
G Electrodynamic Potentials

c©2003 Franz Wegner Universität Heidelberg

20 Electrodynamic Potentials, Gauge Transformations

We already know the electric potential Φ from electrostatics and the vector potential A from magnetostatics.
Both can also be used for time-dependent problems and allow the determination of B and E.

20.a Potentials

M’s third and fourth equations are homogeneous equations, i.e. they do not contain charges and currents
explicitly. They allow to express the fields B and E by means of potentials. One obtains from div B = 0

B(r, t) = curl A(r, t). (20.1)

Proof: Due to div B = 0 one has 4B = − curl curl B (B.26), from which one concludes similarly as in (9.16)
and (9.17)

B(r) =
1

4π

∫

d3r′
(

curl ′ curl ′B(r′)
) 1
|r − r′|

=
1

4π
curl
∫

d3r′
curl ′B(r′)
|r − r′|

(20.2)

when the vector potential was introduced in the magnetostatics. An elementary proof is left as exercise.
From curl E + Ḃ/c = 0 one obtains

curl
(

E +
1
c

Ȧ
)

= 0, (20.3)

so that the argument under the curl can be expressed as a gradient. Conventionally one calls it − gradΦ, so that

E = −
1
c

Ȧ − gradΦ (20.4)

follows. The second term is already known from electrostatics. The time derivative of A contains the law of
induction. One sees contrarily that the representations of the potentials in (20.4) and (20.1) fulfill the homoge-
neous M equations.

20.b Gauge Transformations

The potentials A and Φ are not uniquely determined by the fields B and E. We may replace A by

A′(r, t) = A(r, t) + gradΛ(r, t) (20.5)

without changing B
B = curl A = curl A′, (20.6)

since curl gradΛ = 0. It follows that

E = −
1
c

Ȧ′ − grad (Φ −
1
c
Λ̇). (20.7)

If we replace simultaneously Φ by

Φ
′(r, t) = Φ(r, t) −

1
c
Λ̇(r, t), (20.8)

then E and B remain unchanged. One calls the transformations (20.5) and (20.8) gauge transformations.
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70 G Electrodynamic Potentials

The arbitrariness in the gauge allows to impose restrictions on the potentials Φ and A

L gauge div A +
1
c
Φ̇ = 0, (20.9)

C gauge div A = 0. (20.10)

If potentials Φ′ and A′ do not obey the desired gauge, the potentials Φ and A are obtained by an appropriate
choice of Λ

L gauge div A′ +
1
c
Φ̇′ = �Λ, (20.11)

C gauge div A′ = 4Λ, (20.12)

where

� := 4 −
1
c2

∂2

∂t2
(20.13)

is ’A’s operator. The L gauge traces back to the Danish physicist L V. L (1867) in
contrast to the L transformation (section 23) attributed to the Dutch physicist H A. L.
Insertion of the expressions (20.4) and (20.1) for E and B into M’s first equation yields

curl curl A +
1
c2

Ä +
1
c

grad Φ̇ =
4π
c

j, (20.14)

that is

−�A + grad
(

div A +
1
c
Φ̇

)

=
4π
c

j, (20.15)

whereas M’s second equation reads

−4Φ −
1
c

div Ȧ = 4πρ. (20.16)

From this one obtains for both gauges

L gauge

{

�A=− 4π
c j

�Φ=−4πρ
(20.17)

C gauge

{

�A=− 4π
c j + 1

c grad Φ̇
4Φ=−4πρ.

(20.18)

Exercise Show that a vector field B(r), which obeys div B = 0 can be represented by curl A(r). Therefore
put Az(r) = 0 and express Ay(r) by Ay(x, y, 0) and Bx, similarly Ax(r) by Ax(x, y, 0) and By. Insert this in
Bz = ( curl A)z and show by use of div B = 0 that one can find fitting components of A at r = (x, y, 0).
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21 Electromagnetic Potentials of a general Charge and Current Distri-
bution

21.a Calculation of the Potentials

Using the L gauge we had

�Φ(r, t) = −4πρ(r, t), (21.1)

�A(r, t) = −
4π
c

j(r, t) (21.2)

with ’A’s operator

� = 4 −
1
c2

∂2

∂t2
(21.3)

and the gauge condition

div A +
1
c
Φ̇ = 0. (21.4)

We perform the F transform with respect to time

Φ(r, t) =
∫ ∞

−∞

dωΦ̂(r, ω)e−iωt, (21.5)

analogously for A, ρ, j. Then one obtains

�Φ(r, t) =
∫

dω(4 +
ω2

c2
)Φ̂(r, ω)e−iωt

=

∫

dω(−4πρ̂(r, ω))e−iωt, (21.6)

from which by comparison of the integrands

(

4 +
ω2

c2

)

Φ̂(r, ω) = −4πρ̂(r, ω) (21.7)

is obtained. We now introduce the G’s function G, i.e. we write the solution of the linear differential
equation as

Φ̂(r, ω) =
∫

d3r′G(r, r′, ω)ρ̂(r′, ω). (21.8)

Insertion of this ansatz into the differential equation (21.7) yields

(

4 +
ω2

c2

)

G(r, r′, ω) = −4πδ3(r − r′). (21.9)

Since there is no preferred direction and moreover the equation is invariant against displacement of the vectors
r and r′ by the same constant vector, we may assume that the solution depends only on the distance between r
and r′ and additionally of course on ω

G = g(a, ω), a = |r − r′|. (21.10)

Then one obtains

(4 +
ω2

c2
)g(a, ω) =

1
a

d2(ag)
da2

+
ω2

c2
g = 0 for a , 0. (21.11)

Here we use the Laplacian in the form (5.15), where 4Ωg = 0, since g does not depend on the direction of
a = r − r′, but on the modulus a. This yields the equation of a harmonic oscillation for ag with the solution

G = g(a, ω) =
1
a

(

c1eiωa/c
+ c2e−iωa/c

)

. (21.12)
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At short distances the solution diverges like (c1 + c2)/a. In order to obtain the δ-function in (21.9) as an
inhomogeneity with the appropriate factor in front, one requires c1 + c2 = 1. We now insert

Φ(r, t) =

∫

dωΦ̂(r, ω)e−iωt

=

∫

dω
∫

d3r′e−iωtG(r, r′, ω)ρ̂(r′, ω)

=

∫

dω
∫

d3r′
1

|r − r′|

(

c1eiω|r−r′ |/c
+ c2e−iω|r−r′|/c

)

e−iωtρ̂(r′, ω)

=

∫

d3r′
1

|r − r′|

(

c1ρ(r′, t −
|r − r′|

c
) + c2ρ(r′, t +

|r − r′|
c

)
)

. (21.13)

Going from the second to the third line we have inserted G. Then we perform theω-integration, compare (21.5).
However,ω in the exponent in (21.13) is not multiplied by t, but by t∓ |r−r′|

c . The solution in the last line contains
a contribution of Φ at time t which depends on ρ at an earlier time (with factor c1), and one which depends on ρ
at a later time (with factor c2). The solution which contains only the first contribution (c1 = 1, c2 = 0) is called
the retarded solution, and the one which contains only the second contribution (c1 = 0, c2 = 1) the advanced
solution.

Φr,a(r, t) =
∫

d3r′
1

|r − r′|
ρ(r′, t ∓

|r − r′|
c

). (21.14)

Normally the retarded solution (upper sign) is the physical solution, since the potential is considered to be
created by the charges, but not the charges by the potentials. Analogously, one obtains the retarded and advanced
solutions for the vector potential

Ar,a(r, t) =
1
c

∫

d3r′
1

|r − r′|
j(r′, t ∓

|r − r′|
c

). (21.15)

21.b Gauge Condition

It remains to be shown that the condition for L gauge (20.9) is fulfilled

Φ̇ + c div A =
∫

d3r′
1

|r − r′|
(ρ̇ + div j) +

∫

d3r′∇
1

|r − r′|
j. (21.16)

The arguments of ρ and j are as above r′ and t′ = t ∓ |r − r′|/c. In the second integral one can replace ∇ by −∇′

and perform a partial integration. This yields

Φ̇ + c div A =
∫

d3r′
1

|r − r′|
(ρ̇ + (∇ + ∇′)j). (21.17)

Since (∇ + ∇′)t′(t, r, r′) = 0, one obtains from the equation of continuity

ρ̇(r′, t′(t, r, r′)) + (∇ + ∇′)j(r′, t′(t, r, r′)) =
∂ρ

∂t′
+ ∇′j(r′, t′)|t′ = 0, (21.18)

so that the gauge condition (20.9) is fulfilled, since the integrand in (21.17) vanishes because of the equation of
continuity.
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22 Radiation from Harmonic Oscillations

In this section we consider the radiation of oscillating charges and currents.

22.a Radiation Field

We consider harmonic oscillations, i.e. the time dependence of ρ and j is proportional to e−iωt

ρ(r, t) = <
(

ρ0(r)e−iωt
)

(22.1)

j(r, t) = <
(

j0(r)e−iωt
)

, (22.2)

analogously for Φ, A, B, E. One obtains

Φ(r, t) =<
∫

d3r′
1

|r − r′|
ρ0(r′)e−iω(t−|r−r′ |/c). (22.3)

With the notation k = ω/c it follows that

Φ0(r) =
∫

d3r′
1

|r − r′|
ρ0(r′)eik|r−r′|, (22.4)

analogously

A0(r) =
1
c

∫

d3r′
1

|r − r′|
j0(r′)eik|r−r′|. (22.5)

22.a.α Near Zone (Static Zone)

In the near zone, i.e. for k|r − r′| � 2π which is equivalent to |r − r′| � λ, where λ is the wave-length of the
electromagnetic wave, the expression eik|r−r′| can be approximated by 1. Then the potentials Φ0, (22.4) and A0,
(22.5) reduce to the potentials of electrostatics (3.14) and of magnetostatics (9.17).

22.a.β Far Zone (Radiation Zone)

At large distances one expands the expression in the exponent

|r − r′| = r

√

1 − 2
r · r′

r2
+

r′2

r2
= r − n · r′ + O(

r′2

r
), n =

r
r
. (22.6)

This is justified for r � kR2, where R is an estimate of the extension of the charge and current distribution,
r′ < R for ρ(r′) , 0 and j(r′) , 0, resp. We approximate in the denominator |r − r′| ≈ r which is reasonable for
r � R. Then one obtains

A0(r) =
eikr

cr
g(kn) + O(

1
r2

) (22.7)

with the F transform of the current distribution

g(kn) =
∫

d3r′j0(r′)e−ikn·r′ . (22.8)

From this one deduces the magnetic field

B0(r) = curl A0(r) =
grad eikr

cr
× g(kn) + O(

1
r2

) = ik
eikr

cr
n × g + O(

1
r2

). (22.9)

The electric field is obtained from

curl B =
1
c

Ė→ curl B0 = −
iω
c

E0 (22.10)



74 G Electrodynamic Potentials

as

E0 =
i
k

curl B0 = −n × B0 + O(
1
r2

). (22.11)

E0, B0 and n are orthogonal to each other. The moduli of E0 and B0 are equal and both decay like 1/r. The
P vector yields in the time average

S̄ =
1
T

∫ T

0
S(t)dt, T =

2π
ω

(22.12)

S̄ =
c

4π
<E ×<B =

c
8π
<(E∗0 × B0)

= −
c

8π
<
(

(n × B∗0) × B0

)

= −
c

8π
<(n · B0)B∗0 +

c
8π

n(B∗0 · B0). (22.13)

The first term after the last equals sign vanishes, since B0 ⊥ n. Thus there remains

S̄(r) =
c

8π
n(B∗0 · B0) =

k2n
8πcr2

|n × g(kn)|2 + O(
1
r3

). (22.14)

The average power radiated is

U̇s =
k2

8πc

∫

|n × g(kn)|2dΩn, (22.15)

where the integral is performed over the solid angle Ωn of n.

22.b Electric Dipole Radiation (H Dipole)

If the charge and current distribution is within a range R small in comparison to the wave length λ, then it is
reasonable to expand e−ikn·r′

g(kn) = g(0) − ikg(1)
+ ..., g(0)

=

∫

d3r′j0(r′), g(1)
=

∫

d3r′(n · r′)j0(r′) (22.16)

This expansion is sufficient to investigate the radiation field in the far zone. If one is interested to consider it
also in the near zone and the intermediate zone, one has to expand

eik|r−r′ |

|r − r′|
=

eikr

r
+

eikr

r
(−ik +

1
r

)(n · r′) + O(r′2) (22.17)

in the expression for A0, which yields

A0(r) =
eikr

cr
g(0)
+ (−ik +

1
r

)
eikr

cr
g(1)
+ ... (22.18)

We first consider the contribution from g(0). We use that

div ′j(r′) = −ρ̇(r′) = iωρ(r′)→ div ′j0(r′) = iωρ0(r′). (22.19)

Then we obtain from
∫

d3r′ div ′
(

f (r′)j0(r′)
)

= 0 (22.20)

the relation
∫

d3r′ grad ′ f (r′) · j0(r′) = −iω
∫

d3r′ f (r′)ρ0(r′). (22.21)

One obtains with f (r′) = x′α

g(0)
α =

∫

d3r′ j0,α(r′) = −iω
∫

d3r′x′αρ0(r′) = −iωp0,α, (22.22)
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that is g(0) can be expressed by the amplitude of the electric dipole moment

g(0)
= −iωp0. (22.23)

Thus one calls this contribution electric dipole radiation. One finds

A0(r) = −ik
eikr

r
p0, (22.24)

thus

B0(r) =

(k2

r
+

ik
r2

)

eikrn × p0 (22.25)

E0(r) = −
k2

r
eikrn × (n × p0) +

(

3n(n · p0) − p0

)( 1
r3
−

ik
r2

)

eikr. (22.26)

The first term is leading in the far zone (1/r � k), the second one in the near zone (1/r � k). One obtains the
time-averaged P vector from the expression for the far zone

S̄ =
ck4n
8πr2

|n × p0|
2
=

ck4|p0|
2n

8πr2
sin2 θ, (22.27)

In the second expression it is assumed that real and imaginary part of p0 point into the same
direction. Then θ is the angle between p0 and n. The radiated power is then

U̇s =
ck4|p0|

2

3
. (22.28)

The radiation increases with the fourth power of the frequency (ω = ck) (R radiation).
As an example one may consider two capacitor spheres at distance l with I(t) = <(I0e−iωt).
Then one has

|g(0)| = |

∫

d3r′j0(r′)| = |
∫

dlI0| = |I0l|, p0 =
iI0l
ω
, U̇s =

(klI0)2

3c
(22.29)

This power release yields a radiation resistance Rs

U̇s =
1
2

RsI
2
0 , Rs =

2
3c

(kl)2
=̂20Ω · (kl)2 (22.30)

in addition to an Oic resistance. Note that 1
c =̂30Ω, compare (A.4).

22.c Magnetic Dipole radiation and Electric Quadrupole Radiation

Now we consider the second term in (22.16)

g(1)
α = nβ

∫

d3r′x′β j0,α(r′)

=
nβ
2

∫

d3r′(x′β j0,α − x′α j0,β) +
nβ
2

∫

d3r′(x′β j0,α + x′α j0,β). (22.31)

The first term yields the magnetic dipole moment (10.7)

nβcεβ,α,γm0,γ = −c(n ×m0)α. (22.32)

The second term can be expressed by the electric quadrupole moment (4.10). With f = 1
2 x′αx′

β
one obtains from

(22.21)

−iω
nβ
2

∫

d3r′x′αx′βρ0(r′) = −iω
nβ
2

(

Q0,α,β +
1
3
δα,β

∫

d3r′r′2ρ0(r′)
)

. (22.33)

Thus we have

g(1)
= −cn ×m0 −

iω
2

Q0,α,βnβeα + const. n. (22.34)

We observe that the third term proportional n does neither contribute to B0 (22.9) nor to E0 (22.11).
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22.c.α Magnetic Dipole Radiation

The first contribution in (22.34) yields the magnetic dipole radiation. We obtain

A0(r) =

(

ik −
1
r

)eikr

r
n ×m0 (22.35)

B0(r) = −k2 eikr

r
n × (n ×m0) +

(

3n(n ·m0) −m0

)( 1
r3
−

ik
r2

)

eikr (22.36)

E0(r) = (−
k2

r
−

ik
r2

)

(n ×m0)eikr. (22.37)

As an example we consider a current along a loop which includes the area f ,

m0 = I0 f /c, U̇s =
ck4m2

0

3
=

k4I2
0 f 2

3c
, (22.38)

which corresponds to a radiation resistance

Rs =
2
3c

k4 f 2
=̂20Ω (k2 f )2. (22.39)

22.c.β Electric Quadrupole Radiation

We finally consider the second term in (22.34) in the far zone. It yields

g = −ikg(1)
= −

k2c
2

Q0,α,βnβeα. (22.40)

As special case we investigate the symmetric quadrupole (4.27), Q0,x,x = Q0,y,y = −
1
3 Q0, Q0,z,z =

2
3 Q0, whereas

the off-diagonal elements vanish. Then one has

Q0,α,β = −
1
3

Q0δα,β + Q0δα,3δβ,3, (22.41)

from which

g = −
k2c
2

Q0n3e3 +
k2c
6

Q0n, n3 = cos θ (22.42)

B0 = −ik3 eikr

2r
Q0n × e3 cos θ (22.43)

E0 = ik3 eikr

2r
Q0n × (n × e3) cos θ (22.44)

S̄ =
ck6n

32πr2
|Q0|

2 sin2 θ cos2 θ (22.45)

U̇s =
ck6

60
|Q0|

2 (22.46)

follows. The intensity of the quadrupole-radiation is radially sketched as function of the angle θ.


