Exercise 1: Dirac mass term

In quantum field theory, a Dirac fermion is described by a spinor field \(\psi = (\psi_L, \psi_R)^T \), where \(\psi_L \) and \(\psi_R \) denote left- and right-chiral components.

Show that the mass term for a Dirac particle with mass \(m \) can be written as

\[
m \bar{\psi} \psi = m \left(\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L \right),
\]

i.e. that the terms \(\bar{\psi}_L \psi_L \) and \(\bar{\psi}_R \psi_R \) vanish.

Hint: Express \(\psi_L \) and \(\psi_R \) in terms of \(\psi \) and the projection operators \(P_L = (1 - \gamma_5)/2 \) and \(P_R = (1 + \gamma_5)/2 \).

Exercise 2: Charge conjugation and Majorana spinor

The charge conjugation transformation of a Dirac spinor is defined by \(\psi^C \equiv C \bar{\psi}^T \), with \(C = i \gamma^0 \gamma^2 \).

a) Show that under charge conjugation \((\psi_L)^C = (\psi^C)_R \) and \((\psi_R)^C = (\psi^C)_L \).

A Majorana particle is its own anti-particle, defined by the condition \(\psi^C = \psi \).

b) By imposing this condition on a general spinor, derive a relation between \(\psi_L \) and \(\psi_R \). How does the four-component Majorana spinor \(\psi_M \) then read?

Exercise 3: Neutrinoless double beta decay

A signature for neutrinos being Majorana particles is the neutrinoless double beta \((0\nu2\beta) \) decay.

Draw a Feynman diagram for quark interactions contributing to the \(0\nu2\beta \) decay of a nucleus \(N = (A, Z) \) with mass number \(A \) and atomic number \(Z \) at the quark level,

\[
(A, Z) \rightarrow (A, Z + 2) + 2e^-.
\]