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A Basic Equations
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Introductory Remarks

I assume that the student is already somewhat familiar with classical electrodynamics from an introductory
course. Therefore | start with the complete set of equations and from this set | spezialize to various cases of
interest.

In this manuscript | will use Gaussian units instead of the Sl-units. The connection between both systems and
the motivation for using Gaussian units will be given in the next section and in appendix A.

Formulae for vector algebra and vector analysis are given in appendix B. A warning to the reader: Sometimes
(B.11, B.15, B.34-B.50 and exercise after B.71) he/she should insert the result by him/herself. He/She is re-
quested to perform the calculations by him/herself or should at least insert the results given in this script.

1 Basic Equations of Electrodynamics

Electrodynamics describes electric and magnetic fields, their generation by charges and electric currents, their
propagation (electromagnetic waves), and their reaction on matter (forces).

l.a Charges and Currents

l.a.@ Charge Density

The charge density p is defined as the charge Aq per volume element AV
_ . Ag dg
o0 = lim 35 = av- i

Therefore the charge q in the volume V is given by
q= f d>rp(r). 1.2)
\%
If the charge distribution consists of point charges q; at points rj, then the charge density is given by the sum
p(r) = > qis*(ri - 1), (L3)
i
where Dirac’s delta-function (correctly delta-distribution) has the property

| f(ro) ifrpeV
deSrf(r)53(r—ro)_{ O° ifr2¢V . (1.4)

Similarly one defines the charge density per area o-(r) at boundaries and surfaces as charge per area
dq
o(f) = 5 (1.5)

similarly the charge density on a line.
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l.a8 Current and Current Density

The current | is the charge dq that flows through a certain area F per time dt,

dq
l=—. 1.
dt (16)
Be v(r, t) the average velocity of the charge carriers and n the unit vector nor-
mal to the area element. Then vdt is the distance vector traversed during time n
dt. Multiplied by n one obtains the thickness of the layer v - ndt of the carriers v
which passed the surface during time dt.Multiplied by the surface element d f
one obtains the volume of the charge, which flows through the area. Additional
multiplication by p yields the charge dg which passes during time dt the surface
df
dg = fvdt -ndfp @7
F
| =dg/dt = fv(r, to(r,t) - n(r)df = fj(r, t) - df (1.8)
F F
with the current density j = pv and the oriented area element df = ndf.
l.a.y Conservation of Charge and Equation of Continuity
The charge g in a fixed volume V
a = [ ey 19
\%
changes as a function of time by
daly f LLUT) 110)

This charge can only change, if some charge flows through the surface oV of the volume, since charge is
conserved. We denote the current which flows outward by 1. Then

dq(t) _I(t) = - fj(r f).df = - fdsrdNJ(r 1), (L12)

where we make use of the dlvergence theorem (B.59). Since (1.10) and (1.11) hold for any volume and volume
element, the integrands in the volume integrals have to be equal
6"’; 9 4 divj(r.f = (1.12)

This equation is called the equation of continuity. It expresses in differential form the conservation of charge.

1.b MaxweLL’s Equations

The electric charges and currents generate the electric field E(r,t) and the magnetic induction B(r,t). This
relation is described by the four MaxweLL Equations

curl B(r,t) - %{;0 = %j(r, t) (1.13)
divE(r,t) = d4mp(r,t) (1.14)
curl E(r,t) + %{;0 =0 (1.15)
divB(r,t) = 0. (1.16)

These equations named after MaxweLL are often called MaxweLr’s Equations in the vacuum. However, they are
also valid in matter. The charge density and the current density contain all contributions, the densities of free
charges and polarization charges, and of free currents and polarization- and magnetization currents.

Often one requires as a boundary condition that the electric and the magnetic fields vanish at infinity.
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1.c CouLoms and Lorentz Force

The electric field E and the magnetic induction B exert a force K on a charge g located at r, moving with a
velocity v

K = qE(r) + q% x B(r). (117)

Here E and B are the contributions which do not come from q itself. The fields generated by q itself exert the
reaction force which we will not consider further.

The first contribution in (1.17) is the Couroms force, the second one the Lorentz force. One has c= 299 792
458 m/s. Later we will see that this is the velocity of light in vacuum. (It has been defined with the value given
above in order to introduce a factor between time and length.) The force acting on a small volume AV can be
written as

AK
k(r)

k(r)AV (1.18)

p(NE(r) + %j(r) x B(r). (1.19)

k is called the density of force. The electromagnetic force acting on the volume V is given by

_ 3
K = fv d3rk(r). (1.20)
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2 Dimensions and Units

2.a Gaussian Units

In this course we use Gaussian units. We consider the dimensions of the various quantities. From the equation
of continuity (1.12) and MaxweLL’s equations (1.13 to 1.16) one obtains

[e)/It] = [il/[x] (2.1)
[Bl/[xI = [El/(cIlt) = [i1/[c] (2.2)
[El/[x] = [BI/([cltD = [o]- (2.3)
From this one obtains
[l = [ellxI/It] (2.4)
[E] = I[plx] (2.5)
[B] = [pllcIlt] = [olDXI?/([C]ItD). (2.6)
and
[c] = [XI/M (2.7)
[B] = [ollx]. (2.8)

From (2.7) one sees that c really has the dimension of a velocity. In order to determine the dimensions of the
other quantities we still have to use expression (1.19) for the force density k

[K] = [oI[E] = [oJIX]. (2.9)
From this one obtains
[b)? = [KI/[x] = dyncm™ (2.10)
[p] = dynY?2cm= (2.11)
[E]=[B] = dynY?cm™ (2.12)
[i1 = dyn¥’2cm™ts? (2.13)
[@] = [pI[X]° = dyn?cm (2.14)
[11 = [jl[x]?=dynY?2cms™t. (2.15)

2.b Other Systems of Units

The unit for each quantity can be defined independently. Fortunately, this is not used extensively.

Besides the Gaussian system of units a number of other cgs-systems is used as well as the SI-system (interna-
tional system of units, Giorai-system). The last one is the legal system in many countries (e.g. in the US since
1894, in Germany since 1898) and is used for technical purposes.

Whereas all electromagnetic quantities in the Gaussian system are expressed in cm, g und s, the Giorai-system
uses besides the mechanical units m, kg and s two other units, A (ampere) und V (volt). They are not indepen-
dent, but related by the unit of energy

1kgm?s2=1J=1Ws=1AVs. (2.16)

The conversion of the conventional systems of units can be described by three conversion factors e, o and
. The factors ¢ and po (known as the dielectric constant and permeability constant of the vacuum in the
Sl-system) and the interlinking factor

Y = C+/éopo (2.17)

can carry dimensions whereas y is a dimensionless number. One distinguishes between rational systems v = 4:)
and non-rational systems (¢ = 1) of units. The conversion factors of some conventional systems of units are
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System of Units € 1o vy o
Gaussian 1 1 c 1
electrostatic (esu) 1 c? 1 1
electromagnetic (emu) c? 1 1 1
HEeAvISIDE-LORENTZ 1 1 c 4n
Giorar (SI) () & X—r‘:'] 1 4n

The quantities introduced until now are expressed in Gaussian units by those of other systems of units (indicated
by an asterisk) in the following way

E=yeE" 1dynY2cm™123.10%/m (2.18)
B = +y/uoB*  1dyn?cm12107*Vs/m? (2.19)
1
q= q°  1dynY2cm2107%/3As, similarly p, o, 1, j. (2.20)
Ve

An example of conversion: The Couroms-Lorentz-force can be written

— l —_ q* * \/E *\ _ * l
K_q(E+Cv><B)_ %(\/weoE +C\/#_Ov><B)_q(E +C =

The elementary charge e is 4.803 - 10729 dyn%2 cm in Gaussian units and 1.602 - 107° As in Sl-units. The
electron carries charge —eg, the proton eq, a nucleus with Z protons the charge Zeg, quarks the charges +eq/3

and +2eq/3.
The conversion of other quantities is given where they are introduced. A summary is given in Appendix A.

VxBY) = (B + 2v x BY). (2.21)
Y

2.c Motivation for Gaussian Units

In the Sl-system the electrical field E and the dielectric displacement D as well as the magnetic induction B and
the magnetic field H carry different dimensions. This leads easily to the misleading impression that these are
independent fields. On a microscopic level one deals only with two fields, E and B, (1.13-1.16) (Lorentz 1892).
However, the second set of fields is introduced only in order to extract the polarization and magnetization
contributions of charges and currents in matter from the total charges and currents, and to add them to the fields.
(Section 6 and 11).

This close relation is better expressed in cgs-units, where E and D have the same dimension, as well as B and
H.

Unfortunately, the Gaussian system belongs to the irrational ones, whereas the Sl-system is a rational one, so
that in conversions factors 4zt appear. | would have preferred to use a rational system like that of Heavisioe and
Lorentz. However, in the usual textbooks only the SI-system and the Gaussian one are used. | do not wish to
offer the electrodynamics in a system which in practice is not used in other textbooks.
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3 Electric Field, Potential, Energy of the Field

3.a Statics

First we consider the time-independent problem: Statics. This means, the quantities depend only on their
location, p = p(r), j = j(r), E = E(r), B = B(r). Then the equation of continuity (1.12) and MAXwWELL’S
equations (1.13-1.16) separate into two groups

divj(r)=0
curl B(r) = £j(r)  divE(r) = 4mp(r)
divB(r) =0 curlE(r) =0 (3.1)
magnetostatics electrostatics

kma = 2J(r) xB(r) ke = p(NE(M)

The first group of equations contains only the magnetic induction B and the current density j. It describes
magnetostatics. The second group of equations contains only the electric field E and the charge density p. It is
the basis of electrostatics. The expressions for the corresponding parts of the force density k is given in the last
line.

3.b Electric Field and Potential

3.b.a Electric Potential

Now we introduce the electric Potential ®(r). For this purpose we consider the path integral over E along to
different paths (1) and (2) fromrgtor

rr dr-E(r) = fr dr-E(r) + 9§dr- E(n), 3.2)

@ @)

where the last integral has to be performed along the closed path from rg along (1)

to r and from there in opposite direction along (2) to ro.This later integral can be 2 r
transformed by means of Stokes’ theorem (B.56) into the integral f df - curl E(r)

over the open surface bounded by (1) and (2), which vanishes due to MaxwgLL’S

equation curl E(r) = 0 (3.1).

., (@
Therefore the integral (3.2) is independent of the path and one defines the electric potential
I
o(r) = —f dr - E(r) + ©(ro). (3.3)
fo

The choice of ry and of ®(rp) is arbitrary, but fixed. Therefore ®(r) is defined apart from an arbitrary additive
constant. From the definition (3.3) we have

do(r) = —dr - E(r), E(r) = —grad @(r). (3.4
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3.b,8 Electric Flux and Charge
From div E(r) = 4mp(r), (3.1) one obtains

fd3r divE(r) = 4n f drp(r) (3.5)
\% \%
and therefore with the divergence theorem (B.59)
f df - E(r) = 4nq(V), (3.6)
ov
id est the electric flux of the field E through the surface equals 4wt times the charge g in the volume V.

This has a simple application for the electric field of a rotational invariant charge distribution p(r) = p(r) with
r = |r|. For reasons of symmetry the electric field points in radial direction, E = E(r)r/r

I I
Anr?E(r) = 4nf p(r)r2dr’dQ = (4n)2f p(rr2dr, (3.7)
0 0
so that one obtains A )
E() = - f o(r)r2dr’ (3.8)
r< Jo
for the field.
As a special case we consider a point charge in the origin. Then one has
4nr2E(r) = 4nq, E(r) = =, E(r) = risq. 3.9)
The potential depends only on r for reasons of symmetry. Then one obtains
()
grad a(r) = -9 d(r) - _E(n), (3.10)
which after integration yields
D(r) = % + const. (3.11)

3.b.y Potential of a Charge Distribution

We start out from point charges g; at locations r;. The corresponding potential and the field is obtained from
(3.11) und (3.10) by shifting r by r;

o(r) = er—r. (3.12)

—grad o(r) = Z Gir = 1) (3.13)

B Ir—r |3

We change now from point charges to the charge density p(r). To do this we perform the transition from
>iaif(ri) = 3 AVp(ri)f(ri) to fd3r'p(r’)f(r’), which yields

o(r) = f gop 20 (3.14)

Ir—r|

From E = —grad ® and div E = 4mp one obtains Poisson’s equation
AD(r) = —4mp(r). (3.15)

Please distinguish A = V - V and A =Delta. We check eq. (3.15). First we determine

VO(r) = f d3r

=fd3ap(r+a)% (3.16)
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and
AD(r) = fdsa(Vp(r+ a))- % = fom dafdﬂaw = fan(p(r+ o0€y) — p(r)) = —4mp(r), (3.17)

assuming that p vanishes at infinity. The three-dimensional integral over a has been separated by the integral
over the radius a and the solid angle Q,, d®a = a?dadQ (compare section 5).
From Poisson’s equation one obtains

1
AD(r) = fd3r’,o(r’)AIr mrh —4mp(r) = —4nfd3r’p(r’)63(r -r) (3.18)
and from the equality of the integrands
1
= —4ns3(r-r'). 1
A|r_ o qoc(r —r’) (3.19)
3.c Couroms Force and Field Energy
The force acting on the charge g; at r; is
Ki = giEi(ri). (3.20)
Here E; is the electric field without that generated by the charge q; itself. Then one obtains the CouLoms force
qj(ri — 1)
Ki=q > ———=~. 3.21
i =0 CETE (3.21)

j#i
From this equation one realizes the definition of the unit of charge in Gauss’s units, 1 dyn'/2 cm is the charge,
which exerts on the same amount of charge in the distance of 1 cm the force 1 dyn.

The potential energy is
1 aiq; 1
U:—E g =—§ i@ (ri). 3.22
5 2 -t 2 i qi @i (ri) ( )

The factor 1/2 is introduced since each pair of charges appears twice in the sum. E.g., the interaction energy
between charge 1 and charge 2 is contained both ini =1, j = 2and i = 2, j = 1. Thus we have to divide by 2.
The contribution from g; is excluded from the potential ®;. The force is then as usually

Ki = —grad, U. (3.23)

In the continuum one obtains by use of (B.62)

U= %fd3rp(r)d)(r) = % fd3r divE(r)®(r) = % def- E(r)®(r) - %fd%E(r)- grad d(r), (3.24)

where no longer the contribution from the charge density at the same location has to be excluded from @, since
it is negligible for a continuous distribution. F should include all charges and may be a sphere of radius R. In
the limit R — oo one obtains ® « 1/R, E « 1/R?, fF « 1/R — 0. Then one obtains the electrostatic energy

_ 1 3.2 _f 3
U= 8 fd rE<(r) = | d°ru(r) (3.25)
with the energy density
_1le
u(r) = 8nE (n. (3.26)

Classical Radius of the Electron As an example we consider the “classical radius of an electron” Rp: One
assumes that the charge is homogeneously distributed on the surface of the sphere of radius R. The electric field
energy should equal the energy moc?, where mq is the mass of the electron.

1 (™(e0\? > & 2
— —= | redrdQ = — =mgc 3.27
8 fRO (r2 ) 2Ro ° (3.27)
yields Rg = 1.4-107%3 cm. The assumption of a homogeneous distribution of the charge inside the sphere yields
a slightly different result.

From scattering experiments at high energies one knows that the extension of the electron is at least smaller by
a factor of 100, thus the assumption made above does not apply.
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4 Electric Dipole and Quadrupole

A charge distribution p(r”) inside a sphere of radius R around the origin
is given. We assume p(r’) = 0 outside the sphere.

4.a TheFieldforr >R

The potential of the charge distribution is

, o)
o= [

We perform a TavLor-expansion in r’, i.e. in the three variables x}, X, und x}

(4.1)

|
Z( rv) 1 (’V) vz (rV)(r’V)—— 4.2)

|r—r'

At first we have to calculate the gradient of 1/r

1 r r
VI = ——, since VE(r) = = f’ 4.
- =3, since Q) . (n), (4.3)
solve (B.39, B.42). Then one obtains
;a1 r.r
(r V)F =3 (4.9)
Next we calculate (B.47)
c.r 1 1 c 3(c-nr
VF =3 grad(c-r)+(c-r)grad (r_3) =5 % (4.5)
using (B.27) and the solutions of (B.37, B.39). Then we obtain the TayLor-expansion
1 1 rr 3(r-r)y2-ri?
Ir—r| r * r3 * 2r5 to (4.6)

At first we transform 3(r - r’)? — rr’?

1 7.

3 250.5)(3XaXg — %S0 p) (4.7)
because of 6, 5(3XuXs — 6Qﬁr2) = 3XyXy — %040 = 0. Here and in the following we use the summation
convention, i.e. we sum over all indices (of components), which appear twice in a product in (4.7), that is over
aandpB.

We now introduce the quantities

3(r- 1% = r?r = X, X;(3%a Xg — %a5) = (X, X} —

q= fdsr'p(r') charge (4.8)
p= fdsr r'o(r’) dipolar moment (4.9
Qup = fdsr (X X5 — aﬁr’z)p(r ) components of the quadrupolar moment (4.10)
and obtain the expansion for the potentlal and the electric field
om = J4B7 wa n O(r—14) (4.11)
E( = -gradd(r)= & M + 0(%4) (4.12)
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4.b Transformation Properties

The multipole moments are defined with respect to a given point, for example with respect to the origin. If one
shifts the point of reference by a, i.e. r} = r’ — a, then one finds with p1(r}) = p(r’)

a = [drnr - [ =q (4.13)

[ = [ -ape)=p-aq (4.19)

P1

The total charge is independent of the point of reference. The dipolar moment is independent of the point of
reference if ¢ = O (pure dipol), otherwise it depends on the point of reference. Similarly one finds that the
quadrupolar moment is independent of the point of reference, if g = 0 and p = 0 (pure quadrupole).

The charge q is invariant under rotation (scalar) x; , = = DapXp, where D is a rotation matrix, which describes an
orthogonal transformation. The dipole p transforms like a vector

P1re = fdsr,Dﬂ,,Bka(r,) = D(y,ﬁpﬁ (415)

and the quadrupole Q like a tensor of rank 2

’ ’ ’ l ’ ’
Quag = f r (Do X, Dy, — 50T p(F). (4.16)
Taking into account that due to the orthogonality of D
6(t,ﬁ = D(r,yDﬁ,y = D(r,yéy,ﬁDﬁ,t?: (417)

it follows that
Ql,a,,B = Da,yD,B,éQy,é’ (418)

that is the transformation law for tensors of second rank.

4.c Dipole

The prototype of a dipole consists of two charges of opposite sign, g at ro + a and —q at ro.
p = qa. (4.19)
Therefore the corresponding charge distribution is
p(r) = q(83(r — ro — @) — 5°(r — ro)). (4.20)
We perform now the TavLor expansion in a
p(r) = q83(r —ro) —qa- V&3(r — ro) + g(a -V)253(r — ro) + ... — q63(r — ro), (4.21)

where the first and the last term cancel. We consider now the limit a — 0, where the product ga = p is kept
fixed. Then we obtain the charge distribution of a dipole p at location rq

p(r) = —p - V&3(r —ro) (4.22)

and its potential

o(r) = fd3r'|'ro(rr),| = —p-fd3 =T grad’s3(r' —rg) = p - fd?‘r grad'| 63(r - o)
_ 3,/ 3 p-(r—ro)
= fd (5 (r-=rp) = W, (4.23)

where equation (B.61) is used and (B.50) has to be solved.
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4.d Quadrupole

The quadrupole is described by the second moment of the charge distribution.

4.d.@ Symmetries
Q is a symmetric tensor

Qup = Q- (4.24)
It can be diagonalized by an orthogonal transformation similarly as the tensor of inertia. Further from definition
(4.10) it follows that

Q(t,(Y = o» (425)

that is the trace of the quadrupole tensor vanishes. Thus the tensor does not have six, but only five independent
components.

4.d.8 Symmetric Quadrupole

A special case is the symmetric quadrupole. Its charge distribution  depends
only on z and on the distance from the z-axis, p = p(z, VX2 +y3). It obeys
Qx,y = Qx,z = Qy,z = 0» (4-26) z
because p(x,Y,2) = p(=X,Y, 2) = p(X, =Y, z). Furthermore one has r
1 1.
Qux=Quy = —5Qz = —3Q. (4.27) g

The first equality follows from p(X, y, z) = p(y. X, z), the second one from the vanishing
of the trace of Q. The last equality-sign gives the definition of Q.

One finds 3 3 1
Q:zQa=fﬁwqﬁ‘zﬂmwﬁif*“”m@mmmw (4.28)

with the Legenore polynomial P,(¢) = 252 - % We will return to the Lecenpre polynomials in the next section
and in appendix C.

As an example we consider the stretched quadrupole with two charges q at +ae; and a charge —2q in the origin.
Then we obtain Q = 2qa2. The different charges contribute to the potential of the quadrupole

322 -r2 _ QP;(cosé)
2r 3

1.3x2—-r2 1 .3y2_r2
ls¥

2 4
*(r) = _§Q 2r5 3 T §Q (429)

4.e Energy, Force and Torque on a Multipole in an external Field

A charge distribution p(r) localized around the origin is considered in an external electric potential ®4(r), which
may be generated by an external charge distribution p,. The interaction energy is then given by

U= fd3rp(r)d)a(r). (4.30)
No factor 1/2 appears in front of the integral, which might be expected in view of this factor in (3.24), since

besides the integral over p(r)@4(r) there is a second one over p,(r)®(r), which yields the same contribution. We
now expand the external potential and obtain for the interaction energy

U

1
fdsrp(r) {(Da(O) + rV(Dalrzo + EX(,Xﬁ V”Vﬁq)aL:o + }

1 1
qDa(0) + p - VDal—o + 5 (Q(,,ﬁ + 300 f d3l’p(r)r2) Vo VP _o + - (4.31)
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The contribution proportional to the integral over p(r)r? vanishes, since V,V,®, = a®, = —4mp,(r) = 0, since
there are no charges at the origin, which generate ®,. Therefore we are left with the potential of interaction

1
U = q®40) — p - Ea(0) + EQQ,[;V(,V[;CDa + ... (4.32)

For example we can now determine the potential energy between two dipoles, py, in the origin and p; at ro. The
dipole p, generates the potential

Dy(r) = w (4.33)

Then the interaction energy yields (compare B.47)

. 3 -T .r
Uab = Po - Valyo = P2 3|ob _ 3(Pa 0)5(pb 0) (4.30)
o )
The force on the dipole in the origin is then given by
K= f d3rp(r)Eq(r) = f d3rp(r)(Ea(0) + Xo Vo Ealr—o0 + ...) = qEa(0) + (p - grad )E4(0) + ... (4.35)

The torque on a dipole in the origin is given by

Mmech = f d3r'p(r)r' x Eo(r’) = p x E4(0) + ... (4.36)
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5 Multipole Expansion in Spherical Coordinates

5.a Poisson Equation in Spherical Coordinates

We first derive the expression for the Laplacian
operator in spherical coordinates

= rsingcos¢ (5.2)
y = rsingsing (5.2)
Z = rcosé. (5.3)

Initially we use only that we deal with curvilin-
ear coordinates which intersect at right angles,
so that we may write

dr = gre;dr + gyeedd + gge4de (5.4)

where the ey, e, and e, constitute an orthonormal
space dependent basis. Easily one finds

gr=1 gg=r, gy =rsiné. (5.5)

The volume element is given by
d3r = g,drgydég,de = radrsinedade = r’drdQ (5.6)

with the element of the solid angle
dQ = sin 6dode. (5.7

5.a.@ The Gradient
In order to determine the gradient we consider the differential of the function ®(r)

0] 0D oD
do(r) = Edr + %d9+ %dq&, (5.8)

which coincides with (grad @) - dr. From the expansion of the vector field in its components
grad @ = (grad @).e, + (grad ®)sey + (grad ®),e, (5.9)
and (5.4) it follows that
dd(r) = (grad @),g,dr + (grad ®),g,d6 + (grad @),9,de, (5.10)

from which we obtain

(grad @), = 100 (5.11)

100
rad®)g = ——
(g )o g, 96

160
(grad @), = o ar 0 90°

P or’

for the components of the gradient.
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5.a,8 The Divergence

In order to calculate the divergence we use the divergence theorem (B.59). We integrate the divergence of A(r)
in a volume limited by the coordinates r,r + Ar, 6,0 + A9, ¢, ¢ + A¢. We obtain

fdsrdivA
=fA-df

f 0rJ¢9, div A drdodeg

f ggdeg¢d¢Ar|:+Ar+ f grdrg¢d¢Ag|z+M+ f grdrged9A¢|Z+A¢

f [% (9090Ar) + %(gr%Ag) + % (grggA¢)] drdedg (5.12)

Since the identity holds for arbitrarily small volumina the integrands on the right-hand side of the first line and
on the third line have to agree which yields

. 1 0 0 0
leA(r) = m |:a (ggg¢Ar) + % (grg¢A9) + % (grggA¢)] . (513)
5.a.y The Laplacian
Using A® = div grad @ we obtain finally
1 [0 (994 6d>) 9 (grg¢ 6<D) 0 (grge 6@)}
AD(r) = — — |+ = — |+ = — 1. 5.14
® 9r9e9ys [6r ( 9 ar) 00\ g 00) 0P\ 9y 09 .19

This equation holds generally for curvilinear orthogonal coordinates (if we denote them by r, 6, ¢). Substituting
the values for g we obtain for spherical coordinates

192 1
AD = Fm(rq)) + r—ZAQ(D, (515)
1 0,. 00 1 0%
Ao = ——(SINO0—) + ————. 5.16
o sm969( 69) " sin2g d¢? (5.16)

The operator Aq acts only on the two angels 6 and ¢, but not on the distance r. Therefore it is also called
Laplacian on the sphere.

5.b Spherical Harmonics

As will be explained in more detail in appendix C there is a complete set of orthonormal functions Y| m(8, ¢),
1=0,1,2,...,m=—I,-1+1, .., which obey the equation

AaYim(®, ¢) = =I(I + 1)Yim(6, ¢). (5.17)

They are called spherical harmonics. Completeness means: If (6, ¢) is differentiable on the sphere and its
derivatives are bounded, then f (0, ¢) can be represented as a convergent sum

10.4) = D flmYim(6, ). (5.18)
m
Therefore we perform the corresponding expansion for ®(r) and p(r)
o) = Bim(r)Vim(6. ), (5.19)
m
p(r) =

D Pn()Yim(6. 9). (5.20)
I,m
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The spherical harmonics are orthonormal, i.e. the integral over the solid angle yields
f dQY;" (0, #) Y1 m (6, ¢) = f de sin 6d6Y|.(6, #)Yr . (6, #) = 1.1 Smm- (5.21)

This orthogonality relation can be used for the calculation of ® and p

f deb sin 6daY;’,(6, $)p(r) > () f dep sin 6d6Y;" (6, )Y (6, )
I",my

= pra 8 dmm = pum(r). (5.22)
it
We list some of the spherical harmonics
1
Yoo(6,¢) = yr (5.23)
JU
Yi0(6,9) = 3 cos o (5.24)
1006,8) = 4 In :
Y1:216,0) = FAl— 3 sin ge*'* (5.25)
R 8n '
3 [5(3 , 1
Y20(6,9) = I (5 cos“ 6 — 5) (5.26)
15 . i
Yo:1(0,¢) = F & S 6 cos fe*'? (5.27)
_ 1 [15 2
Yo.2(0,9) = 2\ 2 sin? ge (5.28)
In general one has
21+ 1 (1 —m)! ;
Y = pm mp 2
1.m(6, @) 2 qam! (cos H)e (5.29)
with the associated Lecenpre functions
m g+m
P(¢) = % 2)"‘/de.m(f -1 (5.30)

Generally Y, r, is a product of (sin 6)™e'™ and a polynomial of order | —|m] in cos 6. If | — |m| is even (odd), then
this polynomial is even (odd) in cos 8. There is the symmetry relation

Yi-m(0: 8) = (=)™Y/"1n(6, ). (5.31)

5.c Radial Equation and Multipole Moments

Using the expansion of @ and p in spherical harmonics the Poisson equation reads

14+ 1)
r2

2 ~ ~
A(I)(r) = Z (% %(rq)l,m(r)) - (Dl,m(r)) Yl,m(g» ¢) =—-4n Zﬁl,m(r)Yl,m(g» ¢) (5-32)
I,m I,m

Equating the coefficients of Y|, we obtain the radial equations

|(| + 1)

R 2. A
D) + () = Dy (1) = — 41 m(r). (5.33)
The solution of the homogeneous equation reads

Dy(r) = g’ + byr (5.34)
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For the inhomogeneous equation we introduce the conventional ansatz (at present | suppress the indices | and
m.)

® = a(n)r' + b(r)r'1. (5.35)
Then one obtains A
@ =a'()r' +b'(r T+ lan)r' Tt - (1 + 1)b(r)r 2. (5.36)
As usual we require
a(nr'+b(Nr'-t=0 (5.37)
and obtain for the second derivative
O = la'(Nr't — (1 + D' (Nr'"=2 + 1(1 - Da(r)r'2 + (1 + 1)(1 + 2)b(r)r'-3. (5.38)

After substitution into the radial equation the contributions which contain a and b without derivative cancel. We
are left with
la’(r)r'= — (1 + Db’ (n)r~'=2 = —4np, (5.39)

From the equations (5.37) and (5.39) one obtains by solving for a’ and b’

day m(r) 4n

el e LA L Q) (5.40)
db'ar:(r) - 2|4+T-E 1" Zp1nr). (5.41)
Now we integrate these equations
am(r) = 2|+1 f dr'r'p (1) (5.42)
bim(r) = 2|+ 1 f dr'r'"*2p; (r). (5.43)

If we add a constant to a; m(r), then this is a solution of the Porsson equation too, since r'Y; (6, ¢) is a homoge-
neous solution of the Poisson equation. We request a solution, which decays for large r. Therefore we choose
aim(o0) = 0. If we add a constant to by, then this is a solution for r # 0. For r = 0 however, one obtains a
singularity, which does not fulfil the Poisson equation. Therefore b ,(0) = 0 is required.

We may now insert the expansion coefficients p; m and obtain

[ @) (5.44)

(") 2I +1

bi.m(r) f a3 rYy (@ 8))p(r). (5.45)

2I +1
We may now insert the expressions for a; m und by m into (5.19) and (5.35). The r- und r’-dependence is obtained
for r < r’ from the a-term as r'/r"** and for r > r’ from the b-term as r"'/r'*1. This can be put together, if we
denote by r. the larger, by r. the smaller of both radii r and r’. Then one has

0= 5 Z e TSP 6 6Yi0.6) (5.46)
If o(r’) = 0 for r’ > R, then one obtains for r > R
_ 47[ Y|,m(09 ¢)
o(r) = ; ST (5.47)

with the multipole moments

4JT a4 * / 14 A
Qm = ,/m f d*rrtYr (@, ¢)p(r). (5.48)



20 B Electrostatics

For | = 0 one obtains the "monopole moment” charge, for | = 1 the components of the dipole moment, for | = 2
the components of the quadrupole moment. In particular for m = 0 one has

Vax f d%',/ip(r'):q (5.49)
4n
_ 4_ﬂ: 3/ i ’ / AN 3,757 N _
JQuo = w/ 3 fd r ,/4nr COS@p(r)—fd r'zZp(r') = p; (5.50)
A 3,7 5/2§ 21_} /_f31§/2_}/2 /_§
,/—5 fd r w/—Lmr (5005°0 = () = | &' (G22 = Sr2p(r) = 5Qz  (551)

5.d Point Charge at r’, Cylindric Charge Distribution

Go,0

02,0

Finally we consider the case of a point charge q located at r’. We start from the potential

9 _ q

o= Ir—rl " JrZ+rZ-2rr'cosy (552)
Here y is the angle between r and r’. We expand inr./r.
o(r) = d = q i ,rlﬂ Pi(cosy). (5.53)
r

r- \/1+(;—§)2—2:—§ cosy =0 '>
The P(&) are called Legenore polynomials. For cosy = +1 one sees immediately from the expansion of

1/(rs ¥ r.), that P(1) = 1 and P;(-1) = (-)" hold.
On the other hand we may work with (5.46) and find

00 | 4 |
o) =a); TR PINECOVR Y (554)

By comparison we obtain the addition theorem for spherical harmonics

4 |
P(cosy) = Zl—fl > Vi, 8)Y) (0 8). (5.55)
m=—|

where the angle  between r and r” can be expressed by r - r’ = rr’ cosy and by use of (5.1-5.3)
cosy = cosfcosd +sindsing cos(p — ¢’). (5.56)

We consider now the special case 8’ = 0, i.e. y = 0. Thenall Y| (¢, ¢”) vanish because of the factors sin 8" with
the exception of the term for m = 0 and the addition theorem is reduced to

P/(cos ) = %Y.,O(e)v.,o(m = PY(cos 6)PP(1). (5.57)

From the representation (5.30) P°(¢) = 1/(2'I")d'(£? — 1)'/d¢' one obtains for ¢ = 1 and the decomposition
€ -1) = (€ +1)(¢ - 1) the result PX(1) = [(£ + 1)'/2"]¢=a[d' (& - 1)'/dé' /1e—1 = 1. Thus we have

PP(&) = Pi(©). (5.58)

In particular for a cylinder symmetric charge distribution p(r), which therefore depends only on r and 6, but not

on ¢, one has
o) =" PC0S) o (5.59)
|

r|+l
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with the moments
Qo= f dr'r"' Py (cos & )p(r’). (5.60)

All moments with m # 0 vanish for a cylinder symmetric distribution.

Exercise Calculate the vectors e, e, and e, from (5.1) to (5.5) and check that they constitute an orthonormal
basis.

Exercise Calculate by means of Stokes’ theorem (B.56) the curl in spherical coordinates.

Exercise Calculate for cylindric coordinates x = pcos¢, y = psin¢ and z the metric factors g,, g and g, the
volume element and gradient and divergence.
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6 ElectricFied in Matter

6.a Polarization and Dielectric Displacement

The field equations given by now are also valid in matter. In general matter reacts in an external electric field
by polarization. The electrons move with respect to the positively charged nuclei, thus generating dipoles, or
already existing dipoles of molecules or groups of molecules order against thermal disorder. Thus an electric
field displaces the charges q; from r; to r; + a;, i.e. dipoles p; = qja are induced. One obtains the charge
distribution of the polarization charges (4.22)

pp(r) = — Z pi - grads3(r — ;). (6.1)

Introducing a density of dipole moments P called polarization

P(r) = ZA—\F/) (6.2)

where Y p; is the sum of the dipole moments in an infinitesimal volume AV, one obtains

pp(r) = — fd3r’P(r’) - grad&3(r - r’) = —div (f d*r'P(r)s3(r - r’)) = —divP(r). (6.3)

Let us visualize this equation. We start out

from a solid body, in which the charges p 0 unpolarized
of the ions and electrons (on a scale large Lons X

in comparison to the distance between the Patectrons

atoms) compensate (upper figure).If one ap- i

plies a field E then the electrons move p polarized
against the ions (second figure). Inside the X

bulk the charges compensate. Only at the — E py <0 a<0
boundaries a net-charge is left. In the third =

figure the polarization P = pga is shown, P=pe| a
which has been continuously smeared at the ﬂ X
boundary.The last figure shows the deriva-

tive —dP/dx. One sees that this charge dis- dpP

tribution agrees with that in the second fig- ) dx L X

ure. X —U

Thus the charge density p consists of the freely moving charge density p; and the charge density of the polar-
ization pp (the first one may be the charge density on the plates of a condensator)

p(r) = pr(r) + pp(r) = pr(r) — divP(r). (6.4)

Thus one introduces in MaxwELL’S equation

div E(r) = 4mp(r) = 4mps(r) — 4mdiv P(r) (6.5)
the dielectric displacement D
D(r) = E(r) + 4xP(r), (6.6)
so that
div D(r) = 4mps(r) (6.7)

holds. The flux of the dielectric displacement through the surface of a volume yields the free charge qs inside
this volume

f df - D(r) = 4mas (V). (6.8)
ov
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For many substances P and E are within good approximation proportional as long as the field intensity E is not
too large

P(r) = xeE(r) e electric susceptibility (6.9)
D(r) = €E(r) € relative dielectric constant (6.10)
€ =1+ 4mye. (6.11)

Ye and e are tensors for anisotropic matter, otherwise scalars. For ferroelectrica P is different from 0 already for
E = 0. However, in most cases it is compensated by surface charges. But it is observed, when the polarization is
varied by external changes like pressure in the case of quartz (piezo-electricity) or under change of temperature.
In Gaussian units the dimensions of D, E und P agree to dyn*2 cm=2. In the Sl-system E is measured in \V/m, D
and P in As/m?. Since the Sl-system is a rational system of units, the Gaussian an irrational one, the conversion
factors for D and P differ by a factor 4rt. Consequently the y. differ in both systems by a factor 4st. However,
the relative dielectric constants e are identical. For more details see appendix A.

6.b Boundaries between Dielectric Media

We now consider the boundary between two dielectric media or a dielectric material and vacuum. From
MaxweLL’s equation curl E = 0 it follows that the components of the electric field parallel to the boundary
coincides in both dielectric media

Ey = Ear. (6.12)

In order to see this one considers the line integral ﬁdr - E(r) along the closed contour which runs tangential to
the boundary in one dielectric and returns in the other one, and transforms it into the integral fdf- curlE(r) =0
over the enclosed area. One sees that the integral over the contour vanishes. If the paths of integration in both
dielectrica are infinitesimally close to each other, then E; vanishes, since the integral over the contour vanishes
for arbitrary paths.

On the other hand we may introduce a “pill box” whose covering surface is in one medium, the basal surface
in the other one, both infinitesimally separated from the boundary. If there are no free charges at the boundary,
then L d3rdivD = 0, so that the integral fdf - D = 0 over the surface vanishes. If the surface approaches the
boundary, then it follows that the normal component of D is continuous

Dl,n = DZ,n- (613) D2
If the angle between the electric field (in an isotropic medium) D,
and the normal to the boundary are a1 and a» then one has E g
) ) E a & az
Eisinay = Ejzsinas (6.14) 5 b
Dicosa; = Dycosaz (6.15) n n
tanay tan as
- , (6.16) € &
€1 €

We now consider a cavity in a dielectric medium. If the cavity is very thin in the direction of the field (a) and
large in perpendicular direction like a pill box then the displacement D agrees in the medium and the cavity.

If on the other hand the cavity has the shape of a slot very
long in the direction of the field (b), then the variation

of the potential along this direction has to agree, so that —E
inside and outside the cavity E coincides. At the edges — D
of the cavities will be scattered fields. It is possible to ]

calculate the field exactly for ellipsoidal cavities. See for b €

example the book by Becker and Sauter. The field is
homogeneous inside the ellipsoid. The calculation for a
sphere is given below.

o)
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6.c Dielectric Sphere in a Homogeneous Electric Field

We consider a dielectric sphere with radius R and dielectric constant
€ inside a medium with dielectric constant ;. The electric field in the

medium 1 be homogeneous at large distances R
E()=E1=Eie, >R (6.17) &1
Thus one obtains for the potential
®O(r)=-E;-r=-Ejrcosd r>R. (6.18)
Since cos 8 is the Lecenpre polynomial P1(cos 6), the ansatz
@(r) = f(r)cosd (6.19)

is successful. The solution of the homogeneous Poisson equation A(f(r)cosd) = 0 is a linear combination
(5.34) of f(r) = r (homogeneous field) and f(r) = 1/r? (dipolar field). Since there is no dipole at the origin we
may assume

_ —Eor r<Rr
@(r) = cos o - { _Exr+p/r? r>R (6.20)
At the boundary one has ®(R + 0) = ¢#(R — 0), which is identical to E;; = E,; and leads to
Y
-EiR + R% = -E2R. (6.21)
The condition Dy, = D, together with Dy, = —€Z2 yields
2
(B + R—g) - F,. (6.22)
From these two equations one obtains
36]_
E, = ——E 6.23
2 € + 261 ! ( )
€ — € 3
= R°E;. 6.24
P € + 261 ! ( )
One obtains in particular for the dielectric sphere (e = €) in the vacuum (e; = 1)
e—1
Ex= E = R3E;. 2
2=5 B p=—SRE (6.25)
The polarization inside the sphere changes the average field by
l-€ dn
E,-E; = mEleZ = —?P. (626)
However, for a spherical cavity (e, = 1) in a dielectric medium (e; = €) one obtains
3e
Es = Ej. 6.27
27 Ty2et (6.27)

6.d Dielectric Constant according to Crausius and MossoTTr

Crausius and Mossorti derive the dielectric constant from the polarizability & of molecules (atoms) as follows:
The average dipole moment in the field Ey is

P = aEes. (6.28)



6 Electric Field in Matter 25

The density n of the dipoles (atoms) yields the polarization
P = np = naEe. (6.29)

Therefore we have to determine the effective field E¢, which acts on the dipole.
For this purpose we cut a sphere of radius R out of the matter around the dipole. These dipoles generate, as we
have seen in the example of the dielectric sphere in the vacuum (6.26) an average field

— 4

Ep=E,—E; = —?ﬂp. (6.30)
This field is missing after we have cut out the sphere. Instead the rapidly varying field of the dipoles inside the
sphere has to be added (with the exception of the field of the dipole at the location, where the field has to be

determined)
— —pir? + 3(piri)ri
EeﬁzE—Ep+Zp"#(p")'. (6.31)
i

i
The sum depends on the location of the dipoles (crystal structure). If the dipoles are located on a cubic lattice,
then the sum vanishes, since the contributions from

00 g2 + 3XiaXig
D8P ), — (6.32)
ap i i

cancel for @ # B, if one adds the contributions for x, and —x,,, those for & = 3, if one adds the three contributions
obtained by cyclic permutation of the three components. Thus one obtains for the cubic lattice

4 4
YeE = P = naEer = na(E + ?“P) = na(l+ ?n)(e)E, (6.33)

from which the relation of Crausius (1850) and Mossorr (1879)

Na Wik 1 e-1

= or — .
Xem 1 oam 3 c+2

(6.34)

follows.
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7 Electricity on Conductors

7.a Electric Conductors

The electric field vanishes within a conductor, E = 0, since a nonvanishing field would move the charges. Thus
the potential within a conductor is constant. For the conductor #i one has ®(r) = ®;.
Outside the conductor the potential is given by Poisson’s equation

AD(r) = —4mp(r) or div (e(r) grad ®(r)) = —4mps(r). (7.2)

7.a.« Boundary Conditions at the Surface of the Conductor

On the surface of the conductor one has a constant potential (on the side of the dielectric medium, too). Thus
the components of E tangential to the surface vanish

Ei(r) = 0, (7.2)
n
In general there are charges at the surface of the conductor. We denote its density
by o(r).
Conductor

Integration over a small piece of the surface yields

fdf -Ea(r) = 4nq = 4n fdf o (r). (7.3)
Therefore the field E, obeys at the surface in the outside region

Ea(r) = 4no(r)n, —(;% = 4zo(r). (7.4)

In general the charge density o at the surface consists of the free charge density o at the surface of the conductor
and the polarization charge density o-p on the dielectric medium o-(r) = o (r) + op(r) with

Da(r) = 4mot(r)n, (7.5)

from which one obtains 1
ot = €(ot + op), 0'P=(Z—1)0'f~ (7.6)

7.a,8 Force acting on the Conductor (in Vacuo)

Initially one might guess that the force on the conductor is given by fdeaa(r). This, however, is wrong. By
the same token one could argue that one has to insert the field inside the conductor E; = 0 into the integral. The
truth lies halfway. This becomes clear, if one assumes that the charge is not exactly at the surface but smeared
out over a layer of thickness I. If we assume that inside a layer of thickness a one has the charge s(a)o(r)df
with s(0) = 0 and s(I) = 1, then the field acting at depth a is Ej(r —an) = (1 — s(a))Ex(r), since the fraction s(a)
is already screened. With p(r — an) = s’(a)o(r) one obtains

K= fdf dap(r —an)E(r — an) = fdfo-(r)Ea(r) fol das’(a)(1 - s(a)). (7.7)

The integral over a yields (s(a) — sz(a)/2)|'0 =1/2, so that finally we obtain the force

K = % f dfor(r)Ea(r). (7.8)
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7.b Capacities

We now consider several conductors imbedded in the vacuum or in dielectric media. Outside the conductors
there should be no free moving charge densities, pr = 0. The electric potentials ®; of the conductors #i should
be given. We look for the free charges ; at the conductors. Since MaxweLL’s equations are linear (and we
assume that there is a linear relation D = €E) we may write the potential as a superposition of solutions ¥;

a(r) = Z (). (7.9)

¥; is the solution which assumes the value 1 at the conductor #i, and 0 at all others
Wi(r) =dij r e conductor j. (7.10)

The charge on conductor #i is then given by

1 oo
ql__EfFvide%

1 oY,
C'»J = —Ef':i de W

The capacity has the dimension charge/(electric potential), which in Gaussian units is a length. The conversion
into the Sl-system is by the factor 4mep, so that 1 cm = 1/9 - 10~ As/V = 10/9 pF (picofarad).
The electrostatic energy is obtained from

= > Cijo; (7.11)
&

with the capacity coefficients

(7.12)

a

du = Z(Didqi = Z ®,C; ;dD;, (7.13)
i 0
that is
% = Zci,jcbi, (7.14)
63?(;;] =Cij= % =Cji, (7.15)
U= %Zci,iq)iq)j = %Z‘DiQi (7.16)

As an example we consider a spherical capacitor. Two concentric con-
ducting spheres with radii rq, ro with r; < r» carry the charges q; and

(2, resp. Outside be vacuum. Between the two spheres is a medium €
with dielectric constant e. Then outside the spheres one has
+
o) =28 ryy, (7.17)
r r,
The potential decays in the space between the two spheres like q1/(er).
Since the potential is continuous at r = r, it follows that
+
o= _G BTl o (7.18)
er €l §)
Inside the smaller sphere the potential is constant.
+
o= _ & Hte (7.19)

erp ery I
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From this one calculates the charges as a function of the potentials ®; = O(r;)

€rir

g = 22 (01 - D) (7.20)
—-r

g2 = €rrs ((I)Z — (D]_) + rgq)z, (721)
—-r

from which the capacitor coefficients can be read off immediately. If the system is neutral, ¢ = g1 = —03, then
g can be expressed by the difference of the potential

q=C(d1 - Dp) (7.22)

and one calls C the capacity. For the spherical capacitor one obtains ®, = 0 and ®; = %(% - %), from which

the capacity
_ €

B h—rs

(7.23)

is obtained.
For a single sphere r, can go to oo and one finds C = erj.
We obtain the plate capacitor with a distance d between the plates, by putting ro = r; + d in the limit of large ry

c (r?+rd)e 4nrie
B d T od

1 d
(ﬁ+ 4nr1)’ (7.24)

which approaches & for large ry with the area F. Therefore one obtains for the plate capac-

X 4nd
Itor
eF

" and’
A different consideration is the following: The charge g generates the flux DF = 4xq.
Therefore the potential difference between the two plates is ® = %d = “ELF"q, from which
C=q/¢= 4€TFd follows. Be aware that here we have denoted the free charge by g.

(7.25)

7.c Influence Charges

If we fix the potentials of all conductors to 0, ®; = 0 in the presence of a free charge g at r’, then we write the
potential
d(r) =G(r,r)q (7.26)

with the Green’s function G. Apparently this function obeys the equation
V(e(r)VG(r, ")) = —4ns3(r - r’) (7.27)

for r outside the conductor. For r at the surface of the conductors we have G(r,r’) = 0. The superposition
principle yields for a charge density p;(r’) located outside the conductors

o(r) = fdsr’G(r, rps(r) + Z(I)i\Pi(r), (7.28)

where now we have assumed that the conductors have the potential ;.
We now show that the Green’s function is symmetric, G(r,r’) = G(r’,r). In order to show this we start from
the integral over the surfaces of the conductors

fdf// . {G(r", r)E(r")V”G(r", r/) _ E(r”)[V"G(r”, r)]G(r", r/)} - O, (729)

since G vanishes at the surface of the conductors. The area element df” is directed into the conductors. We
perform the integral also over a sphere of radius R, which includes all conductors. Since G ~ 1/R and since
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V”G ~ 1/R? the surface integral vanishes for R — co. Application of the divergence theorem yields

fdsr”{G(r”, NV’ [e(r”)V'G(r”,r)] = V'[e(r")V'G(r’, nN]G(r”, r")} (7.30)
= —4x fdsr”{G(r", NS —r’) = 3(r" —nNG(r’,r’)) (7.31)
= —4x(G(r’,r) - G(r,r")) = 0. (7.32)

We consider now a few examples:

7.c.a Space free of Conductors

In a space with constant dielectric constant e and without conductors one has

N . 7.
G(r,r’) pr—T (7.33)
7.c8 Conducting Plane
For a conducting plane z = 0 (e = 1) one solves the problem by mirror charges. If ,
the given charge g’ is located at r’ = (X', y’,2’), then one should imagine a second q
charge —q’ at r” = (X’,y’,—=2"). This mirror charge compensates the potential at
the surface of the conductor. One obtains -
L L1 forsignz = signz’ o
= =T r=r] )
G(r.r) { 0 for signz = —signz’. (7.34) -q

Next we consider the force which acts on the charge q’. The potential is ®(r) = G(r,r’)q’. The contribution
q’/|r — r’| is the potential of q’ itself that does not exert a force on g’ . The second contribution —q’/|r — r”’|
comes, however, from the influence charges on the metal surface and exerts the force

_q/ _ q/ZeZ

a2 signz’. (7.35)

K = -q’ grad

r-r’_ _
[r=r’|3

Further one determines the influence charge on the plate. Atz = 0 one has 4rtsignz’e,o(r) = E(r) = ¢’

q Irr:rr,/,/P. From this one obtains the density of the surface charge per area

_ 9 1’|
O gy .

With df = wd(x? + y?) one obtains

1197 00 2 2 12
fdfa(r):—c”zzlf doc+y +2) o (7.37)
Z/Z

(2 +y2+72)32

The force acting on the plate is obtained as

d(X2 +y2 +Z’2) B q/zez

: | C@ryieroe - 42 signz’. (7.38)

B 1 _ q/221|21|
K= 2fde(r)o-(r)— > e
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7.c.y Conducting Sphere

We consider a charge g’ located at r’ in the presence of a conducting
sphere with radius R and center in the origin. Then there is a vector
r’’, so that the ratio of the distances of all points R on the surface of
the sphere from r” and r”’ is constant. Be

a®:=(R-r")’" = R*+r”?-2R.r" (7.39)
b>:=(R-r) = R*+r?-2R-r (7.40)

This constant ratio of the distances is fulfilled for r || r”” and

R2 + r//2 r

7 = (7.41)
Then one has
RZ
RZ =r'r” r’ = ﬁr/ (742)
a2 r RZ r//2
=— =2 - (7.43)

[ 2 - R2°

Thus one obtains a constant potential on the sphere with the charge g’ at r’ and the charge q” = —q’R/r’ at r”
1 R/r" ; — ai ’

G(r.r) = { =~ o for sign(r —R) = sign (1 —R),

7.44
0 otherwise . ( )

The potential on the sphere vanishes with this Green’s function G. For r’ > R it carries the charge g and for
r' < R the charge —g’. Thus if the total charge on the sphere vanishes one has to add a potential ®, which
corresponds to a homogeneously distributed charge —q”" and ¢, resp.
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8 Energy, Forcesand Stressin Dielectric Media

8.a Electrostatic Energy
By displacing the charge densities §p = dps + Spp the electrostatic energy

oU = f Bropsd + f dréppd (8.1)

will be added to the system. Simultaneously there are additional potentials ®; in the matter guaranteeing that
the polarization is in equilibrium, i. e.

oU = f dBropsd + f dBrépp(® + ;). (8.2)

These potentials are so that sU = 0 holds for a variation of the polarization, so that the polarizations are in
equilibrium

o+ @ =0. (8.3)
These considerations hold as long as the process is run adiabatically and under the condition that no mechanical

energy is added. Thus the matter is in a force-free state (equilibrium k = 0) or it has to be under rigid constraints.
Then one obtains with (B.62)

1 1 1
_ 3 _ 3. 4 __ 3 . _ 3.F .
oU = fd réps ® = - fd rdivsD @ = fd réD - grad @ = fd rE - 6D, (8.4)

similarly to the matter-free case (3.25). Then one obtains for the density of the energy at fixed density of matter
om (we assume that apart from the electric field only the density of matter determines the energy-density; in
general, however, the state of distortion will be essential)

du = iE -dD. (8.5)
4n
If D = €E, then one obtains
u—u(p)+—1f(p)E dE—u(,0)+—1 (p)Ez—u(,o)+—D2 (8.6)
= Uo\Pm an €(Pm = UolOm 83‘56 m = UoPm SJ'IZE(pm)’ .

since the dielectric constant depends in general on the density of mass.

8.b Force Density in Isotropic Dielectric Matter

We may determine the force density in a dielectric medium by moving the masses and free charges from r to
r + 6s(r) and calculating the change of energy §U. The energy added to the system is

oU = fdsr Ka(r) - 5s(r), (8.7

where kj is an external force density. The internal electric and mechanical force density k acting against it in
equilibrium is

k(r) = —Ka(r), (8.8)
so that
oU = —fd3r k(r) - 5s(r) (8.9)
holds. We bring now U into this form
ou ou
oU = fdsr(6—D 6D + e D(Spm), u = u(D, pm). (8.10)
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Since du/dD = E/(4x) we rewrite the first term as in the previous section

oU = f d3r(q>(r)5pf(r)+ 6‘97”

m

5pm) . (8.11)
D

From the equation of continuity dp/ot = — div j we derive the relation between §p and &s. The equation has to
be multiplied by 6t and one has to consider that jot = pvét = pds holds. With (9p/0t)st = 5p we obtain

dp = — div (055). (8.12)

Then we obtain

oU

—fdsr (d)(r)div(pfés) + 667” div(pmés))

fd3r ( grad @(r)ps(r) + ( grad %)pm(l’)) - 6s(r), (8.13)

where the divergence theorem (B.62) has been used by the derivation of the last line. This yields

K(r) = pr(DE(r) — pm(r) grad (%) (6.14)

The first contribution is the Couroms force on the free charges. The second contribution has to be rewritten. We
substitute (8.6) u = Ug(om) + D?/(8mte(om)). Then one has

ou  dup N iDZd(l/E) _ duo iEZ de

- _ 0 = — — S 8.15
dpm dom 8nm  dom dom 8m  dom (8.15)
The first term can be written
d d
“pmorad 220 grag (pmﬂ _ Uo) — _ grad Po(om). (8.16)

where we use that (dug/dom) grad pm = grad ug. Here Pq is the hydrostatic pressure of the liquid without electric
field

Kohydro = — grad Po(om(I)). (8.17)

The hydrostatic force acting on the volume V can be written in terms of a surface integral
Ko =- f dr grad Po(om(r)) = —f dfPo(om(r)). (8.18)

\% ov
This is a force which acts on the surface 9V with the pressure Po. There remains the electrostrictive contribution
1 de 1 de 1

— E2—|=— E2om— | - —E? 8.19
gPm grad ( dpm) B grad ( Om dpm) 8 grade, (8.19)

where (de/dpm) grad pm = grad e has been used. Then the total force density is

1 de 1
k(r) = ps(r)E(r) + grad (—Po(pm) + ﬁEzpmd,Tm) - gEz grade. (8.20)
Applications:
Dielectric fluid between two vertical capacitor plates. What is the difference h in height between between the
surface of a fluid between the plates of the capacitor and outside the capacitor? For this purpose we introduce
the integral along a closed path which goes up between the plates of the capacitor and outside down

- po+—E2 9€) gr_ L L2 dr= LE%e-
9§k dr_gggrad( P0+8nE m@pm) dr SnggE grade dr_snE (e-1). (8.21)
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The integral over the gradient along the closed path vanishes, whereas the B
integral of E?grad e yields a contribution at the two points where the path O
of integration intersects the surface. In addition there is the gravitational 1
force. Both have to compensate each other

K + Kgas = 0, (8.22) hl | € |
that is
ggdr Kgrav = —pmgh = — 9§dr -k, (8.23)
from which one obtains the height
E2(e - 1)
h=——"-, 8.24
8pmy (8.24)

Dielectric fluid between two horizontal capacitor plates

What is the elevation of a dielectric fluid between
two horizontal capacitor plates? The problem can 1 S .
be solved in a similar way as between two vertical ' |
plates.lt is useful, however, to use

1_, 1, 1
8nE grade = 8nD grad(e). (8.25)

Hydrostatic pressure difference at a boundary

Performing an integration through the boundary from the dielec-
tric medium to air one obtains 1 a Air

€ i° Didectric medium

O—fak dr—f rad (—P S EZE) o|r—ifE2 rad dr+if02 rad(}) dr. (8.26)
Ui =) 9 0T g fm Om 8 v grade 8n nd € ’ '

This yields the difference in hydrostatic pressure at both sides of the boundary

1 de 1
Poi(on) - Poa = g (o7~ (e~ DEE+ (2 - DY .27

Pressure in a practically incompressible dielectric medium
From

1 d
k + Kgav = —grad (Po(om)) + pm grad (ﬁ EZTE) — pmarad (gz) = 0. (8.28)
m

one obtains for approximately constant pn,

1
Po = pm(g— EZ% — gz) + const. (8.29)



34 B Electrostatics

8.c MAxWwELL’S Stress Tensor

Now we represent the force density k as divergence of a tensor
Ko = VgTap. (8.30)

If one has such a representation, then the force acting on a volume V is given by

K= f d3rk(r) = f dP*re,VsTap = f dfs(eaTap). (8.31)
\% ov

The force acting on the volume is such represented by a force acting on the surface. If it were isotropic T,z =
—Pd..5, we would call P the pressure acting on the surface. In the general case we consider here one calls T the
stress tensor, since the pressure is anisotropic and there can be shear stress.

In order to calculate T we start from

Ko = prEo — pmVa (ﬂ) (8.32)
0pm
We transform 1 1
piEe = —EaVpDp = 1~ (Vs(EaDg) — (V4E«)Dp) (8.33)
and use VzE, = V,Eg because of curl E = 0. This yields
1 ou 1
Ko = Vg(—E.Dg) — pmVeo | =— | = — D3V, Ej5. 8.34
p(7 EaDp) —pm (apm) 27 D Vebs (8.34)
Now there is 5 L 5 L
u u
v,|(u-pm— - —=—D-E| = —omV,— — —DgzV,Eg, 8.35
U—pPm dom 4 ) Pm dpm _ 4n B B ( )

since 0u/dDg = Eg/(4m). This yields the expression for the stress tensor

1 ou 1
Top = EEdDﬁ + 004 (U _pmé‘me - ED : E)- (8.36)

In particular with u = ug(om) + D?/(8me(om)), (8.6) one obtains

1 1 1 de
Top = —EoDg +80p3(—P - —D-E+—E%n—]|. 8.37
8= 7-EaDp ,ﬁ( olom) = & g C Pm dpm) (8.37)
MAXWELL’S Stress tensor reads in vacuum
1 S o
Tap = —E.Ep— ——FE". 8.38
8= -Eebp— o (8.38)
As an example we consider the electrostatic force on a plane
piece of metal of area F. We have to evaluate E n
T vacuum T
I
1
0 metal
K= fdf (€aTup) = iE(En) Loe2)p= Leenr (8.39)
B pREatah) =\ 4n 8n T 8n ’ '

This is in agreement with the result from (7.8).
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In this chapter we consider magnetostatics starting from the equations, which were derived at the beginning of

section (3.a) for time independent currents.

9 Magnetic Induction and Vector Potential

9.a AMPERE’S Law

From

curl B(r) = 4?nj(r)

fdf- curl B(r) = 4%[ fdf-j(r),

which can be written by means of Stokes’ theorem (B.56)

SEdr-B(r): %I.

The line integral of the magnetic induction B along a closed line yields 4st/c times the current
I through the line.Here the corkscrew rule applies: If the current moves in the direction of the
corkscrew, then the magnetic induction has the direction in which the corkscrew rotates.

one obtains

9.b Magnetic Flux

The magnetic flux ¥™ through an oriented area F is defined as the integral

P = fF df - B(r).

9.1)

9.2)

(9.3)

>

(9.4)

The magnetic flux depends only on the boundary 6F of the area. To show this we consider the difference of the

flux through two areas F; and F, with the same boundary and obtain

‘le—‘I’g‘sz df - B(r) - df-B(r):def-B(r):fvd3rdivB(r):0

F2

by means of the divergence theorem (B.59) and div B(r) = 0.Suppose F; and F, are
oriented in the same direction (for example upwards). Then the closed surface F is
composed of F; and F,, where F; is now oriented in the opposite direction.Then F
has a definite orientation (for example outwards) and includes the volume V.

35

(9.5)
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9.c Field of a Current Distribution
From curl curl B(r) = (4at/c) curl j(r) due to (B.26)

curl curl B(r) = grad divB(r) — AB(r)

and div B(r) = 0 one obtains
AB(r) = —4% curl j(r)

with the solution

_l 3.7 1 ’s /__l 3.7 1 s /_} S/r/_r
B(r)_cfdr”_r/lcurlj(r)_ Cfdr(V |r—r’|)XJ(r)_cfdr —

Ir—r3

where we have used (B.63) at the second equals sign. The last expres-
sion is called the law of Bior and Savarr.If the extension of a wire per-
pendicular to the direction of the current is negligible (filamentary wire)
then one can approximate d3r’j(r’) = df’dl’ j(r')e = Idr’ and obtains

| r—-r
B(r)== | ——= xdr
) cJ Ir=rp

As an example we consider the induction in the middle axis of a current along a
circle

r=ze, r =(Rcos¢,Rsing,z’) dr' =(-Rsing,Rcos¢,0)d¢  (9.10)
(r —r)xdr' = (R@z-2')cos¢,R(z - 2')sing,R?)d¢  (9.11)
2ntIR%,

80.00 = SR -

(9.12)

df%
Z
Yy
X
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(9.6)

9.7)

x j(r’), (9.8

/e

(9.9)

Starting from this result we calculate the field in the axis of a coil. The number of windings be N and it extends

fromz’ = -1/2to 2/ = +|/2. Then we obtain

2

(9.13)

+1/2 ’ 2
B(0,0,2) :f Ndz 2nIR%e, _ 2nIN

A
2
e + .
2 1R -2 \/R2+(12 -2)? \/R2+(|§ +7)2

If the coil is long, R < |, then one may neglect R? and obtains inside the coil

_ 4xIN

B
cl

e. (9.14)

At the ends of the coil the field has decayed to one half of its intensity inside the
coil. From Ampere’s law one obtains by integration along the path described

in the figure
4
9§dr-5= %EIN. (9.15)
Thus inside the coil one obtains the induction (9.14), whereas the magnetic
induction outside is comparatively small.

9.d Vector Potential

We now rewrite the expression for the magnetic induction

B(r):—%fdsr’(v’ ! )xj(r’):%fdsr’v ! x j(r') = curl A(r) (9.16)

r=r r=r1
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with S,
A(r) = % f g3 I 9.17)

Ir—r|

One calls A the vector potential. Consider the analog relation between charge density p and the electric potential
¢ in electrostatics (3.14). We show that A is divergence-free

divA(r) = %fd:*r’(vlr_lr,')-j(r’)=—%fd3r’(v’|r_lr,l)-j(r’)
1 v 1 , _
_ Efd3 Vi) = (9.18)

At the third equals sign we have performed a partial integration (B.62). Finally we have used div j(r) = 0.

9.e  Force Between Two Circuits

Finally, we consider the force between two circuits. The force exerted by circuit (1) on circuit (2) is
1 3,3 1 3-A43¢7 1 H ’
Ko = = | dria(n) xBu(r) = 5 | drdr'jp(r) x (v — /)xh(r)
- 3 f e (ia(r) O - 5 [ (V) ROy @19)

where (B.14) has been applied. Since due to (B.62)

1
3 i - _ 3 i
fd (Vi) 320 fd L) (9.20)
and div jo(r) = 0, one obtains finally for the force
=5 f A (ju(r) - 12)V o r'I 9.21)

The force acting on circuit (1) is obtained by exchanging 1 and 2. Simultaneously, one can exchange r and r’.
One sees then that
Ki=-K; (9.22)

holds.
Exercise Calculate the force between two wires of length | carrying currents I; and I, which run parallel in a
distance r (r < I). Konirausca and WeBer measured this force in order to determine the velocity of light.
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10 Loopsof Current as Magnetic Dipoles

10.a Localized Current Distribution and Magnetic Dipole

We consider a distribution of currents which vanishes outside a sphere of radius R (j(r’) = 0 for r’ > R) and
determine the magnetic induction B(r) for r > R. We may expand the vector potential A(r) (9.17) similar to the
electric potential ®(r) in section (4)

1 i(r 1 -,y Xo Y
A(r) = Efd%'L), - afdsr'J(r)+mfd3r XLi(r) + ... (10.1)

Ir—r|

Since no current flows through the surface of the sphere one obtains

0:fdf-g(r)j(r):fdsrdiv(g(r)j(r))zfdsrgradg(r)~j(r)+fd3rg(r)divj(r), (10.2)

where the integrals are extended over the surface and the volume of the sphere, respectively. From the equation
of continuity (1.12,3.1) it follows that

fd?‘r gradg(r) - j(r) = 0. (10.3)
This is used to simplify the integral in the expansion (10.1). With g(r) = x, one obtains
f d3rj.(r) = 0. (10.4)

Thus the first term in the expansion vanishes. There is no contribution to the vector potential decaying like 1/r
in magnetostatics, i.e. there is no magnetic monopole. With g(r) = x, Xz one obtains

f dr(Xa jo(r) + Xg ja(r)) = 0. (10.5)
Thus we can rewrite
[@riats= [ @rtuis-xi) +5 [ st xi), (106)

The second integral vanishes, as we have seen. The first one changes its sign upon exchanging the indices « and
B. One introduces

.1 . .
fd3rx(,1ﬁ =5 fd3r(x(,Jﬁ — Xgja) = C€apyM, (10.7)
and calls the resulting vector
1 .
m=— fd3r’(r’ X j(r") (10.8)
2c
magnetic dipole moment.. Then one obtains
Xo
Ag(r) = o3 CeasyMy + . (10.9)
mxr
Ar) = el (10.10)

with B(r) = curl A(r) one obtains
3r(m-r) —mr?

B =

(10.11)

This is the field of a magnetic dipole. It has the same form as the electric field of an electric dipole (4.12)

p~r)_ 3r(p-r)—pr?

E(r) = —grad (7 5 (10.12)
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but there is a difference at the location of the dipole. This
can be seen in the accompanying figure. Calculate the
63(r)-contribution to both dipolar moments. Compare

(B.71).
B E
10.b  Magnetic Dipolar Moment of a Current Loop
The magnetic dipolar moment of a current on a closed curve yields
| |
m = % frx dr = Ef’ (10.13)
e.g.
I I
m, = % f(xdy —ydx) = Efz' (10.149)

Here f, is the projection of the area inside the loop onto the plane spanned by the two

th
other axes . % o

df = Er x dr. (10.15) r

If j = 3 qivio3(r — 1y), then using (10.8) the magnetic moment reads
_1 sy — |
m= % Z giri X vj = i 2miCI., (10.16)
where m; is the mass and I; the angular momentum. If only one kind of charges is dealt with, then one has

__a
= 5ol (10.17)

This applies for orbital currents. For spins, however, one has

q

= m gS, (10 18)

where s is the angular momentum of the spin. The gyromagnetic factor for electrons is g = 2.0023 and the
components of the spin s are +7/2. Since in quantum mechanics the orbital angular momentum assumes integer
multiples of 7, one introduces as unit for the magnetic moment of the electron Borr’s magneton, ug = 2= =

2mc
0.927 - 102 dyn/2 cm2,
10.c Force and Torque on a Dipole in an External Magnetic Field
10.c.a Force
An external magnetic induction B, exerts on a loop of a current the Lorentz force
1 . 1 . 1B . B

K= S fdsrj(r)xBa(r) = —EBa(O)xfder(r)— 56_xj xfdsrx(,jﬁ(r)eﬁ—... = _6_xj X 8g€y5,My. (10.19)

We rewrite mye, 5,83 = m,e, X &, = M X &, and find
B B B
k=2 Ex (Mmxe,) = (m-&‘)ea—(ea-a Ym. (10.20)

0Xq OXq 0Xq
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The last term vanishes because of divB = 0. The first term on the right hand side can be written (m - g—ia)e(, =
my‘%yea = m, %2, = (MV)B,, where we have used curl B, = 0 in the region of the dipole. Thus we obtain
v Y

the force

K = (mgrad)B, (10.21)

acting on the magnetic dipole expressed by the vector gradient (B.18). This is in analogy to (4.35), where we
obtained the force (p grad )E, acting on an electric dipole.

10.c.3 Torque

The torque on a magnetic dipole is given by
1 (s . 1 s, L[ 3 :
Miech = < ad’rr x (j x By) = _EBa a’r(r-j) + < d°r(Ba- r)j. (10.22)
The first integral vanishes, which is easily seen from (10.3) and g = r?/2. The second integral yields
Miech = %eﬁsw f d°rX, jg = Bao€séap,M, = M x By (10.23)

Analogously the torque on an electric dipole was p x Ej, (4.36).
From the law of force one concludes the energy of a magnetic dipole in an external field as

U=-m-Ba (10.24)

This is correct for permanent magnetic moments. However, the precise derivation of this expression becomes
clear only when we treat the law of induction (section 13).
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11 Magnetism in Matter. Field of a Coil

11.a Magnetism in Matter

In a similar way as we separated the polarization charges from freely accessible charges, we divide the current
density into a freely moving current density j; and the density of the magnetization current jy, which may come
from orbital currents of electrons

§(r) = ji (r) + jm(r). (11.1)
We introduce the magnetization as the density of magnetic dipoles
xm
M==— 11.2
i, (11.2)
and conduct the continuum limit
D> mif(r) - f d*r'M(r)f(r). (11.3)
i
Then using (10.10) we obtain for the vector potential
_ 1 3,7 jf(r,) f 3 ,M(r/)X(r—r')
Ar) = c fd r T + | d°r T . (11.4)
The second integral can be rewritten
fd3r’|v|(r’) xV = fdf“r'LV’ x M(r’) (11.5)
r—r| Ir—r| ’ '
so that one obtains 1 1
A(r) = S fdsr’m(jf(r’) +ceurl’M(r)). (11.6)
Thus one interprets
Jm(r) = cceurl’M(r’) (11.7)

as the density of the magnetization current. Then one obtains for the magnetic induction
4.
curl B(r) = ?Jf(r) + 4zt curl M(r). (11.8)
Now one introduces the magnetic field strength
H(r) := B(r) — 4xM(r) (11.9)

for which MaxweLL’s equation
4.
curl H(r) = =25 (1) (11.10)

holds. MaxweLL’s equation div B(r) = 0 remains unchanged.
One obtains for paramagnetic and diamagnetic materials in not too strong fields

M=xmH, B=pH, p=1+4dmym, (11.11)

where yn, is the magnetic susceptibility and u the permeability. In superconductors (of first kind) one finds
complete diamagnetism B = 0. There the magnetic induction is completely expelled from the interior by
surface currents.

In analogy to the arguments for the dielectric displacement and the electric field one obtains that the normal
component By, is continuous, and in the absence of conductive currents also the tangential components H; are
continuous across the boundary.

In the Gaussian system of units the fields M and H are measured just as B in dyn*2 cm=2, whereas in Sl-units
B is measured in Vs/m?, H and M in A/m. The conversion factors for H and M differ by a factor 4. For more
information see appendix A.
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11.b Field of a coil

The field of a coil along its axis was determined in (9.13). We will now determine the field of a cylindrical coil
in general. In order to do so we firstly consider an electric analogy. The field between two charges g and —q at
r, and ry is equivalent to a line of electric dipoles dp = qdr’ from r’ = ry to r’ = r,. Indeed we obtain for the
potential

“(r-r)-dp _ Mgr-r)-dr g Mdr-r)* g q
(r) = - =_d - - 11.12
® no Ir=rg no Ir=rp 2Jr, Ir=rB  qr=ri |r-rq (1L12)
and thus for the field
r—rnre r—rig

E(r) = - . 11.13
® (]'(Ir—rzl3 Ir—r1|3) (1L.13)

The magnetic analogy is to think of a long thin coil as consisting of magnetic dipoles

dl f NIf

dm = agdr = Tdr (1114)

If we consider that the field of the electric and the magnetic dipole have the same form (10.11, 10.12) except at
the point of the dipole, then it follows that we may replace q by g, = NIf/(Ic) in order to obtain the magnetic
induction

B(r)=q

Thus the field has a form which can be described by two magnetic monopoles with strengths gm und —gm.
However, at the positions of the dipoles the field differs in the magnetic case. There, i.e. inside the coil an
additional field B = 4xN 1/(Ic) flows back so that the field is divergency free and fulfills Ampere’s law.

In order to obtain the result in a more precise way one uses the following consideration: We represent the
current density in analogy to (11.7) as curl of a fictitious magnetization j; = c curl M¢(r) inside the coil, outside
M; = 0. For a cylindrical (its cross-section needs not be circular) coil parallel to the z-axis one puts simply
M; = Nle,/(cl). Then one obtains from

r-rp r—rl)

- 11.15
"r-rBr-ryP (1119

Ay,

curl B = %‘Jf(r) = 4t curl My (11.16)
the induction B in the form

B(r) = 4xM;(r) — grad ¥(r). (11.17)
The function ¥ is determined from

divB = 4ndivM; — A¥Y =0 (11.18)
as div/ M (r

W(r) = - f d3r’lx_7;,(|r). (11.19)

The divergency yields in the present case of a cylindrical coil a contribution §(z — z;)N1/(cl) at the covering and
a contribution —6(z — zz)N1/(cl) at the basal surface of the coil, since the component of B normal to the surface

jumps by N1/(cl), which yields
NI d?r’ d?r
-3 ([ 7 L) (20

where F» is the covering and F; the basal surface. Thus one obtains an induction, as if there were magnetic
charge densities £N1/(cl) per area at the covering and the basal surface. This contribution yields a discontinuity
of the induction at these parts of the surface which is compensated by the additional contribution 4xM; inside
the coil. The total strength of pole +qn, is the area of the basal (ground) surface times the charge density per
area. One calls ¥(r) the magnetic potential. In view of the additional contribution 4xMs(r) in (11.17) it is in
contrast to the potentials @(r) and A(r) only of limited use. We will not use it in the following.
Exercise Calculate magnetic field and magnetic induction for the coil filled by a core of permeability .
Exercise Show that the z-component of the magnetic induction is proportional to the difference of the solid
angles under which the (transparently thought) coil appears from outside and from inside.
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12 Farapay'sL aw of Induction

The force acting on charges is q(E + v x B/c). It does not matter for the charges, whether the force is exerted
by the electric field or by the magnetic induction. Thus they experience in a time-dependent magnetic field an
effective electric field

E0d — E 4 % x B (12.1)

with curl E = —B/c. Therefore the voltage along a loop of a conductor is given by

v ind) _ 9§E Sdr+ 56(% x B) - dr. (12.2)

The first integral gives a contribution due to the variation of the magnetic induction. For a fixed loop and varying
B one obtains (since v || dr)

. m
v<'“d>=9§E-o||r=fcunE-df:—1 B g 19 . (12.3)
c ot C dt lioop fixed

The second integral in (12.2) gives a contribution due to the motion of the loop. In order to investigate a loop
which moves (and is distorted) we use a parameter representation of the loop r = r(t, p) with the body-fixed
parameter p. For fixed t we have dr = (dr/dp)dp and

or

V= —
ot

ar
A(p,t)— 12.4
+ApY 5 (12.4)
with a A = dp/dt which depends on the motion of the charges in the conductor. This yields

dtgg(gxs).dr:_%f(%xg—;)dedt:—%fdf-B, (12.5)

since % X g—[) dpdt is the element of the area which in time dt is swept over by the conductor element dp.
Therefore we obtain

\Y; 1 dym
é(g XB)'dr——E T Bﬁxed. (126) t+dt
The total induced voltage is composed by the change of the magnetic flux due ar

to the change of the magnetic induction (12.3) and by the mation of the loop t
(12.6) L dym or g
yang _ _ L O¥7 12.7 o
c dt’ (2.7 dp

and is thus given by the total change of the magnetic flux through the loop. Thus it does not matter for a
generator whether the generating magnetic field rotates or whether the coil is rotating.

The betatron (non-relativistic) The electrons move along circular orbits and
are kept on these by the Lorentz force exerted by the guide field Bs. Thus the v
centrifugal force and the Lorentz force have to compensate each other By

mv2 v €0
— =¢gp—-B mv = —Bsr. 12.8
— —eo B o 28, (128)
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The electrons are accelerated by the induction

d, . e dl e , dB
dt(mv)_—eoE = ordic def = anCr ndt' (12.9)

Here B is the averaged magnetic induction inside the circle. Thus one has
mv=—B- = FBfr, (12.10)

from which the betatron condition B = B_/Z follows.
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13 Inductances and Electric Circuits

13.a Inductances

The magnetic flux through a coil and a circuit #j, resp. is given by

wg“:fdfj-s(rj)zfdfj- curIA(rj)zggdrj-A(rj). (13.1)

Several circuits generate the vector-potential

Iy drk
A(r) = Zk: < SE e (13.2)

Therefore the magnetic flux can be expressed by

1
W= Ek: Ll (13.3)

with 1 dre - d
rj-dry
Lixk=—= . 13.4
ik c2 |rj — rkl ( )

Therefore one has Ljx = Lij. For j # k they are called mutual inductances, for j = k self-inductances. In
calculating the self-inductances according to (13.4) logarithmic divergencies appear, when r; approaches ry,
if the current distribution across the cross-section is not taken into account. The contributions |r; — r — k| <
ro/(2eY4) have to be excluded from the integral, where rq is the radius of the circular cross-section of the wire
(compare BECKER-SAUTER).

The dimension of the inductances is given by s?/cm. The conversion into the SI-system is given by 1s%/cm
29-10'Vs/A = 9- 10 H (Henry).

If the regions in which the magnetic flux is of appreciable strength is filled with a material of permeability ,
then from curl H = 4mxjs /c one obtains curl (B/u) = 4mtj¢ /c, so that

L = uL VR (13.5)

holds. Thus one obtains large inductances by cores of high permeability i ~ 103...10% in the yoke.

Inductance of a long coil If a closed magnetic yoke of length I and cross-section f is surrounded by N windings
of wire, through which a current | flows, then from Awmpere’s law HI = 4xIN/c one obtains the magnetic
induction B = 4mINg/(cl). The magnetic flux can then be written Bf = cLoNI with Ly = 4muf/c?l. For
N turns the magnetic flux is to be multiplied by N, which yields the self-induction L = LoN2. For mutual
inductances between two circuits with N1 and N, turns one obtains L3 2 = LoN1N2. Thus we obtain in general

_ Amuf

Li’j B LONiNj, LO = W (136)

13.b Elements of Circuits

We consider now circuits, which contain the following elements: voltage sources, onmic resistors, inductances,
and capacitors. Whereas we have already introduced inductances and capacitors, we have to say a few words
on the two other elements.

Voltage sources A voltage source or electromotive force with voltage V(©)(t) feeds the power V@I into the
system. An example is a battery which transforms chemical energy into electromagnetic one. The voltages
vnd of the inductances are also called electromotive forces.

Omnmic resistors In many materials the current density and the electric field are proportional if the field is not
too strong. The coefficient of proportionality o is called conductivity

j=oE. (13.7)
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For a wire of length | and cross-section f one obtains
|=jf=0'fE=0'TV . (13.8)
Here V(R is the ommic voltage drop along the conductor. Thus one has

VR =RI, R= 1 (13.9)
of

with the onmic resistance R. In Gaussian units the conductivity o is measured in 1/s and the resistance R in
s/cm. The conversion into the SI-system is obtained by ¢~*230Q. The electromagnetic energy is dissipated in
an onmMic resistor into heat at the rate V®|.

13.c Kircuuorr’s Rules
Kircuaorr’s first Law (Current Law)

Kircunorr’s first law states that at each electrical contact, where several wires are joined, the

sum of the incoming currents equals the sum of the outgoing currents X! /IZ
Z Iincoming = Z |0utgoing' (13.10) \><
/ N
This rule is the macroscopic form of divj = 0. In the figure aside it implies 11 + 1, = I3 + l4. I3 l4
Kircunorr’s second Law (Voltage Law)
The second law says that along a closed path the sum of electromotive forces L V@
equals the sum of the other voltage drops
(v 4 vid) = 37 (VR 4 (), (13.11)
where
vind — _qny/dt, VO =q/c, dv©dt = 1/C. (13.12) C R

This rule is Farapay’s induction law in macroscopic form.

13.d Energy of Inductances

In order to determine the energies of inductances we consider circuits with electromotive forces, onmic resistors
and inductive couplings

VO v =Ry (13.13)

The variation of the electromagnetic energy as a function of time is then given by

Uem = Z |JV](e) - Z R]IIZ + Lmech = - Z Ijvl(md) + Lmech (1314)
i i i
with
V(ind) = —}‘.Pm = —E(Z L'klk)- (13'15)
i c ) odt4

Here Lmech is the mechanical power fed into the system.
Now we consider various cases:
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13.d.@ Constant Inductances

We keep the circuits fixed, then Ljx = const, Limech = 0 holds. From this it follows that

Uen = )" Ll (13.16)
ik
from which we obtain the energies of the inductances

1
Uen = 5 %: liLjklk. (13.17)

13.d,8 Moving Loops of Currents

Now we move the circuits against each other. This yields

. ) A ) )
Lmech = uem+Zl<V"”d’—Z(I<Lj,klk+EI;L;,ka)—Z(I;L;,kIHI;Lj,klk)
.k

JILS
Z| Liklk = — 6“‘*“ . (13.18)
|

Thus the mechanical work to be done is not given by the change of the electromagnetic energy Uen at constant
currents I, but by its negative.

13.d.y Constant Magnetic Fluxes

In case there are no electromotive forces Vj(e) = 0 and no resistors R; = 0 in the loops, then according to (13.13)

we have V" = 0, from which we conclude that the magnetic fluxes ¥ remain unchanged. Thus the induction
tries to keep the magnetic fluxes unaltered (example superconducting loop-currents). If we express the energy

Uen in terms of the fluxes
1
Uem = 55 Z‘Pm(L DI (13.19)
jk

and use the matrix identity L1 = —L"1LL"? then we obtain (the identity can be obtained by differentiating
LL™! = 1 and solving for L™1)
3Uem

Z| Liklk = Lmech. (13.20)
\Ilm
The mechanical power is thus the rate by which the electromagnetlc energy changes at constant magnetic fluxes.

13.d.6 Force between two Electric Circuits

After these considerations we return to the force between two electric circuits. In section (9.e) we calculated
the force from circuit 1 on circuit 2 as (9.21)

1 . . 1
K, = = fdsrdsr’(h(r’) ~12(r))Vm. (13.21)

Now if we consider two filamentary wires

r=ry+a r=n (13.22)
dB*rja(r) - draly,  d¥rjy(r) - draly, (13.23)
we obtain | L
112
—- . Vo—— = 111,V,aL . 13.24
> f(drl drp) 2 A eve 12(a) (13.24)
Thus
Lmech = —Kz-a = —l1loL1, (13.25)

is in agreement with (13.18).
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13.d.e Energy of a Magnetic Dipole in an External Magnetic Induction

On the other hand we may now write the interaction energy between a magnetic dipole generated by a density
of current j in an external magnetic field B, generated by a density of current j,

5 [Eneram ien—r = 5 [ [erdEl -2 fene - am

1 . 1 .
2 [0 A0+ ToAdo + ) = 3 [ Ty
= €upyMyVehas = M- Ba (13.26)

U

This is the correct expression for the interaction energy of a magnetic dipole m in an external magnetic induction
Ba.
13.d.¢ Permanent Magnetic Moments

Permanent magnetic moments may be considered as loop currents with large self inductance L ; and constant
flux . For further calculation we first solve (13.3) for I

i Lixlk
lj= — - Saly 13.27
P el kzl Lij ( )
*] ’

Upon moving the magnetic moments the mutual inductances change, and one obtains

I = L (D7 Lische+ D L. (13.28)
I8

k#]j k# j

If the self-inductances L ; are very large in comparison to the mutual inductances, the currents vary only a little
bit, and the second sum is negligible. Then one obtains from the self-inductance contribution of the energy

d (1 : :
dt( L“IJ) Lijlily = =1 > ikl (13.29)
k%]

Thus one obtains from a change of L jx a contribution Ll ;I directly from the interaction between the currents
Ij and Iy, which yields a contribution of the form (13.26) to Ugm and two contributions with the opposite sign
from 1LJ i I2 and > kal2 This explains the difference between (10.24) and (13.26).
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14 Complete Set of MaxweLL's Equations

14.a Consistency of MaxweLL’s Equations

In section (1) we have introduced the four MaxweLL’s equations (1.13-1.16)

curl B(r,t) - % = 4%[j(r, t) (14.2)
divE(r,t) = d4mp(r,t) (14.2)
curl E(r,t) + % =0 (14.3)
divB(r,t) = 0. (14.4)

These are eight component equations for six components B,, and E,. Thus the equations cannot be independent
from each other. Indeed calculating the divergence of the first equation and comparing it with the second
equation we find

1 - 4mn 4z
—-ZdivE = — divj = ——¢ 145
S dv o dvi=-—p. (14.5)

from which we see that the equation of continuity (1.12) is contained in both equations, and these equations can
only be fulfilled if charge is conserved. But it also follows that

%(div E — 4np) = 0. (14.6)

Thus if at a certain time equation (14.2) and at all times the equation of continuity is fulfilled, then equation
(14.1) guarantees that (14.2) is fulfilled at all times.
Similarly, it follows from the divergence of (14.3) that

%(div B) = 0. (14.7)

Thus if (14.4) is fulfilled at a certain time, then due to equation (14.3) it is fulfilled at all times.

Equations (14.1) and (14.3) allow the calculation of B and E if j is given at all times and B and E are given at a
time to and (14.2) and (14.4) are fulfilled at that time. Then p is determined by the equation of continuity.

The only contribution we have not yet considered is the contribution proportional to E in (14.1). It was found
by MaxweLL. He called E/(4x) displacement current, since (14.1) may be rewritten

1
4n

With the introduction of this term the system of equations (14.1-14.4) became consistent. Simultaneously this
system allowed the description of electromagnetic waves.

curl B = %“(j + —E). (14.8)

14.b  MaxweLL’s Equations for Freely Moving Charges and Currents

The density of the charges and currents are separated into (compare sections 6.a and 11)

p = pttpp (14.9)
J o= Ji+ip+im (14.10)
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Here pr and j¢ are the freely moving contributions, whereas pp and the newly introduced jp are the polarization
contributions. We expressed the electric dipole moment in the volume AV by the dipole moments p;, and those
by the pairs of charges +q; at distance a;

PAV= Zp =) ga (14.11)
PAV = NP =) g (14.12)

with jo = P (in matter at rest). In addition, there is a current density from the magnetization as introduced in
section 11
jm = ccurl M. (14.13)

For these charge and current densities one obtains

Opy

E—FleJf =0 (14.14)
%Hﬂivjp -0 (14.15)
diviy = O. (14.16)

By inserting these charge and current densities into (14.1) one obtains
1. A4An . -
curlB - ZE = ?”(Jf + P+ courl M), (14.17)

from which it follows that 5 4
TT
(B —4nM) — — (E + 4nP) = —j;. 14.1
curl M) Cat(+rc) ij (14.18)
If we now introduce the magnetic field H = B — 4xM and the dielectric displacement D = E + 4xP in (11.9)

and (6.6), eg. (11.10) becomes

1. 4.
curlH - 2D = ?“Jf. (14.19)

Similarly, one obtains from (14.2) as in (6.7)
divD = 4mps. (14.20)

MaxweLL’s equations (14.3) and (14.4) remain unchanged. Equations (14.19, 14.20) are called MAXWELL’S
equations in matter.
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15 Energy and Momentum Balance

15.a Energy

We consider a volume of a system with freely moving charges and matter at rest. The force density on the
freely moving charges is given by k = pf(E + v x B/c). If the charges are moved with velocity v, the power
- fd3rk V=— fd3rjf - E has to be fed into the system against the force density. We rewrite this expression by
using (14.19), (B.30) and (14.3)

-ji-E

c 1 . c c 1 .
-—E-curlH+ —E-D= —div(ExH)- —H: - curlE+ —E-D
in " an 2 GV EXH) - = i

c . 1 . .
Edlv(ExH)+E(H-B+E-D). (15.1)
These contributions are interpreted in the following way: In matter at rest the second contribution is the temporal

change of the energy density u(om, D, B) with

au 1 1
= — —E-dD + —H - dB. 15.2
du= 2 dpm+ 7-E D + 1-H d (15.2)

For simplicity we assume that the energy of the matter depends on its density pm, but not on the complete state

of strain. We have seen earlier that du/0D = E/(4mr) holds. Similarly, one can show from the law of induction
that du/0B = H/(4x) holds for rigid matter. We give a short account of the derivation

. 1 1 1
(ind) o2y _ = oM _ = . . _ = ) .
_ gj V]- otlj = S Ej ljo¥y" = . Ej |defl 6B(r) = . gj |der S6A(r)

%fd?‘rjf(r)-éA(r): ﬁfd?‘rcurlH(r)-(SA(r): ﬁfd?‘rH(ry curl SA(r)

6Uem

_ 1 3
= fd rH(r) - 6B(r). (15.3)
Since the matter is pinned, du/dpmom does not contribute. Therefore we write the energy of volume V as
Uy) = fdsr u(om(r), D(r), B(r)) (15.4)
\%
and introduce the PoynTiNG vector
c
S= EE x H. (15.5)
Then one has
-~ f d®rjs - E = U(V) + f d®rdivs = U(V) + f df - S(r). (15.6)
\Y \Y ov

The energy added to volume V is partially stored in the volume. This stored part is given by (U). Another part
is transported through the surface of the system. This transport of energy is given by the energy current through
the surface expressed by the surface integral over S. Similar to the transport of the charge f df - j; through
a surface per unit time, one has (in matter at rest) the energy transport fdf - S through a surface. Thus the
PovynTiNG Vector is the density of the electromagnetic energy current.

We note that for D = ¢E, B = uH one obtains the energy density

u = u(om) + %(D- E+B-H). (15.7)
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Example: Current-carrying straight wire

We consider a straight wire which carries the current | in the direction of the

z-axis. Due to Ampere’s law the integral along a concentric circle with radius r y
around the conductor yields H
4 21
9§H-dr:—“|, H= e, (15.8)
c cr X
There is a voltage drop along the wire due to the onwmic resistance V®, which
is related to the electric field parallel to the wire, E = Ege,. This yields the
PoynTING Vector -
c 0€r
S=—ExH=-——— 15.9
4 2mr ( )
with the energy flux
fs -df = —1Egl = -Iv® (15.10)

through the lateral surface of the cylinder of the wire of length | in outward direction. In other words, the ormic
power 1V® flows into the wire. There it is transformed into heat.

15.b Momentum Balance

We consider the momentum balance only for the vacuum with charge densities p and current densities j. If we
keep the system at rest, a force density —k has to act against the Lorentz force density k = pE + j x B/c, so that
the momentum — L d3r k is added to the volume V per unit time. We transform by means of (14.1) and (14.3)

1. 1 . 1 1 .
—k——pE—EjXB——EEdIVE+ EBX curl B + 4—mE><B. (15.11)
With (14.3) and (14.4)
ExB = (ExB)J-ExB=(ExB)+cEx curlE (15.12)
BdivB = 0 (15.13)
one obtains 1 1
-k = m(E x B) + E(E x curlE — EdivE + B x curl B — Bdiv B). (15.14)
One has 1
Ec X (VX E) — EC(VE) = V(E - E¢) - E(VE.) — E¢(V -E) = EVE2 — (VE)E. (15.15)

We have indicated quantities on which the V-operator does not act with an index .. The V-operator acts on both
factors E in the last term of the expression above. Then we may write

-k = ﬁgs - VﬁTQ‘Bea, (1516)
at ’
with
- Lless (15.17)
gs - 43_[0 ] .
Top = i(EaEﬁ + BoBp) - (S“—ﬁ(EZ + B?). (15.18)
’ i 8n

Here gs is called the density of the electromagnetic momentum and T, g are the components of the electromag-
netic stress tensor, whose electrostatic part (8.38) we already know. With these quantities we have

Efde‘rgs(r)z—fde‘rk+f €aTapdfs. (15.19)
dt Jy Vi N
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This is the momentum balance for the volume V. The left handside gives the rate of change of momentum in
the volume V, the right handside the rate of momentum added to the volume. It consists of two contributions:
the first one is the momentum which is added by the action of the reactive force against the Lorentz force
density k. The second contribution acts by means of stress on the surface. It may also be considered as a flux
of momentum through the surface. Thus the stress tensor is apart from its sign the density of momentum flux.
It carries two indices. One () relates to the components of momentum, the other one (8) to the direction of the
flux.

We have only considered the electromagnetic momentum in vacuum, whereas we have considered the electro-
magnetic energy also in matter. Why is it more difficult to determine momentum in matter? In both cases we
consider the system at rest. If one pins the matter, the acting forces do not contribute to the balance of energy,
since the power is given by force times velocity. Since velocity vanishes, the forces acting on the matter do
not contribute to the balance of the energy. This is different for the balance of momentum. There all forces
contribute. One could imagine starting out from a force-free state. Then, however, we have the problem that by
moving the free charges, forces will appear which we would have to know. Therefore we can consider here the
energy balance in matter, whereas the momentum balance in matter would be more difficult.

In literature there are inconsistent statements: In 1908 Minkowskr gave D x B/(4mc) for the electromagnetic
momentum density in matter. This can also be found in the book by SommerreLp (however with words of
caution). On the other hand in 1910 Asranam gave E x H/(4wc). This is also found in the textbook by Lanbau
and LirsHITZ.

There are two points to be considered, which are often overlooked:

i) The interaction between the electromagnetic field and matter has to be taken into account. Matter cannot be
considered rigid.

ii) One has to define precisely what is meant by the electromagnetic momentum, since otherwise any difference
can be attributed to the mechanical momentum and the statement is empty. Without derivation it should just be
mentioned that a model system can be given which yields the following: The momentum density in the local
rest system is ExH/(4mc) = S/c?. However, in homogeneous matter there is a further conserved quantity which
in the local rest system is given by D x B/(4wc). If one goes through SommerreLD’S argument, one realizes that
it can be carried through only for a space-independent dielectric constant e.

Example: Cylindric capacitor in a magnetic field

We consider a cylindric capacitor of length | with outer radius r; and inner
radius r, with charge g outside and —q inside. We assume that between both
cylinders is vacuum. Parallel to the axis be a magnetic field Bo. Then one has
in cylinder coordinates

20 1 2qBo I ¢ B

= B=B =", 15.2
e 08z Os= 7—— € (15.20)

From this we calculate the angular momentum L in z-direction

E=-

20Bo  QqBo
— 2 _ 2 _4Po,2 2
L, = f dzd?r(r x g¢), = f dzd?rr o2 = = 2(F - 1)), (15.21)

If the capacitor is decharged, the decharging current flows through the magnetic field. Then the Lorentz force
acts which gives the system a mechanical torque M yech

Miech = fd3r rx (%j x B) = %fr x (drx B) = é f((r- B)dr — (r - dr)B), (15.22)
from which one obtains
1By (™ IBo,, »
Mmech,z = < J. rdr = 2_C(r1 - 1) (15.23)
and thus the mechanical angular momentum
L, = Q_BO(rf -3). (15.24)

2C
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Thus the electromagnetic angular momentum (15.21) is transformed into a mechanical angular momentum
during decharging. Instead of decharging the capacitor one may switch off the magnetic field. Then the electric

field 1 1 1
£ g :__fs.df:__ 28, £ - _Lrg
é r c CJ'IZI' 0, Zcr 08y

is induced, which exerts the torque

Mimech gry x EMD(ry) — gro x EC9(ry)

1 . 1 .
M = Qri(—==r1Bo) — qro(—==r2B
mech.z qra( T 0) — ara( 22 0)
so that the capacitor receives the mechanical component of the angular momentum

qBo
L= Z—C(r% - r§)~

In both cases the electromagnetic angular momentum is transformed into a mechanical one.

(15.25)

(15.26)
(15.27)

(15.28)
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16 Electromagnetic Waves in Vacuum and in Homogeneous | sotropic
Insulators

16.a Wave Equation

We consider electromagnetic waves in a homogeneous isotropic insulator including the vacuum. More precisely
we require that the dielectric constant e and the permeability i are independent of space and time. Further we
require that there are no freely moving currents and charges pr = 0, j; = 0. Thus the matter is an insulator. Then
MaxweLL’S equations read, expressed in terms of E and H by means of D = ¢E and B = uH

divE =0, divH =0, (16.1)
curlH = SE, curlE = —%H. (16.2)
From these equations one obtains
curl curlH = < curl E = —%H (16.3)
c c
With
curl curlH=V x(VxH)=-aH+V(V-H) (16.4)
one obtains for H using (16.1) and similarly for E
1.
AH = FH’ (16.5)
1.
AE = EE’ (16.6)
¢ = = (16.7)
N .

The equations (16.5) and (16.6) are called wave equations.

16.b Plane Waves

Now we look for particular solutions of the wave equations and begin with solutions which depend only on z
and t, E = E(z,t), H = H(z, t). One obtains for the z-components

E
divE=0 — % =0 (16.8)
(curl H), = 0 = EEZ - % - 0. (16.9)

Thus only a static homogeneous field is possible with this ansatz in z-direction, i.e. a constant field E,. The
same is true for H,. We already see that electromagnetic waves are transversal waves.
For the x- and y-components one obtains
€ - € - 1 )
(VxH)y = EEX — =V,Hy = EEX — =V (yuHy) = E(\/EEX) (16.10)

: : 1 .
(Vx E)y = _%Hy — ViEx = —%Hy — Vy( \/EEX) = _?(\/pHY)- (16.11)

55
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Ey is connected with Hy, and in the same way Ey with —H,. We may combine the equations (16.10) and (16.11)

0 0
&(\/EEX + yuHy) = $C'&(\/EEX + uHy). (16.12)
The solution of this equation and the corresponding one for Ey with —Hy is

VeEy + yiHy = 2f.(z ¥ C't), (16.13)
VeE, F VuHy = 2g.(z F C't), (16.14)

with arbitrary (differentiable) functions f. and g., from which one obtains

VeEx = f (z-ct)+f (z+cC't) (16.15)
VuHy = fi@z-c't)-f(z+c't) (16.16)
VeEy, = g.(z-c't)+9g-(z+c't) (16.17)
VuHx = -0g.(@z-c't)+9-(z+'t). (16.18)

This is the superposition of waves of arbitrary shapes, which propagate upward (f,, g.) and downward (f_, g_),
resp, with velocity ¢’. Thus ¢’ = ¢/ +/eu is the velocity of propagation of the electromagnetic wave (light) in the
corresponding medium. In particular we find that c is the light velocity in vacuum.

We calculate the density of energy

_ 1l e n_ Lo o 2 o
u= 8n(€E + uH%) = 4T[(er+g++f_+g_) (16.19)

and the density of the energy current by means of the PoyntinG vector

_° _Ce o 5 2 o
S= ExH= (242~ 2-¢2), (16.20)

where a homogeneous field in z-direction is not considered. Comparing the expressions for u and S separately
for the waves moving up and down, one observes that the energy of the wave is transported with velocity +c’e;,
since S = +c’e;u. We remark that the wave which obeys Ey, = 0 and Hy = 0, that is g. = 0, is called linearly
polarized in x-direction. For the notation of the direction of polarization one always considers that of the vector
E.

16.c  Superposition of Plane Periodic Waves

In general one may describe the electric field in terms of a Fourier integral
E(r,t) = f d*kdwEo(k, w)e'® =, (16.21)
analogously for H. Then the fields are expressed as a superposition of plane periodic waves.

16.c.a Insertion on Fourier Series and Integrals

The Fourier series of a function with period L, f(x + L) = f(x) reads

f(x)=¢ Z 2L (16.22)

N=—o00

f, are the Fourier coefficients of f. This representation is possible for square integrable functions with a finite
number of points of discontinuity. € is an appropriate constant. The back-transformation, that is the calculation
of the Fourier coefficients is obtained from

L/2 )
dxe 2L f(x) = ELf,, (16.23)
-L/2
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as can be seen easily by inserting in (16.22) and exchanging summation and integration. The Fourier transform
for a (normally not-periodic) function defined from —co to +co can be obtained by performing the limit L — oo
and introducing

k= 20 = o, €= ak= X, (16.24)
L L
Then (16.22) transforms into
f(x) = ZAkfo(k)eikx - f dk fo(k)e™™ (16.25)

and the back-transformation (16.23) into

f ) dx f (x)e ™ = 2m (k). (16.26)

This allows us, e.g., to give the back-transformation from (16.21) to

1

Eo(k. ) = 5

f drdte "k TOOE(r, 1). (16.27)

16.c.8 Back to MaxweLL’s Equations

The representation by the Fourier transform has the advantage that the equations become simpler. Applying
the operations V and 9/t on the exponential function

Vei(k.r—wt) — ikei(k~r—wt)’ %ei(k-r—wt) — _iwei(k~r—wt) (1628)

in MaxweLL’s equations yields for the Fourier components

V-E=0 — ik-Eo(k w)=0 (16.29)
V-H=0 — ik-Ho(k w)=0 (16.30)
VxH = SE ik x Ho(k, w) = —igwEo(k, w) (16.31)
VxE = —‘E‘H = ik x Eo(k, w) = i%wHo(k, w). (16.32)

The advantage of this representation is that only Fourier components with the same k and w are connected to
each other. For k = 0 one obtains w = 0, where Eg, Hg are arbitrary. These are the static homogeneous fields.
For k # 0 one obtains from (16.29) and (16.30)

Eo(k,w) L k, Ho(k,w) L k. (16.33)
From the two other equations (16.31) and (16.32) one obtains
_H _ & o
k x (k x Eo(k, w)) = Ewk x Ho(k, w) = ¥ Eo(k, w). (16.34)

From this one obtains 1
k(k - Eo(k, w)) — k*Eq(K, w) = —ﬁszo(k, w), (16.35)

analogously for Ho. The first term on the left hand-side of (16.35) vanishes because of (16.29). Thus there are
non-vanishing solutions, if the condition w = +c’k is fulfilled. This is the dispersion relation for electromag-
netic waves that is the relation between frequency and wave-vector for electromagnetic waves. Taking these
conditions into account we may write

Eo(k, w) = %5(0) — C'K)E1(K) + %5((0 + CK)Ex(K). (16.36)
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and thus L )
E(r,t) = f d3k (EEl(k)e“k”’kt) + EEz(k)ei(k'”dk‘)) ) (16.37)
Since the electric field has to be real, it must coincide with its conjugate complex.

fdgk (% Exi(k)e—i(kw—c’kt) + %Ez(k)ei(kwﬂ:’kt))

f d3k(%Ej(—k)ei(k'”°'kt) + %E;(—k)ei(k"c'k‘)). (16.38)

E*(r,t)

From comparison of the coefficients one obtains
E5(k) = E1(—K). (16.39)

Thus we obtain

E(r.t) = f d (%El(k)e“k-f-dkt) + %E;(—k)eﬂk-”dkﬂ)
— fdsk }El(k)ei(k-r—c’kt) + EE* (k)e—i(k-r—c’kt)
2 21
= R( f d3KE (K)e'®"—¢4), (16.40)
Eq. (16.32) yields for Hg
c € k k
Ho(k, w) = —k x Eo(k, ) = /= [6(w — ¢’k) = x E1(K) — 6(w + ¢'k) = x E2(K) (16.41)
Hw u 2k 2k
and thus for H ‘
H(r,t) = %( f d3k \F P El(k)e“k-f-dk‘)). (16.42)
M

If only one Fourier component E;(K) = 63(k — ko)E1,o (idealization) contributes then one has a monochromatic
wave

E(r, 1) R(Eq pe'kor—cka) (16.43)

\F%(@ X El,oe“ko*-“"ko‘)). (16.44)
JTRRAN

The wave (light) is called linearly polarized, if E1o = e1E10 with a real unit-vector ey, it is called circularly
polarized if E1o = (e1 F ie2)E1o/ V2 with real unit vectors e; und e,, where e1, > and ko form an orthogonal
right-handed basis. The upper sign applies for a right-, the lower for a left-polarized wave.

H(r, t)

16.c.y Time averages and time integrals

Energy-density and PoynTiNG Vector are quantities bilinear in the fields. In case of a monochromatic wave as in
(16.43) and (16.44) these quantities oscillate. One is often interested in the averages of these quantities. Thus if
we have two quantities
a= ‘R(aoe’i“’t), b= %(boe’i‘”‘), (16.45)
then one has
ab = %aoboe’z“"‘ + %(aobg + ajbo) + %a;bgeﬂw‘. (16.46)

The first and the last term oscillate (we assume w # 0). They cancel in the time average. Thus one obtains in
the time average

ab = %(aobg +agho) = %%(a;gbo). (16.47)
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Please note that ag and bg are in general complex and that the time average depends essentially on the relative
phase between both quantities and not only on the moduli |ag| and |bg|.
If a and b are given by Fourier integrals

a(t) = R( f dwap(w)e ) (16.48)

and analogously for b(t), then often the time integrals of these quantities and their products over all times will
be finite. For this purpose the time integral f dte'“* has to be determined. This integral is not well defined.
In practice it has often to be multiplied with a function continuous in w. Thus it is sufficient to find out how the
time-integral of this frequency-integral behaves. For this purpose we go back to the insertion on Fourier series
with x und k and find that

L/2
dxe 21/l — | 5, (16.49)
-L/2
thus
n, L/2 )
dxe 2L — | (16.50)
n=n.v-L/2

if n_ < 0and n, > 0. Otherwise the sum vanishes. Now we perform again the limit L — co and obtain

K, L/2 K, 00
ZAk f dxe ™ = AL — fk dk I N dxe ™ = 27, (16.51)
if k_ is negative and k, positive, otherwise it vanishes. Thus we obtain
f "~ dxe o = 275(K). (16.52)
With this result we obtain
| atawb) =3 [ dofante) + ai-a)boo(-o) + bie). (1653)

If there are only positive frequencies w under the integral then one obtains

I ) dta(t)b(t):g fo doo(20(@)bp(w) + a5(w)bo(w)) = 7R ( f dway(w)bo(w)). (16.54)
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17 Electromagnetic Wavesin Homogeneous Conductors

17.a Transverse Oscillations at Low Frequencies

We investigate the transverse oscillations in a homogeneous conductor. We put ¢ = 1. From

jf=0cE (17.2)
one obtains 1 4
curlB - Ze = %‘O—E 17.2)
For periodic fields of frequency w,
E = Eo()e™!, B =Bo(r)e ", (17.3)
and similarly for p; and j¢, one obtains
curl B + (—e - 4—no-)Eo =0. (17.4)
This can be written . 4
curl By + I%)e(w)Eo —0, e(w)=e- $ (17.5)
w
From the equation of continuity
or+ divjs =0 (17.6)
one obtains
—iwpro+ divjio=0 (17.7)
and thus 4 4
divDo = 4npro = — divijso = — div E. (17.8)
iw iw
Thus we have
e(w)divEg =0 (17.9)

because of divDg = ediv Eg. We may thus transfer our results from insulators to conductors, if we replace € by

€(w). Thus we obtain
2

w
k? = e(a))?. (17.10)
Since e(w) is complex, one obtains for real w a complex wave-vector k. We put
Ve(@) =n+ik, k= %(n +iK) (17.12)
and obtain a damped wave with
eikz — eiwnz/c—wkz/c‘ (17.12)
For the fields we obtain
E = %(Eoeiw(nz/c_t))e_wkz/c, (1713)
B = R(Ve(w)e, x Ege/HCcV)g-wrz/c, (17.14)

The amplitude decays in a distance d = < by a factor 1/e. This distance is called penetration depth or skin
depth. For small frequencies one can approximate

4J'E0' 2750' 2no
() ~ +1) 4 / — k= 4|22,
w

For copper one has o = 5.8 - 1017 s7%, for w = 27 - 50 s™* one obtains d = 9 mm. This effect is called the
skin-effect. The alternating current decays exponentially inside the conductor. For larger frequencies the decay
is more rapidly.

(17.15)
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17.b Transverse Oscillations at High Frequencies

In reality € and o depend on w. We will now consider the frequency dependence of the conductivity within a
simple model and start out from the equation of motion of a charge (for example an electron in a metal)

moft = eoE — 2f, (17.16)
T

where mg and eg are mass and charge of the carrier. The last term is a friction term which takes the collisions
with other particles in a rough way into account. There 7 is the relaxation time, which describes how fast the
velocity decays in the absense of an electric field. One obtains with j; = pfI = ngegl, where ng is the density of
the freely moving carriers

Mo Jjs mo .
— — =¢goE - . 17.17
No€o Ot 0 noTeoJf ( )

In the stationary case dj;/dt = 0 one obtains the static conductivity og = %. Thus we can write

T% = ooE — ji. (17.18)
With the time dependence o e7'7 one obtains
(1 - iw)ji0 = oo, (17.19)
which can be rewritten
jto = o(w)Eo (17.20)
ow) = —2 (17.21)
1-iwrt
47[0’0
= e—-——. 17.22
€(w) € iw(l - iwr) ( )
For large frequencies, wr > 1 one obtains
Anoo 4mnoed w3
e(w) = € - =€ o ( — F) (17.23)
with the plasma frequency
47nge?
wp = %0 (17.24)
€Mg
For w < wp one obtains a negative e(w), that is
wp
n=0, k= e(F 1) (17.25)
with an exponential decay of the wave. However, for w > wp 0ne obtains a positive e
o}
n= 1-—), =0. 17.26
6( w2) K ( )

For such large frequencies the conductor becomes transparent. For copper one has 1/7 = 3.7 - 108 571, o =
5.8-10 s7* and wp = 1.6 - 106 571, For visible light one has the frequency-region w = 2.4...5.2 - 10*° s72, so
that copper is non-transparent in the visible range. In electrolytes, however, the carrier density is less, the mass
is bigger, so that the plasma-frequency is smaller. Thus electrolytes are normally transparent.

17.c Longitudinal = Plasma Oscilations
One has e(w) = 0 for w = wp. Then (17.9) allows for longitudinal electric waves
E = Egee'®ez ) B =0. (17.27)

These go along with longitudinal oscillations of the charge carriers, which are obtained by neglecting the friction
term in (17.17).
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18 Reflection and Refraction at a Planar Surface

18.a Problem and Direction of Propagation

We consider an incident plane wave oc e'®e™=«t) for x < 0, ke =

(k’,0,kz), which hits the plane boundary x = 0. For x < 0 the di- & MKy & My
electric constant and the permeability be e; and w1, resp., for x > 0 7
these constants are e, and p,. At the boundary x = 0 the wave oscil-
lates oc ezt The reflected and the refracted wave show the same r d
behaviour at the boundary, i.e. all three waves have k;, ky and w in
common and differ only in ky. From ap/ as X
a
) _ Epiw? _ N’ g
ki = CZ = 7, ni = \/(-:I_,ul (181) e
one obtains
n2w?
k2 =k2+k?= 10—2 ke = (-K',0,k,) (18.2)
n2w?
G=lg+k?="2 ka=(K".0k). (18.3)

Here n1 ; are the indices of refraction of both media. The x-component of the wave-vector of the reflected wave
k; is the negative of that of the incident wave. Thus the angle of the incident wave «; and of the reflected wave
are equal. If k” is real then k” > 0 has to be chosen so that the wave is outgoing and not incoming. If k” is
imaginary then Jk” > 0 has to be chosen, so that the wave decays exponentially in the medium 2 and does grow
exponentially. For real k” one has

kz = k]_Sin a1 = kgSin . (184)
Thus Sxecr’s law follows from (18.1)
nysinai = nzsin . (18.5)
If sina, > 1 results, then this corresponds to an imaginary k”. We finally remark
k" kicosa; tanaz (18.6)

k” ~ kpcosap, tanaj

18.b Boundary Conditions, Amplitudes

In the following we have to distinguish two polarizations. They are referred to the plane of incidence. The
plane of incidence is spaned by the direction of the incident wave and by the normal to the boundary (in our
coordinates the x-z-plane). The polarization 1 is perpendicular to the plane of incidence, i.e. E is polarized in
y-direction. The polarization 2 lies in the plane of incidence, H points in y-direction. One obtains the following
conditions on polarization and continuity

polarization 1 | polarization 2
E 1 plane of inc. | in plane of inc.
H in plane of inc. | L plane of inc.
E; El,y = EZ,y El,z = EZ,Z (18-7)
Dn = EEn ElE]_,x = €2E2’x (188)
Hy Hl,z = H2,z Hl,y = H2,y (18-9)
Bn = /JHn /J]_H]_’X = /.12H2’X (1810)
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Thus the ansatz for the electric field of polarization 1 is

ik’ x —ik'x
_ ailkez-wt), (Eee' +_E|—e ) Xx<0
E(r,t)=¢e ey { E el X %> 0 (18.11)
From MaxweLL’s equations one obtains for the magnetic field
curlE = —’E‘H - MT#H, (18.12)
c c 0Ey ck,

P Iw(cur ) iw 0z w (18.13)

C 0By gz C | m(Ee *-Ee ™) x<0
He = tox % o KEEKx x>0, (18.14)

The boundary conditions come from the continuity of Ey, which is identical to the continuity of uHy, and from
the continuity of Hy,

k/ kII
Ee + Er = Ed, _(Ee - Er) = _Ed, (18.15)
M1 M2
from which one obtains the amplitudes
/12k, _Iulk// 2,[12'(’
= Es= ———Ee. 18.16
r ,uzk’ +,ulk” e d ,uzk’ +,ulk” e ( )

One comes from polarization 1 to polarization 2 by the transformation
E—-H H--E eou (18.17)
Thus one obtains for the amplitudes

Ezk/ - E]_k” 262'(/

Hr =~ ., e d= —,— ., Me-
ek + ek’ 7 ek’ + e k”

(18.18)

18.c Discussion for u; = uo

Now we discuss the results for u = 1 = u», since for many media the permeability is practically equal to 1.

18.c.a Insulator, |sina»| < 1: Refraction

Now we determine the amplitude of the reflected wave from that of the incident wave. The reflection coefficient
R, i.e. the percentage of the incident power which is reflected is given by

E, )2

&) - (Hry? (18.19)

RZ( H_e

since the modulus of the time averaged Povynting vector S = cE x H/(4x) for vectors E and H which are
orthogonal to each other yields

— C ¢’ c’

S| = —IE|- |H| = ——€E? = —uH? 18.20

ISI 8nllll 8 aH ( )
For the polarisation 1 one obtains with (18.6)

kK —k”_  tanaz-tanas_ _ sin(az — a1)

E = - =2 .
"Tk+kr T tanas +tanay © sin(az +a1)

(18.21)

For polarization 2 one has

n2k’—nfk”  sinaitana, —sinaxtanes | tan(es — ay)
e — . . e — e
n2k’ + n2k’” sin? @y tan a, + sin? ap tan ay tan(ay + a2)

r=

(18.22)
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One finds that the reflection vanishes for polarization 2 for a1 +a» = 90°, from which one obtains tan a; = n,/ny
because of sina, = cosa; and (18.5). This angle is called Brewster’s angle. By incidence of light under this
angle only light of polarization 1 is reflected. This can be used to generate linearly polarized light. In the limit
a approaching zero, i.e. by incidence of the light perpendicular to the surface one obtains for both polarizations
(which can no longer be distinguished)

_ (ng—nl)z
Ny + Nq ’

Il
o

(18.23)

18.c.8 Insulator, |sina,| > 1: Total Reflection

In this case k” is imaginary. The wave penetrates only exponentially decaying into the second medium. From
the first expressions of (18.21) and (18.22) one finds since the numerator of the fraction is the conjugate complex
of the denominator that

|El =1Eel, [Hil=IHel. R=1, (18.24)

Thus one has total reflection.

18.c.y Metallic Reflection, @ =0

In the case of metallic reflection we set ny = 1 (vacuum or air) and ny = n + ik (17.11). Then one obtains from
(18.23) for @ = 0 the reflection coefficient

:'n+ix—12:(n—1)2+;<2:1_ 4n . (18.25)
n+ix+1 (n+1)2 +«2 (n+1)2+«?
For we < 270 one obtains from (17.5) and (17.15)
2 2 2
n=«k=x E, Rrx1--=1- —w, (18.26)
w n o

a result named after Hagen and RuBens.

18.c.6 Surface Waves along a Conductor

Finally we consider waves, which run along the boundary of a conductor with the vacuum. Thus we set e; = 1
and e; = e(w) from (17.5). Then we need one wave on each side of the boundary. We obtain this by looking for
a solution, where no wave is reflected. Formally this means that we choose a wave of polarization 2 for which
H; in (18.18) vanishes, thus

e(w)k” =Kk’ (18.27)
has to hold. With (18.2) and (18.3)
7 a)z 17 E((A))(l)z
k§+k2=?, |<§+|<2=T (18.28)
one obtains the solution
w €(w) k,
- — k/ = k” = k . l 2
2T\ T+ e) V@)’ Ve(wke (18.29)
Using approximation (17.15) one obtains for frequencies which are not too large
w iw
k, = E(l + %) (18.30)
(=i
kK = ——— 18.31
2cV2no ( )
N, 12 o~
K’ = (1+|)wf2noi (18.32)

Thus for small frequencies, w < o, the exponential decay in direction of propagation (k) is smallest, into the
vacuum it is faster (k”) and into the metal it is fastest (k”’).
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19 Wave Guides

There are various kinds of wave guides. They may consist for example of two conductors, which run in parallel
(two wires) or which are coaxial conductors. But one may also guide an electro-magnetic wave in a dielectric
wave guide (for light e.g.) or in a hollow metallic cylinder.

In all cases we assume translational invariance in z-direction, so that material properties €, , and o are only
functions of x and y. Then the electromagnetic fields can be written

E = Eo(x, y)e' @) B = By(x, y)e'k= V. (19.1)

Then the functions Eg, Bg and w(kz) have to be determined.

19.a Wave Guides

We will carry through this program for a wave guide which is a hollow metallic cylinder (not necessarily with
circular cross-section). We start out from the boundary conditions, where we assume that the cylinder surface
is an ideal metal o = co. Then one has at the surface

E =0, (19.2)

since a tangential component would yield an infinite current density at the surface. Further from curl E = —B/c
it follows that

ikBn, = (curlE)p = (curlEy) - e, k= w/c, (19.3)
from which one obtains
Bn=0. (19.4)
Inside the wave guide one has
1. . .
(curlE)y = —EBy —  ik;Eqx — VxEoz = ikBoy (19.5)
1. . .
(CU” B)X e EEX - VyBO,Z — IkZBo’y = —IkEo’X. (196)
By use of
k2 =k?-k2 (19.7)
one can express the transverse components by the longitudinal components
k®Eox = ik,VxEq,+ikVyBo, (19.8)
k?Boy = ikVxEoz+ ik, VyBoy. (19.9)

Similar equations hold for Egy and Boy. In order to determine the longitudinal components we use the wave

equation
2

(o~ Cz—atz)(Eo,zei"‘zz*“’t’) =0, (19.10)
from which one obtains
(VZ+ Vg +ki)Eox.y) =0 (19.11)
and similarly
(V5 + Vg +k3)BoAx.y) = 0. (19.12)
One can show that the other equations of Maxwerw are fulfilled for k, # 0, since
k? div E=ik (k2
(2 (curl B = E/C)y=ik } H(V5+ V5 + kD) Bogelere? (19.13)
1
k2 div B=ik,

. . 2 2 2 i(kzz—wt)
K2(curl E + B/c),=—ik } (Vic+ Vy + ki)Boze : (19.14)
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Thus it is sufficient to fulfill the wave equations. We further note that Eq, and Bg are independent from
each other. Correspondingly one distinguishes TE-modes (transverse electric) with Eq; = 0 and TM-modes
(transverse magnetic) with Bo, = 0.

We return to the boundary conditions. The components perpendicular to the direction of propagation z read

k?(exEox +€yEqy) = ikgradEq, — ike, x grad Bo, (19.15)
k?(exBox +€yBoy) = ik,gradBo,+ ike; x gradEq. (19.16)

If we introduce besides the normal vector e, and the vector e, a third unit vector e. = e, x e, at the surface of
the waveguide then the tangential plain of the surface is spanned by e; and e.. e itself lies in the xy-plain. Since
en lies in the xy-plain too, we may transform to n and ¢ components

eXEo’X + eyEo’y = ech’c + enEO,n. (1917)

Then (19.15, 19.16) can be brought into the form

k% (enEon + €cEoc) = Ky (€ndnEoz + €cAcEoz) — ik(cdnBoz — €ndcBo.), (19.18)
ki (en Bo’n + ecBO’C) = ikz(enanBo,z + ec6cBo,Z) + ik(ecanEO’z - enécEO’z). (19.19)

At the surface one has
Eoz=Eoc=Bon=0 (19.20)

according to (19.2, 19.4). From (19.18, 19.19) one obtains

k2Eoc = ik 0¢Eqz — ikdnBoz (19.21)
k®Bon = ikOnBoz+ ikdcEoqy. (19.22)
Since Eqz = 0 holds at the surface one has d:Eq, = 0 at the surface too. Apparently the second condition is
anBO,Z = O
Then the following eigenvalue problem has to be solved
TM-Mode: (V4 + V5 +k%)Eo, =0, Eo, = 0at the surface, (19.23)
TE-Mode:  (VZ+ V3 +k%)Bo, =0, (gradBoz)y = 0 at the surface. (19.24)

w = C/kZ+ k2. (19.25)

TEM-modes By now we did not discuss the case k, = 0. We will not do this in all details. One can show that
for these modes both longitudinal components vanish, Eq; = Boz = 0. Thus one calls them TEM-modes. Using
k, = +k from (19.5) and similarly after a rotation of E and B around the z-axis by 90° Eox — Eoy, Boy = —Box
one obtains

Then one obtains the dispersion law

Boy = +Eox,  Box = FEoy. (19.26)
From (curl E), = 0 it follows that Eq can be expressed by the gradient of a potential
Eq = —grad ©(x, y), (19.27)
which due to div Eg = 0 fulfills Laprace’s equation
(V2 + Vﬁ)cb(x, y)=0. (19.28)

Thus Laplace’s homogeneous equation in two dimensions has to be solved. Because of Eq; = 0 the potential on
the surface has to be constant. Thus one obtains a non-trivial solution only in multiply connected regions, i.e.
not inside a circular or rectangular cross-section, but outside such a region or in a coaxial wire or outside two
wires.
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19.b  Solution for a Rectangular Cross Section

We determine the waves in a wave guide of rectangular cross-section with sides a and b. For the TM-wave we
start with the factorization ansatz

Eoz(x,y) = f(x)a(y) (19.29)
Insertion into (19.11) yields
f7g+ fg” +k®fg=0 (19.30)
and equivalently
f// gll 3 2
=t i ke, (19.31)

from which one concludes that f”//f and g”’/g have to be constant. Since Eq has to vanish at the boundary,
one obtains

a . N@X, . mmy > (U2 M2
Eoz(X,y) = Eosm(?)sm(T , ki= (?) + (T) , n>=1m>1 (19.32)

For the TE-wave one obtains with the corresponding ansatz
Boz(x.y) = f(x)g(y) (19.33)

and the boundary condition (grad Bo z)n = 0 the solutions
_ NITx maty o (Nm\2  Mmy2
Boz(X,y) = Bocos(?)cos(T , ki= (?) + (T) , n>0, m>0, n+m>1. (19.34)

19.c Wave Packets

Often one does not deal with monochromatic waves, but with wave packets, which consist of Fourier compo-
nents with k; = kzo
E = Eo(X,Y) f dk, fo(k,)e! (el (19.35)

where fo(kz) has a maximum at k; = k;o and decays rapidly for other values of k. Then one expands w(ky)
around ko

wky) = w(kzo) + Vgr(kz — Kz0) + ... (19.36)
dw(kz)

Vgr = . 19.37

o T (19.37)

In linear approximation of this expansion one obtains
E = Eg(x, y)e'®ozelead (7 vy 1),  f(z - vgt) = f dk; fo(kz)e e ke0)@Vat) (19.38)

The factor in front contains the phase ¢ = k;0z—w(Kz0)t. Thus the wave packet oscillates with the phase velocity

_ @' _ w(kz0)
Catly kg

Von . (19.39)

On the other hand the local dependence of the amplitude is contained in the function f(z — vgt). Thus the wave
packet moves with the group velocity (signal velocity) v, (19.37).
For the waves in the wave-guide we obtain from (19.25)

JKE + K
Voh = C———, (19.40)
Kzo

_ o Ko (19.41)

JKE + k7o
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The phase velocity is larger than the velocity of light in vacuum c, the group velocity (velocity of a signal)
less than c. If one performs the expansion (19.36) beyond the linear term, then one finds that the wave packets
spread in time.

Exercise Determine w(k) for transverse oscillations in a conductor above the plasma frequency (section 17.b)
for e = 1 and the resulting phase- and group-velocities, resp.
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20 Electrodynamic Potentials, Gauge Transfor mations

We already know the electric potential @ from electrostatics and the vector potential A from magnetostatics.
Both can also be used for time-dependent problems and allow the determination of B and E.

20.a Potentials

MaxweLL’s third and fourth equations are homogeneous equations, i.e. they do not contain charges and currents
explicitly. They allow to express the fields B and E by means of potentials. One obtains from divB =0

B(r,t) = curl A(r,t). (20.1)
Proof: Due to divB = 0 one has AB = —curl curl B (B.26), from which one concludes similarly as in (9.16)
and (9.17)
1 3. , v 1 1 3., curl’B(r")
B(r) = Efd r (curl curl 'B(r ))|r— =i Ecurl fd r el (20.2)

when the vector potential was introduced in the magnetostatics. An elementary proof is left as exercise.
From curl E + B/c = 0 one obtains

1.

curl(E+ =A)=0 20.3

(E+A)=0, (20.3)

so that the argument under the curl can be expressed as a gradient. Conventionally one calls it — grad @, so that
1.

E= _EA — grad® (20.4)

follows. The second term is already known from electrostatics. The time derivative of A contains the law of
induction. One sees contrarily that the representations of the potentials in (20.4) and (20.1) fulfill the homoge-
neous MaxweLL equations.

20.b Gauge Transformations

The potentials A and @ are not uniquely determined by the fields B and E. We may replace A by

A'(r,t) = A(r,t) + grad A(r, t) (20.5)
without changing B
B = curl A= curl A, (20.6)
since curl grad A = 0. It follows that
1. 1.
E= —EA' — grad(® - EA)' (20.7)
If we replace simultaneously ® by
1.
@'(r,t) = O(r,t) - EA(r, 1), (20.8)

then E and B remain unchanged. One calls the transformations (20.5) and (20.8) gauge transformations.
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The arbitrariness in the gauge allows to impose restrictions on the potentials ® and A
. 1.
Lorenz gauge divA + E(I) =0, (20.9)
CourLoms gauge divA =0. (20.10)

If potentials @ and A’ do not obey the desired gauge, the potentials ® and A are obtained by an appropriate
choice of A

. 1.
Lorenz gauge divA" + E(I)’ = OA, (20.11)
CourLoms gauge divA’ = AA, (20.12)
where )
190
=A- 5= 20.13
° c2 ot? ( )

is o’ ALemBERT’S operator. The Lorenz gauge traces back to the Danish physicist Lupvic V. Lorenz (1867) in
contrast to the Lorentz transformation (section 23) attributed to the Dutch physicist HEnprik A. LoRENTZ.
Insertion of the expressions (20.4) and (20.1) for E and B into MaxweLr’s first equation yields

1. 1 - Ax
curl curlA+ A+ —grad® = —j, 20.14
t ATl | (20.14)
that is 1 4
~0A + grad (divA + ~®) = ], (20.15)
c c
whereas MaxweLL’s second equation reads
1. .
—AD — < divA = 4mp. (20.16)
From this one obtains for both gauges
DA=-41]
C
Lorenz gauge { Od=—dmp (20.17)

DA=-%j + I grad ®

AD=—47p. (20.18)

CourLoms gauge {

Exercise Show that a vector field B(r), which obeys divB = 0 can be represented by curl A(r). Therefore
put A,(r) = 0 and express Ay(r) by Ay(x,y,0) and By, similarly Ax(r) by Ax(x,y,0) and By. Insert this in
B, = (curl A); and show by use of divB = 0 that one can find fitting components of A at r = (x,y, 0).
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21 Electromagnetic Potentials of a general Charge and Current Distri-
bution

21.a Calculation of the Potentials

Using the Lorenz gauge we had

ao(r,t) = —4mnp(r,t), (21.1)
4.
DA(r,1) = —?" j(r.1) (21.2)
with p’ ALEMBERT’S operator
O=A- 1 6—2 (21.3)
- c2 ot2 '
and the gauge condition
divA + %c’p =0. (21.4)
We perform the Fourier transform with respect to time
o(r, t) = f dwd(r, w)e !, (21.5)
analogously for A, p, j. Then one obtains
(1)2 ~ B :
ad(r,t) = fdw(A + ?)d)(r, w)e ' = fdw(—4n,6(r, w))e ', (21.6)
from which by comparison of the integrands
W2\ -
(a+ ?)(D(r, w) = —4ap(r, w) (21.7)

is obtained. We now introduce the Green’s function G, i.e. we write the solution of the linear differential
equation as

O(r,w) = fd?‘r’G(r, r', w)p(r', w). (21.8)
Insertion of this ansatz into the differential equation (21.7) yields
2

(a+ %)G(r, I, w) = —4as3(r - r'). (21.9)

Since there is no preferred direction and moreover the equation is invariant against displacement of the vectors
r and r’ by the same constant vector, we may assume that the solution depends only on the distance between r
and r’ and additionally of course on w

G=9g@w), a=|r-r|. (21.10)

Then one obtains ) 5 5
(a+ %)g(a, w) = %dd(jf) + %g = Ofora#0. (21.11)

Here we use the Laplacian in the form (5.15), where Aqg = 0, since g does not depend on the direction of
a =r —r’, but on the modulus a. This yields the equation of a harmonic oscillation for ag with the solution

1 ) )
G=g(aw)= a(cle'wafc + CoeR/0), (21.12)
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At short distances the solution diverges like (c; + ¢c2)/a. In order to obtain the §-function in (21.9) as an
inhomogeneity with the appropriate factor in front, one requires ¢, + ¢, = 1. We now insert

o(r, 1) f dwd(r, w)e !

f dw f d*re“'G(r, I, w)p(r, w)
1 . , . , .
fdw der/ |r - r/l(clelw\r—r |/c + Cze—lw\l’—r \/C)e—lwtﬁ(r/’a))

fdsr'| 1 (et 'r;r )+ eoptr t+ 200, (21.13)
Going from the second to the third line we have inserted G. Then we perform the w-integration, compare (21.5).
However, w in the exponent in (21.13) is not multiplied by t, but by t+ % The solution in the last line contains
a contribution of @ at time t which depends on p at an earlier time (with factor c1), and one which depends on p
at a later time (with factor c,). The solution which contains only the first contribution (c1 = 1, ¢, = 0) is called
the retarded solution, and the one which contains only the second contribution (c; = 0, ¢, = 1) the advanced

solution.

Oy o1, 1) = fd3 +'r_c 1y (21.14)

Normally the retarded solution (upper sign) is the phy5|cal solution, since the potential is considered to be
created by the charges, but not the charges by the potentials. Analogously, one obtains the retarded and advanced
solutions for the vector potential

1 T ., r-r
Ar,a(l’,t)=6fd3r’ _mj(r,t:L| c |). (21.15)

[r

21.b Gauge Condition

It remains to be shown that the condition for Lorenz gauge (20.9) is fulfilled

O + cdivA = fd3 r (p+ d|VJ)+fd3r’V j. (21.16)

r=ri

The arguments of p and j are as above r’ and t’ = t ¥ |[r — r’|/c. In the second integral one can replace V by —V’
and perform a partial integration. This yields

O +cdivA = fd3 (p+(V+V)j) (21.17)
Since (V + V)t'(t,r, r’) = 0, one obtains from the equation of continuity
o(r, 't r,r)+(V+ V), t'Er,r)) = % +V'j(r', )l =0, (21.18)

so that the gauge condition (20.9) is fulfilled, since the integrand in (21.17) vanishes because of the equation of
continuity.
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22 Radiation from Harmonic Oscillations
In this section we consider the radiation of oscillating charges and currents.

22.a Radiation Field

We consider harmonic oscillations, i.e. the time dependence of p and j is proportional to e 't

p(rt) = R(po(re™) (22.1)
ity = R(jo(re™), (22.2)
analogously for @, A, B, E. One obtains
o(r,t) = R f d3r’|r _1r,|po(r')efiwﬁflf*f"/@. (22.3)
With the notation k = w/c it follows that
o(r) = f d3r’|r _1r,|p0(r’)eik‘f-f", (22.4)
analogously
_1 3.7 1 H AW
Ao(r) = c fd r —|r— r'|Jo(r e . (22.5)

22.a.a Near Zone (Static Zone)

In the near zone, i.e. for k|r — 1’| < 2z which is equivalent to |r — 1’| < 4, where A is the wave-length of the
electromagnetic wave, the expression el can be approximated by 1. Then the potentials ®q, (22.4) and Ag,
(22.5) reduce to the potentials of electrostatics (3.14) and of magnetostatics (9.17).

22.a.8 Far Zone (Radiation Zone)

At large distances one expands the expression in the exponent

r-rr r? , r? r
+_:r_n.r+o—’ n=-. 22.6
L () n=t (22.6)

[r—r’|=r4/1-2

This is justified for r > kR?, where R is an estimate of the extension of the charge and current distribution,
r’ <R forp(r’) # 0and j(r’) # 0, resp. We approximate in the denominator |r — r’| = r which is reasonable for
r > R. Then one obtains

eikr 1
Ao(r) = —g(kn) + O(-3) (22.7)
with the Fourier transform of the current distribution
g(kn) = f d3r'jo(r)e kT (22.8)
From this one deduces the magnetic field
d ikr 1 ] ikr 1
Bo(r) = curl Ag(r) = 29C » g(kn) + 0(3) = Ikec_rn xg+0(). (22.9)

The electric field is obtained from

1. i
curl B = EE — curlBg = —%Eo (22.10)
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as
i 1
Eo = % curl Bo = —n X Bo + O( ;). (22.11)

Eo, Bo and n are orthogonal to each other. The moduli of Eq and By are equal and both decay like 1/r. The
PovynTinG Vector yields in the time average

— 1 (7 2

s = = f s(d, T=2" (22.12)
T 0 w

— Co——=— ¢ X

S = E%EX%B = g‘}’\(EOX Bo)

C % C * C *
= —g‘R((n x Bg) X Bo) = — g R(n - Bo)B; + gn(B; - Bo). (22.13)

The first term after the last equals sign vanishes, since By L n. Thus there remains

500 = Sn(B: - Bo) = < inx gkm)? + O( L) (22.14)
g 0 B0 T g N XY r3” '
The average power radiated is

: k2 )

Ug = 8mc f|n x g(kn)|“dQyp, (22.15)

where the integral is performed over the solid angle Q,, of n.

22.b Electric Dipole Radiation (Hertz Dipole)

If the charge and current distribution is within a range R small in comparison to the wave length 4, then it is
reasonable to expand e~ <""’

gkn) = g© —ikg® + ..., ¢ = f dBrjo(r), g® = f d3r'(n - r)jo(r) (22.16)

This expansion is sufficient to investigate the radiation field in the far zone. If one is interested to consider it
also in the near zone and the intermediate zone, one has to expand
eiklr—r’\ eikr eikr

= S+ ik D)+ 0 (22.17)

in the expression for Ag, which yields

eikr 0 ] 1 eikr I

We first consider the contribution from g@@. We use that

div’j(r) = —=p(r") = iwp(r’) = div’jo(r") = iwpo(r’). (22.19)
Then we obtain from
f d3r div’(f(r)jo(r')) = 0 (22.20)
the relation
f d>r grad’ f(r') - jo(r') = —iw f dr’ £(r')po(r). (22.21)

One obtains with f(r’) = x,,

O = f &3 jou(r') = —iw f d3r'xpo(r') = —iwPos (22.22)
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that is g© can be expressed by the amplitude of the electric dipole moment
9@ = —iwpo. (22.23)

Thus one calls this contribution electric dipole radiation. One finds

ikr

Ao(r) = ~ik™—po, (22.29)
thus
2 H .
Bo(r) = (kT + :—E)e"“n X Po (22.25)
k2 ikr 1 ik ikr
Eo(r) = —Te n x (n x po) + (Sn(n - Po) — po)(ﬁ - r_2)e . (22.26)

The first term is leading in the far zone (1/r < k), the second one in the near zone (1/r > k). One obtains the
time-averaged Poynting vector from the expression for the far zone

0]

ck?n > ck¥polPn . ,

= —|nx = ————sin“é, 22.27
8nr2| | 8mr2 ( )
In the second expression it is assumed that real and imaginary part of pg point into the same

direction. Then 9 is the angle between pg and n. The radiated power is then

_ ck?pof?
=—
The radiation increases with the fourth power of the frequency (w = ck) (RayLeicu radiation).

As an example one may consider two capacitor spheres at distance | with I(t) = R(lpe™'Y).
Then one has

Us (22.28)

(0) 3,75 ’ ||0| . (k“o)2
971 =1 [ d°rjo(r)l =1 [ dllgl =loll, po=-—, Us=-—"F7" (22.29)
w 3c
This power release yields a radiation resistance Rg
Us = %RSIS, Rs = %(kI)ZEZOQ - (kI)? (22.30)

in addition to an Onmic resistance. Note that %EBOQ, compare (A.4).

22.c Magnetic Dipole radiation and Electric Quadrupole Radiation

Now we consider the second term in (22.16)

o = nﬁfdsr’xl;joy(,(r’)
n.B d3/ ’ s ’ n.B d3/ ’ ’ 2231
5 | O los = Xoog) + 5 | & (X ioa + X, Jog). (22.31)

The first term yields the magnetic dipole moment (10.7)

NpCEsayMoy = —C(N X Mo)y. (22.32)
The second term can be expressed by the electric quadrupole moment (4.10). With f = %x{lx;g one obtains from
(22.21)
. n . n 1

—Ia)?ﬁ fd3r’x(’tx;;po(r’) = —|W§(Q0a,ﬁ + §5a,ﬁfd3r/r’2p0(r’))' (22.33)
Thus we have .
i

g® = —cnxmg - %Qoy(wnﬁea + const. n. (22.34)

We observe that the third term proportional n does neither contribute to B (22.9) nor to Ep (22.11).
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22.c.a Magnetic Dipole Radiation
The first contribution in (22.34) yields the magnetic dipole radiation. We obtain

. eikr
Ao(r) = (lk— F)Tnxmo
Bo(r) = —k2£nx(nxm)+(3n(n.m)_m)(E_K)eikr
0 r 0 0 Nz~ 72
k? ik ik
Eo(r) = (_T - r_Z)(n X Mo)e'™.

As an example we consider a current along a loop which includes the area f,

412 4122
ckmozklof

m0=|0f/C, US= 3 3C ’

(22.38)

which corresponds to a radiation resistance

2

R. =
*7 3c

k4222002 (K2f)2.

22.c3 Electric Quadrupole Radiation

We finally consider the second term in (22.34) in the far zone. It yields

. k?c
g= _lkg(l) = _TQO,Q,,BnlBem

(22.35)
(22.36)

(22.37)

{)

(22.39)

(22.40)

As special case we investigate the symmetric quadrupole (4.27), Qo.xx = Qoyy = —%QO, Qozz = %Qo, whereas

the off-diagonal elements vanish. Then one has

1
Qoup = _§Q06a,,8 + Q0d0,3083,

from which
2c k?c
g = —TQongeg + ?Qon, N3 = cos o (22.42)
eikr
By = —ik3?Qon X €30S (22.43)
eikr
Eo = ik3?Q0n x (N x €3) c0S O (22.44)
— k8 .
S = 3027::2 |Qol? sin? 6 cos? @ (22.45)
: ck®
Us = E|QO|2 (22.46)

follows. The intensity of the quadrupole-radiation is radially sketched as function of the angle 6.

(22.41)
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23 Lorentz Transformation

23.a Gavuwer and Lorentz Transformation

The equations of NewTon’s mechanics are invariant under the GariLer transformation (GaLiLer invariance)

X=x, y=y, ZZ=z-vt, t'=t (23.1)
We will see in the following that MaxweLL’s equations are invariant under appropriate transformations of fields,
currents and charges against linear transformations of the coordinates x, y, z, and t, which leave the velocity of
light invariant (LorenTz invariance). Such a transformation reads

z-vt t-3

“

X'=%x, Y=y, 7= , t'= . (23.2)
2 2
,/1—§ 1-2

Consider two charges g und —q, which are for t < 0 at the same point and which are also for t > At at the same
point, which move however in the time interval 0 < t < At against each other. They separate at time 0 at ro and
they meet again at time At at r;. They generate according to (21.14) and (21.15) a field, which propagates with
light-velocity. It is different from zero at point r at time t only, if t > |[r — ro|/cand t < At + |r — ry|/c holds.
This should hold independently of the system of inertia in which we consider the wave. (We need only assume
that the charges do not move faster than with light-velocity.) If we choose an infinitesimal At then the light flash
arrives at time t = |r — ro|/c, since it propagates with light-velocity. Since the Lorentz transformation is not in
agreement with the laws of Newton’s mechanics and the Gavicer transformation not with MaxweLL’s equations
(in a moving inertial frame light would have a velocity dependent on the direction of light-propagation) the
question arises which of the three following possibilities is realized in nature:

(i) there is a preferred system of inertia for electrodynamics, in which MaxweLL’s equations hold (ether-
hypothesis),

(if) Newton’s mechanics has to be modified

(iif) MaxweLL’s equations have to be modified.

The decision can only be made experimentally: An essential experiment

to refute (i) is the MicueLson-MorLEY experiment: A light beam hits a Sp,
half-transparent mirror Spy, is split into two beams, which are reflected
at mirror Sp; and Spy, resp. at distance | and combined again at the Sp
half-transparent mirror. One observes the interference fringes of both h
beams at B. If the apparatus moves with velocity v in the direction of ‘
the mirror Sp1, then the time t; the light needs to propagate from the L Sp
half-transparent mirror to Sp; and back is ‘ !

| | 2lc 2l v2

= = =—1+=+..). 23.
l c—v Cctv €2 —v2 c( +02+ ) (23.3)
B
The time t; the light needs to the mirror Spy is
21 21 V2
L= ﬂ = E(l + E + ), (234)

77
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since the light velocity ¢ has to be separated into the two components v and Vc2 — v2, Thus there remains the

time difference
Iv2

= (23.5)

t1-th=

which would be measurable by a displacement of the interference fringes, if for example the velocity v is the
velocity of the earth against the sun. This displacement has not been observed. One may object that this is due
to a drag of the ether by the earth. There are however many other experiments, which are all in agreement with
Lorentz invariance, i.e. the constancy of the velocity of light in vacuum independent of the system of inertia.
The consequences in mechanics for particles with velocities comparable to the velocity of light in particular for
elementary particles have confirmed Lorentz invariance very well.

Development of the Theory of Relativity

In order to determine the velocity of the earth against the postulated ether MicueLson and Moriey performed
their experiment initially in 1887 with the negative result: No motion against the ether was detected. In order
to explain this Firzcerarp (1889) and Lorentz (1892) postulated that all material objects are contracted in their
direction of motion against the ether (compare Lorentz contraction, subsection 23.h.3).

In the following we will develop the idea of a four-dimensional space-time, in which one may perform trans-
formations similar to orthogonal transformations in three-dimensional space, to which we are used. However
this space is not a EucLipean space, i.e. a space with definite metric. Instead space and time have a metric
with different sign (see the metric tensor g, eq. 23.10). This space is also called Minkowskr space. We use the
modern four-dimensional notation introduced by Minkowskr in 1908.

Starting from the basic ideas of special relativity

The laws of nature and the results of experiments in a system of inertia are independent of the motion of such a
system as whole.

The velocity of light is the same in each system of inertia and independent of the velocity of the source

we will introduce the Lorentz-invariant formulation of MaxweLL’s equations and of relativistic mechanics.

23.b Lorentz Transformation

We introduce the notation
=x, xX*=y, x’=z (23.6)

or shortly
(x*) = (ct, 1) (23.7)

and denotes them as the contravariant components of the vector. Further one introduces
(x,) = (ct,—r). (23.8)

which are called covariant components of the vector. Then we may write

X =0"%, Xy = guwX” (23.9)
(summation convention)
1 0 0 O
“ o -1 0 o0
@=0)={ 9 o0 1 o (23.10)
0 0 0 -1

One calls g the metric tensor. Generally one has the rules for lifting and lowering of indices
C-#H..=¢g”C--+, Cry--=0nC-"-- (23.11)

We introduce the convention: Indices «, 4, u, v run from 0 to 3, indices «, 3, ¥, ... from 1 to 3. One observes
that according to (23.11) g,” = 99" = 6,”, ¢, = ¢"“0w = 6", with the KroneckEr delta.
If a light-flash is generated at time t = 0 at r = 0, then its wave front is described by

—r?=x'x, =0. (23.12)
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We denote the system described by the coordinates x* by S. Now we postulate with Emnstemv: Light in vacuum
propagates in each inertial system with the same velocity c. (principle of the constance of light velocity) Then
the propagation of the light flash in the uniformly moving system S’ whose origin agrees at t = t’ = 0 with that

of S is given by
72

s =x*x, = 0. (23.13)

Requiring a homogeneous space-time continuum the transformation between x” and x has to be linear
XH = A X, (23.14)

and s’2 = fs? with some constant f has to hold. If we require that space is isotropic and no system of inertia is
preferred, then f = 1 has to hold. The condition s’? = s? implies

7 = X#X, = AM, XA X = 87 = X6, X, (23.15)

which is fulfilled for arbitrary x, if
NGNS =6 (23.16)
holds. The inverse transformation of (23.14) follows from
XC= 6, %" = ASANX = A (23.17)

From (23.16) one obtains in particular for v = k = 0 the relation (A%)? - 3, (A®°)? = 1. Note that A?; = +A°,
AL = —A%. Thus one has |A%| > 1. One distinguishes between transformations with positive and negative
A%, since there is no continuous transition between these two classes. The condition A% > 0 means that
A® = %h/ > 0, that is a clock which is at rest in S’ changes its time seen from S with the same direction as the
clock atrest in S (and not backwards).

Finally we can make a statement on det(A”,). From (23.16) it follows that

A guAL g =6~ (23.18)
Using the theorem on the multiplication of determinants we obtain
det(A*,)? det(g,.,) det(g™) = 1. (23.19)

Since det(g,,.) = det(g°*) = —1 one obtains
det(A”,) = 1. (23.20)

If we consider only a right-basis-system then we have det(A*,) = +1. Transformations which fulfill
A% >0, det(A") =1 (23.21)

are called proper Lorentz transformations.

Eg. (23.21) has the consequence that the fourdimensional space time volume is invariant
1 10(x°, x1, x2, x’3) 1 1

dt/dr’ = Zd*x = =277 2% = = det(A¥,)d*x = =d*x = dtd®r. 23.22

c c a(x0 x1, x2, x3) c (A%) c ( )

If the direction of the z- and the z’-axes point into the direction of the relative velocity between both inertial
systems and X’ = X, y’ =Y, then the special transformation (23.2) follows. The corresponding matrix A reads

y 00 By
0 10 O
My _
A= 69 01 o (23.23)
By 0 0 vy
with 1
Y= L B== (23.24)
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23.b.a Time Dilatation
We consider now a clock in the system S which is at restin S’. From
=0 + %)
we find that
Ay = %
Thus the clock at rest in S’ runs slower when seen from S

1 / v2
At = —At = 4/1- _zAt‘
r Y C

:’y.

r

or’
At = —
ot

This phenomenon is called time dilatation.

23.b,8 Lorentz Contraction

From
Z =y(@z-vt)
one obtains
3 07|
c 0z t =Y

and therefore

0z
Al = —
g o7’

1 / v2
A7 = =A7 = {1 - —ZAz’.
t Y C

(23.25)

(23.26)

(23.27)

(23.28)

(23.29)

(23.30)

A length-meter which is at rest in S” and is extended in the direction of the relative movement, appears conse-
quently contracted in S. This is called Lorentz contraction or FirzGeraLp-LorenTz contraction. However, the

distances perpendicular to the velocity are unaltered: AX’ = Ax, Ay’ = Ay.

This contraction has the effect that in (23.3) the length I has to be replaced by I /1 — ‘C’—i Then the two times the

light has to travel agree independent of the velocity v, t; = t5.
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24 Four-Scalars and Four-Vectors

24.a Distance and Proper Time as Four-Scalars

A quantity which is invariant under Lorentz transformations is
called four-scalar.
Example: Given two points in space-time (events) (x*), ('X). The
quantity

s?2= (¥ - R)(X,— ¥) (24.1)

is a four-scalar. It assumes the same number in all systems of inertia.
Especially for ¥ = 0 (origin) it is s = x#x,,.

24.a.c  Space-like distance s?> < 0

81
xO=ct
}
&
future 5
N
space-like O
x3
distance
past

If s2 < 0, then there are systems of inertia, in which both events occur at the same time x’° = 0. If for example

(x*) = (ct, 0,0, 2). Then one obtains from 23.2)

-2 z—-vt
z

with v = tc?/z

(24.2)

=0, 7= Z(l =74/1- +22 — 22 = + V-2, (24.3)

Thus one calls such two events space-like separated.

24.a,8 Time-like distance s? > 0

In this case there exists a system of inertia in which both events take place at the same point in space (X’ = 0).

We choose v = z/t in the transformation (23.2) and obtain

t(l - \é—z) VZ ZZ
= = _——= i 2 _—
= twll = sign (t) 4/t =

1-—

3

- sign (t);, 7 = 0. (24.4)

One event takes place before the other that is the sign of t” agrees with that of t.

Proper Time t

The proper time 7 is the time which passes in the rest system under consideration. If a point moves with velocity

v(t) its proper time varies as

2
=2 1o Vat
C C
t2 2
T=f \ll—v—(zt)dt.
t c

that is

(24.5)

(24.6)

The proper time is independent of the system of inertia, thus it is a four-scalar.

24.a.y Light-like distance s*> = 0

If a light flash propagates directly from one event to another, then the distance of these two events s = 0. The
time measured in a system of inertia depends on the system of inertia and may be arbitrarily long or short,
however, the sequence of the events (under proper Lorentz transformation) cannot be reversed.

Another four-scalar is the charge.
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24.b  World Velocity as Four-Vector

If a four-component quantity (A*) transforms by the transition from one system of inertia to another as the
space-time coordinates (x*), then it is a four-vector

At = AP A, (24.7)
An example is the world velocity

0
dx = cg =C. (24.8)

u dx#  dx* dt dx®
dt dt

== 22— HwithV0 =
ar " dtagr YV Wity

The world velocity (u*) = (cy,vy) is a four-vector. Since 7 is invariant under Lorentz transformations, its
components transform like (x*). However, (c, v) is not a four-vector. One has

W, = (€2 - v?)y? = c2 (24.9)
Quite generally the scalar product of two four-vectors (A#) and (B*) is a four-scalar
A"B, = A,A A"B, = 5;A"B, = A’B,. (24.10)

We show the following lemma: If (a*) is an arbitrary four-vector (or one has a complete set of four-vectors) and
a“b,, is a four-scalar then (b*) is a four-vector too. Proof:

a'b, = a*b, = A*,a'b]. (24.11)

Since this holds for all (a*) or for a complete set, one has b, = A*,b;. This, however, is the transformation
formula (23.17) for four-vectors.

Addition theorem for velocities

The system of inertia S’ moves with velocity v in z-direction with respect to S. A point in S’ moves with
velocity w’ also in z-direction. With which velocity does the point move in S? We have

’ ’ t + vz
PR LR - (24.12)
1- 1-3%
With z = w’t’ one obtains
Vv + Wt 14+ Wy
7= u t= Q (24.13)
1-% 1-%
C
From this one obtains the velocity of the pointin S
Z W+vV
W=-=—. 24.14
b1+ ( )
We observe )
w w? v
Wy fere) (oSl g) (24.15)
c? 149y (1+ )2 '

If [w'| < ¢ and |v|] < c, then this expression is positive. Then one obtains also |w| < ¢. Example: w’ = v = 0.5¢,
then one obtains w = 0.8c.

24.c Current Density Four-Vector

We combine charge- and current-density in the charge-current density

(") = (cp.J) (24.16)
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and convince us that j* is a four-vector. For charges of velocity v one has (the contributions of charges of
different velocities can be superimposed)

p=pv, (=0, J=pyl-pu (24.17)

If p /1 — B2 is a four-scalar then indeed j* is a four-vector. Now one has
q q

with the volume Vy in the rest system and the Lorentz contraction V = Vg+/1 — 2. Since the charge q and Vg

are four-scalars this holds also p /1 — 52.
We bring the equation of continuity in Lorentz-invariant form. From p + divj = 0 one obtains

it
% _o, (24.19)

(24.18)

since 9j°/0x° = dp/at. We consider now the transformation properties of the derivatives 9/9x*

of  ox of  of
axn - axE o - M o (24.20)

that is the derivatives transform according to

0 0
=AY 24.21
OxXH Hooxr ( )
as X, = A", Thus one writes
i_a (5)_(12 V) (24.22)
axe " W cot” 7 '
Watch the positions of the indices. Similarly one has
0 10
2 - =(==,-V). 24.23
g = @)= (24.23)
Then the equation of continuity can be written
aujt =0. (24.24)
Generally the four-divergency 9,,P* = 9P, of a four-vector P is a four-scalar.
24.d Four-Potential
We combine the potentials A and @ in the four-potential
(A) = (D, A), (24.25)
then one has 4
OAF = —?’“ i (24.26)
in the Lorenz gauge with the gauge condition
divA + %gp =0 - 3,A =0. (24.27)
There the o’ ALEMBERT Operator
1
O=a- gaf = —3,0" (24.28)

is a four-scalar o’ = 0.
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We now show that the retarded solution Af' is manifestly Lorentz-invariant. We claim

MW = ¢ [ ayroeGEee -y (2429
= (X - Y% — V) = Aty —t)? - (X - y)? (24.30)

0
0() { é o 8 (24.31)

We consider now generally the integration over a §-function, which depends on a function f. Apparently only
the zeroes t; of f contribute,

f g(t)é(f(t))dtzz f tiﬁg(t)é(f(t))dt with f(t) = 0. (24.32)
i ti—e
With z = f(t), dz = f’(t)dt one obtains
N (W dz o g(t)
Jaostoa=3; [ ‘awsori =3ty (24.33)

Thus the zeroes in the §-function of (24.29) are ty = tx + |x — y|/c and their derivatives are given by f’(t,) =
c?(ty — ty) = =c|x — y|, which yields

1 1 1 X -yl
[ _ = Ay il S(Z o2 _ — 3 H —
A (x) c fd Yi 6(25 )0(tx — ty) fd yc|x _y|] (v, tx c ). (24.34)

The factor 6(ty — ty) yields the retarded solution. The solution is in agreement with (21.14) and (21.15). If we
replace the 6-function by 6(ty — t), then we obtain the advanced solution. Remember that the sign of the time
difference does not change under proper Lorentz transformations.
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25 Electromagnetic Field Tensor

25.a Field Tensor
We obtain the fields E and B from the four-potential
1.
B=curlA, E=-grad®d - EA’

for example

AA3  HA? OA0  HAL

Bi= 2y~ oo = 0PN A Ep= - - O = 90 - AL,

ax2  9x3 axt  9x0

Thus we introduce the electromagnetic field tensor

FI7= PN — A, F = %,
It is an antisymmetric four-tensor. It reads explicitely
0 -Ei1 -E» -E3
E, 0 -Bs B;

E> Bs 0 -B:
Es -B, B; 0

(F™) =

25.b MaxweLL’s Equations

25.b.a The Inhomogeneous Equations

The equation div E = 4mp reads
4m

O1FT + 9F % + 95F% = = |°.

From the 1-component of curl B — 1E = %2j one obtains

9Bs 9B, OE1 4m

4
it > 9F% 4+ 95F % 4+ goF % = Tt

cJ’

ax2  axd  ax0
similarly for the other components. These four component-equations can be combined to

4r
9 F = —J".
u c J
If we insert the representation of the fields by the potentials, (25.3), we obtain
4
B (A — A = %‘ .
Together with the condition for the Lorenz gauge 9, A* = 0, (24.27) one obtains

4y .
o =y

in agreement with (24.26) and (24.28).
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(25.1)

(25.2)

(25.3)

(25.4)

(25.5)

(25.6)

(25.7)

(25.8)

(25.9)
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25.b,8 The Homogeneous Equations

Similarly the homogeneous MaxweLL’s equations can be written. From div B = 0 one obtains

NFE 4+ PPN+ P F2 =0 (25.10)
and (curl E + 1B), = 0 reads
_62F30 _ 63F02 _ aOFZS =0. (2511)
These equations can be combined to
FR + ¢ F + P FW = 0. (25.12)

One observes that these equations are only non-trivial for 4 # u # v # A. If two indices are equal, then the
left-hand side vanishes identically. One may represent the equations equally well by the dual field tensor

a1
F = S Fa. (25.13)

Here €% is completely antisymmetric against interchange of the four indices. Thus it changes sign, if two of
the indices are exchanged. This implies that it vanishes, if two indices are equal. It is only different from zero,
if all four indices are different. It is normalized to €%'%3 = 1. Then one obtains explicitely

0 -B; -B, -Bs
B O Es -Ez

Cuvy
(F™) = B, -Es 0 E, (25.14)
Bs E; -Ei1 O
and (25.12) can be written N
a,F =0. (25.15)
One should convince oneself that € is an invariant pseudo-tensor of fourth order, i.e.
e/ﬂwol — det(A)eyVK/l’ (2516)

where det(A) takes only the values +1 according to the discussion after (23.19). For proper Lorentz transfor-
mations it equals +1 (23.21).

25.c Transformation of the Electric and Magnetic Fields
Since (0*) and (A”) transform like four-vectors, one has
FH = AM A (25.17)

for the transformation of the electromagnetic field. If we choose in particular

y 00 By
0 10 O
My _
A=l 9 01 o | (25.18)
By 0 0 vy
then one obtains
E; = F0 = AL A F* = yF10 - ByF13 = y(E; - BB)), (25.19)
thus v
E1=7(E1-;Bo), (25.20)
similarly
By =y(B1+ %Ez) (25.21)
Vv \"
E;=7(Ez2+ By,  By=y(B2- By (25.22)

E,=Es  Bj,=Bs (25.23)
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which can be combined to
E, = Ej B = By, component || v (25.24)

v v
B, =yE.+ c X B), B, =y(B. - X E), components L v. (25.25)

25.d Fields of a Point Charge in Uniform Motion

From this we can determine the fields of a charge which moves with constant velocity v = ve,. In the rest system
S’ of the charge, which is supposed to be in the origin of S/, one has

rl

E'=g-. B/=0. (25.26)

In the system S the coordinates of the charge are Xq = yq = 0, g = vt. Now we express r’ by r and t and obtain

,_(ax ay gy(z-vt)

£ = (N, Y o) ) (25.27)
B = 0, (25.28)
N = r2=(02+y2+y%z-w))¥2 (25.29)

It follows that

E1 = y(E} + !B)) = & ~
£, = (B~ £B) = @ E- il (25.30)
Es = Ej = 2V
By = y(B; - 1) = I
_ ’  _ DB —M
B2 =(B, + YEp) = U (B=-""1 (25.31)

Bs=B,=0

Avreas of constant N are oblate rotational ellipsoids. The ratio short half-axis / long half-axis is given by 1/y =
1- "é thus the same contraction as for the Lorentz contraction.

25.e  DorpLER Effect
We consider a monochromatic plane wave
E=Eee?, B=Bee’ withg=k-r— ot (25.32)

We know, how E and B and thus Eq and By transform. Thus we are left with considering the phase ¢ which is a
four-scalar. If we write w
(k) = (E’ k), (25.33)

then
¢ = —KuX* (25.34)

follows. Since (x*) is an arbitrary four-vector and ¢ is a four-scalar, it follows that (k) has to be a four-vector.
Thus one obtains for the special Lorentz transformation (25.18)

W =ck® =cy(k® - k%) = y(w - pckd), K=k, kZ2=K% K°Z=qy(k®- ,8%). (25.35)
If the angle between z-axis and direction of propagation is 6, then k3 = ¢ cos @ holds, and one obtains

o' = wy(l—pBcosh). (25.36)
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Thus if v is parallel and antiparallel to the direction of propagation, resp., then one deals with the longitudinal
DoppLER shift

0=0: o =w,5 (25.37)
h=n: o =wi% (25.38)

If however § = /2 and ¢’ = mt/2, resp., then one deals with the transverse DoppLer shift.

JT; / w
=5 W= (25.39)
o = g L W =w\I-B (25.40)

Here ¢ is the angle between the z’-axis and the direction of propagationin S”.
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26 Rdativistic Mechanics

EnsteN realized that the constance of light velocity in vacuum and the resulting Lorentz transformation is not
restricted to electrodynamics, but is generally valid in physics. Here we consider its application to mechanics
starting from the force on charges.

26.a Lorentz Force Density

The force density on moving charges reads
1.
k=pE+EjXB, (26.1)
that is e.g. for the first component
1. . 1. . . 1.
k' = pBa+ _(I"Ba = J’B2) = _(I°F° - PR - PF®) = _j,FY. (26.2)

Thus one introduces the four-vector of the Lorentz force density

kt = %jVF”V. (26.3)
We consider the time-like component
1 1
K= =j,F»=2j-E. 26.4
v | (26.4)

The time-like component gives the mechanical energy acquired per time and volume, whereas the space-like
components give the rate of change of mechanic momentum per time and volume

() = Ci-EK). (26.5)

26.b Lorentz Force Acting on a Point Charge
The four-current-density at x of a point charge q at Xq reads

(%, 1) = g3(x — Xg())V". (26.6)
Thus the force acting on the point charge is given by

KK = %VVF’“’. (26.7)

This is not a four-vector, since (v*) is not a four-vector. If we multiply it by y then we obtain a four-vector, the
Minkowskr force
YKH = guyF’”. (26.8)

K is the momentum which is fed into the point charge per time unit, cK? is the power fed into it. The MinkowskI
force is the momentum and the energy divided by c, resp., fed into it per proper time.

26.c Energy and Momentum of a Mass Point

We assume that also mechanical momentum and energy/c combine to a four-vector, since the change of mo-
mentum and energy divided by c are components of a four-vector

@)= GE.G). (26.9)
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In the rest system S’ we expect G’ = 0 to hold, i.e.

1
(G") = (;E0. 0). (26.10)
In the system S the special transformation (23.23) yields for v = ve,
v Eo
G= YzEoez = yV?, (26.11)
E= ¢G°=cyG?= yEo. (26.12)
For velocities small in comparison to light-velocity one obtains
Eo V2
G-= gv(l tog ). (26.13)
In NewTon’s mechanics we have
GNaNton =mv (26.14)

for a mass point of mass m. For velocities v < ¢ the momentum of Newton’s and of the relativistic mechanics
should agree. From this one obtains

Eo
m=— —Eo= me, G =myv. (26.15)
Then one obtains for the energy E
E = mc?y = mc? + gvz +O(v*/c?). (26.16)

One associates a rest energy Eq = mc? with the masses. At small velocities the contribution %vz known from
NewTonian mechanics has to be added

G = mut. (26.17)
This G is called four-momentum. We finally observe
GG, = m?u'u, = m?c?, (26.18)
from which one obtains
-G? + C—le2 =m%?, E?=m%"*+ G2 (26.19)

One does not observe the rest energy Eq = mc? as long as the particles are conserved. However they are
observed when the particles are converted, for example, when a particle decays into two other ones

A% = 7+ p*. (26.20)
With the masses
ma = 2182me, m,; = 273me, mp = 1836me (26.21)
one obtains the momentum and energy bilance for the A which is at rest before the decay
mac® = \/m,%c“ +G2c2 + \/m%c“ + G3c? (26.22)
0 = Gr+Gp. (26.23)

The solution of the system of equations yields

G| = 4c \/M(mA — M)(M = m)(M —mp)/ma,  2M = mp + My +m,. (26.24)
By means of the four-vectors one may solve

G/ =G +G (26.25)
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with respect to G, and take the square

Gp'Gpu = (G — GR)(Gay — Gry) = GLGay + GGy — 2G, Gy (26.26)
This yields
mac? = mic® + mic? — 2muE, (26.27)
and therefore 5
L A T S
E, = m(mA +mZ - m3) (26.28)
and analogously
s 2, 2
Ep= m(m/\ -m2 4+ mp). (26.29)

26.d Equation of Motion
Finally we write down explicitely the equations of motion for point masses

u
d% = K, (26.30)

As mentioned before these equations are not manifestly Lorentz-invariant. We have, however,

dG* dG* dt dGc#
- — gy —yKH 26.31
dr  dtadr Cdt 7T (26.31)
where the right-hand side is the Minkowski force. In this form the equations of motion are manifestly Lorentz
invariant.
If the force does not change the rest energy of a particle, one obtains from

G G, = m%c? - di(GﬂGﬂ) =0 - G*yK, =0 — UK, = 0. (26.32)
T

The force is orthogonal on the world velocity. An example is the Lorentz force

U, K* = gyvﬂvvF’” -0, (26.33)
since F#” is antisymmetric. We observe
cdE
HK, = -v-K+-— =0. 26.34
VK, v-K+ C ( )
Thus equation (26.32) is equivalent to
dE
— =v-K, 26.35
el (26.35)

which yields the power fed into the kinetic energy of the mass.
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27 Lagrangian Formulation

27.a Lagrangian of a Massive Charge in the Electromagnetic Field

We claim that the Lagrangian £ of a point charge g of mass m in an electromagnetic field can be written

-mc?4/1 - r —qd(r,t) + 9A(r t)-r
c? ’ c

L =
3 5 X%, Q .
= —-mco4/1+ =2 EA”(x)x,l. (27.1)
Then the action | can be written
dx
= f dtL = —mc? f dr — % f it = f dr(=mc? — gA”up), (27.2)
that is as a four-scalar.
Now we show that this Lagrangian yields the correct equations of motion
doL 4L
. 0, (27.3)
from which by use of
0L mx*  d,. _ce, e
o f + CA (r),t) =G + CA (27.4)
T
one finally obtains
d. 9, .49 q _

Note that A contains only the partial time-derivative of A, thus we have dA/dt = A + (v - V)A. By suitable
combination of the contributions one obtains

EG+q(V<I)+1A)—gvx(VxA) =0 (27.6)
dt c c
96-qe-IyxB = 0 (27.7)
ato 957t o '

Thus the Lagrangian given above yields the correct equation of motion.

27.b Lagrangian Density of the Electromagnetic Field

The Lagrangian density L of the electromagnetic field of a system of charges consists of three contributions

1 1.,.
L = _EF”VFF‘V - EAHJ# + Lmech~ (278)

The mechanical part for point charges of mass m; reads
Linecn = = ) mic? f dro*(x - xi(7)). (27.9)
i

which yields after integration over d*x the corresponding contribution to the action I given in (27.1). The
second contribution in (27.8) describes the interaction between field and charge. Integration of this contribution
for point charges using

Ju(r,t) = Z qid;(%ﬁ(r -n) (27.10)
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yields the corresponding contribution in (27.1). The first contribution is that of the free field. Below we will see
that it yields MaxweLL’s equations correctly. The action itself reads

-1 f dixL(X) = f dt f dPxL(x, 1) = f dtow). L) = f AL (x. 1). (27.11)

The action has to be extremal if the fields A are varied. There we have to consider F as function of A (25.3),
F. = d,A, — 0,A,. Then the variation with respect to A yields

1 1
oL = ——F,6F" — =],6A 27.12
8 H CJ ( )
SER = §(MAY — 'AM) = FOAY — I SAF (27.13)
FudF? = Fd"0A" - ,NavaAﬂ 2F 06N (27.14)
1
L = ——F,0"6A" — =j,0A". 27.15
47[ H CJ ( )

Thus the variation of the action with respect to A is

ol

1 1
A ( _ _— v_ i v
fd X = g Fnd A" = S J,0A")

1 1 1.
- f d4x4—m6"(FW6AV)+ f d4x(4—maﬂ|:,,y— = v )JOA. (27.16)

The first term of the second line is a surface-term (in four dimensions). From the second term one concludes
MaxweLL’S inhomogeneous equations (25.7)

4.
,F = %‘ i, (27.17)

MaxweLL’s homogeneous equations are already fulfilled due to the representation F,, = d,A, — 9,A,.
Generally one obtains for a Lagrangian density, which depends on a field (A*) and its derivatives by variation

f d*xsL(x)
J (6Av(x) A+ 6a~Av(x)‘9”‘SAV(X))

[ (o) [ o - (mg)vw @

Usually one denotes the partial derivatives of L with respect to A and dA by 6L/6.... Since the variation has to
vanish, one obtains in general the equations of motion

oL sL
7 (WAV(X)) TOA() 0 (27.19)

col

This is the generalization of Lacrance’s equations of motion (27.3) for fields. There appear derivatives of
6L/6V A with respect to the space variables besides the time-derivatives of 6L/5A”.
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28 Energy Momentum Tensor and Conserved Quantities

28.a The Tensor

In section 15.b we have calculated the conservation law for momentum from the density of the Lorentz force
in vacuo that is without considering additional contributions due to matter

0 0
-k = —gs— —T%e" 28.1
A= e o (28.1)
1
= —EXxB 28.2
9s dnco O (28.2)
1 )
o _YaB (2 2
T¥ = 4n(EQEﬁ + B,By) o (E?+B?). (28.3)
The zeroth component is the energy-density. For this density we have obtainded in section 15.a
1 1. 1.
—k® = -Zj-E==divS+ =l (28.4)
C c C
c
S = —ExB 28.5
4n % ( )
1 2 2
u = %(E +B?). (28.6)
We summarize
N (28.7)
with the electromagnetic energy-momentum tensor
—-u —%Sl —%82 —%83
(T;w) — —C0Os1 Tll T12 T13 (288)

-0 To To To3
—C0s3s  Ta1 Ta2 Ta3

This energy-momentum tensor is built up from the energy density u, the PoyntinG vector (density of energy

current) S, the momentum density g, and the stress tensor T.  One observes that T#” is symmetric, T# = T,
1

since Top is symmetric and cgs = S = %E x B holds. One easily checks that

1 1
v _ M Ay vk A4
TH = ﬁ(— FIFY + 207FF J) (28.9)
holds either by explicit calculation and comparison or from
1 1 1 1
K = ZjaF* = —(0"F)F* = — " (F, F*) — —F, 0" F*. 28.1
CJ/l 43_[(6 V/i) 43_[6( vA ) 4 V/la ( 8 O)
From
Foa(0'FH + #FY + 9'F) = 0 (28.11)
one obtains the relation 1
5aﬂ(FMFM) +2F,,0"F* = 0, (28.12)
so that finally we obtain
ket = iaV(F JFHY) + iaﬂ(F JFY)
4n Y 167 Y
1 M =y 1 VK A
= E(BV(_ FFY + 297FF o) (28.13)

T# is a symmetric four-tensor, i.e. it transforms according to

TH = AN T (28.14)
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28.b Conservation Laws

We start out from a four-vector field (j*(x). In any three-dimensional space-like subspace R of the four-
dimensional space be (j*) different from zero only in a finite region. We call a space space-like if any two
points in this space have a space-like distance. A world-line, i.e. a line which everywhere has a velocity below
light-speed hits a space-like subspace in exactly one point. If one plots the subspace as a function x°(r) then
its slope is everywhere less then 1. The slope of the world-line is everywhere larger than 1. For example, the
points of constant time in an inertial frame constitute such a space-like space. We now integrate the divergence
0, J* over the four-dimensional volume Q, which is bounded by two space-like spaces R and R’ and obtain

f d*x— f d*x( 57 i) - . dsx(jo—% ). (28.15)

The contribution d, j* is integrated in x*-direction until the
boundary R or R” or until j* vanishes. This yields immedi-
ately the contribution given for the 0-component. For the 1-
component one obtains initially the integral + [ dxdx?dx3j*
at the boundary.The dx%-integration may be transformed into
an dxl ”X -integration. If X = x° increases (decreases) at the
boundary with x%, then this is the lower (upper) I|m|t of the
integration. Thus we have a minus-sign in front of 2 x 9% sim-
ilarly for the other space-components.We may convince our-
selves that

x9=X (x)

3 it
fR d*x(j° - axw f dV,,j (28.16)

with (dV,,) = (1, -VX)d3x is a four-scalar. If we introduce a four-vector (j”), so that

m j” inR
H —

f dv, j = f dv, J* = f d*x Z)‘(ﬂ (28.18)

where the last integral is obviously a four-scalar, since both d*x and the four-divergence of j is a four-scalar.
Since the field (j*) is arbitrary, we find that dV,, j* has to be a four-scalar for each infinitesimal (dV,) in R. Since
(j*) is a four-vector, (dV#) must be a four-vector, too. Then (28.16) reads

f d*xa, j* = f dv,, j* - f dv,, j-. (28.19)

This is the divergence theorem in four dimensions.
From this we conclude:

then it follows that

28.b.a Charge

(j*) be the four-vector of the current density. One obtains from the equation of continuity d,j* = 0 for each
space-like R the same result

= E f av, j* (28.20)
CJr

for the charge, since the integral of the divergence in Q in (28.19) vanishes, (since the integrand vanishes) and
since one may always choose the same R’. Thus the charge is a conserved quantity, more precisely we have
found a consistent behaviour, since we already have assumed in subsection 24.c that charge is conserved. New
is that it can be determined in an arbitrary space-like three-dimensional space.
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28.b,8 Energy and Momentum

From
kt =9, TH (28.21)

f d*xk* = f dv, T# — f dv, TH. (28.22)
Q R 24

In a charge-free space (k* = 0), i.e. for free electromagnetic waves one finds that the components of the
momentum of radiation

one obtains

Gh = 1 f dv, T+ (28.23)
CJr

are independent of R. Thus they are conserved. Now be (b,) an arbitrary but constant four-vector. Then b, T#”
is a four-vector and 8, (b, T#”) = 0. Then b,G% is a four-scalar and Gj is a four-vector.
If there are charges in the four-volume Q, then one obtains.

GE(R) = _% fg d*xk + GL(R'). (28.24)

For point-charges g; one has (26.7, 26.30)

% f d*xkH =Z f dtK” =Z f dtG" =Z(G¢(R)—G¢(R’)). (28.25)

Here G/(R) = mjul'(R) is the four-momentum of the charge #i at the point where its worldline hits the three-
dimensional space R. Then
G' =GLR) + Y GI(R) (28.26)
i

is the conserved four-momentum.

28.b.y Angular Momentum and Movement of Center of Mass

Eq. (28.7) yields
(X' TH = X TY) = Xk — Xk 4+ il - T, (28.27)

Since the tensor T is symmetric, the last two terms cancel. We introduce the tensor
M&#(R) = —% fR AV, (XA = X T), (28.28)
It is antisymmetric M2 = —M“*. Due to (28.19) one has
M (R) = —% fQ dx(xkH - x'k') + Mg (R"). (28.29)
For point-charges one obtains

1 d
S fﬂ d*x(x'K — x'k) = Z f dt(x'K! - x('K}!) = Z f dta(fo’i’ - X'G}). (28.30)

since X'G* = x*GA. Therefore

M¥(R) = M#(R) + MH#(R) (28.31)
including the mechanical contribution
M(R) = D (K6} - ¥'6)| (28.32)

is a conserved quantity, i.e. M#(R) is independent of the choice of R. Simultaneously (M*) is a four-tensor.
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Finally we have to determine the meaning of M. For this purpose we consider M in the three-dimensional space
R given by constant time t for a system of inertia S. Then we have

M = _% deX(X/lTﬂO _ XHTAO) " Z (Xi/lGlil _ XlilGi/]) (28.33)

First we consider the space-like components

M — f dx(x"gf - xg) + Z (G~ XGY). (28.34)

This is for & # 8 a component of the angular momentum L, namely €., L,. Thus we have found the conservation
of angular momentum.
If one component is time-like then one finds

M = ct( fd3xg§ + Z Gy) - %( fd3xx”u + Z XE;). (28.35)

The first contribution is ct multiplied by the total momentum. The second contribution is the sum of all energies
times their space-coordinates x* divided by c. This second contribution can be considered as the center of
energy (actually its a-component) multiplied by the total energy divided by c. Since total momentum and total
energy are constant, one concludes that the center of energy moves with the constant velocity czm‘t‘:"]td“’%&”"

For non-relativistic velocities the mechanical part of the energy reduces to

MO = ¢ (t Yer-> mixf’] : (28.36)

Then the conservation of this quantity comprises the uniform movement of the center of mass with the velocity
total momentum divided by total mass. In the theory of relativity this transforms into a uniform moving center
of energy. Lorentz invariance combines this conservation with the conservation of angular momentum to the
antisymmetric tensor M.
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29 Field of an arbitrarily Moving Point-Charge

29.a Lienarp-WiecHERT Potential

First we determine the potential at a point (x*) of a point-charge g which moves along a world-line rq(t). Its
four-current density reads

F(x) = v (X' —rq()), v = (c. Fq(t)). (29.1)
According to (24.29) the four-potential reads
1 . 1 1
A(X) = S f d*x’ j”(X’)(S(ESZ)G(t -t)=q f dt’v”(t’)é(zsz)a(t —t) (29.2)
with 0
s“=a’a, a =x -xt). (29.3) point of }
observation (x :
(@) is a function of (x*) and t’. The differential of %sz is ) V\:corlhd line
given by orc(tz)’:lrge
1 light cone q
d(zsz) = a,da’ = a,dx” — a,vdt’. (29.4)
Thus one obtains the Linarp-WiecHERT potential \ oL
1 gv¥ qu#
Hix) = gvH(t’ - -
A(x) = qvi(t) ﬁ%_sz| AV = awl (29.5)

|5

Here the two expressions with the index , are to be evaluated at the time t” at which s> =0 and t > t'.
We note that a,v" =ac—a-v > 0, since a = c(t —t") = |a]. a,u”/c is the distance between point of observation
and charge in the momentary rest system of the charge.

29.b The Fields

Starting from the potentials we calculate the fields
Fr = o*AY — 0" A (29.6)

In order to do this we have to determine the derivatives of v, a and t’

oV ot

voo= 29.7
Fv v ox, (29-9)
ot = H(X-xyt)=9" - vyﬂ (29.8)

- o)) =9 A%, '

o’ a#

= —, 29.9
O0Xy a-v) (299

where the last expression has been obtained from s? = 0 by means of (29.4). Here and in the following we use

(a-v) = av,=ac-a-v=c(a—-a-p) (29.10)
(v-v) = Vv, =c?2-v?=c?(1-5% (29.11)
awv)y = avw=-a-w (29.12)
One evaluates
.
v = 22 (29.13)

@-v)
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v g _ VvVaH
ota g @
Ma-v) = (0"a)V, + al(0"v)
= g"v - Ve Ve +a Ve
(V-v) (a-v)
— Mo oM M
v a(a-v)+a(a-v)'

Then one obtains

y VoY v vidH(a-y)
IR e R R A
VHVY
— “h — — 07—
a'b q(a-v)z’
) V'(v-v) —v'(a-v)+Vv'(a-v)
by =
(a-v)?
Therefore
q

)= pr

and the fields read

F™ = afb - ab

: 1 .1 )
1-g#+ 2L pa )+ pa-B)+s@-a-pp

E_an®_ap - AA-P)@-pa) dgax(@-pa)xp)
(a-a-p) cla-a-p)’

E
B = —axb:a><
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(29.14)

(29.15)

(29.16)

(29.17)

(29.18)

(29.19)
(29.20)

(29.21)

The contribution proportional to the acceleration B decreases like 1/a; a, E, and B constiute an orthogonal

system for this contribution. The contribution independent of B falls off like 1/a2.

29.c  Uniform Motion

(compare section 25.d). The scalar ya'v,/c is the distance between the point of observation and the point of the

charge in the rest-system of the charge. Thus one has
1 /
a-a-p=_Irl (@-a-f°’=N/>.
Considering thata = r — vt’, a = c(t — t’), one obtains
a-Ba=r—-vt' —vt+vt' =r—-vt
and thus

E_ gy(r — vt) B - (r—vt)x(r-vt)gy qyvxr
- N - c(t—t)N ~  ¢N

in accordance with (25.30) and (25.31).

29.d Accelerated Charge Momentarily at Rest
The equations (29.20) and (29.21) simplify for 3 = 0 to

ga 49 :
E = ¥+Eax(axﬁ)
B = -—L(@axp),

ca?

(29.22)

(29.23)

(29.24)

(29.25)

(29.26)
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from which the power radiated into the solid angle dQ can be determined with the energy-current density
S=LExB
Az

dUs ca 92 L, P o
—-a°S-n=-—[a,E,B] = = — 29.27
o " [a | 47ca? (@x4) 4c3 (n>) ( )
and the total radiated power
207,
Us = §§V (2928)
(Larmor-formula) follows.
For a harmonic motion rq = roq cos(wt) and V = —reqw? cos(wt) one obtains
: 2 qzrgq 4 2 T _1 pg 4
Us = g?w (COS(a)t)) N Us = 55(1) (2929)

in agreement with section 22.b. This applies for 8 < 1. Otherwise one has to take into account quadrupole and
higher multipole contributions in 22.b, and here that 8 cannot be neglected anymore, which yields additional
contributions in order w® and higher orders.

29.e Emitted Radiation 8 # 0

We had seen that in the system momentarily at rest the charge emits the power Us = %%2(/2. The emitted

momentum vanishes because of the symmetry of the radiation (without consideration of the static contribution
of E, which, however, decays that fast that it does not contribute for sufficiently large a)

E(-a) = E(a), B(-a)=-B(a), T(-a)=Tus(a). (29.30)

Thus we may write the energy-momentum-vector emitted per proper time

d, 1 Ut 202 ( dut du,
R ] (2031)

since U° = ¢y o« v- v = 0. Since the formula is written in a lorentz-invariant way, it holds in each inertial frame,
ie.

dUs dr u0 292 ( dt )2 (_ d(yvd) d(yvl))

dt dt ¢ 3c3 \dr dt dt
2072 o .
= 3—2372 (Vi) - ¢*7?)
29° ¢ 2.2 : N 202 2
= 337 (¥2V2 + 2y3(v - ¥) + ¥2(v* - ¢?)). (29.32)
With dr/dt - u®/c = 1 and
d 1 3V-V
= =y — 29.33
Y= — Yz (29.33)
C2
one obtains finally
S 20%( 4. V- V)2
Us = 52—3 (74v2 +76%). (29.34)

Orbiting in a synchrotron of radius r a charge undergoes the acceleration v = v?/r perpendicular to its velocity.
Thus one has

. 2 2
Us = 30%8%*/r = Sq%c(y” - 1)/r%, (29.35)
The radiated energy per circulation is

2nr - 4z
AUs = = ~Us = ?q2ﬁ3y4/r. (29.36)
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At Desy one obtains for an orbiting electron of energy E =7.5 GeV and mass moc? =0.5 MeV a value y =
E/(moc?) = 15000. For r = 32m one obtains AU = 9.5MeV. Petra yields with E = 19GeV a y = 38000 and
with r = 367m a radiation AU = 34MeV per circulation.

Exercise Hera at Desy has r = 1008m and uses electrons of E, = 30GeV and protons of Ep = 820GeV.
Calculate the energy radiated per circulation.
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In this last chapter a review in the form of a short account of the historic development of electrodynamics
is given. Additionally we will catch a glimpse of the general theory of relativity by showing that clocks run
differently in the presence of gravitation.

30 Short History of Electrodynamics

I conclude with a short history of electrodynamics. For this purpose | have mainly used the following literature:
Sk Epmunp WHITTAKER, A History of the Theories of Aether and Electricity

EmiLio SEGre, Die groBRen Physiker und ihre Entdeckungen, Teil 1, Piper Band 1174

WiLnerm H. WestpHaL, Physik, Springer-\Verlag

WiLnerm H. WesteHaL, Anhang |, Physikalisches Worterbuch

Max Born, Emi. Worr, Principles of Optics, Historical Introduction

Epmunp Horpe, Geschichte der Physik

Encyclopedia Brittanica: Article ’Electromagnetic Waves’ and *Magnetism’

Worpemar Voicr, Theoretische Physik

J.D. Jackson and L.B. Oxkun, Historical roots of gauge invariance, Rev. Mod. Phys. 73 (2001) 663.

It is not easy to redraw a historical development. First of all, there is the question whether one has sufficiently
complete sources. Secondly, it often happens that several persons are named for some discovery or explanation,
sometimes even at separate times. One reason might be that one person did not know of the other’s discovery.
But it may also be that they observed or explained the phenomenon differently well. Sometimes they published
the result particularly well so that their paper has become rather popular and they were considered alleged
authors.

Who for example has explained how the rainbow comes about? DietricH vON FREIBERG, MAHMUD AL SCHIRAZI
and Kamar aL-Div who in the beginning of the 14th century found that sunlight is refracted twice and reflected
once or twice inside the raindrop, or Descartes who found around 1625 that the total angle of reflection has an
extremum so that a high intensity of light is reflected under a certain angle, or Fresner and Ay who took around
1820 and 1836 the wave character of light into account? All of them contributed a piece to our knowledge.
Initially there were three different phenomena of electrodynamics observed by man without forseeing their
connection. The most obvious one was light which offered him excellent orientation and which sometimes
appeared to him both frightening and agreeable as in a flash of lightning and a rainbow.

Two other phenomena already known in antiquity were much rarer observed, the curious properties possessed
by two minerals, amber (n1exktpov) and magnetic iron ore (n A0/ Mayvnril). The former, when rubbed,
attracts light bodies; the latter has the power of attracting iron and has its name from Magnesia in Thessalia,
where this stone is found. Tuaces or MiLer (600 BC) is said to have known the properties of these minerals.
Accordingly, the investigation of these phenomena developed in parallel into a theory of light, of electrostatics,
and of magnetostatics, before one realized that they are connected.

30.a Theory of Light to FrResSNEL

Hero or ALexanpria argued that reflected light uses the shortest path and thus for light reflected at a mirror the
angle of incidence equals the angle of reflexion. In antiquity and the middle ages one assumed that nature has
final causes and thus asked why, not how does nature proceed?

Hero and ProLemy held the opinion that men saw by means of rays of light issuing from the eye and reflecting
from the objects seen. Aruazen held the correct view that light was issued from the sun or from some other
luminous source and was reflected from the object seen into the eye. Avrxazen made important discoveries in
optics (1030): pinhole camera and parabolic mirror. KepLer learnt a lot from his work. ALnazen already knew
that in refraction the incident, the reflected and the refracted beam lie in one plane.
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Eye glasses were invented in the 13th century.

The explanation for the occurence of the rainbow by two refractions and one or two reflections of sunlight in
the rain drop was given by DierricH von FREBERG, AL-SHirAzI, and KamaL Ar-Din at the beginning of the 14th
century.

In 1621 SnerL oF Roven found experimentally the law of refraction. Descartes gave a theoretical derivation
assuming that the velocity of the beams have given values in both media and that the component of the velocity
vector parallel to the boundary is conserved. This derivation becomes correct if the vector of velocity is replaced
by the wave-vector. However, Fermar introduced the principle of least time (1657) and derived from this the
law of refraction (1661).

HooxkEe was probably the first who described in his Micrographia light as a wave, since he had observed diffrac-
tion. Considering theoretically the progression of the wave-front he derived the law of refraction. However,
Huvaens, developed in his Traité de la lumiére (1678-1690) a wave theory of light. Important for the theory of
diffraction but also refraction became his principle, which says: Each point of a wave-front may be regarded as
the source of a secondary wave.” NewTon is considered having put forward the theory of emanation, i.e. the idea
that light is of corpuscular nature. This is not completely correct. Newton disliked to introduce imaginative
hypotheses, which could not be proven experimentally. *To avoid dispute, and make this hypothesis general, let
every man here take his fancy; only whatever light be, | suppose it consists of rays differing from one another
in contingent circumstances, as bigness, form or vigour.” Later however, he was in favour of the corpuscular
nature of light.

NewTton devoted considerable attention to the colours of thin plates. He supposed (Opticks) that *every ray of
light, in its passage through any refracting surface, is put into a certain transient state, which, in the progress of
the ray, returns at equal intervals, and disposes the ray, at every return, to be easily transmitted through the next
refracting surface, and, between the returns, to be easily reflected by it.”"He found that the intervals between easy
transmission vary with colour, being greatest for red and least for violet. If he had accepted the wave picture,
he could have determined the wavelengths of visible light.

In 1717 the meanwhile known phenomenon of double-refraction was explained by Newton by light corpuscles
of different shape which comes close the idea of a transversal polarization. Huycens’ wave theory of light
assigned elastic properties to the aether; However, he considered only longitudinal waves, and was forced to
introduce two different kinds of these waves for double-refraction, one of which propagated isotropically, the
other spheroidally. At that time NewTon’s explanation was generally accepted.

In this course we did not consider double-refraction and diffraction. They played an important role in the
development of the theory of light. It should be remarked that double-refraction appears in anisotropic crystals
where the dielectric constant is a tensor.

In 1675 Romer was able to determine the time light needs to transverse the distance from sun to earth by
observing the eclipses of the moons of Jupiter. Until that time it was not clear whether light propagates instantly
or at a finite velocity.

In 1728 James Brapiey found the aberration of light, i.e. a change in the direction of the light from a star due
to the perpendicular motion of the observer to the direction of the star. This was considered a proof of the
corpuscular nature of light. In 1677 Romer already had conjectured such a phenomenon in a letter to Huvagens.
In 1744 MauperTuis took up the old controversy between Descartes and Fermar. Convinced of the corpuscular
nature of light but wishing to retain Fermar’s method, he supposed that ’the path described is that by which
the quantity of action is the least’ and required that instead FErmaT’S fdt = fds/v the action fvds should be
extremal. In this way he introduced for the first time the principle of least action which was soon taken up by
EuLer and Lacranag, and which today is considered the principle governing all dynamics of nature.

In 1801 Tromas Young introduced the concept of the interference of two waves and brought HuvGens’ concept
anew in play. He is able to explain Newton’s rings with this concept. In 1808 Mavrus found that reflected light is
normally partially polarized and found the angle of total polarization, now known as BrewsTer’s angle (after eq.
18.22). The problem to explain the extraordinary beam in double-refracting crystals continued with explanations
from both sides, in 1808 Laprack argued for corpuscles, in 1809 Younc argued for waves, both agreeing that the
medium has to be anisotropic. In 1815 when Brewster discovered crystals with two extraordinary beams (the
case of three different eigenvalues of the dielectric tensor) the situation became even more complex.

In 1818 the French Academy announced a prize for the explanation of diffraction. The followers of the theory
of emission (LapLace, Poisson, Bior) were confident of victory but FresneL submitted a paper at the basis of
the papers by Huvaens and Young, in which he explained this phenomenon for several arrangements by means
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of the wave theory. Poisson who studied the paper carefully found that in the centre of the shadow behind a
circular disc there had to be a bright spot and asked for an experimental test. Araco found the bright spot and
FresneL received the prize. Since in 1818 Younc was also able to explain aberration by means of the wave
theory it became the leading theory.

In 1817 Youna proposed for the first time, light might consist of transversal waves. This was supported by
the observation that two light beams polarized perpendicular to each other do not show interferences. FRESNEL
picked up this idea and developed a successful theory of double-refraction, although MaxweLL’s equations were
not yet available. Clever experiments by Airy (1831) showing that light irradiated under Brewster’s angle
suppresses NEwton’s rings, and that light propagated slower in water than air, proved the wave nature of light.
(Wave-theory predicts in a medium with larger index of refraction a smaller velocity of light, in the corpuscular
theory a larger one.)

FresneL derived an expression for the change of velocity of light in moving matter which was confirmed ex-
perimentally by Fizeau (1851). However, there were several different theories on this subject among others by
Stokes (1846). Different ideas competed on the question, to which extend matter would drag the aether.

It may be remarked that the aether as an elastic solid occupied many excellent scientists in the following time
and made the theory of elasticity flourishing in the following years. Applied to the theory of light there remained
the problem to suppress longitudinal waves..

There remained the puzzle whether the space above the earth is a plenum, which provides the necessary prop-
erties of elasticity for the propagation of light, or a vacuum, which allows the planets to move freely. This
discussion existed already centuries before. Space was, in Descartes’ View, a plenum (in contrast to a vacuum),
being occupied by a medium which, though imperceptible to the senses, is capable of transmitting force, and
exerting effects on material bodies immersed in it - the aether, as it was called. Gassenpr, a follower of Coperni-
cus and GaviLeo, re-introduced the doctrine of the ancient atomists that the universe is formed of material atoms,
eternal and unchangeable, moving about in a space which except for them is empty, thus he re-introduced the
vacuum. His doctrine was accepted not long afterwards by Newton and in fact became the departure point for
all subsequent natural philosophy.

30.b Electrostatics

TuaLes orF MiLer (600 BC) is said to have known that rubbed amber (Greek “elektron’) attracts light bodies.
Around 1600 GiLeert discovered that many other materials assume the same property by rubbing. He coined the
word "electric’ for this property. The word ’electricity’” was introduced by Browne in 1646. GiLeert remarked
essential differences between magnetic and electric forces. (Magnets are permanent in contrast to electrified
bodies. Magnetic forces are not shielded by other substances. Magnets attract only magnetizable substances,
electrified ones all substances.)

Orro or Guericke known for the preparation of the vacuum in the Magdebourgous spheres made pretty early
a number of important electric discoveries - his Experimanta nova magdeburgica appeared in 1672 - For the
first time he introduced the distinction between conductors and non-conductors, he observed electric attraction
and repulsion, the phenomenon of influence. He designed the first reasonably working electrostatic generator.
It seems that his discoveries did not receive general attention.

In 1708 WarLt compared the spark which flashes over rubbed amber with thunder and flash, an indication that a
flash is an electrostatic discharge.

In 1729 Gray found that electricity is transferred by certain substances which Desacutiers called non-electrics
or conductors. Gray found that electricity is assembled at the surface of bodies. In 1734 DuFay observed
that there are two kinds of electricity, vitreous and resinous electricity; similar ones repel each other, whereas
dissimilar ones attract each other.

Improved electrostatic generators were designed between 1744 and 1746 by Jonann HeinricH WINKLER, GEORGE
MartHiAs Bose and Bensamin WiLSON.

The capacitor in form of a Leyden jar was invented in 1745 by Pieter van MusscHENBROEK, and independently
probably a bit earlier by Ewarp von Kvreist, described by J. G. Kriiger in 1746.

In 1746 WiLLiam Warson concluded that "in charging or discharging of a Leyden jar electricity is transferred,
but it is not created or destroyed.” *Under certain circumstances, it was possible to render the electricity in some
bodies more rare than it naturally is, and, by communicating this to other bodies, to give them an additional
quantity, and make their electricity more dense.” This was a first indication of the conservation of charge.
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Similar experiments conducted by Bensamin FrankLin after a talk by Dr. Seence who had come from Scotland
to America, brought him in 1747 to the conclusion that the total amount of electricity in an insulated system is
invariable.” FrankLIN became popular by the introduction of the lightning rod. He realized that lightning was
an electric discharge.

The introduction of the signs for charges is ascribed to both Frankiin and Licatenser (1777): I call that
electricity positive, which, stimulated by blank glass, is transferred to conductiong bodies; the opposite one |
call negative.’

Acepinus and WiLcke found that *ordinary matter’ (this is approximately what we nowadays call matter without
outer electrons) repels itself, particles of the electric fluid’ (nowadays called outer electrons) are repelling
themselves, too, and ordinary matter and the electric fluid attract each other. Further, they realized that glass
and even air is impermeable for the electric fluid despite the fact that the electric interaction acts over larger
distances.

Aepinus explained in 1757 the phenomenon of influence (or electric induction), which had already been observed
by Guericke, Canton, and WiLcke, by the electrostatic forces and the free mobility of the electric fluid. WiLcke
described in 1762 many experiments in connection with influence and argues that dielectric media are polarized
in an electric field.

JosepH PriesTLEY communicates in his work The History and present State of Electricity ... which did not
receive much attention an experiment conducted by Frankrin and repeated by him that inside a metallic box
there is no electric force and the interior sides do not carry any charges. He concludes that charges of equal
sign repel each other with a force inversely proportional to the square of the distance. ’May we not infer from
this experiment that the attraction of electricity is subject to the same laws with that of gravitation, ... since it is
easily demonstrated that were the earth in the form of a shell, a body in the inside of it would not be attracted to
one side more than another?’

In 1760 DanieL BernouLLI conjectured that there might be a 1/r?-law for the electrostatic interaction. In 1769
Joun RosisoN was presumably the first to measure a 1/r"-dependence with n = 2 + 0.06. In 1771 CavenpisH
declared that the interaction falls off with an inverse power less than 3. It took many years until Rosison’s and
Cavenpisu’s results were published. In 1775 Cavenpisu gave comparative results for the conductances of various
materials. (iron, sea water, etc.)

In 1785 Courowms verified by means of the torsion balance invented by MicueLL and independently by himself the
1/r?-law with high precision. This torsion balance served also for the determination of the gravitional constant
(CavenDisH).

In 1813 Poisson showed that the electrostatic potential obeys the equation, now called after him. In 1777 LapLAce
had shown that the operator, now called Laplacian, applied to the gravitational potential in matter free space
yields zero. Porsson had included the regions filled with matter, and explicitely stated that one has an analog
equation in electrostatics. Thus he has introduced the electrostatic potential and has stated that it is constant over
the surface of a conductor. In 1828 George Green continued the calculations of Poisson. We know GREEN’S
theorem (B.67). Green’s functions are named after him.

WiLLiam THomsoN (Lorp Kewvin) (1845) and Mossorti (1847) formulated on the basis of Farapay’s considera-
tions the relation between electric field and polarisation, D = E + 4nP = €E, pp = —4n div P, which we showed
in sect. 6.

30.c Magnetostatics

Magnets were already known in antiquity. Their name is derived from the city of Magnesia in Thessalia, where
load stone (magnetite Fe3O4) occurs naturally, which has the property to attract other load stone and iron.
Already about the year 1000 in China magnetic needles were known to have directive properties. The English
encyclopedist ALexanper NEckawm reports on the compass.

In 1269 The crusader Perrus PereGrINUS DE MaRrICOURT gave a precise description of magnetic stones in his
Epistola de magnete. He laid an iron needle on a round magnetic stone and marked the directions which was
assumed by the needle. He found that these lines formed circles like the meridians of the earth which passed
through two points, which he called poles. He observed that a magnet broken into two pieces constitute again
magnets with North and South poles; thus no magnetic monopoles exist.

In 1588 the idea of two magnetic poles of the earth was first noted by Livio Sanuro. In 1600 WiLLiam GILBERT
gave a comprehensive review in his work De magnete. He emphasizes that the earth is a large magnet.
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Similarly to the force law between charges the force between poles of a magnet was investigated. Newron found
a law close to 1/r3. In 1750 MicueLL found the 1/r2-law based on own measurements and on those of Brook
TavLor and MusscHENBROEK, Similarly in 1760 Tosias Maver and in 1766 Lamsert. This led soon to the idea of
a “magnetic fluid’ in the sense of magnetic charges similarly to electric ones. Couroms put forward the thesis
that magnetism is captured in molecules and only inside molecules both magnetic fluids can be separated and
yield magnetization. (Tavror series are named after Brook TavLor, although they were known before.)

In 1824 Porsson introduced a magnetic potential besides the electric one similarly to the one in subsection 11.b
and introduced magnetization quantitatively. In 1828 this theory was extended by Green.

WiLLiam Taomson (Lorp Kervin) introduced the equations divB = 0 and curlH = 0 for current-free space,
introduced the relation B = H + 4xM, obtained the expression for the magnetic energy density and concluded
that in the relation from the expression B = uH, which had already been given in 1824 by Poisson with a tensor u
for anisotropic crystals the tensor u has to be symmetric. He coined the notions susceptibility and permeability.

30.d Set out for Electrodynamics

For a long time electricity and magnetism were two separate phenomena. A first hint on a connection was the
observation that lightnings made compass needles deflected. Occasionally it happened that during lightning the
magnetization of magnets was reversed or that iron became magnetic: It is reported that in 1731 a flash hit a
box filled with knives and forks, which melted. When they were taken up some nails which laid around were
attracted. In 1681 a ship bound for Boston was hit by a flash. After this stroke the compasses showed into the
opposite direction.

About 1800 the experimental situation improved when Vorra invented what is called the Vorra pile, a prototype
of battery. Now it was possible to generate continuous electric currents with a power improved by a factor 1000
over the electrostatic one.

In 1820 @rsteD Observed that a magnetic needle was deflected by a parallel flowing current. This discovery
spread like wildfire in Europe. Bror and Savart determined in the same year quantitatively the force of a straight
current on a magnet. On the basis of a calculation of Laprace for the straight wire and another experiment with
a V-shaped wire, Bior abstracted in 1824 the force between a magnetic pole and a current element, which is
basically what we now call the law of Bior and Savarr.

In 1820 AmpEre assumed a law of force of the form

K= |1|29§9§f12 (fr(ri2)(dry - dr2) + fa(ri2)(F12 - dro)(Po2 - drz2)),

r
rg=ri—ry fp= =, (30.1)

between two circuits with currents 1, and I,. In comparison with his measurements he obtained f; = A/r%z,
f, = B/rfz. Each one of these contributions yields separately by an appropriate choice of A and B, resp., the
force between two closed circuits, compare (9.21). Ampere had already observed that the force on a line element
of the conductor is perpendicular to it, which is fulfilled by B = —3A/2. Thus his force law includes already the
Lorentz force, although he did not use the notion of a magnetic field.

After some preliminary work by Ampere and Araco, WiLLIamM STURGEON constructed in 1825 an electro-magnet
which could hold twenty times its own weight.

In 1821 Humparey Davy found that the conductance (’conducting power’) of a metal is proportional to its
cross-section and inverse proportional to its length. Geor WiLaeLm Onm found in his Die Galvanische Kette
(1826-1827) the linearity between the current through a conductor and the voltage applied to the conductor. In
1845 Kircunorr formulated the current and the voltage laws (13.10, 13.11) named after him.

In 1812 MicuaeL FaraDAY, a bookbinder journeyman interested in science applied for a position at the Royal
Institution in London. Its director, Humpurey Davy accepted the application, hardly anticipating that he had
accepted one of the greatest future experimentalists to his institute. (After Davy’s death Farapay became director
of the institute.) Shortly after @rstep’s discovery Farapay investigated the known experiments in electricity and
magnetism, which he reviewed in his Historical Sketch of Electro-Magnetism (1821). Inspired by the influence
i.e. the effect of a charge on charges on a conductor, he investigated, whether a current may excite a current on
another circuit. He found that this happened when the current in the first circuit changed. This was the starting
point for the law of induction. (1831)
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When a politician asked Farapay, what his discoveries are worth, he answered ’Presently | do not know, but
may be they can be taxed one day.” Well-known are also Farapay’s investigations on electrolysis. Since he
himself did not enjoy a classical education he asked WiLLiam WHEELER, & philosopher and mathematician from
Cambridge to help him choose appropriate termini. They introduced the names electrode, anode, cathode, ion,
electrolysis which are still in use. Farapay discovered diamagnetism, too.

Farapay often used the concept of electric and magnetic field lines. He made them visible by plaster shavings
and iron filings. These procedures were not new, but they were not popular with mathematical physicists in the
succession of Newron who preferred the concept of long-distance action. Already WiLcke made electric field
lines visible. Many experiments of Farabay on electrostatics were already performed by WiLcke. A survey
of experiments of both physicists on the same topic is given in the History of Physics by Hoppe. The lines of
magnetic force were already made visible by NiccoLo Caseo (1629) and by Petrus PereGriNus (1269). The
reader should consider why electric and magnetic lines of forces can be made visible by prolate bodies of large
dielectric constant and susceptibility, resp.

Farapay had a rather precise imagination of the magnetic field. He considered it as tubes of lines with the
property that the product of magnitude and cross-section is constant, which corresponds to a divergency free
field. He stated that the induced current is proportional to the number of field lines crossed by the circuit; we
say today proportional to the change of the magnetic flux.

In 1890 the name electron was coined by JounstoNe Stoney. Before also (today’s) electrons were called ions.

30.e Electrodynamics and Waves

In 1845 Farapay observed that polarized light transversing glass changes its plain of polarization if a magnetic
field is applied parallel to the ray. From this he conjectured that light is an electromagnetic phenomenon.

In order to obtain a unified theory of electromagnetism there were mainly two directions of effort. One started
out from the law of induction and introduced the vector-potential A, the other stayed mainly with the theory of
action on distance following AMpERE’S investigations and introduced velocity dependent forces.

The vector-potential was introduced on the basis of various considerations. In 1845/48 Franz Neumann found
in that the voltage of induction could be expressed as the time-derivative of the integral ﬁdr - A(r). In 1846 the
vector potential was also introduced by Wiaerm WeBer and WirLiam Taomson (Lorp Kewvin) on the basis of
other considerations which today are no longer that convincing. In 1857 Kircunorr used it.

In 1848 Kircunorr and in 1858 Riemann realized that the equations of forces for charges and currents differed by
a factor which is the square of a velocity c. Two charges q; and g at distance r exert the CouLoms force q102/r?
on each other, two wires of length | at distance r (r < |) carrying currents 1, and I, exert the force ki11,1/(c?r)
on each other with a number k, which may be determined by the reader. The determination of ¢ showed that
this velocity agreed well with that of light. In 1834 first measurements of the propagation of electricity were
performed by WHheatsTONE, in 1849 by Fizeau and Gounerie, and in 1850 by Foucautr. They yielded velocities
which were larger or smaller by factors of two or three-half from the velocity of light. (That some velocities
were larger then light velocity was only possible because some arrangements were not linear).

In 1851 the construction of cables under water for the transmission of electric signals began (Dover-Calais).
In 1854 WiLiam Tromson (Kewvin) found that at sufficiently high frequencies a damped wave propagates with
approximately constant velocity. Kircurorr showed by calculation that the velocity for a circular cross-section
agrees with the velocity ¢, which appears in the ratio of the forces between charges and currents. This value had
been measured shortly before by Weser and KonrLrausch to 3.1x101%my/sec.

Finally it was MaxweLL who succeeded due to his imagination and analytic facilities to present the equations
of electrodynamics in closed form. Studying Farabay’s Experimental Researches he had learned a lot and still
maintained the necessary abstraction. In 1857 he wrote to Forses that he was by no means as yet a convert to
the views which Farabay maintained’, but in 1858 he wrote about Farapay as “the nucleus of everything electric
since 1830.

Maxwert still worked a lot using mechanical analogies when he considered the fields B and D as velocities of an
incompressible fluid. In 1861 he realized that in the equation curlH = %"j the displacement current D/(4x) had
to be added to j, so that conservation of charge was guaranteed. From these equations he found that the velocity
of light in vacuum was given by the factor ¢ appearing in the ratio between forces between charges and currents,
which agreed very well with the measured ones. He concluded: *We can scarcely avoid the interference that
light consists in the transverse undulations of the same medium which is the cause of electric and magnetic
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phenomena.” MaxweLL’s equations contained the potentials @ and A, where he used the gauge we call CouLoms
gauge. In 1864 he presented the complete set of electrodynamic equations in his paper On a Dynamical Theory
of the Electromagnetic Field. In 1871 his monograph Treatise on Electricity and Magnetism was published.

In 1867 Lupvic VaLentiN Lorenz published his theory of electromagnetism, which contained the displacement
current and the expressions (21.14) and (21.15) for the retarded potentials in which he had used the gauge named
after him. The paper was based on the potential theory of Franz Neumann. In 1858 Riemann had found the
retarded potentials, too. However, his paper was published only in 1867 together with that of Lorenz. Much
of what Lupvic Lorenz found, was later attributed to the Dutch Henprick Lorentz who wrote comprehensive
papers on electrodynamics. This might be also due to their nearly equal names as well as MaxweLL’s inadequate
criticism (1868) *From the assumptions of both these papers we may draw the conclusions, first, that action and
reaction are not always equal and opposite, and second, that apparatus may be constructed to generate any
amount of work from its resources.” Ironically Maxwerr did not realize that the fields contained energy and
momentum. The Lorentz-Lorenz relation (1880) which is equivalent to the CrLaustus-Mossortr relation (6.34)
when one replaces e by the square n? of the index of refraction goes back to both of them.

In his Treatise on Electricity and Magnetism MaxweLL derived the stress tensor of an electromagnetic field.
The Poynting vector as the current density of electromagnetic energy was found by Poynting (1884) and by
Heavisioe (1885). In 1893 J.J. THomson finally found that electromagnetic momentum can be expressed by the
PoynTING Vector.

In 1889 Heavisioe gave the expression (1.17) for the force on a charge moving in a magnetic field. J.J. THomson
who investigated cathode rays, had given it as half this amount in 1881. In 1895 Lorentz gives the correct result
in his treatise. Today it is called Lorentz force. Already in 1864 MaxweLL gave the contribution v x B to the
electromotive force in a moving body.

Already WiLckEe (1758) and Farapay (1837) introduced the notion of polarization of an insulator. The idea that
magnetization is related to atomic currents was already found in the work of Couroms, AMPERE and THOMSON
(Keviv). This connection is not clearly stated in MaxweLt’s formulation. It is the merit of Lorentz that in 1895
he introduced in his Elektronentheorie the fields E and B as fundamental fields and clarified that D and H are
due to polarization and magnetization. ’Seat of the electromagnetic field is the empty space. In this space there
is only one electric and one magnetic field-vector. This field is generated by atomistic electronic charges, onto
which the fields in turn act ponderomotorically. A connection of the electromagnetic field with the ponderable
matter exists only since the electric elementary charges are rigidly tied to the atomistic building blocks of matter.’
Lorentz was able to provide a clear cut between electrodynamics and the properties of condensed matter.
Avrrrep Lignarp (1898) and Emn Wieckert (1900) determined the potentials of an arbitrarily moving point
charge.

In 1873 MaxweLL already realized that the magnetic field is invariant under a gauge transformation A — A+Vy.
However, he did not consider the consequences for the scalar potential. In 1904 Lorentz gave the general gauge
transformation.

Besides to Lorentz we are indebted to Henrr Poincarg, OLiver Heavisioe and Hemrice Hertz for working out
MaxweLL’s theory more clearly so that it found a broad distribution.

In 1900 and 1903, resp., Larmor and Scawarzscuip introduced the principle of least action for the combined
system of the electromagnetic field and charged particles.

Since 1878 MicueLson and collaborators determined the velocity of light with high precision. Finally Hemrica
Hertz succeeded in 1886 to produce electromagnetic waves (Herrzscher Dipol) and to detect them, initially in
the range of meters, later also shorter ones. In 1890 Wiexer proved the wave-nature of light by reflecting it on
a mirror and obtaining a periodic blackening of the photographic emulsion by the standing waves.

30.f Theory of Relativity

In order to determine the velocity of the earth against the postulated ether MicueLson and MorLey performed
their experiment initially in 1887 with the negative result: No motion against the ether was detected. In 1889
FrrzceraLp postulated that all material objects are contracted in their direction of motion against the ether.
Lorentz gave an expression for this contraction in 1892 up to order v?/c? (Lorentz contraction, subsection
23.b,8). Essential was Lorentz’s observation that the assumption of an aether carried along with matter was
wrong.

In 1887 Voiar realized that the homogeneous equation o® = 0 with the o’ ALemsert operator o (20.13) is form
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invariant under a class of linear transformations of x and t. Larmor gives in his paper Ether and Matter written
in 1898 and published in 1900 already the transformation (23.2). It is unknown whether this had an influence on
Lorentz. Already in 1898 Poncare expressed doubts on the concept of simultaneity. In 1899 Lorentz stated
the transformation called after him, but with an undetermined scale factor, which corresponds to the factor f
after eq. (23.14).

In 1904 Lorentz found that MaxweLL’s equations without charges and currents are invariant under the transfor-
mations (23.2) provided that the fields are transformed in an appropriate way (see section 25). In 1905 PoINCARE
realized that the charge and current densities could be transformed so that the full set of MaxweLL’s equations
are invariant in form under Lorentz transformations (compare sections 24 and 25).

In 1905 EmstemNv without the knowledge of Lorentz’s paper and simultaneously with Poincarg’s work men-
tioned above formulated the theory of special relativity in a general and complete way. He realized that the idea
of a constant velocity of light in all systems of inertia constitutes a reality which governs all physics including
mechanics and not only electrodynamics and which has to replace GavriLeian invariance. The reason that it took
so long to develop the theory of (special) relativity and to convince scientists that it describes the reality, is the
role of time in this theory.

It was (and still is for some persons) difficult to accept that the idea of absolute (that is independent of the

system of inertia) simultaneity has to be abandoned. More on the history can be found in A. Pais, ’Subtle is
the Lord ..”” Albert Einstein, Oxford University Press. Another problem is that now the ether as a system of
reference disappeared.
An elegant formulation of the four-dimensional space was introduced by Minkowskr in 1908, which was consid-
ered by Emste initially as superfluous, but later as very useful. Starting from the special theory of relativity,
which acts in a planar space, Emsteiv developped the general theory of relativity assuming that gravitation
yields a curved space.

30.g From Classical to Quantum Electrodynamics

In 1900 Max Planck derived an interpolation formula between the two limit cases of the energy distribution of a
black body radiator as a function of the frequency radiated, namely the Rayleigh-Jeans law (1900-1905) for low
frequencies and the Wien law (1896) for high frequencies, the Planck radiation law. It agreed excellently with
the observations. A few months later he postulated that this can be explained by the fact that electromagnetic
radiation of frequency v = w/(27) cannot have arbitary energies but only integer multiples of hy, where h is a
new fundamental constant now called Planck constant. This quantization of energy was soon confirmed by the
photoelectric effect: The kinetic energy of electrons emitted from the surface of a metal by means of light is
independent of the intensity of light but depends on its frequency (Lenard 1902).

It took a quarter of a century from this observation to the quantum theory of electrodynamics. First the quantum
theory for the particles which hitherto had been considered point masses had to be developed until it was possible
to quantize the electromagnetic field (P.A.M. Dirac 1927, P. Jordan and W. Pauli, 1928; W. Heisenberg and W.
Pauli, 1929; see e.g. W. Heitler, The Quantum Theory of Radiation).
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31 Gravitational Time Dilatation

3l.a Light Quantum in the Gravitational Field

Finally we will consider an effect of the general theory of relativity, which can be derived in an elementary way,
namely, the different behaviour of clocks in a gravitational potential. The statement is that clocks at different
distances from a massive body run differently fast, those at further distance faster, the closer ones slower. This
is an effect which had been observed in the HareLe-Kearing experiment. In this experiment cesium atomic beam
clocks were carried in an airplane around the earth (J.C. HareLe and R. E. Kearing, Science 177, 166 (1972)).
In this experiment one can observe time dilatation due to different velocities of the airplanes with respect to the
center of the earth; but the effect that clocks run differently in different gravitational potentials is of the same
order of magnitude. We will now explain this second effect.
We give two explanations: The first one uses the conservation of energy. (Actually, the theorem of conservation
of energy does not hold in generally in the general theory of relativity. If however, the space becomes sufficiently
plane at large distances then it is still valid. Therefore we need not consider this objection.) If a body of mass m
falls the height h in a field of gravitation of acceleration g, then it gains SE = mgh of kinetic energy. This holds
at least for masses of velocity v < c.
As a consequence, light quanta will gain energy in falling in the field of gravitation and they loose energy while
climbing against the field. If this were not true, then one could construct a perpetuum mobile by letting particles
and anti-particles falling in the gravitational field, and having them irradiated into light quanta. These could
now move up and recombine to a particle anti-particle pair, where one could extract the gained potential energy
from the system. Since the energies of all masses are changed by 6E = mgh = g—';E, the same has to hold for
light quanta, that is we find for light quanta of energy E = hw
6E ghE gh

ow = T 2n @2 w. (31.2)
This loss of frequency while leaving a gravitational field is known as the red shift in a gravitational field. It
can be measured by means of the Mosseauer effect. A loss of frequency at a height of about 20 m is already
sufficient. Thus if we compare the course of two atomic clocks down and up at a difference of height h, then
one observes that the frequency of the lower clock is smaller by §w. The upper clock is thus faster by a factor of

ow gh
1+ —=1+=. 31.2
t o=l (31.2)

31.b Principle of Equivalence

The general theory of relativity does not make use of quantum theory, i.e. it does not use the relation E = 7iw.
Instead it uses the principle of equivalence. This principle says that a system of reference which moves freely
in the gravitational field behaves like a system of inertia. Let us assume we consider a system which moves
like a freely falling elevator. Let us assume the lower clock is at a certain time relative to the elevator at rest
and radiates upwards with frequency w. It takes the time t = h/c until the light has arrived the upper clock.
During that time the earth and the upper clock have gained the velocity v = gt upwards as seen from the elevator.
Thus an observer at the upper clock will observe a Doppler shift by the frequency 6w = wv/c (for the weak
gravitational field we consider here it is sufficient to consider in subsection 25.e only the contribution linear in
B). Thus we obtain the Doppler shift

ow = =uw, (31.3)

which agrees with the result obtained above.

Now you may ask, how can one apply the principle of equivalence, if the gravitational field does not point
everywhere in the same direction and is of the same strength. Then, indeed, the description becomes more
complicated. Then the description can no longer be founded on a flat space, and one has to dig seriously into
the general theory of relativity.
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Appendices

©2003 Franz Wegner Universitét Heidelberg

A Connection between different Systems of Units

Besides the Gaussian system of units a number of other cgs-systems is used as well as the SI-system (interna-
tional system of units, Grorar-system).

Whereas all electromagnetic quantities in the Gaussian system are expressed in cm, g und s, the Grorai-system
uses besides the mechanical units m, kg und s two other units, A (ampere) und V (volt). They are not indepen-
dent, but related by the unit of energy

1kgm?s2=1J=1Ws=1AVs. (A1)

The conversion of some conventional systems of units can be described by three conversion factors g, po and
W. The factors ¢ and o (known as the dielectric constant and permeability constant of the vacuum in the
Sl-system) and the interlinking factor

Y = C+/eoko (A2)

can carry dimensions whereas i is a dimensionless number. One distinguishes between rational systems y = 4x)
and non-rational systems (v = 1). The conversion factors of some conventional systems of units are

System of Units € Ho Yy W
GAUSSIAN 1 1 c 1
Electrostatic (esu) 1 c? 1 1
Electromagnetic (emu) c? 1 1 1
HEeAVISIDE-LORENTZ 1 1 c 4=n
Giorat (S) )™ X_r?] 1 4n

The field intensities are expressed in Gaussian units by those of other systems (indicated by an asterisk) in the
following way

E = VyeE" analogously electric potential

D= \ll///EoD’F

Sy \/EP* analogously charge, current and their densities,

electric moments (A3)
B = \y/uoB* analogously vector potential, magnetic flux
H = \yuoH"
M = Juo/YyM* analogously magnetic moments
One has for the quantities connected with conductivity and resistance
o =1/(ye)o™  analogously capacity
R = yeR* analogously inductance (A.49)

For the electric and magnetic susceptibilities one obtains

X =x"1v. (A.5)
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We obtain the following equations for arbitrary systems of units (the * has now been removed): MaxweLL’s
equations in matter read now

1. A4,
culH = =0+ Zjp), (A.6)
Y ¥
divD = 4—npf, (A7)
¥
1.
curlE = --=B, (A.8)
Y
divB = 0. (A.9)
The material equations read
D = EoE + %P, (Alo)
H = iB— 4—nM. (A.11)
Ho 1/
For the Lorentz force one obtains B
K = q(E + 222 (A.12)
For the energy density u and the PoynTinG vector S on obtains
u = if(E-de-dB), (A13)
4n
s = Yeyn, (A.14)
4n

Whereas in Gaussian units all the fields E, D, P, B, H und M are measured in units

yJdyn/em = 4Jerg/em® (A.15)

the Giorar system measures E in V/m, D and P in As/m?, B in Vs/m?, H and M in A/m. Depending on the
quantity 1 dyn¥2 cm=1 in units of the Gaussian system corresponds to (analogously for the quantities listed in
(A.3) and (A.4))

E = 3.10°V/m (A.16)
D = 107°/(12m) As/m? (A.17)
P = 10°°/3 As/m? (A.18)
B = 107%Vsm? (A.19)
H = 10%/(4n) A/m (A.20)
M = 10°A/m. (A.21)

For resistors one has ¢"1230Q. For precise calculations the factors 3 (including the 3 in 12 = 4 - 3) are to be
replaced by the factor 2.99792458. This number multiplied by 108 mys is the speed of light.
There are special names for the following often used units in the Gaussian and electromagnetic system

magnetic induction 1 dyn2 cm™1=1 G (GauR)
magnetic field intensity 1 dyn%2 cm~1=1 Oe (Oerstedt)
magnetic flux 1 dyn'?2 cm =1 Mx (Maxwell)

The following quantities besides Ampere and Volt have their own names in the Sl-system:

charge 1 As =1C (Coulomb)
resistance 1V/A =1 Q (Ohm)
conductance 1 A/V =1S (Siemens)
capacitance 1 As/V =1F (Farad)
inductivity 1 Vs/A =1 H (Henry)
magnetic flux 1Vs =1Whb (Weber)

magnetic induction 1 Vs/m?=1T (Tesla).
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Historically the international or Sl system was derived from the electromagnetic system. Since the units of this
system where inconveniently large or small one introduced as unit for the current 1 A = 10~ dyn'/? and for
the voltage 1 V = 108 dyn'/?2 cm s~1. Giora realized that changing to mks-units one obtains the relation (A.1).
However, one changed also from non-rational to rational units.
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B Formulaefor Vector Calculus

The reader is asked to solve the exercises B.11, B.15, B.34-B.50 and the exercise after B.71 by her- or himself
or to take the results from the script where they are used.

B.a Vector Algebra

B.a.« Summation Convention and Orthonormal Basis

We use the summation convention which says that summation is performed over all indices, which appear twice
in a product. Therefore
a=a,e, (B.1)

stands for

3
a= Z d,€, = a1€1 + azey + azes.

a=1

In the following we assume that the vectors e, e, e in (B.1) represent an orthonormal and space independent
right-handed basis. Then as, az, az are the components of the vector a with respect to the basis es, e, es.

B.a,8 Scalar Product

The scalar product is defined by

a-b=b-a=a,b,, (B.2)
in particular we have
a [ lfora=p
€y - Eﬁ = (50("3 = { 0 for + ﬁ (83)
with the Kronecker symbol 6, 5 which is symmetric in its indices, and
a-e, =a,. (B.4)
B.a.y Vector Product
The vector product is given by
axb=-bxa= e(,,ﬁ,ya(,bﬁey = (agbg — agbz)el + (agbl — a1b3)82 + (albz - agbl)e;; (B.5)

with the total antisymmetric Levi-Civita symbol

+l for (a’ﬁ’ ’)/) = (1’ 2’ 3)9 (2? 35 1)’ (3’ 19 2)
€py =1 -1 for(a.p.y) =(1.3,2).(2.1,3).(3.2.1) (B.6)
0  otherwise

Using determinants it can be written

6(1,1 6,8,1 6y,1
6(1,2 6,8,2 6y,2
603 03 Oy3

(B.7)

€ By =

From (B.5) one obtains by multiplication with a,, bg and e, and summation

ado bg €o
ag bz es

axb= (B.8)

ap b el‘

In particular one obtains
axa=0 (B.9)
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and
€y X €3 = €48,8y. (B.10)
Express the sum
CapyCmy = (B.11)
by means of Kronecker deltas.
B.a.5 Multiple Products
For the scalar triple product one has
aa b1 ¢
[a,b,c]=(axb)-c=a-(bxc)=egyapc,=| a2 by ¢ (B.12)
as b3 C3
One has
[a,b,c] =[b,c,a] =[c,a,b] = —[a,c,b] = —[b,a,c] = —[c,b,a]. (B.13)
For the vector triple product one has
ax (bxc)=(ac)b — (ab)c. (B.14)
Express the quadruple product
(axb)-(cxd)= (B.15)

by means of (B.11) or (B.14) in terms of scalar products.

B.b Vector Analysis

B.b.a Differentiation in Space, Del Operator

Differentiation in space is performed by means of the del-Operator V. It is a differential operator with vector
properties. In cartesian coordinates it is written

V = €404, (B.16)
where 9, stands for 9/9x,. One calls
VO(r) = €,9,P(r) = grad d(r) (B.17)
the gradient,
(b(r)V)a(r) = b.(r)d.a(r) = (b(r) grad)a(r) (B.18)
the vector gradient
va(r) = d,a,.(r) = diva(r) (B.19)
the divergence and
Vxa(r) = (eq X €3)0085(r) = €4,5,0285(r)e, = curla(r) (B.20)

the curl.
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B.b.3 Second Derivatives, Laplacian

As far as differentiations do commute one has

VxV=0, (B.21)
from which
curl grad®(r) = 0, (B.22)
divceurla(r) = 0 (B.23)
follows. The scalar product
V-V =0,0,=2 (B.24)
is called the Laplacian. Therefore one has
div grad ®(r) = A®(r). (B.25)
One obtains
aa(r) = grad diva(r) — curl curla(r), (B.26)

by replacing a and b by V in (B.14) and bringing the vector ¢ always to the right.

B.b.y Derivatives of Products

Application of the del operator onto a product of two factors yields according to the product rule two contri-
butions. In one contribution one differentiates the first factor and keeps the second one constant, in the other
contribution one differentiates the second factor and keeps the first constant. Then the expressions have to be
rearranged, so that the constant factors are to the left, those to be differentiated to the right of the del operator.
In doing this one has to keep the vector character of the del in mind. Then one obtains

grad(®¥) = ®grad¥ + ¥Ygrad® (B.27)
div(®a) = ddiva+a- gradd (B.28)
curl(®@a) = dcurla+ (grad®)xa (B.29)

div@axb) = b-curla—a- curlb (B.30)

curl(axb) = adivb-bdiva+ (bgrad)a- (agrad)b (B.31)

grad(a-b) = ax curlb+bx curla+ (bgrad)a+ (agrad)b (B.32)

A(DY) = OAY +WPAD + 2(grad @) - (grad \P). (B.33)

B.c Special Expressions

Calculate for r = |r| and constant vector ¢

gradr? = (B.34)
divr = (B.35)

curlr = (B.36)
grad(c-r) = (B.37)
(cgrad)r = (B.38)
grad f(r) = (B.39)
divicxr) = (B.40)
curl(cxr) = (B.41)

grad % = (B.42)
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div ; - (B.43)
curl ; = (B.44)
div r—rs - (B.45)
curl r—rs - (B.46)
grad % - (B.47)
div % - (B.48)
curl % - (B.49)
1
grad o " (B.50)
with the exception of singular points.
B.d Integral Theorems
B.d.a« Line Integrals
For a scalar or a vector field A(r) one has
2
f (drV)A(r) = A(r2) — A(ry), (B.51)
ra
that is
M2
f drgrad®(r) = ®@(rp) — d(rq), (B.52)
r
2
(drgrad)a(r) = a(ry) —a(ry). (B.53)

r

B.d,8 Surface Integrals

According to Stokes a surface integral over F of the form

f (df x V)A(r) = 95 drA(r) (B.54)
F oF

can be rewritten as a line integral over the curve 0F bounding the surface. The direction is given by the right-
hand rule; that is, if the thumb of your right hand points in the direction of df, your fingers curve in the direction
dr of the line integral,

f df x grad®d(r) = 95 dro(r), (B.55)
F aF
f df - curla(r) = 9§ dr - a(r). (B.56)
F oF
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B.d.y Volume Integrals

According to Gauss a volume integral of the form

f d3rVA(r) = f dfA(r) (B.57)
\% Vv

can be converted into an integral over the surface 9V of the volume. The vector df points out of the volume. In
particular one has

f d*rgrad d(r) = f dfa(r), (B.58)
\% v

fd3rdiva(r) = df - a(r), (B.59)
\% v

fdsr curla(r) = df x a(r). (B.60)
\% Vv

B.d.d Volume Integrals of Products

If one substitutes products for @(r) or a(r) in equations (B.58-B.60) and applies equations (B.27-B.30), then
one obtains

fd3r®(r)grad‘P(r)+fd3r‘P(r)grach(r) = f dfd(r)¥(r), (B.61)
\% \% ov
fd3r®(r)diva(r)+fdsra(r)~ grad®d(r) = f df - a(r)o(r), (B.62)
\% \% ov
fd3r®(r)curla(r)+fdsr(gradq)(r))xa(r) = f df x a(r)®(r), (B.63)
\% \% ov
f drb(r) - curla(r) - f d®ra(r) - curlb(r) = f df - (a(r) x b(r)). (B.64)
\% \% ov

These equations allow the transformation of a volume integral into another one and a surface integral. This is the
generalization of integration by parts from one dimension to three. In many cases the surface integral vanishes
in the limit of infinite volume, so that the equations (B.61-B.64) allow the conversion from one volume integral
into another one.

If one replaces a(r) in (B.62) by curla(r) or b(r) in (B.64) by grad ®(r), then one obtains with (B.22) and
(B.23)

fd3rgradd>(r)- curla(r):f df - (a(r) x grad(I)(r)):f df - (@(r) curla(r)). (B.65)
\% ov ov

Similarly one obtains from (B.63)

fdsr grad ®(r) x grad¥(r) = f df x (grad ¥(r))®(r) = —f df x (grad @(r))¥(r). (B.66)
\Y% v %

If one replaces a(r) in (B.59) by ® grad ¥ — W grad @, then one obtains Green’s theorem

fd‘"’r(d)(r)&l’(r) —¥(raa(r)) = f df - (O(r) grad ¥(r) — ¥(r) grad @(r)). (B.67)
\% ov
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B.e The Laplacian of 1/r and Related Expressions

B.e.w The Laplacian of 1/r

For r # 0 one finds A(1/r) = 0. If one evaluates the integral over a sphere of radius R by use of (B.59),

fA(%)oFr:fdf- grad(%):—frrdg-r—rgz—m

with the solid-angle element dQ, then one obtains —4x. Therefore one writes
1 3
8(2) = ~4ma°(r),

where Dirac’s delta function” 63(r) (actually a distribution) has the property

f &ri(ne(r - ro) ={ flto) HroeV
\%

otherwise.

From
c 1
A =CA
Ir—r| |r—r/|

one obtains with (B.26,B.43,B.44)

= —4ncs3(r — r')

c c c-(r-r cx(r-r
+ curl curl = grad g + curl #
Ir —r’| Ir —r’| r—r3 r—r3

Determine the §-function contributions in (B.45) to (B.49). What is the dimension of §3(r)?

4nes3(r —r') = —grad div

B.e.3 Representation of a Vector Field as a Sum of an Irrotational and a Divergence-free Field

We rewrite the vector field a(r) in the form
a(r) = fdsr’a(r’)és(r -r)
and obtain from (B.71), since a(r’) does not depend on r

a(r) = fd?‘r grad —~2 (r) (r—r) fd3r Cula(r)x(r—r)’

r/|3 | _ r/|3

which may be written as
a(r) = —grad @(r) + curl A(r)

with
_ 1 3, a(r) - (r-r)
o) = 4nfdr Ir—r3
_ 1 [ ppa)x(r-r)
Ar) = 4nfdr rarTEa

(B.68)

(B.69)

(B.70)

(B.71)

(B.72)

(B.73)

(B.74)

(B.75)

(B.76)

If the integrals (B.75) and (B.76) exist, then one obtains in this way a representation of a(r) as sum of the

irrotational field — grad @(r) and the divergence free field curl A(r). With (B.48) one finds

divA(r)=0

(B.77)
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C Spherical Harmonics

C.a Eigenvalue Problem and Separation of Variables

We are looking for the eigen functions Y of

with

— i ﬁ sin gi + L 6_2
~ sing 96 90 sinZg 0p?’
where the operators (multiplication by functions and differentiation) apply from right to left (compare 5.16).
One introduces the ansatz

Q (C.2)

Y = g(cosd)h(¢). (C.3)
With d d d
_ ag _ 9 __ [1_2%
& =cosb, 10 smé’d oS0 1-¢ ae (C.49)
one obtains by insertion into the eigenvalue equation and division by h(¢)
d 249, 9 d*h(9) _
d_f((l -& )E) + 1_—52( 2 /h(#)) = 19(8). (C.5)

This equation can only be fulfilled, if d2h(¢)/d¢?/h(¢) is constant. Since moreover one requires h(¢+2x) = h(¢),
it follows that _
h(¢) = €™ with integer m. (C.6)

This reduces the differential equation for g to

d_g) _m?g() _

d
@-g) 1= =106 C7)

C.b Associated Lecenpre Functions

Considering that (at least for positive m) the factor e™ comes from the analytic function (x + iy)™ =
r™(sin 6)™e'™ it seems appropriate to extract a factor (sin#)™ out of g

g(é) = (sinOTG () = (1 - &)™?G(9), (C.8)
so that one obtains the equation
—m(m + 1)G(¢) - 2(M + 1)£G'(€) + (L - £9)G” = AG(¢) (C.9)

for G.
For G we may assume a TavLor expansion

GE) = Y ad, G'(E) =) kadl, 6”@ =) kik-1ag? (C.10)
k k

k

and find by comparison of the coefficients
[m(m+ 1)+ 2(m + 1)k + k(k — 1) + AJax = (k + 2)(k + 1)ak2. (C.11)

If we put
A=-I(1+1), (C.12)
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then the recurrence formula reads

a2 (M+k+1+1D)(Mm+k-1)
A K+ 1)(k + 2)

(C.13)

The series expansion comes to an end at finite k, if the numerator vanishes, in particular for integer not negative
k = I —m. We continue to investigate this case. Without closer consideration we mention that in the other cases
the function Y develops a nonanalyticity at cos g = +1.

The leading term has then the coefficient a)_,. Application of the recurrence formula yields

 (l-m(I-m-1)
A_m2 = —Wahm
(- r(nz)|(l__1r)nz|_ Ol (C.14)
C-m(-m-1)(-m-2)(-m-3)
B = @-1)@2-3)2-4 A-m
o (=m)(l=m—1)(1-m—2)(I—m—3)I(l - 1)
- Q- D@I-3)2021-2)2 A-m. (C.19)
(I — m)H1(21 - 2K)!
Bom-2k = (_)k(l “m =201 — K20k ™ (C.16)
Conventionally one chooses )
a|,m = W (Cl?)
Then it follows that
(=)m (21 - 2k)! Il e
& = Zu Zk: (1= m - 2K)! k(I —k)!(_)kfl * (C.18)
(_)m | dl+m§2I—2k (_)m dl+m(§;2 _ l)l
T zk: (k)(_)k dg=m 2 aggm (C.19)
The solutions g(¢) in the form |
P = - Ol S ey (c.20)

2111 dé:l+m

are called associated LeGenpre functions. Y m(6, ¢) is given by P["(cos 6)e'™ apart from the normalization.
The differential equation for g depends only on m?, but not on the sign of m. Therefore we compare P"and
P,;™ Bem > 0, then it follows that

gi-m I-m l—m dk(f _ 1)| dl—wk(§ + 1)|
dg-m (52 _ l)' 24 ( K ) dek dé-mk
I-m
_ (= m)tmn B .
) ; K=~ m -1~ Kim + R & D E+ D™ (C.21)
dl+m | I-m l+m dm+k(§ _ 1)I dl—k(§+ 1)|
d§|+m (fz - 1) & K + m) d§m+k df'*k
I-m
(I+ m)tm e
= 2w - m i € D TERDE (€22)
Comparison shows
-m -m! em
PEE = (m O P (C.23)

that is, apart from the normalization both solutions agree.
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C.c Orthogonality and Normalization
We consider the normalization integral
21 . .
Nimny = f d¢f d cos 9P"(cos f)e "™ P} (cos H)e'™?. (C.24)
0 -1

The integration over ¢ yields

+1
Nimrm = 2%0mmw j:l P{n(f)Pﬂn(f)df

|1 1 +1
— 2w [ PR
2l + m)! S
= oo 22|“2|::, (C.25)
with 14l 2 (] 2 |
, +oghmg2 - 1)l i -mg2 — 1)V
=y f 1 d(j_:m ) d(;,_m ) g, (C.26)
Partial integration yields
, dl+m 2 _ 1 | dl’—m—l 2 _ 1 I
I =(—)m[ ﬁ.m ) df./(_fm T (C.27)

The first factor in square brackets contains at least —m, the second m + 1 zeroes at £ = +1. The contents in
square brackets vanishes therefore. Thus 1! is independent of m for -I < m < I’. For I’ > 1 it follows that
I = 1] = 0, since the first factor of the integrand of 1| vanishes. For I’ < | one obtains I} = 1"/ = 0, since the

second factor of the integrand of 1" vanishes. For | = I we evaluate

III":'I _ ||” = () f:l %@2 ~-1)'de. (C.28)

The first factor in the integrand is the constant (2I)!

1
n_ N
= (2! fl (1-£2)dé. (C.29)

The last integral yields 22+1112/(21 + 1)! (one obtains this by writing the integrand (1 +£)'(1—¢)" and performing
partial integration | times, by always differentiating the power of 1 — £ and integrating that of 1 + £. This yields
the norm

(I+m) 2
Nim 2 / . .
Imirmy = n(l—m)|2l+16'6mm (C.30)
Thus the normalized spherical harmonics read
21+ 1 (1—m)! ;
Y — pm |m¢' 31
im(6, @) y Y [(cos H)e (C.31)

C.d Remark on Completeness
If we expand a function f which is analytic in the Cartesian coordinates X, y, z in the vicinity of the origin in a
TAYLOR expansion

f(r) = Za. WXyizk = Z " (6, ), (C.32)

ijk
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then the contributions proportional to r" are contained in those with i + j + k = n. These are in total (n + 1) +
n+(n-1)+..=Mn+2)(n+1)/2terms

=

n—-

0(@.6) = > Y an i) ICK (€33)

n
k=0 j=0

On the other hand we may represent the function f, equally well by the functions Y,m(6, ¢) = \/Tle‘(cos 0)elm,
since they can be written (sin 6)™Me'™ = ((x = iy)/r)™ multiplied by a polynomial in cos of order | — |m|. The
appearing powers of the cos @ can be written (cos 6)' M- = (z/r)"M-2((x2 + y2 + 72)/r?)X. In addition we
introduce a factor ((x2 + y? + z2)/r?)™/2, Then we obtain contributions for | = n,n —2,n —4, ... Since m runs
from —1 to I, one obtains intotal 2n+ 1)+ (2n-3)+ 2n - 7) + ... = (n + 2)(n + 1)/2 linearly independent
(since orthogonal) contributions. Therefore the space of these functions has the same dimension as that of the
f,’s. Thus we may express each f, as a linear combination of the spherical harmonics.
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