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NEW LECTURE

1 What is quantum field theory?

Video: Lecture01VideoOl.mp4

Historically, quantum field theory (QFT) has been developed as quantum mechanics for many
(in fact infinitely many) degrees of freedom. For example, the quantum mechanical description
for electromagnetic fields (light) and its excitations, the photons, leads to a quantum field theory.
Quantum mechanics of photons, electrons and positrons is quantum electrodynamics (QED) and
SO one can go on.

In contrast to the transition from classical mechanics to quantum mechanics, the step from
there to quantum field theory does not lead to a conceptually entirely new theoretical framework.
Still, it was historically not an easy development and a lot of confusion was connected with notions
like “second quantization” etc.

There are many new phenomena arising in a field theory setting. This includes collective
effects of many degrees of freedom, e. g. spontaneous symmetry breaking. Particle number is not
necessarily conserved and one can have particle creation and annihilation.

Video: Lecture01VideoOlb.mp4

Historically, quantum field theory has been developed as a relativistic theory, which combines
quantum mechanics with Lorentz symmetry. This was necessary for quantum electrodynamics.
Until today, Lorentz symmetry remains to be a key incredient for the quantum field theoretic
description of elementary particle physics. It is not central for quantum field theory itself, however.
Concepts of quantum field theory can also be used to describe the quantum theory of many atoms,
for example ultra-cold quantum gases, or phonons in solids, or the spins composing magnets. These
systems are treated by non-relativistic QFT.

Video: Lecture01VideoOlc.mp4
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Probabilistic fields. One may characterize much of the content of the following lectures by two
main ingredients

(i) Fields (degrees of freedom at every point x)
(ii) Probabilistic theory (as every quantum theory is one)

In this sense, one may speak of quantum field theory as a probabilistic theory of fields. The
reader may note that “quantum” is missing in the above characterization. Indeed, in modern
developments, all probabilistic field theories, be they “quantum” or “classical”; are described with
the same concepts and methods based on the functional integral. The key element here is the one of
fluctuating fields as one has it in many situations. Something as tangible as the surface of an ocean
is already an example. The concepts are useful in many areas, ranging from statistical mechanics
to particle physics, quantum gravity, cosmology, biology, economics and so on. The common view
on all these subjects, based on the functional integral, will be the guideline of these lectures.

PFT, probabilistic field theory, would be a more appropriate name. We will nevertheless use
the traditional, historic name, QFT. Neither “quantum” nor “relativistic” are crucial conceptually.
Relativistic quantum field theory is from this perspective an important “special case”, to which we
will pay much attention.

2 Functional integral
We start with a simple model, the one dimensional Ising model.

2.1 Ising model in one dimension

Video: Lecture01Video02.mp4

Ising spin. An Ising spin has two possible values,
s ==£1.

One can also start somewhat more general with some two-level variable with possible values A; and
A5 and relate them to the Ising spins via a map,

Ay — s = +1, Ay — s =—1.

For example, a state could be occupied, n = 1, or empty, n = 0. These states can be mapped to
Ising spins via s = 2n — 1. From an information theoretic point of view, each Ising spin carries one
bit of information.

Video: Lecture01Video03.mp4

Ising chain. Let us consider a chain of discrete points x and take them to be equidistant,
x € {Tin, Tin + €, Tin + 2¢, ..., 2f — €, Tt}

The Ising chain contains a spin s(x) at each point (or lattice site) x.

Video: Lecture01Video04.mp4
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Configuration. Now let us pose one Ising spin at each point or lattice site z. A set of of such
spin values at all the possible points = will be called a configuration and denoted by {s(z)}. (This
should be seen as an abbreviation for {s(zin), $(@in +€),...,s(x¢)}.) For example, the spin value
s(x), corresponding occupation number n(z) and spin direction for a particular configuration of
seven spins could be as follows.

11 -1 -1 -1 1 -1 spin value s(z)
1 1 0 0 0 1 0 | occupation number n(zx)
R P A A L spin direction

In general, for P points, or lattice sites, there are N = 2 possible configurations since each spin
can be either up or down. We can label them by an index 7 =1,..., N.

Video: Lecture01Video05.mp4

Euclidean action. We now introduce the concept of an euclidean action by assigning to each
configuration a real number S € R,

{s(x)} = Slsl = S({s(2)}).

For example, one may have a next neighbor interaction and the action corresponds to
S[s] = —Zﬁs(w—l—a)s(m), (2.1)
x

where we use the following abbreviation for a sum over lattice sites

rf—¢€

z-5

T=Tin

and [ is a real parameter.

Video: Lecture01Video06.mp4

Partition function. One can define a partition function as a sum over all configurations, weighted
by the exponential of minus the action,

7 = eS8l = Ze_s*.
{s(=)} T

Note that the partition function is here a real and positive number, Z > 0.

Probability distribution. Let us now assign to each configuration a probability, {s(z)} — p[s] =
p({s(x)}), or in another notation, 7 — p,. We will set

Note the following properties
(i) positivity p[s] > 0 (and p[s] — 0 for S[s] — o),

(ii) normalization Z{s(x)}p[s] =>.pr=1
These are the defining properties of probability distributions.

Video: Lecture01Video07.mp4
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Observables. We may construct an observable by assigning to every configuration {s(z)} (also
labeled by 7) a value A[s] = A,

{s(x)} — Als], T— A,
In other words, the observable A has the value A, in the configuration 7.

Expectation value. The expectation value of an observable is defined by

A>=ZpTAT—— > e Sl

{s(=)}

Video: Lecture01Video08.mp4

Two-point correlation. A correlation function of two observables is given by the expression

= ZpTATBT = Z Bls].

{(w

Video: Lecture01Video09.mp4

Local action. Oftentimes one can write the action as a sum of the form
Sls|=>_ Z(x),
xr

with .Z(x) depending only on the spins in some neighborhood of z. For our example (2.1) with
next neighbor interaction one would have

L (x) = =Ps(x + ¢)s(x).
J

In fact, the simplest version of the traditional Ising model has g = T with interaction parameter
J, temperature T and Boltzmann constant kg. In this context, the Euclidean action corresponds
in fact to the ratio S = chLT of Energy or Hamiltonian H and temperature as it appears in the
Boltzmann weight factor exp(—kBiT). The Hamiltonian is then obviously

- Z Js(x +e)s(x).

Video: Lecture01Videol0.mp4

Boundary terms. One must pay some attention to the boundaries of the Ising chain. Let us
denote by %, a term that depends only on s(ziy), the initial spin and similarly by % a term that
depends only on s(z¢), the final spin. We write the action as

S =Y L) + L+ 2
t

By choosing %, and % appropriately one can pose different boundary conditions, in general
probabilistic, or also deterministic as an approriate limit.

Typical problem. A typical problem one may encounter in the context of the Ising model in one
dimension is: What is the expectation value (s(z)) or the two-point correlation function (s(x1)s(z2))
for given boundary conditions specified by %, and %7
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Functional integral language. We now formulate the model in a language that is convenient
for generalization. We write for expectation values

(A) = %/Ds e dlslA,

7 = /Ds eS8,

The functional measure is here defined by

Jr-X -X-T X

s(x)} T T s(z)==%1

with the partition function

For a finite Ising chain, the functional integral is simply a finite sum over configurations.

2.2 Continuum functional integral

Video: Lecture01Videoll.mp4

Lattice functional integral. Let us now take a real, continuous variable ¢(z) € R instead of
the discrete Ising spins s(z) € {+1,—1}. The position variable x is for the time being still labeling
discrete points or lattice sites. We then define the functional measure

/D¢: E[/_quﬁ(x).

This is now the continuum version of a sum over configurations. Indeed it sums over all possible
functions ¢(z) of the (discrete) position . To realize that indeed every function appears in [ D¢
one may go back to a discrete variable, ¢(z) € {¢1,...,dn} with M possible values and take
M — oo.

Configuration. For every lattice site 2 we specify now a real number ¢(x) which in total gives
then one configuration. Obviously there are now infinitely many configurations even if the number
of lattice sites is finite.

Path integral. At this point one can make the transition to a probabilistic path integral. To this
end one would replace  — t and ¢(x) — Z(¢), such that the sum over functions ¢(z) becomes one
over paths Z(t). The functional measure would be [ DZ.

Video: Lecture01Videol2.mp4

Action. The Euclidean action can be written as

S=> L)+ L+ L,

where Z(z) depends on ¢(a’) with 2’ in the vicinity of . Similarly, %, depends on ¢(zin) = ¢in
and % depends on ¢(z¢) = ¢
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Lattice ¢* theory. Here we take the action local with

2(@) = 2 lola+2) — 6l — o) + eV (6(2),

where the potential is given by

m? A
V(9(2)) = 502 + S o(@)".
The partition function is
Z = /D¢ e~ 51,

and a field expectation value is given by

o) = [ Do o)

The functional integral is here still a finite-dimensional integral where the dimension corresponds
to the number of lattice points P. The action S[¢] is a function of P continuous variables ¢(x).

Video: Lecture01Videol3.mp4

Continuum limit. Let us now take the limit ¢ — 0 for x; — x;, fixed. This means that the
number of lattice points P needs to diverge. The “lattice derivative”

0.0(x) = - [9la +2) — (z — )

becomes a standard derivative, at least for sufficiently smooth configurations, where it exists. One

Zs%/dw,

also has

and the Euclidean action becomes
S = /dx{f(x)JanJr.Zf},

where now
2() = 5 0@ +V(9(a).

The first term is called the kinetic term, the second the potential. In the limit ¢ — 0 the action is
a functional of the functions ¢(x).

Video: Lecture01Videol4.mp4

Physical observables. As physical observables one takes those A[¢] for which the limit (A),
(AB) and so on exists in the limit ¢ — 0. It will not always be easy to decide whether a given
A[¢] is a physical observable, but the definition is simple. For € — 0 the expression A[¢] is again a
functional.
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Functional integral. The functional integral in the continuum theory is now defined as the
“continuum limit” of the lattice functional integral for ¢ — 0. By definition, this is well defined
for “physical observables”. One may ask: what are such physical observables? The answer to this
question is not simple, in general. One should note here that also very rough functions ¢(x) are
included in the functional integral, although their contribution is suppressed. If the kinetic term in
the Buclidean action Skin = >, & [¢(z +¢) — ¢(z — &)]? diverges for £ — 0, i. e. S — oo, then one
has e™ — 0 and the probability of such configuration vanishes. The corresponding limits may not
be trivial, however, because very many rough configurations exist.

Additive rescaling of action. Let us consider a change S — S’ =S5+ C or Z(z) —» &' (z) =
Z(x)+¢ where C' = (zy— iy )¢ is a constant that is independent of the fields. The partition function
changes then like Z — Z' = e~©Z. Similarly,

/D¢> e S Alp] — e’C/D(ﬁ e S Alg).
This means that C' drops out when one considers expectation values like (A)! It can even happen

that C diverges for ¢ — 0 such that formally Z — 0 or Z — oo. This is not a problem because the
absolute value of Z is irrelevant. The probability distribution p[¢] = Le~5[¢! is unchanged.

2.3 O(N) models in classical statistical equilibrium

Video: Lecture02Video0Ol.mp4

Classical thermal fluctuations. For the time being we are concerned with static (equilibrium)
aspects of field theory models at non-zero temperature. These field theories can arise for example
from a lattice model such as the Ising model if the latter is probed on distances that are large
against the typical microscopic scale or inter-particle distance €. Formally one can then take the
limit € — 0 as discussed in the previous subsection. It turns out (and will become more clear later
on), that in such a situation classical thermal fluctuations dominate over quantum fluctuations. We
discuss here therefore classical statistical field theories in thermal equilibrium.

Such theories have a probabilistic description in terms of functional integrals with weight given
by the Boltzmann factor e . Here f = 1/T and we use now units where kg = 1 such that
temperature is measured in units of energy. In the following we will discuss possible forms of the
field theory and in particular the Hamiltonian H.

Universality classes and models. In condensed matter physics, microscopic Hamiltonians are
often not very well known and if they are, they are not easy to solve. However, in particular in the
vicinity of second order phase transitions, there are some universal phenomena that are independent
of the precise microscopic physics. This will be discussed in more detail later on, in the context
of the renormalization group. Essentially, this arises as a consequence of thermal fluctuations and
the fact that at a second order phase transition fluctuations are important on all scales. Roughly
speaking, a theory changes in form when fluctuations are taken into account and can approach a
largely universal scaling form for many different microscopic theories that happen to be in the same
universality class.

In the following we will discuss a class of model systems. These are particularly simple field
theories for which one can sometimes answer certain questions analytically, but one can also see
them as representatives for their respective universality classes. In the context of quantum field
theory, we will see that these field theory models gain a substantially deeper significance.
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Scalar O(N) models in d dimensions. Let us consider models of the form
a1 L o 1 2
BHIG] = 1) = [ d'w{ 50i6n0300 + Sm*6ntn + A (Budn) (- (22)

Here, ¢, = ¢p(z) withn =1,..., N are the fields. We use Einsteins summation convention which
implies that indices that appear twice are summed over. We have formulated the theory in d spatial
dimensions (where in practice d = 3, 2, 1 or even 0 for condensed matter systems and d = 4 will
correspond to a quantum field theory after Wick rotation to Euclidean space). The index j is
accordingly summed in the range j = 1,...,d. Although not very precise, one sometimes calls S[¢]
the Fuclidean microscopic action. The square brackets indicate here that the action depends on
the fields in a functional way, which means it depends not on single numbers but on the entire set
of functions of space ¢, (z), with x € R andn=1,...,N.

Fields as vectors. One can consider ¢,(x) as a vector in a vector space of infinite dimension
where components are labeled by the spatial position z and the discrete index n. If in doubt, one
can go back to a lattice model where z is discrete.

Applications. Models of the type (2.2) have many applications. For N = 1 they correspond in
a certain sense to the continuum limit of the Ising model. For N = 2 the model can equivalently
be described by complex scalar fields. It has then applications to Bose-Einstein condensates, for
example. For N = 3 and d = 3 one can have situations where the rotation group and the internal
symmetry group are coupled. This describes then vector fields, for example magnetization. Finally,
for N = 4 and d = 4, the model essentially describes the Higgs field after a Wick rotation to
Euclidean space.

Video: Lecture02Video02.mp4

Engineering dimensions. In equation (2.2) we have rescaled the fields such that the coefficient
of the derivative term is 1/2. This is always possible. It is useful to investigate the so-called
engineering scaling dimension of the different terms appearing in (2.2). The combination SH or
the action S must be dimensionless. Derivatives have dimension of inverse length [9] = L~! and
the fields must accordingly have dimension [¢] = L~ 271, One also finds [m] = L~ and [\] = L?~*.
Note in particular that A is dimensionless in d = 4 dimensions.

Video: Lecture02Video03.mp4

Symmetries. It is useful to discuss the symmetries of the model (2.2). Symmetries are (almost)
always very helpful in theoretical physics. In the context of statistical field theory, they are useful
as a guiding principle in particular because they still survive (in a sense to be defined) when the
effect of fluctuations is taken into account.

For the model (2.2) we have a space symmetry group consisting of rotations and translations,
as well as a continuous, so-called internal symmetry group of global O(N) transformations. We
now discuss them step-by-step.

Rotations. Rotations in space are transformations of the form

) =z = Rk
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The matrices R fulfill the condition RT R = }¥ and we demand that they connect continuously to
the unit matrix R = W¥. This fixes det(R) = 1. Matrices of this type in d spatial dimensions form
a group, the special orthogonal group SO(d). Mathematically, this is a Lie group which implies
that all group elements can be composed of many infinitesimal transformations. An infinitesimal
transformation can be written as

ik ik, b jk

R =§" 4+ idwmn Slmny

where J(j:;n) = —i(0p;Onk — OmiOn;) are the generators of the Lie algebra and dw,,, are infinitesimal,
anti-symmetric matrices. One may easily count that there are d(d — 1)/2 independent components
of an anti-symmetric matrix in d dimensions and as many generators. Finite group elements can

be obtained as
1 Wmn

N .
. 1
R= ngr(l)o <“é + 2NJ(mn)> = exp (2wmnj(mn)> .

Let us now work out how fields transform under rotations. We will implement them such that
a field configuration with a maximum at some position x before the transformation will have a
maximum at Rx afterwards. The field must transform as

Pn(x) = ¢r,(2) = dn(R™ ).
Note that derivatives transform as
Djdn(x) = (R )kj(Okdn)(R™'x) = Rjr(Oxdn)(R™ ).

The brackets should denote that the derivatives are with respect to the full argument of ¢,, and we
have used the chain rule. The action in (2.2) is invariant under rotations acting on the fields, as
one can confirm easily. Colloquially speaking, no direction in space is singled out.

Video: Lecture02Video04.mp4

Translations. Another useful symmetry transformations are translations x — = + a. The fields
get transformed as

Pn(z) = ¢, (7) = Pn(2 — a).

One easily confirms that the action (2.2) is also invariant under translations. Colloquially speaking,
this implies that no point in space is singled out.

Global internal O(N) transformations. There is another useful symmetry of the action (2.2)
given by rotations (and mirror reflections) in the “internal” space of fields,

On (I) — Onm(bm(m)-

The matrices O, are here independent of the spatial position z (therefore this is a global and not a
local transformation) and they satisfy OTO = I¥. Because we do not demand them to be smoothly
connected to the unit matrix, they can have determinant det(O) = £1. These matrices are part of
the orthogonal group O(N) in N dimensions. It is an easy exercise to show that the action (2.2) is
indeed invariant under these transformations.

Video: Lecture02Video05.mp4
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Partition function and functional derivatives. The partition function for the model (2.2)
reads
Z[J] = /D¢ e~ S+ [ dlax{Jn (2)¢n (2)} (2.3)

We have introduced here an external source term [ d?z{.J,(z)¢n(z)} which can be used to probe the
theory in various ways. For example, one can take functional derivatives to calculate expectation
values,

16
6@ = 557w 2
and correlation functions, e. g.
1 5 [ D¢ 6 () dm(y) e
(60 @om ) = 7715757 2 o = Do s

Video: Lecture02Video06.mp4

Classical field equation. In the the functional integral the contribution of field configurations
¢(z) is suppressed if the corresponding action S[¢] is large. In the partition function (2.3), large con-
tributions come mainly from the region around the minima of S[¢] — fm Jndn, which are determined
by the equation

§ ~ 4S[¢]
0p(x) ()

This equation is the field equation or equation of motion of a classical field theory. For the model
(2.2) one has concretely

35[¢]
¢ ()

Note that this field equation is from a mathematical point of view a second order, semi-linear,

(561 [ et @) L@ =0

= ~0,0;6n(x) + m*6n(z) + A6 ()00 ()01 (x) = T (2).

partial differential equation. It contains non-linear terms in the fields ¢,, but the term involving
derivatives is linear; therefore semi-linear. The equation involves the Euclidean Laplace operator
A = 0;0; and is therefore of elliptic type (as opposed to hyperbolic or parabolic). This field
equation is the correspondence of Maxwells equations in electrodynamics for our scalar theory. The
source J corresponds to the electromagnetic current in Maxwell’s equations.

Video: Lecture02Video07.mp4

The O(N) symmetric potential. The model in (2.2) can be generalized somewhat to the action
1
Sle] = / d'x {Qajgz)naj% + V(p)} : (2.4)

where p = ¢, ¢, is an O(N) symmetric combination of fields and V(p) is the microscopic O(NN)
symmetric potential. The previous case (2.2) can be recovered for V(p) = m?p + $Ap%

More general, V(p) might be some function with a minimum at py and a Taylor expansion
around it,

1 1
V(o) =m*(p = po) + 5A(p = po)* + 5y7(p = po)” + ...

~11 -
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If the minimum is positive, py > 0, the linear term vanishes of course, and one takes m? = 0. In
contrast, if the minimum is at py = 0 one has in general m? > 0. In practice, one uses either py or
m? for a parametrization of V(p). It costs a certain amount of energy for the field to move away
from the minimum. In particular, for large A such configurations are suppressed.

Video: Lecture02Video08.mp4

Homogeneous solutions. It is instructive to discuss homogeneous solutions of the field equation,
i.e. solutions that are independent of the space variable 2. For vanishing source J,, () = 0, and the
model (2.4) we need to solve

9
I

This has always a solution ¢,, = 0 and for py = 0 and positive m? this is indeed a minimum of
the action S[¢]. For positive py the situation is more interesting, however. In that case, ¢, = 0 is

Vip) = qsn(%wp) —0.

actually typically a maximum while the minimum is at ¢x¢r = 2pg, i. e. at a non-zero field value.
One possibility is ¢1 = v/2pg with ¢o = ... = ¢,, = 0, but there are of course many more. But such
a solution breaks the O(N) symmetry! One says that the O(N) symmetry is here spontaneously
broken on the microscopic level which technically means that the action S[¢] is invariant, but the
solution to the field equation (i. e. the minimum of S[¢]) breaks the symmetry. It is an interesting
and non-trivial question whether the symmetry breaking survives the effect of fluctuations. One
has proper macroscopic spontaneous symmetry breaking if the field expectation value (¢,,) is non-
vanishing and singles out a direction in field space. An example for spontaneous symmetry breaking
is the magnetization field in a ferromagnet.

2.4 Non-linear sigma models

Video: Lecture02Video09.mp4

Constrained fields. It is also interesting to consider models where p = pq is fixed. In fact, they
arise naturally in the low energy limit of the models described above when the fields do not have
enough energy to climb up the effective potential. Technically, this corresponds here to the limit
A — oo with fixed pp and can be implemented as a constraint

¢n($)¢n(l‘) = 2pp. (25)

Note that with this constraint, the field is now living on a manifold corresponding to the surface of
an N-dimensional sphere, denoted by Sy_;. One can parametrize the field as

$1=0, ¢2=m, ... ON=TN-1,
where only the fields 7, are independent while ¢ is related to them via the non-linear constraint
g =/ 2[)0 — 7?2.

Linear and non-linear symmetries. The symmetry group O(N) falls now into two parts. The
first consists of transformations O(N — 1) which only act on the fields 7, but do not change the
field o. Such transformations are realized in the standard, linear way

T — OV =V o —o0.
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In addition to this, there are transformations in the complement part of the group (rotations that
also involve the first component o). They act infinitesimally on the independent fields like

0, = dan,o = day\/2p9 — T2, 00 = —da, Ty,

where da, are infinitesimal parameters (independent of the fields). Note that this is now a non-
linearly realized symmetry in the internal space of fields. This explains also the name non-linear
sigma model.

Action. Let us now write an action for the non-linear sigma model. Because of the constraint
(2.5), the effective potential term in (2.4) becomes irrelevant and only the kinetic term remains,

S[’]T] - /ddx {;aj¢naj¢n} = /ddx {;Gmn(ﬁ:)ajﬂmajﬂ'n} .

In the last equation we rewrote the action in terms of the independent fields m,, and introduced the
metric in the field manifold

- TmTn

The second term originates from

1
8ja = 6]‘\/ 2,00 — 7_T"2 = 771'7”8]‘7(7”.

2p0 —7?2

Functional integral. Note that also the functional integral is now more complicated. It must
involve the determinant of the metric G,,, to be O(N) invariant. For a single space point = one

/ [ d¢n — / [ d¢n 6(éndn — 2p0) = const x / Vdet(G(7)) [ ] dmn.

Only in the presence of the determinant det(G(7)) the functional measure preserves the O(N)

has

symmetry. Accordingly, the functional integral for the non-linear sigma model must be adapted to
contain the factor det(G(7)).

Ising model. Everything becomes rather simple again for N = 1. The constraint ¢(x)? = 2pg
allows only the field values ¢(z) = £+/2p9. By a multiplicative rescaling of ¢(z) one can obtain
2pp = 1. On a discrete set of space points (a lattice), this leads us back to the Ising model.

2.5 Classical statistical thermodynamics

Video: Lecture02Videol0.mp4

Hamiltonian and partition function. We have now all the ingredients for a microscopic for-
mulation of thermodynamics. The well-known macroscopic thermodynamic laws all follow from
this microscopic formulation. Furthermore, the behaviour of particular systems is encoded in the
partition function which yields the “equation of state” of a given system.

The starting point is the classical Hamiltonian H for a given model. It is a functional of the
microscopic variables ¢, H[¢]. For our example of O(NN)-models, these variables are the fields
¢n(x), or for the non-linear o-models (including the Ising model), the constrained fields 7, (x). The
Hamiltonian associates to each field configuration an energy H|[¢]. The classical action reads

Hlg]

Sl¢] = BH[s) = 1
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with 8 = 1/T the inverse temperature. The functional integral (2.3) yields for vanishing source
J = 0 the partition function Z(8). The mean energy is found as

= (H) = ’alna;(ﬁ)’

relating F to the temperature T. In this simplest version Z(3) is the partition function of the
canonical ensemble, and the entropy S is defined as

0
op

Particle number. In the case of systems with a preserved particle number N we can also include
in the action a term —SuN[¢], with N[¢] the particle number and p the chemical potential,

S = BH|[¢| — BuN[¢].

S=(1 B=— )mzw)

In this case the partition function Z(8, ) is the grand canonical partition function, with mean
particle number N, mean energy E and entropy S given by

Z(B, ), E= —EIHZ(@/A) + N,

N = 55

Lo
( >an([3, ).

All thermodynamic relations follow from this setting, and the particular form of the grand canonical
potential or Gibbs free energy Q = —1In Z(3, 1)/ yields the equation of state of the system.

Video: Lecture02Videoll.mp4

Magnetization. Source terms such as a homogeneous magnetic field for the case where ¢, ()
describes magnetization, can be added. If we take ¢(z) to be a microscopic magnetization density
and B a constant magnetic field, the action becomes

S = BH[0] - B [ 60(2) B (26)

The macroscopic magnetization M as a function of B and temperature T obtains from Z(f, é) as
_Tolmz
"k 0B,

Video: Lecture02Videol2.mp4

Pressure. If one wants to investigate questions related to volume and pressure, one has to confine
the system in a box with volume V with suitable, for example periodic, boundary conditions for
@(x). The partition function depends in this case on V as an additional parameter, and the pressure

p obeys
10

BV
The functional integral is an object that you should know well from your course on statistical
physics.

p= InZ(B,p,V).
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3 Operators and transfer matrix

Video: Lecture03Video0Ol.mp4

Our approach to quantum field theory will be based on the discussion of functional integrals. These
are a generalization of ordinary, multi-dimensional integrals to the limit of infinitely many degrees
of freedom, i. e. infinite dimensional integrals. For bosons, the variables or fields all commute. (For
fermions we will later use the anti-commuting Grassmann variables). One has learned that non-
commuting operators play a crucial role in quantum mechanics. These non-commuting structures
are not immediately visible in the bosonic functional integral which on first sight only contains
commuting quantities. One may wonder how such integrals can describe the non-commutative
properties of quantum mechanics. In the following we want to reveal the structural relation between
the operator formalism, known from quantum mechanics, and the functional integral.

3.1 Transfer matrix for the Ising model

Boundary problem for Ising chain. Let us consider the one-dimensional Ising model

with a next-neighbor interaction .2 (z) = —fs(x + €)s(z) and initial and final boundary terms %,
and %. (We combine interaction strength and inverse temperature into a single dimensionless
parameter 3.) We choose boundary conditions such that s(xj,) = 1 and s(z¢) = 1. This can be

implemented by
e~ % = §(s(win) — 1), ™% = 8(s(xr) — 1),

which in turn can be implemented by limits like

Lin = — lim k[s(zin) — 1].

K—00

The question arises now: What is the expectation value (s(z)) for x in the bulk, i. e. between the
endpoints zj, and zr 7 The single configuration with minimal action has all spins aligned, s(z) = 1.
There are, however, many more configurations where some of the spins take negative values. Even
though the particular probability for one such configuration is smaller, this is outweighed by the
number of configurations. Qualitatively one expects something like in figure 1. In the bulk, far

41 4+ .
L]
L]
0 | | | T ¢ Py J\ | | | | |
| [ [ [ [ T T r % I. [ I T
-1 + T * .
in Tt

Figure 1. Ising chain with spins at the endpoints fixed to s(zin) = +1 and s(zf) = —1. What is (s(x)) for
x between the endpoints?

away from the boundaries, the average spin may vanish to a good approximation. We look for a
formalism to compute this behaviour as a function of the parameter 5.

Video: Lecture03Video02.mp4
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Product form of probability distribution. We can write e~ in product form
e = et L@t — lH ez(z)] fin = fr [H %/(I)] fin

with boundary terms f; = e“" and fi, = e~%n. Here .# (x) depends on the two spins s(x) and
s(z + ¢), while fi, depends on s(xi,) and f; depends on s(xy).

Occupation number basis. Any function f(s(x)) that depends only on the spin s(z) can be
expanded in terms of two basis functions h,(s(x)) where 7 = 1,2,

f(s(@)) = qu(z) ha(s(x)) + q2(z) ha(s(x)).
We choose the occupation number basis with

1 1-—
_ +S:n ha(s) = 23

hl(s) B 5

=(1—-mn).

This is easily seen by noting that the occupation number n has only the values 1 (for s = 1) and 0
(for s = —1), such that
n® =n.

Any polynomial in s can be written as an + b, such that any f(s) can indeed be expressed in terms
of the two basis functions.
We note some properties of the basis functions. The relation

hre(8)hy(s) = 67ph,(5)

is simply verified by h2(s) = h.(s) and hy(s)hz2(s) = 0). Other useful relations are

> he(s) =he(s=1)+h(s=—1)=1,

s==+1
> he(s) = ha(s) + ha(s) = 1,

and finally by combination

> he(8)hy(s) = 0y,

s==+1

Video: Lecture03Video03.mp4

Transfer matrix. Let us now expand J#(x) in terms of the basis functions h,(s(z + ¢)) and

hy(s(x)), A
H (@) = Trplw) he(s(a + ) By (s().

We use here the Einstein summation convention which implies summation over the indices 7 and p.
The expansion coeflicients TTP (z) are the elements of the transfer matrix T. This is a 2 x 2 matrix.
Indeed using shorthands 7 = n(t + ¢), n = n(t) and similar for h,, h,, an arbitrary .# (z) can be
written as

H =ann+bn+cen+d
= T11711h1 + T12131h2 + T21712h1 + T22712h2~
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Matrix product for transfer matrix. Consider now the product of two neighbouring factors
H (x+¢) and J (x), summed over the common spin s(x + €)

S At (@)= Y helsle+20)Tp(@ +2)hy(s(e +)hals(a + &) Tus(@)hs(s(@))

s(z+e) s(xz+e)
=377 hels(a 4+ 29) g + )T (@) (s + 2))ha(s(a))

P s(z+e)

—Zh s(x + 2¢)) (x+a) s(x)hg(s(z))

= ho(s(z + 2¢)) [T(a: + E)T(x)} hals(@))

The second line uses h-h, = d-,h, and the third line ZS h, = 1. We observe that the matrix
product of transfer matrices appears in this product. For the Ising model the factors J¢ (x) are the
same for all x (except for different spins being involved), and therefore T is independent of z. One
simply finds

Z H(x+¢e)H (x) = he(s(x + 2¢)) [TZ} ho(s(z)).

s(z+e) i

Doing one more similar step yields

SN Hw+20)H (x+ &) H (x) = ho(s(x+ 32)) [ (z +26)T(z + s)T(x)} hy(s(x)),

s(z+42¢) s(z+e) T

and so on.

Video: Lecture03Video04.mp4

Partition function as product of transfer matrices. One can write the partition function as

(ze—e)

Z=| I | fits@o) | TI # @) finls(am))

T=%Tin s(x) L=ZTin

= D7 D Jils(en) ha(s(e) [T<xf—s>---f<wm>} By (5(2m) fin(5(ain)

s(@r) s(@in) v

= 30 27 ase0) sl hrls(@e)) [T+ 7| p(sia) da(s(win)) ha(s(zin).

s(xf) s(xin)
Here we have expanded f; and fi, in terms of the basis functions,
fi(s(xr)) =0p () hg(s(zr)),
fin(s(xin)) :(ja(ajin) ha(tg(xin))-

Performing the sums over the initial and final spins leads to

Z = G- () [T(xf &) T(@im)|  Golwin)-

Tp

This has the structure of an initial vector (or wave function) §(i,) multiplied by a matrix, and
then contracted with a final vector (or conjugate wave function) g(xf). We can use the bracket
notation familiar from quantum mechanics,

Z = (q(xe)| T (xr — €) - - T(in) | 3(@in))-
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This product formulae resembles quantum mechanics if one associates the transfer matrix with
the infinitesimal evolution operator U (t)

P(t+e) = Ut)y(t),
where
Ut) = el (),
With
P(ts) = Ults — ) - Ultin)¥(tin),
one can write the transition amplitude in the form
(O(te)|ih(te)) = (D(te)U(ts — €) -+ Utin) [ (in))-

Formally, the map between quantum mechanics and the classical statistics of the Ising model is

Quantum mechanics | Classical statistics
U T
t X
v 7
¢ a

A main difference to quantum mechanics is that T does not preserve the norm of the wave function.

Video: Lecture03Video05.mp4

Computation of the transfer matrix. Let us compute the transfer matrix for the Ising model.
We employ the defining relation of the transfer matrix by an expansion of the local factor in terms
of basis functions,

ePs = TT,, h(3) hy(s),
where we use the shorthand notation
s=s(x+e), s = s(z).

Using the decomposition
s=hy—hy=n—(1-n)=2n-1,
and
B5s = B(hy — ha)(h1 — ha) = B(h1h1 4 haohy — hiha — hahy),
one obtains by analyzing the four configurations of neighboring spins (3, s),
B35 = eﬁ(ﬁlhl + hohg) + G_B(Elhg + hohy).

From this one can read off the transfer matrix

. B -8
T:(e_ﬁeﬁ).
e e

In general the transfer matrix T is not a unitary matrix as for quantum mechanics. For the Ising
model T(x) does not depend on z so that one obtains
Z = ar(ae) [T Gplm).
T
NEW LECTURE

Video: Lecture03Video06.mp4
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Periodic Boundary Condition. Replace £y + %y by —f8s(x¢)s(zin). This closes the circle by
defining x¢ and x;, as next neighbours. The partition function becomes

z=m{1"}.
Diagonalising 7" solves the Ising model in a simple way,
Z=X"42",
with A1 the two eigenvalues of the transfer matrix,
At = 2cosh(f), A_ = 2sinh(f).

In the limit P — oo only the largest eigenvalue A, contributes.If we restore for 5 the product of
coupling strength and inverse temperature, this is the exact solution for the canonical partition
function for the Ising chain. The thermodynamics follows from there.

Video: Lecture04Video0l.mp4

Generalisations. The transfer matrix can be generalised to an arbitrary number of Ising spins
s+(x). For M spins, v = 1,..., M, the transfer matrix 7'is an N x N matrix, N = 2™ r=1,...,N.
For example, if M = 2, T is a 4 X 4 matrix. The basis functions in the occupation number basis

are taken as

hi = ning, ha = (1 —n1)na,

h3=n1(1—n2), h4:(1—n1)(1—n2).
This structure can be extended to arbitrary M. The basis functions obey the same rules as discussed
for M = 1. In particular, v may denote a second coordinate y such that,

sy(x) = s(x,y).

Video: Lecture04Video02.mp4

Two-dimensional Ising model. In this way one can define formally the transfer matrix for the
two-dimensional Ising model. The coordinate  denotes now lines in a two-dimensional plane, see
fig. 2. More generally, in d dimensions, x denotes the position on a particular d — 1 dimensional
hypersurface. The transfer matrix contains the information of what happens if one goes from one
hypersurface to the next one.

3.2 Non-commutativity in classical statistics

Video: Lecture04Video03.mp4

Local observables and operators. A local observable A(x) depends only on the local spin s(z).
We want to find an expression for its expectation value in terms of the transfer matrix. For this
purpose we consider the expression

Z H()A(x) K (x —¢) = Z he(z + 5)T7p(x)hp(x)A7(m)hv(x)ha(x)fag(x —e)hg(x —¢),
(z) s(z)
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YA

Figure 2. Illustration of the two dimensional Ising model.
where we use the shorthand
and the expansion

We employ

z) Z hp(x)hy (2)ha(2) = Z Ay (2)0py0yas
s(z) o

and introduce the diagonal operator

(A(x))pa = ZA“/(x)(Sm&W - (Al()(x) A2(2Z‘)> .

Y

The last identity refers to the single spin Ising chain. The two observables A; and Ay correspond
to the values that the observable takes in the two local states of the Ising chain. The fact that the
operator is diagonal reflects properties of the specific occupation number basis. For a general basis
the operator is not diagonal.

Video: Lecture04Video04.mp4

In terms of this operator we can write

Y H(@)A@)H (& — ) = he(a + ) Trp(2) Apa (@) Tap(z — )hg(a — ).

The expectation value of A(z) obtains by an insertion of the operator A(z),

/Ds e_SA

qu(xf)[f( t—e) - T(@)A@)T (@ —€) - T(@im)]rpdo(in)

The operators T'(z) and A(z) do in general not commute,

[1'(2), A(2)] # 0.

Non-commutativity is present in classical statistics if one asks questions related to hypersurfaces!
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Video: Lecture04Video05.mp4

Let us concentrate on observables that are represented by operators A which are independent of x.
As an example we take the local occupation number n(x) = 2s(x) — 1. The associated operator is

=)

If we want to obtain the expectation value at x, we need to compute

(&) = 3T =€)+ TN T (@ <) Flan) ),

where we employ a notation familiar from quantum mechanics,

<Qf|M|[jm> = (qf(xf))TMTp(qin(xin))p~

A normalisation with Z = 1 brings the expression even closer to quantum mechanics. We adopt it
in the following.

Video: Lecture04Video06.mp4

We may next consider the operator
N, =T(z)"* NT(x), (3.1)
and compute
@l Ty — ) T@ N D@ — &) Plam)ldin) = (n(w + ).

When we use the same prescription (with z singled out as a reference point) the operator N
corresponds to the observable n(x), while N, is associated to the observable n(z+¢). The operator
N, is not diagonal and does not commute with NV,

[N, N] #0.

We conclude that non-commuting operators do not only appear in quantum mechanics. The ap-
pearance of non-commuting structures is an issue of what questions are asked and which formalism
is appropriate for the answer to these questions. One can actually device a Heisenberg picture
for classical statistical systems in close analogy to quantum mechanics. The Heisenberg operators
depend on x and do not commute for different x.

3.3 Classical Wave functions

Video: Lecture04Video07.mp4

We have seen how operators and non-commuting structures appear within classical probabilistic
systems. The transfer matrix formalism is a type of Heisenberg picture for classical statistics. There
is also a type of Schrédinger picture with wave functions as probability amplitudes. This will be
discussed in the present lecture.

Video: Lecture04Video08.mp4
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Local probabilities. We start from the “overall probability distribution” given for the Ising chain
by

1
pls] = 26—5[3]7 7 = /Ds el

A local probability distribution at x, which involves only the spin s(z), can be obtained by summing

over all spins at o’ # =z,

pi(s(z)) = % H Z e % = p(x).

o' £z s(x’)=+1

It is properly normalized,

S pls(@) = 1.

s(z)==%1
The expectation value of the spin s(x) can be computed from p;(s(z)),
(s@y= 3 mls)s().
s(x)==%1

If there would be a simple evolution law how to compute p;(x + €) from p;(z), one could solve the
boundary value problem iteratively, starting from the initial probability distribution p;(zi,). The
evolution law would permit us to infer p;(x), and therefore to compute the expectation value of
s(z). Unfortunately, such a simple evolution law does not exist for the local probabilities. We will
see next that it exists for local wave functions or probability amplitudes.

Video: Lecture04Video09.mp4

Wave Functions. Define for a given x the partial actions S_ and Sy by

S_ :$n+ wis j(x/)7

Tf—E€
Sy =Y 2@+ %4,
S =S +5,.

Here S_ depends only on the Ising spins s(z’) with 2’ < z, and S, depends on spins s(a’) with
x> x.
The wave function f(x) is defined by

f(iE) = 1:[ Z e 5.

z'=zin s(x’)==%1

Because we sum over all s(z’) with 2’ < z, and S_ depends only on those s(z’) and on s(z), the
wave function f(x) depends only on the single spin s(x). Similarly, we define the conjugate wave

function
Ty
fay = T > [,

z'=x+e s(x’)==%1

which also depends only on s(x).

Video: Lecture04Videol0.mp4
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Wave functions and local probability distribution. The product

H Z e 5 = Zp(x),

o' #x s(x’)=+1

is closely related to the local probability distribution p;(x). One has

Y. f@)f) =

s(z)==%1

In the following we employ the possibility of an additive renormalisation S — S + C' in order to
normalise the partition function to Z = 1. This can be achieved by adding a constant to Z(x),
and similarly for the boundary terms .%, and .%. With Z = 1 the wave functions f and f are a
type of probability amplitudes, similar as in quantum mechanics. We have, however, two distinct
types of probability amplitudes, f and f.

Video: Lecture04Videoll.mp4

Quantum rule for expectations values of local observables. The expectation value of a
local observable A(z) can be written in terms of a bilinear in the wave functions.

(A@)= ) Alp()

f(x) = qp(x)h,(x)
f(@) = G (2)h-(x)
A(z) = Ay (2)ho ().

hp(x),
h

)

Here g, (z) are the components of the wave function in the occupation number basis at z, and - (z)
are the components of the conjugate wave function. This yields for the expectation values

(AW) = 8@ A @A) Y hel@hol@hy(z).

Using again the product properties of the basis functions one finds the “quantum rule” for the
expectation value as a bilinear in the wave functions,

%@(x)vi(x)mx»

4 Z q'r 57050;7(];)( )

{A(z))

Knowledge of the wave function at z is therefore sufficient for the computation of (A(x)).

Video: Lecture04Videol2.mp4
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In particular, for Z = 1 the rule (3.2) is very close to quantum mechanics, except that ¢ and g are
real wave functions and ¢ is not related to ¢. As in quantum mechanics, it associates an operator
to an observable, and employs the concept of probability amplitudes. We can not only express the
expectation values of local observables as n(z), represented by N(z), in this way. The relation (3.2)
also holds for the observable n(z + ¢), represented by the operator N+ in equation (3.1). The rule
(3.2) may be called the “quantum rule”. In contrast to quantum mechanics it is not a new postulate.
It follows from the basic probabilistic definition of expectation values in classical statistics by an
appropriate organization of the probabilistic information.

Video: Lecture04Videol3.mp4

Evolution equation for the wave function. In contrast to the local probability distribution,
the z-dependence of the wave functions is a simple linear evolution law. This makes the wave
function the appropriate object for the discussion of boundary value problems and beyond. From
the definition of the wave function f(z) one infers immediately

flate)= ) H(@)f(2).
s(z)==%1
As it should be, f(x + ¢) depends on the spin s(x + €). The expansion in the occupation number
basis yields
flx+e) =g (z+e)h(z+¢)

= Z ]’LT(]} + E)TTp(x)hp(x) ‘jo(x)ha(x)
s(xz)==%1
=T, ()G, (2)hr(z + €).

The linear evolution operator for the wave function is the transfer matrix.

(jT(x + 5) = TTp(x)Qp(x)a

or, in a vector matrix notation
g(z +¢) = T(x)q(x).

Video: Lecture04Videol4.mp4

By the same type of argument one obtains for the conjugate wave function (as a row vector)

q(z) = gz + )T (),

or, written as a column vector,

and

d(z +¢) = (T7(2)) " q().
In cases where 7' is orthogonal, T7-1= TT, both g and ¢ obey the same evolution law. The evolution
law is linear. The superposition law familiar from quantum mechanics follows. If ¢;(x) and go(z)
are two solutions of the evolution equation, this also holds for linear combinations agi () + 8¢z (x).

Video: Lecture04Videol5.mp4
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Continuous evolution. For a sufficiently smooth wave function ¢(z) one defines the derivative

N (CR R ()

1
%
o (F(&) — T (@ — )i(a).

This yields the generalised Schrodinger equation

890@ :%q = W(Z
W(z) :2715 (@) 17 (@~ 2]

For the same .Z at every x, both T and W are independent of z,

W= [P,

Video: Lecture04Videol6.mp4

Step evolution operator. An additive renormalization of the action corresponds to a multi-
plicative renormalization of the transfer matrix. The step evolution operator is the transfer matrix
normalized such that the absolute value of the largest eigenvalue equals unity. As the name indi-
cates, the step evolution operator plays the same role as the discrete evolution operator in quantum
mechanics. For the Ising model, the step evolution operator is given by

7 1 el e P
~ 2cosh(B) \e™? €# )"
Equilibrium state. If only one eigenvalue of the step evolution operator equals unity in absolute

magnitude, the eigenstate to this eigenvalue is the unique equilibrium state ¢,. For the Ising model
the equilibrium wave function is

~ 1

i~ (1)

The equilibrium state is invariant under the evolution.

Video: Lecture04Videol7.mp4

Boundary value problem. For given boundary conditions G(xi,) and g(z¢) are fixed. One can
use the evolution equation to compute both ¢(z) and g(x). The value of a local observable A(x),
with associated operator A(z), follows from

(A@)) = S {a(@)|A@)|q()-

Choose for §(zi,) a decomposition into eigenfunctions of the transfer matrix T, e. g. with eigenvalues
Ay and A_

Q(min) = C+(37in)47+ +co (win)(jﬂ
such that
G(x) = (i + Ne) = ex(zin) A)™ @1 + e (zin) (A-) G-
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For Ay =1, the corresponding eigenfunction is the equilibrium wave function,
My =dy

For A_ < 1 the contribution ~ (A_)¥§_ vanishes for large N. This describes the approach to
equilibrium. The correlation length is directly related to A_. Similar rules are valid for the conjugate
wave function. For a finite distance from the boundary we can employ the two wave functions in
order to compute the expectation value of s(z) in dependence on given boundary conditions.

Video: Lecture04Videol8.mp4

Generalisations and summary. The discussion for the Ising chain with a single spin at each
site is easily generalised to M spins at each site, to multi-dimensional Ising models and to arbitrary
overall probability distributions. The main purpose of this lecture was to give you a basic under-
standing how the functional integral and the operator formalism of quantum mechanics are related.
When we discuss later the functional integral for relativistic quantum field theories no basic new
concepts need to be introduced for the translation to the still more familiar operator formalism that
is the starting point of most textbooks.

All these properties point to a close connection between quantum mechanics and classical
statistics. Indeed, quantum mechanics can be understood as a sub-field of classical statistics.
Quantum systems are realized as appropriate subsystems of “classical” probabilistic systems. This
is not the topic of this lecture. If you are interested, you may read “The probabilistic world” [arXiv
2011.02867).
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4 Quantum Fields and Functional Integral

Video: Lecture05Video0Ol.mp4

In this lecture we will start from many body quantum mechanics and construct the functional
integral for a quantum field theory. In the last lecture we have shown how the operator formalism
emerges from a functional integral, in short: functional integral — operators. In this lecture we will
proceed in the opposite direction. Starting from a formulation of many body quantum mechanics in
terms of operators we will derive the equivalent functional integral, in short: operators — functional
integral. The aim of the lecture is once more to show the equivalence of the functional integral
and the operator formalism. Historically, this is the way how Feynman introduced the functional
integral for quantum mechanics. This construction of the functional integral can be found in many
textbooks on quantum field theory at a somewhat later stage. The present lecture should also help
to establish this contact.

In the present lecture we introduce quantum fields, establishing in this way the basic concepts of
quantum field theory in the operator formalism. We construct the functional integral for quantum
fields. We take the non-relativistic example of phonons. This demonstrates that quantum field
theory is not only needed for relativistic particle physics. Phonons are perhaps also easier to
understand intuitively than photons. There is not much conceptual difference between phonons
and photons. Phonons are excitations in a solid, photons are excitations of the vacuum. Photons
are relativistic.

4.1 Phonons as quantum fields in one dimension

Video: Lecture05Video02.mp4

One-dimensional crystal. Consider a one-dimensional crystal of atoms with lattice sites x; = je
and lattice distance €. Denote the displacement from the equilibrium position at z; by @; and the
momentum of the atoms by P;. The Hamiltonian for small displacements can be taken quadratic
in Q;, and we decompose H = Hy + Hy, with

P D B
Hy = Z (2](4 + 2Qj2> , Hyp = 5 ZQj+1Qj~
J

J

Here @; and P; are quantum operators with the usual commutation relations
(Qj, P] = 0k, (Qj,Qx] =0, [P, P;] = 0.

We use units where i = 1.

The term Hj alone describes decoupled harmonic oscillators at every lattice site j. The term
H,,,, couples the oscillators by a next neighbour interaction. Phonons are thus described by a
coupled system of harmonic oscillators.

Quantum fields. The displacements are an example for a quantum field,

Here z is a discrete variable labelling the lattice sites. In the continuum limit x will become a
continuous position variable. The field Q(x) is an operator field. For each x one has an operator
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Q(z). Often such operator fields are called "quantum fields”. 'We use this expression here as well,
but not exclusively for the operator fields in the operator formalism. We will also employ the notion
of quantum fields in the equivalent functional integral formalism that does not employ operators
for its formulation. Also the momentum field P(x) = P; is an operator field or quantum field. One
may consider the pairs {Q;, P;} as a common (two-component) quantum field.

Video: Lecture05Video03.mp4

Occupation number basis. At each site j we define annihilation and creation operators a; and
a;f. The annihilation operators are

1
V2

and the creation operators are given by

((DM)%QJ- + z‘(DM)—%Pj) ,

a; =

1
@) = 5 ((DM)1Q; (DM~
The creation operators are the hermitian conjugates of the annihilation operators, a;r- = (aj)T. The
commutation relations are
[ajv a’]U = 6jk7 [a’jvak] = Oa [a;v aT] = 0.
This can be verified by employing the commutation relations for @ and P. Both a(z) = a; and
al(z) = a;» are operator fields.
Inserting
1
=0 = —
A==

and similar for P;, we can express the Hamiltonian in terms of a and af,
oo + 1\ . 1
O—CL)Ozj: ajaj—|—§ —WO; TL]—Fi 5

with the frequency wy = v/ D/M. You recognise the standard treatment of harmonic oscillators in
quantum mechanics. Occupation numbers at positions x; are expressed in terms of the operator
nj = a;aj. They have the eigenvalues n; = (0,1,2,...). At each site j there are a number n; of

(DM)H (a; +af).

“localised phonons”. For B = 0 the system describes uncoupled harmonic oscillators, one at each
lattice site.

We next discuss the effects of the next-neighbour interaction. It involves products of a;, a;1
etc., according to

B
H,, = Y ZQj+1Qj
J

~ 3 ) ()

Video: Lecture05Video04.mp4
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Momentum Space. It is possible to diagonalize H by a discrete Fourier transform. To this end,

we write
i

1 o
a; = ﬁgela‘uaq, a; = \/726

—ieqj T

Due to the finite lattice distance the sum is periodic in g,

2= 2

lq|<Z

and A =Y ; is a normalization factor corresponding to the number of lattice sites. If we place
the sites of the lattice on a torus with circumference L, the momentum sum is a discrete sum, with
level distance given by 27 /L. If you are not familiar with these formulae you may look up in some
text book a chapter on discrete Fourier transforms. It is the most simple and basic case for a lattice
in solids.

Video: Lecture05Video05.mp4

Hamiltonian. We next express the Hamiltonian in terms of the Fourier modes. Insertion of

Qj = ——(DM)~ 7Y (e a, + e *Vaf)

q

= \/277(DM)7i >V (ag+ay'),

HgH

yields

Hyy=——— DM -3 Z Z Z ezeq Jgieq (j+1) (CL + (Z_qT) (a; 4 a_q,T) .
We use the following identity for discrete Fourier transforms,

3 = g,
J

which corresponds to the familiar continuum expression

/dw eilatd)e — 210(q+¢').
One obtains

Hun ==bY e (ag+a_,") (a_q +af)
q

= 7bz cos(eq) (aq + a;) (a—q + aJr—q)v

with b = %(DM)*%. Similarly, one has

1
H() ZWOZ (a:;aq + 2) .
q

Video: Lecture05Video06.mp4
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Momentum modes. At this stage, the Hamiltonian H involves separate g-blocks,
=Y,
q
with
1
H, = wp (agaq + 2) — beos(gq) (aq + a,qT) (a,q + ag).

Each block involves ¢ and —g. What remains is the diagonalization of the g-blocks, done by the
Bogoliubov transformation,

ag = a(q)Aq + B(g) A, al = a(g) Al + B(g) Ay,
where the commutation relations
[aqvag] =1, [AQ’AT] =1,

require

a(q)® = Bg)* = 1.

Video: Lecture05Video07.mp4

The coefficients a(q) are determined such that the Hamiltonian is diagonal,
1
_ T
H=> w, (Aqu + 2) :
q
The algebra is straightforward and one finds for the squared frequencies of the independent oscilla-

D B
2 _ _ s
we' = 7 (1 D COb(Eq)) .

In the momentum basis the phonons are described as uncoupled harmonic oscillators, one for every
momentum q. They are a free quantum field, which means that they do not interact with themselves.

tion modes

Video: Lecture05Video08.mp4

Quantum field theory So far we have just presented the most basic notion for a quantum
description of solids. Conceptually, this is simply a quantum theory for many degrees of freedom.
Phonons are a simple example for a quantum field theory. No additional concepts need to be
introduced. The so called ”second quantisation” is nothing else than quantum mechanics for many
degrees of freedom. The continuum limit, for which x becomes a continuous variable, does not
introduce any qualitative changes.

Many properties of quantum field theories, as the role of the vacuum and particles as excitations
of the vacuum, can already be seen for phonons. The vacuum obeys, as usual A,4|0) = 0. This is
not the same as for B = 0, where one has a4|0) = 0. The vacuum state depends on B. It can
be a complicated object. For phonons it remains possible to construct the vacuum state explicitly.
For more complicated quantum field theories this is, in general, no longer possible. Phonons are
considered as excitations of the vacuum. These excitations are called quasiparticles or simply
particles. Their properties depend on the vacuum, e. g. the dispersion relation depends on B. This
concept plays an important role for elementary particle physics. For example, the mass of the
electron depends on the expectations value of the Higgs field in the vacuum state. An important
insight may be phrased in the simple term: "The vacuum is not nothing.”
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Video: Lecture05Video09.mp4

Dispersion relation. The relation between frequency and momentum,

w(q) = wy = /D—B]\:[os(sq)7

is called the dispersion relation. Consider the limit of small eq, where one can expand, cos(eq) =

1-— %Ezqg, such that

D—B ¢2B
w?(q) = Vi "‘m(f'

In our units frequency and energy are identical, such that the dispersion relation corresponds to

the energy momentum relation of the phonon-quasi-particles.

For D > B the occupation relation has a gap, one needs positive energy even for a phonon
with ¢ = 0. For many cases the interaction between atoms is of the form (Q; — Qj_l)z, involving
only the distance between two neighbouring atoms. Then D = B, phonons are gapless and the
dispersion relation becomes linear for small £q. The sound velocity is given here by

dg |~ 2Mw(q)

_|dw e2Byq
N 2Mw(q)

Video: Lecture05Videol0.mp4

Generalisations. In three dimensions d = 3 one has ¢ — ¢ and the dispersion relation becomes
an equation for w(7). For real solids it depends on the particular structure of the lattice and the
form of the interactions.

Continuum limit. The continuum limit can be taken for situations where the expectation values
of the relevant observables and corresponding wave functions are sufficiently smooth. This means
that their variation with = is small on scales of the order . Typically, this concerns properties
dominated by modes with low momenta q. The continuum limit corresponds to the limit e¢ — 0.

Video: Lecture05Videoll.mp4

Photons. For photons the dispersion relation is (in units where the velocity of light is unity,
c=1),

w(q) = |g]-

There are two photon helicities, related to polarisation. Photons are conceptually very similar to
phonons. We will discuss them in more detail later.

Quantum fields for photons. For photons, associated quantum fields are the electric field
E(q) in momentum space or E(Z) in position space, as well as the magnetic field B(q) or B(Z),
respectively. In other words, the electric field E and the magnetic field B are quantum operators!
The corresponding operator fields consist of operators for each & or for each ¢. There is conceptually
no difference to phonons.
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Bosonic atoms without interaction. For free, non-relativistic atoms, the dispersion relation

is given by
-2

_ 1
For the grand-canonical ensemble, one includes a chemical potential, multiplying the total particle

number. This shifts effectively
P

(@) = @) = 2 — .
We will not distinguish w(q) and (¢) unless stated otherwise.

General free quantum field theories. Formulated in momentum space, free quantum field
theories are described by separate harmonic oscillators for each momentum mode ¢q. The detailed
microscopic origin of the Hamiltonian does not matter. All properties are encoded in the particular
form of H,, as the dispersion relation. Phonons, photons or bosonic atoms have all the same status.
This extends to excitations or quasiparticles in many domains of physics.

4.2 Functional integral for quantum fields

Video: Lecture05Videol2.mp4

In this part we introduce the functional integral for quantum fields. We discuss both thermodynamic
equilibrium and the time evolution for given initial conditions. The mathematical formalism is very
similar for both cases. They are distinguished by an important factor of ¢ multiplying the action.
While this is crucial for the physical behaviour, the mathematical treatment for both cases is
identical. We can construct the functional integral simultaneously for the equilibrium situation and
for quantum dynamics.

Free quantum boson gas in thermal equilibrium. We start with quantum statistics for free
fields. Quantum statistics is distiguished from the classical statistics discussed in the previous
lecture by the operator nature of the quantum fields. We will, nevertheless, derive a functional
integral formulation involving only commuting objects. This formulation involves one additional
dimension of ”euclidean time”.

For the Hamiltonian

- St (1)

the partition function in thermal equilibrium is given by the trace
Z=Tre PH,

with g = lm% = % (We use units for the Boltzmannn constant kg = 1). It decays into independent
factors for every momentum mode,

Z=1]Tre fusq (afort HZ
q

One only has to compute the individual Z,,

Z = Tre P(elat})

b

with 8 = Bwq (we omit the index ¢). As an example, for a free gas of bosonic atoms one has

@

w(q) = saf ~ M

~ 32—


https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture05Video12.mp4

with chemical potential p. The logarithm of the partition function is simply a momentum sum of
the individual logarithms. From the logarithm of Z (3, 1) one can derive all thermodynamics of the
quantum boson gas. This will be done in lecture 6 including interactions.

Video: Lecture05Videol3.mp4

In this lecture we will derive a functional integral representation of the partition function
Z =Tre PH = /ng 675[4)],

with Euclidean action .

z . P
s= [ ar S (52 +et@) otz
The complex fields ¢(7, q) are periodic,

(T +B,q) = ¢(7,9).

In consequence, the euclidean time 7 parameterizes a torus with circumference f.

Video: Lecture05Videol4.mp4

Partition function with boundary conditions. We will derive the functional integral below.
In order to do this in parallel for the dynamical evolution in quantum field theory we introduce a
formal boundary term in the expression

Z="Tr {b e_ﬁ(ata-’_%) } .

For b = 1 one has Z = Z for thermodynamic equilibrium if B = Bwis real. A more general boundary
term b has no direct physical meaning for the thermal equilibrium state of phonons, photons or
atoms. It is used here as a technical device which permits us to discuss the functional integral for a
larger class of operator problems. The boundary term b is a matrix in Hilbert space. For example,
in the occupation number basis one has

Z_ by (eﬁ(a7a+;)>

We may take the “boundary term” b as a product of wave functions,

mn

bnm = (win)n (d)f)mv

such that

Z= (00 (D),

<¢f q/)in> .

H(etor)
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Extension to complex formulation. The trace is well defined also for complex values of 3. In
particular, we may consider purely imaginary [,

B = iwAt.
We can also choose a complex boundary term b and admit complex wave functions ¢f and yy,.
We employ the notation of quantum mechanics with (¢¢| involving complex conjugation, e. g.
(@] m = (¢f)m- In general, Z will now be a complex number.

Video: Lecture05Videol5.mp4

Transition amplitude. With this setting Z is the transition amplitude for the quantum me-
chanics of an harmonic oscillator,

Z _ <¢f‘67iAtw<aTa+%) |’lz)in>
= (ele™" 2 i)
—iAtH

is the evolution operator in quantum mechanics between an initial time t;,,
and a final time t; = t;, + At. We associate the boundary wave functions with

win = ¢(tin)a ¢f = d)(tf)a

In quantum mechanics the evolution operator relates the wave function at ¢y to the initial wave
function at t;,

The operator e

b(tr) = e Ty (1),

We can therefore also interpret the quantity Z as the transition amplitude between ¢ and ¢ at the
common time t¢,

Z = ((tr)[(tr)), At =ty — tin.

The square |Z|?> measures the probability that a given v (ty,) coincides at t¢ with ¢(tg).

We can generalise the single harmonic oscillator to a free quantum field theory. The Hamiltonian
is a sum over Hamiltonians for every momentum mode ¢q. Then H = w (aTa + %) stands for H,.
With total Hamiltonian being the sum of all H,, the expression Z is the transition amplitude for
a free quantum field theory. Adding interactions the transition amplitude is a key element for the
S-matrix for scattering to be discussed in coming lectures.

Video: Lecture05Videol6.mp4

Split into factors. The trace can be evaluated by splitting /3 into small pieces, and therefore
e PH into many factors. For the transition amplitude this factorizes the evolution operator into
many evolution operators for small time steps. For thermal equilibrium there is no such intuitive
interpretation for small steps in euclidean time. Nevertheless, the method of splitting At or B into
small steps is the same.

We demonstrate this method for a single harmonic oscillator. The split of B into small steps
is done by writing 8 = (2N + 1)§, where |§| < 1. For convenience we assume N to be even. The

factorization yields
1 al 1
B lat il — _ T -
exp{ B{anrQ}} || exp{ 5[aa+2}}. (4.1)

j=-N
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The splitting is a formal method and the index j has nothing to do with lattice sites or other
physical objects. For large N or small §, the exponential simplifies. This would not be necessary
for the present very simple case, but is very useful for more complicated Hamiltonians which involve
pieces that do not commute with each other.

Video: Lecture05Videol7.mp4

The split will be used to define a functional integral. Indeed, the expression (4.1) looks already like
a product of transfer matrices. We can take N — oo such that approximations for small § become
exact. Let us define the operators

with commutation relation

The operators  and p have similar properties as position and momentum operators. In our context
they are abstract operators, since for photons or phonons already a'a stands for agaq or A};Aq in
momentum space. Thus & and p have nothing to do with position and momentum of phonons or
photons.

In terms of the operators &, p one has
22,2

+V(@), V() =5

A 1
H=af =
aa—|—2

0|,

This yields the expression
1 N P2
_Blat 2V = P 7
exp{ B{aa—!—J}—jHNexp{ 5|:2+V(l‘):|},

A2

H= % + V().

For a general function V(%) this is the Hamiltonian for one-dimensional quantum mechanics in a
potential V', with a factor 1/M incorporated in 6. Many steps below are valid for general V. Our
treatment covers the path integral for a quantum particle in a potential.

where

Video: Lecture05Videol8.mp4

Eigenfunctions of z and p. We define eigenfunctions of the operators & and p,
|) such that Z|z) = z|x),

and
Ip) such that plp) = plp)-

Here x and p are continuous variables. We can choose a normalization such that

(2']x) = 0(z" — =), (0'|p) = 2mo(p" — p),
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and

/da:|x>(x|:]l, /dp p){p| = 1.

We insert complete systems of eigenfunctions between each of the factors,

N ~ N+1 ~ B
II e = | TI dos| lensa)@nsale ™ lzn)(an] - Jzr-n)(@-nyle ™ Jz_n) @ n].
j=—N j=—N

Video: Lecture05Videol9.mp4

Evaluation of factors. The factors <xj+1|e*‘m |z;) are complex numbers, no longer operators.
For their computation it is convenient to insert a complete set of p -eigenstates,

50 dp, Yy
(@l ag) = [ P2 @yl yle ).
We next use for § — 0 the expansion
exp {—6 {% + V(:ﬁ)} } = exp {—5’;—2} exp {—6V(2)} + 0(8?),

where the term ~ O(6?) arises from the commutator of 2 and p. Corrections ~ §% can be neglected
for 6 — 0 such that

” dp; _s%3 .
—5 -0 —¢6
(@jrale™M|zy) 2/7;6 eV (@540 |p;) (psls)-

No operators appear anymore in this expression and we only need
(pjlzj) = e™Pi%, (@j411ps) (pyla;) = ePalraer=ei),
This yields the expression
7 dp; 2
—6H . P
(apnale™ ey} = [ P exp {ipy(oyn —ay) =[5 + V()] ]
Functional integral. Insertion of these factors yields
= /dI—N /d$N+1\IN+1> F (x_n]|,

with

N
= /D¢’ exp Z [Zp] Tjy1 — j) — 5% + 5‘/(1‘])] s

and functional measure

foo=| 2L [ | 1L/

With boundary terms one obtains

(dele™ T i) = /dx—N/d$N+1<¢f|$N+1> F (z_n|tin)-

Video: Lecture05Video20.mp4
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Summary. In conclusion, we have transformed the operator trace into a functional integral
- _G(atarl 35
Z="Tr {be Ao ”“‘)} = (ple " [ihn) = /D¢e—5.

The action is given by

N

== {ipj(fﬂﬁl — ;) =9 g + V(%‘)} } ;

J=N

and the integration measure reads

Jro I [ 52

The boundary factor b has the form

BZ/dw—N/d$N+1<¢f|$N+1><$—NWin>-

From this expression Feynman’s path integral obtains by performing the Gaussian integration
over the variables p;. What remains is an integral over all possible paths

/Dw[t] = H/dmj.

This is not the direction we follow in this lecture. We rather develop a formulation with complex
variables. This can then easily be extended to a field theory.

Video: Lecture06Video0l.mp4

4.3 Thermodynamic equilibrium

In this section we discuss the thermal equilibrium state for a single quantum harmonic oscillator.
This is a first example for the approach to quantum statistical equilibrium that can later be gener-
alised to quantum field theories with interactions. For thermodynamic equilibrium, Z = Tr e—PH ,
one identifies z 1 with z_ and includes no integration over xyy1. The variable j is periodic,
reflecting in

IN+1 = T-N, PN+1 =P-N-

Formally, this can be achieved by choosing for b a § - function. For periodic boundary conditions

one has
Z =TrefH = /D(be_s7
with
N 2
Z {’py Tjy1 — ;) =0 {%J + V(fj)} } )
j=N
and

foo- 1o 2]

There are a total of 2N + 1 factors, and 4 is related to 8 by & = 2N+1
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Video: Lecture06Video02.mp4

Matsubara sum. Quantum statistics is described by the so called Matsubara formalism. We
derive this formalism here for a single harmonic oscillator, with straightforward generalisations.

We can diagonalize the action S by a type of Fourier transform

N L.
2ming \ . - ~
Tj = Z eXP<2N+1>$n, LTop = Ty,
n=—N
N N
2min(j + 5)\ . - »
D = Z exp (M Pn; P—n = Pn,
n=—N
such that
N N o
N P (; R 2N + 1)si ~*~n*~n~* .
> e —al = 3 [N+ Usin (g7 ) (i~ )

j=—N

Here we use the identity (j = —N and j = N + 1 identified)

al 2mi(m —n)j

Similarly, with V' (z;) = x? /2, one has

N N ~ N
g 2 2 (2N+1)5 ~% s~k ~ ﬂ S~k Sk
7 N(% i) = o ZN(%% +Dnbn) = 5 ZN(wnxn + Ppbn)-
j=— n=— n=—

The action becomes a sum over independent pieces, labelled by n. The sum over n is the Matsubara

sum.

Video: Lecture06Video03.mp4

Complex fields. We next introduce complex numbers ¢,, by

1

~ i * ~ v g
T = \/§(¢n + (bfn), Pn = \/i((bn ¢—n)a
With
ﬁ:l-%n - -%:Lﬁn = Z(qj):ﬁbn - (bin(b*n)a
and

T3 %n + Ppbn = Gpdn + L, Pn,

we finally obtain for the action

S = EN: [2(2N +1)isin (%) + B] O bn.

n=—N

The modes ¢,, are called Matsubara modes, and the sum over n is the Matsubara sum.
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One can also translate the integration measure for the variables z; and p; to ¢,,. With

¢n = (bnR + 7;¢n17

Joe=TL([ v [ om)

All variable transformations have been linear transformations and there is no non-trivial Jacobian.

one has

Recall that an overall constant factor of Z or additive constant in S is irrevelant.

Video: Lecture06Video04.mp4

Matsubara frequencies. At the end we take the limit N — oo. In this limit the neglected terms
(from commutators of & and p) vanish. This yields the central functional integral equation for
thermodynamic equilibrium,

Tr{e PH} = /D(b e .

For H = w(a'a + 1) one has

oo

S = Z (2min + Bw)Pr, dn.

(Recall that H=ala+ % and 8 = Bw.) The quantities

2mn
Wp = —— =2mnT
B

are called Matsubara frequencies.

Video: Lecture06Video05.mp4

Action for free quantum fields. This result extends directly to a free quantum field theory. The
partition function Z factorises for the different momentum modes, Z = [] o Zq» and correspondingly
the action for all momentum modes is simply the sum of actions for individual momentum modes,
S = Zq Sq. For a given momentum mode one has B = Bwg. Thus for

1
H = ZUJ(Q) {agaq + 2:| 5
q
one obtains

S = Z Z [2min + Bw(q)] ¢;,(¢)Pn(q)

=38 Blidsn + w(@)] ¢4 (@)én(a).

One often denotes the dispersion relation by w(q) or by e(q). For non-relativistic particles the

Matsubara frequencies

2
&, =2 onnT
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multiply a term quadratic in the Matsubara modes. At this point we have formulated the ther-
modynamics of phonons or atoms as a functional integral. It is gaussian and can easily be solved
explicitely.

The solution of this functional integral is well known. It is the expression of the partition
function in terms of mean occupation numbers, as derived in the course on theoretical statistical
physics. It is a worthwhile exercise to reproduce this result by solving the functional integral. This
involves suitable Matsubara sums. It is actually easier to compute derivatives as the mean energy.

Video: Lecture06Video06.mp4

Euclidean time. We can consider the Matsubara modes ¢,, as the modes of a discrete Fourier
transformation. Indeed, making a Fourier transformations of functions on a circle yields discrete
modes. Consider a function ¢(7), with 7 parameterizing a circle with circumference 5. Equivalently,
we can take 7 to be a periodic variable with period

T+ B=T.

The Fourier expansion reads

$(1) = exp (%;m) Pn,

with integer n. With

oro(r) =3 (27;"> exp (%;”T) b

n

=i exp (2”;”7) On,

one has
B
2

| artor@onotn)) = Y i g1

2

Here we employ the identity for discrete Fourier transforms

2mi(n — m)T) _
(5 B Om,n-

2
dT exp
8

In this basis the action reads
8
s= [ ar Y00 0.6(r0) + 0@ & (00l ).
- ,

One calls 7 the Fuclidean time. The Fourier modes depend on an additional periodic variable -
namely euclidean time.

We can also write formally the functional measure as f D¢(7). This is the same as the integral
over all Matsubara modes ¢,. Every periodic function can be specified by the coefficients of
the discrete Fourier representation ¢,. Integration over all ¢, covers the space of all periodic
functions. We can use this for a well defined functional integral | D¢(7). For a finite range of n,
—Nyr < n < Ny, we have a finite dimensional integral. At the end we take the limit Ny, — oo.

Video: Lecture06Video07.mp4
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Local action and transfer matrix. This action is a local action in the sense of lectures 2 and
3. Discretizing 7 on a lattice with distance €, and with 7 = je, j = —N --- N periodic, € = %,
the partial derivative is replaced by a lattice derivative

0:6(r) = < 9(7 + ) — 9(7)],

One can write (with 30 =3".)
S=) L),

with

(1) = % Y Ad(r+e)¢7(1) = ¢" (7 +)g(r) + ew(q) [6" (7 + €)d(7) + d(7 + €)¢" (7)]}-

Here we omit the label ¢ for the momentum modes. Note that .Z(7) is a complex function of complex
variables ¢(7) and ¢(7+¢). With respect to 7 the action involves next neighbour interactions, similar
to the Ising model. We could go the inverse way and compute the transfer matrix. We know already
the answer in the bosonic occupation number basis

. 3 P
T = exp l2N+1 ;w(q) agaq +
with 2V + 1 the number of time points. This is compatible with

z=mfimv).

)

This closes the circle to our first approach. We could start with the functional integral, derive
the transfer matrix, and define the partition function as a product of transfer matrices.

Video: Lecture06Video08.mp4

Quantum gas of bosonic atoms. For free bosonic atoms (without internal degrees of freedom)

the dispersion relation is
-2

q
e(q) = oM - M

with p the chemical potential. We can make a Fourier-transform to three-dimensional position
space,

5= /_ ; dr / Ba{o* (7, 8)0.0(r,2) + ﬁ%*(ﬂ BV(r,7) — uo* (2)6(2)}

This is the action of a field theory in Euclidean time.

For a quantum field theory the action defines the weight factor in a functional integral. The
extremum of the action yields the "classical field equation”. This classical field equation is, however,
a "microscopic” object. The field equations that are valid for a quantum field theory have to include
the effects of fluctuations!

Video: Lecture06Video09.mp4
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Interactions. So far we have discussed models that represent quantum fields without interactions.
This is a very good approximation for phonons if the energy is not too high. Free quantum field
theories can be represented in momentum space as uncoupled harmonic oscillators. For them the
description is simple both in the functional integral formalism (gaussian integration) and in the
operator formalism. The situation changes in the presence of interactions.

Consider a pointlike interaction between bosonic atoms.

H = Ho+ Hint
1
HO = ZW((]) <a2aq + 2>
q

Hine = % Z a;ﬂgﬂqzaql(s((h +q2 —q3 — q4).
41,92,43,94
Two atoms with momentum ¢; and ¢o are annihilated, two atoms with momenta g3 and g4 are
created. Momentum conservation is guaranteed by the J§-function.
For the functional integral this adds to the action a piece

Sint = % / dr / B[ (1, 2) (T, T))? — 20u¢™ (1, ) p(T, T)]

with dpu ~ X\ a counterterm that corrects p. The additional interaction term is is the only modifi-
cation needed for the functional integral! Euclidean time remains periodic with period 3, and this
is the only point where the value of the temperature enters. We will not perform here a derivation
of the Matsubara formalism in the presence of interactions. Starting from the operator formalism
one can divide f into small pieces and work with a basis of ”coherent states”. This cuts short
the various transformations that we have performed for the free theory. We will simply take the
functional integral in euclidean time as a starting point.

For an interacting gas of bosonic atoms the functional integral permits us to investigate phe-
nomena as the Bose-Einstein condensation and the associated superfluidity in dependence on tem-
perature and particle number density or chemical potential. For atoms at ultracold temperature
this is a very interesting topic both for experiment and theory.

A systematic treatment of interactions beyond a perturbative expansion in small A is rather
hard in the operator formalism. For the functional integral formulation powerful methods are
available. This is one of the main reasons why we concentrate on the functional integral.

Video: Lecture06Videol0.mp4

Zero temperature limit. For T' — 0 one has § — oco. The circumference of the circle goes
to infinity. Instead of discrete Matsubara modes one has continuous modes with frequency w = qg
and therefore a continuous four-dimensional momentum integral. The momenta ¢y and ¢ appear,
however differently in the action. The same holds for the dependence of S on 7 and Z. There is
a first derivative with respect to 7, but a squared first derivative or second derivative with respect
to #. This difference will go away for relativistic particles. For bosonic atoms with a pointlike
interaction one finds for the action in Fourier space for the T'— 0 limit of the thermal equilibrium
state

S = /q¢*(q) <zw + % —pt Mu) ¢(q)

+;/n /q2 /q3 : 0" (1) 9" (43)B(q2)P(q1)5(qs + g3 — @2 — q1),
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where we have chosen an appropriate continuum normalization of ¢(q), with

¢(q) = ¢(@,q)

1
= —— [ dod’q
/q (o)’ / o
3(q) = (2m)*6(w)d(q1)d(42)(g3)-
The § function expresses conservation of the euclidean four momentum ¢q. It reflects translation

symmetry in space and euclidean time 7. The limit 7" — 0 can be associated in some sense with
the vacuum, if one chooses p such that the mean particle number vanishes.

Video: Lecture06Videoll.mp4

Summary. At this stage we have established an important starting point for our lecture based on
the functional integral. The functional integral can describe both classical statistical thermodynamic
equilibrium and quantum statistical thermodynamic equilibrium. Different models or different
microphysical laws are encoded in the particular form of the action. This form is often largely
dictated by symmetry. The "fundamental laws” are formulated in terms of the action. It is often
not necessary to know the precise form of the Hamiltonian in the operator formalism for quantum
systems, or the precise form of the transfer matrix for classical probabilistic systems. This is an
important advantage, since the operator formalism can become quite complicated for interacting
many body systems.

The lecture is called ”quantum field theory”, but you may realise that the quantum aspects are
actually not crucial. What counts are the presence of fluctuations. The origin of the fluctuations,
be it quantum fluctuations or thermal fluctuations or both, is not important. A more adapted name
for our lecture could be "probabilistic field theory”. We stick to the traditional name of quantum
field theory for historical reasons. It should also be clear that our treatment applies to arbitrary
settings with fluctuations. Fluctuations may be market fluctuations in economy or fluctuations in
the reproduction of species in biology. Whenever a system is described by a probability distribution
there exists an associated action.

Video: Lecture07VideoOl.mp4

4.4 Real time evolution

The functional integral can also be employed for the time evolution of quantum systems. This is
typically a problem with boundary conditions. An initial condition for the quantum state is given
at some initial time ¢, by the wave function ¥(¢i,). This wave function develops in time according
to the unitary evolution in quantum mechanics and arrives at some final time ¢; at

77[}(tf) = U(tfv tin)ﬂ’@in)-
For a time-independent Hamiltonian H the evolution operator obeys
U(tf’tin) = U(tf - tin) = eii(tfitin)H-

We are interested in the transition amplitude to some different final wave function ¢(ty).
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Video: Lecture07Video02.mp4

We want to derive the functional integral for the transition amplitude

(@(t)e(ts)) = (SENIU(tr — b)) = (St e T T | ().

Recalling our formulation of thermal equilibrium with boundary conditions and its extension to
a complex formulation, the transition element can be obtained from thermal equilibrium by the
replacement

B — i(tf — tin)~

The split into infinitesimal pieces, Fourier-transforms etc can be done for complex § in the same
way as before. For § — oo (' — 0), ty — tin — 00 one finds

(@(tp)|e(ty)) = Blts, tin)Ze

Zy = /ng exp(—5St).

For the sake of clarity we denote by S the action for the dynamical time evolution, in contrast to
Seq for the thermal equilibrium. For obtaining S; from S, we have to multiply the terms ~ 3 by
i before taking the limit 5 — oo. The term iw remains unchanged, while all other parts in the
action get multiplied by ¢. This results in

St:/
q

+ zg /q1 /qz /qg : ¢*(q4) 9" (q3)P(q2)H(q1)(q3 + q4 — @1 — qQ)] .

¢*(q) {Zw +i (54 —pt Muﬂ o(q)

Video: Lecture07Video03.mp4

After a Fourier-transform in @ and ¢ one finds, with time labelled now by ¢

Sy = /x [qb*(x)@tq/)(x) + ﬁ (6¢*($)> (6¢(m)) + %(qﬁ*(a?)gb(x))Q (- Aéu)¢*(m)¢(m)} (4.2)

r = (t,7), /:/ dt/d3f.

The transfer matrix for this functional integral is now

iz |~ ]

where

instead of 5
Teq = exp |:(2]V-i—1)H:| .

The matrix 7} is a unitary matrix if the Hamiltonian is hermitean, H' = H.

Video: Lecture07Video04.mp4

— 44 —


https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture07Video02.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture07Video03.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture07Video04.mp4

Local Physics. For observations and experiments done in some time involved around ¢ the details
of boundary conditions at ¢ and ¢, play no role for large |¢; — t| and |t — ¢i,|. Doing physics now is
not much influenced by what happened precisely to the dinosaurs or what will happen in the year
10000. For many purposes the boundary term B(ty, tiy) is just an irrelevant multiplicative factor in
Z which drops out from the expectation values of interest. One can then simply omit it and work
directly with Z;.

Video: Lecture07Video05.mp4

Minkowski action. We define the Minkowski action Sj; by multiplying the euclidean action S
with a factor ¢
Sy =18, e = ¢iM,

This can be done both for Sy and Se,. For S; the Minkowski action reads

Sua = [0 (=0 537 ) 0 5@ @0 4 ..

Variation of Sy or Sy with respect to ¢* yields for A = 0 the Schrédinger equation for the wave
function of a single free particle
) A
<—Zat - W) ¢ =0.

Video: Lecture07Video06.mp4

There is a reason for that, but the connection needs a few steps, concentrating on single particle
states. Recall that the functional integral describes arbitrary particle numbers, such that one-
particle states are only special cases. For A # 0 the classical field equation % = 0 is a non-linear
equation, called Gross-Pitaevskii equation

A
10y = —m¢ + M@ D) — (1 — Aop)¢.

This is not a linear Schrodinger equation for a quantum wave function, but has a different inter-
pretation. An equation of this type can describe the dynamics of a Bose-Einstein condensate.

Video: Lecture08Video02.mp4

Analytic continuation. Let us replace in the action Sy (4.2) the time coordinate

t=—iT
such that the integration becomes
/ = —i / drd*z.
z
For the time derivative term we have
Dy = i0: 6.
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This replacement is called ”analytic continuation”. The analytic continuation of S; is the action
Seq for thermal equilibrium at zero temperature,

A A
Sy —+ Seq = /drd% o (0, — = ) 6+ 2(670)? + Aopdt e b
2M 2
Analytic continuation can be done in both ways. The actions S; and S, for two models, one for
the time evolution, the other for the 7' = 0 limit of thermal equilibrium, are related by analytic
continuation.

Note that Sy is not the analytic continuation of S, but rather related to S by a fixed defini-
tion. The sign of Sy, is of historical origin. The Minkowski action Sy, is a real expression. In
consequence, e**M: is a phase. This is a profound change as compared to the situation for thermal

equilibrium, for which e*Ses = =%

ea is a positive real quantity that can be associated to a probabil-
ity distribution. The functional integral for the time evolution of quantum systems is described by
an integration over phases. This is directly related to the unitary evolution in quantum mechanics.
The transfer matrix 7} is a unitary matrix. No boundary information is lost, in contrast to the
thermal equilibrium state, for which we have seen for the Ising chain how the memory of boundary

information is lost in the bulk.

Video: Lecture08Video03.mp4

Fourier transform. For the Fourier transformation into frequency space we employ

WT = wpt = —ilwpyT.
This defines the Minkowski frequency
Wy =W = q0,

where gq is the zero-component of the four-momentum ¢,. Analytic continuation in time translates
to analytic continuation in frequency or four-momentum between w and wy;.

The analytic continuation in momentum space is a very useful tool for the evaluation of cor-
relation functions. One can first compute the correlation functions in "euclidean space”, which
corresponds to the T — 0 limit of thermal equilibrium. This has the advantage that powerful
methods can be used as, for example, numerical simulations. The correlation functions in momen-
tum space depend on &. Subsequently, they can be continued analytically to Minkowski space, with
replacement rules for the frequencyies

w — —1qo-
For the squared frequency one finds, using the Minkowski metric for raising and lowering indices,
Moo = —1,
@* = —(a0)* = —(¢°)* = ¢°¢°no0 = ¢°qo-
For a relativistic theory one has

0y2

0=+ = Co0+da=qq=—(")?+

2
+ q = qM ’
and analytic continuation corresponds to

a5 — G-
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For a vacuum state with translation and rotation symmetry the two-point correlation function
can only depend on the invariant ¢ = ¢*g,. Only the meaning of ¢*> = ¢*q, differs between
euclidean and Minkowski signature. For euclidean signature the zero-index is lowered by dgg, while
for Minkowski signature one employs 799. Thus analytic continuation can also be formulated as an
analytic continuation in the metric. For euclidean signature ¢? is invariant under SO(4)-rotations
in four-dimensional euclidean space, while for Minkowski signature the Lorentz symmetry SO(1, 3)
leaves ¢2 invariant. Many properties can be understood by viewing momenta in the complex plane,
for which analytic continuation can be formulated as a continuous rotation of ¢q.

4.5 Expectation values of time ordered operators

Video: Lecture08Video04.mp4

So far we have established for the partition function a map between the operator formalism
and the functional integral. This extends to the expectation values of observables. For the func-
tional integral formulation expectation values are directly found by inserting the observable in the
functional integral. An observable is a functional of the fields for which the functional integral
is formulated. It is a c-number and no non-commuting structures are present at this level. The
definition of the expectation value of an observable A[¢] holds independently of the particular form
of the action,

) = [ Doe oAl

In particular, it is valid both for euclidean and Minkowski signature of the metric.

We have seen in sect.3.2 how operators can be associated to observables. They allow us to
express expectation values in the functional integral by time-ordered products of Heisenberg oper-
ators. We will next establish the inverse direction and show how the expectation values of time
ordered operators in the operator formalism translate to the functional integral expression. At the
stage where we are this should no longer be a surprise. Nevertheless, we perform this step here,
repeating partly the construction of the functional integral from the operator formalism. This pro-
vides for a link to many textbooks where the functional integral expression in introduced in this
way.

Heisenberg picture in quantum mechanics. We briefly recapitulate the Heisenberg picture in
quantum mechanics. While in the Schrodinger picture the wave function evolves and the operators
are constant, in the Heisenberg picture the operators evolve instead. The central objects are Ay (1),
the Heisenberg operators that depend on time. One can write them as

AH (t) = UT (ta tin)ASU(t7 tin),
where Ag is the operator in the Schrédinger picture. Consider for ¢o > ¢

Ag(t)Br(t) = Ul(ta, tin) Ag Ulta, tin)UT (t1, tin) Bs Ul(t1, tin),

and use
Ul(ty,t2) = Ulta, t1),
as well as
Ults, t2)U (ta, t1) = Ults, t1).
With

Ulto, tin) U (t1, tin) = Ulta, t)U(t1, tin) U (t1, tin) = Ult2, t1),
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one has
Ap(ts)Bu(ty) = Ul(tg, tin) As U(ta, t1) Bs Uty tin).

In the Heisenberg picture, one keeps the wave function fixed |¢) = |¢(tin)) and describes the time
evolution by the time-dependence of the Heisenberg operators.

The transition amplitude for two time-ordered Heisenberg operators, where the larger t-argument
stands on the left, is defined by

(3(tin) | Agr (t2) By (t1)[¢0(tin)) = (A(t2) B(t1)) -

It reads in the Schrédinger picture

(A(t2)B(t1)) gy = ((tin)| U (t2, tin) As Ulta, t1) Bs U(t1, tin)|t(tin))
= (B(t2)| As U(ta, t1) Bs [¢(t1)).

We may insert a complete set of states

/ dx(t)x(t)) (x(t)] = 1,

in order to obtain
(A(t2)B(t1))py = /dX(t1)<<P(t2)|As U(ta, t1)lx(t)) (x(t1)] Bs [¢b(t1))
= /dx(t1)<<ﬂ(t2)|/1s Ix(t2)) (x(t2)| Bs [(t1))

This has an intuitive interpretation: The transition amplitudes are evaluated for B at time t; be-
tween 1 (t1) and arbitrary intermediate states x(¢1). Then x(¢1) propagates in time to x(t2), and
one evaluates the transition amplitude at ¢5 of A between x(t2) and ¢(t2). One finally sums over
intermediate states.

It is our aim to derive a functional integral expression for this transition amplitude. We will
do this first for a particular amplitude, namely the propagator. This will then be generalised to
arbitrary chains of time-ordered operators.

Video: Lecture08Video05.mp4

4.6 Propagator

The propagator is a central quantity in quantum field theory. It contains the information how a
one-particle wave function at ¢; has evolved at some later time ¢5. We will express the propagator
as a suitable transition amplitude for a product of annihilation and creation operators. In the
functional integral formalism it will be given by a connected two-point function.

Since the propagator deals with the dynamics of a single particle we first define basis functions
for localised single particle states. Particles are excitations of the vacuum. We therefore start at ¢;,
with an initial vacuum state |0), evolve it to ¢1, and apply a creation operator a'(Z). The result is
a state for which at ¢; a single particle is located precisely at . We denote this one-particle state
by

aT(i")U(tl, tin)|0> = |(J_?‘7 tl); t1>.
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Propagator as transition amplitude. For ¢ > t; the particle will move. Correspondingly, the
wave function changes in the Schrédinger picture according to the standard evolution in quantum
mechanics,

(T, t1); ) = U, 1) (%, t1); 1)

One has to distinguish the two different time arguments. For |(Z,¢1);t) the time argument ¢; is a
label (together with Z) specifying which state is meant. This state is the one for which at ¢; the
particle is located at #. The time argument in the Schrodinger evolution of this wave function is
given by t. For a given basis state t; is kept fixed, while the time evolution of the wave function in
the Schrodinger picture is the evolution with varying t.

Let us define the transition amplitude of this one-particle state with a different one particle
state |(¥,t2);t) at a given time ¢. Its square is the probability to find a particle that was at time ¢;
at Z to be a particle that is at ¥/ at time t5. This transition amplitude is the propagator,

Q
—~
<y

o~

N.
\.&l

~
=
S~—

Il

The propagator can be expressed by a product of Heisenberg operators. For this purpose we
take t = to,
G(ZZ t27 :Z:u tl) = <0|UT (t27 tin)a(g)U(tQﬂ tl)aT (‘f)U(tlu tin) |0>

In this expression we use that (¢, t2); ¢| is the hermitean conjugate of |(¥, t2); t) and we evolve|(Z, t1); t1)
to |(Z,t1);t2). In the Heisenberg picture the propagator reads

G(?Z t27 f» tl) = <0|G/H(?j7 t2)a11;-1(f) 2("l)lo>
This follows from the identity
Ulta,t1) = Ultas tin)U (tin, t1) = Uta, tin) U (tin, t1)

and the definition of Heisenberg operators with reference point ¢;,. The transition amplitude G is
called the propagator or Green’s function. It is a central quantity in quantum field theory.

Video: Lecture08Video06.mp4

One particle wave function and Schrédinger equation. Before going on to derive the func-
tional integral expression for the propagator we discuss next the Schrodinger equation for a one-
particle state. This makes the connection to the standard formulation of quantum mechanics.
Quantum mechanics obtains from quantum field theory by a restriction to states with a fixed par-
ticle number, typically a single particle or two particles. Since quantum field theory is quantum
mechanics for many particles, it contains as a special case the quantum mechanical systems with a
small fixed particle number. For a single particle we expect in our case the rather trivial quantum
mechanics of a free particle, since we consider a translation invariant situation with a vanishing
potential. In the functional integral formulation we could introduce a potential in the formulation
of the action. For non-relativistic bosons one replaces the chemical potential by p — V(&), thus
breaking translation symmetry.
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We first extract the Schrodinger wave function in the position basis. Using our basis of localised
one-particle states a general one-particle wave function at time ¢ is a superposition

hon (8)) = / ST )|(E, ;).

The position representation of the one-particle state or Schrodinger wave function is given by o(Z, ).
As usual it can be extracted from [¢(t)) by

P(,t) = ((Z,1); t|n (2))

The proof is standard, using the orthogonality of basis functions

(@ thin () = [ (@ 5010070170
[ oo nstlo0

/yw )

o(,1).

|
“F

From the position representation we can switch to the momentum representation ¢(p,t) by a
Fourier transform. For the momentum representation the evolution is trivial,

2
0i0(.0) = | oy = o) (4.9

This follows by applying to |11) an infinitesimal evolution operator
[1(t +dt)) = Ut +dt, ) |n (1)) = —iHdt|r (1)),

and noting that H is diagonal in the momentum basis. The Schrédinger equation in position space
obtains by a Fourier transform.

Video: Lecture08Video07.mp4

Huygens principle. You have learned before how to use a propagator for the evolution of wave
functions, for example in electrodynamics. Our definition of the propagator plays exactly this role.
We employ the time evolution of the position representation of the one particle wave function which
can be found from the time evolution of |(Z,t1);),

(¥, t2) = (¥, t2); t2|1 (t2))
= (¢, t2); t2|U (L2, t1) 01 (t1))

- /w DU 1) 1] (7,11 12)
/G y,tg,x tl ( )

The propagator G allows one to compute the one-particle wave function at to from an initial wave
function at t1. This is Huygens’ principle for the propagation of waves.
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4.7 Functional integral for expectation values of time-ordered operators

We first derive the functional integral expression for the propagator. The corresponding technical
steps are easily generalised to arbitrary chains of time-ordered operators.

Video: Lecture08Video08.mp4

Video: Lecture08Video09.mp4

Propagator from functional integral. For the derivation of a functional integral expression
for the propagator we employ the functional integral expression for the evolution operator in the
expression

G(§,t2; F,11) = (O]U (t2, tin)a(§U (ta, t1)a’ (2)U (t1, tin)|0).
One often calls |0) = |0)in the initial vacuum at ti,, and [0)f = U(ty, tin)|0)in the final vacuum at
t;. For a time-translation invariant vacuum one has |0)¢ = |0);,. This implies
(0l = (O[U (te, tin)-
Using
Ut(ts, tin)U(ts, ta) = Ul(ta, tin),

we find
G(§,ta; %, t1) = (0[¢U (t 4, t2)a(§)U (L2, t1)a’ (F)U (t1, tin)|0).

This intuitive expression for the propagator involves evolution operators that can be expressed in
terms of the functional integral.

Video: Lecture09Video0Ol.mp4

We have derived before the functional integral expression for the evolution operator

Ultaty) = / da(ty) / dp(ty) |2(t2)) (b, 1) (p(t1)].
with

F(ta, 1)) = /Dcp(tl <t <ty)exp { /ttz dtiﬂ(t)} :

Here |z(t)) and |p(t)) are eigenstates of the abstract operators & and p which are not related to
positions in space and momenta,

Ela(t)) = x(t)|2(1), plp(t)) = p(®)[p(1))-

We employ now a mixed basis with = and p, which is reflected by the difference between Fand F
as used previously. The integrals over z(t2) and p(¢1) are not yet included in [ De(ty < t' < t2).

Video: Lecture09Video02.mp4
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Our expression for the propagator contains factors

Ults, 1) AU(ta, 1)) = / da(ts) dp(ts) dn(ts) dp(ty)
X |z (ts)) F(ts, t2) (p(t2)| A |2(t2)) F(t2,t1) (p(t1)],
for which we need the matrix element
(p(t2)] Ala(tz)) = Alx(ta), p(ta)).

For A depending on a' and a we first express it in terms of the operators # and p, recalling the
relations

U
a= (& +ip), a*—\/i( p).

We can then replace in the matrix element for A

1 .
a —r ﬁ [I(tQ) + Zp(tg)] y
1 .
al — NG [2(t2) —ip(t2)],
provided that the ordering of operators is done such that Z-operators are on the right and p-
operators on the left.

With the matrix element replaced by a function A(zs, p2), we can combine the remaining pieces
to

U(tg,tg) AU(tQ,tl) :/dx(t3)dx(t1) \x(t3)> /D(p(tl <t < t3)
coxp { = [t 20} Alelea) o) alen).

In summary we get the rule: The operator A at ty leads to the insertion of a function A(t2) into
the functional integral.

Recall the inverse: an observable A(t) in the functional integral results in the insertion of an
operator A in the chain of transfer matrices.

Video: Lecture09Video03.mp4

Discrete formulation. We have been here a bit vague with the precise choice of integrations.
In a precise discrete formulation one replaces

(@jrle 2 ay) by (wjale A Aly)

at the appropriate place in the chain.

Video: Lecture09Video04.mp4
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Replacement rules We can now follow A(z(t2), p(t2)) through the chain of variable transforma-
tions

25— i — %«on ) o %w) + (1),

and similarly

*

) )
= P = ——=(on — ") = ——=(0(t) — ©* (1)),
pj =P \/i(w © ) \/5(@() ©*(t))
resulting in the simple replacement rules

a — (), al — ©* (¢).

Video: Lecture09Video05.mp4

Propagator. These replacements yield for the propagator or correlation function

G(Zj7 t27fv tl) = Z71 /D@ eisw]@(yj tQ)(p*(fa tl)'

This is a simple and important result that permits us to derive the propagator directly from the
functional integral. Once established, we need no longer the operator formalism for the description
of the propagation of one-particle states. The above result is valid for vacua for which (¢(Z,t)) = 0.
We will generalise it to other vacua below.

Video: Lecture09Video06.mp4

Expectation values for complex functional integrals. For complex functional integrals in
Minkowski space we define expectation values similar to classical statistical physics

() =27 [ Dp ey

Z = /Dg@ e Slel,

With this one can write the propagator as

G(?jﬁ ta, f;tl) = <<,0(?j, t2)<p*(f7t1)>v

which is also known as the two-point correlation function.

Video: Lecture09Video07.mp4

Normalisation factor Z. We have not paid much attention to the normalisation of the wave
function, the additive normalisation of the action, and the formal boundary terms. All this yields
constant factors for Z. These factors drop out in the expectation values of observables due to the
factor Z 1.

Video: Lecture09Video08.mp4
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Fourier space. Since A[y] is a function (functional) of ¢, variable transformations are straight-
forward. There are no longer complications with commutator relations as for @ and af. The Fourier
transform of the correlation function reads

G(q 3P, 1) = //e‘““7 PTG, ta; F, 1),
Yy x
Translation symmetry in space implies

G~ 5(7 - P).

In case of translation invariance in time G depends only on the time difference t5 — ;.

Video: Lecture09Video09.mp4

Non-trivial field expectation values. So far we have assumed implicitly that the vacuum is
trivial. In general (©(Z,t)) may be different from zero. A more general definition of the (connected)
correlation function is given by

G(Y,t2; 7, t1) = (60(Y, t2)00(Z, t1)), dp =9 —(p).

This is the standard definition of the connected two-point function or the propagator in statistical
physics. It reflects that particles are excitations of a given vacuum. We will also use this definition
for the quantum field theory describing the dynamics of many body quantum systems. One can
justify this expression in the operator formalism for simple models as phonons. For general theories
with interactions it is quite cumbersome to give a solid derivation in the operator formalism. The
problem starts with the fact that the vacuum state is often not known. Our functional integral
formula is valid for all situations. The conceptual simplicity of the propagator underlines once
more the important advantages of a functional integral formulation of quantum field theory. We
can write this important formula also in the form

G(g,t2;7,11) = (p(§,12) (T, 11)) = (p(§,2)) (p(Z, 11))

Video: Lecture09Videol0.mp4

At this point we are essentially done with the operator formalism, up to a few additions below.
In the following we will base this lecture purely on the functional integral.

Video: Lecture09Videoll.mp4

Definition of quantum field theory. A quantum field theory is defined by
(1) Choice of fields ¢
(2) Action as functional of fields S[y]
(3) Measure [ Dy

These three ingredients fix a given model or theory completely. For making contact to observa-
tion we also need observables A[p]. Their expectation values are computed according to the general
rule above.

Video: Lecture09Videol2.mp4
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Correlation function. In particular, a general expression for the correlation function is defined
by
Gap = (Papp) — (Pa)(Ph)-

Here «, 8 are collective indices, e.g. o = (Z,t) or (p,t). An evaluation of these expectation values
does not need a full knowledge of the vacuum. This is important, since the precise properties of
the vacuum for interacting theories are not known.

We can consider ¢, as the components of a complex vector. The propagator is then a complex
matrix, called the propagator matrix. Also one-particle wave functions are vectors similar to ¢,
Huygen’s principle for the propagation of a wave function becomes a matrix equation.

Video: Lecture09Videol3.mp4

Chains of operators. We finally generalise the functional integral expression for the propagator
to arbitrary time-ordered chains of Heisenberg operators. Consider for ¢, > t,_1 > ..... to >t a
chain of Heisenberg operators, with expectation value evaluated in the vacuum,

G = (A} (t) Ay ™ (tn1) ... AR (£2) Al (11)]0)
The propagator is a special case
G = (0lan (t2)al (t1)[0).

In complete analogy to the discussion above one finds the functional integral expression
G= Z_l/ Dy e SA=(A)

for the observable

A=Atn)A(tn-1) - A(t2)A(t1)
with
A(tn) = Al (tn), (tn))-

The only difference to our treatment of the propagator is that we have different operators and
typically more than two factors.

Video: Lecture09Videol4.mp4

Time ordering. The product A(t')A(t) = A(t)A(t) is commutative. The product Ag (t')Ag (t)
in general not. What happens to commutation relations?

We define the time ordering operator T' by putting in a product of two Heisenberg operators
the one with larger time argument to the left. e.g. for to > t1,

T (47 ()4 (1)) = AR (1) 4 (1)
T (AR (0)AF (1)) = A (t2) A5 (1).

The time ordered operator product is commutative. There is therefore no contradiction. In the
opposite direction, a given functional integral expression for the expectation values of observables
with different time arguments gives a clear prescription in which order the Heisenberg operators
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appear for the vacuum expectation value in the operator formalism.

These remarks generalise to products with several factors. Defining observables A that may be
products of observables with different time arguments we obtain the central identity

OIT (A ) |0) = ().

On the left one has an operator expression, and on the right functional integral expression.

Video: Lecture09Videol5.mp4

Transition amplitude for multi-particle states. We may consider two particles at ¢; with
momenta p; and pa, and compute the transition amplitude to a two particle state at to > t; with
momenta p3 and py. In analogy to our treatment of the propagator we first create the two particles
from the vacuum at 1, and annihilate two particles at to,

Gao = (Oag (Bu, t2)ar (B3, t2)aby (B2, t1)aly (B, £1)]0)
= (o(P1, t2)p(Ps, t2) @™ (P2, 1) " (D1, 1))
This is a four-point function. It is a basic element of scattering theory. We will see later that
the scattering matrix for two incoming particles with momenta pj, ps, scattered into two outgoing

particles with momenta ps, py, obtains by squaring the transition amplitude, together with a suitable
"phase space integration”.

5 Relativistic scalar fields and O(N)-models

Video: Lecturel0VideoOl.mp4

In the next chapter we discuss a first model with Lorentz symmetry. Lorentz symmetry is a
key ingredient for elementary particle physics. We may focus on a simple model with a complex
scalar. This is employed in order to understand how Lorentz symmetry is tightly connected with the
existence of antiparticles or antimatter. We also will discuss the important concept of spontaneous
symmetry breaking.

Examples for scalar fields. Neutral relativistic scalar fields are the neutral pion 7° in QCD,
or the inflaton or cosmon. In this case a scalar field is a real function x(&,t). In principle, its
expectation value can be measured, similar to the electric or magnetic field. Complex scalar fields
are the charged pions 7% and the kaons K, represented by a complex scalar field x(&,t). An
important complex field is the Higgs-doublet, represented by a two-component complex scalar field
wa(t) with @ = 1,2. In particle physics, its expectation value is responsible for the spontaneous
breaking of the electroweak gauge symmetry, and the resulting masses of the W- and Z- bosons,
quarks and charged leptons.

Video: Lecturel0Video02.mp4
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5.1 Lorentz invariant action.

Action. To formulate the action we first need the fields which are now fields in Minkowski space
x(x) where x = (¢, Z). We consider local actions of the form

S:/zi”(:z), /:/ it d*a.

A typical form of the action is in an expansion in derivatives
,,?(x) = Zin +1V + ...

The action will reflect the symmetries of the model. One important symmetry is Lorentz symmetry.

Video: Lecturel0Video03.mp4

Kinetic term. The kinetic term .%;, involves derivatives of fields. For non-relativistic free atoms
we have found

Lin = X" (7) 9 x () + man (2)9ix(x), 0; = vk
The two space derivatives are needed for rotation symmetry. Lorentz-symmetry needs again two
derivatives,
Lin = 10" X" (2)0px (@),
with 9 o
o=\ =,=—) =(0,9),
" (at’ 3m7> (%)
and
-1
v 1% 1
o = 77” al/? Nuv = 77# = 1
1

Derivatives of scalars 9, x are covariant four-vectors. The scalar product of a covariant and a
contravariant four-vector is invariant under Lorentz transformations. In momentum space the
kinetic term involves the invariant squared momentum

Lhin =i X (Ox(@) 5 ¢ = "¢ = 1" ququ.
We conclude that relativistic theories of scalars involves two time derivatives. It is a direct con-

sequence of Lorentz symmetry that the number of time- derivatives equals the number of space-
derivatives. The kinetic term can be formulated for real fields in the same way.

Video: Lecturel0Video04.mp4

From complex to real fields. Writing a complex field as two real fields
1 .
X = ﬁ()ﬁ +ix2)
one has
P
jkin = 5 Z aMXa(m)al»bXa(x)‘
a=1

Here N =1 for a real scalar, N = 2 for a complex scalar and N = 4 for the Higgs doublet.

Video: Lecturel0Video05.mp4
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Potential. The potential V involves no derivatives. It is a function of the fields and we write

Internal symmetries yield further restrictions. Charge conservation corresponds for complex field
to the symmetry

x — ey.
The potential can only depend on

.1
p=X x=§(x§+><§)-

For the Higgs doublet, the symmetry is SU(2) such that

4
1
= f = - 2.
P=XX QaEZIXa

Often one can expand
1
V(p) = u’p+ §>\p2 +...

For potentials depending only on p,
Zin +V(p)

the action has O(N) symmetry. Performing analytic continuation for a description of thermal
equilibrium we recover the O(N)- symmetric models discussed in lecture 2.3. The classical statistical
equilibrium and the quantum statistical equilibrium at vanishing temperature differ only by an
additional dimension for the second, given by euclidean time. For the classical statistical setting
the temperature enters as a parameter in the action, while for quantum statistics it appears in the
periodic boundary condition.

Video: Lecturel0Video06.mp4

5.2 Lorentz invariance and antiparticles.

We next want to show that antiparticles are a natural consequence of Lorentz symmetry.

Two fields with one time-derivative. In the following we concentrate on a single complex
scalar field. We want to see how the Lorentz invariant action actually describes two degrees of
freedom, namely a charged scalar particle and its antiparticle with opposite charge. Both charged
pions 7~ and 7T are described by the same field.

In order to see this we recall that a differential equation with two derivatives is equivalent to
two differential equations with one derivative. In other words, one complex field with two time-
derivatives is equivalent to two complex fields with one time derivative. We will use this in order
to rewrite the action in terms of two fields with only one time derivative. In this form we can make
direct contact to the action for non-relativistic bosons that we have discussed previously.

Video: Lecturel0Video07.mp4
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Let us start with a free complex relativistic scalar field
&L =i(0"X Opx + M>X*X).

The potential V' describes only the mass M of the scalar particle. In momentum space, 0; = g =
—3°, one has
Ly = —i0 X 0x +i(P* + M?)xX"x,

and the partition function is

Z:/ Dy e_fdtfﬁ‘sz,

where fﬁ: f%.

Video: Lecturel0Video0O8.mp4

We treat every p' mode separately. In order to switch to a formulation with two complex fields and
only one time derivative we insert a unit factor

/D?T exp{fz(ﬁtx* — ﬁ*)(atx — ﬂ-)} = const n o_» 1’

where 7(x) is a field. This factor yields only a constant which is independent of y, as can be seen
by a simple shift of the integration variable, 7’ = m — d;x. Since multiplicative constants in Z do
not matter, we can write the partition function equivalently as

7 = /DXDﬂ' exp [—/{—i@tx*atx +i(p? + M?)x*x
t
+ 10, Opx — 10X T — i Opx +im T .

This eliminates the term with two derivatives. What remains are two complex fields y and 7 with
one time derivative,

Z:/DXDwe—ftf,

where, after doing a partial integration,

L =ix O — im0y x + (PP + M?)x*x +in*.

Video: Lecturel0Video09.mp4

At this stage we have the wanted number of fields and only first time derivatives. The time
derivative term mixes the fields 7 and x. We want to diagonalise this term by suitable variable
transformations, such that the independent degrees of freedom are clearly visible. For this purpose
we perform the variable transformation

X(8) = —= (7 + M2 E (o1 (1) + pa(—1),

N

n(t) = —\%(ﬁz + M?)% (p1(t) — pa(—1)).
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This yields

(7 + M2 (Ox(t) = =7 + M) [pi(Opr(8) + e3(~0pa(—2)

2
1 (Opa(=1) + @3 (e ()],
Similarly,

m(Om(t) = 5 (7 + M) [pi(Op1(t) + 03 (~t)pa(—1)

2
—p1(O)p2(=t) — pa(=t)pr(t)]

Summing both expressions gives

i (B + M) x +7'7) = (B + M?)? [p] ()1 (1) + 93 (—t)a(—1)],

and the mixed term involving time derivatives is

FOCOm — 7000 = 5 {(10) + #5011 () — ea(~1)

+ (01 () = 05(=1)) 0 (p1(t) + w2 (1))}
= 1 (t)0rp1(t) — 3(—1)Opa(—t).

Under the t-integral one can replace —p5(—t)0;p2(—t) = ©5(t)0rpa(t).
Taking the terms together we find the action for two particles with dispersion relation F =
wy = /P? + M?,

5= [ at{ot0mn + es0ues — iV H I (g1 + phen) )

where ¢; = ;(t). This has precisely the same form that we have encountered before for non-
relativistic bosons as phonons. The only particularity is the form of the dispersion relation which
reflects the relativistic relation between energy and momentum. The action is block-diagonal, and
the two complex fields ¢; and ¢5 describe two particles.

Video: Lecturel0Videol0.mp4

Antiparticles. The field y with two time-derivatives describes a pair of fields ¢1, o with one
time-derivative. One field is the antiparticle of the other. We want to show that the antiparticle has
the opposite charge of the particle. For this purpose we couple the complex field x to an ”external”
electromagnetic field. The different field equations for ¢; and ¢o will then reveal their opposite
charges.

The coupling to the electromagnetic potential A,, is dictated by the principle of gauge invariance.
This requires to replace every derivative d,, by a covariant derivative D, according to

Oy — Dyux = (0, —ieA,)x.

We want to consider the particular field configuration A; = 0 and constant electric potential Ag.
In this case one only modifies the time derivative 9; — 0; —ieAy. Employing this modification also
in the inserted unit factor one obtains for .# an additional term

AL = eAo X" (t)m(t) — 7" (£)x(t)] -
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We express this addition in terms of the fields 7 and @9

1

AL = elo | ~561(0) + 3(-0)1(0) = pa(-1) = 5610 = 3O (0) + (1)

= —iedo(#1(H)p1(t) = pa(=)pa(=1))-

As a consequence, the time derivative part in the action becomes

S = [t {6100~ ieAypr + 550+ ieA)ga + )

We conclude that ¢ and @, have opposite electric charge. An electric field, given by the gradient
of Ay, will accelerate the two particles in opposite directions. The two fields show the characteristic
properties of a pair of particle and antiparticle. They have the same mass, but opposite charge.

We have performed the insertion of unity and variable transformations merely in order to
demonstrate the appearance of antiparticles in a simple way. In practise, one does not use this
variable transformation. The reason is that the ”insertion of unity” for the introduction of the field
7 is not compatible with the Lorentz symmetry - time is singled out. Since we have not changed
the functional integral, the Lorentz symmetry still governs the dynamics if Ag = 0. The presence of
this symmetry is hidden for the action formulated in terms of ¢; and (5. Since Lorentz invariance
is such an important symmetry for particle physics one wants to work with an action for which this
symmetry is manifest.

In this lecture we turn again to the O(N)-symmetric scalar theories that we have already
introduced in the lecture 2.3. These models are simple enough to serve as good examples, and rich
enough to show many interesting physical properties characteristic for quantum field theories. They
serve as a “working horse” for this lecture. With the formalism developed so far we can compute
the propagator in the absence of interactions or in the limit of small interaction effects. We also
discuss the setup for spontaneous symmetry breaking.

5.3 Unified Scalar field theories

Video: LecturellVideoOl.mp4

Euclidean space. Scalars play an important role in quantum field theory. Prominent examples
are the Higgs scalar for the standard model of particle physics, scalar mesons for the strong inter-
actions, or the inflaton for cosmology. The corresponding Lorentz invariant quantum field theory is
formulated in Minkowski space. Analytic continuation from Minkowski to Euclidean space yields

" 0,0, — M 0,0,.

Another factor arises from dt = —idr. In Euclidean space the action therefore reads

S/x{;zaHXaauXa+V(p)},

where now 9" = §*9,, and [ = [ dt [ d*Z. This is the four-dimensional O(N)-model introduced
in lecture 2.3. The Euclidean action is also the one that appears for the T" — 0 limit of thermal
equilibrium, while for T' > 0 the 7-integration becomes periodic with period 1/T.
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In euclidean space, the Lorentz-symmetry SO(1,3) gets replaced by the four dimensional rota-
tions SO(4). This symmetry is broken for 7' > 0 since space and time are no longer treated equally.
One should distinguish two different symmetries: The internal symmetry O(N) acts on the internal
degrees of freedom, while the symmetry SO(d) corresponds to the Lorentz symmetry and acts as a
space-time transformation, changing coordinates or momenta.

Video: Lecturel1Video02.mp4

Unified description of scalar theories. The euclidean O(N)-models in arbitrary dimension d,
admit a classical statistical probability distribution, with real action,

1
D= Tefs, Z = /Dgpefs.

They can be simulated on a computer.
We can classify important applications according to the dimension d of euclidean space and
number N of real components of the scalar field:

d=1,2,3 | models of classical statistical systems in d-dimensions
N =3 | magnets, (x,(z)) is magnetisation (order parameter)
N =1 | Ising type models
N =2, d =2 | two-dimensional x-y model with Kosterlitz-Thouless phase transition
d =4 | relativistic scalar theories in thermal equilibrium at 7' = 0,

or analytic continuation of quantum dynamics.

If the euclidean model is solved, the n-point functions can be analytically continued to Minkowski
space, using

Qr = ¢% = —igon = iq%;.

Video: Lecturel1Video03.mp4

Correlation functions or n-point functions. The task is the computation of n-point functions
G p@1 ) = (Xal@)xo(w2) -+ Xp (@),
with space-time argument x; = 2. Alternatively in Fourier space the n-point functions are
G™(pr...pn),
where p; = p!'. As an example take the two point function or propagator
Gab(p1,p2) = (Xa(P1)x6(=D2)) = (Xa(P1)) (X6(=D2)) = G(p1)d(P1 — P2)dab-

It can only depend on one momentum by virtue of d-dimensional translation symmetry. Invariance
under SO(d)-rotations implies that G can only depend on

p° = pup, 6",

or, in other words, G(p") = G(p?). Analytic continuation does not change G(p?), one only has to
switch to p? = p,p,n"” in momentum space.
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5.4 Propagator for free field

Video: LecturellVideo04.mp4

We start from the action for a free field
1 1,
S = §8HXG8#XG + §M XaXa -

This is a sum of independent pieces. Each particle with associated field can be treated separately.
Consider for simplicity a single complex field

S = / {8“X*8MX + sz*x} ,
xr
and transform to Fourier space

Sz/q(q2+M2)x*(q)x(qL /qZ/(;lj:)]m

The propagator in Fourier space is given by

G(p,q) = (x(P)x" () — (x(0) (X" (q)).

We want to compute this propagator. For this purpose we use a torus with discrete modes and
take the volume to infinity at the end. For

S=> (¢*+M*)x"(g)x(q)

the expectation value obeys
1 _
(x(p)) = E/Dxe ¥ x(p) = 0.

This is a simple consequence of the invariance of S and [ Dx under the reflection x — —yx. Similarly,
for p # g, one finds

(x(p)x*(q)) = %/Dxe‘sx(p)x*(q) =0.

Video: LecturellVideo05.mp4

Only for equal momenta p = g the two point function differs from zero,

(x(@)x*(q)) = % / Dxe *x(a)x"(q)

J dx(g)e”@HMIX @x(@Dy*(g)x(q)
fdx(q)e—(qz+M2)x*(4)x(Q)

For the second identity we use the fact that for all ¢’ # g the same factor appears in the numerator
and denominator.
We first compute the Gaussian integral

Z(M?) = /dX(q)e—(q2+M2)X*(q)x(Q)7
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and then take the derivative with respect to M?2,

(XX (@) =~ I(Z(M).

The Gaussian integral has the solution

———In(Z) = 5——.
onrz M%) q* + M?
We can summarise for the free propagator

G(g,p) = 5(q—p).

i
q2 + M2
For the last identity we have performed the infinite volume limit for which the Kronecker delta 4y, 4
becomes the distribution &(p — q) = (27)~46%(p,, — g,.), which plays in our conventions the role of
the unit matrix in momentum space.

Video: Lecturel1Video06.mp4

Propagator in Minkowski space. The analytic continuation of the free euclidean propagator
is straightforward in momentum space,

1
G(p, Q) = m&p —q)
1
=————b(p—2q).

This propagator has poles at
qo = :t\/ (72 + M2.

These two poles correspond to a particle and its antiparticle.

Video: Lecturel1Video07.mp4

The solutions of the free field equations are

i/ 2
X+:€Z q*+M?t

and
i\/a2 2 —i\/a? 27 >
X_:eJrz q+M7f:€quth7 = —t.

Antiparticles appear formally as particles propagating “backwards in time”. The oscillatory be-
haviour in time is also visible in the Fourier transform of the propagator.This contrasts with the
behaviour in euclidean space. There the Fourier transform becomes a function of r = |& — g]. For
d = 3 the result is a Yukawa potential G(r) proportional exp (—Mr)/r. The propagator vanishes
rapidly for large separations r > 1/M.
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Adding an interaction with strength A, as specified by a potential
V = M?p+ \p?/2,

will modify the propagator through the effects of fluctuations. For small A the leading effects are a
shift of M? and a multiplicative constant for the terms in the action which are quadratic in x. These
effects can be absorbed by a multiplicative rescaling of fields and an additive “renormalisation” of
M?. Modifications of the momentum dependence of the propagator occur in the order A or higher.
The free propagator remains often a very good approximation.

5.5 Magnetisation in classical statistics

Video: Lecturel1Video08.mp4

In the next part we link our formalism to a first set of physical questions. We discuss mag-
netisation and the notion of spontaneous symmetry breaking. This is done in the view of a later
treatment of the Higgs mechanism for the electroweak interactions in particle physics.

Action. We investigate the thermal equilibrium state for classical statistics of magnets. We
employ microscopic fields o, (x) which represent elementary magnets averaged over small volumes.
The Hamiltonian with next neighbour interaction reads in this continuum description

H = / {K 0;04(2)0;i00(z) + coa(2)04(z) + d (04(2)04(2))* — Baoa(z)} .

We take K > 0, which tends to align magnets at neighbouring points. The homogeneous magnetic
field B breaks the O(N)-symmetry. Typical isotropic magnets in three dimensions correspond
to N = 3. The internal symmetry O(3) reflects independent spin rotations that are decoupled
from rotations in space. One can also consider asymmetric magnets with N = 2 (xy-models)
or N = 1 (Ising-type models). Magnets in lower dimensions are also highly interesting, with
d = 2 corresponding to physics dominated by layered structures as for materials leading to high
temperature superconductivity. At this level there is no longer any difference between ferromagnets
and antiferromagnets. The internal symmetry is the same.
The partition function in classical statistical thermal equilibrium obeys as usual

Z:/DO' e_ﬁHz/Dae_S

S =pH.

where the classical action is

Video: Lecturel1Video09.mp4

Rescaled fields. By a rescaling of fields

74(2) =\ 377 Yl

we can bring the action to the standard form for O)N)-models

S = / {;aiXa(f)aiXa(l') + %Xa(x)xa(x) + @%(Xa(w)xa(xw 7 %Xa(ﬂc)} |
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or with other naming conventions for the couplings

o >

m2
S = / {;aiXa(w)aiXa(z) + 7Xa(‘r)Xa(x) + 7(Xa(z)Xa(x))2 - JaXa(x)} :

This relates the standard couplings m?, A and the source J to the microscopic model parameters.

2

The parameter m* can be positive or negative. It is often called a "mass term”, in analogy to the

mass term for a relativistic particle.

Video: LecturellVideol0.mp4

Magnetisation. For m? > 0 the microscopic magnets have for J = 0 a preferred value y, = 0.
For m? < 0 the preferred value differs from zero for J = 0. The minimum of the potential

A 1
Volp) = m?p+ 5%, p=5Pafa
obeys
%
D om?y Ap = 0.
dp
For m? < 0 it occurs at pg = fmTz. A non-vanishing magnetic field J, singles out a certain direction.

The minimum of V = m?2p + % p? — Jap, defines the microscopic magnetisation.

Video: LecturellVideoll.mp4

We want to compute the macroscopic magnetisation (x(x)) as a function of the magnetic field J,.
For this problem fluctuations play an important role. We concentrate on m? < 0 where things are

most interesting. The factor e~

is maximal if S is minimal. One may first look for the minimum of
S and expand around it. This procedure is called the ”saddle point approximation”. The minimum
of S is given by the microscopic magnetisation. Without loss of generality we choose J = (Ji,0,0).
The configuration with constant x, x.(%) = Xq,0 minimises the kinetic term. The minimum of the
action is then given by the minimum of V. It occurs in the direction xi, for which the potential
reduces to
L oo, Ay
V= 5MXT T gXi - Jxu
The minimum of V' is determined by the homogeneous field equation

ov 9 A,
—=m —x; —J=0.
ax Xl + 2 Xl

If we take J > 0 a positive x1,0 is preferred, being the absolute minimum of V. The absolute
minimum flips sign if we change the sign of J. At J = 0 one observes two degenerate minima. Such
a behaviour is characteristic for a first order phase transition as a function of the magnetic field, as
observed in ferromagnets or antiferromagnets.

In the limit of small J > 0 one has

A 9 2m?2

EX%OZ_m s X10 = T

Video: Lecturell1Videol2.mp4
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Fluctuations tend to wash out the microscopic magnetisation. If we want to know how strong
is this effect, we have to compute the partition function Z(J) as a function of the source J. Then
the magnetisation M in appropriate units is determined by

L </ xl> — Q) = T,

where () the volume. We are interested here in small J — 0.

To do thermodynamics we start from the free energy
1
F=-ThZ= —Ban.

As well known in thermodynamics the magnetisation is determined by the minimum of the free
energy.

Video: LecturellVideol3.mp4

Spontaneous symmetry breaking. Spontaneous symmetry breaking occurs if the magnetisa-
tion remains different from zero in the limit of vanishing magnetic field, M # 0 for J — 0. The
magnetisation M, is proportional to the expectation value

$a = (Xa)-

For J = 0 the O(N)-symmetry is not violated. Any direction for ¢, in internal space is equivalent.
Nevertheless, the state ¢, = 0, which corresponds to vanishing magnetisation, is not a minimum of
the free energy, but rather a local maximum. The minimum occurs for py = (@49, )/2 different from
zero, and the system has to choose "spontaneously” a direction of the magnetisation. Once this
direction is chosen, the symmetry of the ground state is less than the symmetry of the action. This
explains the name ”spontaneous symmetry breaking”. For the example of an O(3)-symmetry of the
action the ground state only exhibits the symmetry O(2) of rotations in the plane perpendicular
to the vector ¢. In practice, the direction of J is often determined by tiny amounts of symmetry
breaking or a tiny effective source J. Nevertheless, a discussion of the simple situation J = 0 covers
the relevant physics.

We will discuss this issue here in terms of the classical action. In view of the importance of
fluctuation effects this may not seem to be a good idea at first sight. We will see later, however,
that the main effect of the fluctuations is to replace the microscopic potential V' (x) by an 7effective
potential” U(p). Here ¢, are macroscopic fields. The symmetry of the “effective action” that
includes the fluctuation effects is the same as for the microscopic or classical action S. Also the
general form has often only small modifications, such that the dominant effect of the fluctuations
is a change of parameters. The microscopic parameters m? and ) are replaced by macroscopic
parameters of "renormalised couplings” m% and Ag. Since we do not fix the parameters we can
discuss many aspects in terms of the microscopic action S, keeping the later replacements in mind.

Video: LecturellVideol4.mp4

Goldstone bosons. One of the characteristic signs of spontaneous breaking of a global continuous
symmetry ( as O(3) in our case ) is the presence of massless “Goldstone bosons”. They correspond
to excitations perpendicular to x,0. For J = 0 the potential has the same height for arbitrary
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directions of x4,0. A change of the direction will correspond to massless excitations, the Goldstone
bosons.

“Massive” or “gapped” excitations correspond to a propagator G' porportional 1/(q? + M?),
whereas for “massless” or “gapless” excitations one has M = 0 and therefor a propagator G which
is proportional to 1/¢?. For our translation invariant setting the propagator in momentum space is
a matrix in internal space, Gu,(¢?). In order to see the massless or massive excitations we have to
diagonalise the propagator matrix.

Spontaneous symmetry breaking occurs for m% < 0, or in our "classical setting” for m? < 0.
In this case it is useful to write the potential in the form

A m>

V==(p- 2 = ——.
2(P P0)7 £o b\

We concentrate for simplicity on a single complex field, N = 2,

1
p=x"x =501 +x3)-

For the magnetisation in absence of a magnetic field, J = 0, we choose without loss of generality

1
X1,0 # 0, X2,0=0, po= 5)&0-

We expand around 1,9, with

X1 = X10 + 0X1,
1, 1o,
5X1 = Po + Xx100X1 + §5X1,
1 2 1 2
p— po = X100X1 + §5X1 + 35X

For the extraction of the propagator it is sufficient to keep only terms quadratic in the fields
dx1 and x2. A proof in terms of the effective potential will be given in later lectures. In quadratic
approximation the potential reads

A

A
5 (P = p0)* = 5x300xT = Apodxi.

In this approximation the potential does not depend on xs. The field x2 corresponds to a "flat
direction of the potential” and will be associated with the Goldstone boson.

Video: Lecturel1Videol5.mp4

The kinetic term adds to the action in momentum space a piece ¢?(dx1(q)dx1(—q) + x2(q)x2(—q))-
In the quadratic approximation we therefore end with a free theory, for which we have already
computed the propagator. We conclude that the excitation dx; behaves as massive field, with

M? = 2\pg, and propagator

1

G=——7—.
a* + 2Xpo

On the other hand, only the kinetic term contributes to the propagator of the excitation ys, which
behaves as massless field with propagator

1

G == 7

q>.

This massless field is called a Goldstone boson.
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Video: LecturellVideol6.mp4

We may add a small source J, which breaks the symmetry explicitly. This modifies the potential,

A
V= 5(:0— po)? = Jxa
= Apodxi — Jx1,0 — Jox.

The action takes the form
S =5+ AS,

So = —QJx1,0,
1 1
AS — / 50 () (=2 + 22p0)dx1 () = J 9 (#) + 5 xa(2) (- A)xa ().

Correspondingly, one obtains for the partition function in lowest order

Zo=e 50 = exp(QJx1,0),

hlZo = QJX1,07
~ 9nZ,
o7 X1,0

Video: Lecturel1lVideol7.mp4

Phase transitions and fluctuations. What remains is a computation of the fluctuation effects
that relate the “microscopic parameters” m? and A to the “macroscopic parameters” or “renor-
malised couplings” m% and Ar. If m% turns out positive, the symmetry is not spontaneously
broken and one speaks about the “symmetric phase”. In contrast, for the range of (m?, \) for which
m% is negative one has spontaneous symmetry breaking. One speaks about the ”ordered phase” or
”SSB phase”. If both possibilities can be realised for suitable (m?, \), and m% depends continuously
on these parameters, there must be a transition where m% = 0. This is a phase transition. There
is a ”critical surface” in the space of microscopic parameters for which the phase transition occurs.
For two parameters this is a critical line, determined by the condition m%(m?,\) = 0. Both m?
and A depend on the temperature 7. For given functions m?(T) and A(T') one has m%(T). The
critical temperature 7, for the phase transition is determined by the condition m%(7.) = 0.

Not all models admit a phase transition. For the example d =1, N > 3, or for d =2, N > 2,
one can show that a true phase transition is not possible. For these models one finds m% > 0 for
all possible values of m? and \. This is the content of the Mermin-Wagner theorem. An interesting
boundary case is d = 2, N = 2. In this case one encounters a "Kosterlitz-Thouless phase transition”,
which can be connected to vortices.

NEW LECTURE

6 Non-relativistic bosons

Video: Lecturel2Video0Ol.mp4
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6.1 Functional integral for spinless atoms

From relativistic to non-relativistic scalar fields. In this section we go from a relativistic
quantum field theory back to non-relativistic physics but in a quantum field theoretic formalism.
This non-relativistic QFT is in the few-body limit equivalent to quantum mechanics for a few
particles but also has interesting applications to condensed matter physics (many body quantum
theory) and it is interesting conceptually. We start from the action of a complex, relativistic scalar
field in Minkowski space

S = /dtd% {—am*aw —m?¢*¢ — ;(¢*¢)2} :

The quadratic part can be written in Fourier space with (pr = —p°2° + piF),

4 4
o) = [ gRemow. o= [ g R,

as

Video: Lecturel2Video02.mp4

Two zero crossings. One observes that the so-called inverse propagator has two zero-crossings,
one at p® = /p2 + m? and one at p° = —/p2 + m2. At this points the quadratic part of the action
become stationary in the sense

R

66" (p) "
The zero-crossings also correspond to poles of the propagator. These so-called on-shell relations
give the relation between frequency and momentum for propagating, particle-type excitations of
the theory. In fact, p° = +/p? +m?2 gives the one for particles, p° = —\/p2 + m? the one of
anti-particles. In the non-relativistic theory, anti-particle excitations are absent. Intuitively, one
assumes that the fields are close to fulfilling the dispersion relation for particles, p° = /p2 + m?2
which is for large m? rather far from the frequency of anti-particles. One can therefore replace in
a first step

P’ + /2 +m2 = 2¢/p% + m2 = 2m.

Moreover, one can expand the dispersion relation for particles for m? > 2,

=2
PV =mt

This leads us to a quadratic action of the form

Sy = —/ (;ljf)l {fb*(p) (—po +m+ i) 2m¢>(p)} ;

or for the full action in position space

S = /dtd?’x{(i)* (z‘@t —m+ QV;) 2m ¢ — ;(¢*¢>)2}-

Video: Lecturel2Video03.mp4
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Rescaled fields and dispersion relation. It is now convenient to introduce rescaled fields by

setting
1

B(t,7) = e (1, 7).

§

The action becomes then

e v’ A s
S:/dtd3x{<p (z@t—%—i-%) ©— W(g@ @)2}. (6.1)

The dispersion relation is now with

= dw d3p —iwt+ipT
(p(t,:];‘) :/7 e 90((“)717)’

27 (2m)3 ¢
given by
P
w=Vy+—.
2m

This corresponds to the energy of a non-relativistic particle where V{ is an arbitrary normalization
constant corresponding to the offset of an external potential. The action in equation (6.1) describes
a non-relativistic field theory for a complex scalar field. As we will see, one can obtain quantum
mechanics from there but it is also the starting point for a description of superfluidity.

Video: Lecturel2Video04.mp4

Symmetries of non-relativistic theory. The non-relativistic action in equation (6.1) has a
number of symmetries that are interesting to discuss. First we have translations in space and time
as well as rotations in space as in the relativistic case. There is also a global U(1) internal symmetry,

—iq, %

o(x) = e p(x), ©*(x) = e (a).

By Noether’s theorem this symmetry is related to particle number conservation (exercise).

Video: Lecturel2Video05.mp4

Time-dependent U(1) symmetry. There is also an interesting extension of the global U(1)
symmetry. One can in fact make it time-dependent according to

pla) = (), " (@) = e ).
All terms in the action are invariant except for
©*idpp — pre et o, ei(o‘+5t)4p(z) =" (10 — B)p.
However, if we also change V; — V) — 8 we have for the combination
@™ (i0 = Vo) — @™ (i0, — B = Vo + B)y = @™ (0 — Vo).
This shows that
pla) = g, O Vo = Vo — B,

is in fact another symmetry of the action in equationeq:nonrelativisticactionScalar. One can say
here that (i0, — V) acts like a covariant derivative. This says that (i0; — Vp)¢ transforms in the
same (covariant) way as ¢ itself. The physical meaning of this transformation is a change in the
absolute energy scale, which is possible in non-relativistic physics.
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Video: Lecturel2Video06.mp4

Galilei transformation. Note that the action in equation (6.1) is not invariant under Lorentz
transformations any more. This is directly clear because derivatives with respect to time and space
do not enter in an equal way. However, non-relativistic physics is invariant under another kind of
space-time transformations, namely Galilei boosts,

t—t,
T — T+ Ut
One can go to another reference frame that moves relative to the original one with a constant

velocity. How is this transformation realized in the non-relativistic field theory described by equation
(6.1)7 This is a little bit complicated and we directly give the transformation law,

o(t, ) = ¢ (t, ©) = e (MTF—amTt) o 7 Gt
Indeed one can confirm that
(i@t + §—m) o(t, T) — ¢l (MTT—§m™) Ki@t + §—m) 4 (t,@ — t),
so that the action (6.1) is invariant under Galilei transformations.

6.2 Spontaneous symmetry breaking, Bose-Einstein condensation and superfluidity

Video: Lecturel2Video07.mp4

Effective potential. One can write the action in (6.1) also as
S = /dtd3x {<p* (i@t + %i) w— V((p*go)} , (6.2)
with microscopic potential as a function of p = p*p,
V(p) = Vop + %pz = —up+ %pz-

At non-vanishing density one has V = —pu, where p is the chemical potential. For, y > 0 the
minimum of the effective potential is at py > 0. In a classical approximation where the effect of
fluctuation is neglected, one has the equation of motion following from 65 = 0.

Video: Lecturel2Video08.mp4

Bose-Einstein condensate. If the solution ¢(x) = ¢¢ is homogeneous (constant in space and
time), it must correspond to a minimum of the effective potential. Without loss of generality we
can assume ¢g € R and

V'(po) = —p+ Apo = 0,

¢0:\/Pi:\/§

leads to
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Assuming that it survives the effect of quantum fluctuations, such a field expectation value breaks
the global U(1) symmetry spontaneously, similar to magnetization. This phenomenon is known as
Bose-Einstein condensation. One can see this as a macroscopic manifestation of quantum physics.
The mode with vanishing momentum p = 0 has a macroscopically large occupation number, which
is possible for bosonic particles. On the other side, it arises here in a classical approximation to the
quantum field theory described by the action in eq. (6.1). In this sense, a Bose-Einstein condensate
can also be seen as a classical field, similar to the electro-magnetic field, for example.

Video: Lecturel2Video09.mp4

Bogoliulov excitations. It is also interesting to study small perturbations around the homoge-
neous field value ¢g. Let us write

o(x) = ¢o + [¢1(z) + i pa(2)],

L
V2

with real fields ¢ (z) and ¢2(x). The action in eq. (6.2) becomes (up to total derivatives)
1, V2
S= [tz oadin+ 53" 6550,V (654 VEousr + 4t + 103
j=1

It is instructive to expand to quadratic order in the deviations from a homogeneous field ¢; and
¢2. The quadratic part of the action reads

i 2
SQ _ /dt d3x {_;(¢17¢2) < 2m 22>\¢0 8é2> <z;> } .
—04 — 5

In momentum space, the matrix between the fields becomes

e (.) = (;;n + 2002 —f) |

pr
w om

In cases where the inverse propagator is a matrix, this holds also for the propagator. When the
determinant of the inverse propagator has a zero-crossing, the propagator has a pole. This defines
the dispersion relation for quasi-particle excitations,

det G (w, p) = 0.

Here this leads to _Q

-
2 p 2\ P
- o) 2o
Y +<2m+ %) 2m
or

This is known as Bogoliubov dispersion relation.

Video: Lecturel2Videol0.mp4
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Linear and quadratic regimes. For small momenta, such that

p” 2
— K 2\
2m K 2)¢p,
one finds
A3
~ A —|p]. 6.4
w2205 (6.4)
In contrast, for
p” 2
— > 2)
2m > 270,

one recovers the usual dispersion relation for non-relativistic particles

)
D
W —. 6.5
o (6.5)
The low-momentum region describes phonons (quasi-particles of sound excitations), while the large-
momentum region describes normal particles.

a4l
3L
)
2| %
~ 2f
1L
0 [—er
0.0 0.5 1.0 1.5 2.0
S
2VmA ¢0

Figure 3. Bogoliubov dispersion relation as in eq. (6.3) (solid line). Also shown is the low momentum
approximation (6.4) (dashed line) and the large-momentum approximation (6.5) (dotted line).

Video: Lecturel2Videoll.mp4

Superfluidity. The fact that the dispersion relation is linear for small momenta is also responsible
for another interesting phenomenon, namely superfluidity, a fluid motion without friction. To
understand this consider an interacting Bose-Einstein condensate flowing past some body of through
a capillary. If the energy and momentum of the fluid are £ = Ey and P =0 in the fluid rest frame,
they are

L1 1 Lo
E’:E+P6+§M52 :E0+§M172, P =P+ Mv = Mv,

in the rest frame of the body or capillary. We used here first the general transformation of energy
E and momentum P under Galilei boost transformations and then the particular values for the
homogeneous fluid state.

Imagine now that we can create an excitation or quasi-particle in the fluid with energy e(p)
and momentum p. In the fluid rest frame we have now E = Ej + €(p) and P= p. The energy and
momentum in the rest frame of the capillary are then

—

1
E' = Ey + €(p) +ﬁ~U+§M172, P =p+ Mv.
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Comparison to the corresponding relation for the homogeneous state shows that the energy and
momentum associated to the excitation are in the rest frame of the capiliary €(p) + p - ¥ and p,
respectively.

Video: Lecturel2Videol2.mp4

Landau’s criterion for superfluidity. Now the point is that at small temperature, excitations
will only be created in the fluid in appreciable numbers when it is energetically favorable, i.e. for

such that the energy of the fluid is lowered. If this relation is not fulfilled for any momentum p|
no excitations that could transport momentum out of a local fluid cell will be created. This means
that there is no viscosity and the flow is superfluid. It follows that for friction to become possible,
the fluid needs to have a fluid velocity larger than
Ve = mine(—ﬁ),
7 |pl

known as critical velocity. For the Bogoliubov dispersion relation (6.3) the critical velocity equals
the velocity of sound.

Video: Lecturel2Videol3.mp4

Summary. We have seen that relativistic quantum field theories can have a non-relativistic limit
where Lorentz symmetry is replaced by Galilei symmetry. In the few-body limit this leads to the
same predictions as quantum mechanics but the field theoretic formalism can have advantages,
for example in the context of condensed matter theory. As an example we have discussed Bose-
Einstein condensates where the low energy excitations are collective excitations of many particles
in the form of sound waves or phonons. We have discussed here in particular the non-relativistic
limit of a complex relativistic scalar field and have dropped the anti-particle excitations. One can
also consider real relativistic scalar field theories which have a non-relativistic limit in terms of a
complex scalar field, see for example [arXiv:2005.11359).

7 Scattering

In this section we will discuss a rather useful concept in quantum field theory — the S-matrix. It
describes situations where the incoming state is a perturbation of a symmetric (homogeneous and
isotropic) vacuum state in terms of particle excitations and the outgoing state similarly. We are
interested in calculating the transition amplitude, and subsequently transition probability, between
such few-particle states. An important example is the scattering of two particles with a certain
center-of-mass energy. This is an experimental situation in many high energy laboratories, for
example at CERN. The final states consists again of a few particles (although “few” might be rather
many if the collision energy is high). Another interesting example is a single incoming particle, or
resonance, that can be unstable and decay into other particles. For example 77 — ut +v,. As we
will discuss later on in more detail, particles as excitations of quantum fields are actually closely
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connected with symmetries of space-time, in particular translations in space and time as well as
Lorentz transformations including rotations. (In the non-relativistic limit, Lorentz transformations
are replaced by Galilei transformations). The standard application of the S-matrix concept assumes
therefore that the vacuum state has these symmetries. The S-matrix is closely connected to the
functional integral. Technically, this connection is somewhat simpler to establish for non-relativistic
quantum field theories. This will be discussed in the following. The relativistic case will be discussed
in full glory in the second part of the lecture course.

7.1 Scattering of non-relativistic bosons

Video: Lecturel3Video0Ol.mp4

Mode function expansion. Let us recall that one can expand fields in the operator picture as
follows

o)) = [wtien P00 = [,
12 I
3
with fﬁ = f (;ZT’)’M annihilation operators ay, creation operators a;, and the mode functions
vp(t, &) = i

The dispersion relation in the non-relativistic limit is

92
p

Note that in contrast to the relativistic case, the expansion of ¢(t, ) contains no creation operator
and the one of ¢*(¢,Z) no annihilation operator. This is a consequence of the absence of anti-
particles.

Video: Lecturel3Video02.mp4

Scalar product. For the following discussion, it is useful to introduce a scalar product between
two functions of space and time f(¢, %) and g(¢, T),

(f.9); = / P { (1, Dg(t,7)}

The integer goes over the spatial coordinates at fixed time ¢t. Note that if f and g were solutions
of the non-relativistic, single-particle Schrédinger equation, the above scalar product were actually
independent of time ¢ as a consequence of unitarity in non-relativistic quantum mechanics.

Video: Lecturel3Video03.mp4

Normalization of mode functions. The mode functions are normalized with respect to this
scalar product as

(v, v )e = (2m)363) (5 — ).

One can write
a5 =(up. 0 = [ a3,

al =(v}, @) = / d*ze” TG (8, 7).
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Video: Lecturel3Video04.mp4

Time dependence of creation annihilation and creation operators. The right hand side
depends on time ¢ and it is instructive to take the time derivative,

Orap(ry = / w7 [0, + iwglp(t, T)

=2
P | P

o V2
= /d3$ elwﬁt—zp at +Z —% + ‘/O gO(t, f)

We used here first the dispersion relation and expressed them p? as a derivative acting on the mode
function (it acts to the left). In a final step one can use partial integration to make the derivative
operator act to the right,

=2

Orap(t) = i/d3m et =T [—iat - V— + Vo

t, 7).
2m Pt %)

This expression confirms that az were time-independent if (¢, &) were a solution of the one-particle
Schrodinger equation. More general, it is a time-dependent, however. In a similar way one finds

(exercise)
R SR B )
5taﬁ(t) = fz/d x e WRtTIT 159, — 5 +Vo| ¢*(t, 7).

Video: Lecturel3Video05.mp4

Incoming states. To construct the S-matrix, we first need incoming and out-going states. In-
coming states can be constructed by the creation operator

a;(foo): lim a;(t).

t——o0

For example, an incoming two-particle state would be

|1, a3 in) = al, (—o0)al, (—00)[0).

Video: Lecturel3Video06.mp4

Bosonic exchange symmetry. We note as an aside point that these state automatically obey
bosonic exchange symmetry

|D1, P2;in) = |pa, p1;in),

as a consequence of

Video: Lecturel3Video07.mp4
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Fock space. We note also general states of few particles can be constructed as
wiin) = Col0) + [ C() iin) + [ Calgi,gi) psin) + ..
I Pi,D2

This is a superposition of vacuum (0 particles), 1-particle states, 2-particle states and so on. The
space of such states is known as Fock space. In the following we will sometimes use an abstract
index a to label all the states in Fock space, i. e. |o;in) is a general incoming state. These states
are complete in the sense such that

Z | in) (cv; in| = 1,

and normalized such that (a;in|3;in) = dqp.

Video: Lecturel3Video08.mp4

Outgoing states. In a similar way to incoming states one can construct outgoing states with the
operators

al(o0) = lim a;(t).

t—o0

QL+

For example

|1, a; out) = al; (00)al; (00)[0).

7.2 The S-matrix

Video: Lecturel3Video09.mp4

S-matrix. The S-matrix denotes now simply the transition amplitude between incoming and
out-going general states |a;in) and |3;out),

Sga = (B; out|ey;in).

Because a labels all states in Fock space, the S-matrix is a rather general and powerful object. It
contains the vacuum-to-vacuum transition amplitude as well as transition amplitudes between all
particle-like excited states.

Video: Lecturel3Videol0.mp4

Unitarity of the S-matrix. Let us first prove that the scattering matrix is unitary,

(STS)aﬂ = Z(ST)MS%B

Y

= 3 (ysoutfas in)” {; out|B; in)
J

= {a;inly; out)(y; out|; in)
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We have used here the completeness of the out states

Z |v; out) (~y; out| = 1.

J

Video: Lecturel3Videoll.mp4

Conservation laws. The S-matrix respects a number of conservation laws such as for energy
and momentum. There can also be conservation laws for particle numbers, in particular also in
the non-relativistic domain. One distinguishes between elastic collisions where particle numbers do
not change, e.g. 2 — 2, and inelastic collisions, such as 2 — 4. In a non-relativistic theory, such
inelastic processes can occur for bound states, for example two Hs - molecules can scatter into their
constituents

Hy+ Hy — 4H.

Video: Lecturel3Videol2.mp4

Connection between outgoing and incoming states. What is the connection between in-
coming and outgoing states? Let us write

05(00) — a5(—00) = / Dyas(t)
_ Z/ dt/ds.')f eild;ﬁt—iﬁf —’Lat — 2677:7, + Vb:| QD(t,.’f)

Annihilation operators at asymptotically large incoming and outgoing times differ by an integral
over space-time of the Schrodinger operator acting on the field. In momentum space with (px =

—p20 + p7 = —p°t + p7),
dp() dBﬁ )
t.7) = ipx
ot.d) = [ L),

this would read
9

o5(o0) ~ apl-oc) =i |1 + 2+ Vol ().

In a similar way one finds

a;(oo) - a;(—oo) = —i/ dt/d?’x e wptHipT [—i@t - 2672@ + VO} ©*(t, Z)

v
=1 [_po + m + Vo] ©"(p).

Video: Lecturel3Videol3.mp4

Relation between S-matrix elements and correlation functions. For concreteness, let us
consider 2 — 2 scattering with incoming state

|1, 753 in) = af; (—o0)al; (—0)|0),

and out-going state
|G, G5; out) = al; (00)al (00)[0).
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The S-matrix element can be written as

S¢T1§2,ﬁlﬁz = <q_’1a i?a OUt‘ﬁlaﬁQ;in>
= (0|T{ag, (%) ag, (c0) al; (—o0) al, (—00)}0).

P1

We have inserted a time-ordering symbol but the operators are time-ordered already anyway.

Video: Lecturel3Videol4.mp4

Now, one can use
-2
. q
0 () = ag, (~50) 1 |48 + 5+ V3| vtan)

However, ag, (—00) is moved to the right by time ordering and leads to a vanishing contribution
because of
ag, (—00)[0) = 0.

So, effectively under time ordering, one can replace

4
— + W .
o =+ 0] o(q1)

ag, (00) = i [—Q? +
By a similar argument, one can replace creation operators for ¢ — —oo like
Pt

afy(=00) i [+ 2L va) (o)

The above argument is not fully correct. There is one contribution from the operators ag(—o0) we
have forgotten here. In fact, the replacements ag, (00) — ag (—o0) and ag, (c0) — ag,(—00) give

(Olag, (—00) ag, (—co) af; (—o0) az,(—o0)|0).
We need to commute the annihilation operators to the right using the commutation relation
[a(—0), ali(—o0)] = (27)*69) 5 - @)
This gives rise to a contribution to the S-matrix element
(@m)° [0 @ — @) 60 (7 — @) + 0O (71 — @) 60 (7 — @)

But this is just the “transition” amplitude for the case that no scattering has occurred! There is
always this trivial part of the S-matrix and in fact one can write

Sap = 0ap + contributions from interactions.

Let us keep this in mind and concentrate on the contribution from interactions in the following.

Video: Lecturel3Videol5.mp4
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Interacting part. We obtain thus for the S-matrix element
(g1, g2; out|pi, p3; in)

4|: q1+2+V:||: q2+2+V} |: p1+2+%:| |: p2+2+%}

X (0[T{p(q1)e(g2)¢" (pr)#" (p2) }0).

This shows how S-matrix elements are connected to time ordered correlation functions. This relation
is known as the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula, here applied to non-
relativistic quantum field theory.

Video: Lecturel3Videol6.mp4

Relativistic scalar theories. Let us mention here that for a relativistic theory the LSZ formula
is quite similar but one needs to replace

{ q +2q +Vo]+[—(q°)2+cf+m2],

and for particles v(q) = ¢(q), ¢*(q¢) — ¢*(q), while for anti-particles ¢(q) — ¢*(—q), ¢*(¢) —
¢(=q).

Video: Lecturel3Videol7.mp4

Correlation functions from functional integrals. The time-ordered correlation functions can
be written as functional integrals,

* * eiS[(p]
O e(aolan)e” ()" ()} 0) = L2E AN ) 2

We can now calculate S-matrix elements from functional integrals!
NEW LECTURE

7.3 Perturbation theory for interacting scalar fields

Video: Lecturel4VideoOl.mp4

Partition function. Let us now consider a non-relativistic theory with the action

Sle] = /dtd3w {so* (iat + % - Vo) ¢ - ;(90*90)2} :

Compared to equation (6.1) we have rescaled the interaction parameter, ;23 — A. We introduce
now the partition function in the presence of source terms J as

1= [ Dy exp [ism +i [ (7@t + J(x)so*(m)}] ,

with 2 = (¢, %) and [, = [dt [ dx.

Video: Lecturel4Video02.mp4
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Source term. The source term can also be written in momentum space,
[ @) + 3@ @) = 17 @) + 1) @)
T p

where

() = / er(p), (@) = / e (p),

/_/CW ’p
, J 2w (2m)3’

and similar for the source J. Because the source term has the same form in position and momentum

with

space, we will sometimes simple write it as

/{J*go—i—go*J}.

Video: Lecturel4Video03.mp4

Correlation functions from functional derivatives. One can generate correlation functions
from functional derivatives of Z[J], for example

(o) () = 01T {a) e (1)} 0)
[ Do p(x) o*(y) %)
B ngp etS[e]
_ (—i)2 52
- ( 7107 57 )5 2 ]) .

Video: Lecturel4Video04.mp4

Functional derivatives in momentum space. One can also take functional derivatives directly
in momentum space, for example

5J*5(P) exp [i/{J*sDJrsO*J}] =

In this sense one can write

. (—i)? 62
(p(p) ¥* () = (Z[J] (2”)85J*(p)5J(q)Z[J]> J=o0

(2;)4 ¢(p) exp {i/{J*soJrso*J}} :

Video: Lecturel4Video05.mp4

Perturbation theory for partition function. Let us write the partition function formally as

= e o |5 [ (i) (i) | e st o [ 1o o).

where the quadratic action is

—

v2
SQ[(,D]:/(,O* i8t+T_VO .
x m
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Note that when acting on the source term in the exponent, every functional derivative —i%

results in a field p*(z) and so on. In this way, the quartic interaction term has been separated and
written in terms of derivatives with respect to the source field.

Video: Lecturel4Video06.mp4

Separate interaction term. We can now pull it out of the functional integral and write

A= [‘;/ (_%Jim)z (‘iwf(x)ﬂ 2l

with the partition function for the quadratic theory

ZalJ] = /Dw eiSalelti [{T o+ T}

The latter is rather easy to evaluate this in momentum space.

Video: Lecturel4Video07.mp4

Quadratic part. One can write
Sz+/{J*s0+so*J}=/p{—<p* (—p°+%+Vo)so+J*so+s0*J}
[l g | (s
x [cp (p0+§;+%)_1JH
+/{J*(p) (—p°+§f1+Vo)1J(p)}-
p

Note that the last term is independent of the field ¢ and can be pulled out of the functional integral.

Video: Lecturel4Video08.mp4

Evaluate Gaussian integral. The functional integral over ¢ is of Gaussian form. One can shift
the integration variable

{w— (—po + L +V0)1J} -,

and perform the functional integration in Zs[p]. It yields then only an irrelevant constant and as
a result one finds

Zo[J] = exp {i/pJ*(p) (—p0+ Z +Vo)_1J(p)] :

Video: Lecturel4Video09.mp4

— 83 —


https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video06.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video07.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video08.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video09.mp4

Relating functional derivatives in position and momentum space. In the following it will
be useful to write also the interaction term in momentum space. One may use

6 4 6J(p) 6 o d4p e—ip;v 7T4L
5@ /dpwuwswfi/@w4 ) ST

d*p  _, )
— 721)1’5 — 71173?6
/ (2m)* € J(p) /p € J(p)

Here we defined the abbreviation

In a similar way

We used also

[ e = enysp).

Video: Lecturel4Videol0.mp4

Perturbation series. One finds for the partition function

Z[J] = exp [—z;/x (%)2 (Mé(z)ﬂ Zo[J]

A
= exp |:_ZQA . {(27T)454(k1 +k2 —kg _k4)5.](k1)5J(k2)6J*(k3)6J*(k4)} (71)
. 1
X exp {Z/J*(p)( P+ i +Vo) J(p)]~
p

One can now expand the exponential to obtain a formal perturbation series in .

Video: Lecturel4Videoll.mp4

S-matrix element. Let us now come back to the S-matrix element for 2 — 2 scattering
(q1, G2; out|ph, Pa; in)

=it [~ + 4 Vo) [~ + £+ Vo] [0+ B+ Vo] [p8+ 2+ Vo]

x (p(q1)p(a2)e” (p1)@" (p2))

4[ fJrVo} [*qur%vLVo] {*p?Jr%JrVo} {*ngr%JrVo}

X <Zm5J*<q1>5J*(q2)5J(p1)5J(m)Z[J]>JZO

If we now insert the perturbation expansion for Z[J], we can concentrate on the contribution at
order A = \, because at order A\’ = 1 we have only the trivial S-matrix element for no scattering
that we already discussed.

Video: Lecturel4Videol2.mp4
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Order A. At order A we have different derivatives acting on Zs[.J],
e 0j(p,) for incoming particles with momentum py
o 0j«(qy) for outgoing particle with momentum ¢;

e 0k and 9« for the interaction term.

Video: Lecturel4Videol3.mp4

Propagator. At the end, all these derivatives are evaluated at J = J* = 0. Therefore, there
must always be derivatives d; and 6% acting together on one integral appearing in Z5[.J]. Note that

» -1 ) 5 -1
)0+ (a1 [ [ 7w (-4 + £+ ) J<p>] —i(-A+E4v) oY - a).
p

Video: Lecturel4Videol4.mp4

Momentum conservation. If two derivatives representing external particles would hit the same
integral in Z,[J], one would have no scattering because p3 = ¢ and as a result of momentum
conservation then also po = ¢h. This is no real scattering. Only if a derivative representing an
incoming or outgoing particle is combined with a derivative from the interaction term, this is
avoided.

Video: Lecturel4Videol5.mp4

Resulting contribution to S-matrix. By doing the algebra one finds at order A the term for
scattering

oL I A
(q1, @2; out|pt, pa;in) = *154(27045(4)(!11 + g2 — p1 — p2)-

The factor 4 = 2 x 2 comes from different ways to combine functional derivatives with sources.

Video: Lecturel4Videol6.mp4

Momentum conservation. The overall Dirac function makes sure that the incoming four-
momentum equals the out-going four-momentum,

ut

P =pi+pr=q1+q =p°

Video: Lecturel4Videol7.mp4

— 85 —


https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video13.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video14.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video15.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video16.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture14Video17.mp4

Transition amplitude. Quite generally, one can define for the non-trivial part of an S-matrix
(B; out|a; in) = (277)45(4) (p°"* — p™) i Taa.-
Together with the trivial part from “no scattering”, one can write
Sga = Gga + (2m) 160 (p™ — p™) i Toa.

By comparison of expressions we find for the 2 — 2 scattering of non-relativistic bosons at lowest
order in A simply
T = -2\,

independant of momenta. More generally, the transition amplitude 7 is expected to depend on the
momenta of incoming and outgoing particles.

Video: Lecturel4Videol8.mp4

Diagrammatic representation. To keep the overview over a calculation it is sometimes useful to
introduce a graphical representation. For the perturbation series discussed above we may represent
incoming particles by

ds p )
, . 5
=i [—p? + % + Vo] 0(py) = i {—p? + % + Vo} ek

and similarly outgoing particles by

% . 0 q1 . 0 q1 d
=1 {—(h + om + Vo} 5J*(q1) =1 {—(11 + om + Vo} 7&]*((11)'
.

These functional derivatives are acting on the partition function Z[J]. The partition function in
(7.1) can be written in a perturbative series with the interaction term represented by

5, b,
A
>< = _Z§/k . {(2m)*6% (k1 + ko — k3 — ka)05 ()01 (ka) 0.0+ (k)07 (k) }
5o by

which itself acts on the quadratic partition function Zs[J]. The latter is an exponential of the
propagator term with sources, which gets graphically represented by

J*

= i/pJ*(p) (—p" + bl + V0> B J(p).

2m

J

One can the let the functional derivatives act on the sources and at the end evaluate everything at
J = 0. While the diagrammatic representation is useful, it is only an auxiliary tool to organize the
algebra. With a bit of experience one can work well with it.
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7.4 From the S-matrix to a cross-section

Video: Lecturel5Video0l.mp4

Transition propability. Let us start from an S-matrix element in the form
(B; out|as in) = (2m)*6™ (pt — p™)i T

with transition amplitude 7 which may depend on the momenta itself. (For 2 — 2 scattering of
non-relativistic bosons, and at lowest order in A, we found simply 7 = —2)\.) Let us now discuss
how one can relate S-matrix elements to actual scattering cross-sections that can be measured in
an experiment. We start by writing the transition probability from a state a to a state 3 as

|(B; out|c;in)|?
(B; out|B; out)(a; in|a; in)

Video: Lecturel5Video02.mp4

Transition rate. The numerator contains a factor
45(4) t iny]2 45(4) t i 45(4)
(2t = p™)]” = 26 @ (- p)(2m) '8 (0).

This looks ill defined but becomes meaningful in a finite volume V and for finite time interval AT
In fact
(27)464(0) = / e = VAT.

For the transition rate P = A—PT we can therefore write

P B V(27T)45(4) (pout o pin)|T|2
~ (B;out|B; out)(a; in|a;in)

Video: Lecturel5Video03.mp4

Normalization of incoming and outgoing states. Moreover, for incoming and outgoing two-
particle states, their normalization is obtained from

(P1, P23 in|q1, o in) = lim (py, Pa; in|pi, pa; in)
q;—P;

tim | (2m)° (691 — )67 (2 — @) + 6931 — @8 (2 — @) |

= [@ns® )]
=V2.

Video: Lecturel5Video04.mp4
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Counting of momentum states. In a finite volume V = L3, and with periodic boundary
conditions, the final momenta are of the form

2
p= " (m.n.1),

with some integer numbers m,n,l. We can count final states according to

Api ApsA
ZZZAmAnAZ:L?’Z%.

m,n,l m,n,l m,n,l

The differential transition rate has one factor Vd3p/(2m)3 for each final state particle.

In the continuum limit this becomes

Video: Lecturel5Video05.mp4

Differential transition rate. For 2 — 2 scattering,

1 &g &g
V (2m)3 (27)?°

dP — (27T)4(5(4) (pout _ pin)|7-‘2

This can be integrated to give the transition rate into a certain region of momentum states.

Video: Lecturel5Video06.mp4

Flux of incoming particles. We can go from the transition probability to a cross-section by
dividing through the flux of incoming particles

1 2|p"
Fe —p= |P1] ]

v mV
Here we have a density of one particle per volume V' and the relative velocity of the two particles is
v = 2|p1|/m, in the center-of-mass frame where |p}| = |p2|, for identical particles with equal mass
m.

Video: Lecturel5Video07.mp4

Differential cross-section. This cancels the last factor V' and we find for the differential cross-
section

_|TPm

Bg dPgo
do = —
2|Pl|

(2r)? (2m)

(277)4(5(4) (pout _ pin)
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