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23 L Transformation

23.a G and L Transformation

The equations of N’s mechanics are invariant under the G transformation (G invariance)

x′ = x, y′ = y, z′ = z − vt, t′ = t. (23.1)

We will see in the following that M’s equations are invariant under appropriate transformations of fields,
currents and charges against linear transformations of the coordinates x, y, z, and t, which leave the velocity of
light invariant (L invariance). Such a transformation reads

x′ = x, y′ = y, z′ =
z − vt

√

1 − v2

c2

, t′ =
t − vz

c2

√

1 − v2

c2

. (23.2)

Consider two charges q und −q, which are for t ≤ 0 at the same point and which are also for t ≥ ∆t at the same
point, which move however in the time interval 0 < t < ∆t against each other. They separate at time 0 at r0 and
they meet again at time ∆t at r1. They generate according to (21.14) and (21.15) a field, which propagates with
light-velocity. It is different from zero at point r at time t only, if t > |r − r0|/c and t < ∆t + |r − r1|/c holds.
This should hold independently of the system of inertia in which we consider the wave. (We need only assume
that the charges do not move faster than with light-velocity.) If we choose an infinitesimal ∆t then the light flash
arrives at time t = |r − r0|/c, since it propagates with light-velocity. Since the L transformation is not in
agreement with the laws of N’s mechanics and the G transformation not with M’s equations
(in a moving inertial frame light would have a velocity dependent on the direction of light-propagation) the
question arises which of the three following possibilities is realized in nature:
(i) there is a preferred system of inertia for electrodynamics, in which M’s equations hold (ether-
hypothesis),
(ii) N’s mechanics has to be modified
(iii) M’s equations have to be modified.

The decision can only be made experimentally: An essential experiment
to refute (i) is the M-M experiment: A light beam hits a
half-transparent mirror Sph, is split into two beams, which are reflected
at mirror Sp1 and Sp2, resp. at distance l and combined again at the
half-transparent mirror. One observes the interference fringes of both
beams at B. If the apparatus moves with velocity v in the direction of
the mirror Sp1, then the time t1 the light needs to propagate from the
half-transparent mirror to Sp1 and back is

t1 =
l

c − v
+

l
c + v

=
2lc

c2 − v2
=

2l
c

(1 +
v2

c2
+ ...). (23.3)
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The time t2 the light needs to the mirror Sp2 is

t2 =
2l

√
c2 − v2

=
2l
c

(1 +
v2

2c2
+ ...), (23.4)
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since the light velocity c has to be separated into the two components v and
√

c2 − v2. Thus there remains the
time difference

t1 − t2 =
lv2

c3
, (23.5)

which would be measurable by a displacement of the interference fringes, if for example the velocity v is the
velocity of the earth against the sun. This displacement has not been observed. One may object that this is due
to a drag of the ether by the earth. There are however many other experiments, which are all in agreement with
L invariance, i.e. the constancy of the velocity of light in vacuum independent of the system of inertia.
The consequences in mechanics for particles with velocities comparable to the velocity of light in particular for
elementary particles have confirmed L invariance very well.
Development of the Theory of Relativity
In order to determine the velocity of the earth against the postulated ether M and M performed
their experiment initially in 1887 with the negative result: No motion against the ether was detected. In order
to explain this F (1889) and L (1892) postulated that all material objects are contracted in their
direction of motion against the ether (compare L contraction, subsection 23.b.β).
In the following we will develop the idea of a four-dimensional space-time, in which one may perform trans-
formations similar to orthogonal transformations in three-dimensional space, to which we are used. However
this space is not a Eean space, i.e. a space with definite metric. Instead space and time have a metric
with different sign (see the metric tensor g, eq. 23.10). This space is also called M space. We use the
modern four-dimensional notation introduced by M in 1908.
Starting from the basic ideas of special relativity
The laws of nature and the results of experiments in a system of inertia are independent of the motion of such a
system as whole.
The velocity of light is the same in each system of inertia and independent of the velocity of the source
we will introduce the L-invariant formulation of M’s equations and of relativistic mechanics.

23.b L Transformation

We introduce the notation
x0 = ct, x1 = x, x2 = y, x3 = z (23.6)

or shortly
(xµ) = (ct, r) (23.7)

and denotes them as the contravariant components of the vector. Further one introduces

(xµ) = (ct,−r). (23.8)

which are called covariant components of the vector. Then we may write

xµ = gµνxν, xµ = gµνx
ν (23.9)

(summation convention)

(g··) = (g··) =





























1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





























. (23.10)

One calls g the metric tensor. Generally one has the rules for lifting and lowering of indices

C · ·µ · · = gµνC · ·ν · ·, C · ·µ · · = gµνC · ·ν · · (23.11)

We introduce the convention: Indices κ, λ, µ, ν run from 0 to 3, indices α, β, γ, ... from 1 to 3. One observes
that according to (23.11) g νµ = gµκgκν = δ νµ , gµν = gµκgκν = δ

µ
ν with the K delta.

If a light-flash is generated at time t = 0 at r = 0, then its wave front is described by

s2 = c2t2 − r2 = xµxµ = 0. (23.12)
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We denote the system described by the coordinates xµ by S . Now we postulate with E: Light in vacuum
propagates in each inertial system with the same velocity c. (principle of the constance of light velocity) Then
the propagation of the light flash in the uniformly moving system S ′ whose origin agrees at t = t′ = 0 with that
of S is given by

s′2 = x′µx′µ = 0. (23.13)

Requiring a homogeneous space-time continuum the transformation between x′ and x has to be linear

x′µ = Λµνx
ν, (23.14)

and s′2 = f s2 with some constant f has to hold. If we require that space is isotropic and no system of inertia is
preferred, then f = 1 has to hold. The condition s′2 = s2 implies

s′2 = x′µx′µ = Λ
µ
νx
νΛ κµ xκ = s2 = xνδ κν xκ, (23.15)

which is fulfilled for arbitrary x, if
Λ
µ
νΛ

κ
µ = δ

κ
ν (23.16)

holds. The inverse transformation of (23.14) follows from

xκ = δ κν xν = Λ κµ Λ
µ
νx
ν = Λ κµ x′µ. (23.17)

From (23.16) one obtains in particular for ν = κ = 0 the relation (Λ00)2 −∑

α(Λ
α0)2 = 1. Note that Λα0 = +Λ

α0,
Λ 0
α = −Λα0. Thus one has |Λ00| > 1. One distinguishes between transformations with positive and negative
Λ00, since there is no continuous transition between these two classes. The condition Λ00 > 0 means that
Λ00 = dt

dt′ |r′ > 0, that is a clock which is at rest in S ′ changes its time seen from S with the same direction as the
clock at rest in S (and not backwards).
Finally we can make a statement on det(Λµν). From (23.16) it follows that

Λ
µ
νgµλΛ

λ
ρg
ρκ = δ κν . (23.18)

Using the theorem on the multiplication of determinants we obtain

det(Λµν)
2 det(gµλ) det(gρκ) = 1. (23.19)

Since det(gµλ) = det(gρκ) = −1 one obtains
det(Λµν) = ±1. (23.20)

If we consider only a right-basis-system then we have det(Λµν) = +1. Transformations which fulfill

Λ00 > 0, det(Λµν) = 1 (23.21)

are called proper L transformations.
Eq. (23.21) has the consequence that the fourdimensional space time volume is invariant

dt′d3r′ =
1
c

d4x′ =
1
c
∂(x′0, x′1, x′2, x′3)
∂(x0, x1, x2, x3)

d4x =
1
c

det(Λµν)d
4x =

1
c

d4x = dtd3r. (23.22)

If the direction of the z- and the z’-axes point into the direction of the relative velocity between both inertial
systems and x′ = x, y′ = y, then the special transformation (23.2) follows. The corresponding matrix Λ reads

(Λµν) =





























γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ





























(23.23)

with

γ =
1

√

1 − v2

c2

, β =
v
c
. (23.24)
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23.b.α Time Dilatation

We consider now a clock in the system S which is at rest in S ′. From

t = γ(t′ +
vz′

c2
) (23.25)

we find that

Λ 0
0 =

∂t
∂t′

∣

∣

∣

∣

∣

r′
= γ. (23.26)

Thus the clock at rest in S ′ runs slower when seen from S

∆t′ =
∂t′

∂t

∣

∣

∣

∣

∣

r′
∆t =

1
γ
∆t =

√

1 − v2

c2
∆t. (23.27)

This phenomenon is called time dilatation.

23.b.β L Contraction

From
z′ = γ(z − vt) (23.28)

one obtains

Λ3
3 =
∂z′

∂z

∣

∣

∣

∣

∣

t
= γ (23.29)

and therefore

∆z =
∂z
∂z′

∣

∣

∣

∣

∣

t
∆z′ =

1
γ
∆z′ =

√

1 − v2

c2
∆z′. (23.30)

A length-meter which is at rest in S ′ and is extended in the direction of the relative movement, appears conse-
quently contracted in S . This is called L contraction or FG-L contraction. However, the
distances perpendicular to the velocity are unaltered: ∆x′ = ∆x, ∆y′ = ∆y.

This contraction has the effect that in (23.3) the length l has to be replaced by l
√

1 − v2

c2 . Then the two times the
light has to travel agree independent of the velocity v, t1 = t2.
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24 Four-Scalars and Four-Vectors

24.a Distance and Proper Time as Four-Scalars

A quantity which is invariant under L transformations is
called four-scalar.
Example: Given two points in space-time (events) (xµ), ( x̄µ). The
quantity

s2 = (xµ − x̄µ)(xµ − x̄µ) (24.1)

is a four-scalar. It assumes the same number in all systems of inertia.
Especially for x̄µ = 0 (origin) it is s2 = xµxµ.

x

x

0=ct

3

future

past

distance

space-like lig
ht 

co
ne

24.a.α Space-like distance s2 < 0

If s2 < 0, then there are systems of inertia, in which both events occur at the same time x′0 = 0. If for example
(xµ) = (ct, 0, 0, z). Then one obtains from 23.2)

t′ =
t − vz

c2

√

1 − v2

c2

, z′ =
z − vt

√

1 − v2

c2

(24.2)

with v = tc2/z

t′ = 0, z′ =
z(1 − v2

c2 )
√

1 − v2

c2

= z

√

1 − v2

c2
= ±

√

z2 − c2t2 = ±
√
−s2. (24.3)

Thus one calls such two events space-like separated.

24.a.β Time-like distance s2 > 0

In this case there exists a system of inertia in which both events take place at the same point in space (x′ = 0).
We choose v = z/t in the transformation (23.2) and obtain

t′ =
t(1 − v2

c2 )
√

1 − v2

c2

= t

√

1 − v2

c2
= sign (t)

√

t2 − z2

c2
= sign (t)

s
c
, z′ = 0. (24.4)

One event takes place before the other that is the sign of t′ agrees with that of t.
Proper Time τ
The proper time τ is the time which passes in the rest system under consideration. If a point moves with velocity
v(t) its proper time varies as

dτ =
ds
c
=

√

1 − v2

c2
dt, (24.5)

that is

τ =

∫ t2

t1

√

1 − v2(t)
c2

dt. (24.6)

The proper time is independent of the system of inertia, thus it is a four-scalar.

24.a.γ Light-like distance s2 = 0

If a light flash propagates directly from one event to another, then the distance of these two events s = 0. The
time measured in a system of inertia depends on the system of inertia and may be arbitrarily long or short,
however, the sequence of the events (under proper L transformation) cannot be reversed.
Another four-scalar is the charge.



82 H L Invariance of Electrodynamics

24.b World Velocity as Four-Vector

If a four-component quantity (Aµ) transforms by the transition from one system of inertia to another as the
space-time coordinates (xµ), then it is a four-vector

A′µ = ΛµνA
ν. (24.7)

An example is the world velocity

uµ =
dxµ

dτ
=

dxµ

dt
dt
dτ
= γvµ with v0 =

dx0

dt
= c

dt
dt
= c. (24.8)

The world velocity (uµ) = (cγ, vγ) is a four-vector. Since τ is invariant under L transformations, its
components transform like (xµ). However, (c, v) is not a four-vector. One has

uµuµ = (c2 − v2)γ2 = c2. (24.9)

Quite generally the scalar product of two four-vectors (Aµ) and (Bµ) is a four-scalar

A′µB′µ = Λ
µ
νΛ

κ
µ AνBκ = δ

κ
νA
νBκ = AνBν. (24.10)

We show the following lemma: If (aµ) is an arbitrary four-vector (or one has a complete set of four-vectors) and
aµbµ is a four-scalar then (bµ) is a four-vector too. Proof:

aµbµ = a′κb′κ = Λ
κ
µa
µb′κ. (24.11)

Since this holds for all (aµ) or for a complete set, one has bµ = Λκµb
′
κ. This, however, is the transformation

formula (23.17) for four-vectors.
Addition theorem for velocities
The system of inertia S ′ moves with velocity v in z-direction with respect to S . A point in S ′ moves with
velocity w′ also in z-direction. With which velocity does the point move in S ? We have

z =
z′ + vt′
√

1 − v2

c2

, t =
t′ + vz′

c2

√

1 − v2

c2

. (24.12)

With z′ = w′t′ one obtains

z =
(v + w′)t′
√

1 − v2

c2

, t =
(1 + vw′

c2 )t′
√

1 − v2

c2

. (24.13)

From this one obtains the velocity of the point in S

w =
z
t
=

w′ + v

1 + w′v
c2

. (24.14)

We observe

1 − w2

c2
= 1 −















w′

c +
v
c

1 + w′v
c2















2

=
(1 − w′2

c2 )(1 − v2

c2 )

(1 + w′v
c2 )2

. (24.15)

If |w′| < c and |v| < c, then this expression is positive. Then one obtains also |w| < c. Example: w′ = v = 0.5c,
then one obtains w = 0.8c.

24.c Current Density Four-Vector

We combine charge- and current-density in the charge-current density

( jµ) = (cρ, j) (24.16)
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and convince us that jµ is a four-vector. For charges of velocity v one has (the contributions of charges of
different velocities can be superimposed)

jµ = ρvµ, (v0 = c), jµ = ρ
√

1 − β2uµ (24.17)

If ρ
√

1 − β2 is a four-scalar then indeed jµ is a four-vector. Now one has

ρ =
q
V
=

q

V0

√

1 − β2
(24.18)

with the volume V0 in the rest system and the L contraction V = V0

√

1 − β2. Since the charge q and V0

are four-scalars this holds also ρ
√

1 − β2.
We bring the equation of continuity in L-invariant form. From ρ̇ + div j = 0 one obtains

∂ jµ

∂xµ
= 0, (24.19)

since ∂ j0/∂x0 = ∂ρ/∂t. We consider now the transformation properties of the derivatives ∂/∂xµ

∂ f
∂x′µ

=
∂xν

∂x′µ
∂ f
∂xν
= Λ νµ

∂ f
∂xν
, (24.20)

that is the derivatives transform according to

∂

∂x′µ
= Λ νµ

∂

∂xν
(24.21)

as x′µ = Λ
ν
µ xν. Thus one writes

∂

∂xµ
= ∂µ, (∂µ) = (

1
c
∂

∂t
,∇). (24.22)

Watch the positions of the indices. Similarly one has

∂

∂xµ
= ∂µ, (∂µ) = (

1
c
∂

∂t
,−∇). (24.23)

Then the equation of continuity can be written

∂µ jµ = 0. (24.24)

Generally the four-divergency ∂µPµ = ∂µPµ of a four-vector P is a four-scalar.

24.d Four-Potential

We combine the potentials A and Φ in the four-potential

(Aµ) = (Φ,A), (24.25)

then one has

�Aµ = −4π
c

jµ (24.26)

in the L gauge with the gauge condition

div A +
1
c
Φ̇ = 0→ ∂µAµ = 0. (24.27)

There the ’A operator

� = 4 − 1
c2
∂2

t = −∂µ∂µ (24.28)

is a four-scalar �′ = �.
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We now show that the retarded solution Aµr is manifestly L-invariant. We claim

Aµr (x) =
1
c

∫

d4y jµ(y)δ(
1
2

s2)θ(x0 − y0) (24.29)

s2 = (xµ − yµ)(xµ − yµ) = c2(ty − tx)2 − (x − y)2 (24.30)

θ(x0) =

{

1 x0 > 0
0 x0 < 0

(24.31)

We consider now generally the integration over a δ-function, which depends on a function f . Apparently only
the zeroes ti of f contribute,

∫

g(t)δ( f (t))dt =
∑

i

∫ ti+ε

ti−ε
g(t)δ( f (t))dt with f (ti) = 0. (24.32)

With z = f (t), dz = f ′(t)dt one obtains

∫

g(t)δ( f (t))dt =
∑

i

∫ ε f ′(ti)

−ε f ′(ti)
g(ti)δ(z)

dz
f ′(ti)

=
∑

i

g(ti)
| f ′(ti)|

. (24.33)

Thus the zeroes in the δ-function of (24.29) are ty = tx ± |x − y|/c and their derivatives are given by f ′(ty) =
c2(ty − tx) = ±c|x − y|, which yields

Aµr (x) =
1
c

∫

d4y jµδ(
1
2

s2)θ(tx − ty) =
∫

d3y
1

c|x − y| j
µ(y, tx −

|x − y|
c

). (24.34)

The factor θ(tx − ty) yields the retarded solution. The solution is in agreement with (21.14) and (21.15). If we
replace the θ-function by θ(ty − tx), then we obtain the advanced solution. Remember that the sign of the time
difference does not change under proper L transformations.
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25 Electromagnetic Field Tensor

25.a Field Tensor

We obtain the fields E and B from the four-potential

B = curl A, E = − gradΦ − 1
c

Ȧ, (25.1)

for example

B1 =
∂A3

∂x2
− ∂A

2

∂x3
= ∂3A2 − ∂2A3, E1 = −

∂A0

∂x1
− ∂A

1

∂x0
= ∂1A0 − ∂0A1. (25.2)

Thus we introduce the electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ, Fµν = −Fνµ. (25.3)

It is an antisymmetric four-tensor. It reads explicitely

(Fµν) =





























0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0





























. (25.4)

25.b M’s Equations

25.b.α The Inhomogeneous Equations

The equation div E = 4πρ reads

∂1F10 + ∂2F20 + ∂3F30 =
4π
c

j0. (25.5)

From the 1-component of curl B − 1
c Ė = 4π

c j one obtains

∂B3

∂x2
− ∂B2

∂x3
− ∂E1

∂x0
=

4π
c

j1 → ∂2F21 + ∂3F31 + ∂0F01 =
4π
c

j1, (25.6)

similarly for the other components. These four component-equations can be combined to

∂µF
µν =

4π
c

jν. (25.7)

If we insert the representation of the fields by the potentials, (25.3), we obtain

∂µ(∂
µAν − ∂νAµ) = 4π

c
jν. (25.8)

Together with the condition for the L gauge ∂µAµ = 0, (24.27) one obtains

∂µ∂
µAν =

4π
c

jν (25.9)

in agreement with (24.26) and (24.28).
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25.b.β The Homogeneous Equations

Similarly the homogeneous M’s equations can be written. From div B = 0 one obtains

∂1F23 + ∂2F31 + ∂3F12 = 0 (25.10)

and ( curl E + 1
c Ḃ)x = 0 reads

−∂2F30 − ∂3F02 − ∂0F23 = 0. (25.11)

These equations can be combined to
∂λFµν + ∂µFνλ + ∂νFλµ = 0. (25.12)

One observes that these equations are only non-trivial for λ , µ , ν , λ. If two indices are equal, then the
left-hand side vanishes identically. One may represent the equations equally well by the dual field tensor

F̃µν =
1
2
εµνκλFκλ. (25.13)

Here εκλµν is completely antisymmetric against interchange of the four indices. Thus it changes sign, if two of
the indices are exchanged. This implies that it vanishes, if two indices are equal. It is only different from zero,
if all four indices are different. It is normalized to ε0123 = 1. Then one obtains explicitely

(F̃µν) =





























0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0





























. (25.14)

and (25.12) can be written
∂µF̃

µν = 0. (25.15)

One should convince oneself that ε is an invariant pseudo-tensor of fourth order, i.e.

ε′µνκλ = det(Λ)εµνκλ, (25.16)

where det(Λ) takes only the values ±1 according to the discussion after (23.19). For proper L transfor-
mations it equals +1 (23.21).

25.c Transformation of the Electric and Magnetic Fields

Since (∂µ) and (Aν) transform like four-vectors, one has

F′µν = ΛµκΛ
ν
λF
κλ (25.17)

for the transformation of the electromagnetic field. If we choose in particular

(Λµν) =





























γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ





























, (25.18)

then one obtains
E′1 = F′10 = Λ1

κΛ
0
λF
κλ = γF10 − βγF13 = γ(E1 − βB2), (25.19)

thus
E′1 = γ(E1 −

v
c

B2), (25.20)

similarly

B′1 = γ(B1 +
v
c

E2) (25.21)

E′2 = γ(E2 +
v
c

B1), B′2 = γ(B2 −
v
c

E1) (25.22)

E′3 = E3, B′3 = B3, (25.23)
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which can be combined to

E′‖ = E‖, B′‖ = B‖, component ‖ v (25.24)

E′⊥ = γ(E⊥ +
v
c
× B), B′⊥ = γ(B⊥ −

v
c
× E), components ⊥ v. (25.25)

25.d Fields of a Point Charge in Uniform Motion

From this we can determine the fields of a charge which moves with constant velocity v = vez. In the rest system
S ′ of the charge, which is supposed to be in the origin of S ′, one has

E′ = q
r′

r′3
, B′ = 0. (25.26)

In the system S the coordinates of the charge are xq = yq = 0, zq = vt. Now we express r′ by r and t and obtain

E′ =
(

qx
N
,

qy
N
,

qγ(z − vt)
N

)

, (25.27)

B′ = 0, (25.28)

N = r′3 = (x2 + y2 + γ2(z − vt)2)3/2. (25.29)

It follows that

E1 = γ(E′1 +
v
c B′2) = qγx

N
E2 = γ(E′2 −

v
c B′1) = qγy

N

E3 = E′3 =
qγ(z−vt)

N



















E =
qγ(r − vt)

N
(25.30)

B1 = γ(B′1 −
v
c E′2) = − qγβy

N

B2 = γ(B′2 +
v
c E′1) = qγβx

N
B3 = B′3 = 0























B =
qγ(v × r)

cN
. (25.31)

Areas of constant N are oblate rotational ellipsoids. The ratio short half-axis / long half-axis is given by 1/γ =
√

1 − v2

c2 , thus the same contraction as for the L contraction.

25.e D Effect

We consider a monochromatic plane wave

E = E0eiφ, B = B0eiφ with φ = k · r − ωt. (25.32)

We know, how E and B and thus E0 and B0 transform. Thus we are left with considering the phase φ which is a
four-scalar. If we write

(kµ) = (
ω

c
, k), (25.33)

then
φ = −kµx

µ (25.34)

follows. Since (xµ) is an arbitrary four-vector and φ is a four-scalar, it follows that (kµ) has to be a four-vector.
Thus one obtains for the special L transformation (25.18)

ω′ = ck′0 = cγ(k0 − βk3) = γ(ω − βck3), k′1 = k1, k′2 = k2, k′3 = γ(k3 − βω
c

). (25.35)

If the angle between z-axis and direction of propagation is θ, then k3 = ωc cos θ holds, and one obtains

ω′ = ωγ(1 − β cos θ). (25.36)
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Thus if v is parallel and antiparallel to the direction of propagation, resp., then one deals with the longitudinal
D shift

θ = 0 : ω′ = ω
√

1−β
1+β (25.37)

θ = π : ω′ = ω
√

1+β
1−β . (25.38)

If however θ = π/2 and θ′ = π/2, resp., then one deals with the transverse D shift.

θ =
π

2
: ω′ = ω√

1−β2
(25.39)

θ′ =
π

2
: ω′ = ω

√

1 − β2. (25.40)

Here θ′ is the angle between the z′-axis and the direction of propagation in S ′.



26 Relativistic Mechanics 89

26 Relativistic Mechanics

E realized that the constance of light velocity in vacuum and the resulting L transformation is not
restricted to electrodynamics, but is generally valid in physics. Here we consider its application to mechanics
starting from the force on charges.

26.a L Force Density

The force density on moving charges reads

k = ρE +
1
c

j × B, (26.1)

that is e.g. for the first component

k1 = ρE1 +
1
c

( j2B3 − j3B2) =
1
c

( j0F10 − j2F12 − j3F13) =
1
c

jνF
1ν. (26.2)

Thus one introduces the four-vector of the L force density

kµ =
1
c

jνF
µν. (26.3)

We consider the time-like component

k0 =
1
c

jνF
0ν =

1
c

j · E. (26.4)

The time-like component gives the mechanical energy acquired per time and volume, whereas the space-like
components give the rate of change of mechanic momentum per time and volume

(kµ) = (
1
c

j · E, k). (26.5)

26.b L Force Acting on a Point Charge

The four-current-density at x of a point charge q at xq reads

jν(x, t) = qδ3(x − xq(t))vν. (26.6)

Thus the force acting on the point charge is given by

Kµ =
q
c

vνF
µν. (26.7)

This is not a four-vector, since (vµ) is not a four-vector. If we multiply it by γ then we obtain a four-vector, the
M force

γKµ =
q
c

uνF
µν. (26.8)

K is the momentum which is fed into the point charge per time unit, cK0 is the power fed into it. The M
force is the momentum and the energy divided by c, resp., fed into it per proper time.

26.c Energy and Momentum of a Mass Point

We assume that also mechanical momentum and energy/c combine to a four-vector, since the change of mo-
mentum and energy divided by c are components of a four-vector

(Gµ) = (
1
c

E,G). (26.9)
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In the rest system S ′ we expect G′ = 0 to hold, i.e.

(G′µ) = (
1
c

E0, 0). (26.10)

In the system S the special transformation (23.23) yields for v = vez

G = γ v
c2 E0ez = γv

E0

c2
, (26.11)

E = cG0 = cγG′0 = γE0. (26.12)

For velocities small in comparison to light-velocity one obtains

G =
E0

c2
v
(

1 +
v2

2c2
+ ...

)

. (26.13)

In N’s mechanics we have
GNewton = mv (26.14)

for a mass point of mass m. For velocities v � c the momentum of N’s and of the relativistic mechanics
should agree. From this one obtains

m =
E0

c2
→ E0 = mc2, G = mγv. (26.15)

Then one obtains for the energy E

E = mc2γ = mc2 +
m
2

v2 + O(v4/c2). (26.16)

One associates a rest energy E0 = mc2 with the masses. At small velocities the contribution m
2 v2 known from

Nian mechanics has to be added
Gµ = muµ. (26.17)

This G is called four-momentum. We finally observe

GµGµ = m2uµuµ = m2c2, (26.18)

from which one obtains

−G2 +
1
c2

E2 = m2c2, E2 = m2c4 +G2c2. (26.19)

One does not observe the rest energy E0 = mc2 as long as the particles are conserved. However they are
observed when the particles are converted, for example, when a particle decays into two other ones

Λ0 → π− + p+. (26.20)

With the masses
mΛ = 2182me, mπ = 273me, mp = 1836me (26.21)

one obtains the momentum and energy bilance for the Λ which is at rest before the decay

mΛc2 =

√

m2
πc4 +G2

πc2 +

√

m2
pc4 +G2

pc2 (26.22)

0 = Gπ +Gp. (26.23)

The solution of the system of equations yields

|G| = 4c
√

M(mΛ − M)(M − mπ)(M − mp)/mΛ, 2M = mΛ + mπ + mp. (26.24)

By means of the four-vectors one may solve

G µ

Λ
= G µ

π +G µ
p (26.25)
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with respect to Gp and take the square

G µ
p Gpµ = (Gµ

Λ
−Gµπ)(GΛµ −Gπµ) = Gµ

Λ
GΛµ +GµπGπµ − 2Gµ

Λ
Gπµ. (26.26)

This yields
m2

pc2 = m2
Λc2 + m2

πc
2 − 2mΛEπ (26.27)

and therefore

Eπ =
c2

2mΛ

(

m2
Λ + m2

π − m2
p

)

(26.28)

and analogously

Ep =
c2

2mΛ

(

m2
Λ − m2

π + m2
p

)

. (26.29)

26.d Equation of Motion

Finally we write down explicitely the equations of motion for point masses

dGµ

dt
= Kµ. (26.30)

As mentioned before these equations are not manifestly L-invariant. We have, however,

dGµ

dτ
=

dGµ

dt
dt
dτ
= γ

dGµ

dt
= γKµ, (26.31)

where the right-hand side is the M force. In this form the equations of motion are manifestly L
invariant.
If the force does not change the rest energy of a particle, one obtains from

GµGµ = m2c2 → d
dτ

(GµGµ) = 0→ GµγKµ = 0→ uµKµ = 0. (26.32)

The force is orthogonal on the world velocity. An example is the L force

uµK
µ =

q
c
γvµvνF

µν = 0, (26.33)

since Fµν is antisymmetric. We observe

vµKµ = −v ·K + c
c

dE
dt
= 0. (26.34)

Thus equation (26.32) is equivalent to
dE
dt
= v ·K, (26.35)

which yields the power fed into the kinetic energy of the mass.
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27 Lagrangian Formulation

27.a Lagrangian of a Massive Charge in the Electromagnetic Field

We claim that the LagrangianL of a point charge q of mass m in an electromagnetic field can be written

L = −mc2

√

1 − ṙ2

c2
− qΦ(r, t) +

q
c

A(r, t) · ṙ

= −mc2

√

1 +
ẋα ẋα
c2
− q

c
Aµ(x)ẋµ. (27.1)

Then the action I can be written

I =
∫

dtL = −mc2
∫

dτ − q
c

∫

dtAµ
dxµ
dt
=

∫

dτ(−mc2 − q
c

Aµuµ), (27.2)

that is as a four-scalar.
Now we show that this Lagrangian yields the correct equations of motion

d
dt
∂L
∂ẋα
− ∂L
∂xα
= 0, (27.3)

from which by use of

− ∂L
∂ẋα
=

mẋα
√

1 − ṙ2

c2

+
q
c

Aα(r(t), t) = Gα +
q
c

Aα (27.4)

one finally obtains
d
dt

G +
q
c

Ȧ +
q
c

(v · ∇)A + q∇Φ − q
c
∇(v · A) = 0. (27.5)

Note that Ȧ contains only the partial time-derivative of A, thus we have dA/dt = Ȧ + (v · ∇)A. By suitable
combination of the contributions one obtains

d
dt

G + q(∇Φ+ 1
c

Ȧ) − q
c

v × (∇ × A) = 0 (27.6)

d
dt

G − qE − q
c

v × B = 0. (27.7)

Thus the Lagrangian given above yields the correct equation of motion.

27.b Lagrangian Density of the Electromagnetic Field

The Lagrangian density L of the electromagnetic field of a system of charges consists of three contributions

L = − 1
16π

FµνFµν −
1
c

Aµ jµ + Lmech. (27.8)

The mechanical part for point charges of mass mi reads

Lmech = −
∑

i

mic
3
∫

dτδ4(x − xi(τ)), (27.9)

which yields after integration over d4x the corresponding contribution to the action I given in (27.1). The
second contribution in (27.8) describes the interaction between field and charge. Integration of this contribution
for point charges using

jµ(r, t) =
∑

i

qi
dxi,µ

dt
δ3(r − ri) (27.10)
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yields the corresponding contribution in (27.1). The first contribution is that of the free field. Below we will see
that it yields M’s equations correctly. The action itself reads

I =
1
c

∫

d4xL(x) =
∫

dt
∫

d3xL(x, t) =
∫

dtL(t), L(t) =
∫

d3xL(x, t). (27.11)

The action has to be extremal if the fields A are varied. There we have to consider F as function of A (25.3),
Fµν = ∂µAν − ∂νAµ. Then the variation with respect to A yields

δL = − 1
8π

FµνδF
µν − 1

c
jνδA

ν (27.12)

δFµν = δ(∂µAν − ∂νAµ) = ∂µδAν − ∂νδAµ (27.13)

FµνδF
µν = Fµν∂

µδAν − Fµν∂
νδAµ = 2Fµν∂

µδAν (27.14)

δL = − 1
4π

Fµν∂
µδAν − 1

c
jνδA

ν. (27.15)

Thus the variation of the action with respect to A is

δI =

∫

d4x
(

− 1
4πc

Fµν∂
µδAν − 1

c2
jνδA

ν
)

= −
∫

d4x
1

4πc
∂µ(FµνδAν) +

∫

d4x
( 1
4πc
∂µFµν −

1
c2

jν
)

δAν. (27.16)

The first term of the second line is a surface-term (in four dimensions). From the second term one concludes
M’s inhomogeneous equations (25.7)

∂µF
µν =

4π
c

jν. (27.17)

M’s homogeneous equations are already fulfilled due to the representation Fµν = ∂µAν − ∂νAν.
Generally one obtains for a Lagrangian density, which depends on a field (Aµ) and its derivatives by variation

cδI =

∫

d4xδL(x)

=

∫

d4x

(

δL
δAν(x)

δAν(x) +
δL

δ∂µAν(x)
∂µδAν(x)

)

=

∫

d4x∂µ
(

δL
δ∂µAν(x)

δAν(x)

)

+

∫

d4x

(

δL
δAν(x)

− ∂µ
(

δL
δ∂µAν(x)

))

δAν(x). (27.18)

Usually one denotes the partial derivatives of L with respect to A and ∂A by δL/δ.... Since the variation has to
vanish, one obtains in general the equations of motion

∂µ
(

δL
δ∂µAν(x)

)

− δL
δAν(x)

= 0. (27.19)

This is the generalization of L’s equations of motion (27.3) for fields. There appear derivatives of
δL/δ∇Aν with respect to the space variables besides the time-derivatives of δL/δȦν.
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28 Energy Momentum Tensor and Conserved Quantities

28.a The Tensor

In section 15.b we have calculated the conservation law for momentum from the density of the L force
in vacuo that is without considering additional contributions due to matter

−k =
∂

∂t
gs −

∂

∂xβ
Tαβeα, (28.1)

gs =
1

4πc
E × B, (28.2)

Tαβ =
1

4π

(

EαEβ + BαBβ
)

−
δαβ

8π

(

E2 + B2
)

. (28.3)

The zeroth component is the energy-density. For this density we have obtainded in section 15.a

−k0 = −1
c

j · E = 1
c

div S +
1
c

u̇ (28.4)

S =
c

4π
E × B (28.5)

u =
1

8π

(

E2 + B2
)

. (28.6)

We summarize
−kµ = −∂νT µν (28.7)

with the electromagnetic energy-momentum tensor

(T µν) =





























−u − 1
c S 1 − 1

c S 2 − 1
c S 3

−cgs1 T11 T12 T13

−cgs2 T21 T22 T23

−cgs3 T31 T32 T33





























. (28.8)

This energy-momentum tensor is built up from the energy density u, the P vector (density of energy
current) S, the momentum density g, and the stress tensor T . One observes that T µν is symmetric, T µν = T νµ,
since Tαβ is symmetric and cgs =

1
c S = 1

4πE × B holds. One easily checks that

T µν =
1

4π

(

− Fµ
λ
Fλν +

1
4

gµνFκλF
λ
κ

)

(28.9)

holds either by explicit calculation and comparison or from

kµ =
1
c

jλF
µλ =

1
4π

(∂νFνλ)F
µλ =

1
4π
∂ν(FνλF

µλ) − 1
4π

Fνλ∂
νFµλ. (28.10)

From
Fνλ

(

∂νFµλ + ∂µFλν + ∂λFνµ
)

= 0 (28.11)

one obtains the relation
1
2
∂µ

(

FνλF
λν
)

+ 2Fνλ∂
νFµλ = 0, (28.12)

so that finally we obtain

kµ =
1

4π
∂ν

(

FνλF
µλ

)

+
1

16π
∂µ

(

FνλF
λν
)

=
1

4π
∂ν

(

− Fµ
λ
Fλν +

1
4

gµνFκλF
λ
κ

)

. (28.13)

T µν is a symmetric four-tensor, i.e. it transforms according to

T ′µν = ΛµκΛ
ν
λT
κλ. (28.14)



28 Energy Momentum Tensor 95

28.b Conservation Laws

We start out from a four-vector field ( jµ(x). In any three-dimensional space-like subspace R of the four-
dimensional space be ( jµ) different from zero only in a finite region. We call a space space-like if any two
points in this space have a space-like distance. A world-line, i.e. a line which everywhere has a velocity below
light-speed hits a space-like subspace in exactly one point. If one plots the subspace as a function x0(r) then
its slope is everywhere less then 1. The slope of the world-line is everywhere larger than 1. For example, the
points of constant time in an inertial frame constitute such a space-like space. We now integrate the divergence
∂µ jµ over the four-dimensional volume Ω, which is bounded by two space-like spaces R and R′ and obtain

∫

Ω

d4x
∂ jµ

∂xµ
=

∫

R
d3x

(

j0 − ∂X
∂xα

jα
)

−
∫

R′
d3x

(

j0 − ∂X
′

∂xα
jα
)

. (28.15)

The contribution ∂µ jµ is integrated in xµ-direction until the
boundary R or R′ or until jµ vanishes. This yields immedi-
ately the contribution given for the 0-component. For the 1-
component one obtains initially the integral ±

∫

dx0dx2dx3 j1

at the boundary.The dx0-integration may be transformed into
an dx1 ∂X

∂x1 -integration. If X = x0 increases (decreases) at the
boundary with x1, then this is the lower (upper) limit of the
integration. Thus we have a minus-sign in front of ∂X

∂x1 , sim-
ilarly for the other space-components.We may convince our-
selves that

x

x

x

x 0

0

0

1

=X(

=X’(

x

x )

)
R

R’

j jj µ µ µ=| 0=0 =0

∫

R
d3x

(

j0 − ∂X
∂xα

jα
)

=

∫

R
dVµ jµ (28.16)

with (dVµ) = (1,−∇X)d3x is a four-scalar. If we introduce a four-vector ( j̄µ), so that

j̄µ =

{

jµ in R
0 in R′

, (28.17)

then it follows that
∫

R
dVµ jµ =

∫

R
dVµ j̄µ =

∫

Ω

d4x
∂ j̄µ

∂xµ
, (28.18)

where the last integral is obviously a four-scalar, since both d4x and the four-divergence of j̄ is a four-scalar.
Since the field ( jµ) is arbitrary, we find that dVµ jµ has to be a four-scalar for each infinitesimal (dVµ) in R. Since
( jµ) is a four-vector, (dVµ) must be a four-vector, too. Then (28.16) reads

∫

Ω

d4x∂µ jµ =
∫

R
dVµ jµ −

∫

R′
dVµ jµ. (28.19)

This is the divergence theorem in four dimensions.
From this we conclude:

28.b.α Charge

( jµ) be the four-vector of the current density. One obtains from the equation of continuity ∂µ jµ = 0 for each
space-like R the same result

q =
1
c

∫

R
dVµ jµ (28.20)

for the charge, since the integral of the divergence in Ω in (28.19) vanishes, (since the integrand vanishes) and
since one may always choose the same R′. Thus the charge is a conserved quantity, more precisely we have
found a consistent behaviour, since we already have assumed in subsection 24.c that charge is conserved. New
is that it can be determined in an arbitrary space-like three-dimensional space.



96 H L Invariance of Electrodynamics

28.b.β Energy and Momentum

From
kµ = ∂νT

µν (28.21)

one obtains
∫

Ω

d4xkµ =
∫

R
dVνT

µν −
∫

R′
dVνT

µν. (28.22)

In a charge-free space (kµ = 0), i.e. for free electromagnetic waves one finds that the components of the
momentum of radiation

Gµs = −
1
c

∫

R
dVνT

µν (28.23)

are independent of R. Thus they are conserved. Now be (bµ) an arbitrary but constant four-vector. Then bµT µν

is a four-vector and ∂ν(bµT µν) = 0. Then bµG
µ
s is a four-scalar and Gµs is a four-vector.

If there are charges in the four-volumeΩ, then one obtains.

Gµs (R) = −1
c

∫

Ω

d4xkµ +Gµs (R′). (28.24)

For point-charges qi one has (26.7, 26.30)

1
c

∫

d4xkµ =
∑

i

∫

dtKµi =
∑

i

∫

dtĠµi =
∑

i

(Gµi (R) −Gµi (R′)). (28.25)

Here Gµi (R) = miu
µ

i (R) is the four-momentum of the charge #i at the point where its worldline hits the three-
dimensional space R. Then

Gµ = Gµs (R) +
∑

i

Gµi (R) (28.26)

is the conserved four-momentum.

28.b.γ Angular Momentum and Movement of Center of Mass

Eq. (28.7) yields
∂ν

(

xλT µν − xµT λν
)

= xλkµ − xµkλ + T µλ − T λµ. (28.27)

Since the tensor T is symmetric, the last two terms cancel. We introduce the tensor

Mλµs (R) = −1
c

∫

R
dVν(xλT µν − xµT λν

)

. (28.28)

It is antisymmetric Mλµs = −Mµλs . Due to (28.19) one has

Mλµs (R) = −1
c

∫

Ω

d4x
(

xλkµ − xµkλ
)

+ Mλµs (R′). (28.29)

For point-charges one obtains

1
c

∫

Ω

d4x
(

xλkµ − xµkλ
)

=
∑

i

∫

dt
(

xλi Kµi − xµi Kλi
)

=
∑

i

∫

dt
d
dt

(

xλi Gµi − xµi Gλi
)

, (28.30)

since ẋλGµ = ẋµGλ. Therefore
Mλµ(R) = Mλµs (R) + Mλµm (R) (28.31)

including the mechanical contribution

Mλµm (R) =
∑

i

(

xλi Gµi − xµi Gλi
)

∣

∣

∣

∣

R
(28.32)

is a conserved quantity, i.e. Mλµ(R) is independent of the choice of R. Simultaneously (Mλµ) is a four-tensor.
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Finally we have to determine the meaning of M. For this purpose we consider M in the three-dimensional space
R given by constant time t for a system of inertia S . Then we have

Mλµ = −1
c

∫

d3x
(

xλT µ0 − xµT λ0
)

+
∑

i

(

xλi Gµi − xµi Gλi
)

(28.33)

First we consider the space-like components

Mαβ =
∫

d3x
(

xαgβs − xβgαs
)

+
∑

i

(

xαi Gβi − xβi Gαi
)

. (28.34)

This is for α , β a component of the angular momentum L, namely εαβγLγ. Thus we have found the conservation
of angular momentum.
If one component is time-like then one finds

M0α = ct
(

∫

d3xgαs +
∑

i

Gαi
)

− 1
c

(

∫

d3xxαu +
∑

i

xαi Ei

)

. (28.35)

The first contribution is ct multiplied by the total momentum. The second contribution is the sum of all energies
times their space-coordinates xα divided by c. This second contribution can be considered as the center of
energy (actually its α-component) multiplied by the total energy divided by c. Since total momentum and total
energy are constant, one concludes that the center of energy moves with the constant velocity c2 total momentum

total energy .
For non-relativistic velocities the mechanical part of the energy reduces to

M0α
m = c















t
∑

i

Gαi −
∑

i

mix
α
i















. (28.36)

Then the conservation of this quantity comprises the uniform movement of the center of mass with the velocity
total momentum divided by total mass. In the theory of relativity this transforms into a uniform moving center
of energy. L invariance combines this conservation with the conservation of angular momentum to the
antisymmetric tensor M.
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29 Field of an arbitrarily Moving Point-Charge

29.a L́-W Potential

First we determine the potential at a point (xµ) of a point-charge q which moves along a world-line rq(t). Its
four-current density reads

jµ(x′) = qvµδ3(x′ − rq(t)), vµ = (c, ṙq(t)). (29.1)

According to (24.29) the four-potential reads

Aµ(x) =
1
c

∫

d4x′ jµ(x′)δ(
1
2

s2)θ(t − t′) = q
∫

dt′vµ(t′)δ(
1
2

s2)θ(t − t′) (29.2)

with
s2 = aνaν, aν = xν − xνq(t′). (29.3)

(aν) is a function of (xν) and t′. The differential of 1
2 s2 is

given by

d(
1
2

s2) = aνdaν = aνdxν − aνv
νdt′. (29.4)

Thus one obtains the L́-W potential

x

rq(t)

x1

0

light cone

world line
of charge

observation (x  )
point of

µ

Aµ(x) = qvµ(t′)
1

| ∂
1
2 s2

∂t′ |
=

qvµ

aνvν

∣

∣

∣

∣

∣

r
=

quµ

aνuν

∣

∣

∣

∣

∣

r
. (29.5)

Here the two expressions with the index r are to be evaluated at the time t′ at which s2 = 0 and t > t′.
We note that aνvν = ac − a · v > 0, since a = c(t − t′) = |a|. aνuν/c is the distance between point of observation
and charge in the momentary rest system of the charge.

29.b The Fields

Starting from the potentials we calculate the fields

Fµν = ∂µAν − ∂νAµ. (29.6)

In order to do this we have to determine the derivatives of v, a and t′

∂µvν =
∂vν

∂t′
∂t′

∂xµ
(29.7)

∂µaν = ∂µ(xν − xνq(t′)) = gµν − vν
∂t′

∂xµ
(29.8)

∂t′

∂xµ
=

aµ

(a · v)
, (29.9)

where the last expression has been obtained from s2 = 0 by means of (29.4). Here and in the following we use

(a · v) = aνvν = ac − a · v = c(a − a · β) (29.10)

(v · v) = vνvν = c2 − v2 = c2(1 − β2) (29.11)

(a · v̇) = aνv̇ν = −a · v̇. (29.12)

One evaluates

∂µvν =
v̇νaµ

(a · v)
(29.13)
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∂µaν = gµν − vνaµ

(a · v)
(29.14)

∂µ(a · v) = (∂µaκ)vκ + aκ(∂
µvκ)

= gµκvκ −
vκaµ

(a · v)
vκ + aκ

v̇κaµ

(a · v)

= vµ − aµ
(v · v)
(a · v)

+ aµ
(a · v̇)
(a · v)

. (29.15)

Then one obtains

∂µAν = ∂µ
(

q
vν

(a · v)

)

= q
∂µvν

(a · v)
− q

vν∂µ(a · v)
(a · v)2

= aµbν − q
vµvν

(a · v)2
, (29.16)

bν = q
vν(v · v) − vν(a · v̇) + v̇ν(a · v)

(a · v)3
. (29.17)

Therefore

(bν) =
q

(a − a · β)3

(

1 − β2 +
a · β̇

c
,β(1 − β2) +

1
c
β(a · β̇) +

1
c

(a − a · β)β̇

)

(29.18)

and the fields read

Fµν = aµbν − aνbµ (29.19)

E = ab0 − ab =
q(1 − β2)(a − βa)

(a − a · β)3
+

qa × ((a − βa) × β̇)
c(a − a · β)3

(29.20)

B = −a × b =
a × E

a
(29.21)

The contribution proportional to the acceleration β̇ decreases like 1/a; a, E, and B constiute an orthogonal
system for this contribution. The contribution independent of β̇ falls off like 1/a2.

29.c Uniform Motion

(compare section 25.d). The scalar γaλvλ/c is the distance between the point of observation and the point of the
charge in the rest-system of the charge. Thus one has

a − a · β = 1
γ
|r′|, (a − a · β)3 = N/γ3. (29.22)

Considering that a = r − vt′, a = c(t − t′), one obtains

a − βa = r − vt′ − vt + vt′ = r − vt (29.23)

and thus

E =
qγ(r − vt)

N
, B =

(r − vt′) × (r − vt)qγ
c(t − t′)N

=
qγv × r

cN
(29.24)

in accordance with (25.30) and (25.31).

29.d Accelerated Charge Momentarily at Rest

The equations (29.20) and (29.21) simplify for β = 0 to

E =
qa
a3
+

q
ca3

a × (a × β̇) (29.25)

B = − q
ca2

(a × β̇), (29.26)
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from which the power radiated into the solid angle dΩ can be determined with the energy-current density
S = c

4πE × B
dU̇s

dΩ
= a2S · n = ca

4π
[a,E,B] =

q2

4πca2
(a × β̇)2 =

q2

4πc3
(n × v̇)2 (29.27)

and the total radiated power

U̇s =
2
3

q2

c3
v̇2 (29.28)

(L-formula) follows.
For a harmonic motion rq = r0q cos(ωt) and v̇ = −r0qω

2 cos(ωt) one obtains

U̇s =
2
3

q2r2
0q

c3
ω4(cos(ωt))2, U̇s =

1
3

p2
0

c3
ω4 (29.29)

in agreement with section 22.b. This applies for β � 1. Otherwise one has to take into account quadrupole and
higher multipole contributions in 22.b, and here that β cannot be neglected anymore, which yields additional
contributions in order ω6 and higher orders.

29.e Emitted Radiation β , 0

We had seen that in the system momentarily at rest the charge emits the power U̇s =
2
3

q2

c3 v̇2. The emitted
momentum vanishes because of the symmetry of the radiation (without consideration of the static contribution
of E, which, however, decays that fast that it does not contribute for sufficiently large a)

E(−a) = E(a), B(−a) = −B(a), Tαβ(−a) = Tαβ(a). (29.30)

Thus we may write the energy-momentum-vector emitted per proper time

d
dτ

(1
c

Us,Gs

)

=
uµ

c
2q2

3c3

(

−duλ

dτ
duλ
dτ

)

, (29.31)

since u̇0 = cγ̇ ∝ v · v̇ = 0. Since the formula is written in a lorentz-invariant way, it holds in each inertial frame,
i.e.

dUs

dt
=

dτ
dt

u0

c
2q2

3c3

(

dt
dτ

)2 (

−d(γvλ)
dt

d(γvλ)
dt

)

=
2q2

3c3
γ2

(

(γv)̇(γv)̇ − c2γ̇2
)

=
2q2

3c3
γ2

(

γ2v̇2 + 2γγ̇(v · v̇) + γ̇2(v2 − c2)
)

. (29.32)

With dτ/dt · u0/c = 1 and

γ̇ =
d
dt

























1
√

1 − v2

c2

























= γ3 v · v̇
c2

(29.33)

one obtains finally

U̇s =
2
3

q2

c3

(

γ4v̇2 + γ6 (v · v̇)2

c2

)

. (29.34)

Orbiting in a synchrotron of radius r a charge undergoes the acceleration v̇ = v2/r perpendicular to its velocity.
Thus one has

U̇s =
2
3

q2cβ4γ4/r2 =
2
3

q2c(γ2 − 1)2/r2. (29.35)

The radiated energy per circulation is

∆Us =
2πr

v
U̇s =

4π
3

q2β3γ4/r. (29.36)
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At Desy one obtains for an orbiting electron of energy E =7.5 GeV and mass m0c2 =0.5 MeV a value γ =
E/(m0c2) = 15000. For r = 32m one obtains ∆U = 9.5MeV. Petra yields with E = 19GeV a γ = 38000 and
with r = 367m a radiation ∆U = 34MeV per circulation.
Exercise Hera at Desy has r = 1008m and uses electrons of Ee = 30GeV and protons of Ep = 820GeV.
Calculate the energy radiated per circulation.
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