inductances, for j = k self-inductances. In
calculating the self-inductances according to (13.4) logarithmic divergencies appear, when r j approaches rk,
if the current distribution across the cross-section is not taken into account. The contributions |r j − r − k| <
r0/(2e1/4) have to be excluded from the integral, where r0 is the radius of the circular cross-section of the wire
(compare B-S).
The dimension of the inductances is given by s2/cm. The conversion into the SI-system is given by 1s2/cm
=̂9 · 1011Vs/A = 9 · 1011 H (Henry).
If the regions in which the magnetic flux is of appreciable strength is filled with a material of permeability µ,
then from curl H = 4πjf/c one obtains curl (B/µ) = 4πjf/c, so that

LMat
j,k = µL

Vak
j,k . (13.5)

holds. Thus one obtains large inductances by cores of high permeability µ ≈ 103...104 in the yoke.
Inductance of a long coil If a closed magnetic yoke of length l and cross-section f is surrounded by N windings
of wire, through which a current I flows, then from A’s law Hl = 4πIN/c one obtains the magnetic
induction B = 4πINµ/(cl). The magnetic flux can then be written B f = cL0NI with L0 = 4πµ f /c2l. For
N turns the magnetic flux is to be multiplied by N, which yields the self-induction L = L0N2. For mutual
inductances between two circuits with N1 and N2 turns one obtains L1,2 = L0N1N2. Thus we obtain in general

Li, j = L0NiN j, L0 =
4πµ f

c2l
. (13.6)

13.b Elements of Circuits

We consider now circuits, which contain the following elements: voltage sources, ic resistors, inductances,
and capacitors. Whereas we have already introduced inductances and capacitors, we have to say a few words
on the two other elements.
Voltage sources A voltage source or electromotive force with voltage V (e)(t) feeds the power V (e)I into the
system. An example is a battery which transforms chemical energy into electromagnetic one. The voltages
V (ind) of the inductances are also called electromotive forces.
Oic resistors In many materials the current density and the electric field are proportional if the field is not
too strong. The coefficient of proportionality σ is called conductivity

j = σE. (13.7)
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For a wire of length l and cross-section f one obtains

I = j f = σ f E = σ
f
l

V (R). (13.8)

Here V (R) is the ic voltage drop along the conductor. Thus one has

V (R) = RI, R =
l
σ f

(13.9)

with the ic resistance R. In Gian units the conductivity σ is measured in 1/s and the resistance R in
s/cm. The conversion into the SI-system is obtained by c−1=̂30Ω. The electromagnetic energy is dissipated in
an ic resistor into heat at the rate V (R)I.

13.c K’s Rules

K’s first Law (Current Law)

K’s first law states that at each electrical contact, where several wires are joined, the
sum of the incoming currents equals the sum of the outgoing currents

∑

Iincoming =
∑

Ioutgoing. (13.10)

This rule is the macroscopic form of div j = 0. In the figure aside it implies I1 + I2 = I3 + I4.

I I

I I
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K’s second Law (Voltage Law)

The second law says that along a closed path the sum of electromotive forces
equals the sum of the other voltage drops

∑
(

V (e) + V (ind)
)

=
∑

(

V (R) + V (C)
)

, (13.11)

where

V (ind) = −d(LI)/dt, V (C) = q/C, dV (C)/dt = I/C. (13.12)

L V

C R

(e)

This rule is F’s induction law in macroscopic form.

13.d Energy of Inductances

In order to determine the energies of inductances we consider circuits with electromotive forces, ic resistors
and inductive couplings

V (e)
j + V (ind)

j = R jI j. (13.13)

The variation of the electromagnetic energy as a function of time is then given by

U̇em =
∑

j

I jV
(e)
j −

∑

j

R jI
2
j + Lmech = −

∑

j

I jV
(ind)
j + Lmech (13.14)

with

V (ind)
j = −

1
c
Ψ̇m

j = −
d
dt

(
∑

k

L j,kIk). (13.15)

Here Lmech is the mechanical power fed into the system.
Now we consider various cases:
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13.d.α Constant Inductances

We keep the circuits fixed, then L j,k = const, Lmech = 0 holds. From this it follows that

U̇em =
∑

j,k

I jL j,k İk, (13.16)

from which we obtain the energies of the inductances

Uem =
1
2

∑

j,k

I jL j,kIk. (13.17)

13.d.β Moving Loops of Currents

Now we move the circuits against each other. This yields

Lmech = U̇em +
∑

j

I jV
(ind)
j =

∑

j,k

(I jL j,k İk +
1
2

I jL̇ j,kIk) −
∑

j,k

(I jL̇ j,kIk + I jL j,k İk)

= −
1
2

∑

j,k

I jL̇ j,kIk = −
∂Uem

∂t

∣

∣

∣

∣

∣

I
. (13.18)

Thus the mechanical work to be done is not given by the change of the electromagnetic energy Uem at constant
currents I, but by its negative.

13.d.γ Constant Magnetic Fluxes

In case there are no electromotive forces V (e)
j = 0 and no resistors R j = 0 in the loops, then according to (13.13)

we have V (ind) = 0, from which we conclude that the magnetic fluxesΨm
j remain unchanged. Thus the induction

tries to keep the magnetic fluxes unaltered (example superconducting loop-currents). If we express the energy
Uem in terms of the fluxes

Uem =
1

2c2

∑

j,k

Ψm
j (L−1) j,kΨ

m
k , (13.19)

and use the matrix identity L̇−1 = −L−1L̇L−1 then we obtain (the identity can be obtained by differentiating
LL−1 = 1 and solving for L̇−1)

∂Uem

∂t

∣

∣

∣

∣

∣

Ψm
= −

1
2

∑

j,k

I jL̇ j,kIk = Lmech. (13.20)

The mechanical power is thus the rate by which the electromagnetic energy changes at constant magnetic fluxes.

13.d.δ Force between two Electric Circuits

After these considerations we return to the force between two electric circuits. In section (9.e) we calculated
the force from circuit 1 on circuit 2 as (9.21)

K2 =
1
c2

∫

d3rd3r′(j1(r′) · j2(r))∇
1

|r − r′|
. (13.21)

Now if we consider two filamentary wires

r = r2 + a r′ = r1 (13.22)

d3r′j1(r′)→ dr1I1, d3rj2(r)→ dr2I2, (13.23)

we obtain

K2 =
I1I2

c2

∫

(dr1 · dr2)∇2
1

|r2 + a − r1|
= I1I2∇aL1,2(a). (13.24)

Thus
Lmech = −K2 · ȧ = −I1I2L̇1,2 (13.25)

is in agreement with (13.18).
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13.d.ε Energy of a Magnetic Dipole in an External Magnetic Induction

On the other hand we may now write the interaction energy between a magnetic dipole generated by a density
of current j in an external magnetic field Ba generated by a density of current ja

U =
1
c2

∫

d3rd3r′(j(r) · ja(r′))
1

|r − r′|
=

1
c2

∫

d3rj(r) ·
∫

d3r′
ja(r′)
|r − r′|

=
1
c

∫

d3rj(r) · Aa(r)

=
1
c

∫

d3rj(r) · (Aa(0) + xα∇αAa|r=0 + ...) =
1
c

∫

d3rxα jβ∇αAa,β

= εα,β,γmγ∇αAa,β = m · Ba. (13.26)

This is the correct expression for the interaction energy of a magnetic dipole m in an external magnetic induction
Ba.

13.d.ζ Permanent Magnetic Moments

Permanent magnetic moments may be considered as loop currents with large self inductance L j, j and constant
flux Ψm

j . For further calculation we first solve (13.3) for I j

I j =
Ψm

j

cL j, j
−

∑

k, j

L j,kIk

L j, j
. (13.27)

Upon moving the magnetic moments the mutual inductances change, and one obtains

İ j = −
1

L j, j

(
∑

k, j

L̇ j,kIk +
∑

k, j

L j,k İk

)

. (13.28)

If the self-inductances L j, j are very large in comparison to the mutual inductances, the currents vary only a little
bit, and the second sum is negligible. Then one obtains from the self-inductance contribution of the energy

d
dt

(

1
2

L j, jI
2
j

)

= L j, jI j İ j = −I j

∑

k, j

L̇ j,kIk. (13.29)

Thus one obtains from a change of L j,k a contribution L̇ j,kI jIk directly from the interaction between the currents
I j and Ik, which yields a contribution of the form (13.26) to Uem and two contributions with the opposite sign
from 1

2 L j, jI2
j and 1

2 Lk,kI2
k . This explains the difference between (10.24) and (13.26).


