T	i	t	le	
-	_	_		

Key problems in fundamental physics

Lectures:

- (1) Physical time and the beginning Universe 11.11.
 - Clocks and the vacuum
 - Time coordinates in general relativity and cosmology (proper time, conformal time, cosmic time)
 - Field transformations and frame invariance: Is the age of the Universe 13.8 billion years?
 - Physical time for the beginning Universe
 - What is the meaning of expanding space and slowing time?

- (2) What is quantum gravity? 25.11.
 - Fields and symmetries
 - General coordinate invariance as a gauge symmetry
 - Quantum field theory for metric or vierbein
 - The role of metric fluctuations
 - Asymptotic safety
 - Lattice approaches and string theory
 - Can one observe quantum gravity effects?

- (3) Origin of wave functions and operators for quantum mechanics 9.12.
 - Evolution in classical probabilistic systems
 - Wave functions and time local probabilities in classical statistics
 - Transfer matrix and step evolution operator
 - The non-commuting structures in classical statistics
 - Unitary evolution and quantum mechanics
 - Probabilistic cellular automata as simple quantum systems
- (4) Quantum field theory from classical probabilities 20.1.
 - Functional integral approach to quantum field theory
 - Generalized Ising models as "functional integrals"
 - Minkowski and euclidean time
 - Fermions as Ising spins
- Simple probabilistic cellular automaton for fermionic quantum field theory
 - in one time and one space dimension
 - Vacuum, operators and correlation functions
- (5) Cosmological constant and dynamical dark energy