Key problems in fundamental physics

Title:

Key problems in fundamental physics

Lectures:

- (1) Physical time and the beginning Universe 11.11.
 - Clocks and the vacuum
 - Time coordinates in general relativity and cosmology (proper time, conformal time, cosmic time)
 - Field transformations and frame invariance: Is the age of the Universe 13.8 billion years?
 - Physical time for the beginning Universe
 - What is the meaning of expanding space and slowing time?

- (2) What is quantum gravity? 25.11.
 - Fields and symmetries
 - General coordinate invariance as a gauge symmetry
 - Quantum field theory for metric or vierbein
 - The role of metric fluctuations
 - Asymptotic safety
 - Lattice approaches and string theory
 - Can one observe quantum gravity effects?

Key problems in fundamental physics

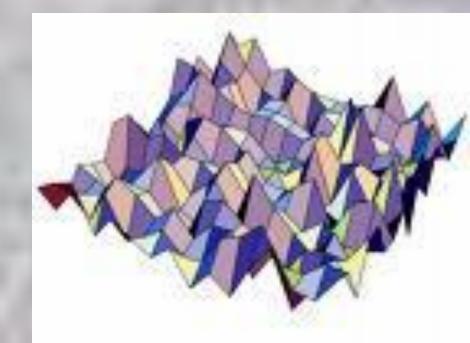
- (3) Origin of wave functions and operators for quantum mechanics 9.12.
 - Evolution in classical probabilistic systems
 - Wave functions and time local probabilities in classical statistics
 - Transfer matrix and step evolution operator
 - The non-commuting structures in classical statistics
 - Unitary evolution and quantum mechanics
 - Probabilistic cellular automata as simple quantum systems

- (4) Quantum field theory from classical probabilities 20.1.
 - Functional integral approach to quantum field theory
 - Generalized Ising models as "functional integrals"
 - Minkowski and euclidean time
 - Fermions as Ising spins
- Simple probabilistic cellular automaton for fermionic quantum field theory

in one time and one space dimension

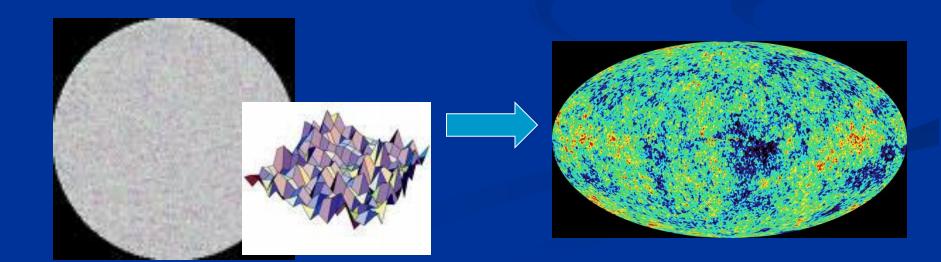
- Vacuum, operators and correlation functions
- (5) Cosmological constant and dynamical dark energy

Physical time and

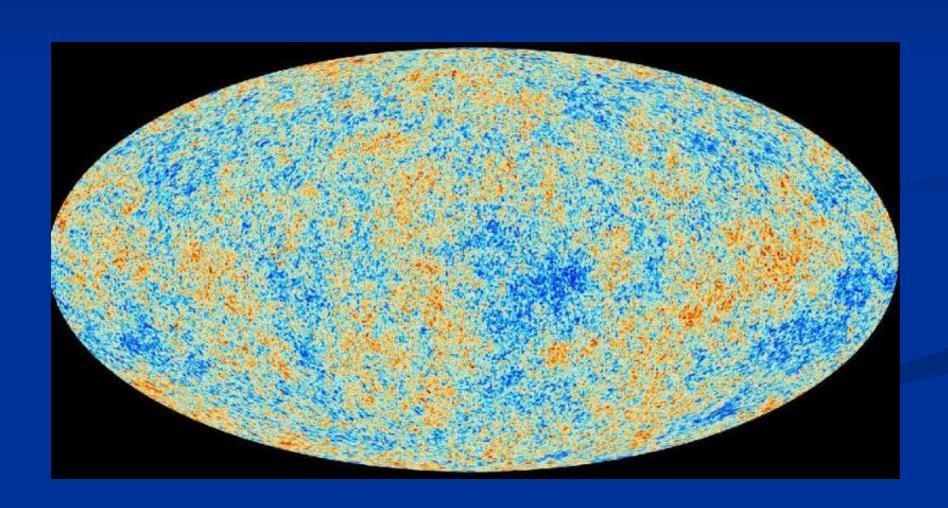

the beginning of the Universe

How did the Universe begin?

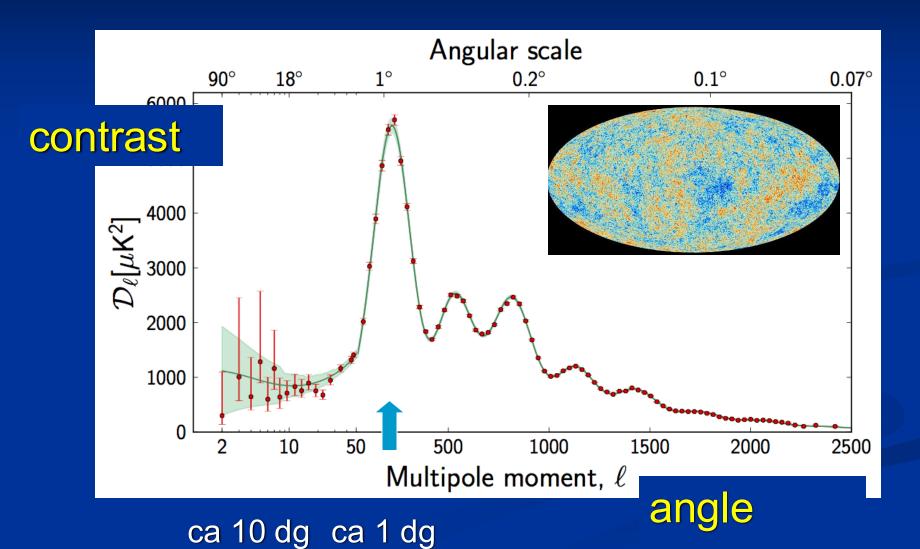
Inflationary Universe


Only fields and their fluctuations

Exponential expansion of space

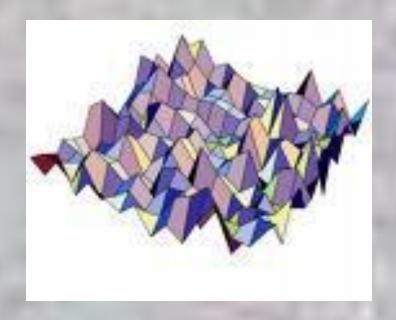


Inflationary Universe


- Singularity
- Exponential expansion lasts ca 10⁻³⁰ 10⁻⁴⁰ seconds after singularity
- Has happened 13.8 billion years before our time
- Observations possible : CMB

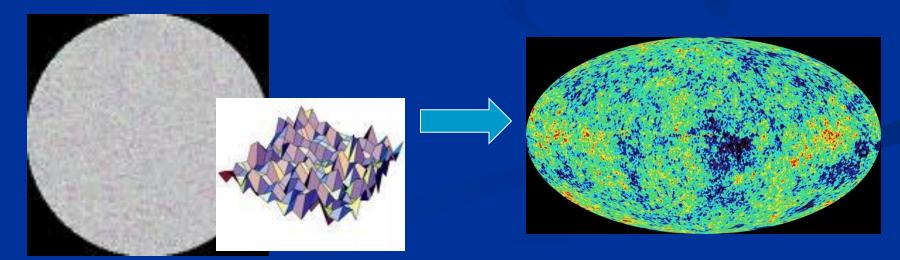
CMB anisotropies

Temperature in dependence on size of fluctuations (angle)


Eternal light-vacuum or singularity?

Everywhere almost nothing only fields and their fluctuations

Very few particles:
all move with light velocity,
similar to photons


Only very slow expansion

Eternal light vacuum valid to infinite past

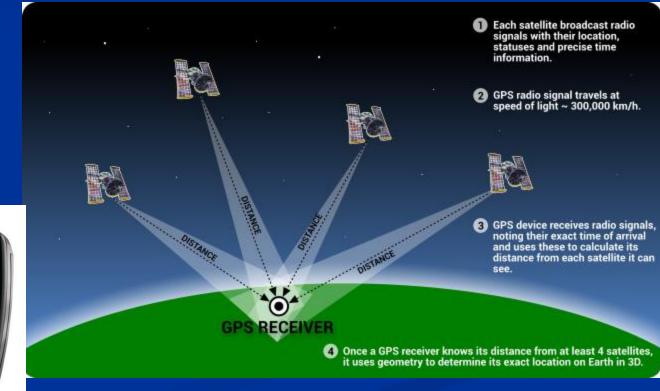
Eternal light-vacuum is unstable

- Slow increase of particle masses
- Only slow change of space-time geometry
- Creation of particles and entropy
- Consequence for observation : primordial fluctuations become visible in cosmic background radiation
- We see fluctuations in a stage 5000 billion years ago, or similar number depending on model

What is physical time?

Bild : pmmagazin

What is space-time?

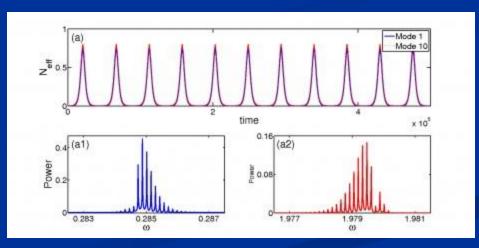

describes relations between observables

not something independent of matter and fields,
 into which matter and fields are placed

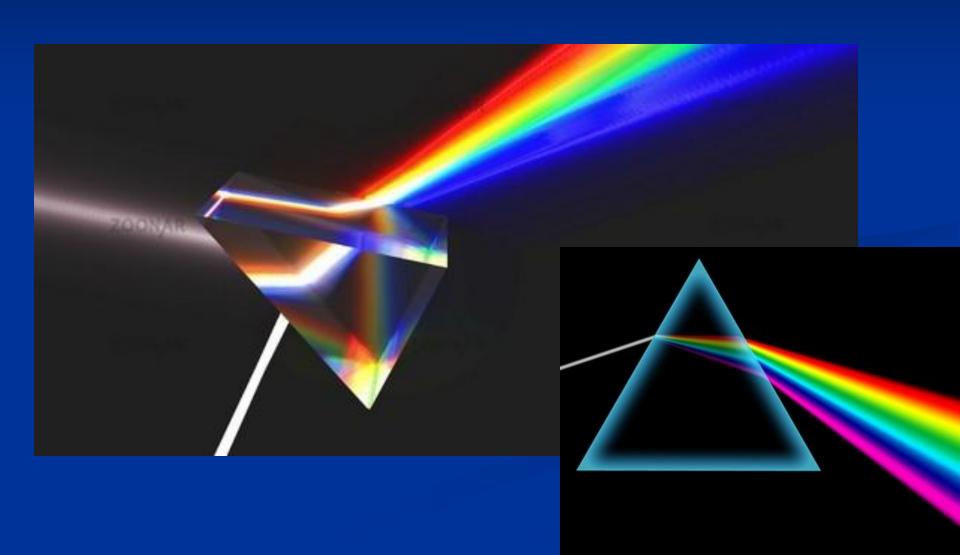
"Construction of space with light"

GPS uses electromagnetic waves, with time differences used to construct distances

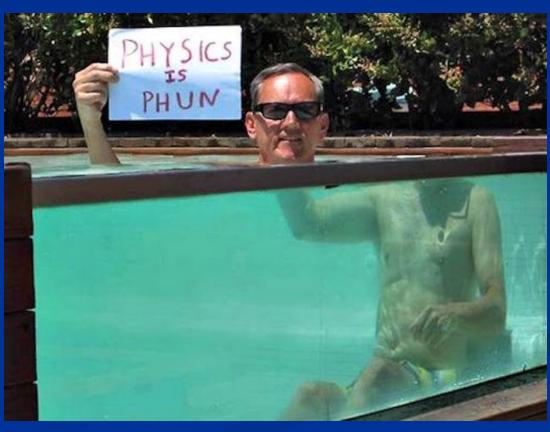
Spacetime

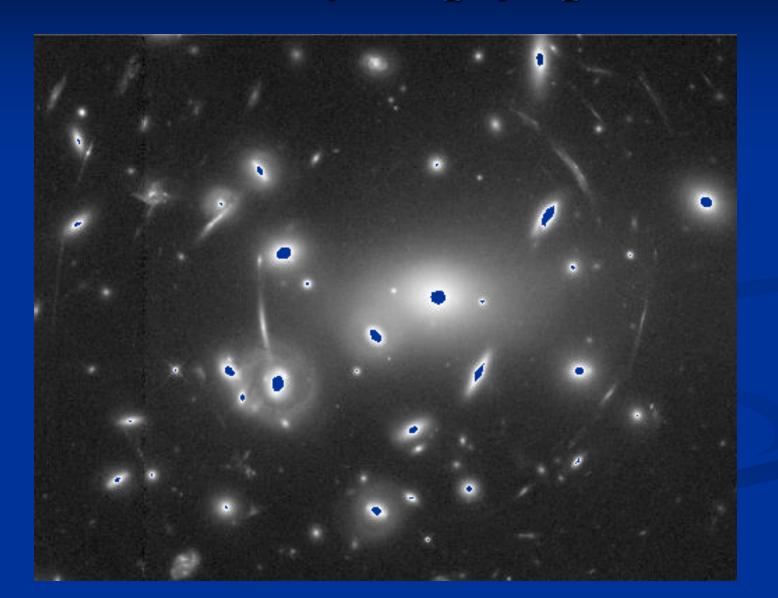

light + clock

Physical time


count oscillations

Spacetime depends on "vacuum"


Maxwell equations in medium


Propagation of light is influenced by medium

and also by empty space

Gravitational lenses

Vacuum is not nothing

Physical laws depend on vacuum

Metric

Metric field

Vacuum is characterized by fields and their fluctuations

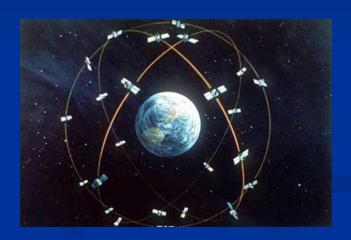
- Magnetic field: at each location and time three real numbers
- Metric field : at each location and time ten real numbers

Metric: ten numbers

$$g_{\mu\nu}(t,x,y,z)$$
 $g_{\mu\nu}=g_{\nu\mu}$

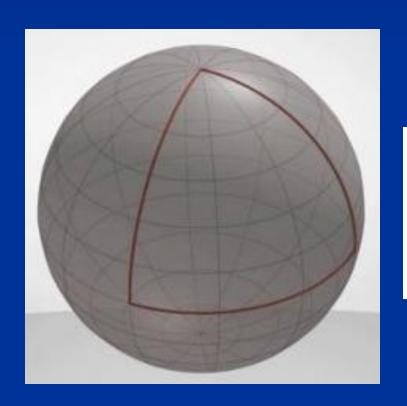
$$g_{\mu\nu} = g_{\nu\mu}$$

$$g_{\mu\nu}:(g_{00},g_{01},g_{02},g_{03},g_{11},g_{12},g_{13},g_{22},g_{23},g_{33})$$


matrix:

$$g_{\mu
u}: egin{pmatrix} g_{00} \ , \ g_{01} \ , \ g_{02} \ , \ g_{03} \ g_{10} \ , \ g_{11} \ , \ g_{12} \ , \ g_{13} \ g_{20} \ , \ g_{21} \ , \ g_{22} \ , \ g_{23} \ g_{30} \ , \ g_{31} \ , \ g_{32} \ , \ g_{33} \end{pmatrix}$$

One of the components is Newton's gravitational potential


Metric influences propagation of light

Distances in space depend on metric

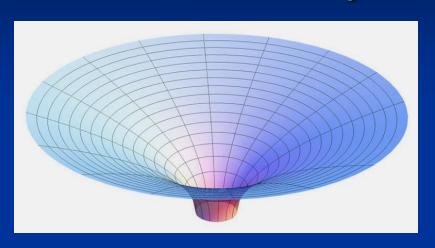
Metric defines a geometry


$$ds^2 = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu} dx^{\mu} dx^{\nu}$$

The gravitational field defines a metric for spacetime

Geometry of curved space

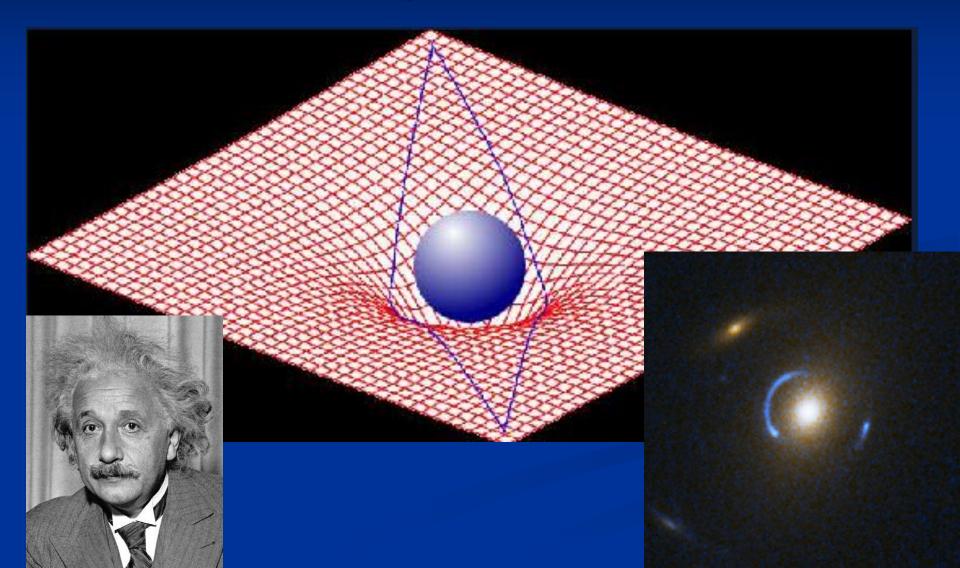
Gauss



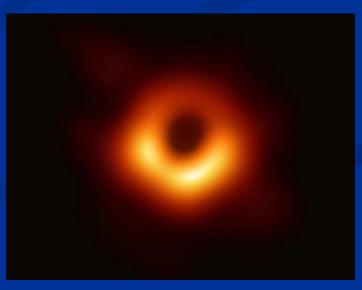
Riemann

General coordinate invariance

- Metric and electromagnetic fields depend on coordinates
- Symmetry principle: invariance under general coordinate transformations (diffeomorphism symmetry)
- Fixes the coupling of the two fields
- Fixes how light propagates in a given metric
- Inversely: propagation of light can be used to construct metric? Is metric unique?


Metric is influenced by matter

- Diffeomophism symmetry also fixes coupling of metric to matter (atoms etc.)
- Metric is influenced by matter matter distorts space geometry


Light propagation influenced by matter

Metric $g_{\mu\nu}$

- Metric field **g_{μν} (t, x)** is central ingredient for gravity
- similar to electric or magnetic fields
- generalizes gravitational field in Newtonian gravity

Time in the Universe

metric of the Universe homogenous and isotropic

$$g_{\mu\nu}$$
: $\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & a^2(t) & 0 & 0 \\ 0 & 0 & a^2(t) & 0 \\ 0 & 0 & 0 & a^2(t) \end{pmatrix}$

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + a^2(t) dx^i dx^j \delta_{ij}$$

Space distances are proportional a(t) Expansion of space if a(t) increases

Expansion of space

Field changes its value

■That's all

not: "space is created" etc.

Beginning as a point?

 $g_{ij}=0$: all distances are zero

$$ds^2 = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu} dx^{\mu} dx^{\nu}$$

a=0: singularity?

$$g_{\mu\nu}$$
: $\begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & a^2(t) & 0 & 0 \\ 0 & 0 & a^2(t) & 0 \\ 0 & 0 & 0 & a^2(t) \end{pmatrix}$

Conformal time

$$g_{\mu\nu} = a^2(\eta)\eta_{\mu\nu}$$

$$\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$$

$$g_{uv}: \begin{pmatrix} -a^{2}(t) & 0 & 0 & 0 \\ 0 & a^{2}(t) & 0 & 0 \\ 0 & 0 & a^{2}(t) & 0 \\ 0 & 0 & 0 & a^{2}(t) \end{pmatrix} \qquad a^{2} dy^{2} = dt^{2}$$

$$dt = a dy$$

$$a^2 dy^2 = dt^2$$

inflationary cosmology

$$a(t) = a_0 e^{Ht}$$

$$\gamma = -\frac{1}{Ha_0}e^{-Ht}$$

$$a(y) = -\frac{1}{Hy}$$

Cosmic time and proper time

t : cosmic time

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

$$= -dt^{2} + a^{2}(t)dx^{i}dx^{j}\delta_{ij}$$

Proper time counts oscillations for a clock moving with an observer

Proper time does not depend on choice of coordinates

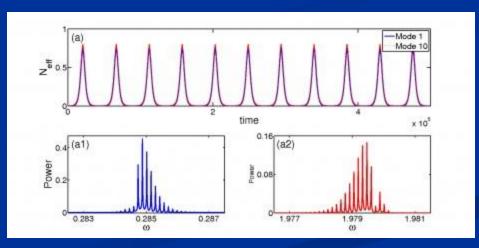
Cosmic time is proper time for comoving observer

Eternal Universe?

For typical models of inflation:

Both conformal time and cosmic time can be extended to - infinity.

Scale factor a(t) goes to zero in the infinite past.


$$a(y) = -\frac{1}{Hy}$$

$$a(y) = -\frac{1}{Hy}$$
 $a(t) = a_0 e^{Ht}$

Physical time

count oscillations

Photon clock

Radiation dominated Universe: no observers with clocks

Oscillating electromagnetic waves are present and can be used as clocks

wave function in momentum space

$$(\partial_{\eta}^{2} + 2\mathcal{H}\partial_{\eta} + k^{2})\varphi(\vec{k}) = 0$$

solution

$$\varphi(\eta, \vec{x}) = B(\eta) \exp\left\{i(\vec{k}\vec{x} - k\eta)\right\}$$

counting

$$n_{\vec{k}} = \frac{k\eta}{2\pi}$$
.

Physical time = conformal time

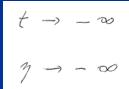
Physical time

field equation for scalar field mode

$$(\partial_{\eta}^2 + 2Ha\partial_{\eta} + k^2 + a^2m^2)\varphi_k = 0$$

$$\varphi_k = \frac{\tilde{\varphi}_k}{a} \left\{ \partial_{\eta}^2 + k^2 + a^2 \left(m^2 - \frac{R}{6} \right) \right\} \tilde{\varphi}_k = 0$$

determine physical time by counting number of oscillations


$$\tilde{t}_p = n_k$$

$$n_k = \frac{k\eta}{\pi}$$
 (m=0)

Geodesic incompleteness

Proper time for observer with non-vanishing (pecular) velocity:

remains finite in inflationary models for $t \to -\infty$

Geodesics for such observers are "incomplete"

- Singularity reached at finite time?
- Which time should one take?

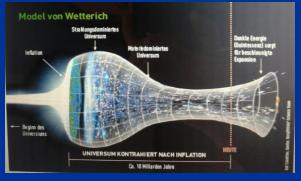
Frame transformations

Cosmology with metric and scalar field

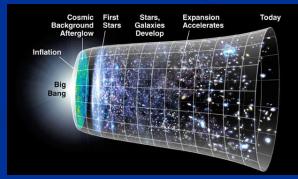
different possible choices for the metric field

$$g'_{\mu\nu} = \frac{\chi^2}{M^2} g_{\mu\nu}$$

Field relativity: different pictures of cosmology

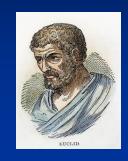

- same physical content can be described by different pictures
- related by field redefinitions ,
- observables cannot depend on choice of fields
- different fields: different variables in differential equations
- metric is one of the fields

Field relativity


Weyl scaling:

$$g'_{\mu\nu} = \frac{\chi^2}{M^2} g_{\mu\nu}$$

changes geometry, not a coordinate transformation



Relativity of geometry

Euclid ... Newton : space and time are absolute and observable

- Special relativity: space and time depend on observer
- General relativity: space-time is
 influenced by matter (including radiation)
 geometry is independent of coordinates
 geometry is observable
- Field relativity: geometry is relative

Metric frames

different choices of metric:

different metric frames

Primordial flat frame can be constructed:
Flat spacetime for beginning Universe
geodesically complete

Physical time

- counting : discrete
- invariant under field transformations
- same in all frames
- physical time towards the past: infinite number of oscillations

Time completeness

- Geodesic completeness depends on metric frame
- Generalization : time completeness

Geodesic (in)completeness in general metric frames

V. A. Rubakov^a, C. Wetterich^b

- ^a Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow, Russia
- b Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany

Abstract

The geometric concept of geodesic completeness depends on the choice of the metric field or "metric frame". We develop a frame-invariant concept of "generalised geodesic completeness" or "time completeness". It is based on the notion of physical time defined by counting oscillations for some physically allowed process. Oscillating solutions of wave functions for particles with varying mass permit the derivation of generalised geodesics and the associated notion of completeness. Time completeness involves aspects of particle physics and is no longer a purely geometric concept.

Beginning of the Universe

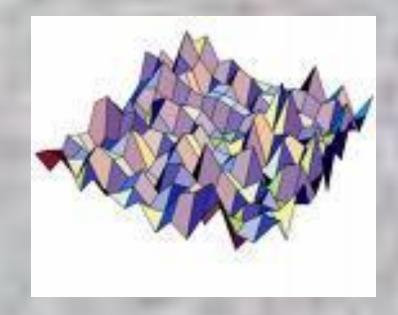
Beginning of Universe

Zu Anfang war die Welt öd und leer und währte ewig.

In the beginning the Universe was empty and lasted since ever.

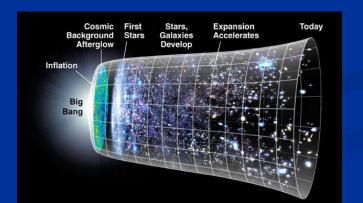
The great emptiness story

In the beginning was light-like emptiness.


Physical properties during inflationary epoch

- All particles get effectively massless as singularity is approached
- Relevant quantity : mass /momentum
- Momentum diverges
- Ratio goes to zero

Eternal light-vacuum


Everywhere almost nothing only fields and their fluctuations

All particles move with light velocity, similar to photons

The big bang story

- dramatic hot big bang
- started 13.8 billion years ago
- at the beginning extremely short period of cosmic inflation with almost exponential expansion of the Universe, duration around 10⁻⁴⁰ seconds
- start with singularity : our whole observable Universe evolves from one point

Field relativity

- Both stories are equivalent
- related by field transformation of the metric

$$g'_{\mu\nu} = \frac{\chi^2}{M^2} g_{\mu\nu}$$

different metrics related by Weyl transformation,
 which depends on scalar field (inflaton)

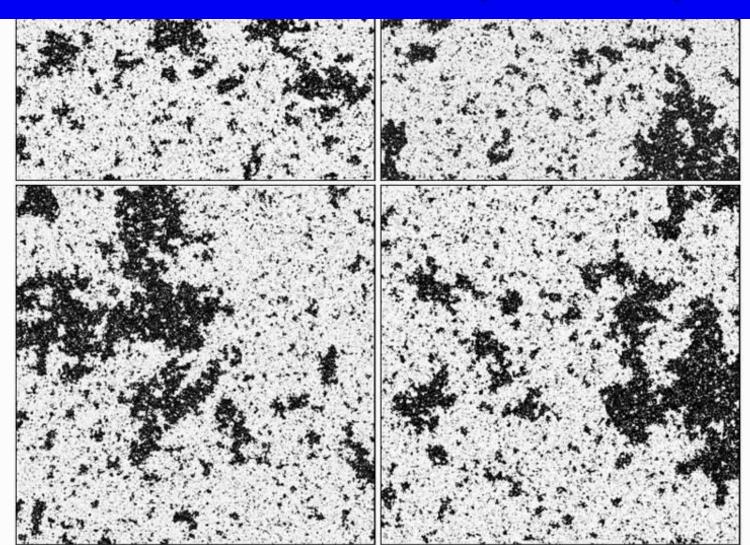
Field - singularity

- Big Bang is field singularity
- similar (but not identical with)coordinate singularity

$$g'_{\mu\nu} = \frac{\chi^2}{M^2} g_{\mu\nu}$$

Big bang is not wrong,

but alternative pictures exist!


Conclusion

- There are equivalent pictures of the Universe with different geometry
- Singularity free choice of fields is preferable for the description of the beginning

No scales in the infinite past

- No time scale: time is infinite and no change of properties as time goes to minus infinity
- No length scale: Universe is infinite
- No mass scale : all particles are massless

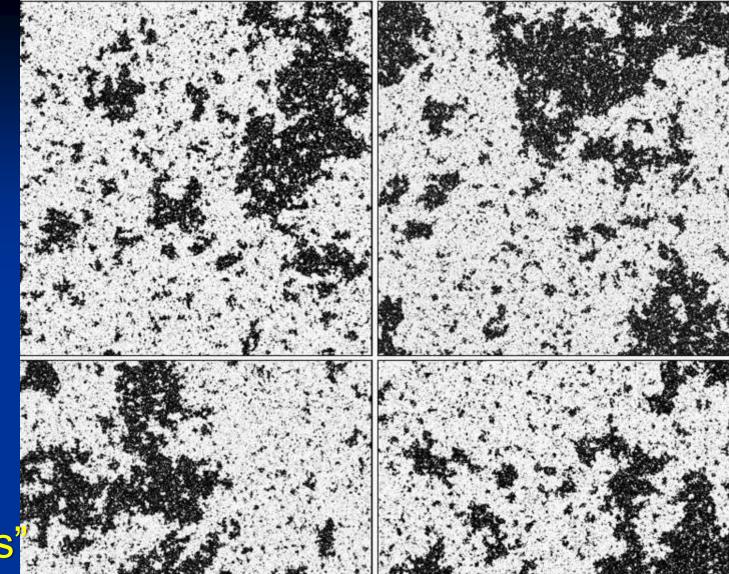
Quantum scale symmetry

Scale transformation

- Scale all lengths and time with constant factor
- Scale all masses with inverse factor

Quantum scale symmetry

No parameter with dimension of length or mass is present in the quantum effective action.


Then invariance under dilatations or global scale transformations is realized.

Continuous global symmetry

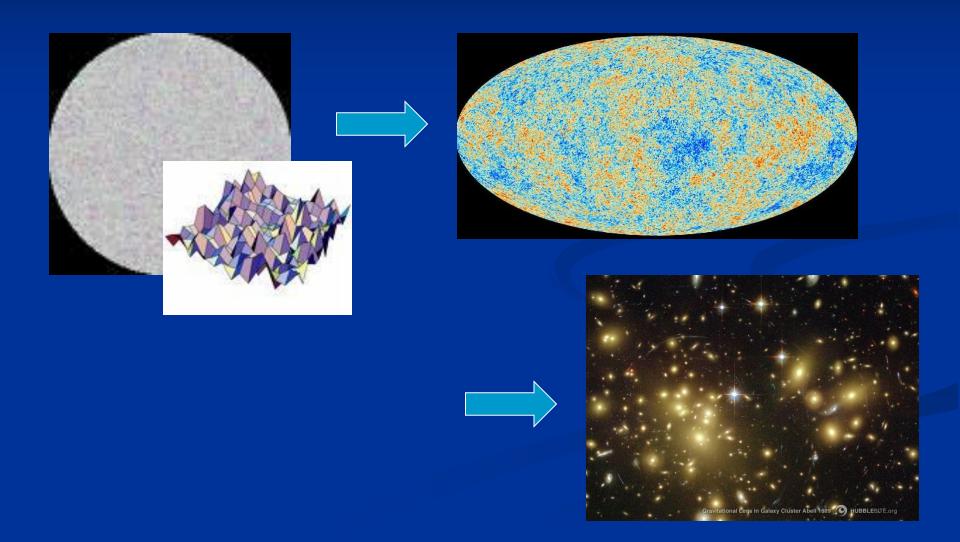
Unbroken scale symmetry:

Physics looks the same on all scales

All "particles' are massless

Quantum scale symmetry

- quantum fluctuations can violate scale symmetry
- running dimensionless couplings
- fixed point : no running of couplings
- at fixed points, scale symmetry is exact!
- quantum fluctuations can generate scale symmetry!


Have we observed scale symmetry in cosmology?

Approximate scale symmetry near fixed points

 UV: approximate scale invariance of primordial fluctuation spectrum from inflation

IR: cosmon is pseudo Goldstone boson of spontaneously broken scale symmetry, tiny mass, responsible for dynamical Dark Energy

Almost scale invariant primordial fluctuation spectrum seeds all structure in the universe

Conclusion

The beginning of the Universe is the reign of quantum scale symmetry

Expanding Universe or shrinking atoms?

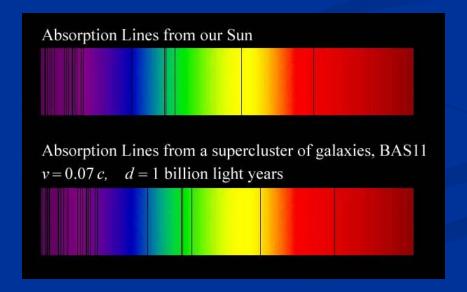
Expansion of the Universe

- What does expansion of space mean?
- A field changes its value

that's all

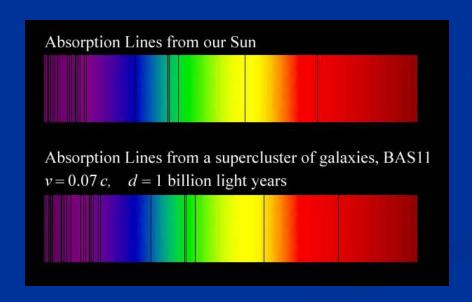
 Propagation of particles and photons depend on the value of the metric field

Frame transformation changes metric and expansion history


Particle masses can change with time?

- Particle masses are proportional to scalar field χ.
 Similar to Higgs field.
- Scalar field varies with time.
- Ratios of particle masses are independent of χ and therefore remain constant.
- Compatibility with observational bounds on time dependence of particle mass ratios.
- \blacksquare Dimensionless couplings are independent of χ .

Do we know that the Universe expands?


instead of redshift due to expansion:

smaller frequencies have been emitted in the past, because electron mass was smaller!

Why do we see redshift of photons emitted in the distant past?

photons are more red because they have been emitted with longer wavelength

frequency ~ mass

wavelength ~ atomsize

What is increasing?

Ratio of distance between galaxies over size of atoms!

atom size constant: expanding geometry

alternative: shrinking size of atoms

ratio is frame invariant

Inhomogeneities

- certain inhomogeneous cosmological solutions diverge towards the past
- relative inhomogeneities in metric increase towards the past in inflationary cosmology
- relative inhomogeneities are frame invariant
- which metric? vierbein or metric?

$$a(y) = -\frac{1}{Hy}$$

Conclusions

- Quantum scale symmetry crucial for understanding the beginning of the Universe
- Simple "scaling frame" for the choice of the metric field gives simple description without any singularities
- Big bang singularity is a field singularity
- Universe can be eternal in the past

