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23 Lorentz Transformation

23.a Gavuwer and Lorentz Transformation

The equations of NewTon’s mechanics are invariant under the GariLer transformation (GaLiLer invariance)
X=%x y=y, Z=z-w, t' =t (23.1)

We will see in the following that MaxweLL’s equations are invariant under appropriate transformations of fields,
currents and charges against linear transformations of the coordinates X, y, z, and t, which leave the velocity of
light invariant (LorenTz invariance). Such a transformation reads

X=x Y=y, Z= z- vt = ¢ (23.2)
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Consider two charges g und —qg, which are for t < 0 at the same point and which are also for t > At at the same
point, which move however in the time interval 0 < t < At against each other. They separate at time O at r and
they meet again at time At at r1. They generate according to (21.14) and (21.15) a field, which propagates with
light-velocity. It is different from zero at point r at time t only, ift > |r —rg|/cand t < At + |r — r1|/c holds.
This should hold independently of the system of inertia in which we consider the wave. (We need only assume
that the charges do not move faster than with light-velocity.) If we choose an infinitesimal At then the light flash
arrives at time t = |r — ro|/c, since it propagates with light-velocity. Since the Lorentz transformation is not in
agreement with the laws of Newton’s mechanics and the Gavicer transformation not with MaxweLL’s equations
(in a moving inertial frame light would have a velocity dependent on the direction of light-propagation) the
question arises which of the three following possibilities is realized in nature:

(i) there is a preferred system of inertia for electrodynamics, in which MaxweLL’s equations hold (ether-
hypothesis),

(if) Newton’s mechanics has to be modified

(iif) MaxweLL’s equations have to be modified.

The decision can only be made experimentally: An essential experiment

to refute (i) is the MicueLson-MorLEY experiment: A light beam hits a Sp,
half-transparent mirror Spy, is split into two beams, which are reflected
at mirror Sp; and Spy, resp. at distance | and combined again at the Sp
half-transparent mirror. One observes the interference fringes of both h
beams at B. If the apparatus moves with velocity v in the direction of ‘
the mirror Sp1, then the time t; the light needs to propagate from the L Sp
half-transparent mirror to Sp; and back is ‘ !

I I 2lc 2| V2
= = =—1+=+..). 23.
b c—v+c+v c2 —\2 c( +02+ ) (23.3)
B
The time t; the light needs to the mirror Spy is
2l 2l V2
L= ﬂ = E(l + E + ), (234)
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78 H Lorentz Invariance of Electrodynamics

since the light velocity ¢ has to be separated into the two components vand Vc2 — v2. Thus there remains the
time difference

Iv2

3
which would be measurable by a displacement of the interference fringes, if for example the velocity v is the
velocity of the earth against the sun. This displacement has not been observed. One may object that this is due
to a drag of the ether by the earth. There are however many other experiments, which are all in agreement with
Lorentz invariance, i.e. the constancy of the velocity of light in vacuum independent of the system of inertia.
The consequences in mechanics for particles with velocities comparable to the velocity of light in particular for
elementary particles have confirmed Lorentz invariance very well.

Development of the Theory of Relativity

In order to determine the velocity of the earth against the postulated ether MicueLson and Moriey performed
their experiment initially in 1887 with the negative result: No motion against the ether was detected. In order
to explain this Firzcerarp (1889) and Lorentz (1892) postulated that all material objects are contracted in their
direction of motion against the ether (compare Lorentz contraction, subsection 23.h.3).

In the following we will develop the idea of a four-dimensional space-time, in which one may perform trans-
formations similar to orthogonal transformations in three-dimensional space, to which we are used. However
this space is not a EucLipean space, i.e. a space with definite metric. Instead space and time have a metric
with different sign (see the metric tensor g, eq. 23.10). This space is also called Minkowskr space. We use the
modern four-dimensional notation introduced by Minkowskr in 1908.

Starting from the basic ideas of special relativity

The laws of nature and the results of experimentsin a system of inertia are independent of the motion of such a
system as whole.

The velocity of light is the same in each system of inertia and independent of the vel ocity of the source

we will introduce the Lorentz-invariant formulation of MaxweLL’s equations and of relativistic mechanics.

t—tp = (23.5)

23.b Lorentz Transformation

We introduce the notation
X=c, xt=x xX=zy, xX*=z (23.6)

or shortly
(%) = (ct,r) (23.7)

and denotes them as the contravariant components of the vector. Further one introduces
(x,) = (ct,—r). (23.8)

which are called covariant components of the vector. Then we may write

X =0"%, X =0wX (23.9)
(summation convention)
1 0 0 O
. 0 -1 0 O
0 0 0 -1

One calls g the metric tensor. Generally one has the rules for lifting and lowering of indices
C-#..=¢g"C-+-+, C-oyr-=0guC-"-- (23.11)

We introduce the convention: Indices «, 4, u, v run from 0 to 3, indices «, 3, ¥, ... from 1 to 3. One observes
that according to (23.11) g,” = 9.9 = 6,”, ¢, = §“Qw = 6", with the KroneckEr delta.
If a light-flash is generated at time t = 0 at r = O, then its wave front is described by

& =ct?—r?=x'%, =0. (23.12)
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We denote the system described by the coordinates x* by S. Now we postulate with Emnstemv: Light in vacuum
propagates in each inertial system with the same velocity c. (principle of the constance of light velocity) Then
the propagation of the light flash in the uniformly moving system S’ whose origin agrees at t = t’ = 0 with that
of S is given by

s% = X*X, = 0. (23.13)

Requiring a homogeneous space-time continuum the transformation between x’ and x has to be linear
X = A X, (23.14)

and s? = < with some constant f has to hold. If we require that space is isotropic and no system of inertia is
preferred, then f = 1 has to hold. The condition s? = * implies

s/2 — /HX/,; — A”VXVAﬂKXK — 52 — V6VKXK9 (2315)

which is fulfilled for arbitrary X, if
NGNS =6 (23.16)
holds. The inverse transformation of (23.14) follows from
XC= 6, X" = AN = ASXE (23.17)

From (23.16) one obtains in particular for v = k = 0 the relation (A%)? - 3, (A®°)? = 1. Note that A?; = +A°,
AL = —A%. Thus one has |A%| > 1. One distinguishes between transformations with positive and negative
A%, since there is no continuous transition between these two classes. The condition A% > 0 means that
A® = %h/ > 0, that is a clock which is at rest in S’ changes its time seen from S with the same direction as the
clock at rest in' S (and not backwards).

Finally we can make a statement on det(A”,). From (23.16) it follows that

A g, g =6~ (23.18)
Using the theorem on the multiplication of determinants we obtain
det(A*,)? det(g,.,) det(g™) = 1. (23.19)

Since det(g,,.) = det(g°*) = —1 one obtains
det(A”,) = 1. (23.20)

If we consider only a right-basis-system then we have det(A*,) = +1. Transformations which fulfill
A% >0, det(A") =1 (23.21)

are called proper Lorentz transformations.

Eg. (23.21) has the consequence that the fourdimensional space time volume is invariant
1 10(x°, x1, x2, x3) 1 1

dt'd’r’ = —d*x = = =27 Tt = = det(A,)d*x = Zd*x = dtdr. 23.22

T A0, XL, 2, x3) XT3 (A% )d i X ' ( )

If the direction of the z- and the z’-axes point into the direction of the relative velocity between both inertial
systems and X' = X, Yy’ =Y, then the special transformation (23.2) follows. The corresponding matrix A reads

y 00 By
0 10 O
My _
A= 69 01 o (23.23)
By 0 0 vy
with 1
Y= L B== (23.24)
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23.b.a TimeDilatation
We consider now a clock in the system S which is at rest in S’. From
t=y(t' + %)
we find that ot
Ay = T
Thus the clock at rest in S’ runs slower when seen from S

:’y.

r

or’
At = —
ot

This phenomenon is called time dilatation.

23.b,8 Lorentz Contraction

From
Z =y(z-w)
one obtains
3 _ 07| _
c 0z t =Y

and therefore
0z

Az= —
0z

1 / V2
At = —At = 4/1- _zAt‘
r Y C

2
a2 =az = \1-Laz
t Y C

(23.25)

(23.26)

(23.27)

(23.28)

(23.29)

(23.30)

A length-meter which is at rest in S’ and is extended in the direction of the relative movement, appears conse-
quently contracted in S. This is called Lorentz contraction or FirzGeraLp-Lorentz contraction. However, the

distances perpendicular to the velocity are unaltered: AX’ = Ax, Ay’ = Ay.

This contraction has the effect that in (23.3) the length | has to be replaced by | /1 — ‘C’—i Then the two times the

light has to travel agree independent of the velocity v, t; = t5.
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24 Four-Scalars and Four-Vectors

. . 0—
24.a Distance and Proper Time as Four-Scalars X =ct
4

A quantity which is invariant under Lorentz transformations is future 2
called four-scalar. \000
Example: Given two points in space-time (events) (x*), ('X). The . R

p P P (events) (%), (%) space-like O
quantity «3

=~ B)(X— ¥ (24.1)

is a four-scalar. It assumes the same number in all systems of inertia.

distance
Especially for % = 0 (origin) it is & = x“X,.

past

24.a.«c Space-likedistance & < 0

If & < 0, then there are systems of inertia, in which both events occur at the same time x'© = 0. If for example
() = (ct, 0,0, 2). Then one obtains from 23.2)

(24.2)

with v = tc?/z
21— %)

N

Thus one calls such two events space-like separated.

=0 7=

2
=274/1- é =+VZ2-ct2 =z V-& (24.3)

24.a8 Timelikedistances* > 0

In this case there exists a system of inertia in which both events take place at the same point in space (X’ = 0).
We choose v = z/t in the transformation (23.2) and obtain

t(1-% 2 2
G- 1—é=sign(t) t2—z—=sign(t)§, Z=0. (24.4)

1-¥ ’
C2

One event takes place before the other that is the sign of t” agrees with that of t.
Proper Timer
The proper time 7 is the time which passes in the rest system under consideration. If a point moves with velocity

v(t) its proper time varies as
ds V2
dr=— = 4/1- =dt 24.5
T= \ 2t (24.5)

B t2 / V2(t)

The proper time is independent of the system of inertia, thus it is a four-scalar.

that is

24.ay Light-likedistance s’ =0

If a light flash propagates directly from one event to another, then the distance of these two events s = 0. The
time measured in a system of inertia depends on the system of inertia and may be arbitrarily long or short,
however, the sequence of the events (under proper Lorentz transformation) cannot be reversed.

Another four-scalar is the charge.
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24.b  World Velocity as Four-Vector

If a four-component quantity (A*) transforms by the transition from one system of inertia to another as the
space-time coordinates (x*), then it is a four-vector

At = AN (24.7)
An example is the world velocity

a0 i
de'  dxt dt e withv? = dx®  dt

i o= Ca " (248)

The world velocity (W) = (cy,vy) is a four-vector. Since 7 is invariant under Lorentz transformations, its
components transform like (x*). However, (c, v) is not a four-vector. One has

wu, = (- Vvd)y? =& (24.9)
Quite generally the scalar product of two four-vectors (A*) and (B*) is a four-scalar
A"B;, = A ,A A'B, = §;A’B, = A’B,. (24.10)

We show the following lemma: If (&) is an arbitrary four-vector (or one has a complete set of four-vectors) and
a'b, is a four-scalar then (b*) is a four-vector too. Proof:

a', = a*b, = A" &'t (24.11)

Since this holds for all (&) or for a complete set, one has b, = A*,b;. This, however, is the transformation
formula (23.17) for four-vectors.

Addition theorem for velocities

The system of inertia S’ moves with velocity v in zdirection with respect to S. A point in S’ moves with
velocity w’ also in z-direction. With which velocity does the point move in S? We have

Z+w v+
7= 27 - t= 022. (24.12)
V \
1-% 1-2
With Z = w't’ one obtains
V+ W) 1+ t
g rwyr Gt &) (24.13)
1-% 1- V—i
C C
From this one obtains the velocity of the pointin S
Z W+vV
We observe )
2
P Eri) _0-90-g) 24.15
c? 1+%Y)  (@1+¥y2 (2419
2 c?

If W] < cand |v| < c, then this expression is positive. Then one obtains also [w| < ¢. Example: w = v = 0.5¢,
then one obtains w = 0.8c.

24.c Current Density Four-Vector

We combine charge- and current-density in the charge-current density

(1) = (cp.) (24.16)
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and convince us that j# is a four-vector. For charges of velocity v one has (the contributions of charges of
different velocities can be superimposed)

P=p, (=0, j=pyl-p (24.17)

If p /1 — B2 is a four-scalar then indeed j# is a four-vector. Now one has
q q

with the volume Vj in the rest system and the Lorentz contraction V = Vg +/1 — 2. Since the charge g and Vg

are four-scalars this holds also p /1 — 52.
We bring the equation of continuity in Lorentz-invariant form. From p + divj = 0 one obtains

it
% _o, (24.19)

(24.18)

since 9j°/0x° = dp/at. We consider now the transformation properties of the derivatives 9/9x*

of  ox of  of
axi - axE o - M o (24.20)

that is the derivatives transform according to

0 0
=AY 24.21
OXH Hoxr ( )
as x, = A", Thus one writes
i_a (5)_(12 V) (24.22)
axe W eot” 7 '
Watch the positions of the indices. Similarly one has
0 10
2 - = (==, -V). 24.23
o = @)= (24.23)
Then the equation of continuity can be written
auj* =0. (24.24)
Generally the four-divergency d,P* = 9" P,, of a four-vector P is a four-scalar.
24.d Four-Potential
We combine the potentials A and @ in the four-potential
(A) = (D, A), (24.25)
then one has 4
oA = —%‘ i (24.26)
in the Lorenz gauge with the gauge condition
divA + %c’p =0 - 3,A' =0. (24.27)
There the o’ ALEMBERT Operator
1
O=a- gaf = —3,0" (24.28)

is a four-scalar o’ = 0.
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We now show that the retarded solution A is manifestly Lorentz-invariant. We claim

AR = ¢ [ dyronGE0ee ) (24.29)
S o= (X -y - V) =ty —t)? - (x—y)° (24.30)
0% = { é ﬁ g 8 (24.31)

We consider now generally the integration over a §-function, which depends on a function f. Apparently only
the zeroes t; of f contribute,

f g(t)é(f(t))dtzz tbtiﬁg(t)é(f(t))dt with f(t) = 0. (24.32)

—€

With z = f(t), dz= f’(t)dt one obtains

e (O dz g
JECCES ) | oy SO = D (24.33)

Thus the zeroes in the §-function of (24.29) are ty = tx + |x — y|/c and their derivatives are given by f’(t,) =
c*(ty — ty) = +c|x -y, which yields

1 o1 1 . -
A =5 [ ayiraGR -y = [ dyo - B, (24:34)

The factor 6(ty — ty) yields the retarded solution. The solution is in agreement with (21.14) and (21.15). If we
replace the 6-function by 6(ty — t), then we obtain the advanced solution. Remember that the sign of the time
difference does not change under proper Lorentz transformations.
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25 Electromagnetic Field Tensor

25.a Field Tensor
We obtain the fields E and B from the four-potential
1.
B=curlA, E=-grad® - EA’

for example

A3 HA? AAY  HAl

Bi= oy~ ae = PR -PA Ei= - - T =00 - 0OAL

e ax3 axt  9x0

Thus we introduce the electromagnetic field tensor

FI7= PN — AN, FR = PR
It is an antisymmetric four-tensor. It reads explicitely
0 -E1 -E; -Ej
E;, 0 -Bs B

E; Bs 0 -B
Es -B, B 0

(F™) =

25.b MaxweLL’s Equations

25.b. Thelnhomogeneous Equations
The equation div E = 4mp reads
4m g

O1F T + 9,F % + 95F% = = °.

From the 1-component of curl B — 1E = %2 one obtains

4 4
<l

683 682 6E1 — 4_njl N 62F21 +63F31 + aOFO:L —

similarly for the other components. These four component-equations can be combined to
4r
9 F = —j".
u c J
If we insert the representation of the fields by the potentials, (25.3), we obtain
4 .
B (A — A = %‘ .
Together with the condition for the Lorenz gauge 9, A* = 0, (24.27) one obtains

4n
A =—)
0,0" o j

in agreement with (24.26) and (24.28).

85

(25.1)

(25.2)

(25.3)

(25.4)

(25.5)

(25.6)

(25.7)

(25.8)

(25.9)
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25.b,8 TheHomogeneous Equations

Similarly the homogeneous MaxweLL’s equations can be written. From div B = 0 one obtains

NFE 1+ PPN+ P F2 =0 (25.10)
and (curl E + 1B), = 0 reads
_62F30 _ 63F02 _ aOFZS =0. (2511)
These equations can be combined to
FH + ¢ F + P FW = 0. (25.12)

One observes that these equations are only non-trivial for 4 # u # v # A. If two indices are equal, then the
left-hand side vanishes identically. One may represent the equations equally well by the dual field tensor

A1
F = S Fa. (25.13)

Here €% is completely antisymmetric against interchange of the four indices. Thus it changes sign, if two of
the indices are exchanged. This implies that it vanishes, if two indices are equal. It is only different from zero,
if all four indices are different. It is normalized to €%'%3 = 1. Then one obtains explicitely

0 -B;1 -B, -Bs
Bi O Es -Ex

Cuvy
(F™) = B, -Es 0 E, (25.14)
Bs E; -E1 O
and (25.12) can be written N
a,F =0. (25.15)
One should convince oneself that € is an invariant pseudo-tensor of fourth order, i.e.
e/ﬂwol — det(A)eyVK/l’ (2516)

where det(A) takes only the values +1 according to the discussion after (23.19). For proper Lorentz transfor-
mations it equals +1 (23.21).

25.c Transformation of the Electric and Magnetic Fields
Since (0*) and (A”) transform like four-vectors, one has
FH = AM A F (25.17)

for the transformation of the electromagnetic field. If we choose in particular

y 00 By
0 10 O
My _
A=l 9 01 o | (25.18)
By 0 0 vy
then one obtains
E; = F0 = AL A F* = yF10 - ByF13 = y(E; - BBy), (25.19)
thus v
Ey =7(E1 - _Bo), (25.20)
similarly
By =y(By+ \—éEz) (25.21)
\' \'
Ez=v(E+ _B).  By=v(B- By (25.22)

E,=Es; B,=B; (25.23)
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which can be combined to
E, = E. B, =B, component || v (25.24)

v v
B, =yE.+ e B), B, =y(B. - o X E), components L v. (25.25)

25.d Fields of a Point Charge in Uniform Motion

From this we can determine the fields of a charge which moves with constant velocity v = ve;,. In the rest system
S’ of the charge, which is supposed to be in the origin of S’, one has

E = qr%, B = 0. (25.26)

In the system S the coordinates of the charge are Xq = yq = 0, Z; = vt. Now we express r’ by r and t and obtain

;o (ax ay qy(z-w)

B - (N,N;—Kr—y (25.27)
B = 0 (25.28)
N = r3=02+y+y%z- w22 (25.29)

It follows that

E1 = y(E} + !By = 2 ~
£, = (E; - By = B 1 - POV (25.30)
Es = By = 2V
B = y(B; - 1E) = I
e T TN | mvxn)
Bz=y(By+ {E) = B (B="—— (25.31)

Bs=B,=0

Avreas of constant N are oblate rotational ellipsoids. The ratio short half-axis / long half-axis is given by 1/y =
1- "é thus the same contraction as for the Lorentz contraction.

25.e  DorpLER Effect
We consider a monochromatic plane wave
E=Eee?, B=Bee’ withg=k-r—owt (25.32)

We know, how E and B and thus Eq and By transform. Thus we are left with considering the phase ¢ which is a
four-scalar. If we write w
(k) = (E’ k), (25.33)

then
¢ = —kx (25.34)

follows. Since (x*) is an arbitrary four-vector and ¢ is a four-scalar, it follows that (k*) has to be a four-vector.
Thus one obtains for the special Lorentz transformation (25.18)

W =ck® =cy(K® - BK3) = y(w - pck®), K=k, K2=K, K°3=y(K - ,8%). (25.35)
If the angle between z-axis and direction of propagation is 6, then k3 = ¢ cos @ holds, and one obtains

o' = wy(l—pBcosh). (25.36)



88 H Lorentz Invariance of Electrodynamics

Thus if v is parallel and antiparallel to the direction of propagation, resp., then one deals with the longitudinal
DoppLER shift

0=0: o =w,5 (25.37)
h=n: o =wi% (25.38)

If however § = /2 and ¢’ = mt/2, resp., then one deals with the transverse DoppLer shift.

JT; / w
=5 W= (25.39)
o = g L W =w\I-B (25.40)

Here ¢ is the angle between the Z -axis and the direction of propagation in S’.



26 Relativistic Mechanics 89

26 Relativistic Mechanics
EnsteN realized that the constance of light velocity in vacuum and the resulting Lorentz transformation is not

restricted to electrodynamics, but is generally valid in physics. Here we consider its application to mechanics
starting from the force on charges.

26.a Lorentz Force Density
The force density on moving charges reads
1
k =pE + Ej x B, (26.1)
that is e.g. for the first component
1, . 1, . . 1.
k- = pBr+ “(j%Bs = J°Bo) = _(I°F 1 = PR = JPFT) = _j,FY. (26.2)
Thus one introduces the four-vector of the Lorentz force density
1.
kKt = EJVF”V. (26.3)

We consider the time-like component
1 1
K=Zj,F¥=j.E. 26.4
<] o (26.4)

The time-like component gives the mechanical energy acquired per time and volume, whereas the space-like
components give the rate of change of mechanic momentum per time and volume

() = i - EK) (26.5)

26.b Lorentz Force Acting on a Point Charge
The four-current-density at x of a point charge g at xq reads

(%, 1) = go3(X — Xq())V". (26.6)
Thus the force acting on the point charge is given by

KK = gvVF’”. (26.7)

This is not a four-vector, since (V) is not a four-vector. If we multiply it by y then we obtain a four-vector, the
Minkowskr force
yKH = guyF’”. (26.8)

K is the momentum which is fed into the point charge per time unit, cK© is the power fed into it. The MiNkowsk1
force is the momentum and the energy divided by c, resp., fed into it per proper time.

26.c Energy and Momentum of a Mass Point

We assume that also mechanical momentum and energy/c combine to a four-vector, since the change of mo-
mentum and energy divided by c are components of a four-vector

(@)= (GE.G). (26.9)
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In the rest system S’ we expect G’ = 0to hold, i.e.

1
(G") = (;E0. 0). (26.10)
In the system S the special transformation (23.23) yields for v = ve,
v Eo
G=  rgBe= wg. (26.11)
E= G°=cyG%= yE,. (26.12)
For velocities small in comparison to light-velocity one obtains
Eo V2
G-= gv(1 tog ). (26.13)
In NewTon’s mechanics we have
GNaNton = nv (26.14)

for a mass point of mass m. For velocities v < ¢ the momentum of Newton’s and of the relativistic mechanics
should agree. From this one obtains

E
m= C—g — Ep=mc?, G =mv. (26.15)
Then one obtains for the energy E
E = mc2y = mc? + %1v2 + O(*/c?). (26.16)

One associates a rest energy Eq = mc? with the masses. At small velocities the contribution %vz known from
NewTonian mechanics has to be added

G' = mu. (26.17)
This G is called four-momentum. We finally observe
G"G, = mPu'u, = mPc?, (26.18)
from which one obtains
-G? + C—leZ =nmfc?, E? =nmPct + G (26.19)

One does not observe the rest energy Eq = mc? as long as the particles are conserved. However they are
observed when the particles are converted, for example, when a particle decays into two other ones

A% = 7+ p*. (26.20)
With the masses
my = 2182me, M, = 273mMe, My = 1836me (26.21)
one obtains the momentum and energy bilance for the A which is at rest before the decay
me = |JmEct+ G2+ \fmEct + G2? (26.22)
0 = Gr+Gp. (26.23)

The solution of the system of equations yields

G| = 40\/M(mA — M)(M = m)(M —mp)/my,  2M = my +m, + mp. (26.24)
By means of the four-vectors one may solve

G/ =G/ + Gy (26.25)
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with respect to G, and take the square

Gp'Gpu = (G — G1)(Gay — Gry) = G Gay + GGy — 2G, Gy (26.26)
This yields
MGc” = M ¢% + nc” — 2my E, (26.27)
and therefore 2
E, = m(mﬁ + ¢ - mp) (26.28)
and analogously
C2
Ep = ﬂ(mi —mZ +mp). (26.29)

26.d Equation of Motion
Finally we write down explicitely the equations of motion for point masses

1
d% = K, (26.30)

As mentioned before these equations are not manifestly Lorentz-invariant. We have, however,

dG* dGH dt dG+
- — gy —yKH 26.31
dr  dtadr Cdt T (26.31)
where the right-hand side is the Minkowski force. In this form the equations of motion are manifestly Lorentz
invariant.
If the force does not change the rest energy of a particle, one obtains from

G'G, = M2 > %(Gﬂeﬂ) =0 - G*yK, = 0 > ¥K, = 0. (26.32)

The force is orthogonal on the world velocity. An example is the Lorentz force

u,K* = %yV”VVF”V -0, (26.33)
since F#” is antisymmetric. We observe
cdE
VK, =-v-K+-—=0. 26.34
H + c dt ( )
Thus equation (26.32) is equivalent to
dE
— =v-K, 26.35
el (26.35)

which yields the power fed into the kinetic energy of the mass.
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27 Lagrangian Formulation

27.a Lagrangian of a Massive Charge in the Electromagnetic Field

We claim that the Lagrangian £ of a point charge g of mass min an electromagnetic field can be written

i2 q .
L = —mc?4[1- Z- qd(r,t) + EA(r,t) o
XX, q .
= —mCZ 1+ ? — EA”(X)X# (271)
Then the action | can be written
d
| = fdt.ljz —mszdT—gfth”d—)iﬂ - fdr(—mcz— gA”uﬂ), 27.2)

that is as a four-scalar.
Now we show that this Lagrangian yields the correct equations of motion

doL 4L
—— e — T 27.
dtox, 0%, 0 (273)
from which by use of
0L mx* g, _qey 9pe
% - —= + cA (r(),t)=G" + CA (27.4)
T
one finally obtains
9649+ 9. v)a+qro-dvw.A) =0, (27.5)
dt c c c

Note that A contains only the partial time-derivative of A, thus we have dA/dt = A + (v - V)A. By suitable
combination of the contributions one obtains

d 1. q

aG+q(V(D+EA)—va(VxA) =0 (27.6)
96_ge-9yxB = 0 @7.7)
a-  FT¢ -7 '

Thus the Lagrangian given above yields the correct equation of motion.

27.b Lagrangian Density of the Electromagnetic Field

The Lagrangian density L of the electromagnetic field of a system of charges consists of three contributions

1 1.
L = _EF”VFF‘V - EAHJ# + Lmech~ (278)

The mechanical part for point charges of mass m; reads
L == Y7 me [ (- x (o). (279)
i

which yields after integration over d*x the corresponding contribution to the action | given in (27.1). The
second contribution in (27.8) describes the interaction between field and charge. Integration of this contribution
for point charges using

Julr,t) = Z qi%ﬁ(r -r) (27.10)
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yields the corresponding contribution in (27.1). The first contribution is that of the free field. Below we will see
that it yields MaxweLL’s equations correctly. The action itself reads

-1 f diXL(X) = f dt f dPxL(x, 1) = f dtow). L) = f XL (X, 1). (27.11)

The action has to be extremal if the fields A are varied. There we have to consider F as function of A (25.3),
F. = 0,A, — 0,A,. Then the variation with respect to A yields

1 1
oL = ——F_,6F" — =j,6A” 27.12
8 H CJ ( )
SER = §(MA — YA = oA — I SA (27.13)
FudF? = Fd'0A - ,NavaAﬂ 2F 0" 6A (27.14)
1
oL = ——F,0"6A — = oA 27.15
47[ H CJ ( )

Thus the variation of the action with respect to A is

ol

1 1
Ay _— v _ i 4
fd X = g Fnd A" = S ],0R)

1 1 1.
- f d4xH:6P(FﬂV6AV)+ f d4X(R6”FW— 2 jv)OA. (27.16)

The first term of the second line is a surface-term (in four dimensions). From the second term one concludes
MaxweLL’S inhomogeneous equations (25.7)

4.
,F = %‘ . (27.17)

MaxweLL’s homogeneous equations are already fulfilled due to the representation F,, = d,A, — 9, A,.
Generally one obtains for a Lagrangian density, which depends on a field (A*) and its derivatives by variation

f d*xsL(X)

J o (6Av(x) AOY+ 6a~Av(x)‘9”‘SAV(X))

J o (rg o) [ e - (mag)lve @9

Usually one denotes the partial derivatives of L with respect to A and A by 6L/6.... Since the variation has to
vanish, one obtains in general the equations of motion

oL sL
7 (WAV(X)) TOA(N) 0 (27.19)

col

This is the generalization of Lacrance’s equations of motion (27.3) for fields. There appear derivatives of
6L/6V A with respect to the space variables besides the time-derivatives of 6L/5A”.
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28 Energy Momentum Tensor and Conserved Quantities

28.a The Tensor

In section 15.b we have calculated the conservation law for momentum from the density of the Lorentz force
in vacuo that is without considering additional contributions due to matter

0 0
-k = —gs— —T%e" 28.1
(9th 0P » ( )
1
= —EXxB 28.2
G dnco O (28.2)
1 )
o _ YaB (2 2
TY = 4TE(EQENBQBﬁ) o (E?+B?). (28.3)
The zeroth component is the energy-density. For this density we have obtainded in section 15.a
1 1. 1.
-k = -Jj-E=>divS+ =l (28.4)
c c c
c
S = —ExB 28.5
4n % ( )
1 2 2
u = %(E +B?). (28.6)
We summarize
-k = -0, TH (28.7)
with the electromagnetic energy-momentum tensor
—u —%Sl —%82 —%83
(T") = ~COs  Tu Tz Tz | (28.9)

—C2 Ta T Tos
—C0s3 Ta1 Ta Taz

This energy-momentum tensor is built up from the energy density u, the Poynting vector (density of energy

current) S, the momentum density g, and the stress tensor T.  One observes that T#” is symmetric, T# = T,
1

since Top is symmetric and cgs = £S = %E x B holds. One easily checks that

1 1
v _ M Ay vk A
T = ﬁ(— FFY + 297FF J) (28.9)
holds either by explicit calculation and comparison or from
1 1 1 1
K= 2 FH = —(0F)F* = — " (F F*) — —F, 0" F*. 28.1
CJ/l . (6 V/i) 43_[6 ( vA ) 4 V/la ( 8 O)
From
Foa(9'FH + #FY + 9'F) = 0 (28.11)
one obtains the relation 1
5aﬂ(FMFM) +2F,,0"F* = 0, (28.12)
so that finally we obtain
ke = iaV(F FHY) + iaﬂ(F JFY)
4n Y 167 Y
1 M =y 1 VK A
= Eav(— FFY + 2g7FF o) (28.13)

T#” is a symmetric four-tensor, i.e. it transforms according to

T = AN, T (28.14)
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28.b Conservation Laws

We start out from a four-vector field (j#(X). In any three-dimensional space-like subspace R of the four-
dimensional space be (j*) different from zero only in a finite region. We call a space space-like if any two
points in this space have a space-like distance. A world-line, i.e. a line which everywhere has a velocity below
light-speed hits a space-like subspace in exactly one point. If one plots the subspace as a function x°(r) then
its slope is everywhere less then 1. The slope of the world-line is everywhere larger than 1. For example, the
points of constant time in an inertial frame constitute such a space-like space. We now integrate the divergence
0, j* over the four-dimensional volume Q, which is bounded by two space-like spaces R and R” and obtain

f d*x— f d®x( % i) - . dsx(jo—% i)- (28.15)

The contribution d,j* is integrated in x*-direction until the
boundary Ror R’ or until j* vanishes. This yields immedi-
ately the contribution given for the 0-component. For the 1-
component one obtains initially the integral + [ dx°dx?dx3j*
at the boundary.The dx%-integration may be transformed into
an dxl ”X -integration. If X = x? increases (decreases) at the
boundary with xt, then this is the lower (upper) I|m|t of the
integration. Thus we have a minus-sign in front of 2 x 9% sim-
ilarly for the other space-components.We may convince our-
selves that

x9=X (x)

3 i
fR d*x(j° - a = f dV,j (28.16)

with (dV,,) = (1, -VX)d3x is a four-scalar. If we introduce a four-vector (j”), so that

m j” inR
H—

. 6]
uo_ o 4
fR dV,j fR AV, ] f A5 (28.18)

where the last integral is obviously a four-scalar, since both d*x and the four-divergence of j is a four-scalar.
Since the field (j*) is arbitrary, we find that dV,, j* has to be a four-scalar for each infinitesimal (dV,) in R. Since
(j*) is a four-vector, (dV#) must be a four-vector, too. Then (28.16) reads

f d*xa, j* = f dv,, j# - f dv, j*. (28.19)

This is the divergence theorem in four dimensions.
From this we conclude:

then it follows that

28.b.a Charge

(j*) be the four-vector of the current density. One obtains from the equation of continuity d,j* = 0 for each
space-like R the same result

q= % f aVv,,j (28.20)
R

for the charge, since the integral of the divergence in Q in (28.19) vanishes, (since the integrand vanishes) and
since one may always choose the same R'. Thus the charge is a conserved quantity, more precisely we have
found a consistent behaviour, since we already have assumed in subsection 24.c that charge is conserved. New
is that it can be determined in an arbitrary space-like three-dimensional space.
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28.b,8 Energy and Momentum

From
k' =0, TH (28.21)

f dxk! = f dv, T# — f dVv, TH. (28.22)
Q R 24

In a charge-free space (k* = 0), i.e. for free electromagnetic waves one finds that the components of the
momentum of radiation

one obtains

Gi = 1 f dv, T (28.23)
CJr

are independent of R. Thus they are conserved. Now be (b,) an arbitrary but constant four-vector. Then b, T#”
is a four-vector and 8, (b, T#”) = 0. Then b, G5 is a four-scalar and Gj is a four-vector.
If there are charges in the four-volume Q, then one obtains.

Gi(R) = —% fg d*xik* + GE(R). (28.24)

For point-charges qg; one has (26.7, 26.30)

% f a4k =Z f dtK” =Z f dtG" =Z(G¢(R)—G¢(F¥)). (28.25)

Here G/(R) = mu/(R) is the four-momentum of the charge #i at the point where its worldline hits the three-
dimensional space R. Then
G =GL(R) + Z G'(R) (28.26)
i

is the conserved four-momentum.

28.b.y Angular Momentum and M ovement of Center of Mass

Eq. (28.7) yields
(X! T = X TP) = Xk — Wkt + Tt — T, (28.27)

Since the tensor T is symmetric, the last two terms cancel. We introduce the tensor
M&#(R) = —% fR AV, (X T = X T ), (28.28)
It is antisymmetric M = —M“*. Due to (28.19) one has
M#(R) = —% fQ dx(x'k - ¥'k') + Mg (R). (28.29)
For point-charges one obtains
% fﬂ d'x(x'K — x'k') = Z f dt(x'K! - X'K}') = Z f dt%(xfef( - X'G). (28.30)

since X'G* = ¥*G*. Therefore

M*(R) = Mg"(R) + M'(R) (28.31)
including the mechanical contribution
MER =Y (X6 - ¥'6)| (28.32)

is a conserved quantity, i.e. M*#(R) is independent of the choice of R. Simultaneously (M*) is a four-tensor.
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Finally we have to determine the meaning of M. For this purpose we consider M in the three-dimensional space
R given by constant time t for a system of inertia S. Then we have

MY = _% fd?’x(xAT”O _XT) 4 Z (X6t - X'GY) (28.33)

First we consider the space-like components

ues = [ dxxedt - gg) + 3 (6! - X)) (28.34)

This is for & # 8 a component of the angular momentum L, namely €., L,. Thus we have found the conservation
of angular momentum.
If one component is time-like then one finds

MO = ct(fd3xgg + ZG?) - %(fd3xx”u + Z X'E). (28.35)

The first contribution is ct multiplied by the total momentum. The second contribution is the sum of all energies
times their space-coordinates x* divided by c. This second contribution can be considered as the center of
energy (actually its a-component) multiplied by the total energy divided by c¢. Since total momentum and total
energy are constant, one concludes that the center of energy moves with the constant velocity czm‘t‘:"]td“’%&”"

For non-relativistic velocities the mechanical part of the energy reduces to

MO = c(t Yar-> r’m(i’] : (28.36)

Then the conservation of this quantity comprises the uniform movement of the center of mass with the velocity
total momentum divided by total mass. In the theory of relativity this transforms into a uniform moving center
of energy. Lorentz invariance combines this conservation with the conservation of angular momentum to the
antisymmetric tensor M.
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29 Field of an arbitrarily Moving Point-Charge

29.a Lienarp-WiecHERT Potential

First we determine the potential at a point (x*) of a point-charge g which moves along a world-line r4(t). Its
four-current density reads

F(X) = (X' —rq(), V' = (c.Fq(t)). (29.1)
According to (24.29) the four-potential reads
A(X) = %fd“x’j”(x’)é(%sz)e(t—t’) =qfdt’\/‘(t’)6(%sz)e(t—t’) (29.2)
S=aa, a=x-xt) (29.3) point of
observation (x*) \ yorid line

(&) is a function of (x") and t’. The differential of %sz is

given by of charge

. rq(t
1 light cone a(®)
d(zsz) =ada’ = a,dx" — a,v'dt’. (29.4)
Thus one obtains the Linarp-WiecHERT potential \ oL
1 o\ qu-
Aﬂ = \/’l ¢ = = . 2 .
0 =055 = 25, = 2wl (20.5)

ot

Here the two expressions with the index , are to be evaluated at the time t” at which & =0 and t > t'.
We note that a,v' =ac—a-v > 0, since a = c(t —t") = |a. a,u”/c is the distance between point of observation
and charge in the momentary rest system of the charge.

29.b The Fields

Starting from the potentials we calculate the fields
F = *A — " A (29.6)

In order to do this we have to determine the derivatives of v, aand t’

L v
OV = (29.7)
’ vV Vat’
ya = P =g -V o (29.8)
i
av a
_ 29,
- (29.9)

where the last expression has been obtained from s? = 0 by means of (29.4). Here and in the following we use

(a-v) = av,=ac-a-v=cla—-a-p) (29.10)
(v-v) = Vv, =c2-V?=c*(1-5% (29.11)
awvy = avw=-a-w (29.12)
One evaluates
P o= & (29.13)

@-v
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. v vaH
yar = ¢ (a-v)
#@-v) = (0"aN+al(0"Vv)
e,V v
- gMVK_(a-v)VKJra“(a-v)
(V-V) (a-v)
v _ay(a-v) +aH(a-v)'
Then one obtains
y Voo v vidH(a-y)
A = 6p(q(a.v))_q(a-v) (a-v)2
. Vvl
= ab —QW,
b’ V(v-v) —v'(a-v)+Vv'(a-v)
- (a-v)?
Therefore .
ne 4 (g BBy oy e o L)
0) = Gmagp L F o BA-B) + BB+ J@-a- P
and the fields read
F* = &b’ -abt

E_af_ap - d-A)a-pa) gax(@-pa)xp)

@-a-p° | ca-a pp
ax E

B = -—-axb=

99

(29.14)

(29.15)

(29.16)

(29.17)

(29.18)

(29.19)
(29.20)

(29.21)

The contribution proportional to the acceleration B decreases like 1/a; a, E, and B constiute an orthogonal

system for this contribution. The contribution independent of B falls off like 1/a2.

29.c  Uniform Motion

(compare section 25.d). The scalar yatv,/c is the distance between the point of observation and the point of the

charge in the rest-system of the charge. Thus one has
1 ’
a-a-p=_Irl (@-a-f°’=Ny’.
Considering thata =r — vt’, a = c(t — t’), one obtains
a-Ba=r-vt'—vt+vt' =r —vt

and thus
E_ qy(r — vt) B - (r—vt)x(r-vt)qy qyvxr

N c(t —t/)N ~ ¢N
in accordance with (25.30) and (25.31).

29.d Accelerated Charge Momentarily at Rest
The equations (29.20) and (29.21) simplify for 3 = 0 to

g q
E = g-ﬁ-g
B = -Jd@xp),

ca?

ax(axp)

(29.22)

(29.23)

(29.24)

(29.25)

(29.26)
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from which the power radiated into the solid angle dQ can be determined with the energy-current density
S=LExB
Az

dUs  ,. _ca G o -
1) =a’S n_4n[a’E’B]_4n 5(@x p) _4m3(n><v) (29.27)
and the total radiated power
.20,
Us = 303v (29.28)

(Larmor-formula) follows.
For a harmonic motion r 4 = rgq Cos(wt) and V = —r gqw? cos(wt) one obtains

. 297G — 1P
Uszg?oqw“(cos(wt))z, US=§%w4 (29.29)

in agreement with section 22.b. This applies for 8 < 1. Otherwise one has to take into account quadrupole and
higher multipole contributions in 22.b, and here that 8 cannot be neglected anymore, which yields additional
contributions in order w® and higher orders.

29.e Emitted Radiation 8 # 0

We had seen that in the system momentarily at rest the charge emits the power Ug = %%ZVZ. The emitted

momentum vanishes because of the symmetry of the radiation (without consideration of the static contribution
of E, which, however, decays that fast that it does not contribute for sufficiently large a)

E(-a) =E(a), B(-a)=-B(a), T.(-a)=Tu(a). (29.30)
Thus we may write the energy-momentum-vector emitted per proper time

d (1 S)_ L}“Zqz( du? dul),

dr dr (29-31)

dric ®

since U° = ¢y o« v- v = 0. Since the formula is written in a lorentz-invariant way, it holds in each inertial frame,
ie.

dUs dr u 202 (dt )2 (_ doyvY d(yvl))

dt dt ¢ 3c8 \dr dt dt

2
= ST (0Mon - &)

202 . i . .
= SR 2 D) + A - ). (29:32)
With dr/dt - u®/c = 1 and
d 1 3V V
= — =y — 29.33
Y=g — Yz (29.33)
C2
one obtains finally
w20 (o e(V-V)
Us—gg()/v +y T . (2934)

Orbiting in a synchrotron of radius r a charge undergoes the acceleration v = v?/r perpendicular to its velocity.
Thus one has

. 2 2
Us = 30°8Yy*/r? = Sacly® - /1%, (29.35)
The radiated energy per circulation is

2mr - 4n
AUs = —=Us = ?q2ﬁ3y4/r. (29.36)



29 Field of aMoving Point Charge 101

At Desy one obtains for an orbiting electron of energy E =7.5 GeV and mass moc?® =0.5 MeV a value y =
E/(moc?®) = 15000. For r = 32m one obtains AU = 9.5MeV. Petra yields with E = 19GeV a y = 38000 and
with r = 367m a radiation AU = 34MeV per circulation.

Exercise Hera at Desy has r = 1008m and uses electrons of E, = 30GeV and protons of Ep = 820GeV.
Calculate the energy radiated per circulation.
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