
Origin of wave function and 

operators in quantum mechanics



quantum mechanics

◼ wave function ( density matrix )

◼ operators

◼ Schrödinger equation

quantum axioms

can one understand this ?



quantum mechanics from 

quantum field theory

◼ fundamental setting : QFT

◼ particles are excitations of vacuum

◼ particle properties depend on vacuum

◼ atoms are excitations of vacuum

◼ qubits are excitations of vacuum

◼ QFT : functional integral over fluctuations

◼ quantum effective action similar to free energy in 

classical statistics



quantum operators

◼ non – commuting operators play 

central role in quantum mechanics

◼ functional integral involves fields,  

no operators

◼ where do the operators come from ?

◼ focus on time-local subsystem : 

Feynman



Quantum mechanics can arise from 

classical statistics !



Quantum formalism for

classical statistics 

can be useful for understanding

how information propagates

in probabilistic systems



wave function

probability to

fine particle at x

complex function

normalized



operators 

operators are

associated to

observables A

expectation value



time evolution

Schrödinger

equation

evolution

operator U



Unitary evolution in 

quantum mechanics

solution of  Schrödinger equation :

wave function

evolution operator



unitary evolution of wave function 



discrete quantum mechanics

use discrete time steps and

discrete space points

N space points:

U is unitary

N x N matrix



quantum structures

arise by focus on 

time - local subsystem of 

overall probability ( weight ) distribution



overall weight distribution

◼ basic setting : overall weight distribution for possible 

events at all times and locations

◼ classical statistics : weights are probabilities 

( real and positive )

◼ general quantum systems : weights can be complex

◼ set of basis events are ordered in time

example for events : particle detectors at t,x fire or not

n= 1 or 0 , discrete



time – local subsystem

◼ basic setting : weight distribution for the 

whole universe, from the past to the future

◼ we are interested at a given time t, and in the 

evolution with t

◼ overall weight distribution has redundant 

information

◼ focus on time-local subsystem



time – local subsystem

◼ select time – hypersurfaces labeled by t

◼ local observables : events at t

◼ time-local probabilistic information for 

computation of expectation values of 

local observables

◼ evolution law : compute time-local 

probabilistic information at t+ε from 

the one at t

◼ time-local probabilities are not sufficient

◼ one needs probability amplitudes or 

wave functions



Ising chain

simple model in classical statistics



discrete variables

wire with 

discrete points t

Ising spins 

s = 1, -1

occupation numbers

n = 0, 1  (fermions)



classical statistical

probability distribution

◼ {n} : configuration of occupation numbers for 

all n(t) or n(m)

[ ns ] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,…]

◼ w[n] : probability distribution



classical statistics

variables configurations

probabilities

expectations values

functional

integral

partition function Z



action

action

Ising chain

expectation value



local factor

probability distribution is product of local factors     

( with boundary terms )

local factor involves neighboring Ising spins



boundary term

boundary term        depends on spins at 

initial and final sites



boundary problem

for given expectation values of boundary spins, 

initial and final,

what is the expectation value of spin 

in the bulk s(t) ?



Wave function in

classical statistical 

equilibrium systems



quantum formalism for 

information transport in 

classical statistics

◼ Why wave function ?

◼ What determines evolution equation ?

◼ Non – commuting operators ?



wave function

◼ integrate out the past



time-local probabilities

◼ time-local probabilities are bilinear in wave 

function and conjugate wave function

◼ wave functions = probability amplitudes



Partition function

hypersurface located at t 

can be used to 

split K into two parts :



wave functions

Local probability

distribution

=1



time-local probabilities

wave functions contains more time-local probabilistic 

information than the time-local probability distribution !



wave functions can be 

represented as real vectors

◼ single spin : f(t) can take two values, one for 

n=1, the other for n=0

◼ two- component real vector

◼ two spins : f(t) has four real values, for (n1,n2) 

taking the values (1,1), (1,0), (0,1), (0,0)

◼ four- component real vector



occupation number basis 

for wave function

: set of  basis functions, 

depend on n[t]



occupation number basis 

for wave function

four state system : only two occupation numbers 



occupation number basis 

for wave function



occupation number basis 

for wave function

product rule

integration rule

sum rule



“Evolution” in 

classical statistical

equilibrium systems



Evolution

◼ Time-local information available at t

◼ How is it transferred to t + 𝜖 ?

◼ Evolution equation

◼ Simple for wave function

◼ Local probabilities are insufficient



quantum formalism for

information transport ( preview )

◼ go from one t to the next

◼ described by generalized Schrödinger 

equation for classical wave function



evolution of wave function

integrate over n(t)

◼ linear evolution law

◼ superposition principle



step evolution operator

transfer matrix T

step evolution operator S equals transfer 

matrix with normalization 

such that largest eigenvalue equals one



evolution of wave function



generalized discrete Schrödinger equation

quantum mechanics



evolution of conjugate wave function



quantum formalism for 

information transport

extended quantum formalism for 

problem of  information transport

differences to quantum mechanics:

◼ real wave function and conjugate wave function 

instead of unique complex wave function

◼ evolution not necessarily unitary



Particle wave duality

Particle aspect:

◼ Bits: yes/no decisions

◼ Possible measurement values 1 or 0

Discrete spectrum of observables

Wave aspect : 

Continuous probabilistic information 

( wave function )



operators for observables

local observables take fixed values 

for configurations at each discrete time value m

one can associate to each local observable an operator

the expectation value is given by the quantum rule



diagonal operators

in occupation number basis the local observables 

are represented by diagonal operators



operators for observables

expand in basis functions



quantum rule for local observables

depend only on configurations of

occupation numbers at given t

sum over configurations at all t



local probabilities

local observable can be computed from

local probabilities



classical wave function

classical wave function integrates the past half

conjugate wave function integrates the future half



Local probability and 

wave functions

=



quantum rule for 

expectation value



generalization : local chain



quantum mechanics vs classical statistics

◼ this formalism works for all weight distributions 

which can be written as local chains

◼ quantum mechanics : complex weight function

◼ classical statistics : real weight function, positive 

probabilities



orthogonal evolution in classical statistics

◼ for orthogonal step evolution operators the 

evolution is the same for the wave function and 

the conjugate wave function

◼ they can be identified

only one real wave function q(t)



orthogonal evolution

◼ no information is lost for orthogonal step 

evolution operator

◼ the wave functions of classical statistical systems 

do not approach equilibrium for increasing t



Hamiltonian

◼ Define H by

◼ H is Hermitian and piecewise constant

◼ Interpolating continuous time evolution

◼ Schrödinger equation

◼ Solution agrees with discrete evolution for t=



complex structure

◼ quantum mechanics can always be written in real 

formulation

◼ unitary evolution operator becomes orthogonal in real 

formulation

◼ what are conditions to write orthogonal evolution for 

real wave function as unitary evolution for complex 

wave function?

◼ requires complex structure which is compatible with 

evolution



complex structure

◼ complex structure requires two discrete transformations 

acting on real wave function

◼ define eigenfunctions of K

◼ define complex wave function

◼ it obeys

◼ particular basis



complex operators

◼ operators in real formulation which are compatible with 

complex structure have to obey a condition

◼ if operators obey this condition one has for A=AR+iAI

◼ step evolution operator has to be compatible with 

complex structure, example



quantum mechanics from 

classical statistics

◼ orthogonal evolution operator

◼ complex structure compatible with evolution



conclusions

◼ wave functions in quantum mechanics or 

classical statistics obtain by integrating out the 

past or future from overall weight distribution w

◼ linear evolution law

◼ operators



conclusion

◼ real formulation for general quantum systems : 

weight distribution w can take negative values, 

evolution is orthogonal

◼ classical statistics : w positive

◼ classical statistics can describe quantum 

mechanics if evolution is orthogonal and 

compatible with complex structure



e-Prints arXiv : 2011.02867 , 2408.06379

https://arxiv.org/abs/2408.06379


continuous evolution limit for 

classical wave function

◼ small change between t and t + 𝜀

generalized Schrödinger equation



evolution equation for 

conjugate wave function
:



complex structure for general 

classical probabilistic systems

norm is not conserved, in general



quantum systems

◼ unitary evolution , J=0

◼ conserved norm

◼ conjugate wave function equals wave function



evolution factor for Ising chain



evolution factor and

transfer matrix

transfer matrix

multiply evolution factor 

with normalization constant

such that Z=1



step evolution operator

free energy density



eigenvalues of step evolution operator

◼ largest eigenvalue : 1

◼ second eigenvalue :

for large number of steps :

◼ wave function approaches eigenstate to largest 

eigenvalue : equilibrium wave function  



approach to equilibrium

◼ equilibrium wave function

◼ approach to equilibrium

◼ correlation length



solution of initial value problem

equilibrium

spin



information transport

◼ initial value problem solved in term of classical  wave 

functions

◼ information loss in the bulk

◼ related to unique largest eigenvalue
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