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14 Complete Set of M’s Equations

14.a Consistency of M’s Equations

In section (1) we have introduced the four M’s equations (1.13-1.16)

curl B(r, t) −
∂E(r, t)

c∂t
=

4π
c

j(r, t) (14.1)

div E(r, t) = 4πρ(r, t) (14.2)

curl E(r, t) +
∂B(r, t)

c∂t
= 0 (14.3)

div B(r, t) = 0. (14.4)

These are eight component equations for six components Bα and Eα. Thus the equations cannot be independent
from each other. Indeed calculating the divergence of the first equation and comparing it with the second
equation we find

−
1
c

div Ė =
4π
c

div j = −
4π
c
ρ̇, (14.5)

from which we see that the equation of continuity (1.12) is contained in both equations, and these equations can
only be fulfilled if charge is conserved. But it also follows that

∂

∂t
( div E − 4πρ) = 0. (14.6)

Thus if at a certain time equation (14.2) and at all times the equation of continuity is fulfilled, then equation
(14.1) guarantees that (14.2) is fulfilled at all times.
Similarly, it follows from the divergence of (14.3) that

∂

∂t
( div B) = 0. (14.7)

Thus if (14.4) is fulfilled at a certain time, then due to equation (14.3) it is fulfilled at all times.
Equations (14.1) and (14.3) allow the calculation of B and E if j is given at all times and B and E are given at a
time t0 and (14.2) and (14.4) are fulfilled at that time. Then ρ is determined by the equation of continuity.
The only contribution we have not yet considered is the contribution proportional to Ė in (14.1). It was found
by M. He called Ė/(4π) displacement current, since (14.1) may be rewritten

curl B =
4π
c

(j +
1

4π
Ė). (14.8)

With the introduction of this term the system of equations (14.1-14.4) became consistent. Simultaneously this
system allowed the description of electromagnetic waves.

14.b M’s Equations for Freely Moving Charges and Currents

The density of the charges and currents are separated into (compare sections 6.a and 11)

ρ = ρf + ρP (14.9)

j = jf + jP + jM. (14.10)
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50 E M’s Equations

Here ρf and jf are the freely moving contributions, whereas ρP and the newly introduced jP are the polarization
contributions. We expressed the electric dipole moment in the volume ∆V by the dipole moments pi, and those
by the pairs of charges ±qi at distance ai

P∆V =
∑

pi =

∑
qiai (14.11)

jP∆V =
∑

ṗi =

∑
qiȧi (14.12)

with jP = Ṗ (in matter at rest). In addition, there is a current density from the magnetization as introduced in
section 11

jM = c curl M. (14.13)

For these charge and current densities one obtains

∂ρf

∂t
+ div jf = 0 (14.14)

∂ρP

∂t
+ div jP = 0 (14.15)

div jM = 0. (14.16)

By inserting these charge and current densities into (14.1) one obtains

curl B −
1
c

Ė =
4π
c

(jf + Ṗ + c curl M), (14.17)

from which it follows that

curl (B − 4πM) −
∂

c∂t
(E + 4πP) =

4π
c

jf . (14.18)

If we now introduce the magnetic field H = B − 4πM and the dielectric displacement D = E + 4πP in (11.9)
and (6.6), eq. (11.10) becomes

curl H −
1
c

Ḋ =
4π
c

jf . (14.19)

Similarly, one obtains from (14.2) as in (6.7)

div D = 4πρf . (14.20)

M’s equations (14.3) and (14.4) remain unchanged. Equations (14.19, 14.20) are called M’s
equations in matter.
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15 Energy and Momentum Balance

15.a Energy

We consider a volume of a system with freely moving charges and matter at rest. The force density on the
freely moving charges is given by k = ρf(E + v × B/c). If the charges are moved with velocity v, the power
−
∫

d3rk · v = −
∫

d3rjf ·E has to be fed into the system against the force density. We rewrite this expression by
using (14.19), (B.30) and (14.3)

−jf · E = −
c

4π
E · curl H +

1
4π

E · Ḋ =
c

4π
div (E ×H) −

c
4π

H · curl E +
1

4π
E · Ḋ

=
c

4π
div (E ×H) +

1
4π

(H · Ḃ + E · Ḋ). (15.1)

These contributions are interpreted in the following way: In matter at rest the second contribution is the temporal
change of the energy density u(ρm,D,B) with

du =
∂u
∂ρm

dρm +
1

4π
E · dD +

1
4π

H · dB. (15.2)

For simplicity we assume that the energy of the matter depends on its density ρm, but not on the complete state
of strain. We have seen earlier that ∂u/∂D = E/(4π) holds. Similarly, one can show from the law of induction
that ∂u/∂B = H/(4π) holds for rigid matter. We give a short account of the derivation

δUem = −
∑

j

V (ind)
j δtI j =

1
c

∑
j

I jδΨ
m
j =

1
c

∑
j

I j

∫
df j · δB(r) =

1
c

∑
j

I j

∫
dr · δA(r)

=
1
c

∫
d3rjf(r) · δA(r) =

1
4π

∫
d3r curl H(r) · δA(r) =

1
4π

∫
d3rH(r) · curl δA(r)

=
1

4π

∫
d3rH(r) · δB(r). (15.3)

Since the matter is pinned, ∂u/∂ρmρ̇m does not contribute. Therefore we write the energy of volume V as

U(V) =
∫

V
d3r u(ρm(r),D(r),B(r)) (15.4)

and introduce the P vector

S =
c

4π
E ×H. (15.5)

Then one has

−

∫
V

d3rjf · E = U̇(V) +
∫

V
d3r div S = U̇(V) +

∫
∂V

df · S(r). (15.6)

The energy added to volume V is partially stored in the volume. This stored part is given by (U̇). Another part
is transported through the surface of the system. This transport of energy is given by the energy current through
the surface expressed by the surface integral over S. Similar to the transport of the charge

∫
df · jf through

a surface per unit time, one has (in matter at rest) the energy transport
∫

df · S through a surface. Thus the
P vector is the density of the electromagnetic energy current.
We note that for D = εE, B = µH one obtains the energy density

u = u0(ρm) +
1

8π
(D · E + B ·H). (15.7)



52 E M’s Equations

Example: Current-carrying straight wire

We consider a straight wire which carries the current I in the direction of the
z-axis. Due to A’s law the integral along a concentric circle with radius r
around the conductor yields

∮
H · dr =

4π
c

I, H =
2I
cr

eφ. (15.8)

There is a voltage drop along the wire due to the ic resistance V (R), which
is related to the electric field parallel to the wire, E = E0ez. This yields the
P vector

x

y

r

H

S =
c

4π
E ×H = −

IE0er

2πr
(15.9)

with the energy flux ∫
S · df = −IE0l = −IV (R) (15.10)

through the lateral surface of the cylinder of the wire of length l in outward direction. In other words, the 
power IV (R) flows into the wire. There it is transformed into heat.

15.b Momentum Balance

We consider the momentum balance only for the vacuum with charge densities ρ and current densities j. If we
keep the system at rest, a force density −k has to act against the L force density k = ρE+ j×B/c, so that
the momentum −

∫
V

d3r k is added to the volume V per unit time. We transform by means of (14.1) and (14.3)

−k = −ρE −
1
c

j × B = −
1

4π
E div E +

1
4π

B × curl B +
1

4πc
Ė × B. (15.11)

With (14.3) and (14.4)

Ė × B = (E × B)̇ − E × Ḃ = (E × B)̇ + cE × curl E (15.12)

B div B = 0 (15.13)

one obtains

−k =
1

4πc
(E × B)̇ +

1
4π

(E × curl E − E div E + B × curl B − B div B). (15.14)

One has

Ec × (∇ × E) − Ec(∇E) = ∇(E · Ec) − E(∇Ec) − Ec(∇ · E) =
1
2
∇E2 − (∇E)E. (15.15)

We have indicated quantities on which the ∇-operator does not act with an index c. The ∇-operator acts on both
factors E in the last term of the expression above. Then we may write

−k =
∂

∂t
gs − ∇βTα,βeα, (15.16)

with

gs =
1

4πc
E × B, (15.17)

Tα,β =
1

4π
(EαEβ + BαBβ) −

δα,β

8π
(E2
+ B2). (15.18)

Here gs is called the density of the electromagnetic momentum and Tα,β are the components of the electromag-
netic stress tensor, whose electrostatic part (8.38) we already know. With these quantities we have

d
dt

∫
V

d3r gs(r) = −
∫

V
d3r k +

∫
∂V

eαTα,βd fβ. (15.19)
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This is the momentum balance for the volume V. The left handside gives the rate of change of momentum in
the volume V, the right handside the rate of momentum added to the volume. It consists of two contributions:
the first one is the momentum which is added by the action of the reactive force against the L force
density k. The second contribution acts by means of stress on the surface. It may also be considered as a flux
of momentum through the surface. Thus the stress tensor is apart from its sign the density of momentum flux.
It carries two indices. One (α) relates to the components of momentum, the other one (β) to the direction of the
flux.
We have only considered the electromagnetic momentum in vacuum, whereas we have considered the electro-
magnetic energy also in matter. Why is it more difficult to determine momentum in matter? In both cases we
consider the system at rest. If one pins the matter, the acting forces do not contribute to the balance of energy,
since the power is given by force times velocity. Since velocity vanishes, the forces acting on the matter do
not contribute to the balance of the energy. This is different for the balance of momentum. There all forces
contribute. One could imagine starting out from a force-free state. Then, however, we have the problem that by
moving the free charges, forces will appear which we would have to know. Therefore we can consider here the
energy balance in matter, whereas the momentum balance in matter would be more difficult.
In literature there are inconsistent statements: In 1908 M gave D × B/(4πc) for the electromagnetic
momentum density in matter. This can also be found in the book by S (however with words of
caution). On the other hand in 1910 A gave E ×H/(4πc). This is also found in the textbook by L
and L.
There are two points to be considered, which are often overlooked:
i) The interaction between the electromagnetic field and matter has to be taken into account. Matter cannot be
considered rigid.
ii) One has to define precisely what is meant by the electromagnetic momentum, since otherwise any difference
can be attributed to the mechanical momentum and the statement is empty. Without derivation it should just be
mentioned that a model system can be given which yields the following: The momentum density in the local
rest system is E×H/(4πc) = S/c2. However, in homogeneous matter there is a further conserved quantity which
in the local rest system is given by D × B/(4πc). If one goes through S’s argument, one realizes that
it can be carried through only for a space-independent dielectric constant ε.
Example: Cylindric capacitor in a magnetic field

We consider a cylindric capacitor of length l with outer radius r1 and inner
radius r2 with charge q outside and −q inside. We assume that between both
cylinders is vacuum. Parallel to the axis be a magnetic field B0. Then one has
in cylinder coordinates

E = −
2q
lr

er, B = B0ez, gs =
1

4πc
2qB0

lr
eφ. (15.20)

From this we calculate the angular momentum L in z-direction

r

r

l
B

2

1

Lz =

∫
dzd2r(r × gs)z =

∫
dzd2rr

2qB0

4πclr
=

qB0

2c
(r2

1 − r2
2). (15.21)

If the capacitor is decharged, the decharging current flows through the magnetic field. Then the L force
acts which gives the system a mechanical torque Mmech

Mmech =

∫
d3r r × (

1
c

j × B) =
I
c

∫
r × (dr × B) =

I
c

∫
((r · B)dr − (r · dr)B), (15.22)

from which one obtains

Mmech,z = −
IB0

c

∫ r2

r1

rdr =
IB0

2c
(r2

1 − r2
2) (15.23)

and thus the mechanical angular momentum

Lz =
qB0

2c
(r2

1 − r2
2). (15.24)
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Thus the electromagnetic angular momentum (15.21) is transformed into a mechanical angular momentum
during decharging. Instead of decharging the capacitor one may switch off the magnetic field. Then the electric
field ∮

E(ind) · dr = −
1
c

∫
Ḃ · df = −

1
c
πr2Ḃ0, E(ind)

= −
1
2c

rḂ0eφ (15.25)

is induced, which exerts the torque

Mmech = qr1 × E(ind)(r1) − qr2 × E(ind)(r2) (15.26)

Mmech,z = qr1(−
1
2c

r1Ḃ0) − qr2(−
1
2c

r2 Ḃ0) (15.27)

so that the capacitor receives the mechanical component of the angular momentum

Lz =
qB0

2c
(r2

1 − r2
2). (15.28)

In both cases the electromagnetic angular momentum is transformed into a mechanical one.


