For a single Wilson coefficient, the solution in QCD at leading order is

\[
C(\mu) = \left(\frac{\alpha_s(\mu)}{\alpha_s(M_W)} \right)^{-\frac{\beta_0}{2\beta_0}} (1 + O(\alpha_s))
\]

\[\approx (1 + \beta_0 \frac{\alpha_s(M_W)}{4\pi} \ln \frac{M_W^2}{\mu^2})^{-\frac{\beta_0}{2\beta_0}} = 1 - \frac{\beta_0}{2} \frac{\alpha_s}{4\pi} \ln \frac{M_W^2}{\mu^2} + O(\alpha_s^2 \ln^2).
\]

Back to our example, \(b \to u \bar{c}s\):

Since the one-loop diagrams \(2\) and \(3\) contribute to both \(C_1\) and \(C_2\), the operators \(O_1\) and \(O_2\) mix under the renormalization group. At LO in QCD, we obtain

\[
\frac{d}{d\alpha_s(\mu)} \left(\frac{C_1(\mu)}{C_2(\mu)} \right) = \frac{\beta_0}{-2\alpha_s} \left(\frac{C_1(\mu)}{C_2(\mu)} \right) = \frac{4}{-2\alpha_s} \frac{(6 - 2) (C_1(\mu))}{(C_2(\mu))}.
\]

It is convenient to choose a basis in which the RGE is diagonal, i.e., \(O_+ = \frac{O_1 + O_2}{2}\), \(C_\pm = C_1 \pm C_2\).

The solutions for \(C_\pm(\mu = \mu_b)\) at some scale \(\mu_b\) around the \(b\)-quark mass are then obtained as \((C_1(M_b) = 1, C_2(M_b) = 0)\)

\[
C_+(\mu_b) = \left(\frac{\alpha_s(\mu_b)}{\alpha_s(M_W)} \right)^{-\frac{6}{23}} \approx 0.8; \quad C_-(\mu_b) = \left(\frac{\alpha_s(\mu_b)}{\alpha_s(M_W)} \right)^{+\frac{12}{23}} \approx 1.4.
\]

These are sizeable corrections to the tree-level result \(C_+ = 1 = C_-\).

The amplitude for \(b \to u \bar{c}s\) transitions in the RG-improved effective theory is finally given by

\[
A = \frac{4}{\sqrt{2}} \left\{ C_+ (\mu_b) \langle \sigma_+ (\mu_b) \rangle + C_- (\mu_b) \langle \sigma_- (\mu_b) \rangle \right\}.
\]
Effective flavor-changing neutral currents (FCNCs)

In the SM, FCNC-induced processes occur first at the 1-loop level through weak interactions. This loop suppression could be lifted by a new heavy particle that generates FCNC at tree level. FCNCs are therefore very sensitive probes of new physics.

In the EFT, FCNCs are described by operators of mass dimension \(\geq 6 \). We identify 4 classes of FCNC operators.

1) Current-current operators

\[
0_{4f} = (\bar{s}_L \gamma_{\mu} b_L)(\bar{s}_L \gamma^\mu b_L) \\
(\bar{B}_s - \bar{B}_s \text{ meson mixing})
\]

2) QCD penguin operators

\[
0_{QCD} = (\bar{s}_L \gamma_{\mu} b_L) \sum_{q=u,d,c,s,b} (\bar{q}_L \gamma^\mu q_L) \\
(\bar{B}^0 \rightarrow K^-\pi^0)
\]

3) Electro-weak penguin operators

\[
0_{EW} = \left(\bar{s}_L \gamma_{\mu} s_L \right) \sum_{q=u,d,c,s,b} \frac{3}{2} \epsilon_{q} (\bar{q}_R \gamma^\mu q_R) \\
(\text{using } D_{q} \sigma_{\alpha}^{a} = -\frac{\epsilon}{2} g_{\alpha \beta} \bar{q}_{R} \gamma_{\beta} T_{a} q)
\]
4) Electromagnetic and chromomagnetic dipole operators

\[O_{q} = - \frac{G_{F}}{\sqrt{2}} s_{L} \delta_{\mu\nu} F^{\mu\nu} b_{R} \]

\[O_{q} = - \frac{G_{F}}{\sqrt{2}} s_{L} \delta_{\mu\nu} G^{\mu\nu}_{a} T_{a} b_{R} \]

\((B \to X_{s} \gamma)\)

Using the unitarity of the CKM matrix, we can simplify the flavor structure of the relevant terms in the Lagrangian. For penguin operators, we can substitute \(\lambda_{t} = - (\lambda_{u} + \lambda_{c}) \), where \(\lambda_{q} = V_{qL} V_{qS}^{*} \) for \(b \to s \); assuming \(m_{u} = 0, m_{c} = 0 \). Contributions of penguin operators can then be written as

\[L_{eff} = - \frac{G_{F}}{\sqrt{2}} \sum_{i=a_{0}, a_{1}, E, W, Q} (\lambda_{u} + \lambda_{c}) C_{i} O_{i}. \]

The full operator basis for FCNC transitions can be found in W. Weibert, hep-ph/0512222.

EFT application: \(B_{d} \to \bar{B}_{d} \) meson mixing

The dominant contribution to \(B_{d} \to \bar{B}_{d} \) mixing stems from top-quark box diagrams,

\[O_{3B-2} = (b_{L}^{d} \bar{d}_{L}^{d})(b_{L}^{d} \bar{d}_{L}^{d}) \]

(same as \(O_{1} \) in \(B_{d} \to \tau^{+} \tau^{-} \) example)
\[L_{\text{eff}} = - \frac{G_F^2}{16 \pi^2} M_W^2 (V_{tb}^* V_{td})^2 C(\mu) \bar{O}_{AB=2} + \text{h.c.} \]

The Wilson coefficient is given by the loop function

\[C(M_W) = S_0(x_t) = x_t \left(4 - M_W^2 + x_t^2 \right) \frac{3 x_t^2 \ln x_t}{2(1-x_t)^3} \]

where \(x_t = \frac{m_t^2}{M_W^2} \).

The anomalous dimension of \(O_{AB=2} \) is the same as for \(O_7 \). At LO QCD, we have \(\gamma_+^0 \gamma_+^0 = 4 \).

The renormalization group evolution of \(C(\mu) \) down to the energy scale of \(B_d - \bar{B_d} \) mixing, \(\mu_B = \mu_b \), is thus described by

\[C(\mu_b) = \left(\frac{\mathcal{L}_s(\mu_b)}{\mathcal{L}_s(M_W)} \right)^{\frac{2}{25}} C(M_W) = \left(\frac{\mathcal{L}_s(\mu_b)}{\mathcal{L}_s(M_b)} \right)^{\frac{6}{25}} S_0(x_t). \]

The matrix element describing \(B_d - \bar{B_d} \) mixing in RG-improved perturbation theory at LO is then obtained as

\[2 M_{\bar{B}_d} M_{B_d} = \langle \bar{B}_d | L_{\text{eff}}^{AB=2} | B_d \rangle \]

\[= \frac{G_F^2}{16 \pi^2} M_W^2 (V_{tb}^* V_{td})^2 C(\mu_b) \langle \bar{B}_d | \bar{O}_{AB=2}(\mu_b) | B_d \rangle, \]

where \(\langle \bar{B}_d | \bar{O}_{AB=2}(\mu_b) | B_d \rangle \equiv \frac{8}{3} B_{\bar{d}d}(\mu_b) f_{\bar{d}}^2 M_{\bar{d}}^2 \).

and \(f_{\bar{d}} \) is the \(\bar{d} \) meson decay constant.

The parameter \(B_{\bar{d}d}(\mu_b) \) comprises non-perturbative QCD effects.
Using calculations of the combination $f_{8d}(\bar{B}_{8d})$, where $\bar{B}_{8d} = B_{8d}(\mu_b) L_8(\mu_b)^{-\frac{\epsilon}{2\pi}}$, from lattice gauge theory, we can eventually calculate the observable ΔM in $B_d - \bar{B}_d$ mixing,

$$\Delta M_{ld} = 2|M_{12}| = \frac{G_F^2}{6\pi^2} M_W^2 |V_{td}|^2 f_{ld}^2 B_{8d}^2 m_b M_{ld} \text{SU}(x),$$

with $m_b = L_8(M_W)^{\frac{\epsilon}{2\pi}}$ at LO.