Lecture 5: The kind of dark matter

Based on observations, we have collected evidence that particle dark matter should be
- electrically neutral
- stable compared to the lifetime of our universe
- "cold", i.e., non-relativistic at the time of decoupling.

Big open questions remain:
- What are its mass, spin, couplings?
- Does it interact with itself?
- When was it formed?
- Is there an entire dark sector?

Standard-model neutrinos are neutral and the lightest neutrino is stable.
- Could neutrinos be dark matter?

For relativistic fermions in thermal equilibrium, the yield is given by

\[Y_\nu = \frac{n_\nu(T)}{s(T)} = \frac{45}{2\pi^4} \, \xi(3) \, \frac{5/4 \, \frac{g}{g_{\ast s}(T)}}{g_{\ast s}(T)} \approx 0.21 \, \frac{g}{g_{\ast s}(T)}. \]

Notice that it does not explicitly depend on \(T \) (unlike for non-relativistic particles).

On Problem Set 2, you will show that the energy density of the lightest neutrino is given by

\[\sum_\nu \xi \frac{m_\nu}{94 \, eV} \Rightarrow \sum_\nu \xi \frac{m_\nu}{94 \, eV} \]
Today's strongest limit on the sum of neutrino masses has recently been set by the KATRIN experiment in tritium β-decay,

\[\sum m_{\nu_i} < 1.1 \text{eV} \text{ @ 90\% CL.} \]

This implies \(\mathcal{N}_\nu h^2 < 0.02 \). The relic abundance of neutrinos is thus way too small to account for all of the dark matter.

How "warm" can dark matter be?

Def.
- Cold dark matter is non-relativistic before radiation-matter equality, i.e., at \(T > T_{eq} \approx 5 \text{eV} \).
- Hot dark matter is relativistic at \(T > T_{eq} \).

Structures grow in the universe during matter domination, i.e., at \(T < T_{eq} \).

The characteristic scale for the smallest possible structures is the free-streaming length of a collisionless particle between regions of over- and under-density,

\[\lambda_{FS}(t) = \int_0^t \int_0^t \frac{k}{a(t')} \, dt'. \]

The free-streaming length today is then given by

\[\lambda_{FS}(t_0) \approx 1 \text{Mpc} \left(\frac{k \text{eV}}{m_{\nu}} \right) \left(\frac{T_0}{T_f} \right), \]

assuming that the species is relativistic during freeze-out.
Particles lighter than \(m_\chi \approx 1 \text{keV} \) wash out structures smaller than 1 Mpc, which is about the smallest observed scale.

- \(m_\chi > 1 \text{keV} \): hot dark matter - no small-scale structures
- \(m_\chi = 1 \text{keV} \): warm dark matter - wash-out
- \(m_\chi > 1 \text{keV} \): cold dark matter - in principle arbitrary small structures

For neutrinos: \(\tau_\nu / \tau_\chi \approx 0.7 \); \(\Sigma_i m_{\nu_i} < 1.1 \text{eV} \)

\(\rightarrow \lambda_{\nu\chi} \approx 600 \text{ Mpc} \).

Neutrinos are too warm to account for small-scale structures.

When was the relic abundance formed?

Strong bound on the presence of extra light degrees of freedom is obtained from the observed abundance of light elements.

Big Bang nucleosynthesis:

\(T \approx 1 \text{MeV} \):

\[n + \nu_e \leftrightarrow p + e^- \quad \text{in thermal equilibrium} \]

\[n + e^+ \leftrightarrow p + \nu_e \]

\[n + p \leftrightarrow ^2\text{H} + \gamma \]

\[^2\text{H} + p \leftrightarrow ^3\text{He} + \gamma \]

\[^2\text{H} + ^3\text{He} \leftrightarrow ^4\text{He} + p \]
neutron abundance at time of nucleosynthesis: \(R_n(t_{\text{nucl}}) \approx \frac{1}{6} e^{-t_{\text{nucl}}/\tau_n} \approx \frac{1}{6} \)

\(\tau_n \): neutron lifetime; \(\tau_n = 886.7 \pm 0.88 \) s

\(t_{\text{nucl}} = 330 \) s

Since two neutrons go into one helium, the mass fraction of helium is

\[
\frac{4n_{\text{He}}}{N_H} = \frac{2n_n}{N_p} \approx \frac{2 R_n(t_{\text{nucl}})}{1 - R_n(t_{\text{nucl}})} \approx \frac{1}{4}
\]

New light degree of freedom increase the number of effective d.o.f. during neutrino freeze-out:

\[
H \sim \sqrt{g_*} \frac{T_v^2}{M_{\text{pl}}} \sim T_v \sim \frac{g_*^2}{T_v} T_v^5 \rightarrow T_v \sim g_*^{1/6}
\]

A larger \(g_* \) would increase the neutrino freeze-out temperature, thus the \(n/p \) ratio and thus the helium abundance.

\(\rightarrow \) Dark matter should leave thermal equilibrium before big bang nucleosynthesis.