Origin of wave function anc
operators 1n quant

—

n mechanics




quantum mechanics

m wave function ( density matrix )
B operators
m Schrodinger equation

quantum axioms

can one understand this ¢



quantum mechanics from
quantum field theory

fundamental setting : QFT

particles are excitations of vacuum
particle properties depend on vacuum
atoms are excitations of vacuum

qubits are excitations of vacuum

QIT : functional integral over fluctuations

quantum effective action similar to free energy in
classical statistics



quantum opetators

non — commuting operators play
central role 1n quantum mechanics

functional integral involves fields,
no operators

where do the operators come from ?

focus on time-local subsystem :
Feynman




Quantum mechanics can arise froms
classical statistics |



COunantum formalism for
classical statistics
can be useful for understanding
how information propagates
n probabilistic systems



wave function

complex function ?{t y )
probability to g

. (¢,x) -
fine particle at x ¥ (Gnl i) = i)




operatots

operators are
associated to

observables A

expectation value A= [ oA X W (4 x )/T Yt x)



time evolution

Schrodinger — [REEVEENIER
equation
1 it = [, Hlyx)plhx)
evolution Y (#se) = V) PL4)
operator U

wltie,x) = L' UL, %, %" )t x’)




Unitary evolution in
quantum mechanics

solution of Schrodinger equation :

wave function

evolution operatot



'm’/

unitary evolution of wave func

Wt +e) = Ut + e 8)u(t)




discrete quantum mechanics

use discrete time steps and

discrete space points

N space points:
U is unitary
N x N matrix

% e Hiee, )

& ) i ) »
£ & Z YUl )U (50 Ulsx") ¢4 x")
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qUANIUNL STTUCLHTES
arise by focus on
time - local subsystem of

overall probability ( weight ) distribution



overall weight distribution

m basic setting : overall weight distribution for possible
events at all times and locations

m classical statistics : weights are probabilities
( real and positive )

m general quantum systems : weights can be complex

B set of basis events are ordered in time

example for events : particle detectors at t,x fire or not

n= 1 or O, discrete



time — local subsystem

basic setting : weight distribution for the
whole universe, from the past to the future

we are interested at a given time t, and in the
evolution with t

overall weight distribution has redundant
information

focus on time-local subsystem




time — local subsystem

select time — hypersurfaces labeled by t
local observables : events at t

time-local probabilistic information for
computation ot expectation values of
local observables

evolution law : compute time-local
probabilistic information at t+e from

the one at t
time-local probabilities are not sufficient

one needs probability amplitudes or
wave functions



Ising chain

simple model in classical statistics



discrete variables

wire with
discrete points t

occupation numbers

n=0,1 (fermions)



classical statistical
probability distribution

B {n| : configuration of occupation numbers for
all n(t) or n(m)

. rrr

[n.] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,...]

® w(n] : probability distribution



classical statistics

expectations values

functional

integral

partition function Z



action




local factor

probability distribution is product of local factors
(with boundary terms )

W [5] = exp {—_57_‘} B ZL(m) =B (ks(m+1)s(m)+1)

local tactor involves neighboring Ising spins

K(m) =exp ( — -"Z(”"’})




boundary term

boundary term depends on spins at
inittal and final sites




boundary problem

for given expectation values of boundary spins,
initial and final,

what is the expectation value of spin

in the bulk s(t) ?



Wave function in
classical statistical
equilibrium systems



quantum formalism for
information transport in
classical statistics

m V')hy wave function ¢

B [V)at determines evolution equation ¢

® Non — commuting operators ¢



wave function

B integrate out the past




time-local probabilities

m time-local probabilities are bilinear in wave
function and conjugate wave tfunction

® wave functions = probability amplitudes




Partition function

= 3 Fr(n(t) Kl fn (1)
{n}

H}Lnf+

hypersurtace located at t
can be used to
split K into two parts :

Kn| =K< (t)K(t)



wave functions

f?ﬂ

Local probability
distribution




time-local probabilities

wave functions contains more tipe-local probabilistic
imformation than the time-local probability distribution !




wave functions can be
represented as real vectors

m single spin : {(t) can take two values, one for
n=1, the other for n=0

B two- component real vector

m two spins : {(t) has four real values, for (n,n,)

taking the values (1,1), (1,0), (0,1), (0,0)

B four- component real vector



occupation number basis
for wave function

: set of basis functions,

depend on nlt]




occupation number basis
for wave function

four state system : only two occupation numbers

fi=ning, fa =(1—nq)ns,
fa=nmi(l—mng), fa=(1—n1)(1—no)

nq fl — fl , T fE =0, n fz — fz , Tiq f4 =0

nafi=fi,nefo=fo, nafza=0, nafs =0




occupation number basis
for wave function




occupation number basis
for wave function

product rule
integration rule

sum rule




“Evolution” in
classical statistical
equilibrium systems



Evolution

® Time-local information available at t
m How is it transferred to t + € ?

® Evolution equation

m Simple for wave function

m [.ocal probabilities are insufficient



quantum formalism for
information transport ( preview )

B o0 from one t to the next

m described by generalized Schrodinger

equation for classical wave function




evolution of wave function

integrate over n(t)

B linear evolution law

B superposition principle




step evolution operator

K(m) =exp(—ZL(m))

K(m) = frp (m)he(m~+1)hp(m)

%

transfer matrix T

step evolution operator S equals transfer
matrix with normalization
such that largest eigenvalue equals one



evolution of wave function

f(m+1) = Ge(m+1)he(m+1)

— / ‘ Dn(m)K(m)f(m)

A s

X ['f”} — ‘SFT_;J (_”I H IT{.‘:‘F” T I H Ip {E"” = / Dn(m)See (m)he(m—+ 1)hg(m)gp (m)hy (m)

= S16(m)8s o gp(m)he(m+1)

— S}p (m)gp(m)he(m+1),




generalized discrete Schrodinger equation

quantum mechanics




evolution of conjugate wave function




quantum formalism for
information transpott

extended quantum formalism for

problem of information transport

differences to quantum mechanics:

m real wave function and conjugate wave function
instead of unique complex wave function

B cvolution not necessarily unitary



Particle wave duality

Particle aspect:
m Bits: yes/no decisions
m Possible measurement values 1 or 0

Discrete spectrum of observables

Wave aspect :
Continuous probabilistic information

(wave function )



operatotrs for observables

local observables take fixed values 5¥3G0

for configurations at each discrete time value m

one can associate to each local observable an operator

the expectation value is given by the quantum rule

7(m)|A(m)|g(m))

G(m)A o (m)gp(m)




diagonal operators

in occupation number basis the local observables
are represented by diagonal operators

App, s (m) = Z% r(m)op, ¢ §pm, T

T

(A[n(m)]) = (g(m) A(m)|G(m))

— G-(m)A o (m)gp (m)




operators for observables

expand in basis functions Aln(m)| = Az (m)hz(m)

M —1

(A[n(m) /fn n(m)] TT K(m) finfs

m'=0

— / Dn(m)A[n(m)] f(m)f(m).

(Aln(m)]) = [ Pn(m)Gz(m)As (m)gp (m)he(m)hs(m)hp (m)

= qz(m }i P (7 ”)@p (m),

ﬁrp (m) = / Pn(m)Ag(m)he(m)hg(m)hy(m)

=A -r(H’I) Sfp .




quantum rule for local observables

depend only on configurations of
occupation numbers at given t

<AW> = [ D Alt, [1H]) wln]

sum over configurations at all t



local probabilities

local observable can be computed from
local probabilities

SAWY = [Omt) AlLInt4)]) p(t, [n(4])

<’A(f)> = /@n A[f/ [”LU‘)]) Lvr]




classical wave function

conjugate wave function integrates the future half



Local probability and
wave functions




quantum rule for
expectation value

AR = [DulY 2 WA, [héz‘ﬂ)zv(zﬁ@m]/

SAWD = [Dmlt) Alt,Intd)]) p(t, [n4)])




generalization : local chain

-'r__r__.![ﬂ..} = )L_ (H‘Hf))ﬁ [”] Jin (”“1” J)

t




quantum mechanics vs classical statistics

m this formalism works for all weight distributions
which can be written as local chains

B quantum mechanics : complex weight function

m classical statistics : real weight function, positive
probabilities



orthogonal evolution in classical statistics

m for orthogonal step evolution operators the
evolution 1s the same for the wave function and
the conjugate wave function

m they can be identified

only one real wave function q(t)




orthogonal evolution

B no information is lost for orthogonal step
evolution operator

m the wave functions of classical statistical systems
do not approach equilibrium for increasing t



Hamiltonian

Define H by §

H is Hermitian and piecewise constant

Interpolating continuous time evolution

Ulty,to) =exp (—i(ty —t2)H)

Schrodinger equation

Solution agrees with discrete evolution for t= ENEEEgk



complex structure

quantum mechanics can always be written in real
formulation

U(t,x) = qr(t,x) +iqr(t, ©)

unitary evolution operator becomes orthogonal in real
formulation

what are conditions to write orthogonal evolution for
real wave function as unitary evolution for complex
wave function?

requires complex structure which is compatible with
evolution



complex structure

complex structure requires two discrete transformations
acting on real wave function




complex operators

operators 1n real formulation which are compatible with
complex structure have to obey a condition




quantum mechanics from
classical statistics

m orthogonal evolution operator

m complex structure compatible with evolution



conclusions

m wave functions in quantum mechanics ot
classical statistics obtain by integrating out the
past or future from overall weight distribution w

B linear evolution law

B operatots



conclusion

m real formulation for general quantum systems :
weight distribution w can take negative values,
evolution 1s orthogonal

m classical statistics : w positive

m classical statistics can describe quantum
mechanics if evolution is orthogonal and
compatible with complex structure
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continuous evolution limit for
classical wave function

m small change between t and t + €

et

Oq(t) = —(q(t +¢€) — q(t —e€)) = W(t)q(

2e

generalized Schrodinger equation



evolution equation for
conjugate wave function




complex structure for general
classical probabilistic systems

-'*'-

O =G, G=H +iJ

norm 1s not conserved, in general



quantum systems

B unitary evolution , J=0
B conserved norm

B conjugate wave function equals wave tunction




evolution factor for Ising chain

= exp { B(2n(t +¢) — 1)2n(t) - 1)}

X exp {,}, (n(t+€) +n(t) — 1) }

= exp{B(f1(t +¢€) — fa(t +€))(f1(t) — f2(1))}
xexl){g(fl(t—l—f) fo(t+¢€)+ f1(t) — fz(t))}




evolution factor and
transfer matrix

J fa(t)

multiply evolution factor
with normalization constant

such that Z=1

K(t) = Sr p(” frit+e)f p (t)



step evolution operator




eigenvalues of step evolution operator

m largest eigenvalue : 1

45 1

B second eigenvaluc : [NESEEICEESECEI.ESE )

“

_ N 2 Y
(% + cosh ~ E:Q-ﬁ) 1 + sinh” ye4?

for large number of steps :

m wave function approaches eigenstate to largest
eigenvalue : equilibrium wave function

Gr(tin + ne) = (S™)rpqp(tin)




approach to equilibrium

._,_ 1 .
gx2 = | — — sinh ye”

g




solution of initial value problem

1
qx2 = ( —smh“w )q*l Q$1(E$1 —+ q$2rj*u — 1

g

1 |

3
—— 1 N; =1+ sinh?®~e? ——Hmh ve2F
24’\"1

Ny = (N) = @x1Gx1 =

equilibrium
spin




information transpott

B /ntial value problem solved in term of classical wave
Jfunctions

B /nformation loss in the bulk

B yelated to unique largest eigenvalue
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