

Origin of wave function and operators in quantum mechanics

quantum mechanics

- wave function (density matrix)
- operators
- Schrödinger equation

quantum axioms

can one understand this ?

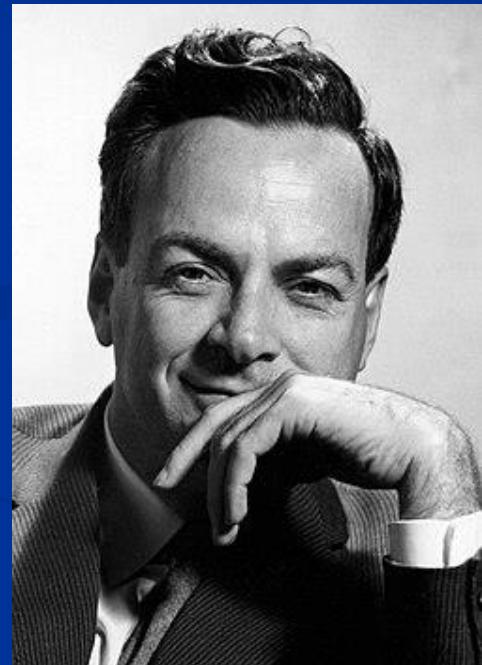
quantum mechanics from quantum field theory

- fundamental setting : QFT
- particles are excitations of vacuum
- particle properties depend on vacuum
- atoms are excitations of vacuum
- qubits are excitations of vacuum

- QFT : functional integral over fluctuations
- quantum effective action similar to free energy in classical statistics

quantum operators

- non – commuting operators play central role in quantum mechanics
- functional integral involves fields, no operators
- where do the operators come from ?
- focus on **time-local subsystem** : Feynman



*Quantum mechanics can arise from
classical statistics !*

*Quantum formalism for
classical statistics
can be useful for understanding
how information propagates
in probabilistic systems*

wave function

complex function

$$\psi(t, x)$$

normalized

$$\int d^3x \psi^*(t, x) \psi(t, x) = 1$$

probability to
find particle at x

$$\psi^*(t, x) \psi(t, x) = p(x)$$

operators

operators are
associated to
observables A

$$\hat{A} = \vec{x}, -i\partial_x = -i \frac{d}{dx} = -i\vec{\nabla}$$

expectation value

$$\langle A \rangle = \int d^3x \psi^*(t, x) \hat{A} \psi(t, x)$$

time evolution

Schrödinger
equation

$$i \partial_t \psi = H \psi \quad \dot{q} = \frac{d}{dt} \quad \hbar = 1$$

$$i \partial_t \psi(t, x) = \int_{x'}, H(t; x, x') \psi(t, x')$$

evolution
operator U

$$\psi(t+\epsilon) = U(t) \psi(t)$$

$$\psi(t+\epsilon, x) = \int_{x'}, U(t, x, x') \psi(t, x')$$

Unitary evolution in quantum mechanics

solution of Schrödinger equation :

$$\psi(t + \epsilon) = U(t + \epsilon, t)\psi(t)$$

$\psi(t)$

wave function

$U(t + \epsilon, t)$

evolution operator

unitary evolution of wave function

$$\psi(t + \epsilon) = U(t + \epsilon, t)\psi(t)$$

discrete quantum mechanics

use discrete time steps and
discrete space points

$$\psi(t + \epsilon) = U(t + \epsilon, t)\psi(t)$$

N space points:

U is **unitary**

N x N matrix

$$U(t, x, x')$$

$$U^\dagger(t)U(t) = 1$$

$$\sum_x \psi^*(t, x)\psi(t, x) = 1$$

$$\begin{aligned} & \sum_x \psi^*(t+\epsilon, x)\psi(t+\epsilon, x) \\ &= \sum_x \sum_{x''} \sum_{x'} \psi^*(t, x') U^\dagger(x', x) U(x, x'') \psi(t, x'') \\ &= 1 \end{aligned}$$

*quantum structures
arise by focus on
time - local subsystem of
overall probability (weight) distribution*

overall weight distribution

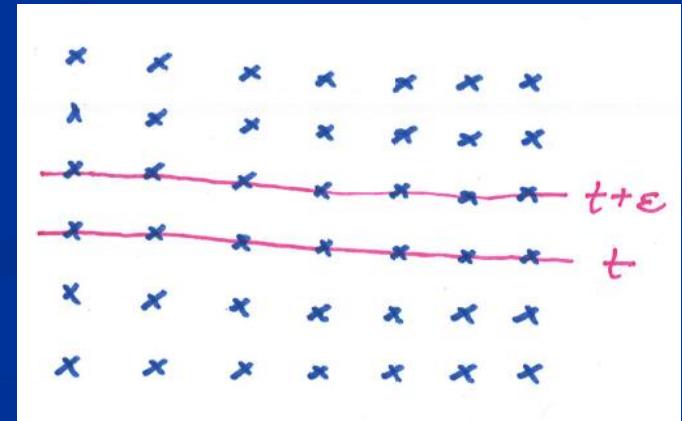
- basic setting : overall weight distribution for possible events at all times and locations
- classical statistics : weights are probabilities (real and positive)
- general quantum systems : weights can be complex
- set of basis events are ordered in time

example for events : particle detectors at t, x fire or not

$n = 1$ or 0 , discrete

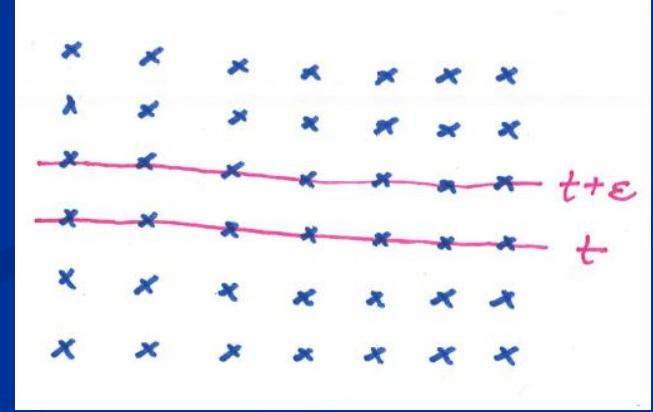
time – local subsystem

- basic setting : weight distribution for the whole universe, from the past to the future
- we are interested at a given time t , and in the evolution with t
- overall weight distribution has redundant information
- focus on time-local subsystem



time – local subsystem

- select time – hypersurfaces labeled by t
- local observables : events at t
- time-local probabilistic information for computation of expectation values of local observables
- evolution law : compute time-local probabilistic information at $t+\varepsilon$ from the one at t
- time-local probabilities are not sufficient
- one needs probability amplitudes or wave functions

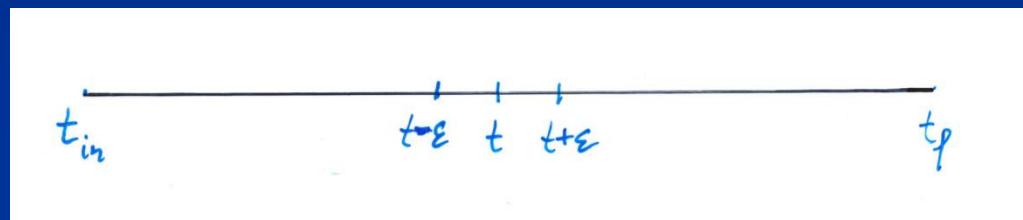


Ising chain

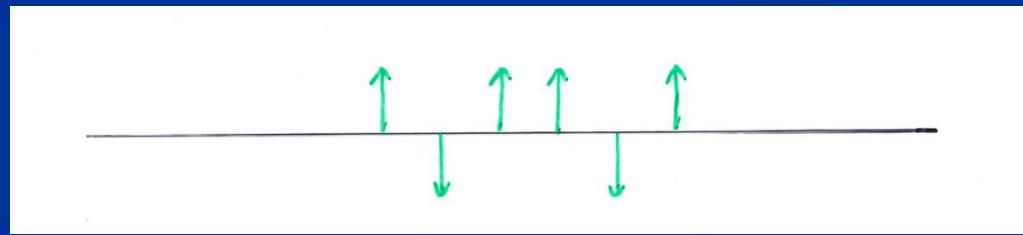
simple model in classical statistics

discrete variables

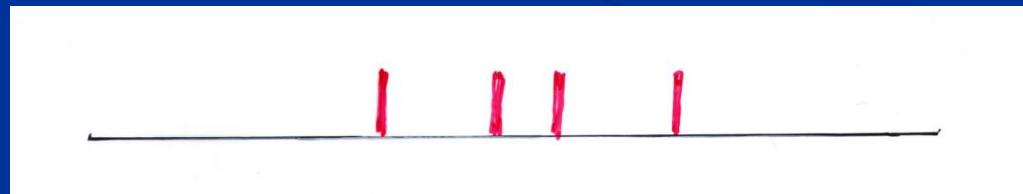
wire with
discrete points t



Ising spins
 $s = 1, -1$

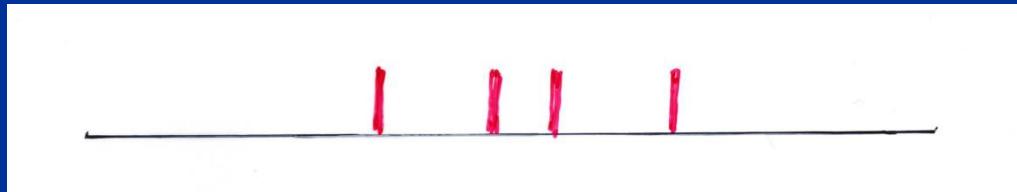


occupation numbers
 $n = 0, 1$ (fermions)



classical statistical probability distribution

- $\{n\}$: configuration of occupation numbers for all $n(t)$ or $n(m)$



$$[n_s] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,\dots]$$

- $w[n]$: probability distribution

classical statistics

variables

$$n = \frac{s+1}{2}, \quad s = 2n-1.$$

configurations

$$\tau \leftrightarrow \{s_\gamma\} \leftrightarrow \{n_\gamma\}$$

probabilities

$$p_\tau \leftrightarrow p[s] \leftrightarrow p[n]$$

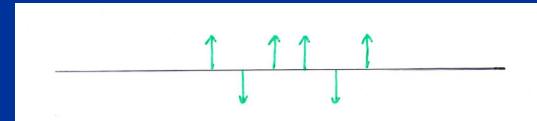
expectations values

$$\langle A \rangle = \sum_\tau p_\tau A_\tau.$$

functional
integral

$$\langle A \rangle = \sum_\tau p_\tau A_\tau = \int \mathcal{D}s \, p[s] A[s]$$

$$\sum_\tau = \int \mathcal{D}s = \prod_{\gamma=1}^M \left(\sum_{s_\gamma = \pm 1} \right)$$



partition function Z

$$w_\tau \geq 0 \quad Z = \sum_\tau w_\tau \quad p_\tau = Z^{-1} w_\tau. \quad \langle A \rangle = Z^{-1} \sum_\tau w_\tau A_\tau$$

action

$$w[s] = \exp(-\mathcal{S}) \mathcal{B}$$

$$Z = \int \mathcal{D}s w[s]$$

$$p[s] = Z^{-1} w[s]$$

action

$$\mathcal{S} = \sum_{m=0}^{\mathcal{M}-1} \mathcal{L}(m)$$

Ising chain

$$\mathcal{L}(m) = \beta \left(\kappa s(m+1) s(m) + 1 \right)$$

$$\kappa = \pm 1$$

expectation value

$$\langle A \rangle = \sum_{\tau} p_{\tau} A_{\tau} = \int \mathcal{D}s \, p[s] A[s]$$

local factor

probability distribution is product of local factors
(with boundary terms)

$$w[s] = \exp(-\mathcal{S}) \mathcal{B}$$
$$\mathcal{S} = \sum_{m=0}^{\mathcal{M}-1} \mathcal{L}(m)$$
$$\mathcal{L}(m) = \beta (\kappa s(m+1) s(m) + 1)$$

local factor involves neighboring Ising spins

$$\mathcal{K}(m) = \exp(-\mathcal{L}(m))$$

boundary term

$$w[s] = \prod_{m=0}^{\mathcal{M}-1} \mathcal{K}(m) \mathcal{B}$$

boundary term \mathcal{B} depends on spins at initial and final sites

$$\mathcal{B}(s_f, s_{\text{in}}) = \mathcal{B}_f(s_f) \mathcal{B}_{\text{in}}(s_{\text{in}})$$

$$s_{\gamma, \text{in}} = s_{\gamma}(0)$$

$$s_{\gamma, f} = s_{\gamma}(\mathcal{M})$$

boundary problem

for given expectation values of boundary spins,
initial and final,

what is the expectation value of spin
in the bulk $s(t)$?

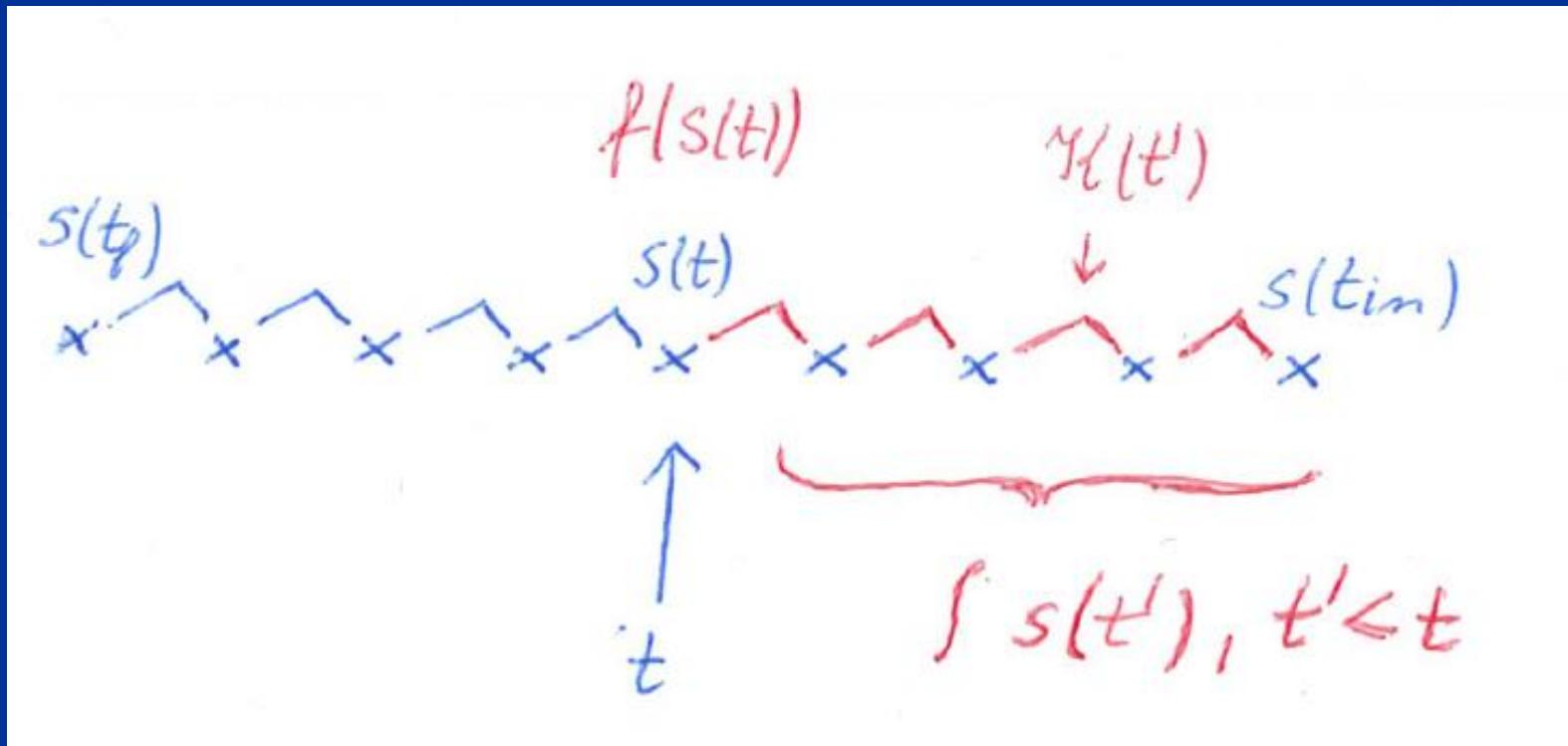
Wave function in classical statistical equilibrium systems

quantum formalism for information transport in classical statistics

- *Why wave function ?*
- *What determines evolution equation ?*
- *Non – commuting operators ?*

wave function

- integrate out the past



time-local probabilities

- time-local probabilities are bilinear in wave function and conjugate wave function
- wave functions = probability amplitudes

A handwritten diagram on a white background. At the top, there are two wavy lines: a green one labeled $\bar{f}(t)$ and a red one labeled $f(t)$. Below these, two curly braces indicate integration regions: a green one on the left labeled $\int s(t' > t)$ and a red one on the right labeled $\int s(t' < t)$. A blue arrow points from the expression $\int s(t' > t)$ down to a blue wavy line labeled $\bar{f}(t)$. A red arrow points from the expression $\int s(t' < t)$ down to a red wavy line labeled $f(t)$. At the bottom, the equation $p(t) = \bar{f}(t)f(t)$ is written in blue.

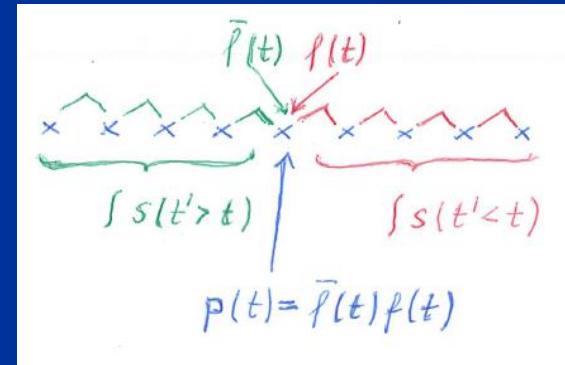
Partition function

$$Z = \sum_{\{n\}} \bar{f}_f(n(t_f)) K[n] f_{in}(n(t_{in}))$$

$$Z = \int \mathcal{D}n \ w[n] = 1$$

$$K[n] = \prod_t \mathcal{K}(n(t+\epsilon), n(t)) = \prod_t \mathcal{K}(t)$$

hypersurface located at t
 can be used to
 split K into two parts :



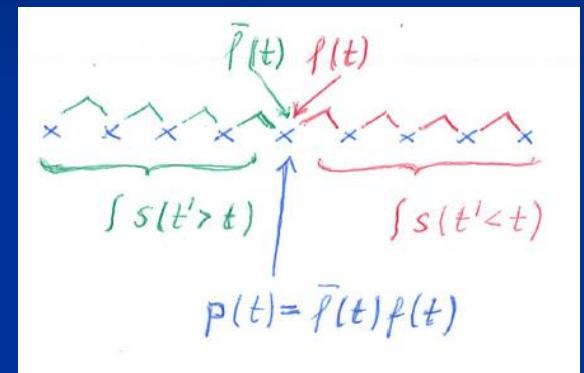
$$K[n] = K_>(t)K_<(t)$$

$$K_<(t) = \prod_{t'=t_{in}}^{t-\epsilon} \mathcal{K}(t') , \quad K_>(t) = \prod_{t'=t}^{t_f-\epsilon} \mathcal{K}(t)$$

wave functions

$$f(t) = \int \mathcal{D}n(t' < t) K_<(t) f_{in}(t_{in})$$

$$\bar{f}(t) = \int \mathcal{D}n(t' > t) \bar{f}_f(t_f) K_>(t)$$



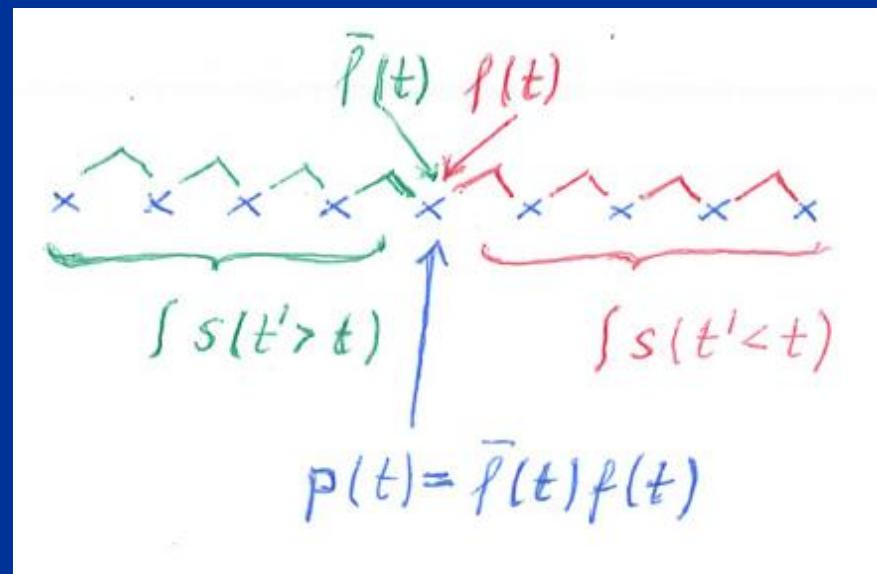
$$Z = \int dn(t) \bar{f}(t) f(t) = 1$$

Local probability distribution

$$p(t) = \bar{f}(t) f(t)$$

time-local probabilities

wave functions contains more time-local probabilistic information than the time-local probability distribution !



wave functions can be represented as real vectors

- single spin : $f(t)$ can take two values, one for $n=1$, the other for $n=0$
- two- component real vector
- two spins : $f(t)$ has four real values, for (n_1, n_2) taking the values $(1,1)$, $(1,0)$, $(0,1)$, $(0,0)$
- four- component real vector

occupation number basis for wave function

$$f(t) = \tilde{q}_\tau(t) f_\tau(t)$$

$$\bar{f}(t) = \bar{q}_\tau(t) f_\tau(t)$$

$f_\tau(t)$: set of basis functions,
depend on $n[t]$

occupation number basis for wave function

$$f(t) = \tilde{q}_\tau(t) f_\tau(t)$$

$$\bar{f}(t) = \bar{q}_\tau(t) f_\tau(t)$$

four state system : only two occupation numbers

$$\begin{aligned} f_1 &= n_1 n_2, & f_2 &= (1 - n_1) n_2, \\ f_3 &= n_1 (1 - n_2), & f_4 &= (1 - n_1) (1 - n_2) \end{aligned}$$

$$\begin{aligned} n_1 f_1 &= f_1, & n_1 f_2 &= 0, & n_1 f_3 &= f_3, & n_1 f_4 &= 0, \\ n_2 f_1 &= f_1, & n_2 f_2 &= f_2, & n_2 f_3 &= 0, & n_2 f_4 &= 0. \end{aligned}$$

occupation number basis for wave function

$$f(t) = \tilde{q}_\tau(t) f_\tau(t) \quad \bar{f}(t) = \bar{q}_\tau(t) f_\tau(t)$$

$$n_\gamma = 0, 1 \quad \gamma = 1 \dots M \quad N = 2^M \text{ local states}$$

$$\tau = (0, 1, 1, 0, 1 \dots)$$

$$f_\tau = (1 - n_1) n_2 n_3 (1 - n_4) n_5 \dots$$

$$n_\gamma f_\tau = (n_\gamma)_\tau f_\tau$$

$$\begin{aligned} f_1 &= n_1 n_2, \quad f_2 = (1 - n_1) n_2, \\ f_3 &= n_1 (1 - n_2), \quad f_4 = (1 - n_1) (1 - n_2) \end{aligned}$$

occupation number basis for wave function

$$f(t) = \tilde{q}_\tau(t) f_\tau(t) \quad \bar{f}(t) = \bar{q}_\tau(t) f_\tau(t)$$

$$n_\gamma = 0, 1 \quad \gamma = 1 \dots M \quad N = 2^M \text{ local states}$$

product rule

$$f_\tau f_\rho = f_\tau \delta_{\tau\rho}$$

integration rule

$$\int dn f_\tau = \prod_\gamma \sum_{n_\gamma=0,1} f_\tau = 1$$

sum rule

$$\sum_\tau f_\tau = 1$$

“Evolution” in classical statistical equilibrium systems

Evolution

- Time-local information available at t
- How is it transferred to $t + \epsilon$?
- Evolution equation
- Simple for wave function
- Local probabilities are insufficient

quantum formalism for information transport (preview)

- go from one t to the next
- described by generalized Schrödinger equation for classical wave function

$$\tilde{q}(t + \epsilon) = S\tilde{q}(t)$$

$$\partial_t \tilde{q} = \frac{d\tilde{q}}{dt} = W\tilde{q}$$

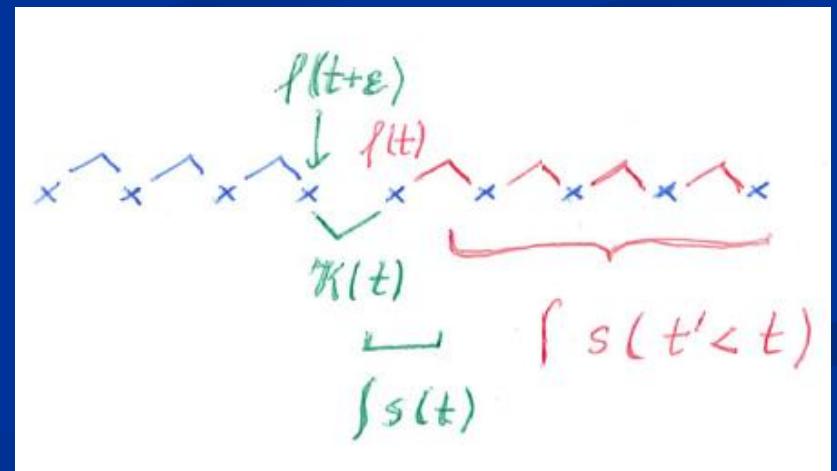
$$W = \frac{1}{2\epsilon}(S - S^{-1})$$

evolution of wave function

integrate over $n(t)$

$$f(t + \epsilon) = \int dn(t) \mathcal{K}(t) f(t)$$

- linear evolution law
- superposition principle



step evolution operator

$$\mathcal{K}(m) = \exp(-\mathcal{L}(m))$$

$$\mathcal{K}(m) = \hat{T}_{\tau\rho}(m)h_{\tau}(m+1)h_{\rho}(m)$$

transfer matrix T

step evolution operator S equals transfer matrix with normalization such that largest eigenvalue equals one

evolution of wave function

$$f(t+\epsilon)=\int dn(t)\mathcal{K}(t)f(t)$$

$$f(t)=\int \mathcal{D}n(t'< t)K_<(t)f_{in}(t_{in})$$
$$K_<(t)=\prod_{t'=t_{in}}^{t-\epsilon}\mathcal{K}(t')$$

$$\mathcal{K}(m)=\hat{S}_{\tau\rho}\left(m\right)h_{\tau}(m+1)h_{\rho}(m)$$

$$\begin{aligned}\tilde{f}(m+1) &= \tilde{q}_\tau(m+1)h_\tau(m+1) \\ &= \int \mathscr{D}n(m)\mathcal{K}(m)\tilde{f}(m) \\ &= \int \mathscr{D}n(m)\hat{S}_{\tau\sigma}(m)h_\tau(m+1)h_\sigma(m)\tilde{q}_\rho(m)h_\rho(m) \\ &= \hat{S}_{\tau\sigma}(m)\delta_{\sigma\rho}\,\tilde{q}_\rho(m)h_\tau(m+1) \\ &= \hat{S}_{\tau\rho}(m)\tilde{q}_\rho(m)h_\tau(m+1)\,,\end{aligned}$$

$$\tilde{q}_\tau(t+\epsilon)=S_{\tau\rho}(t)\tilde{q}_\rho(t)$$

generalized discrete Schrödinger equation

$$\tilde{q}_\tau(t + \epsilon) = S_{\tau\rho}(t) \tilde{q}_\rho(t)$$

quantum mechanics

$$\psi(t + \epsilon) = U(t + \epsilon, t) \psi(t)$$

evolution of conjugate wave function

$$\bar{q}_\tau(t) = \bar{q}_\rho((t + \epsilon))S_{\rho\tau}(t)$$

$$\bar{q}_\tau(t + \epsilon) = \bar{q}_\rho(t)(S^{-1}(t))_{\rho\tau} = (S^T(t))_{\tau\rho}^{-1}\bar{q}_\rho(t)$$

quantum formalism for information transport

extended quantum formalism for
problem of information transport

differences to quantum mechanics:

- real wave function and conjugate wave function instead of unique complex wave function
- evolution not necessarily unitary

Particle wave duality

Particle aspect:

- Bits: yes/no decisions
- Possible measurement values 1 or 0

Discrete spectrum of observables

Wave aspect :

Continuous probabilistic information
(wave function)

operators for observables

local observables take fixed values $A_\tau(m)$

for configurations at each discrete time value m

one can associate to each local observable an operator
the expectation value is given by the quantum rule

$$\begin{aligned}\langle A[n(m)] \rangle &= \langle \bar{q}(m) | \hat{A}(m) | \tilde{q}(m) \rangle \\ &= \bar{q}_\tau(m) \hat{A}_{\tau\rho}(m) \tilde{q}_\rho(m),\end{aligned}$$

diagonal operators

in occupation number basis the local observables are represented by diagonal operators

$$\hat{A}_{\rho_m \rho_{m'}}(m) = \sum_{\tau} A_{\tau}(m) \delta_{\rho_m \tau} \delta_{\rho_{m'} \tau}$$

$$\begin{aligned} \langle A[n(m)] \rangle &= \langle \bar{q}(m) | \hat{A}(m) | \tilde{q}(m) \rangle \\ &= \bar{q}_{\tau}(m) \hat{A}_{\tau\rho}(m) \tilde{q}_{\rho}(m). \end{aligned}$$

operators for observables

expand in basis functions

$$A[n(m)] = A_{\tau}(m)h_{\tau}(m)$$

$$\begin{aligned}\langle A[n(m)] \rangle &= \int \mathcal{D}n A[n(m)] \prod_{m'=0}^{\mathcal{M}-1} \mathcal{K}(m) f_{\text{in}} \bar{f}_{\text{f}} \\ &= \int \mathcal{D}n(m) A[n(m)] \bar{f}(m) \tilde{f}(m) .\end{aligned}$$

$$\begin{aligned}\langle A[n(m)] \rangle &= \int \mathcal{D}n(m) \bar{q}_{\tau}(m) A_{\sigma}(m) \tilde{q}_{\rho}(m) h_{\tau}(m) h_{\sigma}(m) h_{\rho}(m) \\ &= \bar{q}_{\tau}(m) \hat{A}_{\tau\rho}(m) \tilde{q}_{\rho}(m) ,\end{aligned}$$

$$\begin{aligned}\hat{A}_{\tau\rho}(m) &= \int \mathcal{D}n(m) A_{\sigma}(m) h_{\tau}(m) h_{\sigma}(m) h_{\rho}(m) \\ &= A_{\tau}(m) \delta_{\tau\rho} .\end{aligned}$$

quantum rule for local observables

depend only on configurations of occupation numbers at given t

$$\langle A(t) \rangle = \int \mathcal{D}n \quad A(t, [n(t)]) \quad w[n]$$

sum over configurations at all t

local probabilities

local observable can be computed from local probabilities

$$p(t, [n(t)]) = \prod_{t' \neq t} \mathcal{D}_n(t') w[n]$$

$$\langle A(t) \rangle = \int \mathcal{D}_n(t) A(t, [n(t)]) p(t, [n(t)])$$

$$\langle A(t) \rangle = \int \mathcal{D}_n A(t, [n(t)]) w[n]$$

classical wave function

$$\psi(t, [n(t)]) = \int \mathcal{D}n(t' < t) \prod_{t' < t} \mathcal{K}(t') \ell_{in}(t_{in})$$

classical wave function integrates the past half

$$\bar{\psi}(t, [n(t)]) = \int \mathcal{D}n(t' > t) \prod_{t' > t} \mathcal{K}(t') \bar{\ell}_q(t_q)$$

conjugate wave function integrates the future half

Local probability and wave functions

$$p(t; [n(t)]) = |\psi(t; [n(t)])|^2$$

quantum rule for expectation value

$$\langle A(t) \rangle = \int Dn(t) \bar{\psi}(t, [n(t)]) A(t, [n(t)]) \psi(t, [n(t)])$$

$$\langle A(t) \rangle = \int Dm(t) A(t, [n(t)]) p(t, [n(t)])$$

$$\langle A \rangle = \bar{\psi} A' \psi$$

generalization : local chain

$$w[n] = \bar{f}_f(n(t_f)) K[n] f_{in}(n(t_{in}))$$

$$K[n] = \exp\{-S_{cl}[n]\}$$

$$S_{cl}[n] = \sum_t \mathcal{L}(t).$$

$$K[n] = \prod_t \mathcal{K}\big(n(t+\epsilon), n(t)\big) = \prod_t \mathcal{K}(t)$$

quantum mechanics vs classical statistics

- this formalism works for all weight distributions which can be written as local chains
- quantum mechanics : complex weight function
- classical statistics : real weight function, positive probabilities

orthogonal evolution in classical statistics

- for orthogonal step evolution operators the evolution is the same for the wave function and the conjugate wave function
- they can be identified

only one real wave function $q(t)$

$$\bar{q}_\tau(t + \epsilon) = \bar{q}_\rho(t)(S^{-1}(t))_{\rho\tau} = (S^T(t))_{\tau\rho}^{-1} \bar{q}_\rho(t)$$

orthogonal evolution

- no information is lost for orthogonal step evolution operator
- the wave functions of classical statistical systems do not approach equilibrium for increasing t

Hamiltonian

- Define H by
$$\hat{S} = \exp(-i\varepsilon H)$$
- H is Hermitian and piecewise constant

- Interpolating continuous time evolution

$$q(t_2) = U(t_2, t_1)q(t_1) \quad U(t_1, t_2) = \exp(-i(t_1 - t_2)H)$$

- Schrödinger equation
$$i\partial_t q = Hq$$
- Solution agrees with discrete evolution for $t = t_{\text{in}} + m\varepsilon$

complex structure

- quantum mechanics can always be written in real formulation

$$\psi(t, x) = q_R(t, x) + iq_I(t, x)$$

- unitary evolution operator becomes orthogonal in real formulation
- what are conditions to write orthogonal evolution for real wave function as unitary evolution for complex wave function?
- requires complex structure which is compatible with evolution

complex structure

- complex structure requires two discrete transformations acting on real wave function

$$q'_\tau = (K_c)_{\tau\rho} q_\rho, \quad q''_\tau = (I)_{\tau\rho} q_\rho \quad K_c^2 = 1, \quad I^2 = -1, \quad \{K_c, I\} = 0$$

- define eigenfunctions of K $K_c q_R = q_R, \quad K_c q_I = -q_I$
- define complex wave function $\psi = q_R + i q_I$
- it obeys $K_c(\psi) = \psi^* \quad I(\psi) = i\psi$

- particular basis $q = \begin{pmatrix} q_R \\ q_I \end{pmatrix}, \quad K_c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

complex operators

- operators in real formulation which are compatible with complex structure have to obey a condition

$$\hat{A} = 1 \otimes A_R + \tilde{I} \otimes A_I = A_R + I A_I = \begin{pmatrix} A_R & -A_I \\ A_I & A_R \end{pmatrix} \quad [\hat{A}, I] = 0$$

- if operators obey this condition one has for $A = A_R + i A_I$

$$\hat{q}' = \hat{A}q \rightarrow \psi' = A\psi$$

- step evolution operator has to be compatible with complex structure, example

$$\hat{S} = \begin{pmatrix} A_R & 0 \\ 0 & A_R \end{pmatrix}$$

quantum mechanics from classical statistics

- orthogonal evolution operator
- complex structure compatible with evolution

conclusions

- wave functions in quantum mechanics or classical statistics obtain by integrating out the past or future from overall weight distribution w
- linear evolution law
- operators

conclusion

- real formulation for general quantum systems : weight distribution w can take negative values, evolution is orthogonal
- classical statistics : w positive
- classical statistics can describe quantum mechanics if evolution is orthogonal and compatible with complex structure

Christof Wetterich

Christof Wetterich Minkowski's explanation of length

The Probabilistic World

A Fundamental Approach to Quantum Mechanics and Probabilistic Computing

 Springer

e-Prints arXiv : 2011.02867 , [2408.06379](https://arxiv.org/abs/2408.06379)

continuous evolution limit for classical wave function

- small change between t and $t + \epsilon$

$$W(t) = \frac{1}{2\epsilon} (S(t) - S^{-1}(t - \epsilon))$$

$$\partial_t \tilde{q}(t) = \frac{1}{2\epsilon} (\tilde{q}(t + \epsilon) - \tilde{q}(t - \epsilon)) = W(t) \tilde{q}(t)$$

generalized Schrödinger equation

evolution equation for conjugate wave function

$$\partial_t \bar{q}(t) = -\tilde{W}^T(t) \bar{q}(t)$$

$$\tilde{W}(t) = \frac{1}{2\epsilon} [S(t - \epsilon) - S^{-1}(t)]$$

$$t\text{-independent } S : \tilde{W} = W$$

complex structure for general classical probabilistic systems

$$\begin{pmatrix} W_1, & W_2 \\ -W_2, & W_1 \end{pmatrix} \quad \psi = \tilde{q}_R + i\tilde{q}_I \quad \bar{\psi} = \bar{q}_R - i\bar{q}_I$$

$$i\partial_t \psi = G\psi, \quad G = \hat{H} + i\hat{J}$$

$$-i\partial_t \bar{\psi} = G^T \bar{\psi} = (\hat{H}^* + i\hat{J}^*) \bar{\psi}$$

$$\partial_t (\bar{\psi}^T \psi) = 0, \quad \partial_t (\psi^\dagger \psi) = 2\psi^\dagger \hat{J} \psi$$

norm is not conserved, in general

quantum systems

- unitary evolution , $J=0$
- conserved norm
- conjugate wave function equals wave function

$$\bar{q} = \tilde{q}$$

$$\bar{\psi} = \psi^*$$

evolution factor for Ising chain

$$\mathcal{K}(t) = \exp \left\{ \beta s(t+\epsilon) s(t) + \frac{\gamma}{2} \left(s(t+\epsilon) + s(t) \right) \right\}$$

$$\begin{aligned}\beta &= J/(k_B T) \\ \gamma &= H/(k_B T)\end{aligned}$$

$$n(t) = (1+s(t))/2$$

$$\begin{aligned}&= \exp \left\{ \beta (2n(t+\epsilon) - 1)(2n(t) - 1) \right\} \\ &\quad \times \exp \left\{ \gamma (n(t+\epsilon) + n(t) - 1) \right\}\end{aligned}$$

$$f_1 = n, \; f_2 = 1 - n$$

$$\begin{aligned}&= \exp \{ \beta (f_1(t+\epsilon) - f_2(t+\epsilon))(f_1(t) - f_2(t)) \} \cdot \\ &\quad \times \exp \left\{ \frac{\gamma}{2} \left(f_1(t+\epsilon) - f_2(t+\epsilon) + f_1(t) - f_2(t) \right) \right\}\end{aligned}$$

evolution factor and transfer matrix

$$\mathcal{K}(t) = e^{\beta+\gamma} f_1(t+\epsilon) f_1(t) + e^{\beta-\gamma} f_2(t+\epsilon) f_2(t) + e^{-\beta} (f_1(t+\epsilon) f_2(t) + f_2(t+\epsilon) f_1(t)),$$

transfer matrix

$$\bar{S} = \begin{pmatrix} e^{\beta+\gamma} & e^{-\beta} \\ e^{-\beta} & e^{\beta-\gamma} \end{pmatrix}$$

multiply evolution factor
with normalization constant
such that $Z=1$

$$S = e^{-\varphi} \bar{S}$$

$$\mathcal{K}(t) = S_{\tau\rho}(t) f_\tau(t+\epsilon) f_\rho(t)$$

step evolution operator

$$S = \begin{pmatrix} e^{\beta+\gamma-\varphi} & , & e^{-\beta-\varphi} \\ e^{-\beta-\varphi} & , & e^{\beta-\gamma-\varphi} \end{pmatrix}$$

free energy density

$$\varphi(\beta, \gamma) = \ln \left[e^\beta \cosh \gamma + \sqrt{e^{-2\beta} + \sinh^2 \gamma e^{2\beta}} \right]$$

$$\tilde{q}_\tau(t_{in} + n\epsilon) = (S^n)_{\tau\rho} \tilde{q}_\rho(t_{in})$$

eigenvalues of step evolution operator

- largest eigenvalue : 1

- second eigenvalue :

$$\lambda_- = \det S = \frac{e^{4\beta} - 1}{\left(\frac{1}{g} + \cosh \gamma e^{2\beta}\right)^2}$$

$$g = \frac{1}{\sqrt{1 + \sinh^2 \gamma e^{4\beta}}}$$

for large number of steps :

- wave function approaches eigenstate to largest eigenvalue : equilibrium wave function

$$\tilde{q}_\tau(t_{in} + n\epsilon) = (S^n)_{\tau\rho} \tilde{q}_\rho(t_{in})$$

approach to equilibrium

- equilibrium wave function

$$S\tilde{q}_* = \tilde{q}_*$$

$$\tilde{q}_{*2} = \left(\frac{1}{g} - \sinh \gamma e^{2\beta} \right) \tilde{q}_{*1}$$

$$g = \frac{1}{\sqrt{1 + \sinh^2 \gamma e^{4\beta}}}$$

- approach to equilibrium

$$\tilde{q}(t) = c_1 \left(\tilde{q}_* + \exp \left(-\frac{t - t_{in}}{\xi} \right) \delta\tilde{q}(t_{in}) \right)$$

- correlation length

$$\xi = \frac{\epsilon}{\ln(1/\lambda_-)}$$

solution of initial value problem

$$\bar{q}_{*2} = \left(\frac{1}{g} - \sinh \gamma e^{2\beta} \right) \bar{q}_{*1} \quad \bar{q}_{*1} \tilde{\bar{q}}_{*1} + \bar{q}_{*2} \tilde{\bar{q}}_{*2} = 1$$

$$n_* = \langle n \rangle = \bar{q}_{*1} \tilde{\bar{q}}_{*1} = \frac{1}{2N_1}, \quad N_1 = 1 + \sinh^2 \gamma e^{4\beta} - \frac{1}{g} \sinh \gamma e^{2\beta}$$

equilibrium spin

$$s_* = 2n_* - 1 = \frac{1}{N_1} - 1 = \frac{\Delta}{1 + \Delta} \quad \Delta = \sinh \gamma e^{2\beta} \left(\frac{1}{g} + \sinh \gamma e^{2\beta} \right)$$

$$\langle n(t) \rangle = n_* + (n(t_{in}) - n_*) \exp \left(-\frac{t - t_{in}}{\xi} \right)$$

information transport

- *initial value problem solved in term of classical wave functions*
- *information loss in the bulk*
- *related to unique largest eigenvalue*