Time dependent CP Violation

\[L = \beta \gamma ct \]

\(\mathbf{B}^0 \)

\(\mathbf{\bar{B}} \)

\(\mathbf{PV} \)

\(J/\psi \)

\(\mathbf{K}_s \)

\(\mu^- \)

\(\mu^+ \)

\(\pi^- \)

\(\pi^+ \)

Signal \(B \)

(flavor specific decay)

\[m^2 = \left(\sum p_i \right)^2 \]

Invariant mass:

Opposite \(B \)

Can be used for flavor tagging

Count recorded \(J/\psi K_s \) events as function of the decay time \(t \), separately for originally produced \((t=0) \) \(\mathbf{B}^0 \) or \(\mathbf{\bar{B}}^0 \) → calculate asymmetry as function of \(t \).
Time dependent CP asymmetry

⇒ time dependent CPV:

\[A_{CP}(t) \sim \eta_{CP} \sin 2\beta \sin(\Delta m t) \]

\[\sin 2\beta = 0.731 \pm 0.035 \pm 0.020 \]

"Golden decay" \(B^0 \rightarrow J/\psi(\mu\mu)K_s \) (42560 evts)

sin2β “diluted” due to non-ideal tagging
Time dependent CPV in $B^0 \rightarrow J/\psi K^0$

$\eta_{CP} = -1$

$\eta_{CP} = +1$
2016

\[\sin 2\beta \]

\[\Delta m_d \text{ & } \Delta m_s \]

\[\epsilon_K \]

\[|V_{ub}| \]

\[\alpha \]

\[\beta \]

\[\gamma \]

\[\rho \]

excluded area has CL > 0.95

solution with \(\cos 2\beta < 0 \) (excl. at CL > 0.95)