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Welcome

Video: Lecture00Video01.mp4

Video: Lecture00Video02.mp4

NEW LECTURE

1 What is quantum field theory?

Video: Lecture01Video01.mp4

Historically, quantum field theory (QFT) has been developed as quantum mechanics for many
(in fact infinitely many) degrees of freedom. For example, the quantum mechanical description
for electromagnetic fields (light) and its excitations, the photons, leads to a quantum field theory.
Quantum mechanics of photons, electrons and positrons is quantum electrodynamics (QED) and
so one can go on.

In contrast to the transition from classical mechanics to quantum mechanics, the step from
there to quantum field theory does not lead to a conceptually entirely new theoretical framework.
Still, it was historically not an easy development and a lot of confusion was connected with notions
like “second quantization” etc.

There are many new phenomena arising in a field theory setting. This includes collective
effects of many degrees of freedom, e. g. spontaneous symmetry breaking. Particle number is not
necessarily conserved and one can have particle creation and annihilation.

Video: Lecture01Video01b.mp4

Historically, quantum field theory has been developed as a relativistic theory, which combines
quantum mechanics with Lorentz symmetry. This was necessary for quantum electrodynamics.
Until today, Lorentz symmetry remains to be a key incredient for the quantum field theoretic
description of elementary particle physics. It is not central for quantum field theory itself, however.
Concepts of quantum field theory can also be used to describe the quantum theory of many atoms,
for example ultra-cold quantum gases, or phonons in solids, or the spins composing magnets. These
systems are treated by non-relativistic QFT.

Video: Lecture01Video01c.mp4
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Probabilistic fields. One may characterize much of the content of the following lectures by two
main ingredients

(i) Fields (degrees of freedom at every point x)

(ii) Probabilistic theory (as every quantum theory is one)

In this sense, one may speak of quantum field theory as a probabilistic theory of fields. The
reader may note that “quantum” is missing in the above characterization. Indeed, in modern
developments, all probabilistic field theories, be they “quantum” or “classical”, are described with
the same concepts and methods based on the functional integral. The key element here is the one of
fluctuating fields as one has it in many situations. Something as tangible as the surface of an ocean
is already an example. The concepts are useful in many areas, ranging from statistical mechanics
to particle physics, quantum gravity, cosmology, biology, economics and so on. The common view
on all these subjects, based on the functional integral, will be the guideline of these lectures.

PFT, probabilistic field theory, would be a more appropriate name. We will nevertheless use
the traditional, historic name, QFT. Neither “quantum” nor “relativistic” are crucial conceptually.
Relativistic quantum field theory is from this perspective an important “special case”, to which we
will pay much attention.

2 Functional integral

We start with a simple model, the one dimensional Ising model.

2.1 Ising model in one dimension

Video: Lecture01Video02.mp4

Ising spin. An Ising spin has two possible values,

s = ±1.

One can also start somewhat more general with some two-level variable with possible values A1 and
A2 and relate them to the Ising spins via a map,

A1 → s = +1, A2 → s = −1.

For example, a state could be occupied, n = 1, or empty, n = 0. These states can be mapped to
Ising spins via s = 2n− 1. From an information theoretic point of view, each Ising spin carries one
bit of information.

Video: Lecture01Video03.mp4

Ising chain. Let us consider a chain of discrete points x and take them to be equidistant,

x ∈ {xin, xin + ε, xin + 2ε, . . . , xf − ε, xf}.

The Ising chain contains a spin s(x) at each point (or lattice site) x.

Video: Lecture01Video04.mp4
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Configuration. Now let us pose one Ising spin at each point or lattice site x. A set of of such
spin values at all the possible points x will be called a configuration and denoted by {s(x)}. (This
should be seen as an abbreviation for {s(xin), s(xin + ε), . . . , s(xf)}.) For example, the spin value
s(x), corresponding occupation number n(x) and spin direction for a particular configuration of
seven spins could be as follows.

1 1 -1 -1 -1 1 -1 spin value s(x)
1 1 0 0 0 1 0 occupation number n(x)
↑ ↑ ↓ ↓ ↓ ↑ ↓ spin direction

In general, for P points, or lattice sites, there are N = 2P possible configurations since each spin
can be either up or down. We can label them by an index τ = 1, . . . , N .

Video: Lecture01Video05.mp4

Euclidean action. We now introduce the concept of an euclidean action by assigning to each
configuration a real number S ∈ R,

{s(x)} → S[s] = S({s(x)}).

For example, one may have a next neighbor interaction and the action corresponds to

S[s] = −
∑
x

βs(x+ ε)s(x), (2.1)

where we use the following abbreviation for a sum over lattice sites∑
x

=

xf−ε∑
x=xin

,

and β is a real parameter.

Video: Lecture01Video06.mp4

Partition function. One can define a partition function as a sum over all configurations, weighted
by the exponential of minus the action,

Z =
∑

{s(x)}

e−S[s] =
∑
τ

e−Sτ .

Note that the partition function is here a real and positive number, Z > 0.

Probability distribution. Let us now assign to each configuration a probability, {s(x)} → p[s] =

p({s(x)}), or in another notation, τ → pτ . We will set

p[s] =
1

Z
e−S[s].

Note the following properties

(i) positivity p[s] ≥ 0 (and p[s]→ 0 for S[s]→∞),

(ii) normalization
∑

{s(x)} p[s] =
∑
τ pτ = 1.

These are the defining properties of probability distributions.

Video: Lecture01Video07.mp4
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Observables. We may construct an observable by assigning to every configuration {s(x)} (also
labeled by τ) a value A[s] = Aτ ,

{s(x)} → A[s], τ → Aτ .

In other words, the observable A has the value Aτ in the configuration τ .

Expectation value. The expectation value of an observable is defined by

〈A〉 =
∑
τ

pτAτ =
1

Z

∑
{s(x)}

e−S[s]A[s].

Video: Lecture01Video08.mp4

Two-point correlation. A correlation function of two observables is given by the expression

〈AB〉 =
∑
τ

pτAτBτ =
1

Z

∑
{s(x)}

e−S[s]A[s]B[s].

Video: Lecture01Video09.mp4

Local action. Oftentimes one can write the action as a sum of the form

S[s] =
∑
x

L (x),

with L (x) depending only on the spins in some neighborhood of x. For our example (2.1) with
next neighbor interaction one would have

L (x) = −βs(x+ ε)s(x).

In fact, the simplest version of the traditional Ising model has β = J
kBT

with interaction parameter
J , temperature T and Boltzmann constant kB. In this context, the Euclidean action corresponds
in fact to the ratio S = H

kBT
of Energy or Hamiltonian H and temperature as it appears in the

Boltzmann weight factor exp(− H
kBT

). The Hamiltonian is then obviously

H = −
∑
x

Js(x+ ε)s(x).

Video: Lecture01Video10.mp4

Boundary terms. One must pay some attention to the boundaries of the Ising chain. Let us
denote by Lin a term that depends only on s(xin), the initial spin and similarly by Lf a term that
depends only on s(xf), the final spin. We write the action as

S =
∑
t

L (t) + Lin + Lf.

By choosing Lin and Lf appropriately one can pose different boundary conditions, in general
probabilistic, or also deterministic as an approriate limit.

Typical problem. A typical problem one may encounter in the context of the Ising model in one
dimension is: What is the expectation value 〈s(x)〉 or the two-point correlation function 〈s(x1)s(x2)〉
for given boundary conditions specified by Lin and Lf?
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Functional integral language. We now formulate the model in a language that is convenient
for generalization. We write for expectation values

〈A〉 = 1

Z

∫
Ds e−S[s]A,

with the partition function
Z =

∫
Ds e−S[s].

The functional measure is here defined by∫
Ds =

∑
{s(x)}

=
∑
τ

=
∏
x

∑
s(x)=±1

.

For a finite Ising chain, the functional integral is simply a finite sum over configurations.

2.2 Continuum functional integral

Video: Lecture01Video11.mp4

Lattice functional integral. Let us now take a real, continuous variable φ(x) ∈ R instead of
the discrete Ising spins s(x) ∈ {+1,−1}. The position variable x is for the time being still labeling
discrete points or lattice sites. We then define the functional measure∫

Dφ =
∏
x

∫ ∞

−∞
dφ(x).

This is now the continuum version of a sum over configurations. Indeed it sums over all possible
functions φ(x) of the (discrete) position x. To realize that indeed every function appears in

∫
Dφ

one may go back to a discrete variable, φ(x) ∈ {φ1, . . . , φM} with M possible values and take
M →∞.

Configuration. For every lattice site x we specify now a real number φ(x) which in total gives
then one configuration. Obviously there are now infinitely many configurations even if the number
of lattice sites is finite.

Path integral. At this point one can make the transition to a probabilistic path integral. To this
end one would replace x→ t and φ(x)→ ~x(t), such that the sum over functions φ(x) becomes one
over paths ~x(t). The functional measure would be

∫
D~x.

Video: Lecture01Video12.mp4

Action. The Euclidean action can be written as

S =
∑
x

L (x) + Lin + Lf,

where L (x) depends on φ(x′) with x′ in the vicinity of x. Similarly, Lin depends on φ(xin) = φin
and Lf depends on φ(xf) = φf.
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Lattice φ4 theory. Here we take the action local with

L (x) =
K

8ε
[φ(x+ ε)− φ(x− ε)]2 + εV (φ(x)),

where the potential is given by

V (φ(x)) =
m2

2
φ(x)2 +

λ

8
φ(x)4.

The partition function is
Z =

∫
Dφ e−S[φ],

and a field expectation value is given by

〈φ(x)〉 = 1

Z

∫
Dφ e−S[φ]φ(x).

The functional integral is here still a finite-dimensional integral where the dimension corresponds
to the number of lattice points P . The action S[φ] is a function of P continuous variables φ(x).

Video: Lecture01Video13.mp4

Continuum limit. Let us now take the limit ε → 0 for xf − xin fixed. This means that the
number of lattice points P needs to diverge. The “lattice derivative”

∂xφ(x) =
1

2ε
[φ(x+ ε)− φ(x− ε)]

becomes a standard derivative, at least for sufficiently smooth configurations, where it exists. One
also has ∑

x

ε→
∫
dx,

and the Euclidean action becomes

S =

∫
dx {L (x) + Lin + Lf} ,

where now
L (x) =

K

2
[∂xφ(x)]

2
+ V (φ(x)).

The first term is called the kinetic term, the second the potential. In the limit ε→ 0 the action is
a functional of the functions φ(x).

Video: Lecture01Video14.mp4

Physical observables. As physical observables one takes those A[φ] for which the limit 〈A〉,
〈AB〉 and so on exists in the limit ε → 0. It will not always be easy to decide whether a given
A[φ] is a physical observable, but the definition is simple. For ε→ 0 the expression A[φ] is again a
functional.
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Functional integral. The functional integral in the continuum theory is now defined as the
“continuum limit” of the lattice functional integral for ε → 0. By definition, this is well defined
for “physical observables”. One may ask: what are such physical observables? The answer to this
question is not simple, in general. One should note here that also very rough functions φ(x) are
included in the functional integral, although their contribution is suppressed. If the kinetic term in
the Euclidean action Skin =

∑
x
K
8ε [φ(x+ ε)− φ(x− ε)]2 diverges for ε→ 0, i. e. S →∞, then one

has e−S → 0 and the probability of such configuration vanishes. The corresponding limits may not
be trivial, however, because very many rough configurations exist.

Additive rescaling of action. Let us consider a change S → S′ = S + C or L (x) → L ′(x) =

L (x)+ c̃ where C = (xf−xin)c̃ is a constant that is independent of the fields. The partition function
changes then like Z → Z ′ = e−CZ. Similarly,∫

Dφe−SA[φ]→ e−C
∫
Dφe−SA[φ].

This means that C drops out when one considers expectation values like 〈A〉! It can even happen
that C diverges for ε→ 0 such that formally Z → 0 or Z →∞. This is not a problem because the
absolute value of Z is irrelevant. The probability distribution p[φ] = 1

Z e
−S[φ] is unchanged.

NEW LECTURE

2.3 O(N) models in classical statistical equilibrium

Video: Lecture02Video01.mp4

Classical thermal fluctuations. For the time being we are concerned with static (equilibrium)
aspects of field theory models at non-zero temperature. These field theories can arise for example
from a lattice model such as the Ising model if the latter is probed on distances that are large
against the typical microscopic scale or inter-particle distance ε. Formally one can then take the
limit ε→ 0 as discussed in the previous subsection. It turns out (and will become more clear later
on), that in such a situation classical thermal fluctuations dominate over quantum fluctuations. We
discuss here therefore classical statistical field theories in thermal equilibrium.

Such theories have a probabilistic description in terms of functional integrals with weight given
by the Boltzmann factor e−βH . Here β = 1/T and we use now units where kB = 1 such that
temperature is measured in units of energy. In the following we will discuss possible forms of the
field theory and in particular the Hamiltonian H.

Universality classes and models. In condensed matter physics, microscopic Hamiltonians are
often not very well known and if they are, they are not easy to solve. However, in particular in the
vicinity of second order phase transitions, there are some universal phenomena that are independent
of the precise microscopic physics. This will be discussed in more detail later on, in the context
of the renormalization group. Essentially, this arises as a consequence of thermal fluctuations and
the fact that at a second order phase transition fluctuations are important on all scales. Roughly
speaking, a theory changes in form when fluctuations are taken into account and can approach a
largely universal scaling form for many different microscopic theories that happen to be in the same
universality class.

In the following we will discuss a class of model systems. These are particularly simple field
theories for which one can sometimes answer certain questions analytically, but one can also see
them as representatives for their respective universality classes. In the context of quantum field
theory, we will see that these field theory models gain a substantially deeper significance.
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Scalar O(N) models in d dimensions. Let us consider models of the form

βH[φ] = S[φ] =

∫
ddx

{
1

2
∂jφn∂jφn +

1

2
m2φnφn +

1

8
λ (φnφn)

2

}
. (2.2)

Here, φn = φn(x) with n = 1, . . . , N are the fields. We use Einsteins summation convention which
implies that indices that appear twice are summed over. We have formulated the theory in d spatial
dimensions (where in practice d = 3, 2, 1 or even 0 for condensed matter systems and d = 4 will
correspond to a quantum field theory after Wick rotation to Euclidean space). The index j is
accordingly summed in the range j = 1, . . . , d. Although not very precise, one sometimes calls S[φ]
the Euclidean microscopic action. The square brackets indicate here that the action depends on
the fields in a functional way, which means it depends not on single numbers but on the entire set
of functions of space φn(x), with x ∈ Rd and n = 1, . . . , N .

Fields as vectors. One can consider φn(x) as a vector in a vector space of infinite dimension
where components are labeled by the spatial position x and the discrete index n. If in doubt, one
can go back to a lattice model where x is discrete.

Applications. Models of the type (2.2) have many applications. For N = 1 they correspond in
a certain sense to the continuum limit of the Ising model. For N = 2 the model can equivalently
be described by complex scalar fields. It has then applications to Bose-Einstein condensates, for
example. For N = 3 and d = 3 one can have situations where the rotation group and the internal
symmetry group are coupled. This describes then vector fields, for example magnetization. Finally,
for N = 4 and d = 4, the model essentially describes the Higgs field after a Wick rotation to
Euclidean space.

Video: Lecture02Video02.mp4

Engineering dimensions. In equation (2.2) we have rescaled the fields such that the coefficient
of the derivative term is 1/2. This is always possible. It is useful to investigate the so-called
engineering scaling dimension of the different terms appearing in (2.2). The combination βH or
the action S must be dimensionless. Derivatives have dimension of inverse length [∂] = L−1 and
the fields must accordingly have dimension [φ] = L− d

2+1. One also finds [m] = L−1 and [λ] = Ld−4.
Note in particular that λ is dimensionless in d = 4 dimensions.

Video: Lecture02Video03.mp4

Symmetries. It is useful to discuss the symmetries of the model (2.2). Symmetries are (almost)
always very helpful in theoretical physics. In the context of statistical field theory, they are useful
as a guiding principle in particular because they still survive (in a sense to be defined) when the
effect of fluctuations is taken into account.

For the model (2.2) we have a space symmetry group consisting of rotations and translations,
as well as a continuous, so-called internal symmetry group of global O(N) transformations. We
now discuss them step-by-step.

Rotations. Rotations in space are transformations of the form

xj → x′j = Rjkxk.
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The matrices R fulfill the condition RTR = 1 and we demand that they connect continuously to
the unit matrix R = 1. This fixes det(R) = 1. Matrices of this type in d spatial dimensions form
a group, the special orthogonal group SO(d). Mathematically, this is a Lie group which implies
that all group elements can be composed of many infinitesimal transformations. An infinitesimal
transformation can be written as

Rjk = δjk +
i

2
δωmn J

jk
(mn),

where Jjk(mn) = −i(δmjδnk−δmkδnj) are the generators of the Lie algebra and δωmn are infinitesimal,
anti-symmetric matrices. One may easily count that there are d(d− 1)/2 independent components
of an anti-symmetric matrix in d dimensions and as many generators. Finite group elements can
be obtained as

R = lim
N→∞

(
1+

i

2

ωmn
N

J(mn)

)N
= exp

(
i

2
ωmnJ(mn)

)
.

Let us now work out how fields transform under rotations. We will implement them such that
a field configuration with a maximum at some position x before the transformation will have a
maximum at Rx afterwards. The field must transform as

φn(x)→ φ′n(x) = φn(R
−1x).

Note that derivatives transform as

∂jφn(x)→ (R−1)kj(∂kφn)(R
−1x) = Rjk(∂kφn)(R

−1x).

The brackets should denote that the derivatives are with respect to the full argument of φn and we
have used the chain rule. The action in (2.2) is invariant under rotations acting on the fields, as
one can confirm easily. Colloquially speaking, no direction in space is singled out.

Video: Lecture02Video04.mp4

Translations. Another useful symmetry transformations are translations x → x + a. The fields
get transformed as

φn(x)→ φ′n(x) = φn(x− a).

One easily confirms that the action (2.2) is also invariant under translations. Colloquially speaking,
this implies that no point in space is singled out.

Global internal O(N) transformations. There is another useful symmetry of the action (2.2)
given by rotations (and mirror reflections) in the “internal” space of fields,

φn(x)→ Onmφm(x).

The matrices Onm are here independent of the spatial position x (therefore this is a global and not a
local transformation) and they satisfy OTO = 1. Because we do not demand them to be smoothly
connected to the unit matrix, they can have determinant det(O) = ±1. These matrices are part of
the orthogonal group O(N) in N dimensions. It is an easy exercise to show that the action (2.2) is
indeed invariant under these transformations.

Video: Lecture02Video05.mp4
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Partition function and functional derivatives. The partition function for the model (2.2)
reads

Z[J ] =

∫
Dφ e−S[φ]+

∫
ddx{Jn(x)φn(x)} (2.3)

We have introduced here an external source term
∫
ddx{Jn(x)φn(x)} which can be used to probe the

theory in various ways. For example, one can take functional derivatives to calculate expectation
values,

〈φn(x)〉 =
1

Z[J ]

δ

δJn(x)
Z[J ]

∣∣∣
J=0

,

and correlation functions, e. g.

〈φn(x)φm(y)〉 = 1

Z[J ]

δ2

δJn(x)δJm(y)
Z[J ]

∣∣∣
J=0

=

∫
Dφ φn(x)φm(y) e−S[φ]∫

Dφ e−S[φ]
.

Video: Lecture02Video06.mp4

Classical field equation. In the the functional integral the contribution of field configurations
φ(x) is suppressed if the corresponding action S[φ] is large. In the partition function (2.3), large con-
tributions come mainly from the region around the minima of S[φ]−

∫
x
Jnφn, which are determined

by the equation

δ

δφ(x)

(
S[φ]−

∫
ddx{Jn(x)φn(x)}

)
=

δS[φ]

δφn(x)
− Jn(x) = 0.

This equation is the field equation or equation of motion of a classical field theory. For the model
(2.2) one has concretely

δS[φ]

δφn(x)
= −∂j∂jφn(x) +m2φn(x) +

1

2
λφn(x)φk(x)φk(x) = Jn(x).

Note that this field equation is from a mathematical point of view a second order, semi-linear,
partial differential equation. It contains non-linear terms in the fields φn, but the term involving
derivatives is linear; therefore semi-linear. The equation involves the Euclidean Laplace operator
∆ = ∂j∂j and is therefore of elliptic type (as opposed to hyperbolic or parabolic). This field
equation is the correspondence of Maxwells equations in electrodynamics for our scalar theory. The
source J corresponds to the electromagnetic current in Maxwell’s equations.

Video: Lecture02Video07.mp4

The O(N) symmetric potential. The model in (2.2) can be generalized somewhat to the action

S[φ] =

∫
ddx

{
1

2
∂jφn∂jφn + V (ρ)

}
, (2.4)

where ρ = 1
2φnφn is an O(N) symmetric combination of fields and V (ρ) is the microscopic O(N)

symmetric potential. The previous case (2.2) can be recovered for V (ρ) = m2ρ+ 1
2λρ

2.
More general, V (ρ) might be some function with a minimum at ρ0 and a Taylor expansion

around it,
V (ρ) = m2(ρ− ρ0) +

1

2
λ(ρ− ρ0)2 +

1

3!
γ(ρ− ρ0)3 + . . .
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If the minimum is positive, ρ0 > 0, the linear term vanishes of course, and one takes m2 = 0. In
contrast, if the minimum is at ρ0 = 0 one has in general m2 > 0. In practice, one uses either ρ0 or
m2 for a parametrization of V (ρ). It costs a certain amount of energy for the field to move away
from the minimum. In particular, for large λ such configurations are suppressed.

Video: Lecture02Video08.mp4

Homogeneous solutions. It is instructive to discuss homogeneous solutions of the field equation,
i.e. solutions that are independent of the space variable x. For vanishing source Jn(x) = 0, and the
model (2.4) we need to solve

∂

∂φn
V (ρ) = φn

∂

∂ρ
V (ρ) = 0.

This has always a solution φn = 0 and for ρ0 = 0 and positive m2 this is indeed a minimum of
the action S[φ]. For positive ρ0 the situation is more interesting, however. In that case, φn = 0 is
actually typically a maximum while the minimum is at φkφk = 2ρ0, i. e. at a non-zero field value.
One possibility is φ1 =

√
2ρ0 with φ2 = . . . = φn = 0, but there are of course many more. But such

a solution breaks the O(N) symmetry! One says that the O(N) symmetry is here spontaneously
broken on the microscopic level which technically means that the action S[φ] is invariant, but the
solution to the field equation (i. e. the minimum of S[φ]) breaks the symmetry. It is an interesting
and non-trivial question whether the symmetry breaking survives the effect of fluctuations. One
has proper macroscopic spontaneous symmetry breaking if the field expectation value 〈φn〉 is non-
vanishing and singles out a direction in field space. An example for spontaneous symmetry breaking
is the magnetization field in a ferromagnet.

2.4 Non-linear sigma models

Video: Lecture02Video09.mp4

Constrained fields. It is also interesting to consider models where ρ = ρ0 is fixed. In fact, they
arise naturally in the low energy limit of the models described above when the fields do not have
enough energy to climb up the effective potential. Technically, this corresponds here to the limit
λ→∞ with fixed ρ0 and can be implemented as a constraint

φn(x)φn(x) = 2ρ0. (2.5)

Note that with this constraint, the field is now living on a manifold corresponding to the surface of
an N -dimensional sphere, denoted by SN−1. One can parametrize the field as

φ1 = σ, φ2 = π1, . . . φN = πN−1,

where only the fields πn are independent while σ is related to them via the non-linear constraint

σ =
√
2ρ0 − ~π2.

Linear and non-linear symmetries. The symmetry group O(N) falls now into two parts. The
first consists of transformations O(N − 1) which only act on the fields πn but do not change the
field σ. Such transformations are realized in the standard, linear way

πn → O(N−1)
nm πm, σ → σ.
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In addition to this, there are transformations in the complement part of the group (rotations that
also involve the first component σ). They act infinitesimally on the independent fields like

δπn = δαnσ = δαn
√
2ρ0 − ~π2, δσ = −δαnπn,

where δαn are infinitesimal parameters (independent of the fields). Note that this is now a non-
linearly realized symmetry in the internal space of fields. This explains also the name non-linear
sigma model.

Action. Let us now write an action for the non-linear sigma model. Because of the constraint
(2.5), the effective potential term in (2.4) becomes irrelevant and only the kinetic term remains,

S[π] =

∫
ddx

{
1

2
∂jφn∂jφn

}
=

∫
ddx

{
1

2
Gmn(~π)∂jπm∂jπn

}
.

In the last equation we rewrote the action in terms of the independent fields πn and introduced the
metric in the field manifold

Gmn(~π) = δmn +
πmπn

2ρ0 − ~π2
.

The second term originates from

∂jσ = ∂j
√
2ρ0 − ~π2 =

1√
2ρ0 − ~π2

πm∂jπm.

Functional integral. Note that also the functional integral is now more complicated. It must
involve the determinant of the metric Gmn to be O(N) invariant. For a single space point x one
has ∫ ∏

n

dφn →
∫ ∏

n

dφn δ(φnφn − 2ρ0) = const×
∫ √

det(G(~π))
∏
n

dπn.

Only in the presence of the determinant det(G(~π)) the functional measure preserves the O(N)

symmetry. Accordingly, the functional integral for the non-linear sigma model must be adapted to
contain the factor det(G(~π)).

Ising model. Everything becomes rather simple again for N = 1. The constraint φ(x)2 = 2ρ0
allows only the field values φ(x) = ±

√
2ρ0. By a multiplicative rescaling of φ(x) one can obtain

2ρ0 = 1. On a discrete set of space points (a lattice), this leads us back to the Ising model.

NEW LECTURE

2.5 Classical statistical thermodynamics

Video: Lecture02Video10.mp4

Hamiltonian and partition function. We have now all the ingredients for a microscopic for-
mulation of thermodynamics. The well-known macroscopic thermodynamic laws all follow from
this microscopic formulation. Furthermore, the behaviour of particular systems is encoded in the
partition function which yields the “equation of state” of a given system.

The starting point is the classical Hamiltonian H for a given model. It is a functional of the
microscopic variables φ, H[φ]. For our example of O(N)-models, these variables are the fields
φn(x), or for the non-linear σ-models (including the Ising model), the constrained fields πn(x). The
Hamiltonian associates to each field configuration an energy H[φ]. The classical action reads

S[φ] = βH[φ] =
H[φ]

T
,
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with β = 1/T the inverse temperature. The functional integral (2.3) yields for vanishing source
J = 0 the partition function Z(β). The mean energy is found as

E = 〈H〉 = −∂ lnZ(β)
∂β

,

relating E to the temperature T . In this simplest version Z(β) is the partition function of the
canonical ensemble, and the entropy S̃ is defined as

S̃ =

(
1− β ∂

∂β

)
lnZ(β).

Particle number. In the case of systems with a preserved particle number N we can also include
in the action a term −βµN [φ], with N [φ] the particle number and µ the chemical potential,

S = βH[φ]− βµN [φ].

In this case the partition function Z(β, µ) is the grand canonical partition function, with mean
particle number N , mean energy E and entropy S̃ given by

N =
1

β

∂

∂µ
lnZ(β, µ), E = − ∂

∂β
lnZ(β, µ) + µN,

S̃ =

(
1− β ∂

∂β

)
lnZ(β, µ).

All thermodynamic relations follow from this setting, and the particular form of the grand canonical
potential or Gibbs free energy Ω = − lnZ(β, µ)/β yields the equation of state of the system.

Video: Lecture02Video11.mp4

Magnetization. Source terms such as a homogeneous magnetic field for the case where φn(x)
describes magnetization, can be added. If we take ~φ(x) to be a microscopic magnetization density
and ~B a constant magnetic field, the action becomes

S = βH[φ]− βκ
∫
x

φn(x)Bn. (2.6)

The macroscopic magnetization ~M as a function of ~B and temperature T obtains from Z(β, ~B) as

Mn =
T

κ

∂ lnZ

∂Bn
.

Video: Lecture02Video12.mp4

Pressure. If one wants to investigate questions related to volume and pressure, one has to confine
the system in a box with volume V with suitable, for example periodic, boundary conditions for
φ(x). The partition function depends in this case on V as an additional parameter, and the pressure
p obeys

p =
1

β

∂

∂V
lnZ(β, µ, V ).

The functional integral is an object that you should know well from your course on statistical
physics.
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3 Operators and transfer matrix

Video: Lecture03Video01.mp4

Our approach to quantum field theory will be based on the discussion of functional integrals. These
are a generalization of ordinary, multi-dimensional integrals to the limit of infinitely many degrees
of freedom, i. e. infinite dimensional integrals. For bosons, the variables or fields all commute. (For
fermions we will later use the anti-commuting Grassmann variables). One has learned that non-
commuting operators play a crucial role in quantum mechanics. These non-commuting structures
are not immediately visible in the bosonic functional integral which on first sight only contains
commuting quantities. One may wonder how such integrals can describe the non-commutative
properties of quantum mechanics. In the following we want to reveal the structural relation between
the operator formalism, known from quantum mechanics, and the functional integral.

3.1 Transfer matrix for the Ising model

Boundary problem for Ising chain. Let us consider the one-dimensional Ising model

S =
∑
x

L (x) + Lin + Lf,

with a next-neighbor interaction L (x) = −βs(x+ ε)s(x) and initial and final boundary terms Lin
and Lf. (We combine interaction strength and inverse temperature into a single dimensionless
parameter β.) We choose boundary conditions such that s(xin) = 1 and s(xf) = 1. This can be
implemented by

e−Lin = δ(s(xin)− 1), e−Lf = δ(s(xf)− 1),

which in turn can be implemented by limits like

Lin = − lim
κ→∞

κ[s(xin)− 1].

The question arises now: What is the expectation value 〈s(x)〉 for x in the bulk, i. e. between the
endpoints xin and xf ? The single configuration with minimal action has all spins aligned, s(x) = 1.
There are, however, many more configurations where some of the spins take negative values. Even
though the particular probability for one such configuration is smaller, this is outweighed by the
number of configurations. Qualitatively one expects something like in figure 1. In the bulk, far

〈s(x)〉

xin xf

x

−1

+1

0

Figure 1. Ising chain with spins at the endpoints fixed to s(xin) = +1 and s(xf) = −1. What is 〈s(x)〉 for
x between the endpoints?

away from the boundaries, the average spin may vanish to a good approximation. We look for a
formalism to compute this behaviour as a function of the parameter β.

Video: Lecture03Video02.mp4
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Product form of probability distribution. We can write e−S in product form

e−S = e−Lf+
∑

x L (x)+Lin = f̄f

[∏
x

e−L (x)

]
fin = f̄f

[∏
x

K (x)

]
fin

with boundary terms f̄f = e−Lf and fin = e−Lin . Here K (x) depends on the two spins s(x) and
s(x+ ε), while fin depends on s(xin) and f̄f depends on s(xf).

Occupation number basis. Any function f(s(x)) that depends only on the spin s(x) can be
expanded in terms of two basis functions hτ (s(x)) where τ = 1, 2,

f(s(x)) = q1(x)h1(s(x)) + q2(x)h2(s(x)).

We choose the occupation number basis with

h1(s) =
1 + s

2
= n, h2(s) =

1− s
2

= (1− n).

This is easily seen by noting that the occupation number n has only the values 1 (for s = 1) and 0
(for s = −1), such that

n2 = n.

Any polynomial in s can be written as an+ b, such that any f(s) can indeed be expressed in terms
of the two basis functions.

We note some properties of the basis functions. The relation

hτ (s)hρ(s) = δτρhρ(s)

is simply verified by h2τ (s) = hτ (s) and h1(s)h2(s) = 0). Other useful relations are∑
s=±1

hτ (s) = hτ (s = 1) + hτ (s = −1) = 1,

∑
τ

hτ (s) = h1(s) + h2(s) = 1,

and finally by combination ∑
s=±1

hτ (s)hρ(s) = δτρ.

Video: Lecture03Video03.mp4

Transfer matrix. Let us now expand K (x) in terms of the basis functions hτ (s(x + ε)) and
hρ(s(x)),

K (x) = T̂τρ(x)hτ (s(x+ ε))hρ(s(x)).

We use here the Einstein summation convention which implies summation over the indices τ and ρ.
The expansion coefficients T̂τρ(x) are the elements of the transfer matrix T̂ . This is a 2× 2 matrix.
Indeed using shorthands n̄ = n(t + ε), n = n(t) and similar for h̄τ , hτ , an arbitrary K (x) can be
written as

K = an̄n+ bn̄+ cn+ d

= T̂11h̄1h1 + T̂12h̄1h2 + T̂21h̄2h1 + T̂22h̄2h2.

– 16 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture03Video03.mp4


Matrix product for transfer matrix. Consider now the product of two neighbouring factors
K (x+ ε) and K (x), summed over the common spin s(x+ ε)∑
s(x+ε)

K (x+ ε)K (x) =
∑
s(x+ε)

hτ (s(x+ 2ε))T̂τρ(x+ ε))hρ(s(x+ ε))hα(s(x+ ε))T̂αβ(x)hβ(s(x))

=
∑
ρ

∑
s(x+ε)

hτ (s(x+ 2ε))T̂τρ(x+ ε)T̂ρβ(x)hρ(s(x+ ε))hβ(s(x))

=
∑
ρ

hτ (s(x+ 2ε))T̂τρ(x+ ε)T̂ρβ(x)hβ(s(x))

= hτ (s(x+ 2ε))
[
T̂ (x+ ε)T̂ (x)

]
τβ
hβ(s(x)).

The second line uses hτhρ = δτρhρ and the third line
∑
s hρ = 1. We observe that the matrix

product of transfer matrices appears in this product. For the Ising model the factors K (x) are the
same for all x (except for different spins being involved), and therefore T̂ is independent of x. One
simply finds ∑

s(x+ε)

K (x+ ε)K (x) = hτ (s(x+ 2ε))
[
T̂ 2
]
τρ
hρ(s(x)).

Doing one more similar step yields∑
s(x+2ε)

∑
s(x+ε)

K (x+ 2ε)K (x+ ε)K (x) = hτ (s(x+ 3ε))
[
T̂ (x+ 2ε)T̂ (x+ ε)T̂ (x)

]
τρ
hρ(s(x)),

and so on.

Video: Lecture03Video04.mp4

Partition function as product of transfer matrices. One can write the partition function as

Z =

 xf∏
x=xin

∑
s(x)

 f̄f(s(xf))

(xf−ε)∏
x=xin

K (x)

 fin(s(xin))

=
∑
s(xf)

∑
s(xin)

f̄f(s(xf))hτ (s(xf))
[
T̂ (xf − ε) · · · T̂ (xin)

]
τρ
hρ(s(xin))fin(s(xin))

=
∑
s(xf)

∑
s(xin)

q̄β(xf)hβ(s(xf))hτ (s(xf))
[
T̂ · · · T̂

]
τρ
hρ(s(xin)) q̃α(s(xin))hα(s(xin)).

Here we have expanded f̄f and fin in terms of the basis functions,

f̄f(s(xf)) =q̄β(xf)hβ(s(xf)),

fin(s(xin)) =q̃α(xin)hα(s(xin)).

Performing the sums over the initial and final spins leads to

Z = q̄τ (xf)
[
T̂ (xf − ε) · · · T̂ (xin)

]
τρ
q̃ρ(xin).

This has the structure of an initial vector (or wave function) q̃(xin) multiplied by a matrix, and
then contracted with a final vector (or conjugate wave function) q̄(xf). We can use the bracket
notation familiar from quantum mechanics,

Z = 〈q̄(xf)|T̂ (xf − ε) · · · T̂ (xin)|q̃(xin)〉.
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This product formulae resembles quantum mechanics if one associates the transfer matrix with
the infinitesimal evolution operator U(t)

ψ(t+ ε) = U(t)ψ(t),

where
U(t) = eiεH(t).

With
ψ(tf) = U(tf − ε) · · ·U(tin)ψ(tin),

one can write the transition amplitude in the form

〈φ(tf)|ψ(tf)〉 = 〈φ(tf)U(tf − ε) · · ·U(tin)|ψ(tin)〉.

Formally, the map between quantum mechanics and the classical statistics of the Ising model is

Quantum mechanics Classical statistics
U T̂

t x
ψ q̃

φ̄ q̄

A main difference to quantum mechanics is that T̂ does not preserve the norm of the wave function.

Video: Lecture03Video05.mp4

Computation of the transfer matrix. Let us compute the transfer matrix for the Ising model.
We employ the defining relation of the transfer matrix by an expansion of the local factor in terms
of basis functions,

eβs̄s = T̂τρ hτ (s̄)hρ(s),

where we use the shorthand notation

s̄ = s(x+ ε), s = s(x).

Using the decomposition
s = h1 − h2 = n− (1− n) = 2n− 1,

and
βs̄s = β(h̄1 − h̄2)(h1 − h2) = β(h̄1h1 + h̄2h2 − h̄1h2 − h̄2h1),

one obtains by analyzing the four configurations of neighboring spins (s̄, s),

eβs̄s = eβ(h̄1h1 + h̄2h2) + e−β(h̄1h2 + h̄2h1).

From this one can read off the transfer matrix

T̂ =

(
eβ e−β

e−β eβ

)
.

In general the transfer matrix T̂ is not a unitary matrix as for quantum mechanics. For the Ising
model T̂ (x) does not depend on x so that one obtains

Z = q̄τ (xf)
[
T̂P−1

]
τρ
q̃ρ(xin).

NEW LECTURE

Video: Lecture03Video06.mp4
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Periodic Boundary Condition. Replace Lf + Lin by −βs(xf)s(xin). This closes the circle by
defining xf and xin as next neighbours. The partition function becomes

Z = Tr
{
T̂P
}
.

Diagonalising T̂ solves the Ising model in a simple way,

Z = λ+
P + λ−

P ,

with λ± the two eigenvalues of the transfer matrix,

λ+ = 2 cosh(β), λ− = 2 sinh(β).

In the limit P → ∞ only the largest eigenvalue λ+ contributes.If we restore for β the product of
coupling strength and inverse temperature, this is the exact solution for the canonical partition
function for the Ising chain. The thermodynamics follows from there.

Video: Lecture04Video01.mp4

Generalisations. The transfer matrix can be generalised to an arbitrary number of Ising spins
sγ(x). For M spins, γ = 1, . . . ,M , the transfer matrix T̂ is an N×N matrix, N = 2M , τ = 1, . . . , N .

For example, if M = 2, T̂ is a 4×4 matrix. The basis functions in the occupation number basis
are taken as

h1 = n1n2, h2 = (1− n1)n2,
h3 = n1(1− n2), h4 = (1− n1)(1− n2).

This structure can be extended to arbitrary M . The basis functions obey the same rules as discussed
for M = 1. In particular, γ may denote a second coordinate y such that,

sγ(x)→ s(x, y).

Video: Lecture04Video02.mp4

Two-dimensional Ising model. In this way one can define formally the transfer matrix for the
two-dimensional Ising model. The coordinate x denotes now lines in a two-dimensional plane, see
fig. 2. More generally, in d dimensions, x denotes the position on a particular d − 1 dimensional
hypersurface. The transfer matrix contains the information of what happens if one goes from one
hypersurface to the next one.

3.2 Non-commutativity in classical statistics

Video: Lecture04Video03.mp4

Local observables and operators. A local observable A(x) depends only on the local spin s(x).
We want to find an expression for its expectation value in terms of the transfer matrix. For this
purpose we consider the expression∑

s(x)

K (x)A(x)K (x− ε) =
∑
s(x)

hτ (x+ ε)T̂τρ(x)hρ(x)Aγ(x)hγ(x)hα(x)T̂αβ(x− ε)hβ(x− ε),
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y

x

x x + ε

Figure 2. Illustration of the two dimensional Ising model.

where we use the shorthand
hτ (x) = hτ (s(x)),

and the expansion
A(x) = Aγ(x)hγ(s(x)).

We employ
Aγ(x)

∑
s(x)

hρ(x)hγ(x)hα(x) =
∑
γ

Aγ(x)δργδγα,

and introduce the diagonal operator

(Â(x))ρα =
∑
γ

Aγ(x)δργδγα =

(
A1(x) 0

0 A2(x)

)
.

The last identity refers to the single spin Ising chain. The two observables A1 and A2 correspond
to the values that the observable takes in the two local states of the Ising chain. The fact that the
operator is diagonal reflects properties of the specific occupation number basis. For a general basis
the operator is not diagonal.

Video: Lecture04Video04.mp4

In terms of this operator we can write∑
s(x)

K (x)A(x)K (x− ε) = hτ (x+ ε)T̂τρ(x)Âρα(x)T̂αβ(x− ε)hβ(x− ε).

The expectation value of A(x) obtains by an insertion of the operator Â(x),

〈A(x)〉 = 1

Z

∫
Dse−SA(x)

=
1

Z
q̄τ (xf)[T̂ (xf − ε) · · · T̂ (x)Â(x)T̂ (x− ε) · · · T̂ (xin)]τρq̃ρ(xin)

The operators T̂ (x) and Â(x) do in general not commute,

[T̂ (x), Â(x)] 6= 0.

Non-commutativity is present in classical statistics if one asks questions related to hypersurfaces!
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Video: Lecture04Video05.mp4

Let us concentrate on observables that are represented by operators Â which are independent of x.
As an example we take the local occupation number n(x) = 2s(x)− 1. The associated operator is

N̂ =

(
1 0

0 0

)
.

If we want to obtain the expectation value at x, we need to compute

〈n(x)〉 = 1

Z
〈q̄f |T̂ (xf − ε) · · · T̂ (x)N̂ T̂ (x− ε) · · · T̂ (xin)|q̃in〉,

where we employ a notation familiar from quantum mechanics,

〈q̄f|M̂ |q̃in〉 = (q̄f(xf))τM̂τρ(qin(xin))ρ.

A normalisation with Z = 1 brings the expression even closer to quantum mechanics. We adopt it
in the following.

Video: Lecture04Video06.mp4

We may next consider the operator

N̂+ = T̂ (x)−1 N̂ T̂ (x), (3.1)

and compute
〈q̄f|T̂ (xf − ε) · · · T̂ (x)N̂+T̂ (x− ε) · · · T̂ (xin)|q̃in〉 = 〈n(x+ ε)〉.

When we use the same prescription (with x singled out as a reference point) the operator N̂

corresponds to the observable n(x), while N̂+ is associated to the observable n(x+ε). The operator
N̂+ is not diagonal and does not commute with N̂ ,

[N̂+, N̂ ] 6= 0.

We conclude that non-commuting operators do not only appear in quantum mechanics. The ap-
pearance of non-commuting structures is an issue of what questions are asked and which formalism
is appropriate for the answer to these questions. One can actually device a Heisenberg picture
for classical statistical systems in close analogy to quantum mechanics. The Heisenberg operators
depend on x and do not commute for different x.

3.3 Classical Wave functions

Video: Lecture04Video07.mp4

We have seen how operators and non-commuting structures appear within classical probabilistic
systems. The transfer matrix formalism is a type of Heisenberg picture for classical statistics. There
is also a type of Schrödinger picture with wave functions as probability amplitudes. This will be
discussed in the present lecture.

Video: Lecture04Video08.mp4
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Local probabilities. We start from the ”overall probability distribution” given for the Ising chain
by

p[s] =
1

Z
e−S[s], Z =

∫
Dse−S[s].

A local probability distribution at x, which involves only the spin s(x), can be obtained by summing
over all spins at x′ 6= x,

pl(s(x)) =
1

Z

∏
x′ 6=x

∑
s(x′)=±1

 e−S ≡ pl(x).
It is properly normalized, ∑

s(x)=±1

pl(s(x)) = 1.

The expectation value of the spin s(x) can be computed from pl(s(x)),

〈s(x)〉 =
∑

s(x)=±1

pl(s(x))s(x).

If there would be a simple evolution law how to compute pl(x+ ε) from pl(x), one could solve the
boundary value problem iteratively, starting from the initial probability distribution pl(xin). The
evolution law would permit us to infer pl(x), and therefore to compute the expectation value of
s(x). Unfortunately, such a simple evolution law does not exist for the local probabilities. We will
see next that it exists for local wave functions or probability amplitudes.

Video: Lecture04Video09.mp4

Wave Functions. Define for a given x the partial actions S− and S+ by

S− =Lin +

x−ε∑
x′=xin

L (x′),

S+ =

xf−ε∑
x′=x

L (x′) + Lf,

S =S− + S+.

Here S− depends only on the Ising spins s(x′) with x′ ≤ x, and S+ depends on spins s(x′) with
x′ ≥ x.

The wave function f(x) is defined by

f(x) =

 x−ε∏
x′=xin

∑
s(x′)=±1

 e−S− .

Because we sum over all s(x′) with x′ < x, and S− depends only on those s(x′) and on s(x), the
wave function f(x) depends only on the single spin s(x). Similarly, we define the conjugate wave
function

f̄(x) =

 xf∏
x′=x+ε

∑
s(x′)=±1

 e−S+ ,

which also depends only on s(x).

Video: Lecture04Video10.mp4
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Wave functions and local probability distribution. The product

f̄(x)f(x) =

∏
x′ 6=x

∑
s(x′)=±1

 e−S = Z pl(x),

is closely related to the local probability distribution pl(x). One has∑
s(x)=±1

f̄(x)f(x) = Z.

In the following we employ the possibility of an additive renormalisation S → S + C in order to
normalise the partition function to Z = 1. This can be achieved by adding a constant to L (x),
and similarly for the boundary terms Lin and Lf. With Z = 1 the wave functions f̄ and f are a
type of probability amplitudes, similar as in quantum mechanics. We have, however, two distinct
types of probability amplitudes, f and f̄ .

Video: Lecture04Video11.mp4

Quantum rule for expectations values of local observables. The expectation value of a
local observable A(x) can be written in terms of a bilinear in the wave functions.

〈A(x)〉 =
∑

s(x)=±1

A(x)pl(x)

=
1

Z

∑
s(x)=±1

f̄(x)A(x)f(x).

We expand again in the occupation number basis

f(x) = q̃ρ(x)hρ(x),

f̄(x) = q̄τ (x)hτ (x),

A(x) = Aσ(x)hσ(x).

Here q̃ρ(x) are the components of the wave function in the occupation number basis at x, and q̄τ (x)
are the components of the conjugate wave function. This yields for the expectation values

〈A(x)〉 = 1

Z
q̄τ (x)Aσ(x)q̃ρ(x)

∑
s(x)=±1

hτ (x)hσ(x)hρ(x).

Using again the product properties of the basis functions one finds the “quantum rule” for the
expectation value as a bilinear in the wave functions,

〈A(x)〉 = 1

Z
〈q̄(x)|Â(x)|q̃(x)〉

=
1

Z

∑
σ

q̄τ (x)Aσ(x)δτσδσρq̃ρ(x).
(3.2)

Knowledge of the wave function at x is therefore sufficient for the computation of 〈A(x)〉.

Video: Lecture04Video12.mp4
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In particular, for Z = 1 the rule (3.2) is very close to quantum mechanics, except that q̃ and q̄ are
real wave functions and q̄ is not related to q̃. As in quantum mechanics, it associates an operator
to an observable, and employs the concept of probability amplitudes. We can not only express the
expectation values of local observables as n(x), represented by N̂(x), in this way. The relation (3.2)
also holds for the observable n(x+ ε), represented by the operator N̂+ in equation (3.1). The rule
(3.2) may be called the “quantum rule”. In contrast to quantum mechanics it is not a new postulate.
It follows from the basic probabilistic definition of expectation values in classical statistics by an
appropriate organization of the probabilistic information.

Video: Lecture04Video13.mp4

Evolution equation for the wave function. In contrast to the local probability distribution,
the x-dependence of the wave functions is a simple linear evolution law. This makes the wave
function the appropriate object for the discussion of boundary value problems and beyond. From
the definition of the wave function f(x) one infers immediately

f(x+ ε) =
∑

s(x)=±1

K (x)f(x).

As it should be, f(x + ε) depends on the spin s(x + ε). The expansion in the occupation number
basis yields

f(x+ ε) = q̃τ (x+ ε)hτ (x+ ε)

=
∑

s(x)=±1

hτ (x+ ε)T̂τρ(x)hρ(x) q̃σ(x)hσ(x)

= T̂τρ(x)q̃ρ(x)hτ (x+ ε).

The linear evolution operator for the wave function is the transfer matrix.

q̃τ (x+ ε) = T̂τρ(x)q̃ρ(x),

or, in a vector matrix notation
q̃(x+ ε) = T̂ (x)q̃(x).

Video: Lecture04Video14.mp4

By the same type of argument one obtains for the conjugate wave function (as a row vector)

q̄(x) = q̄(x+ ε)T̂ (x),

or, written as a column vector,
q̄(x) = T̂T (x)q̄(x+ ε),

and
q̄(x+ ε) = (T̂T (x))−1q̄(x).

In cases where T̂ is orthogonal, T̂−1 = T̂T , both q̄ and q̃ obey the same evolution law. The evolution
law is linear. The superposition law familiar from quantum mechanics follows. If q̃1(x) and q̃2(x)

are two solutions of the evolution equation, this also holds for linear combinations αq̃1(x)+βq̃2(x).

Video: Lecture04Video15.mp4
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Continuous evolution. For a sufficiently smooth wave function q̃(x) one defines the derivative

∂q̃

∂x
=

1

2ε
(q̃(x+ ε)− q̃(x− ε))

=
1

2ε
(T̂ (x)− T̂−1(x− ε))q̃(x).

This yields the generalised Schrödinger equation

∂xq̃ =
∂

∂x
q̃ =Wq̃,

W (x) =
1

2ε

[
T̂ (x)− T̂−1(x− ε)

]
.

For the same L at every x, both T̂ and W are independent of x,

W =
1

2ε

[
T̂ − T̂−1

]
.

Video: Lecture04Video16.mp4

Step evolution operator. An additive renormalization of the action corresponds to a multi-
plicative renormalization of the transfer matrix. The step evolution operator is the transfer matrix
normalized such that the absolute value of the largest eigenvalue equals unity. As the name indi-
cates, the step evolution operator plays the same role as the discrete evolution operator in quantum
mechanics. For the Ising model, the step evolution operator is given by

T̂ =
1

2 cosh(β)

(
eβ e−β

e−β eβ

)
.

Equilibrium state. If only one eigenvalue of the step evolution operator equals unity in absolute
magnitude, the eigenstate to this eigenvalue is the unique equilibrium state q̃∗. For the Ising model
the equilibrium wave function is

q̃∗ ∼
(
1

1

)
.

The equilibrium state is invariant under the evolution.

Video: Lecture04Video17.mp4

Boundary value problem. For given boundary conditions q̃(xin) and q̄(xf) are fixed. One can
use the evolution equation to compute both q̃(x) and q̄(x). The value of a local observable A(x),
with associated operator Â(x), follows from

〈A(x)〉 = 1

Z
〈q̄(x)|Â(x)|q̃(x)〉.

Choose for q̃(xin) a decomposition into eigenfunctions of the transfer matrix T̂ , e. g. with eigenvalues
λ+ and λ−,

q̃(xin) = c+(xin)q̃+ + c−(xin)q̃−,

such that
q̃(x) = q̃(xin +Nε) = c+(xin) (λ+)

N q̃+ + c−(xin) (λ−)
N q̃−.
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For λ+ = 1, the corresponding eigenfunction is the equilibrium wave function,

λN+ q̃+ = q̃+.

For λ− < 1 the contribution ∼ (λ−)
N q̃− vanishes for large N . This describes the approach to

equilibrium. The correlation length is directly related to λ−. Similar rules are valid for the conjugate
wave function. For a finite distance from the boundary we can employ the two wave functions in
order to compute the expectation value of s(x) in dependence on given boundary conditions.

Video: Lecture04Video18.mp4

Generalisations and summary. The discussion for the Ising chain with a single spin at each
site is easily generalised to M spins at each site, to multi-dimensional Ising models and to arbitrary
overall probability distributions. The main purpose of this lecture was to give you a basic under-
standing how the functional integral and the operator formalism of quantum mechanics are related.
When we discuss later the functional integral for relativistic quantum field theories no basic new
concepts need to be introduced for the translation to the still more familiar operator formalism that
is the starting point of most textbooks.

All these properties point to a close connection between quantum mechanics and classical
statistics. Indeed, quantum mechanics can be understood as a sub-field of classical statistics.
Quantum systems are realized as appropriate subsystems of “classical” probabilistic systems. This
is not the topic of this lecture. If you are interested, you may read “The probabilistic world” [arXiv
2011.02867].

NEW LECTURE
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4 Quantum Fields and Functional Integral

Video: Lecture05Video01.mp4

In this lecture we will start from many body quantum mechanics and construct the functional
integral for a quantum field theory. In the last lecture we have shown how the operator formalism
emerges from a functional integral, in short: functional integral→ operators. In this lecture we will
proceed in the opposite direction. Starting from a formulation of many body quantum mechanics in
terms of operators we will derive the equivalent functional integral, in short: operators→ functional
integral. The aim of the lecture is once more to show the equivalence of the functional integral
and the operator formalism. Historically, this is the way how Feynman introduced the functional
integral for quantum mechanics. This construction of the functional integral can be found in many
textbooks on quantum field theory at a somewhat later stage. The present lecture should also help
to establish this contact.

In the present lecture we introduce quantum fields, establishing in this way the basic concepts of
quantum field theory in the operator formalism. We construct the functional integral for quantum
fields. We take the non-relativistic example of phonons. This demonstrates that quantum field
theory is not only needed for relativistic particle physics. Phonons are perhaps also easier to
understand intuitively than photons. There is not much conceptual difference between phonons
and photons. Phonons are excitations in a solid, photons are excitations of the vacuum. Photons
are relativistic.

4.1 Phonons as quantum fields in one dimension

Video: Lecture05Video02.mp4

One-dimensional crystal. Consider a one-dimensional crystal of atoms with lattice sites xj = jε

and lattice distance ε. Denote the displacement from the equilibrium position at xj by Qj and the
momentum of the atoms by Pj . The Hamiltonian for small displacements can be taken quadratic
in Qj , and we decompose H = H0 +Hnn with

H0 =
∑
j

(
P 2
j

2M
+
D

2
Qj

2

)
, Hnn = −B

2

∑
j

Qj+1Qj .

Here Qj and Pj are quantum operators with the usual commutation relations

[Qj , Pk] = iδjk, [Qj , Qk] = 0, [Pi, Pj ] = 0.

We use units where ~ = 1.
The term H0 alone describes decoupled harmonic oscillators at every lattice site j. The term

Hnn couples the oscillators by a next neighbour interaction. Phonons are thus described by a
coupled system of harmonic oscillators.

Quantum fields. The displacements are an example for a quantum field,

Qj = Q(x).

Here x is a discrete variable labelling the lattice sites. In the continuum limit x will become a
continuous position variable. The field Q(x) is an operator field. For each x one has an operator
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Q(x). Often such operator fields are called ”quantum fields”. We use this expression here as well,
but not exclusively for the operator fields in the operator formalism. We will also employ the notion
of quantum fields in the equivalent functional integral formalism that does not employ operators
for its formulation. Also the momentum field P (x) = Pj is an operator field or quantum field. One
may consider the pairs {Qj , Pj} as a common (two-component) quantum field.

Video: Lecture05Video03.mp4

Occupation number basis. At each site j we define annihilation and creation operators aj and
a†j . The annihilation operators are

aj =
1√
2

(
(DM)

1
4Qj + i(DM)−

1
4Pj

)
,

and the creation operators are given by

a†j =
1√
2

(
(DM)

1
4Qj − i(DM)−

1
4Pj

)
.

The creation operators are the hermitian conjugates of the annihilation operators, a†j = (aj)
†. The

commutation relations are

[aj , a
†
k] = δjk, [aj , ak] = 0, [a†j , a

†
k] = 0.

This can be verified by employing the commutation relations for Q and P . Both a(x) = aj and
a†(x) = a†j are operator fields.

Inserting
Q(x) = Qj =

1√
2
(DM)−

1
4

(
aj + a†j

)
,

and similar for Pj , we can express the Hamiltonian in terms of a and a†,

H0 = ω0

∑
j

(
a†jaj +

1

2

)
= ω0

∑
j

(
n̂j +

1

2

)
,

with the frequency ω0 =
√
D/M . You recognise the standard treatment of harmonic oscillators in

quantum mechanics. Occupation numbers at positions xj are expressed in terms of the operator
n̂j = a†jaj . They have the eigenvalues nj = (0, 1, 2, . . .). At each site j there are a number nj of
“localised phonons”. For B = 0 the system describes uncoupled harmonic oscillators, one at each
lattice site.

We next discuss the effects of the next-neighbour interaction. It involves products of aj , aj+1

etc., according to

Hnn = −B
2

∑
j

Qj+1Qj

= −B
2

(DM)−
1
2

2

∑
j

(
aj+1 + a†j+1

)(
aj + a†j

)
.

Video: Lecture05Video04.mp4
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Momentum Space. It is possible to diagonalize H by a discrete Fourier transform. To this end,
we write

aj =
1√
N

∑
q

eiεqjaq, a†j =
1√
N

∑
q

e−iεqja†q.

Due to the finite lattice distance the sum is periodic in q,∑
q

=
∑

|q|≤π
ε

,

and N =
∑
j is a normalization factor corresponding to the number of lattice sites. If we place

the sites of the lattice on a torus with circumference L, the momentum sum is a discrete sum, with
level distance given by 2π/L. If you are not familiar with these formulae you may look up in some
text book a chapter on discrete Fourier transforms. It is the most simple and basic case for a lattice
in solids.

Video: Lecture05Video05.mp4

Hamiltonian. We next express the Hamiltonian in terms of the Fourier modes. Insertion of

Qj =
1√
2N

(DM)−
1
4

∑
q

(eiεqjaq + e−iεqja†q)

=
1√
2N

(DM)−
1
4

∑
q

eiεqj
(
aq + a−q

†) ,
yields

Hnn = − B

4N
(DM)−

1
2

∑
j

∑
q

∑
q′

eiεq
′jeiεq(j+1)

(
aq + a−q

†) (a′q + a−q′
†) .

We use the following identity for discrete Fourier transforms,∑
j

eiε(q+q
′)j = N δq,−q′ ,

which corresponds to the familiar continuum expression∫
dx ei(q+q

′)x = 2πδ(q + q′).

One obtains

Hnn = −b
∑
q

eiεq
(
aq + a−q

†) (a−q + a†q
)

= −b
∑
q

cos(εq)
(
aq + a†q

) (
a−q + a†−q

)
,

with b = B
4 (DM)−

1
2 . Similarly, one has

H0 = ω0

∑
q

(
a†qaq +

1

2

)
.

Video: Lecture05Video06.mp4
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Momentum modes. At this stage, the Hamiltonian H involves separate q-blocks,

H =
∑
q

Hq,

with
Hq = ω0

(
a†qaq +

1

2

)
− b cos(εq)

(
aq + a−q

†
)(
a−q + a†q

)
.

Each block involves q and −q. What remains is the diagonalization of the q-blocks, done by the
Bogoliubov transformation,

aq = α(q)Aq + β(q)A†
−q, a†q = α(q)A†

q + β(q)A−q,

where the commutation relations

[aq, a
†
q] = 1, [Aq, A

†
q] = 1,

require
α(q)2 − β(q)2 = 1.

Video: Lecture05Video07.mp4

The coefficients α(q) are determined such that the Hamiltonian is diagonal,

H =
∑
q

ωq

(
A†
qAq +

1

2

)
.

The algebra is straightforward and one finds for the squared frequencies of the independent oscilla-
tion modes

ωq
2 =

D

M

(
1− B

D
cos(εq)

)
.

In the momentum basis the phonons are described as uncoupled harmonic oscillators, one for every
momentum q. They are a free quantum field, which means that they do not interact with themselves.

Video: Lecture05Video08.mp4

Quantum field theory So far we have just presented the most basic notion for a quantum
description of solids. Conceptually, this is simply a quantum theory for many degrees of freedom.
Phonons are a simple example for a quantum field theory. No additional concepts need to be
introduced. The so called ”second quantisation” is nothing else than quantum mechanics for many
degrees of freedom. The continuum limit, for which x becomes a continuous variable, does not
introduce any qualitative changes.

Many properties of quantum field theories, as the role of the vacuum and particles as excitations
of the vacuum, can already be seen for phonons. The vacuum obeys, as usual Aq|0〉 = 0. This is
not the same as for B = 0, where one has aq|0〉 = 0. The vacuum state depends on B. It can
be a complicated object. For phonons it remains possible to construct the vacuum state explicitly.
For more complicated quantum field theories this is, in general, no longer possible. Phonons are
considered as excitations of the vacuum. These excitations are called quasiparticles or simply
particles. Their properties depend on the vacuum, e. g. the dispersion relation depends on B. This
concept plays an important role for elementary particle physics. For example, the mass of the
electron depends on the expectations value of the Higgs field in the vacuum state. An important
insight may be phrased in the simple term: ”The vacuum is not nothing.”
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Video: Lecture05Video09.mp4

Dispersion relation. The relation between frequency and momentum,

ω(q) = ωq =

√
D −B cos(εq)

M
,

is called the dispersion relation. Consider the limit of small εq, where one can expand, cos(εq) =
1− 1

2ε
2q2, such that

ω2(q) =
D −B
M

+
ε2B

2M
q2.

In our units frequency and energy are identical, such that the dispersion relation corresponds to
the energy momentum relation of the phonon-quasi-particles.

For D > B the occupation relation has a gap, one needs positive energy even for a phonon
with q = 0. For many cases the interaction between atoms is of the form (Qj −Qj−1)

2, involving
only the distance between two neighbouring atoms. Then D = B, phonons are gapless and the
dispersion relation becomes linear for small εq. The sound velocity is given here by

v =

∣∣∣∣dωdq
∣∣∣∣ = ε2Bq

2Mω(q)
.

Video: Lecture05Video10.mp4

Generalisations. In three dimensions d = 3 one has q → ~q and the dispersion relation becomes
an equation for ω(~q). For real solids it depends on the particular structure of the lattice and the
form of the interactions.

Continuum limit. The continuum limit can be taken for situations where the expectation values
of the relevant observables and corresponding wave functions are sufficiently smooth. This means
that their variation with x is small on scales of the order ε. Typically, this concerns properties
dominated by modes with low momenta q. The continuum limit corresponds to the limit εq → 0.

Video: Lecture05Video11.mp4

Photons. For photons the dispersion relation is (in units where the velocity of light is unity,
c = 1),

ω(~q) = |~q|.

There are two photon helicities, related to polarisation. Photons are conceptually very similar to
phonons. We will discuss them in more detail later.

Quantum fields for photons. For photons, associated quantum fields are the electric field
~E(~q) in momentum space or ~E(~x) in position space, as well as the magnetic field ~B(~q) or ~B(~x),
respectively. In other words, the electric field ~E and the magnetic field ~B are quantum operators!
The corresponding operator fields consist of operators for each ~x or for each ~q. There is conceptually
no difference to phonons.
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Bosonic atoms without interaction. For free, non-relativistic atoms, the dispersion relation
is given by

ω(~q) =
~q2

2M
.

For the grand-canonical ensemble, one includes a chemical potential, multiplying the total particle
number. This shifts effectively

ω(~q)→ ε(~q) =
~q2

2M
− µ.

We will not distinguish ω(~q) and ε(~q) unless stated otherwise.

General free quantum field theories. Formulated in momentum space, free quantum field
theories are described by separate harmonic oscillators for each momentum mode q. The detailed
microscopic origin of the Hamiltonian does not matter. All properties are encoded in the particular
form of Hq, as the dispersion relation. Phonons, photons or bosonic atoms have all the same status.
This extends to excitations or quasiparticles in many domains of physics.

4.2 Functional integral for quantum fields

Video: Lecture05Video12.mp4

In this part we introduce the functional integral for quantum fields. We discuss both thermodynamic
equilibrium and the time evolution for given initial conditions. The mathematical formalism is very
similar for both cases. They are distinguished by an important factor of i multiplying the action.
While this is crucial for the physical behaviour, the mathematical treatment for both cases is
identical. We can construct the functional integral simultaneously for the equilibrium situation and
for quantum dynamics.

Free quantum boson gas in thermal equilibrium. We start with quantum statistics for free
fields. Quantum statistics is distiguished from the classical statistics discussed in the previous
lecture by the operator nature of the quantum fields. We will, nevertheless, derive a functional
integral formulation involving only commuting objects. This formulation involves one additional
dimension of ”euclidean time”.

For the Hamiltonian
H =

∑
q

ω(q)

(
a†qaq +

1

2

)
,

the partition function in thermal equilibrium is given by the trace

Z = Tr e−βH ,

with β = 1
kBT

= 1
T . (We use units for the Boltzmannn constant kB = 1). It decays into independent

factors for every momentum mode,

Z =
∏
q

Tr e−βωq

(
a†qaq+

1
2

)
=
∏
q

Zq.

One only has to compute the individual Zq,

Z = Tr e−β̃
(
a†a+ 1

2

)
,

with β̃ = βωq (we omit the index q). As an example, for a free gas of bosonic atoms one has

ω(q) =
~q2

2M
− µ,
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with chemical potential µ. The logarithm of the partition function is simply a momentum sum of
the individual logarithms. From the logarithm of Z(β, µ) one can derive all thermodynamics of the
quantum boson gas. This will be done in lecture 6 including interactions.

Video: Lecture05Video13.mp4

In this lecture we will derive a functional integral representation of the partition function

Z = Tr e−βH =

∫
Dφ e−S[φ],

with Euclidean action

S =

∫ β
2

− β
2

dτ
∑
q

φ∗(τ, q)

(
∂

∂τ
+ ω(q)

)
φ(τ, q).

The complex fields φ(τ, q) are periodic,

φ(τ + β, q) = φ(τ, q).

In consequence, the euclidean time τ parameterizes a torus with circumference β.

Video: Lecture05Video14.mp4

Partition function with boundary conditions. We will derive the functional integral below.
In order to do this in parallel for the dynamical evolution in quantum field theory we introduce a
formal boundary term in the expression

Z̃ = Tr
{
b e

−β̃
(
a†a+ 1

2

)}
.

For b = 1 one has Z̃ = Z for thermodynamic equilibrium if β̃ = βω is real. A more general boundary
term b has no direct physical meaning for the thermal equilibrium state of phonons, photons or
atoms. It is used here as a technical device which permits us to discuss the functional integral for a
larger class of operator problems. The boundary term b is a matrix in Hilbert space. For example,
in the occupation number basis one has

Z̃ = bnm

(
e
−β̃

(
a†a+ 1

2

))
mn

.

We may take the “boundary term” b as a product of wave functions,

bnm = (ψin)n(φf)m,

such that

Z̃ = (φf)m

(
e
−β̃

(
a†a+ 1

2

))
mn

(ψin)n

=

〈
φf

∣∣∣∣e−β̃(a†a+ 1
2

)∣∣∣∣ψin

〉
.
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Extension to complex formulation. The trace is well defined also for complex values of β̃. In
particular, we may consider purely imaginary β̃,

β̃ = iω∆t.

We can also choose a complex boundary term b and admit complex wave functions φf and ψin.
We employ the notation of quantum mechanics with 〈φf| involving complex conjugation, e. g.
〈φf|m = (φ∗f )m. In general, Z̃ will now be a complex number.

Video: Lecture05Video15.mp4

Transition amplitude. With this setting Z̃ is the transition amplitude for the quantum me-
chanics of an harmonic oscillator,

Z̃ = 〈φf|e
−i∆tω

(
a†a+ 1

2

)
|ψin〉

= 〈φf|e−i∆tH |ψin〉.

The operator e−i∆tH is the evolution operator in quantum mechanics between an initial time tin
and a final time tf = tin +∆t. We associate the boundary wave functions with

ψin = ψ(tin), φf = φ(tf),

In quantum mechanics the evolution operator relates the wave function at tf to the initial wave
function at tin

ψ(tf) = e−i(tf−tin)Hψ(tin).

We can therefore also interpret the quantity Z̃ as the transition amplitude between ψ and φ at the
common time tf,

Z̃ = 〈φ(tf)|ψ(tf)〉, ∆t = tf − tin.

The square |Z̃|2 measures the probability that a given ψ(tin) coincides at tf with φ(tf).
We can generalise the single harmonic oscillator to a free quantum field theory. The Hamiltonian

is a sum over Hamiltonians for every momentum mode q. Then H = ω
(
a†a+ 1

2

)
stands for Hq.

With total Hamiltonian being the sum of all Hq, the expression Z̃ is the transition amplitude for
a free quantum field theory. Adding interactions the transition amplitude is a key element for the
S-matrix for scattering to be discussed in coming lectures.

Video: Lecture05Video16.mp4

Split into factors. The trace can be evaluated by splitting β̃ into small pieces, and therefore
e−β̃H into many factors. For the transition amplitude this factorizes the evolution operator into
many evolution operators for small time steps. For thermal equilibrium there is no such intuitive
interpretation for small steps in euclidean time. Nevertheless, the method of splitting ∆t or β̃ into
small steps is the same.

We demonstrate this method for a single harmonic oscillator. The split of β̃ into small steps
is done by writing β̃ = (2N + 1)δ, where |δ| � 1. For convenience we assume N to be even. The
factorization yields

exp

{
−β̃
[
a†a+

1

2

]}
=

N∏
j=−N

exp

{
−δ
[
a†a+

1

2

]}
. (4.1)
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The splitting is a formal method and the index j has nothing to do with lattice sites or other
physical objects. For large N or small δ, the exponential simplifies. This would not be necessary
for the present very simple case, but is very useful for more complicated Hamiltonians which involve
pieces that do not commute with each other.

Video: Lecture05Video17.mp4

The split will be used to define a functional integral. Indeed, the expression (4.1) looks already like
a product of transfer matrices. We can take N →∞ such that approximations for small δ become
exact. Let us define the operators

x̂ =
1√
2

(
a† + a

)
, p̂ =

i√
2

(
a† − a

)
,

with commutation relation
[x̂, p̂] = i.

The operators x̂ and p̂ have similar properties as position and momentum operators. In our context
they are abstract operators, since for photons or phonons already a†a stands for a†qaq or A†

qAq in
momentum space. Thus x̂ and p̂ have nothing to do with position and momentum of phonons or
photons.

In terms of the operators x̂, p̂ one has

Ĥ = a†a+
1

2
=
p̂2

2
+ V (x̂), V (x̂) =

x̂2

2
.

This yields the expression

exp

{
−β̃
[
a†a+

1

2

]}
=

N∏
j=−N

exp

{
−δ
[
p̂2

2
+ V (x̂)

]}
,

where
H̃ =

p̂2

2
+ V (x̂).

For a general function V (x̂) this is the Hamiltonian for one-dimensional quantum mechanics in a
potential V , with a factor 1/M incorporated in δ. Many steps below are valid for general V . Our
treatment covers the path integral for a quantum particle in a potential.

Video: Lecture05Video18.mp4

Eigenfunctions of x̂ and p̂. We define eigenfunctions of the operators x̂ and p̂,

|x〉 such that x̂|x〉 = x|x〉,

and
|p〉 such that p̂|p〉 = p|p〉.

Here x and p are continuous variables. We can choose a normalization such that

〈x′|x〉 = δ(x′ − x), 〈p′|p〉 = 2πδ(p′ − p),
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and ∫
dx |x〉〈x| = 1,

∫
dp

2π
|p〉〈p| = 1.

We insert complete systems of eigenfunctions between each of the factors,

N∏
j=−N

e−δH̃ =

 N+1∏
j=−N

dxj

 |xN+1〉〈xN+1|e−δH̃ |xN 〉〈xN | · · · |x1−N 〉〈x1−N |e−δH̃ |x−N 〉〈x−N |.

Video: Lecture05Video19.mp4

Evaluation of factors. The factors 〈xj+1|e−δH̃ |xj〉 are complex numbers, no longer operators.
For their computation it is convenient to insert a complete set of p̂ -eigenstates,

〈xj+1|e−δH̃ |xj〉 =
∫
dpj
2π
〈xj+1|pj〉〈pj |e−δH̃ |xj〉.

We next use for δ → 0 the expansion

exp
{
−δ
[
p̂2

2 + V (x̂)
]}

= exp
{
−δ p̂

2

2

}
exp {−δV (x̂)}+O(δ2),

where the term ∼ O(δ2) arises from the commutator of x̂ and p̂. Corrections ∼ δ2 can be neglected
for δ → 0 such that

〈xj+1|e−δH̃ |xj〉 =
∫
dpj
2π

e−δ
p2j
2 e−δV (xj)〈xj+1|pj〉〈pj |xj〉.

No operators appear anymore in this expression and we only need

〈pj |xj〉 = e−ipjxj , 〈xj+1|pj〉〈pj |xj〉 = eipj(xj+1−xj).

This yields the expression

〈xj+1|e−δH̃ |xj〉 =
∫
dpj
2π

exp
{
ipj(xj+1 − xj)− δ

[
p2j
2 + V (xj)

]}
.

Functional integral. Insertion of these factors yields

e−β̃H̃ =

∫
dx−N

∫
dxN+1|xN+1〉 F 〈x−N |,

with

F =

∫
Dφ′ exp


N∑

j=−N

[
ipj(xj+1 − xj)− δ

p2j
2 + δV (xj)

] ,

and functional measure ∫
Dφ′ =

 N∏
j=−N+1

∫ ∞

−∞
dxj

 N∏
j=−N

∫ ∞

−∞

dpj
2π

 .
With boundary terms one obtains

〈φf|e−β̃H̃ |ψin〉 =
∫
dx−N

∫
dxN+1〈φf |xN+1〉 F 〈x−N |ψin〉.

Video: Lecture05Video20.mp4
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Summary. In conclusion, we have transformed the operator trace into a functional integral

Z̃ = Tr
{
b e

−β̃
(
a†a+ 1

2

)}
= 〈φf|e−β̃H̃ |ψin〉 =

∫
Dφe−S .

The action is given by

S = −
N∑
j=N

{
ipj(xj+1 − xj)− δ

[
p2j
2 + V (xj)

]}
,

and the integration measure reads∫
Dφ =

∏
j

∫
dxj

∫
dpj
2π

 .
The boundary factor b̃ has the form

b̃ =

∫
dx−N

∫
dxN+1〈φf |xN+1〉〈x−N |ψin〉.

From this expression Feynman’s path integral obtains by performing the Gaussian integration
over the variables pj . What remains is an integral over all possible paths∫

Dx[t] =
∏
j

∫
dxj .

This is not the direction we follow in this lecture. We rather develop a formulation with complex
variables. This can then easily be extended to a field theory.

NEW LECTURE

Video: Lecture06Video01.mp4

4.3 Thermodynamic equilibrium

In this section we discuss the thermal equilibrium state for a single quantum harmonic oscillator.
This is a first example for the approach to quantum statistical equilibrium that can later be gener-
alised to quantum field theories with interactions. For thermodynamic equilibrium, Z = Tr e−β̃H̃ ,
one identifies xN+1 with x−N and includes no integration over xN+1. The variable j is periodic,
reflecting in

xN+1 = x−N , pN+1 = p−N .

Formally, this can be achieved by choosing for b̃ a δ - function. For periodic boundary conditions
one has

Z̃ = Tr eβ̃H̃ =

∫
Dφe−S ,

with

S = −
N∑
j=N

{
ipj(xj+1 − xj)− δ

[
p2j
2 + V (xj)

]}
,

and ∫
Dφ =

∏
j

∫
dxj

∫
dpj
2π

 .
There are a total of 2N + 1 factors, and δ is related to β̃ by δ = β̃

2N+1 .
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Video: Lecture06Video02.mp4

Matsubara sum. Quantum statistics is described by the so called Matsubara formalism. We
derive this formalism here for a single harmonic oscillator, with straightforward generalisations.
We can diagonalize the action S by a type of Fourier transform

xj =

N∑
n=−N

exp

(
2πinj

2N + 1

)
x̃n, x̃−n = x̃∗n,

pj =

N∑
n=−N

exp

(
2πin(j + 1

2 )

2N + 1

)
p̃n, p̃−n = p̃∗n,

such that

−
N∑

j=−N
[ipj(xj+1 − xj)] =

N∑
n=−N

[(2N + 1)sin
(

πn

2N + 1

)
(p̃∗nx̃n − p̃nx̃∗n)].

Here we use the identity (j = −N and j = N + 1 identified)

N∑
j=−N

exp
(
2πi(m− n)j

2N + 1

)
= (2N + 1)δm,n.

Similarly, with V (xj) = x2j/2, one has

δ

2

N∑
j=−N

(x2j + p2j ) =
(2N + 1)δ

2

N∑
n=−N

(x̃∗nx̃n + p̃∗np̃n) =
β̃

2

N∑
n=−N

(x̃∗nx̃n + p̃∗np̃n).

The action becomes a sum over independent pieces, labelled by n. The sum over n is the Matsubara
sum.

Video: Lecture06Video03.mp4

Complex fields. We next introduce complex numbers φn by

x̃n =
1√
2
(φn + φ∗−n), p̃n = − i√

2
(φn − φ∗−n),

With
p̃∗nx̃n − x̃∗np̃n = i(φ∗nφn − φ∗−nφ−n),

and
x̃∗nx̃n + p̃∗np̃n = φ∗nφn + φ∗−nφ−n,

we finally obtain for the action

S =

N∑
n=−N

[
2(2N + 1)isin

(
πn

(2N + 1)

)
+ β̃

]
φ∗nφn.

The modes φn are called Matsubara modes, and the sum over n is the Matsubara sum.
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One can also translate the integration measure for the variables xj and pj to φn. With

φn = φnR + iφnI ,

one has ∫
Dφ =

∏
n

(∫ ∞

−∞
dφnR

∫ ∞

−∞
dφnI

)
.

All variable transformations have been linear transformations and there is no non-trivial Jacobian.
Recall that an overall constant factor of Z or additive constant in S is irrevelant.

Video: Lecture06Video04.mp4

Matsubara frequencies. At the end we take the limit N →∞. In this limit the neglected terms
(from commutators of x̂ and p̂) vanish. This yields the central functional integral equation for
thermodynamic equilibrium,

Tr{e−βH} =
∫
Dφ e−S .

For H = ω(a†a+ 1
2 ) one has

S =

∞∑
n=−∞

(2πin+ βω)φ∗nφn.

(Recall that H̃ = a†a+ 1
2 and β̃ = βω.) The quantities

ω̃n =
2πn

β
= 2πnT

are called Matsubara frequencies.

Video: Lecture06Video05.mp4

Action for free quantum fields. This result extends directly to a free quantum field theory. The
partition function Z factorises for the different momentum modes, Z =

∏
q Zq, and correspondingly

the action for all momentum modes is simply the sum of actions for individual momentum modes,
S =

∑
q Sq. For a given momentum mode one has β̃ = βωq. Thus for

H =
∑
q

ω(q)

[
a†qaq +

1

2

]
,

one obtains

S =
∑
n

∑
q

[2πin+ βω(q)]φ∗n(q)φn(q)

=
∑
n

∑
q

β [iω̃n + ω(q)]φ∗n(q)φn(q).

One often denotes the dispersion relation by ω(q) or by ε(q). For non-relativistic particles the
Matsubara frequencies

ω̃n =
2πn

β
= 2πnT
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multiply a term quadratic in the Matsubara modes. At this point we have formulated the ther-
modynamics of phonons or atoms as a functional integral. It is gaussian and can easily be solved
explicitely.

The solution of this functional integral is well known. It is the expression of the partition
function in terms of mean occupation numbers, as derived in the course on theoretical statistical
physics. It is a worthwhile exercise to reproduce this result by solving the functional integral. This
involves suitable Matsubara sums. It is actually easier to compute derivatives as the mean energy.

Video: Lecture06Video06.mp4

Euclidean time. We can consider the Matsubara modes φn as the modes of a discrete Fourier
transformation. Indeed, making a Fourier transformations of functions on a circle yields discrete
modes. Consider a function φ(τ), with τ parameterizing a circle with circumference β. Equivalently,
we can take τ to be a periodic variable with period β

τ + β ≡ τ.

The Fourier expansion reads

φ(τ) =
∑
n

exp

(
2πinτ

β

)
φn,

with integer n. With

∂τφ(τ) =
∑
n

(
2πin

β

)
exp

(
2πinτ

β

)
φn

=
∑
n

iω̃n exp

(
2πinτ

β

)
φn,

one has ∫ β
2

− β
2

dτ {φ∗(τ)∂τφ(τ)} =
∑
n

iω̃n φ
∗
nφn.

Here we employ the identity for discrete Fourier transforms∫ β
2

− β
2

dτ exp

(
2πi(n−m)τ

β

)
= β δm,n.

In this basis the action reads

S =

∫ β
2

− β
2

dτ
∑
q

[φ∗(τ, q) ∂τφ(τ, q) + ω(q)φ∗(τ, q)φ(τ, q)] .

One calls τ the Euclidean time. The Fourier modes depend on an additional periodic variable -
namely euclidean time.

We can also write formally the functional measure as
∫
Dφ(τ). This is the same as the integral

over all Matsubara modes φn. Every periodic function can be specified by the coefficients of
the discrete Fourier representation φn. Integration over all φn covers the space of all periodic
functions. We can use this for a well defined functional integral

∫
Dφ(τ). For a finite range of n,

−NM < n < NM , we have a finite dimensional integral. At the end we take the limit NM →∞.

Video: Lecture06Video07.mp4
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Local action and transfer matrix. This action is a local action in the sense of lectures 2 and
3. Discretizing τ on a lattice with distance ε, and with τ = jε, j = −N · · ·N periodic, ε = β

2N+1 ,

the partial derivative is replaced by a lattice derivative

∂τφ(τ) =
1

ε
[φ(τ + ε)− φ(τ)] ,

One can write (with
∑
τ ≡

∑
j)

S =
∑
τ

L (τ),

with

L (τ) =
1

2

∑
q

{φ(τ + ε)φ∗(τ)− φ∗(τ + ε)φ(τ) + εω(q) [φ∗(τ + ε)φ(τ) + φ(τ + ε)φ∗(τ)]} .

Here we omit the label q for the momentum modes. Note that L (τ) is a complex function of complex
variables φ(τ) and φ(τ+ε). With respect to τ the action involves next neighbour interactions, similar
to the Ising model. We could go the inverse way and compute the transfer matrix. We know already
the answer in the bosonic occupation number basis

T̂ = exp

[
− β

2N + 1

∑
q

ω(q)

(
a†qaq +

1

2

)]
,

with 2N + 1 the number of time points. This is compatible with

Z = Tr
{
T̂ 2N+1

}
.

This closes the circle to our first approach. We could start with the functional integral, derive
the transfer matrix, and define the partition function as a product of transfer matrices.

Video: Lecture06Video08.mp4

Quantum gas of bosonic atoms. For free bosonic atoms (without internal degrees of freedom)
the dispersion relation is

ε(q) =
~q2

2M
− µ,

with µ the chemical potential. We can make a Fourier-transform to three-dimensional position
space,

S =

∫ β
2

− β
2

dτ

∫
d3x{φ∗(τ, ~x)∂τφ(τ, x) +

1

2M
~∇φ∗(τ, ~x)~∇φ(τ, ~x)− µφ∗(x)φ(x)}

This is the action of a field theory in Euclidean time.
For a quantum field theory the action defines the weight factor in a functional integral. The

extremum of the action yields the ”classical field equation”. This classical field equation is, however,
a ”microscopic” object. The field equations that are valid for a quantum field theory have to include
the effects of fluctuations!

Video: Lecture06Video09.mp4
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Interactions. So far we have discussed models that represent quantum fields without interactions.
This is a very good approximation for phonons if the energy is not too high. Free quantum field
theories can be represented in momentum space as uncoupled harmonic oscillators. For them the
description is simple both in the functional integral formalism (gaussian integration) and in the
operator formalism. The situation changes in the presence of interactions.

Consider a pointlike interaction between bosonic atoms.

H = H0 +Hint

H0 =
∑
q

ω(q)

(
a†qaq +

1

2

)

Hint =
λ

2

∑
q1,q2,q3,q4

a†q4a
†
q3aq2aq1δ(q1 + q2 − q3 − q4).

Two atoms with momentum q1 and q2 are annihilated, two atoms with momenta q3 and q4 are
created. Momentum conservation is guaranteed by the δ-function.

For the functional integral this adds to the action a piece

Sint =
λ
2

∫
dτ

∫
d3x[(φ∗(τ, ~x)φ(τ, ~x))2 − 2δµφ∗(τ, ~x)φ(τ, ~x)]

with δµ ∼ λ a counterterm that corrects µ. The additional interaction term is is the only modifi-
cation needed for the functional integral! Euclidean time remains periodic with period β, and this
is the only point where the value of the temperature enters. We will not perform here a derivation
of the Matsubara formalism in the presence of interactions. Starting from the operator formalism
one can divide β into small pieces and work with a basis of ”coherent states”. This cuts short
the various transformations that we have performed for the free theory. We will simply take the
functional integral in euclidean time as a starting point.

For an interacting gas of bosonic atoms the functional integral permits us to investigate phe-
nomena as the Bose-Einstein condensation and the associated superfluidity in dependence on tem-
perature and particle number density or chemical potential. For atoms at ultracold temperature
this is a very interesting topic both for experiment and theory.

A systematic treatment of interactions beyond a perturbative expansion in small λ is rather
hard in the operator formalism. For the functional integral formulation powerful methods are
available. This is one of the main reasons why we concentrate on the functional integral.

Video: Lecture06Video10.mp4

Zero temperature limit. For T −→ 0 one has β −→ ∞. The circumference of the circle goes
to infinity. Instead of discrete Matsubara modes one has continuous modes with frequency ω̃ = q0
and therefore a continuous four-dimensional momentum integral. The momenta q0 and ~q appear,
however differently in the action. The same holds for the dependence of S on τ and ~x. There is
a first derivative with respect to τ , but a squared first derivative or second derivative with respect
to ~x. This difference will go away for relativistic particles. For bosonic atoms with a pointlike
interaction one finds for the action in Fourier space for the T −→ 0 limit of the thermal equilibrium
state

S =

∫
q

φ∗(q)

(
iω̃ +

~q2

2M
− µ+ λδµ

)
φ(q)

+
λ

2

∫
q1

∫
q2

∫
q3

∫
q4

φ∗(q4)φ
∗(q3)φ(q2)φ(q1)δ(q4 + q3 − q2 − q1),
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where we have chosen an appropriate continuum normalization of φ(q), with

φ(q) ≡ φ(ω̃, ~q)∫
q

=
1

(2π)4

∫
dω̃d3~q

δ(q) = (2π)4δ(ω)δ(q1)δ(q2)δ(q3).

The δ function expresses conservation of the euclidean four momentum q. It reflects translation
symmetry in space and euclidean time τ . The limit T −→ 0 can be associated in some sense with
the vacuum, if one chooses µ such that the mean particle number vanishes.

Video: Lecture06Video11.mp4

Summary. At this stage we have established an important starting point for our lecture based on
the functional integral. The functional integral can describe both classical statistical thermodynamic
equilibrium and quantum statistical thermodynamic equilibrium. Different models or different
microphysical laws are encoded in the particular form of the action. This form is often largely
dictated by symmetry. The ”fundamental laws” are formulated in terms of the action. It is often
not necessary to know the precise form of the Hamiltonian in the operator formalism for quantum
systems, or the precise form of the transfer matrix for classical probabilistic systems. This is an
important advantage, since the operator formalism can become quite complicated for interacting
many body systems.

The lecture is called ”quantum field theory”, but you may realise that the quantum aspects are
actually not crucial. What counts are the presence of fluctuations. The origin of the fluctuations,
be it quantum fluctuations or thermal fluctuations or both, is not important. A more adapted name
for our lecture could be ”probabilistic field theory”. We stick to the traditional name of quantum
field theory for historical reasons. It should also be clear that our treatment applies to arbitrary
settings with fluctuations. Fluctuations may be market fluctuations in economy or fluctuations in
the reproduction of species in biology. Whenever a system is described by a probability distribution
there exists an associated action.

NEW LECTURE

Video: Lecture07Video01.mp4

4.4 Real time evolution

The functional integral can also be employed for the time evolution of quantum systems. This is
typically a problem with boundary conditions. An initial condition for the quantum state is given
at some initial time tin by the wave function ψ(tin). This wave function develops in time according
to the unitary evolution in quantum mechanics and arrives at some final time tf at

ψ(tf ) = U(tf , tin)ψ(tin).

For a time-independent Hamiltonian H the evolution operator obeys

U(tf , tin) = U(tf − tin) = e−i(tf−tin)H .

We are interested in the transition amplitude to some different final wave function φ(tf ).
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Video: Lecture07Video02.mp4

We want to derive the functional integral for the transition amplitude

〈φ(tf )|ψ(tf )〉 = 〈φ(tf )|U(tf − tin)|ψ(tin)〉 = 〈φ(tf )|e−i(tf−tin)H |ψ(tin)〉.

Recalling our formulation of thermal equilibrium with boundary conditions and its extension to
a complex formulation, the transition element can be obtained from thermal equilibrium by the
replacement

β → i(tf − tin).

The split into infinitesimal pieces, Fourier-transforms etc can be done for complex β in the same
way as before. For β →∞ (T → 0), tf − tin →∞ one finds

〈φ(tf )|ψ(tf )〉 = B(tf , tin)Zt

Zt =

∫
Dφ exp(−St).

For the sake of clarity we denote by St the action for the dynamical time evolution, in contrast to
Seq for the thermal equilibrium. For obtaining St from Seq we have to multiply the terms ∼ β by
i before taking the limit β −→ ∞. The term iω̃ remains unchanged, while all other parts in the
action get multiplied by i. This results in

St =

∫
q

[
φ∗(q)

[
iω̃ + i

(
~q2

2M
− µ+ λδµ

)]
φ(q)

+ i
λ

2

∫
q1

∫
q2

∫
q3

∫
q4

φ∗(q4)φ
∗(q3)φ(q2)φ(q1)δ(q3 + q4 − q1 − q2)

]
.

Video: Lecture07Video03.mp4

After a Fourier-transform in ω̃ and ~q one finds, with time labelled now by t

St =

∫
x

[
φ∗(x)∂tφ(x) +

i

2M

(
~∇φ∗(x)

)(
~∇φ(x)

)
+
iλ

2
(φ∗(x)φ(x))2 − (µ− λδµ)φ∗(x)φ(x)

]
(4.2)

where
x = (t, ~x),

∫
x

=

∫ ∞

−∞
dt

∫
d3~x.

The transfer matrix for this functional integral is now

T̂t = exp

[
− i(tf − tin)
(2N + 1)

H

]
,

instead of
T̂eq = exp

[
− β

(2N + 1)
H

]
.

The matrix T̂t is a unitary matrix if the Hamiltonian is hermitean, H† = H.

Video: Lecture07Video04.mp4
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Local Physics. For observations and experiments done in some time involved around t the details
of boundary conditions at tf and tin play no role for large |tf − t| and |t− tin|. Doing physics now is
not much influenced by what happened precisely to the dinosaurs or what will happen in the year
10000. For many purposes the boundary term B(tf , tin) is just an irrelevant multiplicative factor in
Z which drops out from the expectation values of interest. One can then simply omit it and work
directly with Zt.

Video: Lecture07Video05.mp4

Minkowski action. We define the Minkowski action SM by multiplying the euclidean action S

with a factor i
SM = iS, e−S = eiSM .

This can be done both for St and Seq. For St the Minkowski action reads

SM,t = −
∫
x

φ∗
(
−i∂t −

∆

2M

)
φ+

λ

2
(φ∗(x)φ(x))2 + . . . .

Variation of SM,t or St with respect to φ∗ yields for λ = 0 the Schrödinger equation for the wave
function of a single free particle (

−i∂t −
∆

2M

)
φ = 0.

Video: Lecture07Video06.mp4

There is a reason for that, but the connection needs a few steps, concentrating on single particle
states. Recall that the functional integral describes arbitrary particle numbers, such that one-
particle states are only special cases. For λ 6= 0 the classical field equation δS

δφ∗(x) = 0 is a non-linear
equation, called Gross-Pitaevskii equation

i∂tφ = − ∆

2M
φ+ λ(φ∗φ)φ− (µ− λδµ)φ.

This is not a linear Schrödinger equation for a quantum wave function, but has a different inter-
pretation. An equation of this type can describe the dynamics of a Bose-Einstein condensate.

Video: Lecture08Video02.mp4

Analytic continuation. Let us replace in the action St (4.2) the time coordinate

t = −iτ

such that the integration becomes ∫
x

= −i
∫
dτd3~x.

For the time derivative term we have
∂tφ = i∂τφ.
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This replacement is called ”analytic continuation”. The analytic continuation of St is the action
Seq for thermal equilibrium at zero temperature,

St → Seq =

∫
dτd3x

{
φ∗
(
∂τ −

∆

2M
− µ

)
φ+

λ

2
(φ∗φ)2 + λδµφ∗φ

}
.

Analytic continuation can be done in both ways. The actions St and Seq for two models, one for
the time evolution, the other for the T = 0 limit of thermal equilibrium, are related by analytic
continuation.

Note that SM is not the analytic continuation of S, but rather related to S by a fixed defini-
tion. The sign of SM is of historical origin. The Minkowski action SM,t is a real expression. In
consequence, eiSM,t is a phase. This is a profound change as compared to the situation for thermal
equilibrium, for which eiSeq = e−Seq is a positive real quantity that can be associated to a probabil-
ity distribution. The functional integral for the time evolution of quantum systems is described by
an integration over phases. This is directly related to the unitary evolution in quantum mechanics.
The transfer matrix T̂t is a unitary matrix. No boundary information is lost, in contrast to the
thermal equilibrium state, for which we have seen for the Ising chain how the memory of boundary
information is lost in the bulk.

Video: Lecture08Video03.mp4

Fourier transform. For the Fourier transformation into frequency space we employ

ω̃τ = ωM t = −iωMτ.

This defines the Minkowski frequency

ωM = iω̃ = q0,

where q0 is the zero-component of the four-momentum qµ. Analytic continuation in time translates
to analytic continuation in frequency or four-momentum between ω̃ and ωM .

The analytic continuation in momentum space is a very useful tool for the evaluation of cor-
relation functions. One can first compute the correlation functions in ”euclidean space”, which
corresponds to the T → 0 limit of thermal equilibrium. This has the advantage that powerful
methods can be used as, for example, numerical simulations. The correlation functions in momen-
tum space depend on ω̃. Subsequently, they can be continued analytically to Minkowski space, with
replacement rules for the frequencyies

ω̃ → −iq0.

For the squared frequency one finds, using the Minkowski metric for raising and lowering indices,
η00 = −1,

ω̃2 → −(q0)2 = −(q0)2 = q0q0η00 = q0q0.

For a relativistic theory one has

q2E = ω̃2 + ~q2 → q0q0 + qiqi = qµqµ = −(q0)2 + ~q2 = q2M ,

and analytic continuation corresponds to

q2E → q2M .
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For a vacuum state with translation and rotation symmetry the two-point correlation function
can only depend on the invariant q2 = qµqµ. Only the meaning of q2 = qµqµ differs between
euclidean and Minkowski signature. For euclidean signature the zero-index is lowered by δ00, while
for Minkowski signature one employs η00. Thus analytic continuation can also be formulated as an
analytic continuation in the metric. For euclidean signature q2 is invariant under SO(4)-rotations
in four-dimensional euclidean space, while for Minkowski signature the Lorentz symmetry SO(1, 3)

leaves q2 invariant. Many properties can be understood by viewing momenta in the complex plane,
for which analytic continuation can be formulated as a continuous rotation of q0.

4.5 Expectation values of time ordered operators

Video: Lecture08Video04.mp4

So far we have established for the partition function a map between the operator formalism
and the functional integral. This extends to the expectation values of observables. For the func-
tional integral formulation expectation values are directly found by inserting the observable in the
functional integral. An observable is a functional of the fields for which the functional integral
is formulated. It is a c-number and no non-commuting structures are present at this level. The
definition of the expectation value of an observable A[φ] holds independently of the particular form
of the action,

〈A〉 = 1

Z

∫
Dφe−S[φ]A[φ].

In particular, it is valid both for euclidean and Minkowski signature of the metric.

We have seen in sect.3.2 how operators can be associated to observables. They allow us to
express expectation values in the functional integral by time-ordered products of Heisenberg oper-
ators. We will next establish the inverse direction and show how the expectation values of time
ordered operators in the operator formalism translate to the functional integral expression. At the
stage where we are this should no longer be a surprise. Nevertheless, we perform this step here,
repeating partly the construction of the functional integral from the operator formalism. This pro-
vides for a link to many textbooks where the functional integral expression in introduced in this
way.

Heisenberg picture in quantum mechanics. We briefly recapitulate the Heisenberg picture in
quantum mechanics. While in the Schrödinger picture the wave function evolves and the operators
are constant, in the Heisenberg picture the operators evolve instead. The central objects are ÂH(t),
the Heisenberg operators that depend on time. One can write them as

ÂH(t) = U†(t, tin)ÂSU(t, tin),

where ÂS is the operator in the Schrödinger picture. Consider for t2 ≥ t1

ÂH(t2)B̂H(t1) = U†(t2, tin) ÂS U(t2, tin)U
†(t1, tin) B̂S U(t1, tin),

and use
U†(t1, t2) = U(t2, t1),

as well as
U(t3, t2)U(t2, t1) = U(t3, t1).

With
U(t2, tin)U

†(t1, tin) = U(t2, t1)U(t1, tin)U
†(t1, tin) = U(t2, t1),
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one has
ÂH(t2)B̂H(t1) = U†(t2, tin) ÂS U(t2, t1) B̂S U(t1, tin).

In the Heisenberg picture, one keeps the wave function fixed |ψ〉 = |ψ(tin)〉 and describes the time
evolution by the time-dependence of the Heisenberg operators.

The transition amplitude for two time-ordered Heisenberg operators, where the larger t-argument
stands on the left, is defined by

〈φ(tin)|ÂH(t2)B̂H(t1)|ψ(tin)〉 = 〈A(t2)B(t1)〉φψ.

It reads in the Schrödinger picture

〈A(t2)B(t1)〉φψ = 〈φ(tin)|U†(t2, tin) ÂS U(t2, t1) B̂S U(t1, tin)|ψ(tin)〉

= 〈φ(t2)| ÂS U(t2, t1) B̂S |ψ(t1)〉.

We may insert a complete set of states∫
dχ(t1)|χ(t1)〉〈χ(t1)| = 1,

in order to obtain

〈A(t2)B(t1)〉ϕψ =

∫
dχ(t1)〈ϕ(t2)| ÂS U(t2, t1)|χ(t1)〉〈χ(t1)| B̂S |ψ(t1)〉

=

∫
dχ(t1)〈ϕ(t2)| ÂS |χ(t2)〉〈χ(t1)| B̂S |ψ(t1)〉

This has an intuitive interpretation: The transition amplitudes are evaluated for B at time t1 be-
tween ψ(t1) and arbitrary intermediate states χ(t1). Then χ(t1) propagates in time to χ(t2), and
one evaluates the transition amplitude at t2 of A between χ(t2) and φ(t2). One finally sums over
intermediate states.

It is our aim to derive a functional integral expression for this transition amplitude. We will
do this first for a particular amplitude, namely the propagator. This will then be generalised to
arbitrary chains of time-ordered operators.

Video: Lecture08Video05.mp4

4.6 Propagator

The propagator is a central quantity in quantum field theory. It contains the information how a
one-particle wave function at t1 has evolved at some later time t2. We will express the propagator
as a suitable transition amplitude for a product of annihilation and creation operators. In the
functional integral formalism it will be given by a connected two-point function.

Since the propagator deals with the dynamics of a single particle we first define basis functions
for localised single particle states. Particles are excitations of the vacuum. We therefore start at tin
with an initial vacuum state |0〉, evolve it to t1, and apply a creation operator a†(~x). The result is
a state for which at t1 a single particle is located precisely at ~x. We denote this one-particle state
by

a†(~x)U(t1, tin)|0〉 = |(~x, t1); t1〉.
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Propagator as transition amplitude. For t > t1 the particle will move. Correspondingly, the
wave function changes in the Schrödinger picture according to the standard evolution in quantum
mechanics,

|(~x, t1); t〉 = U(t, t1)|(~x, t1); t1〉.

One has to distinguish the two different time arguments. For |(~x, t1); t〉 the time argument t1 is a
label (together with ~x) specifying which state is meant. This state is the one for which at t1 the
particle is located at ~x. The time argument in the Schrödinger evolution of this wave function is
given by t. For a given basis state t1 is kept fixed, while the time evolution of the wave function in
the Schrödinger picture is the evolution with varying t.

Let us define the transition amplitude of this one-particle state with a different one particle
state |(~y, t2); t〉 at a given time t. Its square is the probability to find a particle that was at time t1
at ~x to be a particle that is at ~y at time t2. This transition amplitude is the propagator,

G(~y, t2; ~x, t1) = 〈(~y, t2); t|(~x, t1); t〉.

The propagator can be expressed by a product of Heisenberg operators. For this purpose we
take t = t2,

G(~y, t2; ~x, t1) = 〈0|U†(t2, tin)a(~y)U(t2, t1)a
†(~x)U(t1, tin)|0〉.

In this expression we use that 〈(~y, t2); t| is the hermitean conjugate of |(~y, t2); t〉 and we evolve|(~x, t1); t1〉
to |(~x, t1); t2〉. In the Heisenberg picture the propagator reads

G(~y, t2; ~x, t1) = 〈0|aH(~y, t2)a
†
H(~x, t1)|0〉.

This follows from the identity

U(t2, t1) = U(t2, tin)U(tin, t1) = U(t2, tin)U
†(tin, t1)

and the definition of Heisenberg operators with reference point tin. The transition amplitude G is
called the propagator or Green’s function. It is a central quantity in quantum field theory.

Video: Lecture08Video06.mp4

One particle wave function and Schrödinger equation. Before going on to derive the func-
tional integral expression for the propagator we discuss next the Schrödinger equation for a one-
particle state. This makes the connection to the standard formulation of quantum mechanics.
Quantum mechanics obtains from quantum field theory by a restriction to states with a fixed par-
ticle number, typically a single particle or two particles. Since quantum field theory is quantum
mechanics for many particles, it contains as a special case the quantum mechanical systems with a
small fixed particle number. For a single particle we expect in our case the rather trivial quantum
mechanics of a free particle, since we consider a translation invariant situation with a vanishing
potential. In the functional integral formulation we could introduce a potential in the formulation
of the action. For non-relativistic bosons one replaces the chemical potential by µ − V (~x), thus
breaking translation symmetry.
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We first extract the Schrödinger wave function in the position basis. Using our basis of localised
one-particle states a general one-particle wave function at time t is a superposition

|ψ1(t)〉 =
∫
~x

ϕ(~x, t)|(~x, t); t〉.

The position representation of the one-particle state or Schrödinger wave function is given by ϕ(~x, t).
As usual it can be extracted from |ψ(t)〉 by

ϕ(~x, t) = 〈(~x, t); t|ψ1(t)〉

The proof is standard, using the orthogonality of basis functions

〈(~x, t); t|ψ1(t)〉 =
∫
~y

〈(~x, t); t|ϕ(~y, t)|(~y, t); t〉

=

∫
~y

ϕ(~y, t)〈(~x, t); t|(~y, t); t〉

=

∫
~y

ϕ(~y, t)δ(~x− ~y)

= ϕ(~x, t).

From the position representation we can switch to the momentum representation φ(~p, t) by a
Fourier transform. For the momentum representation the evolution is trivial,

i∂tφ(~p, t) =

[
~p2

2M
− µ

]
φ(~p, t). (4.3)

This follows by applying to |ψ1〉 an infinitesimal evolution operator

|ψ1(t+ dt)〉 = U(t+ dt, t)|ψ1(t)〉 = −iĤdt|ψ1(t)〉,

and noting that Ĥ is diagonal in the momentum basis. The Schrödinger equation in position space
obtains by a Fourier transform.

Video: Lecture08Video07.mp4

Huygens principle. You have learned before how to use a propagator for the evolution of wave
functions, for example in electrodynamics. Our definition of the propagator plays exactly this role.
We employ the time evolution of the position representation of the one particle wave function which
can be found from the time evolution of |(~x, t1); t〉,

ϕ(~y, t2) = 〈(~y, t2); t2|ψ1(t2)〉
= 〈(~y, t2); t2|U(t2, t1)|ψ1(t1)〉

=

∫
~x

ϕ(~x, t1)〈(~y, t2); t2|(~x, t1); t2〉

=

∫
~x

G(~y, t2; ~x, t1)ϕ(~x, t1).

The propagator G allows one to compute the one-particle wave function at t2 from an initial wave
function at t1. This is Huygens’ principle for the propagation of waves.

NEW LECTURE
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4.7 Functional integral for expectation values of time-ordered operators

We first derive the functional integral expression for the propagator. The corresponding technical
steps are easily generalised to arbitrary chains of time-ordered operators.

Video: Lecture08Video08.mp4

Video: Lecture08Video09.mp4

Propagator from functional integral. For the derivation of a functional integral expression
for the propagator we employ the functional integral expression for the evolution operator in the
expression

G(~y, t2; ~x, t1) = 〈0|U†(t2, tin)a(~y)U(t2, t1)a
†(x)U(t1, tin)|0〉.

One often calls |0〉 = |0〉in the initial vacuum at tin, and |0〉f = U(tf , tin)|0〉in the final vacuum at
tf. For a time-translation invariant vacuum one has |0〉f = |0〉in. This implies

〈0|f = 〈0|U†(tf, tin).

Using
U†(tf , tin)U(tf , t2) = U†(t2, tin),

we find
G(~y, t2; ~x, t1) = 〈0|fU(tf , t2)a(~y)U(t2, t1)a

†(~x)U(t1, tin)|0〉.

This intuitive expression for the propagator involves evolution operators that can be expressed in
terms of the functional integral.

Video: Lecture09Video01.mp4

We have derived before the functional integral expression for the evolution operator

U(t2, t1) =

∫
dx(t2)

∫
dp(t1) |x(t2)〉F̃ (t2, t1)〈p(t1)|,

with
F̃ (t2, t1) =

∫
Dϕ(t1 < t′ < t2) exp

[
−
∫ t2

t1

dtL (t)

]
.

Here |x(t)〉 and |p(t)〉 are eigenstates of the abstract operators x̂ and p̂ which are not related to
positions in space and momenta,

x̂|x(t)〉 = x(t)|x(t)〉, p̂|p(t)〉 = p(t)|p(t)〉.

We employ now a mixed basis with x and p, which is reflected by the difference between F̃ and F

as used previously. The integrals over x(t2) and p(t1) are not yet included in
∫
Dφ(t1 < t′ < t2).

Video: Lecture09Video02.mp4
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Our expression for the propagator contains factors

U(t3, t2) Â U(t2, t1) =

∫
dx(t3) dp(t2) dx(t2) dp(t1)

× |x(t3)〉 F̃ (t3, t2) 〈p(t2)| Â |x(t2)〉 F̃ (t2, t1) 〈p(t1)|,

for which we need the matrix element

〈p(t2)| Â |x(t2)〉 = A(x(t2), p(t2)).

For Â depending on a† and a we first express it in terms of the operators x̂ and p̂, recalling the
relations

a =
1√
2
(x̂+ ip̂), a† =

1√
2
(x̂− ip̂).

We can then replace in the matrix element for Â

a→ 1√
2
[x(t2) + ip(t2)] ,

a† → 1√
2
[x(t2)− ip(t2)] ,

provided that the ordering of operators is done such that x̂-operators are on the right and p̂-
operators on the left.

With the matrix element replaced by a function A(x2, p2), we can combine the remaining pieces
to

U(t3, t2) Â U(t2, t1) =

∫
dx(t3)dx(t1) |x(t3)〉

∫
Dϕ(t1 < t′ < t3)

× exp
{
−
∫ t3

t1

dt′L (t′)

}
A(x(t2), p(t2)) 〈x(t1)|.

In summary we get the rule: The operator Â at t2 leads to the insertion of a function A(t2) into
the functional integral.

Recall the inverse: an observable A(t) in the functional integral results in the insertion of an
operator Â in the chain of transfer matrices.

Video: Lecture09Video03.mp4

Discrete formulation. We have been here a bit vague with the precise choice of integrations.
In a precise discrete formulation one replaces

〈xj+1|e−i∆tĤ |xj〉 by 〈xj+1|e−i∆tĤÂ|xj〉

at the appropriate place in the chain.

Video: Lecture09Video04.mp4
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Replacement rules We can now follow A(x(t2), p(t2)) through the chain of variable transforma-
tions

xj → x̃n →
1√
2
(ϕn + ϕ∗

−n)→
1√
2
(ϕ(t) + ϕ∗(t)),

and similarly
pj → p̃n → −

i√
2
(ϕn − ϕ∗

−n)→ −
i√
2
(ϕ(t)− ϕ∗(t)),

resulting in the simple replacement rules

a→ ϕ(t), a† → ϕ∗(t).

Video: Lecture09Video05.mp4

Propagator. These replacements yield for the propagator or correlation function

G(~y, t2, ~x, t1) = Z−1

∫
Dϕ e−S[ϕ]ϕ(~y, t2)ϕ

∗(~x, t1).

This is a simple and important result that permits us to derive the propagator directly from the
functional integral. Once established, we need no longer the operator formalism for the description
of the propagation of one-particle states. The above result is valid for vacua for which 〈φ(~x, t)〉 = 0.
We will generalise it to other vacua below.

Video: Lecture09Video06.mp4

Expectation values for complex functional integrals. For complex functional integrals in
Minkowski space we define expectation values similar to classical statistical physics

〈A〉 = Z−1

∫
Dϕ e−S[ϕ]A[ϕ]

Z =

∫
Dϕ e−S[ϕ].

With this one can write the propagator as

G(~y, t2, ~x, t1) = 〈ϕ(~y, t2)ϕ∗(~x, t1)〉,

which is also known as the two-point correlation function.

Video: Lecture09Video07.mp4

Normalisation factor Z. We have not paid much attention to the normalisation of the wave
function, the additive normalisation of the action, and the formal boundary terms. All this yields
constant factors for Z. These factors drop out in the expectation values of observables due to the
factor Z−1.

Video: Lecture09Video08.mp4
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Fourier space. Since A[ϕ] is a function (functional) of ϕ, variable transformations are straight-
forward. There are no longer complications with commutator relations as for a and a†. The Fourier
transform of the correlation function reads

G(~q, t2; ~p, t1) =

∫
y

∫
x

e−i~q·~y ei~p·~x G(~y, t2; ~x, t1).

Translation symmetry in space implies

G ∼ δ(~q − ~p).

In case of translation invariance in time G depends only on the time difference t2 − t1.

Video: Lecture09Video09.mp4

Non-trivial field expectation values. So far we have assumed implicitly that the vacuum is
trivial. In general 〈ϕ(~x, t)〉 may be different from zero. A more general definition of the (connected)
correlation function is given by

G(~y, t2; ~x, t1) = 〈δϕ(~y, t2)δϕ(~x, t1)〉, δϕ = ϕ− 〈ϕ〉.

This is the standard definition of the connected two-point function or the propagator in statistical
physics. It reflects that particles are excitations of a given vacuum. We will also use this definition
for the quantum field theory describing the dynamics of many body quantum systems. One can
justify this expression in the operator formalism for simple models as phonons. For general theories
with interactions it is quite cumbersome to give a solid derivation in the operator formalism. The
problem starts with the fact that the vacuum state is often not known. Our functional integral
formula is valid for all situations. The conceptual simplicity of the propagator underlines once
more the important advantages of a functional integral formulation of quantum field theory. We
can write this important formula also in the form

G(~y, t2; ~x, t1) = 〈ϕ(~y, t2)ϕ(~x, t1)〉 − 〈ϕ(~y, t2)〉〈ϕ(~x, t1)〉.

Video: Lecture09Video10.mp4

At this point we are essentially done with the operator formalism, up to a few additions below.
In the following we will base this lecture purely on the functional integral.

Video: Lecture09Video11.mp4

Definition of quantum field theory. A quantum field theory is defined by

(1) Choice of fields ϕ

(2) Action as functional of fields S[ϕ]

(3) Measure
∫
Dϕ

These three ingredients fix a given model or theory completely. For making contact to observa-
tion we also need observables A[ϕ]. Their expectation values are computed according to the general
rule above.

Video: Lecture09Video12.mp4
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Correlation function. In particular, a general expression for the correlation function is defined
by

Gαβ = 〈ϕαϕ∗
β〉 − 〈ϕα〉〈ϕ∗

β〉.

Here α, β are collective indices, e.g. α = (~x, t) or (~p, t). An evaluation of these expectation values
does not need a full knowledge of the vacuum. This is important, since the precise properties of
the vacuum for interacting theories are not known.

We can consider ϕα as the components of a complex vector. The propagator is then a complex
matrix, called the propagator matrix. Also one-particle wave functions are vectors similar to ϕα.
Huygen’s principle for the propagation of a wave function becomes a matrix equation.

Video: Lecture09Video13.mp4

Chains of operators. We finally generalise the functional integral expression for the propagator
to arbitrary time-ordered chains of Heisenberg operators. Consider for tn > tn−1 > .....t2 > t1 a
chain of Heisenberg operators, with expectation value evaluated in the vacuum,

G̃ = 〈0|Â(n)
H (tn)Â

(n−1)
H (tn−1) . . . Â

(2)
H (t2)Â

(1)
H (t1)|0〉

The propagator is a special case
G = 〈0|aH(t2)a

†
H(t1)|0〉.

In complete analogy to the discussion above one finds the functional integral expression

G̃ = Z−1

∫
Dϕ e−SĀ = 〈A〉

for the observable
Ā = A(tn)A(tn−1) · · ·A(t2)A(t1)

with
A(tn) = A(ϕ∗(tn), ϕ(tn)).

The only difference to our treatment of the propagator is that we have different operators and
typically more than two factors.

Video: Lecture09Video14.mp4

Time ordering. The product A(t′)A(t) = A(t)A(t′) is commutative. The product ÂH(t′)ÂH(t)

in general not. What happens to commutation relations?
We define the time ordering operator T by putting in a product of two Heisenberg operators

the one with larger time argument to the left. e.g. for t2 > t1,

T
(
Â

(2)
H (t2)Â

(1)
H (t1)

)
= Â

(2)
H (t2)Â

(1)
H (t1)

T
(
Â

(1)
H (t1)Â

(2)
H (t2)

)
= Â

(2)
H (t2)Â

(1)
H (t1).

The time ordered operator product is commutative. There is therefore no contradiction. In the
opposite direction, a given functional integral expression for the expectation values of observables
with different time arguments gives a clear prescription in which order the Heisenberg operators

– 55 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture09Video13.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture09Video14.mp4


appear for the vacuum expectation value in the operator formalism.

These remarks generalise to products with several factors. Defining observables A that may be
products of observables with different time arguments we obtain the central identity

〈0|T
(
ÂH

)
|0〉 = 〈A〉.

On the left one has an operator expression, and on the right functional integral expression.

Video: Lecture09Video15.mp4

Transition amplitude for multi-particle states. We may consider two particles at t1 with
momenta ~p1 and ~p2, and compute the transition amplitude to a two particle state at t2 > t1 with
momenta ~p3 and ~p4. In analogy to our treatment of the propagator we first create the two particles
from the vacuum at t1, and annihilate two particles at t2,

G̃2,2 = 〈0|aH(~p4, t2)aH(~p3, t2)a
†
H(~p2, t1)a

†
H(~p1, t1)|0〉

= 〈ϕ(~p4, t2)ϕ(~p3, t2)ϕ∗(~p2, t1)ϕ
∗(~p1, t1)〉.

This is a four-point function. It is a basic element of scattering theory. We will see later that
the scattering matrix for two incoming particles with momenta ~p1, ~p2, scattered into two outgoing
particles with momenta ~p3, ~p4, obtains by squaring the transition amplitude, together with a suitable
”phase space integration”.

NEW LECTURE

5 Relativistic scalar fields and O(N)-models

Video: Lecture10Video01.mp4

In the next chapter we discuss a first model with Lorentz symmetry. Lorentz symmetry is a
key ingredient for elementary particle physics. We may focus on a simple model with a complex
scalar. This is employed in order to understand how Lorentz symmetry is tightly connected with the
existence of antiparticles or antimatter. We also will discuss the important concept of spontaneous
symmetry breaking.

Examples for scalar fields. Neutral relativistic scalar fields are the neutral pion π0 in QCD,
or the inflaton or cosmon. In this case a scalar field is a real function χ(~x, t). In principle, its
expectation value can be measured, similar to the electric or magnetic field. Complex scalar fields
are the charged pions π± and the kaons K±, represented by a complex scalar field χ(~x, t). An
important complex field is the Higgs-doublet, represented by a two-component complex scalar field
ϕa(t) with a = 1, 2. In particle physics, its expectation value is responsible for the spontaneous
breaking of the electroweak gauge symmetry, and the resulting masses of the W- and Z- bosons,
quarks and charged leptons.

Video: Lecture10Video02.mp4
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5.1 Lorentz invariant action.
Action. To formulate the action we first need the fields which are now fields in Minkowski space
χ(x) where x = (t, ~x). We consider local actions of the form

S =

∫
x

L (x),

∫
x

=

∫
dt d3x.

A typical form of the action is in an expansion in derivatives

L (x) = Lkin + iV + . . .

The action will reflect the symmetries of the model. One important symmetry is Lorentz symmetry.

Video: Lecture10Video03.mp4

Kinetic term. The kinetic term Lkin involves derivatives of fields. For non-relativistic free atoms
we have found

Lkin = χ∗(x)∂tχ(x) +
i

2M
∂jχ

∗(x)∂jχ(x), ∂j =
∂

∂xj
.

The two space derivatives are needed for rotation symmetry. Lorentz-symmetry needs again two
derivatives,

Lkin = i∂µχ∗(x)∂µχ(x),

with
∂µ =

(
∂

∂t
,
∂

∂xj

)
= (∂0, ∂j),

and

∂µ = ηµν∂ν , ηµν = ηµν =


−1

1

1

1

 .

Derivatives of scalars ∂µχ are covariant four-vectors. The scalar product of a covariant and a
contravariant four-vector is invariant under Lorentz transformations. In momentum space the
kinetic term involves the invariant squared momentum

Lkin = iq2χ∗(q)χ(q) , q2 = qµqµ = ηµνqµqν .

We conclude that relativistic theories of scalars involves two time derivatives. It is a direct con-
sequence of Lorentz symmetry that the number of time- derivatives equals the number of space-
derivatives. The kinetic term can be formulated for real fields in the same way.

Video: Lecture10Video04.mp4

From complex to real fields. Writing a complex field as two real fields

χ =
1√
2
(χ1 + iχ2)

one has

Lkin =
i

2

N∑
a=1

∂µχa(x)∂µχa(x).

Here N = 1 for a real scalar, N = 2 for a complex scalar and N = 4 for the Higgs doublet.

Video: Lecture10Video05.mp4
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Potential. The potential V involves no derivatives. It is a function of the fields and we write

V (x) = V (χ(x)) = V (χ).

Internal symmetries yield further restrictions. Charge conservation corresponds for complex field
to the symmetry

χ→ eiαχ.

The potential can only depend on

ρ = χ∗χ =
1

2
(χ2

1 + χ2
2).

For the Higgs doublet, the symmetry is SU(2) such that

ρ = χ†χ =
1

2

4∑
a=1

χ2
a.

Often one can expand
V (ρ) = µ2ρ+

1

2
λρ2 + . . .

For potentials depending only on ρ,
Lkin + V (ρ)

the action has O(N) symmetry. Performing analytic continuation for a description of thermal
equilibrium we recover the O(N)- symmetric models discussed in lecture 2.3. The classical statistical
equilibrium and the quantum statistical equilibrium at vanishing temperature differ only by an
additional dimension for the second, given by euclidean time. For the classical statistical setting
the temperature enters as a parameter in the action, while for quantum statistics it appears in the
periodic boundary condition.

Video: Lecture10Video06.mp4

5.2 Lorentz invariance and antiparticles.

We next want to show that antiparticles are a natural consequence of Lorentz symmetry.

Two fields with one time-derivative. In the following we concentrate on a single complex
scalar field. We want to see how the Lorentz invariant action actually describes two degrees of
freedom, namely a charged scalar particle and its antiparticle with opposite charge. Both charged
pions π− and π+ are described by the same field.

In order to see this we recall that a differential equation with two derivatives is equivalent to
two differential equations with one derivative. In other words, one complex field with two time-
derivatives is equivalent to two complex fields with one time derivative. We will use this in order
to rewrite the action in terms of two fields with only one time derivative. In this form we can make
direct contact to the action for non-relativistic bosons that we have discussed previously.

Video: Lecture10Video07.mp4

– 58 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture10Video06.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture10Video07.mp4


Let us start with a free complex relativistic scalar field

L = i(∂µχ∗∂µχ+M2χ∗χ).

The potential V describes only the mass M of the scalar particle. In momentum space, ∂t = ∂0 =

−∂0, one has
Lp = −i∂tχ∗∂tχ+ i(~p2 +M2)χ∗χ,

and the partition function is
Z =

∫
Dχ e−

∫
dt

∫
~p

Lp ,

where
∫
~p
=
∫

d3p
(2π)3 .

Video: Lecture10Video08.mp4

We treat every ~p mode separately. In order to switch to a formulation with two complex fields and
only one time derivative we insert a unit factor∫

Dπ exp{−i(∂tχ∗ − π∗)(∂tχ− π)} = const ” = ” 1,

where π(x) is a field. This factor yields only a constant which is independent of χ, as can be seen
by a simple shift of the integration variable, π′ = π − ∂tχ. Since multiplicative constants in Z do
not matter, we can write the partition function equivalently as

Z =

∫
DχDπ exp

[
−
∫
t

{
−i∂tχ∗∂tχ+ i(~p2 +M2)χ∗χ

+ i∂tχ
∗∂tχ− i∂tχ∗π − iπ∗∂tχ+ iπ∗π

}]
.

This eliminates the term with two derivatives. What remains are two complex fields χ and π with
one time derivative,

Z =

∫
Dχ Dπ e−

∫
t

L ,

where, after doing a partial integration,

L = iχ∗∂tπ − iπ∗∂tχ+ i(~p2 +M2)χ∗χ+ iπ∗π.

Video: Lecture10Video09.mp4

At this stage we have the wanted number of fields and only first time derivatives. The time
derivative term mixes the fields π and χ. We want to diagonalise this term by suitable variable
transformations, such that the independent degrees of freedom are clearly visible. For this purpose
we perform the variable transformation

χ(t) =
1√
2
(~p2 +M2)−

1
4 (ϕ1(t) + ϕ2(−t)),

π(t) = − i√
2
(~p2 +M2)

1
4 (ϕ1(t)− ϕ2(−t)).
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This yields

(~p2 +M2)χ∗(t)χ(t) =
1

2
(~p2 +M2)

1
2 [ϕ∗

1(t)ϕ1(t) + ϕ∗
2(−t)ϕ2(−t)

+ϕ∗
1(t)ϕ2(−t) + ϕ∗

2(t)ϕ1(t)] ,

Similarly,

π∗(t)π(t) =
1

2
(~p2 +M2)

1
2 [ϕ∗

1(t)ϕ1(t) + ϕ∗
2(−t)ϕ2(−t)

−ϕ∗
1(t)ϕ2(−t)− ϕ∗

2(−t)ϕ1(t)] ,

Summing both expressions gives

i
(
(~p2 +M2)χ∗χ+ π∗π

)
= i(~p2 +M2)

1
2 [ϕ∗

1(t)ϕ1(t) + ϕ∗
2(−t)ϕ2(−t)] ,

and the mixed term involving time derivatives is

i (χ∗∂tπ − π∗∂tχ) =
1

2
{(ϕ∗

1(t) + ϕ∗
2(−t))∂t(ϕ1(t)− ϕ2(−t))

+ (ϕ∗
1(t)− ϕ∗

2(−t))∂t(ϕ1(t) + ϕ2(−t))}
= ϕ∗

1(t)∂tϕ1(t)− ϕ∗
2(−t)∂tϕ2(−t).

Under the t-integral one can replace −ϕ∗
2(−t)∂tϕ2(−t)→ ϕ∗

2(t)∂tϕ2(t).
Taking the terms together we find the action for two particles with dispersion relation E =

ωM =
√
~p2 +M2,

S =

∫
dt
{
ϕ∗
1∂tϕ1 + ϕ∗

2∂tϕ2 − i
√
~p2 +M2(ϕ∗

1ϕ1 + ϕ∗
2ϕ2)

}
where ϕi = ϕi(t). This has precisely the same form that we have encountered before for non-
relativistic bosons as phonons. The only particularity is the form of the dispersion relation which
reflects the relativistic relation between energy and momentum. The action is block-diagonal, and
the two complex fields φ1 and φ2 describe two particles.

Video: Lecture10Video10.mp4

Antiparticles. The field χ with two time-derivatives describes a pair of fields ϕ1, ϕ2 with one
time-derivative. One field is the antiparticle of the other. We want to show that the antiparticle has
the opposite charge of the particle. For this purpose we couple the complex field χ to an ”external”
electromagnetic field. The different field equations for ϕ1 and ϕ2 will then reveal their opposite
charges.

The coupling to the electromagnetic potentialAµ is dictated by the principle of gauge invariance.
This requires to replace every derivative ∂µ by a covariant derivative Dµ according to

∂µ → Dµχ = (∂µ − ieAµ)χ.

We want to consider the particular field configuration Ai = 0 and constant electric potential A0.
In this case one only modifies the time derivative ∂t → ∂t− ieA0. Employing this modification also
in the inserted unit factor one obtains for L an additional term

∆L = eA0 [χ
∗(t)π(t)− π∗(t)χ(t)] .
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We express this addition in terms of the fields ϕ1 and ϕ2

∆L = eA0

[
− i
2
(ϕ∗

1(t) + ϕ∗
2(−t))(ϕ1(t)− ϕ2(−t))−

i

2
(ϕ∗

1(t)− ϕ∗
2(t))(ϕ1(t) + ϕ2(−t))

]
= −ieA0(ϕ

∗
1(t)ϕ1(t)− ϕ∗

2(−t)ϕ2(−t)).

As a consequence, the time derivative part in the action becomes

S =

∫
dt {ϕ∗

1(∂t − ieA0)ϕ1 + ϕ∗
2(∂t + ieA0)ϕ2 + . . .}

We conclude that ϕ1 and ϕ2 have opposite electric charge. An electric field, given by the gradient
of A0, will accelerate the two particles in opposite directions. The two fields show the characteristic
properties of a pair of particle and antiparticle. They have the same mass, but opposite charge.

We have performed the insertion of unity and variable transformations merely in order to
demonstrate the appearance of antiparticles in a simple way. In practise, one does not use this
variable transformation. The reason is that the ”insertion of unity” for the introduction of the field
π is not compatible with the Lorentz symmetry - time is singled out. Since we have not changed
the functional integral, the Lorentz symmetry still governs the dynamics if A0 = 0. The presence of
this symmetry is hidden for the action formulated in terms of ϕ1 and ϕ2. Since Lorentz invariance
is such an important symmetry for particle physics one wants to work with an action for which this
symmetry is manifest.

NEW LECTURE

In this lecture we turn again to the O(N)-symmetric scalar theories that we have already
introduced in the lecture 2.3. These models are simple enough to serve as good examples, and rich
enough to show many interesting physical properties characteristic for quantum field theories. They
serve as a ”working horse” for this lecture. With the formalism developed so far we can compute
the propagator in the absence of interactions or in the limit of small interaction effects. We also
discuss the setup for spontaneous symmetry breaking.

5.3 Unified Scalar field theories

Video: Lecture11Video01.mp4

Euclidean space. Scalars play an important role in quantum field theory. Prominent examples
are the Higgs scalar for the standard model of particle physics, scalar mesons for the strong inter-
actions, or the inflaton for cosmology. The corresponding Lorentz invariant quantum field theory is
formulated in Minkowski space. Analytic continuation from Minkowski to Euclidean space yields

ηµν∂µ∂ν → δµν∂µ∂ν .

Another factor arises from dt = −idτ. In Euclidean space the action therefore reads

S =

∫
x

{
1

2

∑
a

∂µχa∂µχa + V (ρ)

}
,

where now ∂µ = δµν∂ν and
∫
x
=
∫
dt
∫
d3~x. This is the four-dimensional O(N)-model introduced

in lecture 2.3. The Euclidean action is also the one that appears for the T → 0 limit of thermal
equilibrium, while for T > 0 the τ -integration becomes periodic with period 1/T .
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In euclidean space, the Lorentz-symmetry SO(1, 3) gets replaced by the four dimensional rota-
tions SO(4). This symmetry is broken for T > 0 since space and time are no longer treated equally.
One should distinguish two different symmetries: The internal symmetry O(N) acts on the internal
degrees of freedom, while the symmetry SO(d) corresponds to the Lorentz symmetry and acts as a
space-time transformation, changing coordinates or momenta.

Video: Lecture11Video02.mp4

Unified description of scalar theories. The euclidean O(N)-models in arbitrary dimension d,
admit a classical statistical probability distribution, with real action,

p =
1

T
e−S , Z =

∫
Dϕe−S .

They can be simulated on a computer.
We can classify important applications according to the dimension d of euclidean space and

number N of real components of the scalar field:

d = 1, 2, 3 models of classical statistical systems in d-dimensions
N = 3 magnets, 〈χa(x)〉 is magnetisation (order parameter)
N = 1 Ising type models

N = 2, d = 2 two-dimensional x-y model with Kosterlitz-Thouless phase transition
d = 4 relativistic scalar theories in thermal equilibrium at T = 0,

or analytic continuation of quantum dynamics.

If the euclidean model is solved, the n-point functions can be analytically continued to Minkowski
space, using

q0E = q0E = −iq0M = iq0M .

Video: Lecture11Video03.mp4

Correlation functions or n-point functions. The task is the computation of n-point functions

G
(n)
ab...f (x1 . . . xn) = 〈χa(x1)χb(x2) · · ·χf (xn)〉,

with space-time argument xi = xµi . Alternatively in Fourier space the n-point functions are

G(n)(p1 . . . pn),

where pi = pµi . As an example take the two point function or propagator

Gab(p1, p2) = 〈χa(p1)χb(−p2)〉 − 〈χa(p1)〉〈χb(−p2)〉 = G(p1)δ(p1 − p2)δab.

It can only depend on one momentum by virtue of d-dimensional translation symmetry. Invariance
under SO(d)-rotations implies that G can only depend on

p2 = pµpνδ
µν ,

or, in other words, G(pµ) = G(p2). Analytic continuation does not change G(p2), one only has to
switch to p2 = pµpνη

µν in momentum space.
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5.4 Propagator for free field

Video: Lecture11Video04.mp4

We start from the action for a free field

S =

∫
x

{
1

2
∂µχa∂µχa +

1

2
M2χaχa

}
.

This is a sum of independent pieces. Each particle with associated field can be treated separately.
Consider for simplicity a single complex field

S =

∫
x

{
∂µχ∗∂µχ+M2χ∗χ

}
,

and transform to Fourier space

S =

∫
q

(q2 +M2)χ∗(q)χ(q),

∫
q

=

∫
ddq

(2π)d
.

The propagator in Fourier space is given by

G(p, q) = 〈χ(p)χ∗(q)〉 − 〈χ(p)〉〈χ∗(q)〉.

We want to compute this propagator. For this purpose we use a torus with discrete modes and
take the volume to infinity at the end. For

S =
∑
q

(q2 +M2)χ∗(q)χ(q)

the expectation value obeys
〈χ(p)〉 = 1

Z

∫
Dχ e−S χ(p) = 0.

This is a simple consequence of the invariance of S and
∫
Dχ under the reflection χ→ −χ. Similarly,

for p 6= q, one finds
〈χ(p)χ∗(q)〉 = 1

Z

∫
Dχe−Sχ(p)χ∗(q) = 0.

Video: Lecture11Video05.mp4

Only for equal momenta p = q the two point function differs from zero,

〈χ(q)χ∗(q)〉 = 1

Z

∫
Dχe−Sχ(q)χ∗(q)

=

∫
dχ(q)e−(q2+M2)χ∗(q)χ(q)χ∗(q)χ(q)∫

dχ(q)e−(q2+M2)χ∗(q)χ(q)
.

For the second identity we use the fact that for all q′ 6= q the same factor appears in the numerator
and denominator.

We first compute the Gaussian integral

Z̃(M2) =

∫
dχ(q)e−(q2+M2)χ∗(q)χ(q),
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and then take the derivative with respect to M2,

〈χ(q)χ∗(q)〉 = − ∂

∂M2
ln(Z̃(M2)).

The Gaussian integral has the solution

Z̃(M2) =
π

q2 +M2
,

− ln(Z̃) = ln(q2 +M2)− ln(π),

− ∂

∂M2
ln(Z̃) =

1

q2 +M2
.

We can summarise for the free propagator

G(q, p) =
1

q2 +M2
δ(q − p).

For the last identity we have performed the infinite volume limit for which the Kronecker delta δp,q
becomes the distribution δ(p− q) = (2π)−dδd(pµ − qµ), which plays in our conventions the role of
the unit matrix in momentum space.

Video: Lecture11Video06.mp4

Propagator in Minkowski space. The analytic continuation of the free euclidean propagator
is straightforward in momentum space,

G(p, q) =
1

(q2 +M2)
δ(p− q)

=
1

−q20 + ~q2 +M2
δ(p− q).

This propagator has poles at
q0 = ±

√
~q2 +M2.

These two poles correspond to a particle and its antiparticle.

Video: Lecture11Video07.mp4

The solutions of the free field equations are

χ+ = e−i
√
~q2+M2t

and
χ− = e+i

√
~q2+M2t = e−i

√
~q2+M2 t̃, t̃ = −t.

Antiparticles appear formally as particles propagating “backwards in time”. The oscillatory be-
haviour in time is also visible in the Fourier transform of the propagator.This contrasts with the
behaviour in euclidean space. There the Fourier transform becomes a function of r = |~x− ~y|. For
d = 3 the result is a Yukawa potential G(r) proportional exp (−Mr)/r. The propagator vanishes
rapidly for large separations r � 1/M .
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Adding an interaction with strength λ, as specified by a potential

V =M2ρ+ λρ2/2,

will modify the propagator through the effects of fluctuations. For small λ the leading effects are a
shift of M2 and a multiplicative constant for the terms in the action which are quadratic in χ. These
effects can be absorbed by a multiplicative rescaling of fields and an additive ”renormalisation” of
M2. Modifications of the momentum dependence of the propagator occur in the order λ2 or higher.
The free propagator remains often a very good approximation.

5.5 Magnetisation in classical statistics

Video: Lecture11Video08.mp4

In the next part we link our formalism to a first set of physical questions. We discuss mag-
netisation and the notion of spontaneous symmetry breaking. This is done in the view of a later
treatment of the Higgs mechanism for the electroweak interactions in particle physics.

Action. We investigate the thermal equilibrium state for classical statistics of magnets. We
employ microscopic fields σa(x) which represent elementary magnets averaged over small volumes.
The Hamiltonian with next neighbour interaction reads in this continuum description

H =

∫
x

{
K ∂iσa(x)∂iσα(x) + c σa(x)σa(x) + d (σa(x)σa(x))

2 −Baσa(x)
}
.

We take K > 0, which tends to align magnets at neighbouring points. The homogeneous magnetic
field B breaks the O(N)-symmetry. Typical isotropic magnets in three dimensions correspond
to N = 3. The internal symmetry O(3) reflects independent spin rotations that are decoupled
from rotations in space. One can also consider asymmetric magnets with N = 2 (xy-models)
or N = 1 (Ising-type models). Magnets in lower dimensions are also highly interesting, with
d = 2 corresponding to physics dominated by layered structures as for materials leading to high
temperature superconductivity. At this level there is no longer any difference between ferromagnets
and antiferromagnets. The internal symmetry is the same.

The partition function in classical statistical thermal equilibrium obeys as usual

Z =

∫
Dσ e−βH =

∫
Dσe−S

where the classical action is
S = βH.

Video: Lecture11Video09.mp4

Rescaled fields. By a rescaling of fields

σa(x) =

√
1

2βK
χa(x).

we can bring the action to the standard form for O)N)-models

S =

∫
x

{
1

2
∂iχa(x)∂iχa(x) +

c

2K
χa(x)χa(x) +

d

4βK2
(χa(x)χa(x))

2 − Ba
√
β√

2K
χa(x)

}
,
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or with other naming conventions for the couplings

S =

∫
x

{
1

2
∂iχa(x)∂iχa(x) +

m2

2
χa(x)χa(x) +

λ

8
(χa(x)χa(x))

2 − Jaχa(x)
}
.

This relates the standard couplings m2, λ and the source J to the microscopic model parameters.
The parameter m2 can be positive or negative. It is often called a ”mass term”, in analogy to the
mass term for a relativistic particle.

Video: Lecture11Video10.mp4

Magnetisation. For m2 > 0 the microscopic magnets have for J = 0 a preferred value χa = 0.
For m2 < 0 the preferred value differs from zero for J = 0. The minimum of the potential

V0(ρ) = m2ρ+
λ

2
ρ2, ρ =

1

2
ϕaϕa,

obeys
∂V0
∂ρ

= m2 + λρ = 0.

For m2 < 0 it occurs at ρ0 = −m
2

λ . A non-vanishing magnetic field Ja singles out a certain direction.
The minimum of V = m2ρ+ λ

2 ρ
2 − Jaϕa defines the microscopic magnetisation.

Video: Lecture11Video11.mp4

We want to compute the macroscopic magnetisation 〈χ(x)〉 as a function of the magnetic field Ja.
For this problem fluctuations play an important role. We concentrate on m2 < 0 where things are
most interesting. The factor e−S is maximal if S is minimal. One may first look for the minimum of
S and expand around it. This procedure is called the ”saddle point approximation”. The minimum
of S is given by the microscopic magnetisation. Without loss of generality we choose J = (J1, 0, 0).
The configuration with constant χ, χa(x) = χa,0 minimises the kinetic term. The minimum of the
action is then given by the minimum of V . It occurs in the direction χ1, for which the potential
reduces to

V =
1

2
m2χ2

1 +
λ

8
χ4
1 − Jχ1.

The minimum of V is determined by the homogeneous field equation

∂V

∂χ
= m2χ1 +

λ

2
χ3
1 − J = 0.

If we take J > 0 a positive χ1,0 is preferred, being the absolute minimum of V . The absolute
minimum flips sign if we change the sign of J . At J = 0 one observes two degenerate minima. Such
a behaviour is characteristic for a first order phase transition as a function of the magnetic field, as
observed in ferromagnets or antiferromagnets.

In the limit of small J > 0 one has

λ

2
χ2
10 = −m2, χ10 =

√
−2m2

λ
.

Video: Lecture11Video12.mp4
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Fluctuations tend to wash out the microscopic magnetisation. If we want to know how strong
is this effect, we have to compute the partition function Z(J) as a function of the source J . Then
the magnetisation M̃ in appropriate units is determined by

∂ lnZ

∂J
=

〈∫
x

χ1

〉
= Ω〈χ1〉 = M̃,

where Ω the volume. We are interested here in small J → 0.
To do thermodynamics we start from the free energy

F = −T lnZ = − 1

β
lnZ.

As well known in thermodynamics the magnetisation is determined by the minimum of the free
energy.

Video: Lecture11Video13.mp4

Spontaneous symmetry breaking. Spontaneous symmetry breaking occurs if the magnetisa-
tion remains different from zero in the limit of vanishing magnetic field, M̃ 6= 0 for J → 0. The
magnetisation M̃a is proportional to the expectation value

ϕa = 〈χa〉.

For J = 0 the O(N)-symmetry is not violated. Any direction for ϕa in internal space is equivalent.
Nevertheless, the state ϕa = 0, which corresponds to vanishing magnetisation, is not a minimum of
the free energy, but rather a local maximum. The minimum occurs for ρ0 = (ϕaϕa)/2 different from
zero, and the system has to choose ”spontaneously” a direction of the magnetisation. Once this
direction is chosen, the symmetry of the ground state is less than the symmetry of the action. This
explains the name ”spontaneous symmetry breaking”. For the example of an O(3)-symmetry of the
action the ground state only exhibits the symmetry O(2) of rotations in the plane perpendicular
to the vector ~ϕ. In practice, the direction of ~ϕ is often determined by tiny amounts of symmetry
breaking or a tiny effective source J . Nevertheless, a discussion of the simple situation J = 0 covers
the relevant physics.

We will discuss this issue here in terms of the classical action. In view of the importance of
fluctuation effects this may not seem to be a good idea at first sight. We will see later, however,
that the main effect of the fluctuations is to replace the microscopic potential V (χ) by an ”effective
potential” U(ϕ). Here ϕa are macroscopic fields. The symmetry of the ”effective action” that
includes the fluctuation effects is the same as for the microscopic or classical action S. Also the
general form has often only small modifications, such that the dominant effect of the fluctuations
is a change of parameters. The microscopic parameters m2 and λ are replaced by macroscopic
parameters of ”renormalised couplings” m2

R and λR. Since we do not fix the parameters we can
discuss many aspects in terms of the microscopic action S, keeping the later replacements in mind.

Video: Lecture11Video14.mp4

Goldstone bosons. One of the characteristic signs of spontaneous breaking of a global continuous
symmetry ( as O(3) in our case ) is the presence of massless “Goldstone bosons”. They correspond
to excitations perpendicular to χa,0. For J = 0 the potential has the same height for arbitrary
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directions of χa,0. A change of the direction will correspond to massless excitations, the Goldstone
bosons.

“Massive” or “gapped” excitations correspond to a propagator G porportional 1/(q2 +M2),
whereas for “massless” or “gapless” excitations one has M = 0 and therefor a propagator G which
is proportional to 1/q2. For our translation invariant setting the propagator in momentum space is
a matrix in internal space, Gab(q2). In order to see the massless or massive excitations we have to
diagonalise the propagator matrix.

Spontaneous symmetry breaking occurs for m2
R < 0, or in our ”classical setting” for m2 < 0.

In this case it is useful to write the potential in the form

V =
λ

2
(ρ− ρ0)2, ρ0 = −m

2

λ
.

We concentrate for simplicity on a single complex field, N = 2,

ρ = χ∗χ =
1

2
(χ2

1 + χ2
2).

For the magnetisation in absence of a magnetic field, J = 0, we choose without loss of generality

χ1,0 6= 0, χ2,0 = 0, ρ0 =
1

2
χ2
10.

We expand around χ1,0, with
χ1 = χ10 + δχ1,

1

2
χ2
1 = ρ0 + χ10δχ1 +

1

2
δχ2

1,

ρ− ρ0 = χ10δχ1 +
1

2
δχ2

1 +
1

2
χ2
2.

For the extraction of the propagator it is sufficient to keep only terms quadratic in the fields
δχ1 and χ2. A proof in terms of the effective potential will be given in later lectures. In quadratic
approximation the potential reads

λ

2
(ρ− ρ0)2 =

λ

2
χ2
10δχ

2
1 = λρ0δχ

2
1.

In this approximation the potential does not depend on χ2. The field χ2 corresponds to a ”flat
direction of the potential” and will be associated with the Goldstone boson.

Video: Lecture11Video15.mp4

The kinetic term adds to the action in momentum space a piece q2(δχ1(q)δχ1(−q)+χ2(q)χ2(−q)).
In the quadratic approximation we therefore end with a free theory, for which we have already
computed the propagator. We conclude that the excitation δχ1 behaves as massive field, with
M2 = 2λρ0, and propagator

G =
1

q2 + 2λρ0
.

On the other hand, only the kinetic term contributes to the propagator of the excitation χ2, which
behaves as massless field with propagator

G =
1

q2.

This massless field is called a Goldstone boson.
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Video: Lecture11Video16.mp4

We may add a small source J , which breaks the symmetry explicitly. This modifies the potential,

V =
λ

2
(ρ− ρ0)2 − Jχ1

= λρ0δχ
2
1 − Jχ1,0 − Jδχ1.

The action takes the form
S = S0 +∆S,

S0 = −ΩJχ1,0,

∆S =

∫
x

1

2
δχ1(x)(−∆+ 2λρ0)δχ1(x)− J δχ1(x) +

1

2
χ2(x)(−∆)χ2(x).

Correspondingly, one obtains for the partition function in lowest order

Z0 = e−S0 = exp(ΩJχ1,0),

lnZ0 = ΩJχ1,0,

M̃ =
∂ lnZ0

∂J
= Ωχ1,0.

Video: Lecture11Video17.mp4

Phase transitions and fluctuations. What remains is a computation of the fluctuation effects
that relate the ”microscopic parameters” m2 and λ to the ”macroscopic parameters” or ”renor-
malised couplings” m2

R and λR. If m2
R turns out positive, the symmetry is not spontaneously

broken and one speaks about the ”symmetric phase”. In contrast, for the range of (m2, λ) for which
m2
R is negative one has spontaneous symmetry breaking. One speaks about the ”ordered phase” or

”SSB phase”. If both possibilities can be realised for suitable (m2, λ), and m2
R depends continuously

on these parameters, there must be a transition where m2
R = 0. This is a phase transition. There

is a ”critical surface” in the space of microscopic parameters for which the phase transition occurs.
For two parameters this is a critical line, determined by the condition m2

R(m
2, λ) = 0. Both m2

and λ depend on the temperature T . For given functions m2(T ) and λ(T ) one has m2
R(T ). The

critical temperature Tc for the phase transition is determined by the condition m2
R(Tc) = 0.

Not all models admit a phase transition. For the example d = 1, N > 3, or for d = 2, N > 2,
one can show that a true phase transition is not possible. For these models one finds m2

R > 0 for
all possible values of m2 and λ. This is the content of the Mermin-Wagner theorem. An interesting
boundary case is d = 2, N = 2. In this case one encounters a ”Kosterlitz-Thouless phase transition”,
which can be connected to vortices.

NEW LECTURE

6 Non-relativistic bosons

Video: Lecture12Video01.mp4
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6.1 Functional integral for spinless atoms

From relativistic to non-relativistic scalar fields. In this section we go from a relativistic
quantum field theory back to non-relativistic physics but in a quantum field theoretic formalism.
This non-relativistic QFT is in the few-body limit equivalent to quantum mechanics for a few
particles but also has interesting applications to condensed matter physics (many body quantum
theory) and it is interesting conceptually. We start from the action of a complex, relativistic scalar
field in Minkowski space

S =

∫
dtd3x

{
−∂µφ∗∂µφ−m2φ∗φ− λ

2
(φ∗φ)2

}
.

The quadratic part can be written in Fourier space with (px = −p0x0 + ~p~x),

φ(x) =

∫
d4p

(2π)4
eipxφ(p), φ∗(x) =

∫
d4p

(2π)4
e−ipxφ∗(p),

as

S2 =−
∫

d4p

(2π)4
{
φ∗(p)

[
−(p0)2 + ~p2 +m2

]
φ(p)

}
=−

∫
d4p

(2π)4

{
φ∗(p)

[
−
(
p0 −

√
~p2 +m2

)(
p0 +

√
~p2 +m2

)]
φ(p)

}
.

Video: Lecture12Video02.mp4

Two zero crossings. One observes that the so-called inverse propagator has two zero-crossings,
one at p0 =

√
~p2 +m2 and one at p0 = −

√
~p2 +m2. At this points the quadratic part of the action

become stationary in the sense
δ

δφ∗(p)
S2 = 0.

The zero-crossings also correspond to poles of the propagator. These so-called on-shell relations
give the relation between frequency and momentum for propagating, particle-type excitations of
the theory. In fact, p0 =

√
~p2 +m2 gives the one for particles, p0 = −

√
~p2 +m2 the one of

anti-particles. In the non-relativistic theory, anti-particle excitations are absent. Intuitively, one
assumes that the fields are close to fulfilling the dispersion relation for particles, p0 =

√
~p2 +m2

which is for large m2 rather far from the frequency of anti-particles. One can therefore replace in
a first step

p0 +
√
~p2 +m2 → 2

√
~p2 +m2 ≈ 2m.

Moreover, one can expand the dispersion relation for particles for m2 � ~p2,

p0 =
√
~p2 +m2 = m+

~p2

2m
+ . . .

This leads us to a quadratic action of the form

S2 = −
∫

ddp

(2π)4

{
φ∗(p)

(
−p0 +m+

~p2

2m

)
2mφ(p)

}
,

or for the full action in position space

S =

∫
dtd3x

{
φ∗

(
i∂t −m+

~∇2

2m

)
2m φ− λ

2
(φ∗φ)2

}
.

Video: Lecture12Video03.mp4
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Rescaled fields and dispersion relation. It is now convenient to introduce rescaled fields by
setting

φ(t, ~x) =
1√
2m

e−i(m−V0)tϕ(t, ~x).

The action becomes then

S =

∫
dtd3x

{
ϕ∗

(
i∂t − V0 +

~∇2

2m

)
ϕ− λ

8m2
(ϕ∗ϕ)2

}
. (6.1)

The dispersion relation is now with

ϕ(t, ~x) =

∫
dω

2π

d3p

(2π)3
e−iωt+i~pxϕ(ω, ~p),

given by

ω = V0 +
~p2

2m
.

This corresponds to the energy of a non-relativistic particle where V0 is an arbitrary normalization
constant corresponding to the offset of an external potential. The action in equation (6.1) describes
a non-relativistic field theory for a complex scalar field. As we will see, one can obtain quantum
mechanics from there but it is also the starting point for a description of superfluidity.

Video: Lecture12Video04.mp4

Symmetries of non-relativistic theory. The non-relativistic action in equation (6.1) has a
number of symmetries that are interesting to discuss. First we have translations in space and time
as well as rotations in space as in the relativistic case. There is also a global U(1) internal symmetry,

ϕ(x)→ eiαϕ(x), ϕ∗(x)→ e−iαϕ∗(x).

By Noether’s theorem this symmetry is related to particle number conservation (exercise).

Video: Lecture12Video05.mp4

Time-dependent U(1) symmetry. There is also an interesting extension of the global U(1)
symmetry. One can in fact make it time-dependent according to

ϕ(x)→ ei(α+βt)ϕ(x), ϕ∗(x)→ e−i(α+βt)ϕ∗(x).

All terms in the action are invariant except for

ϕ∗i∂tϕ→ ϕ∗e−i(α+βt) i∂t e
i(α+βt)ϕ(x) = ϕ∗(i∂t − β)ϕ.

However, if we also change V0 → V0 − β we have for the combination

ϕ∗(i∂t − V0)ϕ→ ϕ∗(i∂t − β − V0 + β)ϕ = ϕ∗(i∂t − V0)ϕ.

This shows that

ϕ(x)→ ei(α+βt)ϕ, ϕ∗ → e−i(α+βt)ϕ∗, V0 → V0 − β,

is in fact another symmetry of the action in equationeq:nonrelativisticactionScalar. One can say
here that (i∂t − V0) acts like a covariant derivative. This says that (i∂t − V0)ϕ transforms in the
same (covariant) way as ϕ itself. The physical meaning of this transformation is a change in the
absolute energy scale, which is possible in non-relativistic physics.
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Video: Lecture12Video06.mp4

Galilei transformation. Note that the action in equation (6.1) is not invariant under Lorentz
transformations any more. This is directly clear because derivatives with respect to time and space
do not enter in an equal way. However, non-relativistic physics is invariant under another kind of
space-time transformations, namely Galilei boosts,

t→ t,

~x→ ~x+ ~vt.

One can go to another reference frame that moves relative to the original one with a constant
velocity. How is this transformation realized in the non-relativistic field theory described by equation
(6.1)? This is a little bit complicated and we directly give the transformation law,

ϕ(t, ~x)→ ϕ′(t, ~x) = ei
(
m~v·~x− 1

2m~v
2t
)
ϕ(t, ~x− ~vt).

Indeed one can confirm that(
i∂t +

~∇2

2m

)
ϕ(t, ~x)→ ei

(
m~v·~x− 1

2m~v
2t
) [(

i∂t +
~∇2

2m

)
ϕ
]
(t, ~x− ~vt),

so that the action (6.1) is invariant under Galilei transformations.

6.2 Spontaneous symmetry breaking, Bose-Einstein condensation and superfluidity

Video: Lecture12Video07.mp4

Effective potential. One can write the action in (6.1) also as

S =

∫
dtd3x

{
ϕ∗
(
i∂t +

~∇2

2m

)
ϕ− V (ϕ∗ϕ)

}
, (6.2)

with microscopic potential as a function of ρ = ϕ∗ϕ,

V (ρ) = V0ρ+
λ

2
ρ2 = −µρ+ λ

2
ρ2.

At non-vanishing density one has V0 = −µ, where µ is the chemical potential. For, µ > 0 the
minimum of the effective potential is at ρ0 > 0. In a classical approximation where the effect of
fluctuation is neglected, one has the equation of motion following from δS = 0.

Video: Lecture12Video08.mp4

Bose-Einstein condensate. If the solution ϕ(x) = φ0 is homogeneous (constant in space and
time), it must correspond to a minimum of the effective potential. Without loss of generality we
can assume φ0 ∈ R and

V ′(ρ0) = −µ+ λρ0 = 0,

leads to
φ0 =

√
ρ0 =

√
µ

λ
.
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Assuming that it survives the effect of quantum fluctuations, such a field expectation value breaks
the global U(1) symmetry spontaneously, similar to magnetization. This phenomenon is known as
Bose-Einstein condensation. One can see this as a macroscopic manifestation of quantum physics.
The mode with vanishing momentum ~p = 0 has a macroscopically large occupation number, which
is possible for bosonic particles. On the other side, it arises here in a classical approximation to the
quantum field theory described by the action in eq. (6.1). In this sense, a Bose-Einstein condensate
can also be seen as a classical field, similar to the electro-magnetic field, for example.

Video: Lecture12Video09.mp4

Bogoliulov excitations. It is also interesting to study small perturbations around the homoge-
neous field value φ0. Let us write

ϕ(x) = φ0 +
1√
2
[φ1(x) + i φ2(x)] ,

with real fields φ1(x) and φ2(x). The action in eq. (6.2) becomes (up to total derivatives)

S =

∫
dt d3x

φ2∂tφ1 + 1

2

2∑
j=1

φj
~∇2

2m
φj − V

(
φ20 +

√
2φ0φ1 +

1
2φ

2
1 +

1
2φ

2
2

) .

It is instructive to expand to quadratic order in the deviations from a homogeneous field φ1 and
φ2. The quadratic part of the action reads

S2 =

∫
dt d3x

{
−1

2
(φ1, φ2)

(
− ~∇2

2m + 2λφ20 ∂t

−∂t − ~∇2

2m

)(
φ1
φ2

)}
.

In momentum space, the matrix between the fields becomes

G−1(ω, ~p) =

(
~p2

2m + 2λφ20 −iω
iω ~p2

2m

)
.

In cases where the inverse propagator is a matrix, this holds also for the propagator. When the
determinant of the inverse propagator has a zero-crossing, the propagator has a pole. This defines
the dispersion relation for quasi-particle excitations,

detG−1(ω, ~p) = 0.

Here this leads to
−ω2 +

(
~p2

2m
+ 2λφ20

)
~p2

2m
= 0,

or

ω =

√(
~p2

2m
+ 2λφ20

)
~p2

2m
. (6.3)

This is known as Bogoliubov dispersion relation.

Video: Lecture12Video10.mp4
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Linear and quadratic regimes. For small momenta, such that

~p2

2m
� 2λφ20,

one finds

ω ≈
√
λφ20
m
|~p|. (6.4)

In contrast, for
~p2

2m
� 2λφ20,

one recovers the usual dispersion relation for non-relativistic particles

ω ≈ ~p2

2m
. (6.5)

The low-momentum region describes phonons (quasi-particles of sound excitations), while the large-
momentum region describes normal particles.

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

p

2 mλ ϕ0

ω

2
λ
ϕ
02

Figure 3. Bogoliubov dispersion relation as in eq. (6.3) (solid line). Also shown is the low momentum
approximation (6.4) (dashed line) and the large-momentum approximation (6.5) (dotted line).

Video: Lecture12Video11.mp4

Superfluidity. The fact that the dispersion relation is linear for small momenta is also responsible
for another interesting phenomenon, namely superfluidity, a fluid motion without friction. To
understand this consider an interacting Bose-Einstein condensate flowing past some body of through
a capillary. If the energy and momentum of the fluid are E = E0 and ~P = 0 in the fluid rest frame,
they are

E′ = E + ~P~v +
1

2
M~v2 = E0 +

1

2
M~v2, ~P ′ = ~P +M~v =M~v,

in the rest frame of the body or capillary. We used here first the general transformation of energy
E and momentum ~P under Galilei boost transformations and then the particular values for the
homogeneous fluid state.

Imagine now that we can create an excitation or quasi-particle in the fluid with energy ε(~p)

and momentum ~p. In the fluid rest frame we have now E = E0 + ε(~p) and ~P = ~p. The energy and
momentum in the rest frame of the capillary are then

E′ = E0 + ε(~p) + ~p · ~v + 1

2
M~v2, ~P ′ = ~p+M~v.
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Comparison to the corresponding relation for the homogeneous state shows that the energy and
momentum associated to the excitation are in the rest frame of the capiliary ε(~p) + ~p · ~v and ~p,
respectively.

Video: Lecture12Video12.mp4

Landau’s criterion for superfluidity. Now the point is that at small temperature, excitations
will only be created in the fluid in appreciable numbers when it is energetically favorable, i.e. for

ε(~p) + ~p · ~v < 0,

such that the energy of the fluid is lowered. If this relation is not fulfilled for any momentum ~p,
no excitations that could transport momentum out of a local fluid cell will be created. This means
that there is no viscosity and the flow is superfluid. It follows that for friction to become possible,
the fluid needs to have a fluid velocity larger than

vc = min
~p

ε(~p)

|~p|
,

known as critical velocity. For the Bogoliubov dispersion relation (6.3) the critical velocity equals
the velocity of sound.

Video: Lecture12Video13.mp4

Summary. We have seen that relativistic quantum field theories can have a non-relativistic limit
where Lorentz symmetry is replaced by Galilei symmetry. In the few-body limit this leads to the
same predictions as quantum mechanics but the field theoretic formalism can have advantages,
for example in the context of condensed matter theory. As an example we have discussed Bose-
Einstein condensates where the low energy excitations are collective excitations of many particles
in the form of sound waves or phonons. We have discussed here in particular the non-relativistic
limit of a complex relativistic scalar field and have dropped the anti-particle excitations. One can
also consider real relativistic scalar field theories which have a non-relativistic limit in terms of a
complex scalar field, see for example [arXiv:2005.11359].

NEW LECTURE

7 Scattering

In this section we will discuss a rather useful concept in quantum field theory – the S-matrix. It
describes situations where the incoming state is a perturbation of a symmetric (homogeneous and
isotropic) vacuum state in terms of particle excitations and the outgoing state similarly. We are
interested in calculating the transition amplitude, and subsequently transition probability, between
such few-particle states. An important example is the scattering of two particles with a certain
center-of-mass energy. This is an experimental situation in many high energy laboratories, for
example at CERN. The final states consists again of a few particles (although “few” might be rather
many if the collision energy is high). Another interesting example is a single incoming particle, or
resonance, that can be unstable and decay into other particles. For example π+ → µ+ + νµ. As we
will discuss later on in more detail, particles as excitations of quantum fields are actually closely
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connected with symmetries of space-time, in particular translations in space and time as well as
Lorentz transformations including rotations. (In the non-relativistic limit, Lorentz transformations
are replaced by Galilei transformations). The standard application of the S-matrix concept assumes
therefore that the vacuum state has these symmetries. The S-matrix is closely connected to the
functional integral. Technically, this connection is somewhat simpler to establish for non-relativistic
quantum field theories. This will be discussed in the following. The relativistic case will be discussed
in full glory in the second part of the lecture course.

7.1 Scattering of non-relativistic bosons

Video: Lecture13Video01.mp4

Mode function expansion. Let us recall that one can expand fields in the operator picture as
follows

ϕ(t, ~x) =

∫
~p

v~p(t, ~x) a~p, ϕ†(t, ~x) =

∫
~p

v∗~p(t, ~x) a
†
~p,

with
∫
~p
=
∫

d3p
(2π)3 , annihilation operators a~p, creation operators a†~p, and the mode functions

v~p(t, ~x) = e−iω~pt+i~p~x.

The dispersion relation in the non-relativistic limit is

ω~p =
~p2

2m
+ V0.

Note that in contrast to the relativistic case, the expansion of ϕ(t, ~x) contains no creation operator
and the one of ϕ∗(t, ~x) no annihilation operator. This is a consequence of the absence of anti-
particles.

Video: Lecture13Video02.mp4

Scalar product. For the following discussion, it is useful to introduce a scalar product between
two functions of space and time f(t, ~x) and g(t, ~x),

(f, g)t =

∫
d3x {f∗(t, ~x)g(t, ~x)} .

The integer goes over the spatial coordinates at fixed time t. Note that if f and g were solutions
of the non-relativistic, single-particle Schrödinger equation, the above scalar product were actually
independent of time t as a consequence of unitarity in non-relativistic quantum mechanics.

Video: Lecture13Video03.mp4

Normalization of mode functions. The mode functions are normalized with respect to this
scalar product as

(v~p, v~p ′)t = (2π)3δ(3)(~p− ~p ′).

One can write

a~p =(v~p, ϕ)t =

∫
d3xeiω~pt−i~p~xϕ(t, ~x),

a†~p =(v∗~p, ϕ
∗)t =

∫
d3xe−iω~pt+i~p~xϕ∗(t, ~x).
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Video: Lecture13Video04.mp4

Time dependence of creation annihilation and creation operators. The right hand side
depends on time t and it is instructive to take the time derivative,

∂ta~p(t) =

∫
d3x eiω~pt−i~p~x[∂t + iω~p]ϕ(t, ~x)

=

∫
d3x eiω~pt−i~p~x

[
∂t + i

(
~p2

2m
+ V0

)]
ϕ(t, ~x)

=

∫
d3x eiω~pt−i~p~x

∂t + i

− ↼

~∇2

2m
+ V0

ϕ(t, ~x).
We used here first the dispersion relation and expressed them ~p2 as a derivative acting on the mode
function (it acts to the left). In a final step one can use partial integration to make the derivative
operator act to the right,

∂ta~p(t) = i

∫
d3x eiω~pt−i~p~x

[
−i∂t −

~∇2

2m
+ V0

]
ϕ(t, ~x).

This expression confirms that a~p were time-independent if ϕ(t, ~x) were a solution of the one-particle
Schrödinger equation. More general, it is a time-dependent, however. In a similar way one finds
(exercise)

∂ta
†
~p(t) = −i

∫
d3x e−iω~pt+i~p~x

[
i∂t −

~∇2

2m
+ V0

]
ϕ∗(t, ~x).

Video: Lecture13Video05.mp4

Incoming states. To construct the S-matrix, we first need incoming and out-going states. In-
coming states can be constructed by the creation operator

a†~p(−∞) = lim
t→−∞

a†~p(t).

For example, an incoming two-particle state would be

|~p1, ~p2; in〉 = a†~p1(−∞)a†~p2(−∞)|0〉.

Video: Lecture13Video06.mp4

Bosonic exchange symmetry. We note as an aside point that these state automatically obey
bosonic exchange symmetry

|~p1, ~p2; in〉 = |~p2, ~p1; in〉,

as a consequence of
a†~p1(−∞)a†~p2(−∞) = a†~p2(−∞)a†~p1(−∞).

Video: Lecture13Video07.mp4
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Fock space. We note also general states of few particles can be constructed as

|ψ; in〉 = C0|0〉+
∫
~p

C1(~p) |~p; in〉+
∫
~p1, ~p2

C2(~p1, ~p2)|~p1, ~p2; in〉+ . . .

This is a superposition of vacuum (0 particles), 1-particle states, 2-particle states and so on. The
space of such states is known as Fock space. In the following we will sometimes use an abstract
index α to label all the states in Fock space, i. e. |α; in〉 is a general incoming state. These states
are complete in the sense such that ∑

α

|α; in〉〈α; in| = 1,

and normalized such that 〈α; in|β; in〉 = δαβ .

Video: Lecture13Video08.mp4

Outgoing states. In a similar way to incoming states one can construct outgoing states with the
operators

a†~p(∞) = lim
t→∞

a†~p(t).

For example
|~p1, ~p2; out〉 = a†~p1(∞)a†~p2(∞)|0〉.

7.2 The S-matrix

Video: Lecture13Video09.mp4

S-matrix. The S-matrix denotes now simply the transition amplitude between incoming and
out-going general states |α; in〉 and |β; out〉,

Sβα = 〈β; out|α; in〉.

Because α labels all states in Fock space, the S-matrix is a rather general and powerful object. It
contains the vacuum-to-vacuum transition amplitude as well as transition amplitudes between all
particle-like excited states.

Video: Lecture13Video10.mp4

Unitarity of the S-matrix. Let us first prove that the scattering matrix is unitary,

(S†S)αβ =
∑
γ

(S†)αγSγβ

=
∑
j

〈γ; out|α; in〉∗ 〈γ; out|β; in〉

=
∑
j

〈α; in|γ; out〉〈γ; out|β; in〉

= 〈α; in|β; in〉
= δαβ .
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We have used here the completeness of the out states∑
j

|γ; out〉〈γ; out| = 1.

Video: Lecture13Video11.mp4

Conservation laws. The S-matrix respects a number of conservation laws such as for energy
and momentum. There can also be conservation laws for particle numbers, in particular also in
the non-relativistic domain. One distinguishes between elastic collisions where particle numbers do
not change, e.g. 2 → 2, and inelastic collisions, such as 2 → 4. In a non-relativistic theory, such
inelastic processes can occur for bound states, for example two H2 - molecules can scatter into their
constituents

H2 +H2 → 4H.

Video: Lecture13Video12.mp4

Connection between outgoing and incoming states. What is the connection between in-
coming and outgoing states? Let us write

a~p(∞)− a~p(−∞) =

∫ ∞

−∞
∂ta~p(t)

= i

∫ ∞

−∞
dt

∫
d3x eiω~pt−i~p~x

[
−i∂t −

~∇2

2m + V0

]
ϕ(t, ~x).

Annihilation operators at asymptotically large incoming and outgoing times differ by an integral
over space-time of the Schrödinger operator acting on the field. In momentum space with (px =

−p0x0 + ~p~x = −p0t+ ~p~x),

ϕ(t, ~x) =

∫
dp0

2ω

d3~p

(2π)3
eipxϕ(p),

this would read
a~p(∞)− a~p(−∞) = i

[
−p0 + ~p2

2m
+ V0

]
ϕ(p).

In a similar way one finds

a†~p(∞)− a†~p(−∞) = −i
∫ ∞

−∞
dt

∫
d3x e−iω~pt+i~p~x

[
−i∂t −

~∇2

2m + V0

]
ϕ∗(t, ~x)

= −i
[
−p0 + ~p2

2m
+ V0

]
ϕ∗(p).

Video: Lecture13Video13.mp4

Relation between S-matrix elements and correlation functions. For concreteness, let us
consider 2→ 2 scattering with incoming state

|~p1, ~p2; in〉 = a†~p1(−∞)a†~p2(−∞)|0〉,

and out-going state
|~q1, ~q2; out〉 = a†~q1(∞)a†~q2(∞)|0〉.
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The S-matrix element can be written as

S~q1~q2,~p1~p2 = 〈~q1, ~q2; out|~p1, ~p2; in〉

= 〈0|T{a~q1(∞) a~q2(∞) a†~p1(−∞) a†~p2(−∞)}|0〉.

We have inserted a time-ordering symbol but the operators are time-ordered already anyway.

Video: Lecture13Video14.mp4

Now, one can use

a~q1(∞) = a~q1(−∞) + i

[
−q01 +

~q21
2m

+ V0

]
ψ(q1).

However, a~q1(−∞) is moved to the right by time ordering and leads to a vanishing contribution
because of

a~q1(−∞)|0〉 = 0.

So, effectively under time ordering, one can replace

a~q1(∞)→ i

[
−q01 +

~q21
2m

+ V0

]
ϕ(q1).

By a similar argument, one can replace creation operators for t→ −∞ like

a†~p1(−∞)→ i

[
−p01 +

~p21
2m

+ V0

]
ϕ∗(p1).

The above argument is not fully correct. There is one contribution from the operators a~q(−∞) we
have forgotten here. In fact, the replacements a~q1(∞)→ a~q1(−∞) and a~q2(∞)→ a~q2(−∞) give

〈0|a~q1(−∞) a~q2(−∞) a†~p1(−∞) a~p2(−∞)|0〉.

We need to commute the annihilation operators to the right using the commutation relation[
a~q(−∞), a†~p(−∞)

]
= (2π)3δ(3)(~p− ~q).

This gives rise to a contribution to the S-matrix element

(2π)6
[
δ(3)(~p1 − ~q1) δ(3)(~p2 − ~q2) + δ(3)(~p1 − ~q2) δ(3)(~p2 − ~q1)

]
.

But this is just the “transition” amplitude for the case that no scattering has occurred! There is
always this trivial part of the S-matrix and in fact one can write

Sαβ = δαβ + contributions from interactions.

Let us keep this in mind and concentrate on the contribution from interactions in the following.

Video: Lecture13Video15.mp4
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Interacting part. We obtain thus for the S-matrix element

〈~q1, ~q2; out|~p1, ~p2; in〉

= i4
[
−q01 +

~q21
2m

+ V0

] [
−q02 +

~q22
2m

+ V0

] [
−p01 +

~p21
2m

+ V0

] [
−p02 +

~p22
2m

+ V0

]
× 〈0|T{ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ

∗(p2)}|0〉.

This shows how S-matrix elements are connected to time ordered correlation functions. This relation
is known as the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula, here applied to non-
relativistic quantum field theory.

Video: Lecture13Video16.mp4

Relativistic scalar theories. Let us mention here that for a relativistic theory the LSZ formula
is quite similar but one needs to replace[

−q0 + ~q2

2m
+ V0

]
→
[
−(q0)2 + ~q2 +m2

]
,

and for particles ϕ(q) → φ(q), ϕ∗(q) → φ∗(q), while for anti-particles ϕ(q) → φ∗(−q), ϕ∗(q) →
φ(−q).

Video: Lecture13Video17.mp4

Correlation functions from functional integrals. The time-ordered correlation functions can
be written as functional integrals,

〈0|T{ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ
∗(p2)}|0〉 =

∫
Dϕ ϕ(q1)ϕ(q2)ϕ

∗(p1)ϕ
∗(p2) e

iS[ϕ]∫
Dϕ eiS[ϕ]

.

We can now calculate S-matrix elements from functional integrals!

NEW LECTURE

7.3 Perturbation theory for interacting scalar fields

Video: Lecture14Video01.mp4

Partition function. Let us now consider a non-relativistic theory with the action

S[ϕ] =

∫
dtd3x

{
ϕ∗
(
i∂t +

∇2

2m
− V0

)
ϕ− λ

2
(ϕ∗ϕ)2

}
.

Compared to equation (6.1) we have rescaled the interaction parameter, λ
4m2 → λ. We introduce

now the partition function in the presence of source terms J as

Z[J ] =

∫
Dϕ exp

[
iS[ϕ] + i

∫
x

{J∗(x)ϕ(x) + J(x)ϕ∗(x)}
]
,

with x = (t, ~x) and
∫
x
=
∫
dt
∫
d3x.

Video: Lecture14Video02.mp4
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Source term. The source term can also be written in momentum space,∫
x

{J∗(x)ϕ(x) + J(x)ϕ∗(x)} =
∫
p

{J∗(p)ϕ(p) + J(p)ϕ∗(p)} ,

where
ϕ(x) =

∫
p

eipxϕ(p), ϕ∗(x) =

∫
p

e−ipxϕ∗(p),

with ∫
p

=

∫
dp0

2π

d3~p

(2π)3
,

and similar for the source J . Because the source term has the same form in position and momentum
space, we will sometimes simple write it as∫

{J∗ϕ+ ϕ∗J} .

Video: Lecture14Video03.mp4

Correlation functions from functional derivatives. One can generate correlation functions
from functional derivatives of Z[J ], for example

〈ϕ(x)ϕ∗(y)〉 = 〈0|T {ϕ(x)ϕ∗(y)} |0〉

=

∫
Dϕ ϕ(x) ϕ∗(y) eiS[ϕ]∫

Dϕ eiS[ϕ]

=

(
(−i)2

Z[J ]

δ2

δJ∗(x)δJ(y)
Z[J ]

)
J=0

.

Video: Lecture14Video04.mp4

Functional derivatives in momentum space. One can also take functional derivatives directly
in momentum space, for example

δ

δJ∗(P )
exp

[
i

∫
{J∗ϕ+ ϕ∗J}

]
=

i

(2π)4
ϕ(p) exp

[
i

∫
{J∗ϕ+ ϕ∗J}

]
.

In this sense one can write

〈ϕ(p) ϕ∗(q)〉 =
(
(−i)2

Z[J ]
(2π)8

δ2

δJ∗(p)δJ(q)
Z[J ]

)
J=0

.

Video: Lecture14Video05.mp4

Perturbation theory for partition function. Let us write the partition function formally as

Z[J ] =

∫
Dϕ exp

[
−iλ

2

∫
x

(
−i δ

δJ(x)

)2(
−i δ

δJ∗(x)

)2
]

exp

[
iS2[ϕ] + i

∫
{J∗ϕ+ ϕ∗J}

]
,

where the quadratic action is

S2[ϕ] =

∫
x

ϕ∗

(
i∂t +

~∇2

2m
− V0

)
ϕ.
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Note that when acting on the source term in the exponent, every functional derivative −i δ
δJ(x)

results in a field ϕ∗(x) and so on. In this way, the quartic interaction term has been separated and
written in terms of derivatives with respect to the source field.

Video: Lecture14Video06.mp4

Separate interaction term. We can now pull it out of the functional integral and write

Z[J ] = exp

[
−iλ

2

∫
x

(
−i δ

δJ(x)

)2(
−i δ

δJ∗(x)

)2
]
Z2[J ],

with the partition function for the quadratic theory

Z2[J ] =

∫
Dϕ eiS2[ϕ]+i

∫
{J∗ϕ+ϕ∗J}.

The latter is rather easy to evaluate this in momentum space.

Video: Lecture14Video07.mp4

Quadratic part. One can write

S2 +

∫
{J∗ϕ+ ϕ∗J} =

∫
p

{
−ϕ∗

(
−p0 + ~p2

2m + V0

)
ϕ+ J∗ϕ+ ϕ∗J

}
=

∫
p

{
−
[
ϕ∗ − J∗

(
−p0 + ~p2

2m + V0

)−1
](
−p0 + ~p2

2m + V0

)
×
[
ϕ−

(
−p0 + ~p2

2m + V0

)−1

J

]}
+

∫
p

{
J∗(p)

(
−p0 + ~p2

2m + V0

)−1

J(p)

}
.

Note that the last term is independent of the field ϕ and can be pulled out of the functional integral.

Video: Lecture14Video08.mp4

Evaluate Gaussian integral. The functional integral over ϕ is of Gaussian form. One can shift
the integration variable [

ϕ−
(
−p0 + ~p2

2m + V0

)−1

J

]
→ ϕ,

and perform the functional integration in Z2[ϕ]. It yields then only an irrelevant constant and as
a result one finds

Z2[J ] = exp

[
i

∫
p

J∗(p)
(
−p0 + ~p2

2m + V0

)−1

J(p)

]
.

Video: Lecture14Video09.mp4
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Relating functional derivatives in position and momentum space. In the following it will
be useful to write also the interaction term in momentum space. One may use

δ

δJ(x)
=

∫
d4p

δJ(p)

δJ(x)

δ

δJ(p)
=

∫
d4p

(2π)4
e−ipx(2π)4

δ

δJ(p)

=

∫
d4p

(2π)4
e−ipxδJ(p) =

∫
p

e−ipxδJ(p).

Here we defined the abbreviation
δJ(p) = (2π)4

δ

δJ(p)
.

In a similar way
δ

δJ∗(x)
=

∫
p

eipxδJ∗(p).

We used also ∫
x

eipx = (2π)4δ(4)(p).

Video: Lecture14Video10.mp4

Perturbation series. One finds for the partition function

Z[J ] = exp

[
−iλ

2

∫
x

(
δ

δJ(x)

)2 (
δ

δJ∗(x)

)2]
Z2[J ]

= exp

[
−iλ

2

∫
k1...k4

{
(2π)4δ4(k1 + k2 − k3 − k4)δJ(k1)δJ(k2)δJ∗(k3)δJ∗(k4)

}]
× exp

[
i

∫
p

J∗(p)
(
−p0 + ~p2

2m + V0

)−1

J(p)

]
.

(7.1)

One can now expand the exponential to obtain a formal perturbation series in λ.

Video: Lecture14Video11.mp4

S-matrix element. Let us now come back to the S-matrix element for 2→ 2 scattering

〈~q1, ~q2; out|~p1, ~p2; in〉

= i4
[
−q01 +

~q21
2m + V0

] [
−q02 +

~q22
2m + V0

] [
−p01 +

~p21
2m + V0

] [
−p02 +

~p22
2m + V0

]
× 〈ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ

∗(p2)〉

= i4
[
−q01 +

~q21
2m + V0

] [
−q02 +

~q22
2m + V0

] [
−p01 +

~p21
2m + V0

] [
−p02 +

~p22
2m + V0

]
×
(

1

Z[J ]
δJ∗(q1)δJ∗(q2)δJ(p1)δJ(p2)Z[J ]

)
J=0

.

If we now insert the perturbation expansion for Z[J], we can concentrate on the contribution at
order λ1 = λ, because at order λ0 = 1 we have only the trivial S-matrix element for no scattering
that we already discussed.

Video: Lecture14Video12.mp4
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Order λ. At order λ we have different derivatives acting on Z2[J ],

• δJ(p1) for incoming particles with momentum ~p1

• δJ∗(q1) for outgoing particle with momentum ~q1

• δJ(k) and δJ∗(k) for the interaction term.

Video: Lecture14Video13.mp4

Propagator. At the end, all these derivatives are evaluated at J = J∗ = 0. Therefore, there
must always be derivatives δJ and δ∗J acting together on one integral appearing in Z2[J ]. Note that

δJ(p1)δJ∗(q1)

[
i

∫
p

J∗(p)
(
−p0 + ~p2

2m + V0

)−1

J(p)

]
= i
(
−p01 +

~p21
2m + V0

)−1

(2π)4δ(4)(p1 − q1).

Video: Lecture14Video14.mp4

Momentum conservation. If two derivatives representing external particles would hit the same
integral in Z2[J ], one would have no scattering because ~p1 = ~q1 and as a result of momentum
conservation then also ~p2 = ~q2. This is no real scattering. Only if a derivative representing an
incoming or outgoing particle is combined with a derivative from the interaction term, this is
avoided.

Video: Lecture14Video15.mp4

Resulting contribution to S-matrix. By doing the algebra one finds at order λ the term for
scattering

〈~q1, ~q2; out|~p1, ~p2; in〉 = −i
λ

2
4 (2π)4δ(4)(q1 + q2 − p1 − p2).

The factor 4 = 2× 2 comes from different ways to combine functional derivatives with sources.

Video: Lecture14Video16.mp4

Momentum conservation. The overall Dirac function makes sure that the incoming four-
momentum equals the out-going four-momentum,

pin = p1 + p2 = q1 + q2 = pout.

Video: Lecture14Video17.mp4
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Transition amplitude. Quite generally, one can define for the non-trivial part of an S-matrix

〈β; out|α; in〉 = (2π)4δ(4)(pout − pin) i Tβα.

Together with the trivial part from “no scattering”, one can write

Sβα = δβα + (2π)4δ(4)(pout − pin) i Tβα.

By comparison of expressions we find for the 2 → 2 scattering of non-relativistic bosons at lowest
order in λ simply

T = −2λ,

independant of momenta. More generally, the transition amplitude T is expected to depend on the
momenta of incoming and outgoing particles.

Video: Lecture14Video18.mp4

Diagrammatic representation. To keep the overview over a calculation it is sometimes useful to
introduce a graphical representation. For the perturbation series discussed above we may represent
incoming particles by

δJ

= i

[
−p01 +

~p21
2m

+ V0

]
δJ(p1) = i

[
−p01 +

~p21
2m

+ V0

]
δ

δJ(p1)
,

and similarly outgoing particles by

δJ∗

= i

[
−q01 +

~q21
2m

+ V0

]
δJ∗(q1) = i

[
−q01 +

~q21
2m

+ V0

]
δ

δJ∗(q1)
.

These functional derivatives are acting on the partition function Z[J ]. The partition function in
(7.1) can be written in a perturbative series with the interaction term represented by

δJ∗ δJ∗

δJδJ

= −iλ
2

∫
k1...k4

{
(2π)4δ4(k1 + k2 − k3 − k4)δJ(k1)δJ(k2)δJ∗(k3)δJ∗(k4)

}

which itself acts on the quadratic partition function Z2[J ]. The latter is an exponential of the
propagator term with sources, which gets graphically represented by

J∗

J

= i

∫
p

J∗(p)

(
−p0 + ~p2

2m
+ V0

)−1

J(p).

One can the let the functional derivatives act on the sources and at the end evaluate everything at
J = 0. While the diagrammatic representation is useful, it is only an auxiliary tool to organize the
algebra. With a bit of experience one can work well with it.

NEW LECTURE
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7.4 From the S-matrix to a cross-section

Video: Lecture15Video01.mp4

Transition propability. Let us start from an S-matrix element in the form

〈β; out|α; in〉 = (2π)4δ(4)(pout − pin) i T

with transition amplitude T which may depend on the momenta itself. (For 2 → 2 scattering of
non-relativistic bosons, and at lowest order in λ, we found simply T = −2λ.) Let us now discuss
how one can relate S-matrix elements to actual scattering cross-sections that can be measured in
an experiment. We start by writing the transition probability from a state α to a state β as

P =
|〈β; out|α; in〉|2

〈β; out|β; out〉〈α; in|α; in〉
.

Video: Lecture15Video02.mp4

Transition rate. The numerator contains a factor[
(2π)4δ(4)(pout − pin)

]2
= (2π)4δ(4)(pout − pin)(2π)4δ(4)(0).

This looks ill defined but becomes meaningful in a finite volume V and for finite time interval ∆T .
In fact

(2π)4δ4(0) =

∫
d4x ei0x = V∆T.

For the transition rate Ṗ = P
∆T we can therefore write

Ṗ =
V (2π)4δ(4)(pout − pin)|T |2

〈β; out|β; out〉〈α; in|α; in〉
.

Video: Lecture15Video03.mp4

Normalization of incoming and outgoing states. Moreover, for incoming and outgoing two-
particle states, their normalization is obtained from

〈~p1, ~p2; in|~q1, ~q2; in〉 = lim
~qj→~pj

〈~p1, ~p2; in|~p1, ~p2; in〉

= lim
~qj→~pj

[
(2π)6

(
δ(3)(~p1 − ~q1)δ(3)(~p2 − ~q2) + δ(3)(~p1 − ~q2)δ(3)(~p2 − ~q1)

)]
=
[
(2π)3δ(3)(0)

]2
= V 2.

Video: Lecture15Video04.mp4
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Counting of momentum states. In a finite volume V = L3, and with periodic boundary
conditions, the final momenta are of the form

~p =
2π

L
(m,n, l),

with some integer numbers m,n, l. We can count final states according to∑
m,n,l

=
∑
m,n,l

∆m∆n∆l = L3
∑
m,n,l

∆p1∆p2∆p3
(2π)3

.

In the continuum limit this becomes
V

∫
d3p

(2π)3
.

The differential transition rate has one factor V d3p/(2π)3 for each final state particle.

Video: Lecture15Video05.mp4

Differential transition rate. For 2→ 2 scattering,

dṖ = (2π)4δ(4)(pout − pin)|T |2 1

V

d3q1
(2π)3

d3q2
(2π)3

.

This can be integrated to give the transition rate into a certain region of momentum states.

Video: Lecture15Video06.mp4

Flux of incoming particles. We can go from the transition probability to a cross-section by
dividing through the flux of incoming particles

F =
1

V
v =

2|~p1|
mV

.

Here we have a density of one particle per volume V and the relative velocity of the two particles is
v = 2|~p1|/m, in the center-of-mass frame where |~p1| = |~p2|, for identical particles with equal mass
m.

Video: Lecture15Video07.mp4

Differential cross-section. This cancels the last factor V and we find for the differential cross-
section

dσ =
|T |2m
2|~p1|

(2π)4δ(4)(pout − pin)
d3q1
(2π)3

d3q2
(2π)3

.

Video: Lecture15Video08.mp4
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Phase space integrals. In the center-of-mass frame one has also ~pin = ~p1 + ~p2 = 0 and accord-
ingly

δ(4)(pout − pin) = δ(Eout − Ein) δ(3)(~q1 + ~q2).

The three-dimensional part can be used to perform the integral over ~q2. In doing these integrals
over final state momenta, a bit of care is needed because the two final state particles are indistin-
guishable. An outgoing state |~q1, ~q2; out〉 equals the state |~q2, ~q1; out〉. Therefore, in order to count
only really different final states, one must divide by a factor 2 if one simply integrates d3q1 and
d3q2 independently. Keeping this in mind, we find for the differential cross-section after doing the
integral over ~q2,

dσ =
|T |2m

2|~p1|(2π)2
δ(Eout − Ein)d3q1.

Video: Lecture15Video09.mp4

Magnitude and solid angle. We can now use

d3~q1 = |~q1|2d|~q1| dΩq1

where dΩq1 is the differential solid angle element. Moreover

Eout =
~q21
2m

+
~q22
2m

+ 2V0 =
~q21
m

+ 2V0,

and
dEout

d|~q1|
= 2
|~q1|
m
.

With this, and using the familiar relation δ(f(x)) = δ(x−x0)/|f ′(x0)|, one can perform the integral
over the magnitude |~q1| using the Dirac function δ(Eout − Ein). This yields |~q1| = |~p1| and

dσ =
|T |2m2

16π2
dΩq1 .

Video: Lecture15Video10.mp4

Total cross-section. For the simple case where T is independent of the solid angle ωq1 , we can
calculate the total cross-section. Here we must now take into account that only half of the solid
angle 4π corresponds to physically independent configurations. The total cross-sections is therefore

σ =
|T |2m2

8π
.

In a final step we use T = −2λ to lowest order in λ (equivalent to the Born approximation in
quantum mechanics) and find here the cross-section

σ =
λ2m2

2π
.

Video: Lecture15Video11.mp4
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Dimensions. Let us check the dimensions. The action

S =

∫
dt d3x

{
ϕ∗
(
i∂t +

~∇2

2m − V0
)
ϕ− λ

2 (ϕ
∗ϕ)2

}
must be dimensionless. The field ϕ must have dimension

[ϕ] = length− 3
2 .

The interaction strength λ must accordingly have dimension

[λ] =
length3

time
.

Because [
~∇2

2m

]
=

1

time
,

one has [m] = time
length2 and therefore [λm] = length. It follows that indeed

[σ] = length2

as appropriate for a cross-section.

8 Fermions

Video: Lecture15Video12.mp4

So far we have discussed bosonic fields and bosonic particles as their excitations. Let us now
turn to fermions. Fermions as quantum particles differ in two central aspects from bosons. First,
they satisfy fermionic statistics. Wave functions for several particles are anti-symmetric under the
exchange of particles and occupation numbers of modes can only be 0 or 1. Second, fermionic
particles have half integer spin, i. e. 1/2, 3/2, and so on, in contrast to bosonic particles which
have integer spin 0, 1, 2 and so on. Both these aspects lead to interesting new developments.
Half-integer spin in the context of relativistic theories leads to a new and deeper understanding
of space-time symmetries and fermionic statistics leads to a new kind of functional integral based
on anti-commuting numbers. The latter appears already for functional integral representations of
non-relativistic quantum fields. We will start with this second-aspect and then turn to aspects of
space-time symmetry for relativistic theories later on.

8.1 Non-relativistic fermions

Video: Lecture15Video13.mp4

Pauli spinor fields. In non-relativistic quantum mechanics, particles with spin 1/2 are described
by a variant of Schrödinger’s equation with two-component fields. The fields are so-called Pauli
spinors with components describing spin-up and spin-down parts with respect to some axis. One
can write this as

Ψ(t, ~x) =

(
ψ↑(t, ~x)

ψ↓(t, ~x)

)
We also use the notation ψa(t, ~x) where a = 1, 2 and

ψ1(t, ~x) = ψ↑(t, ~x), ψ2(t, ~x) = ψ↓(t, ~x).

Video: Lecture15Video14.mp4

– 90 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture15Video12.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture15Video13.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture15Video14.mp4


Pauli equation. The Pauli equation is a generalisation of Schrödinger’s equation (neglecting
spin-orbit coupling), [(

−i∂t −
~∇2

2m + V0

)
1+ µB ~σ · ~B

]
Ψ(t, ~x) = 0,

or equivalently [(
−i∂t −

~∇2

2m + V0

)
δab + µB ~σab · ~B

]
ψb(t, ~x) = 0.

Here we use the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

and ~B = (B1, B2, B3) is the magnetic field, while µB is the magneton that quantifies the magnetic
moment.

Video: Lecture15Video15.mp4

Attempt for an action. Based on this, one would expect that the quadratic part of an action
for a non-relativistic field describing spin-1/2 particles is of the form

S2
?
=

∫
dtd3x

{
−Ψ†

[(
−i∂t −

~∇2

2m + V0

)
1+ µB ~σ · ~B

]
Ψ
}

However, we also need to take care of fermionic (anti-symmetric) exchange symmetry, such that for
fermionic states

|~p1, ~p2; in〉 = −|~p2, ~p1; in〉.
To this aspect we turn next.

8.2 Grassmann fields

Video: Lecture15Video16.mp4

Grassmann variables. So-called Grassmann variables are generators θi of an algebra, and they
are anti-commuting such that

θiθj + θjθi = 0.

An immediate consequence is that θj2 = 0.

Basis. If there is a finite set of generators θ1, θ2, . . . , θn, one can write general elements of the
Grassmann algebra as a linear superposition (with coefficients that are ordinary complex (or real)
numbers) of the following basis elements

1,

θ1, θ2, . . . , θn,

θ1θ2, θ1θ3, . . . , θ2θ3, θ2θ4, . . . , θn−1θn,

. . .

θ1θ2θ3 · · · θn.

There are 2n such basis elements, because each Grassmann variable θj can be either present or
absent.

Video: Lecture15Video17.mp4
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Grade of monomial. To a monomial θj1 · · · θjq one can associate a grade q which counts the
number of generators in the monomial. For Ap and Aq being two such monomials one has

ApAq = (−1)p·qAqAp.

In particular, the monomials of even grade

1,

θ1θ2, θ1θ3, . . . , θ2θ3, . . . , θn−1θn,

. . .

commute with other monomials, be the latter of even or odd grade.

Video: Lecture15Video18.mp4

Grassmann parity. One can define a Grassmann parity transformation P that acts on all gen-
erators according to

P (θj) = −θj , P 2 = 1.

Even monomials are even, odd monomials are odd under this transformation. The parity even part
of the algebra, spanned by the monomials of even grade, constitutes a sub-algebra. Because its
elements commute with other elements of the algebra they behave “bosonic”, while elements of the
Grassmann algebra that are odd with respect to P behave “fermionic”.

NEW LECTURE

Video: Lecture16Video01.mp4

Functions of Grassmann variables. Because of θ2 = 0, functions of a Grassmann variable θ
are always linear,

f(θ) = f0 + θf1.

Note that f0 and f1 could depend on other Grassmann variables but not θ.

Video: Lecture16Video02.mp4

Differentiation for Grassmann variables. To define differentiation of f(θ) with respect to θ
we first bring it to the form

f(θ) = f0 + θf1

and set then
∂

∂θ
f(θ) = f1.

Note that similar to θ2 = 0 one has also
(
∂
∂θ

)2
= 0. One may verify that the chain rule applies.

Take σ(θ) to be an odd element and x(θ) an even element of the Grassmann algebra. One has then

∂

∂θ
f(σ(θ), x(θ)) =

∂σ

∂θ

∂f

∂σ
+
∂x

∂θ

∂f

∂x
.
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The derivative we use here is a left derivative.
Consider for example

f = f0 + θ1θ2.

One has then

∂

∂θ1
f = θ2,

∂

∂θ2
f = −θ1,

∂

∂θ2

∂

∂θ1
f = 1,

∂

∂θ1

∂

∂θ2
f = −1.

One could also define a right derivative such that

f

←−
∂

∂θ1
= −θ2, f

←−
∂

∂θ2
= θ1.

Video: Lecture16Video03.mp4

Integration for Grassmann variables. To define integration for Grassmann variables one takes
orientation from two properties of integrals from −∞ to∞ for ordinary numbers. One such property
is linearity, ∫ ∞

−∞
dx c f(x) = c

∫ ∞

−∞
dx f(x).

The other is invariance under shifts of the integration variable,∫ ∞

−∞
dx f(x+ a) =

∫ ∞

−∞
dx f(x).

For a function of a Grassmann variable

f(θ) = f0 + θf1

One sets therefore ∫
dθ f(θ) = f1.

In other words, we have defined ∫
dθ = 0,

∫
dθ θ = 1.

This is indeed linear and makes sure that∫
dθ f(θ + σ) =

∫
dθ {(f0 + σf1) + f1 θ} =

∫
dθ f(θ) = f1.

Note that one has formally ∫
dθ f(θ) =

∂

∂θ
f(θ).

Video: Lecture16Video04.mp4
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Several variables. For functions of several variables one has∫
dθ1

∫
dθ2f(θ1, θ2) =

∂

∂θ1

∂

∂θ2
f(θ1, θ2).

It is easy to see that derivatives with respect to Grassmann variables anti-commute

∂

∂θj

∂

∂θk
= − ∂

∂θk

∂

∂θj
,

and accordingly also the differentials anti-commute

dθjdθk = −dθkdθj .

Video: Lecture16Video05.mp4

Functions of several Grassmann variables. A function that depends on a set of Grassmann
variables θ1, . . . , θn can be written as

f(θ) = f0 + θjf
j
1 +

1

2
θj1θj2f

j1 j2
2 + . . .+

1

n!
θj1 · · · θjnf j1···jnn .

We use here Einsteins summation convention with indices jk being summed over. The coefficients
f j1···jkk are completely anti-symmetric with respect to the interchange of any part of indices. In
particular, the last coefficient can only be of the form

f j1···jnn = f̃nεj1···jn ,

where εj1···jn is the completely anti-symmetric Levi-Civita symbol in n dimensions with ε12...n = 1.

Video: Lecture16Video06.mp4

Differentiation and integration. Let us now discuss what happens if we differentiate or inte-
grate f(θ). One has

∂

∂θk
f(θ) = fk1 + θj2f

kj2
2 + . . .+

1

(n− 1)!
θj2 · · · θjnfkj2···jnn ,

and similar for higher order derivatives. In particular

∂

∂θn
· · · ∂

∂θ1
f(θ) = f12...nn = f̃n.

This defines also the integral with respect to all n variables,∫
dθn · · · dθ1f(θ) = f12...n = f̃n

=

∫
dnθf(θ) =

∫
Dθf(θ).

Video: Lecture16Video07.mp4
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Linear change of Grassmann variables. Let us consider a linear change of the Grassmann
variables in the form (summation over k is implied)

θj = Jjkθ
′
k,

where Jjk is a matrix of commuting variables. We can write

f(θ) = f0 + . . .+
1

n!

(
Ji1j1θ

′
j1

)
· · ·
(
Jinjnθ

′
jn

)
εi1···in f̃n.

Now one can use the identity

εi1...inJi1j1 · · · Jinjn = det(J) εj1...jn .

This can actually be seen as the definition of the determinant. One can therefore write

f(θ) = f0 + . . .+
1

n!
θ′j1 · · · θ

′
jnεj1...jn det(J)f̃n.

The integral with respect to θ′ is ∫
dnθ′f(θ) = det(J)f̃n.

In summary, one has ∫
dnθf(θ) =

1

det(J)

∫
dnθ′f(θ).

Video: Lecture16Video08.mp4

Linear change of ordinary variables. One should compare this to the corresponding relation
for conventional integrals with xj = Jjkx

′
k. In that case one has∫

dnxf(x) = det(J)

∫
dnx′f(x′).

Note that the determinant appears in the denominator for Grassmann variables while it appears in
the numerator for conventional integrals.

Video: Lecture16Video09.mp4

Gaussian integrals of Grassmann variables. Consider a Gaussian integral of two Grassmann
variables ∫

dθdξ e−θξb =

∫
dθdξ (1− θξb) =

∫
dθdξ (1 + ξθb) = b.

For a Gaussian integral over conventional complex variables one has instead∫
d(Rex) d(Imx) e−x

∗xb =
π

b
.

Again, integrals over Grassmann and ordinary variables behave in some sense “inverse”.

Video: Lecture16Video10.mp4
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Higher dimensional Gaussian integrals. For higher dimensional Gaussian integrals over Grass-
mann numbers we write∫

dnθdnξe−θjajkξk =

∫
dθndξn · · · dθ1dξ1e−θjajkξk .

One can now employ two unitary matrices with unit determinat to perform a change of variables

θj = θ′lUlj , ξk = Vkmξ
′
m,

such that
UljajkVkm = ãlδlm,

is diagonal. This is always possible. The Gaussian integral becomes

dnθdnξ e−θjajkξk = det(U)−1 det(V )−1

∫
dnθ

′
dnξ

′
e−θ

′
lξ

′
l ãl =

n∏
l=1

ãl = det(ajk).

Again this is in contrast to a similar integral over commuting variables where the determinant would
appear in the denominator.

Video: Lecture16Video11.mp4

Gaussian integrals with sources. Finally let us consider a Gaussian integral with source forms,∫
dnψ̄dnψ exp

[
−ψ̄Mψ + η̄ψ + ψ̄η

]
= Z(η̄, η).

We integrate here over independent Grassmann variables ψ = (ψ1, . . . , ψn) and ψ̄ = (ψ̄1, . . . , ψ̄n)

and we use the abbreviation
ψ̄Mψ = ψ̄jMjkψk.

The source forms are also Grassmann variables η = (η1, . . . , ηn) and η̄ = (η̄1, . . . , η̄n) with

η̄ψ = η̄jψj , ψ̄η = ψ̄jηj .

As usual, we can write

Z(η̄, η) =

∫
dnψ̄dnψ exp

[
−(ψ̄ − ηM−1)M(ψ −M−1η) + η̄M−1η

]
.

A shift of integration variables does not change the result and thus we find

Z(η̄, η) = det(M) exp
[
η̄M−1η

]
.

In this sense, Gaussian integrals over Grassmann variables can be manipulated similarly as Gaussian
integrals over commuting variables. Note again that det(M) appears in the numerator while it would
appear in the denominator of bosonic variables.

Video: Lecture16Video12.mp4
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Functional integral over Grassmann fields. We can now take the limit n→∞ and write∫
dnψ̄dnψ →

∫
Dψ̄Dψ, Z(η̄, η)→ Z[η̄, η],

with
Z[η̄, η] =

∫
Dψ̄Dψ exp[−ψ̄Mψ + η̄ψ + ψ̄η] = det(M) exp

[
η̄M−1η

]
.

In this way we obtain a formalism that can be used for fermionic or Grassmann fields.

Video: Lecture16Video13.mp4

Action for free non-relativistic scalars. We can now write down an action for non-relativistic
fermions with spin 1/2. It looks similar to what we have conjectured before,

S2 =

∫
dtd3x

{
−ψ̄

[(
−i∂t −

~∇2

2m + V0

)
1+ µB~σ · ~B

]
ψ
}
,

but the two-component fields ψ = (ψ1, ψ2) and ψ̄ = (ψ̄1, ψ̄2) are in fact Grassmann fields. Such
fields anti-commute, for example ψ1(x)ψ2(y) = −ψ2(y)ψ1(x). One should see the field at different
space-time positions x to be independent Grassmann numbers. Also, ψ1 and ψ̄1 are independent
as Grassmann fields. In particular ψ1(x)

2 = 0 but ψ̄1(x)ψ1(x) 6= 0.

Video: Lecture16Video14.mp4

Partition function. A partition function with sources for the above free theory could be written
down as

Z2[η̄, η] =

∫
Dψ̄Dψ exp

[
iS2[ψ̄, ψ̄] + i

∫
x

{
η̄(x)ψ(x) + ψ̄(x)η(x)

}]
Correlation functions can be obtained from functional derivatives of Z[η̄, η] with respect to the
source field η̄(x) and η(x). Some care is needed to take minus signs into account that may arise from
possible commutation of Grassmann numbers. For the quadratic theory one can easily complete
the square, perform the functional integral and write the partition function formally as

Z2[η̄, η] = exp

[
i

∫
x,y

η̄(x)
[(
−i∂t −

~∇2

2m + V0

)
1+ µB ~σ · ~B

]−1

(x, y) η(y)

]
.

Video: Lecture16Video15.mp4

Greens function. The inverse of the operator(
−i∂t −

~∇2

2m + V0

)
1+ µB ~σ · ~B

is a matrix valued Greens function. For a magnetic field that is constant in space and time, for
example pointing in z-direction, one can easily invert this operator in Fourier space,

Υ(x− y) =
∫

d4p

(2π)4

[(
−p0 + ~p2

2m + V0

)
1+ µB ~σ · ~B

]−1

eip(x−y).
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In the following we will set ~B = 0 for simplicity such that

Υ(x− y) = 1

∫
p

1

−p0 + ~p2

2m + V0 − iε
eip(x−y). (8.1)

The term iε makes sure that we take the right Greens function with time ordering. For a non-
relativistic theory at zero temperature and density, this equals the retarded Greens function.

NEW LECTURE

8.3 Yukawa theory

Video: Lecture17Video01.mp4

Yukawa theory. Let us now investigate a theory for a non-relativistic fermion with spin 1/2 and
a real, relativistic scalar boson

S =

∫
dtd3x

{
−ψ̄

(
−i∂t −

~∇2

2m + V0 − iε
)
ψ − 1

2φ
(
∂2t − ~∇2 +M2 − iε

)
φ− gφψ̄ψ

}
.

Partition function for Yukawa theory. We will discuss this theory in terms of the partition
function

Z[η̄, η, J ] =

∫
Dψ̄DψDφ eiS[ψ̄,ψ,φ]+i

∫
x
{η̄ψ+ψ̄η+Jφ}.

As usual, by taking functional derivatives with respect to the source fields, one can obtain various
correlation functions. Our strategy will be to perform a perturbation expansion in the cubic term
∼ g.

Video: Lecture17Video02.mp4

Quadratic action. Let us first concentrate on the quadratic theory and the corresponding par-
tition function derived from the action

S2 =

∫
dtd3x

{
−ψ̄

(
−i∂t −

~∇2

2m
+ V0 − iε

)
ψ − 1

2
φ(∂2t − ~∇2 +M2 − iε)φ

}
.

By doing the Gaussian integration one finds

Z2[η̄, η, J ] =

∫
Dψ̄DψDφ exp

[
iS2 + i

∫
x

{
η̄ψ + ψ̄η + Jφ

}]
= exp

[
i

∫
d4xd4y

{
η̄(x)Υ(x− y)η(y) + 1

2
J(x)∆(x− y)J(y)

}]
where Υ(x − y) is the Greens function for fermions in eq. (8.1). For the scalar bosons, the Green
function is

∆(x− y) =
∫

d4p

(2π)4
1

−(p0)2 + ~p2 +M2 − iε
eip(x−y).

Video: Lecture17Video03.mp4
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−
√
~p2+M2+iε

+

√
~p2+M2−iε

p0
Im(p0)

Re(p0)

−
√
~p2+M2

+

√
~p2+M2

p0
Im(p0)

Re(p0)

Figure 4. Illustration of the contour integral for the time-ordered Feynman propagator. In the left panel
the poles are shifted slightly into the complex plane, in the right panel the integration contour is slightly
shifted. Both prescriptions lead to equivalent results.

Time-ordered boundary conditions or iε prescription. Again, the iε term makes sure that
the Greens function corresponds to the time-ordered or Feynman boundary conditions. One can
also obtain this from a careful consideration of analytic continuation from Euclidean space to real
time or Minkowski space. Note that the iε term has in the functional integral the form

eiS = ei[...+iε
∫
x
φ2(x)] = e−ε

∫
x
φ(x)2+i....

This is the same suppression term that also appears in the Euclidean functional integral. It makes
sure that functional integrals are converging and that the theory approaches the ground state on
long time scales.

In the complex plane, positions of poles are shifted slightly away from the real axis. This is
illustrated in the left panel of figure 4. In fact this is equivalent to keeping the poles at p0 =

±
√
~p2 +M2 but moving slightly in the integration contour. This is illustrated in the right panel

of figure 4.

Video: Lecture17Video04.mp4

Time ordered or Feynman propagator in position space. Let us use either of these pre-
scriptions to calculate the scalar field propagator in position space

∆(x− y) =
∫
dp0

2π

d3p

(2π)3
e−ip

0(x0−y0)+i~p(~x−~y)(
−p0 +

√
~p2 +M2 − iε

)(
p0 +

√
~p2 +M2 − iε

) .
The strategy will be to close the integration contour at |p0| → ∞ and to use the residue theorem.
First, for x0 − y0 > 0, we can close the contour in the lower half of the complex p0-plane because
e−ip

0(x0−y0) → 0 there. There is then only the residue at p0 =
√
~p2 +M2 inside the integration

contour (the iε has already been dropped there). The residue theorem gives for the p0 integral

∆(x− y) =
∫

d3p

(2π)3
i

2
√
~p2 +M2

e−i
√
~p2+M2(x0−y0) ei~p(~x−~y) (for x0 − y0 > 0).

In contrast, for x0 − y0 < 0 we need to close the p0-integral in the upper half of the complex p0

plane. The residue theorem given then

∆(x− y) =
∫

d3p

(2π)3
i

2
√
~p2 +M2

ei
√
~p2+M2(x0−y0) ei~p(~x−~y) (for x0 − y0 < 0).
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These results can be combined to

∆(x− y) =
∫

d3p

(2π)3
i

2
√
~p2 +M2

e−i
√
~p2+M2|x0−y0|+i~p(~x−~y)

=iθ(x0 − y0)
∫

d3p

(2π)3
1

2
√
~p2 +M2

e−i
√
~p2+M2(x0−y0)+i~p(~x−~y)

+ iθ(y0 − x0)
∫

d3p

(2π)3
1

2
√
~p2 +M2

ei
√
~p2+M2(x0−y0)+i~p(~x−~y).

One can understand the first term as being due to particle-type excitations, while the second is due
to anti-particle-type excitations. The above Greens function is known as time ordered or Feynmann
propagator.

Video: Lecture17Video05.mp4

Propagator for non-relativistic fermions. For the non-relativistic fermion, the propagator
integral over p0 has just a single pole at p0 = ~p2

2m + V0 − iε,

Υ(x− y) = 1

∫
dp0

2π

d3p

(2π)3
1

−p0 + ~p2

2m + V0 − iε
e−ip

0(x0−y0)+i~p(~x−~y).

When x0 − y0 > 0 the contour can be closed below the real p0-axis, leading to

Υ(x− y) = i 1

∫
d3p

(2π)3
e−i
(

~p2

2m+V0

)
(x0−y0)+i~p(~x−~y) (x0 − y0 > 0).

In contrast, for x0− y0 < 0, the contour can be closed above and there is no contribution at all. In
summary

Υ(x− y) = i θ(x0 − y0) 1
∫

d3p

(2π)3
e−i
(

~p2

2m+V0

)
(x0−y0)+i~p(~x−~y).

As a consequence of the absence of anti-particle-type excitations, the time-ordered and retarded
propagators agree here.

Video: Lecture17Video06.mp4

Propagator and correlation functions. Let us also note the relation between propagators and
correlation functions. For the free (quadratic) theory one has in the fermionic sector〈

ψa(x)ψ̄b(y)
〉
=

(
1

Z2

δ

δη̄a(x)

δ

δηb(y)
Z2[η̄, η, J ]

)
η̄=η=J=0

= −iΥab(x− y),

Note that some care is needed with interchanges of Grassmann variables to obtain this expression.
Similarly for the bosonic scalar field

〈φ(x)φ(y)〉 =
(

1

Z2

δ

δJ(x)

δ

δJ(y)
Z2[η̄, η, J ]

)
η̄=η=J=0

= −i∆(x− y).

Video: Lecture17Video07.mp4
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Wick’s theorem. More generally one finds for the free theory

〈φ(x1) . . . φ(xn)〉 =
(

1

Z2

(
−i δ

δJ(x1)

)
· · ·
(
−i δ

δJ(xn)

)
Z2[η̄, η, J ]

)
η̄=η=J=0

=
∑

pairings
[−i∆(xj1 − xj2)] · · ·

[
−i∆(xjn−1

− xjn)
]
.

The sum in the last line goes over all possible ways to distribute x1, . . . , xn into pairs (xj1 , xj2),
(xj3 , xj4), . . ., (xjn−1 , xjn). This result is known as Wick’s theorem. It follows directly from the
combinatorics of functional derivatives acting on Z2.

For example,

〈φ(x1) φ(x2) φ(x3)φ(x4)〉 =[−i∆(x1 − x2)][−i∆(x3 − x4)]
+ [−i∆(x1 − x3)][−i∆(x2 − x4)]
+ [−i∆(x1 − x4)][−i∆(x2 − x3)].

Video: Lecture17Video08.mp4

In a similar way correlation functions involving ψ̄ and ψ can be written as sums over the possible
ways to pair ψ and ψ̄. For example〈

ψa1(x1)ψa2(x2)ψ̄a3(x3)ψ̄a4(x4)
〉
=−

〈
ψa1(x1)ψ̄a3(x3)

〉 〈
ψa2(x2)ψ̄a4(x4)

〉
+
〈
ψa1(x1)ψ̄a4(x4)

〉 〈
ψa2(x2)ψ̄a3(x3)

〉
=− [−iΥa1a3(x1 − x3)][−iΥa2a4(x2 − x4)]
+ [−iΥa1a4(x1 − x4)][−iΥa2a3(x2 − x3)].

Note that correlation functions at quadratic level (for the free theory) need to involve as many
fields ψ as ψ̄, otherwise they vanish. Similarly, φ must appear an even number of times. For mixed
correlation functions one can easily separate φ from ψ and ψ̄ at quadratic level, because Z2[η̄, η, J ]

factorizes. For example,〈
φ(x1) ψa(x2) φ(x3)ψ̄b(x4)

〉
= [−i∆(x1 − x3)][−iΥab(x2 − x4)]. (8.2)

Video: Lecture17Video09.mp4

Graphical representation. It is useful to introduce also a graphical representation. We will
represent the scalar propagator by a dashed line

−i∆(x− y) = x y .

The Feynman propagator for the fermions will be represented by a solid line with arrow,

−iΥab(x− y) = (x, a) (y, b) .

We can represent correlation functions graphically, for example, the mixed correlation function in
eqn. (8.2) for the free theory would be

〈φ(x1)ψa(x2)φ(x3)ψ̄b(x4)〉 =

{
x1 x3

(x2, a) (x4, b)

= [−i∆(x1 − x3)] [−iΥab(x2 − x4)] .

Video: Lecture17Video10.mp4
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Perturbation theory in g. Let us now also consider the interaction terms in the action. In the
functional integral it contributes according to

eiS[ψ̄,ψ,φ] = eiS2[ψ̄,ψ,φ] exp

[
−ig

∫
d4xφ(x)ψ̄a(x)ψa(x)

]
.

We can assume that g is small and simply expand the exponential where it appears. This will
add field factors ∼ φ(x)ψ̄a(x)ψa(x) to correlation functions with an integral over x and an implicit
sum over the spinor index a. The resulting expression involving correlation functions can then be
evaluated as in the free theory. For example,〈

φ(x1)ψb(x2)ψ̄c(x3)
〉
=
〈
φ(x1)ψb(x2)ψ̄c(x3)

〉
0

+

〈
φ(x1)ψb(x2)ψ̄c(x3)

[
−ig

∫
y

φ(y)ψ̄a(y)ψa(y)

]〉
0

+ . . .

The index 0 indicates that the correlation functions get evaluated in the free theory. Graphically,
we can represent the interaction term as a vertex

−ig
∫
y

∑
a

=

(y, a)

.

For each such vertex we need to include a factor −ig as well as an integral over the space-time
variable y and the spinor index a.

Video: Lecture17Video11.mp4

Three point function. To order g, we find for the example above

〈φ(x1)ψb(x2)ψ̄c(x3)〉 =
(x2, b)

(y, a)
(x3, c)

x1

+

(x2, b) (x3, c)

(y, a)

x1

=− ig
∫
y

[−i∆(x1 − y)][−iΥba(x2 − y)][−iΥac(y − x3)]

+ ig

∫
y

[−i∆(x1 − y)][−iΥbc(x2 − x3)][−iΥaa(y − y)].

The sign in the last line is due to an interchange of Grassmann fields. The last expression involves
the fermion propagator for vanishing argument

Υab(0) = δab

∫
d4p

(2π)4
1

−p0 + ~p2

2m + V0 − iε
= iθ(0)δabδ

(3)(0).

We will set here θ(0) = 0 so that the corresponding contribution vanishes. In other words, we will
interpret

Υab(0) = lim
∆t→0

Υab(−∆t,~0) = 0.

Although this is a little ambiguous at this point, it turns out that this is the right way to proceed.

Video: Lecture17Video12.mp4
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Feynmann rules in position space. To calculate a field correlation function in position space
we need to

• have a scalar line ending on x for a factor φ(x), x

• have a fermion line ending on x for a factor ψa(x), (x, a)

• have a fermion line starting on x for a factor ψ̄a(x), (x, a)

• include a vertex −ig
∫
y

for every order g,
(y, a)

with integral over y.

• connect lines with propagators [−i∆(x− y)] or [−iΥab(x− y)]

• determine the overall sign for interchanges of fermionic fields.

Video: Lecture17Video13.mp4

S-matrix elements from amputated correlation functions. To calculate S-matrix elements
from correlation functions, we need to use the LSZ formula. For an outgoing fermion, we need to
apply the operator

i
[
−i∂t −

~∇2

2m + V0

]
〈· · ·ψa(x) · · · 〉

and also go to momentum space by a Fourier transform∫
x

e+iωpx
0−i~p~x.

The operator simply removes the propagator leading to x, because of

i
[
−i∂x0 −

~∇2
x

2m + V0

]
[−iΥab(x− y)] = δab

∫
d4p

(2π)4
eip(x−y)

−p0 + ~p2

2m + V0

−p0 + ~p2

2m + V0
= δabδ

(4)(x− y).

One says that the correlation function is “amputated” because the external propagator has been
removed.

Video: Lecture17Video14.mp4

Feynman rules for S-matrix elements in momentum space. Moreover, all expressions are
brought back to momentum space. One can formulate Feynmann rules directly for contributions
to iT as follows.

• Incoming fermions are represented by an incoming line ~p (to be read from right to
left) associated with a momentum ~p and energy ω~p = ~p2

2m + V0.

• Outgoing fermions are represented by an outgoing line ~p

• Incoming or outgoing bosons are represented by ←~p and ~p← respectively.

• Vertices contribute a factor −ig.

– 103 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture17Video13.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture17Video14.mp4


• Internal lines that connect two vertices are represented by Feynmann propagators in momen-
tum space, e. g.

(p0, ~p) =
−iδab

−p0 + ~p2

2m + V0
, (p0, ~p) =

−i
−(p0)2 + ~p2 +M2

• Energy and momentum conservation are imposed on each vertex.

• For tree diagrams, all momenta are fixed by energy and momenta conservation. For loop
diagrams one must include an integral over the loop momentum lj with measure d4lj

(2π)4 .

• Some care is needed to fix overall signs for fermions.

• Some care is needed to fix overall combinatoric factors from possible interchanges of lines or
functional derivatives.

For the last two points it is often useful to go back to the algebraic expressions or to have some
experience. We will later discuss very useful techniques based on generating functionals.

Video: Lecture17Video15.mp4

Fermion-fermion scattering. We will now discuss an example, the scattering of (spin polarized)
fermions of each other. The tree-level diagram is

(~p1, ↑)

(~q1, ↑)

(~p2, ↓)

(~q2, ↓)

Because the interaction with the scalar field does not change the spin, the outgoing fermion with
momentum ~q1 will have spin ↑, the one with momentum ~q2 will have spin ↓. By momentum
conservation the scalar line carries the four momentum

(ω~p1 − ω~q1 , ~p1 − ~q1) =
(
~p21
2m −

~q21
2m , ~p1 − ~q1

)
= (ω~q2 − ω~p2 , ~q2 − ~p2).

The last equality follows from overall momentum conservation, p1 + p2 = q1 + q2. The Feynmann
rules give

iT = (−ig)2 −i
−(ω~p1 − ω~q1)2 + (~p1 − ~q1)2 +M2

.

In the center-of-mass frame, one has ω~p1 = ω~p2 = ω~q1 = ω~q2 and thus

T =
g2

(~p1 − ~q1)2 +M2
.

Video: Lecture17Video16.mp4
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Limits of large and small mass. Note that for g2 → ∞, M2 → ∞ with g2/M2 finite, T
becomes independent of momenta. This resembles closely the λ(φ∗φ)2 interaction we discussed
earlier for bosons. More, generally, one can write

(~p1 − ~q1)2 = 2|~p1|2(1− cos(ϑ)) = 4|~p1|2 sin2(ϑ/2),

where we used |~p1| = |~q1| in the center of mass frame and ϑ is the angle between ~p1 and ~q1 (incoming
and outgoing momentum of the spin ↑ particle). For the differential cross-section

dσ

dΩq1
=
|T |2m2

16(π)2
,

we find
dσ

dΩq1
=
g4m2

16π2

[
1

4~p21 sin
2(ϑ/2) +M2

]2
.

Another interesting limit is M2 → 0. One has then

dσ

dΩq1
=

g4m2

64π2|~p1|4
1

sin4(ϑ/2)
.

This is the differential cross-section form found experimentally by Rutherford. It results from the
exchange of a massless particle or force carrier which is here the scalar boson φ and in the case of
Rutherford experiment (scattering of α-particles on Gold nuclei) it is the photon. This cross section
has a strong peak at forward scattering ϑ → 0, and for ~p2 → 0. These are known as colinear and
soft singularities. Note that they are regulated by a small, nonvanishing mass M > 0.

NEW LECTURE

9 Lorentz symmetry and the Dirac equation

Video: Lecture18Video01.mp4

Symmetries are basic concepts for the construction of a model. Particle physics in flat Minkowski
space is invariant under Lorentz transformations. Even though the cosmological solutions are not
Lorentz invariant, Lorentz invariance holds to a very good approximation on length and time scales
that are small compared to the “size” (inverse Hubble parameter) of the universe. The functional
integral formulation makes the implementation of symmetries easy. One imposes that the action S
is invariant under the symmetry transformations. This is sufficient if the functional measure is also
invariant. All symmetry properties follow from the invariance of S and the functional measure.

A given model is specified by the action S that appears in the functional integral. Symmetries
restrict the possible form that the action can take. Lorentz symmetry is therefore an important
guiding principle for establishing possible models for particle physics. Together with other symme-
tries as gauge symmetries and the requirement that only a given finite number of derivatives of the
fields can appear – this is related to renormalizability – the form of the action is often uniquely
determined once a given set of fields is chosen. Because of this crucial importance we will discuss
the Lorentz transformations in some detail.

The discussion of Lorentz transformations also introduces in a practical way some elements of
the theory of Lie groups that are useful for the present lecture. A more profound knowledge of Lie
groups is useful, but not required for the present lecture.
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9.1 Lorentz transformations and invariant tensors

Video: Lecture18Video02.mp4

Lorentz metric. The cartesian coordinates of space and time are t and x. They are denoted as
the contravariant vector

xµ = (t,x), t = x0.

The corresponding covariant vector is

xµ = (−t,x) = (−x0,x).

We can lower and raise indices with the metric tensor ηµν and its inverse ηµν , which have the same
matrix representation,

ηµν = ηµν =


−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

 .

As raising and lowering are inverse operations, the multiplication of both matrices is the identity,

ηµνηνρ = δµρ .

The sign of the eigenvalues of a metric are called the ”signature of the metric“. In our case the
signature is (−,+,+,+). The explicit transformation rules are given by

xµ = ηµνx
ν and xµ = ηµνxν .

Video: Lecture18Video03.mp4

Lorentz transformations. From the contravariant and covariant four-vectors one can form the
scalar product

xµxµ = −t2 + ~x2. (9.1)

The Lorentz transformations can be defined as those linear transformations of xµ that leave xµxµ
invariant. In other words, for the transformation

xµ → x′µ = Λµνx
ν (9.2)

we want to find the matrices Λµν that leave xµxµ invariant. We require that the expression

x′µx′µ = x′µx′νηµν = Λµρx
ρΛνσx

σηµν

is equal to xµxµ. This results in the condition

ΛµρΛ
ν
σηµν = ηρσ. (9.3)

Equation (9.3) is the defining equation for Λ. All transformations that fulfill (9.3) are called
Lorentz transformations. A sequence of two Lorentz transformations leaves xµxµ invariant and is
therefore again a Lorentz transformation. The inverse Lorentz transformation as well as the identity
transformation exists. The Lorentz transformations form a group, the ”Lorentz group“, which is
often denoted by SO(1,3). The group elements are the matrices Λµν .
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So-called proper, orthochronous Lorentz transformations can be obtained as a sequence of in-
finitesimal transformations. Particle physics is invariant under the proper orthochronous Lorentz
transformations for which we often use the shorthand “Lorentz transformations”. The general trans-
formations (9.3), which we will often call “extended Lorentz transformations”, comprise discrete
transformations like parity and time reversal. Particle physics is not invariant under those discrete
transformations.

Video: Lecture18Video04.mp4

Transformation of tensors. Let us consider the contravariant and covariant four-momenta

pµ = (E,p)

pµ = (−E,p)

As we already discussed, we can raise and lower indices of vectors with the metric tensor ηµν and
the inverse ηµν . The Lorentz transformation of all contravariant vectors is defined as

p′µ = Λµνp
ν .

The corresponding transformation rule for covariant vectors can be found by expressing both sides
in terms of covariant vectors

ηµρp′ρ = Λµνη
νσpσ.

Multiplication with an inverse metric yields

p′κ = ηκµΛ
µ
νη
νσpσ,

where we recognize a Lorentz matrix with different index positions,

Λ σ
κ = ηκµΛ

µ
νη
νσ. (9.4)

In consequence, covariant vectors transform as

p′µ = Λ ν
µ pν .

A contravariant second rank tensor Tµν is an object with two upper indices. It has the same
transformation property as a product of two contravariant vectors

T ′µν = ΛµρΛ
ν
σT

µν . (9.5)

An example is the energy-momentum tensor that plays an important role in gravity. The relation
(9.5) ensures that product relations as

Tµν = aµbν (9.6)

are ”covariant“. This means that the same product relation holds after the Lorentz transformation

T ′µν = a′µb′ν . (9.7)

This generalises to tensors with an arbitrary number of upper and lower indices. An example for
the Lorentz transformation of a more complicated tensor is

A′µνρ
στ = Λµµ′Λ

ν
ν′Λ

ρ
ρ′Λ

σ′

σ Λ τ ′

τ Aµ
′ν′ρ′

σ′τ ′ .

Video: Lecture18Video05.mp4
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Contractions. The product of a covariant and a contravariant vector is a scalar: It is invariant
under Lorentz transformations,

s = aµbµ,

⇒ s′ = Λµρa
ρΛ σ

µ bσ = aρ ΛµρηµνΛ
ν
τ︸ ︷︷ ︸

ηρτ

ητσbσ = aρbρ = s.

The summation over an upper and lower index is called an ”index contraction“. Contracted Lorentz
indices do not contribute to transformations:

(A′)µρ(B
′)ρν = Λ σ

µ ΛντAσρB
ρτ ,

such that C ν
µ = AµρB

ρν transforms as a 2-tensor. Similar to matrices, the order of indices matters
for all tensors. For example, one has

Cνµ = ηνρC σ
ρ ησµ, (9.8)

which differs from C ν
µ .

Video: Lecture18Video06.mp4

Invariant tensors. The metric ηµν is a symmetric invariant tensor under Lorentz transformations

η′µν = Λ ρ
µ Λ σ

ν ηρσ = ηµν . (9.9)

This follows from the defining relation (9.3) for the Lorentz transformations, that we can write in
the form

ΛνρΛ
νσ = (ΛT )ρνΛ

νσ = (ΛT ) ν
ρ Λ σ

ν = δσρ , (9.10)

where the transposed Lorentz matrix ΛT obeys

(ΛT )ρν = Λνρ, (ΛT )ρν = Λνρ. (9.11)

We can identify (ΛT ) σ
ρ as the inverse matrix of the matrix Λ σ

ρ . With ΛTΛ = 1 implying ΛΛT = 1

we also have the relation
Λ ν
ρ (ΛT ) σ

ν = δσρ , (9.12)

which is equivalent to eq. (9.9). We can equivalently use eq. (9.9) as the defining relation for the
Lorentz transformations. From the standpoint of group theory this is a more natural definition
since the group elements are defined as transformation matrices that leave the particular tensor ηµν
invariant. The naming SO(1,3) refers to the signature of ηµν . It is straightforward to see that ηµν
and δνµ are also invariant tensors.

There is only one more tensor that is invariant under Lorentz transformations. This is the
totally antisymmetric tensor εµνρσ, the relativistic generalization of the Levi-Civita tensor εijk.
The Levi-Civita symbol with four indices εµνρσ is defined by total antisymmetry and

ε0123 = 1.

It equals 1 for all cyclic permutations of (0, 1, 2, 3), and −1 for all anti-cyclic permutations. The
ε-tensor with raised indices, εµνρσ has the opposite signs, e. g. ε0123 = −1.
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Let us prove that εµνρσ is invariant under Lorentz transformations. In the following lines we
will use the short hand notation Λ ν

µ → Λ, and ηµν → η. With this notation, the defining relation
(9.9) reads

ΛηΛT = η, (9.13)

If we compute the determinant on both sides, we find, using det(Λ)det(ΛT ) = (det(Λ))2,

det(Λ) = ±1.

The determinant of Λ can also be calculated by

det(Λ) = 1

4!
Λ ν1
µ1

Λ ν2
µ2

Λ ν3
µ3

Λ ν4
µ4
εν1ν2ν3ν4ε

µ1µ2µ3µ4 =
1

4!
ε′µ1µ2µ3µ4

εµ1µ2µ3µ4 .

Here ε′ is the Lorentz transformed tensor. We can verify that ε′µνρσ is totally antisymmetric, thus
ε′µνρσ = c εµνρσ with constant c. Using εµνρσεµνρσ = 4! we obtain det(Λ) = c or

ε′µ1µ2µ3µ4
= det(Λ)εµνρσ = ±εµ1µ2µ3µ4 .

Only Lorentz transformations with det(Λ) = +1 will leave the ε-tensor invariant (they are called
proper Lorentz transformations). The Lorentz transformations which are continuously related to
the unit transformation obey det(Λ) = 1.

Video: Lecture18Video07.mp4

Analogy to Rotations. Equation (9.13) looks very similar to orthogonal transformations O ν
µ

with
O1OT = OOT = 1, 1µν = δµν ,

where 1 is the unit matrix. The invariant tensor of the orthogonal transformations is the ”euclidean
metric” δµν . In eq. (9.13) the euclidean metric is replaced by the metric tensor ηµν for Minkowski
space. In short,

• Orthogonal transformations : δµν invariant.

• Lorentz transformation: ηµν invariant.

• Analytic continuation: δµν → ηµν .

The group of orthogonal transformations in four dimensions is denoted O(4). The analogy that we
just discussed motivates the name Pseudo orthogonal transformations O(1, 3) where the separated
1 indicates the special role of time in special relativity. The ”special orthogonal transformations“
SO(4) have in addition the property det(Λ) = 1. Similarly, for SO(1,3) one has det(Λ) = 1.

Video: Lecture18Video08.mp4

Derivatives. The derivative with respect to a contravariant vector is a covariant vector,

∂µ =
∂

∂xµ
.

We will discuss later the Lorentz - transformations of fields more carefully. For the moment we just
generalize what we know from three-dimensional rotations, namely that the divergence of a vector
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field transforms as a scalar field. With ∂µaµ(x) transforming as a scalar field, ∂µ has to compensate
the transformation acting on the indices aµ. For example one has

∂µx
µ = 4.

The momentum operator is
p̂µ = −i∂µ.

It transforms as a covariant vector.

Video: Lecture18Video09.mp4

Four-dimensional Fourier transformation. The four-dimensional Fourier transformation of
a function ψ(x) is defined as

ψ(x) =

∫
p

eipµx
µ

ψ(p).

With pµ = (−ω, ~p) and pµx
µ = −ωt+ ~p~x this reads

ψ(t, ~x) =

∫
ω

∫
~p

e−iωt+i~p~xψ(ω, ~p).

Note that pµxµ is Lorentz invariant.

Video: Lecture18Video10.mp4

Covariant equations. For a covariant equation the left hand side and right hand side have the
same transformation properties. An example is

∂µF
µν = Jν .

These are two of the four Maxwell equations. The other two are

∂µε
µνρσFρσ = 0. (9.14)

Thus the Maxwell equations are Lorentz-covariant. We will later derive them from a Lorentz-
invariant action.

9.2 Lorentz group

Video: Lecture18Video11.mp4

Group structure. If we have two elements g1, g2 that are elements of a group G , the product of
these two elements will still be an element of the group

g3 = g2g1 ∈ G .

In particular, we can write for matrices

(Λ3)
µ
ν = (Λ2)

µ
ρ(Λ1)

ρ
ν .
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A group contains always a unit element e such that

ge = eg = g

for every group element g. For matrices, this unit element is δµν . Furthermore the inverse element
g−1 exists. Every matrix Λµν has an inverse matrix because the determinant of Λ is ±1. Finally,
for a group the multiplication law has to be associative, which is trivial for matrix multiplications.

Video: Lecture18Video12.mp4

Discrete symmetries. The (extended) Lorentz transformations contain some discrete symme-
tries that we discuss next.

Space reflection (parity). The space reflection transformation changes the sign of all space
coordinates, xj → −xj for j ∈ {1, 2, 3} while time stays invariant t→ t. The corresponding matrix
is

P =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

The determinant is det(P ) = −1. The metric tensor ηµν is kept invariant under a space reflection,
PηPT = η.

Video: Lecture18Video13.mp4

Time reflection. The time reflection transformation is xj → xj for j ∈ {1, 2, 3} and t → −t.
The corresponding matrix is

T =


−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

 .

The determinant of T is the same as for P , det(T ) = det(P ) = −1. Both transformations change
the sign of the ε-tensor and are therefore improper Lorentz transformations. Again, the metric
tensor is invariant under TηTT = η.

Space-time reflection. The combination of both space and time reflection is

PT =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

This time the determinant is +1.

Video: Lecture18Video14.mp4

Video: Lecture18Video15.mp4
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Continuous Lorentz Transformations. A continuous Lorentz transformation can be obtained
as a product of infinitesimal transformations. We use Lorentz transformation for the continuous
Lorentz transformations. Since no jumps are possible, the continuous Lorentz transformations have
a determinant +1, so we can immediately conclude that the discrete transformations P and T can’t
be described by continuous Lorentz transformations. As the product PT has a determinant +1, one
could first think that this may be obtained by continuous transformations, but this is not the case.
The reason is that infinitesimal transformations will never change the sign in front of time variable,
but actually, PT does exactly this. However, a discrete transformation that can be obtained by
infinitesimal ones is the reflection of x and y. The product P1P2 with

P1 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 , P2 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 , P1P2 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 ,

can be obtained as a continuous transformation, as familiar from rotations in two-dimensional space.

9.3 Generators and Lorentz Algebra

Video: Lecture18Video16.mp4

Infinitesimal Lorentz Transformations. Let us consider the difference δpµ between a four-
momentum and the transformed four-momentum,

δpµ = p′µ − pµ = (Λ ν
µ − δνµ)pν = δΛ ν

µ pν ,

with
Λ ν
µ = δνµ + δΛ ν

µ .

In a matrix representation, the infinitesimal Lorentz transformation is given by Λ = 1 + δΛ. The
defining relation of a Lorentz transformation (ΛηΛT = η) then leads to constraints for δΛ as follows:

ΛηΛT = η

⇔ (1 + δΛ)η(1 + δΛ)T = η

⇔ δΛ η + η δΛT = 0.

In this last line we neglected the 2nd order term in δΛ. If we write down this equation in the index
notation of eq. (9.3), we have

δΛ µ
ρ ηµσ + δΛ ν

σ ηρν = 0,

δΛρσ + δΛσρ = 0.

This equation tells us that δΛµν is antisymmetric, while δΛ ν
µ is not antisymmetric. The matrices

have six independent elements, what is obvious for δΛµν = −δΛνµ. The number of independent
elements in an antisymmetric matrix equals the number of linearly independent antisymmetric
matrices. The six matrices represent three infinitesimal rotations and three infinitesimal boosts.

Video: Lecture18Video17.mp4

– 112 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture18Video16.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture18Video17.mp4


Generators. Let us write the infinitesimal transformation of the momentum vector in the fol-
lowing way,

δpµ = iεz(Tz)
ν
µ pν , z = 1 . . . 6, (9.15)

where a sum over z is implied. Any infinitesimal Lorentz transformation can be represented as a
linear combination in this form

δΛ ν
µ = iεz(Tz)

ν
µ . (9.16)

Video: Lecture18Video18.mp4

For the six independent generators we choose

rotations : (T1)µν = (T1)
ν
µ =


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 , (9.17)

(T2)µν = (T2)
ν
µ =


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 , (T3)µν = (T3)
ν
µ =


0 0 0 0

0 0 −i 0
0 i 0 0

0 0 0 0

 , (9.18)

boosts : (T4)µν =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , (T4)
ν
µ =


0 −i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0

 , (9.19)

(T5)
ν
µ =


0 0 −i 0
0 0 0 0

−i 0 0 0

0 0 0 0

 , (T6)
ν
µ =


0 0 0 −i
0 0 0 0

0 0 0 0

−i 0 0 0

 . (9.20)

Some remarks may be useful:

• T1 is a rotation around the x-axis (only y and z components change). Similarly T2 is a rotation
around the y-axis and T3 a rotation around the z-axis.

• For the rotation matrices, raising and lowering of indices doesn’t change anything. The reason
is that the metric tensor has a -1 only in the zero component and the rotation matrices are
zero in the first row and column.

• For the boost matrices, raising of the first index changes the sign of the first row of the
matrix (see T4). After raising the index, the boost matrices are not any longer antisymmetric.
Explicitly, one has

(T4)
µ
ν = ηµρ(T4)ρν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 =


0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 = −(T4) νµ .
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• In order to see that T1, T2 and T3 are the generators of rotations, we may compare them to
the infinitesimal rotations in two dimensions. A general rotation matrix,

R =

(
cosφ sinφ

− sinφ cosφ

)
,

reads for an infinitesimal angle φ = ε

R =

(
1 ε

−ε 1

)
.

The difference to the identity is

δR =

(
0 ε

−ε 0

)
,

This is equivalent to eq. (9.16) if we multiply the generator (9.17) with iε. The i in the
definition of the generators is chosen such that T1, T2, T3 are hermitian matrices.

• The matrices T4, T5 and T6 generate boosts in x, y and z direction.

NEW LECTURE

Video: Lecture19Video01.mp4

Lorentz algebra. The product of two group elements is again a group element. From this we
can conclude that the commutator of two generators must again be a generator. In general we can
therefore write

[Tx, Ty] = ifxyzTz, (9.21)
where the sum over z is implied. The quantities fxyz are called the structure constants of a group.
The structure constants are central elements for Lie groups. They encode the algebraic properties.
For the example of the three-dimensional rotation group SO(3) with z = 1..3 one has fxyz = εxyz.
This tells us that the order matters for a sequence of rotations around different axes.

The central relation (9.21) can be shown as follows. Let us write two transformations Λ1 and
Λ2 as

Λ1 = eiA, Λ2 = eiB , A = ε(A)
z Tz, B = ε(B)

y Ty.

The combined transformation,

Λ−1
1 Λ−1

2 Λ1Λ2 = e−iAe−iBeiAeiB = eiC ,

is again an element of the group and therefore C = ε
(C)
w Tw. We use

eiAeiB = eiBeiA + [B,A] + . . .

and expand the combined transformation in lowest non-trivial order ε2

1+ [B,A] = 1+ iC, [B,A] = iC,

−ε(B)
y ε(A)

z [Ty, Tz] = iε̃(C)
w Tw.

(9.22)

Here ε̃(C)
w are real parameters of the order ε2. The matrix equation (9.22) can only be true if the

commutators −i[Tz, Ty] are linear combinations of generators,

−i[Tz, Ty] = c(zy)w Tw.

The coefficients c(zy)w = fzyw can be identified with the structure constants.

Video: Lecture19Video02.mp4
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Example. As an example, we consider a rotation in three dimensional space. We want to rotate
a system

• by an angle α around the y-axis,

• by an angle β around the x-axis,

• by an angle −α around the y- axis,

• and finally by an angle −β around the x-axis.

The result of a product of infinitesimal rotations is again an infinitesimal rotation,(
1− iβTx − 1

2β
2T 2
x

) (
1− iαTy − 1

2α
2T 2
y

) (
1 + iβTx − 1

2β
2T 2
x

) (
1 + iαTy − 1

2α
2T 2
y

)
= 1− αβ(TxTy − TyTx) = 1− iαβTz

The first order is zero, and the terms ∝ T 2
x and ∝ T 2

y cancel, too. The product αβ is the parameter
of the resulting infinitesimal transformation.

For the special case of a rotation in three dimensional space the commutation relation

[T1, T2] = iT3

follows directly from the multiplication of the matrices specified in eqs.(9.17), (9.18). More generally,
the generators of rotations obey

[Tk, Tl] = iεklmTm for k, l,m ∈ {1, 2, 3}.

The calculation of this example gives us already some commutation relations of the generators
of the Lorentz group, if we consider the Ti as 4 x 4 matrices with zeroes in all elements of the first
column and row. This is of course not surprising, as the three dimensional rotations are a subgroup
of the Lorentz group. The other structure constants fxyz where one element of x, y, z is 0 can also
be found from the specified matrices. We will indicate them later explicitly.

9.4 Representations of the Lorentz group

Video: Lecture19Video03.mp4

The spin matrices sk = 1
2τk are given by the Pauli matrices τk. The commutation relations for

the Pauli matrices imply that the spin matrices obey precisely the same commutation relations as
the generators of the rotation group SO(3),

[τk, τl] = 2iεklmτm, [sk, sl] = iεklmsm.

We can define 3×3-matrices T̃k by omitting in eqs.(9.17), (9.18) the first row and column. The
3× 3-matrices T̃k and the spin matrices sk obey the same commutation relation. They correspond
to different representations of the rotation group. The matrices T̃m are a three-dimensional and the
matrices τm/2 are a two-dimensional representation of the group SO(3). Different representations
of a group correspond to different sets of matrices that obey the same product rules for their
multiplication, as given by the product rule for the abstract group elements. The dimension of
the different matrix-representations can differ. For continuous transformations the transformation
rules of a Lie group are encoded in the commutator relations for the generators. Two different sets
of generators with the same commutation relations generate two different representations of the
group.
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d-dimensional representation. For a d-dimensional representation the set of d × d- matrices
Tz obeys the commutation relations of a given group. In the physics literature, one often uses the
representation to design (somewhat improperly) also a d-component object on which the matrices
Tz act.

Representations of the Lorentz group. Let us summarize what we know about the Lorentz
group: It is SO(1, 3) and is generated by a set of 6 independent matrices Tz, which obey the
commutation relations

[Tx, Ty] = ifxyzTz.

For x, y, z ε 1, 2, 3 we know already that fxyz = εxyz. The dimension of the matrices Tz depends
on the representation of the group: If we have a d-dimensional representation, the matrices will be
d× d.

Video: Lecture19Video04.mp4

Example: Energy momentum tensor. For a vector, the dimension is d = 4 because we have
three space and one time coordinate. The generators in the four-dimensional representation are
given by the six 4 × 4-matrices in eqs. (9.17)-(9.20). They describe the infinitesimal transfor-
mations of covariant vectors. Infinitesimal transformations of contravariant vectors are given by
different 4× 4-matrices. The corresponding generators obey the same commutation relations as for
the transformation of covariant vectors. They form an equivalent, but different four-dimensional
representation.

We next investigate the representations for other objects as tensors. Consider the symmetric
energy-momentum-tensor Tµν = T νµ. We know that it has 10 independent elements: 4 diagonal
and 6 off-diagonal ones. Let us write all independent elements into a 10 dimensional vector ψα.
The generator Tz that transforms this vector into a new vector ψα + δψα must now be a 10 × 10

matrix:
δψα = iεz(Tz)

α
βψ

β .

The elements of ψ are the elements of the energy-momentum tensor Tµν and we therefore know
the Lorentz transformations.

δTµν = iεz(Tz)
µν
µ′ν′T

µ′ν′
. (9.23)

Here (µν) = (νµ) is considered as a double index, α = (µν). Historically, the symbol T is used
both for generators and the energy-momentum tensors. This leads to the unfortunate labelling of
two different objects by the same symbol in eq. (9.23). Generators and energy momentum tensor
should not be confused. The elements of generators of (Tz)µνµ′ν′ can easily be computed from the
Lorentz transformation of a tensor established before.

Video: Lecture19Video05.mp4

Irreducible Representations. We can decompose T into the trace and the remaining traceless
part T̃ :

T̃µν = Tµν − 1
4θη

µν , ηµν T̃
µν = 0.

Here θ is the trace of the energy-momentum tensor and T̃µν is the traceless part. The trace of the
energy-momentum tensor is defined as

θ = Tµµ = ηνµT
µν .
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The trace is a scalar and therefore invariant under Lorentz transformations:

T
′µ
µ = Tµµ .

Furthermore, the traceless tensor T̃ remains traceless when it is transformed. It has nine indepen-
dent components. In this way, we have reduced the ten-dimensional representation into a nine-
dimensional representation (T̃µν) and a one-dimensional representation (θ), i.e. 10 = 9 + 1. The
transformation of traceless, symmetric tensors is represented by 9× 9 matrices as generators. One-
dimensional representations correspond to invariants. If a representation cannot be decomposed
further into separate representations it is called ”irreducible“. The nine-dimensional representa-
tion associated to T̃µν is irreducible. The antisymmetric tensors form a six-dimensional irreducible
representation.

Video: Lecture19Video06.mp4

Irreducible representations so far. At this stage we may summarize our present findings about
irreducible representations of the Lorentz group

Representation Dimension
scalar 1
vector 4

symmetric and traceless tensors 9
antisymmetric tensors 6

spinor ?

The spinor-representation will generalize the two-dimensional representation of SO(3) by the spin
matrices sz. It will be a key element for the description of fermions.

Video: Lecture19Video07.mp4

9.5 Transformation of Fields

So far we have discussed the transformation of simple objects as xµ or pµ. In quantum field
theory the basic objects are fields, as scalar fields ϕ(x) or vector fields Aµ(x). Their transformation
involves a part related to the transformation of the coordinates on which they depend, and another
part related to the Lorentz-indices of these fields as for Aµ(x). In quantum field theory the energy-
momentum tensor Tµν(x) is also a field, and we will have to supplement the transformation discussed
before by a part arising from the transformation of coordinates. The transformations discussed
above refer, strictly speaking, to the transformation of x-independent energy-momentum tensors.

Scalar Field ϕ(x). We start with the questions how scalar fields ϕ(x) transform? For a scalar
field, the value of the transformed field ϕ′ at the transformed coordinate x′ is the same as the field
value before the transformation.

ϕ′(x′) = ϕ(x). (9.24)

We concentrate on an infinitesimal transformation and recall the transformation of the space-time
vector xµ:

x′µ = Λµνx
ν , x′µ = xµ + δxµ, δxµ = δΛµνx

ν .
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x− δxxx′ = x + δx

ϕ′(x) = ϕ(x− δx) ϕ(x− δx)

ϕ(x)ϕ′(x′) = ϕ(x)

Figure 5. Transformation of a scalar field

Since x − δx is transformed to x we find from eq. (9.24) the transformed field value ϕ′ at the
coordinate x

ϕ′(x) = ϕ(x− δx).

We can visualise this by the picture shown in 5. We want to consider field transformations at fixed
coordinates and therefore employ

ϕ′(x) = ϕ(x) + δϕ(x) = ϕ(x− δx).

The transformation of ϕ at fixed x is called an active transformation, and we will employ this
formulation. In contrast, leaving ϕ fixed and changing coordinates would be a passive transfor-
mation. (The combination of both does not change the field, ϕ′(x′) = ϕ(x).)

The infinitesimal change of the field δϕ at fixed coordinates obeys

δϕ = ϕ(x− δx)− ϕ(x) = −∂µϕ(x) δxµ.

We assume here that ϕ(x) is a differentiable function, such that the second line reflects the definition
of partial derivatives.

Video: Lecture19Video08.mp4

For Lorentz transformations we insert δxµ = δΛµνx
ν and find

δϕ = −δΛµνxν∂µϕ(x)
= −iεz(Tz)µνxν∂µϕ(x)
= iεzLzϕ(x).

(9.25)

For the last identity we have defined the generators for scalar fields

Lz = −(Tz)µνxν∂µ.

The generators Lz contain a differential operator. Fields are infinite dimensional representations in
a strict sense.

Video: Lecture19Video09.mp4

The letter L was not chosen arbitrary, as L1, L2 and L3 are the angular momenta. For instance L1

can be written as
L1 = −(T1)µνxν∂µ.
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T1 has only two non-zero elements: (T1)23 = −i and (T1)
3
2 = i, implying

L1 = −ix2 ∂
∂x3 + ix3 ∂

∂x2 = −i(y∂z − z∂y).

Associating derivatives with momenta the three generators L1, L2 and L3 have the structure of
angular momentum as we know it from classical mechanics: L = r × p. In quantum mechanics,
this is precisely the structure of the angular momentum operator. You may recall the commutation
relation [Lk, Ll] = iεklmLm which shows that we deal indeed with a representation of SO(3). Notice,
however, that we have not used any operator formalism here. The generator Lz and their relations
arise directly from the transformation properties of ”classical“ fields.

We conclude that the transformation of fields with Lorentz indices will have two ingredients.
The first arises from the transformation of coordinates, the second is related to the Lorentz indices.
For scalars one has only the coordinate part.

Video: Lecture19Video10.mp4

Vector Field Aµ(x). Contravariant vectors transform as

Aµ(x) → A′µ(x) = Aµ(x) + δAµ(x),

where
δAµ(x) = δΛµνA

ν(x) + xρδΛ σ
ρ ∂σA

µ(x).

Here, δΛµνAν is the usual transformation law for covariant vectors. The part xρδΛ σ
ρ ∂σA

µ reflects
the change of the coordinates. It is the same as for scalar fields, using

xρδΛ σ
ρ ∂σA

µ = −δΛσρxρ∂σAµ, (9.26)

where we employ the antisymmetry of δΛσρ. Since the Minkowski metric is Lorentz invariant
the upper and lower positions of contracted indices can be exchanged, i.e. xρδΛ σ

ρ = xρδΛ
ρσ,

δΛ σ
ρ ∂σ = δΛρσ∂

σ etc. The part arising from the transformation of coordinates is always the same,
no matter what kind of field we are transforming.

Covariant vectors transform as:

δAµ(x) = δΛ ν
µ Aν(x) + xρδΛ σ

ρ ∂σA
µ(x).

The covariant derivative transforms as

∂µϕ(x) → (∂µϕ)
′(x) = ∂µ(ϕ(x) + δϕ(x)) = ∂µϕ(x) + δ∂µϕ(x).

One infers

δ∂µϕ(x) = ∂µδϕ(x) = ∂µ(x
ρδΛ σ

ρ ∂σϕ(x)) = δΛ σ
µ ∂σϕ(x) + (xρδΛ σ

ρ ∂σ)(∂µϕ(x)).

Thus ∂µϕ(x) indeed transforms as a covariant vector field. With a similar argument one finds that
the contravariant derivative transforms as a contravariant vector field. This implies

δ(∂µϕ(x)∂µϕ(x)) = (xρδΛ σ
ρ ∂σ)(∂

µϕ(x)∂µϕ(x)),

and ∂µϕ(x)∂µϕ(x) therefore transforms as a scalar field.

Video: Lecture19Video11.mp4
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Invariant Action Our aim is the construction of a Lorentz-invariant action as the starting point
of formulating the functional integral for a quantum field theory. This is a central piece of our
lecture. With all the machinery we have developed it is almost trivial. Now our works pays off.
The basic construction principle is that an invariant action obtains as a space-time integral over a
quantity that transforms as a scalar field. This scalar field is typically a composite expression, as
∂µϕ(x)∂µϕ(x).

Let f(x) be some (composite) scalar field with infinitesimal Lorentz transformation

δf = xρδΛ σ
ρ ∂σf.

Examples constructed from scalar fields ϕ(x) are f = ϕ2 or f = V (ϕ) or f = ∂µϕ∂µϕ. It follows
that an action constructed as

S =

∫
d4x f(x)

is Lorentz invariant, δS = 0. The proof of δS = 0 employs the vanishing of an integral over total
derivatives,

δS =

∫
d4x δf(x) =

∫
d4x xρδΛ σ

ρ ∂σf

=

∫
d4x ∂σ(x

ρδΛ σ
ρ f)−

∫
d4x δρσδΛ

σ
ρ ∂σf = 0.

More precisely, the first integral is zero because we always assume the absence of boundary contri-
butions. Then total derivatives in L can be neglected,

∫
d4x∂µA = 0. The second integral is zero

because of the antisymmetry of Λρσ:

δρσδΛ
σ
ρ = ηρσδΛρσ = 0.

Video: Lecture19Video12.mp4

Examples. It is now rather straight forward to construct possible actions for quantum field
theories. Lorentz invariant actions can be written as sums of invariant terms.

S =

∫
d4x

∑
k

Lk(x),

where Lk are (composite) scalar fields. Let us give some examples:

•L = ∂µϕ∗∂µϕ+m2ϕ∗ϕ.

This is the action for a free charged scalar field. It describes particles with mass m like e.g.
pions π± with interactions neglected.

•L = 1
4F

µνFµν , Fµν = ∂µAν − ∂νAµ.

This is the action for free photons. The antisymmetric tensor field Fµν(x) = −Fνµ(x) is the
electromagnetic field strength. As in classical electrodynamics the components F0k describe
the electric field, while εijkFjk denotes the components of the magnetic field.

•L = (∂µ + ieAµ)ϕ∗(∂µ − ieAµ)ϕ+ 1
4F

µνFµν .

This describes a charged scalar field interacting with photons. A model with the corresponding
action is called scalar QED where QED stands for quantum electrodynamics. The QED for
electrons needs the Lorentz invariant description of fermions in order to account for the spin of the
electrons and positrons.
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9.6 Functional Integral, Correlation Functions

Video: Lecture19Video13.mp4

Measure and partition function. The partition function Z =
∫
Dϕ e−S is invariant if the

measure
∫
Dϕ and the action S are invariant. For a scalar field ϕ(x) the measure is indeed invariant∫

Dϕ(x) =

∫
Dϕ′(x).

This follows from the equivalence of active and passive transformations,

ϕ′(x) = ϕ(Λ−1x).

Since one integrates over ϕ at every point x, this is equivalent to an integration at every point
Λ−1x. Similarly, for vectors one has∫

DAµ =

∫
DA′µ × Jacobian.

The Jacobian is a product over all x of factors detΛ. Since detΛ = 1. The functional measure is
again invariant.

Regularisation. The product over all positions is not always well defined. One typically aims for
a regularisation, which defines the functional integral as some limiting process of finite-dimensional
integrals, as we have done it in the beginning of this lecture. One possibility is a lattice regulari-
sation, for which the continuous manifold of points is replaced by the sites of a lattice – typically
a d-dimensional hypercubic lattice. This regularisation has the advantage that gauge symmetries
can be implemented rather easily. A lattice of points does not admit continuous Lorentz transfor-
mations. For such a regularisation the functional measure is not Lorentz invariant. In this case one
expects Lorentz invariance to show up only in the continuum limit for which the lattice distance
gets very small as compared to all length scales of interest. Lorentz invariance of the continuum
limit has to be proven. For the models that are investigated this is indeed realised. We will simply
assume here that a Lorentz-invariant measure exists and use this property implicitly.

Correlation Function. For a Lorentz invariant action and measure the correlation functions
have covariant transformation properties. For example, the correlation function

〈ϕ(x)ϕ(x′)〉 = Z−1

∫
Dϕϕ(x)ϕ(x′)e−S

transforms in the same way as the product ϕ(x)ϕ(x′). This covariant construction makes it easy to
construct an invariant S-matrix. Then scattering cross sections and similar quantities are Lorentz
invariant.

Summary Explicit Lorentz covariance is an important advantage of the functional integral formu-
lation of quantum field theories. In the operator formalism the implementation of Lorentz symmetry
can sometimes be more complicated. The basic reason is that the operator formalism is a Hamil-
tonian formalism. The Hamiltonian is not Lorentz-invariant – it singles out a time direction. In
contrast, the action is a four-dimensional object for which Lorentz invariance can be implemented
in a very straightforward way.

NEW LECTURE
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9.7 Spinor representations

Video: Lecture20Video01.mp4

Spinor representations of the Lorentz group. As a final building block for the construction
of quantum electrodynamics (QED) or quantum chromodynamics (QCD) for the strong interac-
tions, or the standard model (SM) of particle physics which unifies the weak and electromagnetic
interactions, we need a field for fermions and its transformation with respect to the Lorentz group.
Electrons have half-integer spin. With respect to the rotation group electrons transform according
to a two-dimensional representation, the spinor representation. Before generalising to the Lorentz
group, we first investigate the spinor representation of the rotation group SO(3), which is a subgroup
of the Lorentz group. For nonrelativistic electrons this subgroup is all that matters.

The two-dimensional spinor representation of the rotation group involves two complex fields
χ1(x) and χ2(x), that we order in a two-component complex vector field:

χ(x) =

(
χ1(x)

χ2(x)

)
=

(
χ1

χ2

)
.

The SO(3)-rotations act on this field as

δχ = iεzTzχ+ δ′χ, δ′χ(x) = xρδΛ σ
ρ ∂σχ(x).

We will omit δ′ in the notation from now on since this universal contribution from the change
of coordinates is the same for all fields. It is implicitly added if we transform fields. The spinor
representation of SO(3) is two-dimensional. The three 2 × 2 matrices Tz are given by the Pauli
matrices,

Tz =
1
2τz, z = 1, 2, 3.

The generators Tz of the two-dimensional representations are identical to the spin-matrices intro-
duced earlier. We use here a common symbol T for generators in arbitrary representations. Since
the Pauli matrix τ2 is purely imaginary, the two component field χ(x) has to be complex. No real
two-component representation of SO(3) exists. The fermion fields are Grassmann variables. This
is not relevant for symmetry transformations.

For a relativistic quantum field theory for electrons or protons, neutrons or neutrinos we have
to answer two questions

• What are the spinor representations of the Lorentz group, i.e. what are the generators Tz for
z = 1, . . . , 6?

• Are there two-dimensional representations, i.e. are there six 2× 2 matrices that obey

[Tx, Ty] = ifxyzTz?

Two-dimensional representations are the minimal setting, since already the rotation-subgroup re-
quires a two-component complex field. We will see that neutrinos can be described by such a
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two-dimensional representation. For charged fermions we will find a four-dimensional complex
representation, the so called ”Dirac spinors“.

A systematic construction of the spinor representations of the Lorentz group belongs to the
mathematical field of representation theory. We do not attempt here to follow a systematic
construction principle. We rather follow the results of Dirac, Pauli and Weyl, indicate the generators
in the appropriate representations, and verify that they obey the commutation relations of the
Lorentz group.

Video: Lecture20Video02.mp4

Dirac Spinors. Dirac spinors are four-dimensional complex fields

ψ =


ψ1

ψ2

ψ3

ψ4

 .

It is convenient to label the six generators in the corresponding four-dimensional spinor represen-
tation by

iεzTz =
i
2εµ̂ν̂T

µ̂ν̂ , T µ̂ν̂ = −T ν̂µ̂, εµ̂ν̂ = −εν̂µ̂.

With µ̂, ν̂ = 0, 1, 2, 3 the six generators T µ̂ν̂ are now labelled by µ̂ν̂ instead of z. The factor 1
2

accounts for 1
2 (ε12T

12 + ε21T
21) = ε12T

12 etc. The pairs (µ̂ν̂) are just labels of the six generators
and we have put the hats on µ̂ and ν̂ in order to avoid confusion: the matrices T µ̂ν̂ are fixed 4× 4

matrices and Lorentz transformations do not act on (µ̂ν̂) as they do on fields. As an example T 12

is itself a 4× 4 matrix with elements (T 12)µν or (T 12) νµ . Thus µ̂ν̂ = 12 is just a convenient label for
this matrix, which we could also have labelled equivalently by z = 3.

Video: Lecture20Video03.mp4

Dirac matrices. The matrices T µ̂ν̂ are obtained as the commutators of the Dirac matrices γµ̂

T µ̂ν̂ = − i
4

[
γµ̂, γν̂

]
. (9.27)

The Dirac matrices γµ̂ are four complex 4× 4 matrices, given explicitly by

γ0 =

(
0 −i1
−i1 0

)
, γk =

(
0 −iτk
iτk 0

)
, k = 1, 2, 3 , (9.28)

with τk, k = 1, 2, 3 the Pauli matrices. In the following, we often omit the hat for γµ, or Tµν . We
should always recall, however, that Lorentz transformations act only on fields, whereas the matrices
γµ are kept fixed.
An explicit computation of the generators (9.27) from the Dirac matrices (9.28) is a good exercise.
One finds that they are of the block-diagonal form

Tµν =

(
Tµν+ 0

0 Tµν−

)
(9.29)
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where the Tµν± are 2 × 2 matrices. The ij-components are rotations,

T ij+ = T ij− = 1
2ε
ijkτk, i, j, k ∈ {1, 2, 3}.

For a rotation around the z-axis (ε12 = −ε21 ≡ ε3), one has

ε3T3 ≡ 1
2 (ε12T

12 + ε21T
21),

= ε3T
12 = ε3(

1
2ε

123τ3) = ε3
τ3
2 ,

confirming T3 = τ3
2 . If we denote(

ψ1

ψ2

)
= ψL,

(
ψ3

ψ4

)
= ψR,

(
ψL
ψR

)
= ψ,

then ψL and ψR transform as 2-component spinors with respect to rotations.

Video: Lecture20Video04.mp4

The generators T 0k are boosts,
T 0k
+ = −T 0k

− = − i
2τk.

The boost generators are not hermitian. They act on ψL and ψR with different signs.

Video: Lecture20Video05.mp4

Commutation relation of generators. The commutation relations can be computed as

[Tµν , T ρσ] = i (ηµρT νσ − ηµσT νρ + ηνσTµρ − ηνρTµν) . (9.30)

These are indeed the commutation relations of the Lorentz group.
We can compare with the defining vector representation by the identification

T1 = T 23, T2 = T 31, T3 = T 12,

T4 = T 01, T5 = T 02, T6 = T 03.

The contravariant vector representation obtains from the covariant vector representation given by
eqs. (9.17) - (9.20) by raising the first index and lowering the second, which changes the sign of T4,
T5 and T6. In this representation the generators are given explicitly by(

T µ̂ν̂
)µ

ν
= −i

(
ηµ̂µδν̂ν − ην̂µδµ̂ν

)
.

Examples are

(T1)
µ
ν = (T 23)µ ν = −i

(
δ2µδ3ν − δ3µδ2ν

)
=


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 ,

or
(T4)

µ
ν = (T 01)µ ν = i

(
δ0µδ1ν + δ1µδ0ν

)
.

In this representation the commutation relation (9.30) is easily established.

Video: Lecture20Video06.mp4
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Weyl Spinors. The matrices Tµν in eq. (9.29) are block-diagonal. This implies that Dirac spinors
are reducible representations of the continuous Lorentz group. The irreducible representations are
the two-dimensional representations ψL and ψR, which do not mix under Lorentz transformations.
Mathematically, there are two invariant subspaces, and the Dirac representation is therefore re-
ducible. The Weyl representation is the two-dimensional irreducible representation (irrep). The
decomposition of the Dirac representation can be formulated in a four-component notation

ψL =


ψ1

ψ2

0

0

 , ψR =


0

0

ψ3

ψ4

 .

With only a slight abuse of notation we employ the same notation also for the two-component Weyl
spinors

ψL =

(
ψ1

ψ2

)
, ψR =

(
ψ3

ψ4

)
.

Weyl spinors describe neutrinos. The naming of left-handed Weyl spinors ψL and right-handed
Weyl spinors ψR will be understood later. Neutrinos are left-handed Weyl spinors, while the
complex conjugated field describes right-handed antineutrinos. Electrons, quarks and other charged
fermions are described by Dirac spinors. This is related to the fact that the symmetries related to
conserved charges cannot be implemented for Weyl spinors. Dirac spinors describe particles and
their antiparticles, e.g. electrons and positrons. Also the parity transformation maps between ψL
and ψR.

Video: Lecture20Video10.mp4

Parity Transformation. The parity transformation is defined by

ψ(x)→ γ0ψ(Px), Px = (x0,−~x).

For the action on Weyl spinors we observe

γ0
(
ψL
ψR

)
= −i

(
ψR
ψL

)
,

and therefore
(ψ

′
)L = −iψR, (ψ

′
)R = −iψL.

Parity exchanges left-handed and right-handed Weyl spinors. This is indeed one of the reasons why
one needs a left-handed and a right-handed Weyl spinor to describe electrons. Since neutrinos are
described only by a left-handed Weyl spinor, they necessarily violate parity!

Video: Lecture20Video07.mp4

Projection Matrix. A projection from the Dirac to the Weyl representation can be defined in
terms of the matrix γ5 by

ψL = 1
2 (1 + γ5)ψ,

ψR = 1
2 (1− γ

5)ψ.
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In our representation of Dirac matrices γ5 has the simple form

γ5 =

(
1 0

0 −1

)
, (9.31)

where the 1 represents a 2× 2-unit-matrix. One can check easily the relations

[γ5, Tµν ] = 0, (γ5)2 = 1. (9.32)

For the Dirac matrices (9.28) one verifies by explicit computation the anticommutation relation

{γµ, γ5} = 0. (9.33)

This anticommutation can be used for a definition of γ5 in an arbitrary representation of the Dirac
matrices. It implies the relations (9.32) . For a proof we use that γ5 commutes with a product of
two Dirac matrices,

γ5Tµν = − i
4γ

5(γµγν − γνγµ) = i
4 (γ

µγ5γν − γνγ5γµ) = − i
4 (γ

µγν − γνγµ)γ5 = Tµνγ5.

The anticommutation relation (9.33) is obeyed by the definition

γ5 = −iγ0γ1γ2γ3.

which yields eq. (9.31) for our particular representation of the Dirac matrices. In our particular
representation the projectors are very simple

1 + γ5

2
=

(
1 0

0 0

)
,

1− γ5

2
=

(
0 0

0 1

)
,

or
γ5ψL = ψL, γ5ψR = −ψR.

Video: Lecture20Video08.mp4

Dirac Matrices. The defining property for Dirac matrices is given by anticommutation relation

{γµ, γν} = 2ηµν .

This is known as the Clifford algebra. From this relation one can derive all the commutator
relations for the Tµν and γ5. In particular, one has (γk)2 =1, k= 1,2,3 and (γ0)2 = −1. Different
books on quantum field theory will use different representations of the Clifford algebra. Different
representations are related by a similarity transformation

γµ → γ′µ = AγµA−1.

For any regular matrix A this transformation does not change the anticommutator relations:

{γ′µ, γ′ν} = A{γµ, γν}A−1 = 2AηµνA−1 = ηµν .

10 Quantum electrodynamics

Video: Lecture20Video11.mp4

We are now ready to construct the action for quantum electrodynamics (QED). Charged fermions as
electrons, muons or quarks are described by Grassmann variables in the Dirac representation of the
Lorentz group. We start with free electrons, and add the interactions with photons subsequently.

– 126 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture20Video08.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture20Video11.mp4


10.1 Invariant action for free electrons

Kinetic term. We want to use the spinor representation discussed in the previous section to
establish a Lorentz invariant action for fermions. We can construct a kinetic term with only one
derivative:

S =

∫
d4x L , L = iψ̄γµ∂µψ = iψ̄α(γ

µ)αβ∂µψβ . (10.1)

As usual, ψ denotes a column vector and ψ̄ is a line vector,

ψ =


ψ1

ψ2

ψ3

ψ4

 , ψ̄ =
(
ψ̄1, ψ̄2, ψ̄3, ψ̄4

)
.

The Dirac indices or spinor indices α, β = 1, 2, 3, 4 should not be confused with Lorentz-indices
µ = 0, 1, 2, 3. For Weyl spinors we use only two spinor indices, and in other dimensions the
dimension of the Dirac representation differs from d. The kinetic term for fermions involves only
one derivative.

A priori, ψα and ψ̄α are independent Grassmann variables, and Grassmann variables are neither
real nor complex numbers. In contrast to the kinetic term for scalars, which requires two time-
derivatives, the formulation with only one time-derivative is closer to the formulation for non-
relativistic particles for which we have derived the functional integral from the operator formalism.
Under an infinitesimal Lorentz transformation, ψ and ψ̄ transform as

δψ = i
2εµνT

µνψ,

δψ̄ = − i
2εµνψ̄T

µν .
(10.2)

One can introduce a complex structure in the Grassmann algebra by defining ψ∗ through

ψ̄ = ψ†γ0 = (ψ∗)T γ0.

Video: Lecture20Video12.mp4

This is the defining relation for ψ∗ in terms of ψ̄. One can check the consistency of complex
conjugation with Lorentz transformations,

δψ∗ = − i
2εµνT

µνψ∗, δψ̄ = (δψ)†γ0.

Having defined ψ∗, one could define real and imaginary parts ψR = 1
2 (ψ+ψ∗) and ψI = − i

2 (ψ−ψ
∗)

and use those as independent Grassmann variables.

Video: Lecture20Video13.mp4

Transformation of Spinor Bilinears. We next have to verify the Lorentz-invariance of the
Dirac action (10.1). For this purpose we compute the behavior of general bilinear forms of spinors
under Lorentz transformations. It is sufficient to consider infinitesimal Lorentz transformations.

As a first relation we proof the invariance of ψ̄ψ,

δ(ψ̄ψ) = 0.
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Insertion of eq. (10.2) yields directly

δ(ψ̄ψ) = δψ̄ψ + ψ̄δψ = − i
2 (ψ̄T

µνψ − ψ̄Tµνψ) = 0.

We recall that there is an additional contribution from the transformation of coordinates that we
do not display explicitly. Thus ψ̄ψ transforms as a scalar field under Lorentz transformations.

Next we show that ψ̄γµψ transforms as a contravariant vector under Lorentz transformations.

δ(ψ̄γµψ) = δΛµν(ψ̄γ
νψ) = εµνψ̄γ

νψ.

Video: Lecture20Video14.mp4

This can be seen in three steps. First we note that

δ(ψ̄γρψ) = δψ̄γρψ + ψ̄γρδψ = − i
2εµν(ψ̄T

µνγρψ − ψ̄γρTµνψ̄) = − i
2εµνψ̄[T

µν , γρ]ψ.

Second, we employ the identity

γµγνγρ = γµ{γν , γρ} − γµγργν = 2ηνργµ − γµγργν .

in order to establish the commutator

[Tµν , γρ] = − i
4 (γ

µγνγρ − γνγµγρ − γργµγν + γργνγµ)

= − i
4 (2η

νργµ − γµγργν − 2ηµργν + γνγργµ − 2ηµργν

+ γµγργν + 2ηνργµ − γνγργµ)
= −i(ηνργµ − ηµργν).

NEW LECTURE

Video: Lecture21Video01.mp4

Third, the insertion of this commutation relation yields

δ(ψ̄γρψ) = − i
2 ψ̄εµν(−i)(η

νργµ − ηµργν)ψ = − 1
2 ψ̄(ε

ρ
µ γ

µ − ερνγν)ψ = ερνψ̄γ
νψ.

Since we also know the transformation properties of ∂ρ, we can easily check that ψ̄γρ∂ρψ transforms
as a scalar field,

δ(ψ̄γρ∂ρψ) = ερνψ̄γ
ν∂ρψ + ψ̄γρε νρ ∂νψ = ερνψ̄γ

ν∂ρψ + ενρψ̄γ
ν∂ρψ = 0.

Video: Lecture21Video02.mp4

Electrons with mass m. Free electrons are massive particles. A mass term in the action involves
a fermion bilinear without derivatives that transforms as a scalar field. We have already established
that ψ̄ψ has these properties. Extending the action (10.1) by a mass term the action for free
electrons involves

L = iψ̄γµ∂µψ + imψ̄ψ.

We will see that this Lorentz invariant action describes a quantum field theory for free electrons
and positrons.
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10.2 Dirac equation

Video: Lecture21Video03.mp4

Dirac Equation. The functional variation of the associated action S with regard to ψ̄ leads to
the famous Dirac equation

δS

δψ̄
= 0⇒ (γµ∂µ +m)ψ = 0. (10.3)

Since L is invariant this is a covariant equation. For a single particle state, this is also the
Schrödinger equation, with ψ interpreted as a wave function. In this case ψ is a complex function
(not a Grassmann variable). This interpretation of the Dirac equation as a relativistic Schrödinger
equation for a one particle state does not hold in the presence interactions. A generalisation by
adding an external electromagnetic is possible, however. In the following we will first concentrate
on the interpretation of the Dirac equation as a relativistic Schrödinger equation. The physical
properties found there will be useful once we later turn to the interacting quantum field theory for
electromagnetism.

Energy-Momentum Relation. A free electron should obey the energy momentum relation for
a relativistic particle. This can be established if we square the Dirac equation

γν∂νγ
µ∂µψ = m2ψ.

Using the anticommutator relation for the γ matrices

1
2{γ

ν , γµ}∂ν∂µψ = ηνµ∂ν∂µψ = ∂µ∂µψ = m2ψ,

we find the Klein-Gordon equation (∂µ∂µ −m2)ψ = 0. All solutions of the Dirac equation (10.3)
have to solve this equation. The general solution of the Klein-Gordon equation is a superposition of
plane waves ψ = ψ0 e

ipµx
µ

= ψ0 e
−i(Et−px). This implies indeed the relativistic energy-momentum

relation,
(E2 − p2 −m2)ψ = 0⇒ E2 = p2 +m2.

We observe the existence of solutions for both signs of the energy, E = ±
√
p2 +m2 and we have

to interpret the meaning of the solution with negative energy.

Video: Lecture21Video04.mp4

Hamiltonian Formulation. In order to obtain the usual form of the Schrödinger equation we
multiply eq. (10.3) with −iγ0,

−iγ0γµ∂µψ = −i(γ0)2∂0ψ − iγ0γk∂kψ = iγ0mψ,

and introduce
αk = −γ0γk = γkγ0 =

(
−τk 0

0 τk

)
, β = iγ0 =

(
0 1

1 0

)
.

This leads to the standard form of the Schrödinger equation

iψ̇ = −iαk∂kψ +mβψ = Hψ.
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One can check that the Hamiltonian H is indeed a hermitian operator. For a free fermion the
different momentum modes evolve independently, and one finds in the momentum basis,

iψ̇ = Hψ with H = αkpk +mβ.

It is instructive to consider the rest frame of the particle (p = 0). For the Hamiltonian one gets

H = m

(
0 1

1 0

)
.

This matrix mixes the Weyl spinors ψL and ψR

i∂t

(
ψL
ψR

)
= mβ

(
ψL
ψR

)
= m

(
ψR
ψL

)
.

We can verify that H has two eigenvectors with positive energy (E = +m), and another two with
negative energy (E = −m).

Video: Lecture21Video05.mp4

Positrons. We can construct linear combinations of ψL and ψR, which are mass eigenstates

ψ± = 1√
2
(ψL ± ψR) and iψ̇± = ±mψ±. (10.4)

By conjugating the equation for ψ−,

−iψ̇∗
− = −mψ∗

− ⇒ iψ̇∗
− = mψ∗

−,

one finds that ψ∗
− is an eigenstate of the Hamiltonian with positive eigenvalue E = +m. This

field can be interpreted as the field for a new particle, called the positron. The positron is the
antiparticle to the electron. We will see that ψ∗

− has electric charge −e, while ψ+ has charge e. We
use ψ+ for electrons and therefore e < 0. The existence of antiparticles is a direct consequence of
the Dirac equation, which has predicted the positron before its experimental discovery. In turn, it
is a consequence of Lorentz symmetry, combined with conserved electric charge. The latter makes
it impossible to describe the electron by a Weyl spinor. The complex conjugation in the definition
of ψ∗

− is part of a so called ”charge conjugation“ operation C, which is a discrete symmetry similar
to parity P and time reversal T . General arguments that we will not discuss here have shown
that Lorentz symmetry implies the invariance of the action under the combined symmetry CPT .
Individual discrete symmetries can be violated, as for neutrinos which violate P and C.

Video: Lecture21Video06.mp4
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Electrons and Positrons in the Electromagnetic Field. We next investigate the dynamics
of electrons and positrons in an electromagnetic field. For this purpose we first construct the piece
of the action which describes the interaction of electrons with photons or electromagnetic fields.
Taking fixed ”external“ electromagnetic fields the action for the spinor field remains quadratic.
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We can therefore interpret the Dirac equation as a Schrödinger equation for the one-particle wave
function also for this case. In particular, we will see that the positron has the opposite charge of
the electron.

As for classical electrodynamics, the electromagnetic field is given by Aµ = (−φ,A), and the
covariant Lagrangian by

L = iψ̄γµ(∂µ − ieAµ)ψ + imψ̄ψ. (10.5)

Since Aµ transforms as a covariant vector this action is Lorentz invariant.

The interaction term ∼ ψ̄γµψAµ is dictated by the gauge symmetry of the electromagnetic in-
teractions. This gauge symmetry replaces partial derivatives by covariant derivatives, according
to

∂tψ → (∂0 + ieφ)ψ,

∂kψ → (∂k − ieAk)ψ,

Varying the action with respect to ψ̄ yields the Dirac equation in an electromagnetic field,

iψ̇ =

(
αk(p̂k − eAk) + eφ+

(
0 m

m 0

))
ψ, p̂k = −i∂k.

With
αk
(
ψL
ψR

)
=

(
−τk 0

0 τk

)(
ψL
ψR

)
=

(
−τkψL
τkψR

)
,

Video: Lecture21Video08.mp4

the action of αk on the linear combinations (10.4) reads

αkψ+ = −τkψ−,

αkψ− = −τkψ+.

For the mass eigenstates ψ+, ψ− the Dirac equation becomes

iψ̇+ = (m+ eφ)ψ+ + i(∂k − ieAk)τkψ−,

iψ̇− = (−m+ eφ)ψ− + i(∂k − ieAk)τkψ+.

The Schrödinger equation for the positron obtains by complex conjugation of the equation for ψ−,

iψ̇∗
− = (m− eφ)ψ∗

− + i(∂k + ieAk)τ
∗
kψ

∗
+.

The positrons described by ψ∗
− have indeed the opposite charge as the electrons described by ψ+.

One observes that for non-zero momentum p̂k or non-zero vector potential Ak the components
ψ+ and ψ− mix. The eigenfunctions for the electrons and positrons are therefore not simply ψ+

and ψ∗
− as for the free fermions at rest. In the absence of interactions the eigenfunctions of the

Hamiltonian for non-zero momentum can be obtained from the ones in the rest frame by applying
a suitable Lorentz boost. In the presence of electromagnetic fields the eigenfunctions are more
complicated. The one-particle description ceases to be valid if the fields are strong enough such
that the creation of electron-positron pairs becomes possible.

Video: Lecture21Video09.mp4
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Quantum electrodynamics. For quantum electrodynamics (QED) the electromagnetic field is
treated on the same level as the other fields in the functional integral for a quantum field theory.
Thus the functional measure includes an integration over the fields Aµ(x). This contrasts to the
fixed ”external fields“ discussed before. The excitations of the electromagnetic field are the photons.
Similar to the case of scalar fields, photons are propagating particles. Their number is not conserved.
We can discuss processes as photon-electron scattering, or the production of electron-positron pairs
by the annihilation of a photon pair. In the presence of the electromagnetic interaction the electric
charge remains a conserved quantity. This is guaranteed by the gauge symmetry. The number of
electrons is no longer conserved, however.

A Lorentz invariant action for the electromagnetic field employs the field strength Fµν ,

LF = 1
4F

µνFµν , Fµν = ∂µAν − ∂νAµ. (10.6)

Since Fµν is gauge invariant, this action also preserves the gauge symmetry. Combining eq. (10.5)
and (10.6) yields a Lorentz- and gauge invariant action for electrons and photons. (In the following
we often understand by ”electrons“ the description of both electrons and positrons.)

In summary, QED is defined by the functional integral for the partition function

Z =

∫
Dϕ exp

(
−i
∫
x

LQED

)
,∫

Dϕ =

∫
DψDψ̄DAµ,

LQED = iψ̄γµ(∂µ − ieAµ)ψ + imψ̄ψ + 1
4F

µνFµν .

The integral over the fermion fields is a Grassmann functional integral. The integral over the
gauge fields Aµ should preserve both the Lorentz symmetry and the gauge symmetry. It needs a
regularisation, to which later parts of the QFT-lecture will turn in detail. For our purpose it is
sufficient to know that a suitable functional measure exists.

From the functional integral all correlation functions can, in principle, be computed. They can
be compared with precise measurements for many processes. In the case of QED the fine structure
constant α = e2/(4π) ∼ 1/137 is a small parameter. A perturbative computation amounts to an
expansion in α. It can be performed to rather high order. Precise computations with many decimal
places agree perfectly with observation.

Video: Lecture21Video10.mp4

Gauge symmetry. The action of QED is invariant under local gauge transformations.

ψ′(x) = eiα(x)ψ(x),

A′
µ(x) = Aµ(x) +

1
e∂µα(x).

For a local transformation the transformation parameter α(x) depends on x. This contrasts to the
Lorentz-transformations which are ”global“ symmetry transformations. The local gauge transfor-
mations change ψ at every x independently. If the action (and measure) is invariant under a local
transformation one speaks about a “local symmetry”, and often simply about a ”gauge symmetry“.

In order to verify the gauge invariance of the action for QED we first note that the free fermion
kinetic term is not gauge invariant,

ψ̄γµ∂µψ → ψ̄γµ∂µψ + i∂µαψ̄γ
µψ.
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Also the interaction term ∼ ψ̄γµψAµ alone is not gauge invariant

−ieψ̄γµAµψ → −ieψ̄γµAµψ − i∂µαψ̄γµψ.

Only the combination into a covariant derivative Dµ = ∂µ − ieAµ yields an invariant expression

iψ̄γµDµψ = iψ̄γµ(∂µ − ieAµ)ψ.

The gauge invariance of the field strength Fµν follows from the commutativity of partial derivatives.

Fµν = ∂µAν − ∂νAµ → ∂µAν − ∂νAµ + 1
e∂µ∂να−

1
e∂ν∂µα = Fµν .

Local gauge invariance is an important principle for constructing the action of a quantum field
theory. It is closely related to renormalizability.

Video: Lecture21Video11.mp4

Renomalizability. Gauge symmetry is a powerfull restriction for the choice of the action. Is it
sufficient? Consider a possible term

∆L = b
m ψ̄[γ

µ, γν ]ψFµν .

This term is Lorentz invariant and gauge invariant. If we add it with an unknown coefficient
b, predictions will depend on this coefficient. Predictivity of QED, which only involves m and
α = e2/4π, would be lost. The reason for the absence of such a term will be discussed in later parts
of the QFT-lecture related to renormalizability.

Video: Lecture21Video12.mp4

Non-relativistic limit of Dirac equation. For the quantum mechanics of atoms one uses the
Schrödinger equation for a complex two-component electron wave function χ(x). This equation is
not covariant under Lorentz-transformations – it is a non-relativistic equation. It contains various
terms, as a coupling between spin and angular momentum. A fundamental theory as QED should
fix all such couplings. Since QED contains only two parameters, namely m2 and α, all aspects
of the non-relativistic Schrödinger equation should follow from the Dirac equation. The way of
deriving the usual Schrödinger equation for electrons proceeds by taking the non-relativistic limit
of the Dirac equation.

The Schrödinger equation for the two-component spinor χ for the electron is given by

i∂tχ = Hχ =
1

2m
(~p− e ~A)2 + eϕ− e

m
~S ~B, ~S = 1

2~τ , (10.7)

with spin operator ~S, momentum operator ~pk = −i~∇k and magnetic field ~B. We recall that we use
units with ~ = 1. One usually deals with small electromagnetic fields for which one linearizes in ~A.
In particular, for a constant magnetic field ~B one takes ~A = − 1

2~r × ~B and obtains

1
2m (~p− e ~A)2 =

~p2

2m
− e

2m
~L~B,

with ~L the angular momentum operator. One recognises the Schrödinger equation for atomic
physics. There are indeed no new free couplings.
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The magnetic field couples to a linear combination of angular momentum and spin different
from the total angular momentum, with a term

(~L+ g~S) ~B, g = 2.

The Dirac equation predicts the relative coupling g = 2. For QED, the Dirac equation is not an exact
equation. As a one-particle equation it assumes implicitly that the particle number is conserved.
We have discussed before that the number of electrons is not conserved in QED since electron-
positron pairs can be created or annihilated without violation of charge conservation. One expects
possible corrections to the prediction of the Dirac equation due to fluctuation effects. Indeed, the
QED corrections from fluctuations yield a small correction to g − 2, which is computed to many
decimal places. For the electron one finds

ge
2

= 1.001159652181643(764),

to be compared with the experimental values

gexpe

2
= 1.00115965218073(28),

with errors on the last digits in brackets. The impressive agreement on the level 10−12 is a strong
indication for the correctness of QED.

Video: Lecture21Video13.mp4
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The derivation of the non-relativistic limit of the Dirac equation can be done in several steps.
Step 1: Square the Dirac equation,

γν(∂ν − ieAν)γµ(∂µ − ieAµ)ψ = m2ψ.

Step 2: From the Dirac algebra we use [γµ, γν ] = 4iTµν and obtain(
(∂µ − ieAµ)(∂µ − ieAµ) + eTµνFµν −m2

)
ψ = 0.

Step 3: We use TµνFµν = 1
2Bkτk +

i
2Ekτkγ

5, with τk =

(
τk 0

0 τk

)
. Also using ψ±, one obtains

{
(∂µ − ieAµ)(∂µ − ieAµ)−m2 + eBkτk

}
ψ+ = −ieEkτkψ−.

Step 4: One neglects the positrons by setting ψ− = 0. The resulting equation for ψ+ has only two
independent components. The lower two and upper two components obey an identical Schrödinger
equation. We take the upper two components.
Step 5: We introduce the non-relativistic wave function χ by

ψ+ = e−imtχ.

We formally write

i∂tχ = Hχ = (E −m)χ,
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by putting all terms that are not linear in the time derivative χ on the right hand side.
Step 6: The non-relativistic limit is given by |H| � m. In this limit one can neglect

∂2t
m
,

A0∂t
m

,
(∂tA0)

m
,

A2
0

m
.

Omitting these terms in H yields the above non-relativistic result. The quantity H becomes the
non-relativistic Hamiltonian in eq. (10.7).

NEW LECTURE
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10.3 Functional integral for photons

For photons, the field one integrates over in the functional integral is the gauge field Aµ(x). The
field theory is described by the partition function

Z2[J ] =

∫
DA exp

[
iS2[A] + i

∫
JµAµ

]
=

∫
DA exp

[
i

∫
d4x

{
−1

4
FµνFµν + JµAµ

}]
.

One can go to momentum space as usual

Aµ(x) =

∫
d4p

(2π)4
eipxAµ(p),

and finds for the term in the exponential∫
x

{
−1

4
FµνFµν + JµAµ

}
=

1

2

∫
d4p

(2π)4
{
−Aµ(−p)

(
p2ηµν − pµpν

)
Aν(p) + Jµ(−p)Aµ(p) +Aµ(−p)Jµ(p)

}
.

Video: Lecture22Video02.mp4

Attempt to invert the inverse propagator and gauge fixing. The next step would now be
to perform the Gaussian integral over Aµ by completing the square. However, a problem arises
here: The “inverse propagator” for the gauge field

p2ηµν − pµpν = p2Pµν(p),

is not invertible. We wrote it here in terms of

P ν
µ (p) = δ ν

µ −
pµp

ν

p2
,

which is in fact a projector to the space orthogonal to pν

P ν
µ (p)P ρ

ν (p) = P ρ
µ (p).

As a projector matrix it has eigenvalues 0 and 1, only. However,

P ν
µ (p) pν = 0.
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The field Aν(p) can be decomposed into two parts,

Aν(p) =
i

e
pνβ(p) + Âν(p),

with
Âν(p) = P ρ

ν (p)Aρ(p),

such that pνÂν(p) = 0. Moreover
β(p) =

e

ip2
pνAν(p).

When acting on Âν(p), the projector P ν
µ (p) is simply the unit matrix.

Recall that gauge transformations shift the field according to

Aµ(x)→
1

e
∂µα+Aµ(x)

or in momentum space
Aµ(p)→

i

e
pµα(p) +Aµ(p).

One can therefore always perform a gauge transformation such that β(p) = 0 or

∂µAµ(x) = 0.

This is known as Lorenz gauge or Landau gauge. We will use this gauge in the following and restrict
the functional integral to field configurations that fulfil the gauge condition.

Video: Lecture22Video03.mp4

Quadratic partition function. Now we can easily perform the Gaussian integral,

Z2[J ] =

∫
DA exp

[
i

2

∫
p

{
−
(
Aµ(−p)− Jρ(−p)

Pρ
µ

p2

)
p2Pµν

(
Aν(p)−

P σ
ν

p2
Jσ(p)

)}]
× exp

[
i

2

∫
p

Jµ(−p)Pµν(p)

p2
Jν(p)

]
= const× exp

[
i

2

∫
x,y

Jµ(x)∆µν(x− y)Jν(y)
]
.

In the last line we used the photon propagator in position space (in Landau gauge)

∆µν(x− y) =
∫

d4p

(2π)4
eip(x−y)

Pµν(p)

p2 − iε
.

In the last step we have inserted the iε term as usual.

Video: Lecture22Video04.mp4
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Photon propagator in position space. In the free theory one has

〈Aµ(x)Aν(x)〉 =
1

i2

(
1

Z[J ]
− δ2

δJµ(x)δJν(y)
Z[J ]

)
J=0

=
1

i
∆µν(x− y).

We use the following graphical notation

(x, µ) (y, ν) =
1

i
∆µν(x− y),

or with sources iJµ(x) at the end points

=
1

2

∫
x,y

iJµ(x)
1

i
∆µν(x− y) iJν(y).

Video: Lecture22Video05.mp4

Free solutions. To describe incoming and outgoing photons we need to discuss free solutions
for the gauge field. In momentum space, and for the gauge-fixed field (Landau gauge), the linear
equation of motion (Maxwell’s equation) is simply

p2P ν
µ (p)Âν(p) = p2Âµ(p) = 0.

Non-trivial solutions satisfy p2 = 0. Without loss of generality we assume now pµ = (E, 0, 0, E); all
other light like momenta can be obtained from this via Lorentz-transformations.

Video: Lecture22Video06.mp4

Polarizations. Quite generally, a four-vector can be written as

Âν(p) =

(
b,
a1 + a2√

2
,
−ia1 + ia2√

2
, c

)
.

From the Landau gauge condition pνÂν = 0 it follows that b = −c, so that one can write

Âν(p) = c̃× (−E, 0, 0, E) + a1ε
(1)
ν + a2ε

(2)
ν ,

with
ε(1)ν =

(
0,

1√
2
,
−i√
2
, 0

)
, ε(2)ν =

(
0,

1√
2
,
i√
2
, 0

)
.

However, the term ∼ c̃ is in fact proportional to pν = (−E, 0, 0, E). We can do another gauge
transformation such that c̃ = 0. This does not violate the Landau gauge condition because of
pνpν = 0. In other words, the photon field has only two independent polarization states, chosen
here as positive and negative circular polarizations, or helicities.

Video: Lecture22Video07.mp4
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Mode expansion. In summary, we can expand free solutions of the photon field like

Aµ(x) =

2∑
λ=1

∫
d3p

(2π)3
1√
2Ep

{
a~p,λ ε

(λ)
µ (p) eipx + a†~p,λ ε

(λ)∗
µ (p) e−ipx

}
,

where Ep = |~p| is the energy of a photon. The index λ labels the two polarization states.
In the current setup, a~p,λ and a†~p,λ are simply expansion coefficients, while they become an-

nihilation and creation operators in the operator picture. The non-trivial commutation relation
becomes then [

a~p,λ, a
†
~p′,λ′

]
= (2π)3δ(3)(~p− ~p′)δλλ′ .

Video: Lecture22Video08.mp4

Video: Lecture22Video09.mp4

LSZ reduction formula for photons. We also need a version of the Lehmann-Symanzik-
Zimmermann reduction formula for photons. Recall that for non-relativistic bosons we could replace
for the calculation of the interacting part of the S-matrix

a~q(∞)→ i
[
−q0 + ~q2

2m + V0

]
ϕ(q),

a†~q(−∞)→ i
[
−q0 + ~q2

2m + V0

]
ϕ∗(q).

For relativistic fields this is in general somewhat more complicated because of renormalization. This
will be discussed in more detail in the second part of the course. In the following we will discuss
only tree level diagrams where this plays no role. For photons one can replace for outgoing states√

2Ep a~p,λ(∞)→ iεν∗(λ)(p)

∫
d4x e−ipx[−∂µ∂µ]Aν(x)√

2Ep a
†
~p,λ(−∞)→ iεν(λ)(p)

∫
d4x eipx[−∂µ∂µ]Aν(x).

These formulas can be used to write S-matrix elements as correlation functions of fields. Note that
[−∂µ∂ν ] is essentially the inverse propagator in Landau gauge.

Video: Lecture22Video10.mp4

Mode expansion for Dirac fields. We also need a mode expansion for free Dirac fields in order
to describe asymptotic (incoming and outgoing) fermion states. We write the fields as

ψ(x) =
2∑
s=1

d3p

(2π)3
1√
2Ep

{
b~p,s us(p) e

ipx + d†~p,s vs(p) e
−ipx

}
,

ψ̄(x) =

2∑
s=1

d3p

(2π)3
1√
2Ep

{
−i b†~p,s ūs(p) e

−ipx − id†~p,s v̄s(p) e
ipx
}
.

Again, b~p,s, d~p,s etc. can be seen as expansion coefficients and become operators in the operator
picture.

Video: Lecture22Video11.mp4
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Solutions of Dirac equation. The Dirac equation

(γµ∂µ +m)ψ(x) = 0,

becomes for the plane waves

(i/p+m) us(~p) = 0,

(−i/p+m) vs(~p) = 0,

with /p = γµpµ. We consider this first in the frame where the spatial momentum vanishes, ~p = 0,
such that pµ = (−m, 0, 0, 0),

/p = −γ0m = im

(
1

1

)
.

The last equation holds in the chiral basis where

γµ = −i
(

0 σµ

σ̄µ 0

)
.

with σµ = (1, ~σ) and σ̄µ = (1,−~σ). For the spinor us one has the equation

(i/p+m)us = m

(
+1 −1
−1 +1

)
us = 0.

The two independent solutions are

u
(0)
1 =

√
m


1

0

1

0

 , u
(0)
2 =

√
m


0

1

0

1

 .

The normalization has been chosen for later convenience. Similarly

(−i/p+m)vs(0) = m

(
1 1

1 1

)
vs(0) = 0

has the two independent solutions

v
(0)
1 =

√
m


0

+1

0

−1

 , v
(0)
2 =

√
m


−1
0

+1

0

 .

We see here that the Dirac equation has two independent solutions (for spin up and and down with
respect to some basis) for particles and two more for anti-particles. One can now go to an arbitrary
reference frame by performing a Lorentz transformation. That gives

us(~p) =

(√−pµσµ ξs√−pµσ̄µ ξs

)
, vs(~p) =

( √−pµσµ ξs
−√−pµσ̄µ ξs

)
,

with a two-dimensional orthonormal basis ξs such that

ξ†sξr = δrs,

2∑
s=1

ξsξ
†
s = 12.
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Other identities involving us(~p), vs(~p) as well as

ūs(~p) = u†s(~p)iγ
0 = u†s(p)

(
1

1

)
,

v̄s(~p) = v†s(~p)iγ
0 = v†s(p)

(
1

1

)
,

have been discussed in exercises. They will be mentioned here once they are needed.

Video: Lecture22Video12.mp4

LSZ reduction for Dirac fermions. Finally, let us give the LSZ reduction formulas for Dirac
fermions (again neglecting renormalization effects)√

2Epb~p,s(∞)→ i

∫
d4x e−ipxūs(~p)(γ

µ∂µ +m)ψ(x),√
2Epd

†
~p,s(−∞)→ −i

∫
d4x e−ipxv̄s(~p)(γ

µ∂µ +m)ψ(x),√
2Epd~p,s(∞)→ −i

∫
d4x iψ̄s(x)(−γµ

←−
∂ µ +m)vs(x) e

−ipx,√
2Epb

†
~p,s(−∞)→ i

∫
d4x iψ̄s(x)(−γµ

←−
∂ µ +m)us(x) e

ipx.

The left-pointing arrows indicate here that these derivatives act to the left (on the field ψ̄s(x)).
These relations have been obtained as part of the exercises.

NEW LECTURE

10.4 Feynman rules and Feynman diagrams

Video: Lecture22Video13.mp4

Action and partition function. We are now ready to formulate the Feynman rules for a per-
turbative treatment of quantum electrodynamics. The microscopic action is

S =

∫
d4x

{
−1

4
FµνFµν − iψ̄γµ(∂µ − ieAµ)ψ − imψ̄ψ

}
= S2[ψ̄, ψ,A]−

∫
d4x eψ̄γµAµψ.

The last term is cubic in the fields ψ̄, ψ and Aµ, while all others terms are quadratic. We will
perform a perturbative expansion in the electric charge e.

Let us write the partition function as

Z[η̄, η, J ] =

∫
Dψ̄DψDA exp

[
iS[ψ̄, ψ,A] + i

∫ {
η̄ψ + ψ̄η + JµAµ

}]
with η̄ψ = η̄αψα where α = 1, . . . , 4 sums over spinor components. Formally, one can write

Z[η̄, η, J ] = exp
[
−e
∫
d4x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)
(γµ)αβ

(
1

i

δ

δη̄β(x)

)]
Z2[η̄, η, J ],

– 140 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture22Video12.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture22Video13.mp4


with quadratic partition function

Z2 =

∫
Dψ̄DψDA exp

[
iS2[ψ̄, ψ,A] + i

∫ {
η̄ψ + ψ̄η + JµAµ

}]
= exp

[
i

∫
d4xd4y η̄(x)S(x− y)η(y)

]
× exp

[
i

2

∫
d4xd4y Jµ(x)∆µν(x− y)Jν(y)

]
.

Video: Lecture22Video14.mp4

Propagator for Dirac fermions. We have introduced here also the propagator for Dirac fermions,
which is in fact a matrix in spinor space,

Sαβ(x− y) = −i
∫

d4p

(2π)4
eip(x−y)(ipµγ

µ +m)−1
αβ

= −i
∫

d4p

(2π)4
eip(x−y)

(−i/p+m1)αβ

p2 +m2 − iε
.

We can now calculate S-matrix elements by first expressing them as correlation functions which get
then evaluated in a perturbative expansion of the functional integral. These perturbative expressions
have an intuitive graphical representation as we have briefly discussed before. We concentrate here
on tree diagrams for which renormalization is not needed yet.

The correlation function of two Dirac fields can also be expressed in terms of the Dirac propa-
gator,

〈ψα(x)ψ̄β(y)〉 =
1

Z2

(
1

i

δ

δη̄α(x)

)(
i

δ

δηβ(y)

)
Z2

∣∣∣
η̄=η=J=0

=
1

i
Sαβ(x− y).

We introduce a graphical representation for thus, as well,

(x, α) (y, β) =
1

i
Sαβ(x− y).

With sources iη̄α(x) and iηβ(y) at the end this would be

=

∫
x,y

iη̄α(x)
1

i
Sαβ(x− y) iηβ(y) = i

∫
x,y

η̄(x)S(x− y)η(y).

The conventions are such that the arrow points away from the source η and to the source η̄. It
can also be seen as denoting the direction of fermions while anti-fermions move against the arrow
direction. The Dirac indices α, β are sometimes left implicit when there is no doubt about them.

Video: Lecture23Video01.mp4

Expanding out exponentials. We now consider the full partition function and expand out the
exponentials,

Z[η̄, η, J ] =

∞∑
V=0

1

V !

[∫
x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)(
−eγµαβ

)(1

i

δ

δη̄β(x)

)]V
×

∞∑
F=0

1

F !

[∫
x′,y′

iη̄α(x
′)

(
1

i
Sαβ(x

′ − y′)
)
iηβ(y

′)

]F
×

∞∑
p=0

1

P !

[
1

2

∫
x′′,y′′

iJµ(x′′)

(
1

i
∆µν(x

′′ − y′′)
)
iJν(y′′)

]P
.

(10.8)
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The index F counts the number of fermion propagators (corresponding to fermion lines in a graphical
representation), the index P counts the number of photon propagators (photon lines). The index
V counts vertices that connect fermion and photon in a specific way. More specifically, each power
of this term removes one of each kind of sources and introduces −eγµαβ to connect the lines in the
graphical representation.

Video: Lecture23Video02.mp4

Graphical representation for partition function. In the full expression for Z[η̄, η, J ] many
terms are present, in fact all graphs one can construct with fermion lines, photon lines and the
vertex. For example

Z = + + . . .+ (10.9)

+ . . .+ + . . .+ + . . .

Video: Lecture23Video03.mp4

Connected and disconnected diagrams. One distinguishes connected diagrams where all end-
points are connected with lines to each other, for example

or or or or

Disconnected diagrams can be decomposed into several connected diagrams.

Video: Lecture23Video04.mp4

Tree and loop diagrams. One also distinguishes tree diagrams and loop diagrams. Loop dia-
grams have closed loops of particle flow, for example

or or

or or etc.
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Tree diagrams have no closed loop, for example

or or

Counting the number of loops. Consider the partition function in (10.8). We have in each
term

• V vertices, each with 3 functional derivatives

• F fermion propagators, each with 2 sources

• P photon propagators, each with 2 sources

At the end this will lead to a term with the following number of sources left

E = 2(F + P )− 3V.

It is also useful to count the number of internal lines (those not connected to one of the E sources)
and it must be such that

2I = 3V − E.
Another useful formula relates the number of loops L to the number of internal lines and vertices

I = L+ V − 1.

To see this one may start drawing each loop in a simple topology with just one vertex and one line
and then to modify it by adding more vertices. One can combine these formulas to give the number
of loops as

L =
1

2
V − 1

2
E + 1 = 2V − (F + P ) + 1.

It is reassuring to check this formula on a few examples.

Video: Lecture23Video05.mp4

Corresponding algebraic expressions. To each of these diagrams with sources one can asso-
ciate an expression, for example

=

iJν(w)

−eγµ

iη̄(x) iη(y)

∆µν(z − w)

S(x− z) S(z − y)

=

∫
x,y,z,w

iη̄(x)

[
1

i
S(x− z)

]
(−eγµ)

[
1

i
S(z − y)

]
iη(y)

[
1

i
∆µν(z − w)

]
iJν(w).

To calculate S-matrix elements we are mainly interested in the connected diagrams because discon-
nected diagrams describe events where not all particles scatter. Also, we concentrate here on tree
diagrams. Loop diagrams will be discussed somewhat later.
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Video: Lecture23Video06.mp4

S-matrix elements. Now that we have seen how to represent Z[η̄, η, J ], let us discuss how to
obtain S-matrix elements. For example, for an outgoing photon we had the LSZ rule√

2Ep a~p,λ(∞)→ iεν∗(λ)(p)

∫
d4x e−ipx [−∂µ∂µ]Aν(x).

To obtain the field Aν(x) under the functional integral we can use

Aν(x)→
1

i

δ

δJν(x)
,

acting on Z[η̄, η, J ]. Moreover, i[−∂µ∂µ] will remove one propagator line for the outgoing photon,

i [−∂µ∂µ]
1

i
∆ρσ(x− y) = [−∂µ∂µ]

∫
d4p

(2π)4
eip(x−y)

Pρσ(p)

p2 − iε

=

∫
d4p

(2π)4
eip(x−y)Pρσ(p)→ ηρσδ

(4)(x− y).

The projector has no effect if the photon couples to conserved currents and the result is simply
ηρσδ

(4)(x− y). What remains is to multiply with the polarization vector

ε∗(λ)µ(p)

for the out-going photon with momentum p. Also, the Fourier transform brings the expression to
momentum space. The out-going momentum is on-shell, i. e. it satisfies pµpµ = 0 for photons.
Similarly, for incoming photons we need to remove the external propagator line and contract with

ε(λ)µ(p),

instead.
For out-going electrons we need to remove the external fermion propagator and multiply with

ūs(~p) where p is the momentum of the out-going electron satisfying p2 +m2 = 0 and s labels its
spin state. Similarly, for an incoming electron we need to contract with ius(p).

For out-going positrons we need to contract with ivs(p) (and include here one factor i because
iψ̄ appears in the LSZ rule in our conventions). For an incoming positron the corresponding external
spinor is v̄s(p).

Video: Lecture23Video07.mp4

Propagators in momentum space. Working now directly in momentum space, the photon
propagator is represented by

−iPµν(p)

p2 − iε
= −i

ηµν − pµ pν
p2

p2 − iε
.

The fermion propagator is

−i
−i/p+m

p2 +m2 − iε
.

The vertex is as before −eγµ. Momentum conservation must be imposed at each vertex. Together
these rules constitute the Feynman rules of QED. One can work with the graphical representation
and then translate to formula at a convenient point. However, when in doubt, one can always go
back to the functional representation.
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10.5 Elementary scattering processes

We are now ready to use the formalism of quantum field theory, specifically quantum electrody-
namics, to determine actually scattering amplitudes and cross section. The incoming and outgoing
states can consist of photons, electrons and positrons but also muons or anti-muons and more gener-
ally any charged particles. When the charged particles are scalar bosons, one would use a variant of
the theory called scalar electrodynamics, but we are here concerned with charged spin-1/2 particles
which are described by standard spinor electrodynamics.

In the following we will bring together several of the elements we have discussed before, such
as

• the Lagrangian of spinor quantum electrodynamics,

• the idea of perturbation theory as an expansion in the coupling constant e,

• the graphical representation in terms of Feynman diagrams,

• solutions to the free Dirac equation for incoming or outgoing electrons and positrons (or
muons and anti-muons),

• the propagators for Dirac femions and for photons,

It might be a good idea to go back and revise these topics if you feel uncertain about them. We
will see on the way that we need some additional technical knowledge, specifically

• how to do spin sums,

• how to calculate traces of gamma matrices

• how Mandelstam variables are defined and how one can work with them.

These points will also be discussed in the exercises.
We will then start to look at the elastic scattering of a photon and an electron, a process

known as Compton scattering. We will write down the Feynman diagrams and the corresponding
algebraic expressions. For another process, namely the scattering of an electron-positron pair to
a muon-anti-muon pair we will do this, as well, but then also go on and evaluate the expressions
further until we arrive at a nice and compact result for the scattering cross-section.

Video: Lecture23Video09.mp4

Compton Scattering. As a first example let us consider Compton scattering e−γ → e−γ

p1, s1

µ

ν

q1, λ1

p2, s2 q2, λ2

p1

p1 + q1

q1

p2 q2

p1, s1

ν

µ

q1, λ1

p2, s2
q2, λ2

p1

p1 − q2
q2

p2

q1
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These are two diagrams at order e2, as shown above. The first diagram corresponds to the expression

ūs2(p2)(−eγν)
(
−i
−i(/p1 + /q1) +m

(p1 + q1)2 +m2

)
(−eγµ) ius(p1) ε(λ1)µ(q1) ε

∗
(λ2)ν

(q2).

Similarly, the second diagram gives

ūs2(p2)(−eγµ)
(
−i
−i(/p1 − /q1) +m

(p1 − q1)2 +m2

)
(−eγν) ius(p1) ε(λ1)µ(q1) ε

∗
(λ2)ν

(q2).

Combining terms and simplifying a bit leads to

iT = e2ε(λ1)µ(q1) ε
∗
(λ2)ν

(q2) ūs2(p2)

[
γν
−i(/p1 + /q1) +m

(p1 + q1)2 +m2
γµ + γµ

−i(/p1 − /q2) +m

(p1 − q2)2 +m2
γν
]
us1(p1).

Video: Lecture24Video01.mp4

Electron-positron to muon-anti-muon scattering. As another example for an interesting
process in QED we consider e−e+ → µ−µ+. From the point of view of QED, the muon behaves like
the electron but has a somewhat larger mass. Diagrams contributing to this process are (we keep
the polarizations implicit)

e−

µ

ν

e+

µ− µ+

p1

p1 + p2 = k

p2

p3 p4

The corresponding expression is

iT = v̄(p2)(−eγµ) iu(p1)

(
−i
ηµν − kµkν

k2

(k2)

)
ū(p3) (−eγν) iv(p4),

with k = p1 + p2 = p3 + p4.

Video: Lecture24Video02.mp4

On-shell conditions. The external momenta are on-shell and the spinors u(p1) etc. satisfy the
Dirac equation,

(i/p1 +me)u(p1) = 0, (−i/p4 +mµ)v(p4) = 0,

ū(p3)(i/p3 +mµ) = 0, v̄(p2)(−i/p2 +me) = 0.

This allows to write
iv̄(p2) γ

µkµ u(p1) = iv̄(p2) (/p1 + /p2)u(p1) = v̄(p2) (−me +me)u(p1) = 0,

iū(p3) γ
νkν v(p4) = iū(p3) (/p3 + /p4) v(p4) = ū(p3) (−mµ +mµ) v(p4) = 0.

These arguments show that the term ∼ kµkν can be dropped. This is essentially a result of gauge
invariance.

Video: Lecture24Video03.mp4
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Complex conjugate and squared amplitudes. We are left with

T =
e2

k2
v̄(p2)γ

µu(p1) ū(p3)γµv(p4).

To calculate |T |2 we also need T ∗ which follows from hermitian conjugation

T ∗ =
e2

k2
v†(p4)γ

†
µū

†(p3) u
†(p1)γ

µ†v̄†(p2).

Recall that ū(p) = u(p)†β with β = iγ0. With the explicit representation

γµ =

(
−iσ̄µ

−iσµ

)
,

it is also easy to prove βγµ†β = −γµ. By inserting β2 = 1 at various places we find thus

T ∗ =
e2

k2
v̄(p4)γµu(p3) ū(p1)γ

µv(p2)

Putting together and using s = −k2 = −(p1 + p2)
2 we obtain

|T |2 =
e4

s2
ū(p1)γ

µv(p2) v̄(p2)γ
νu(p1) ū(p3)γνv(p1) v̄(p4)γµu(p3).

Video: Lecture24Video04.mp4

Spin sums and averages. To proceed further, we need to specify also the spins of the incoming
and outgoing particles. The simplest case is the one of unpolarized particles so that we need
to average the spins of the incoming electrons, and to sum over possible spins in the final state.
Summing over the spins of the µ+ can be done as follows (exercise)

2∑
s=1

vs(p4)v̄s(p4) = −i/p4 −mµ,

and similarly for µ−

2∑
s=1

us(p3)ūs(p3) = −i/p3 +mµ.

We can therefore write

ū(p3)γνv(p4) v̄(p4)γµu(p3) = tr
{
(−i/p3 +mµ)γν(−i/p4 −mµ)γµ

}
.

Spins of the electron and positron must be averaged instead,

1

2

2∑
s=1

u(p1)ū(p1) =
1

2
(−i/p1 +me),

1

2

2∑
s=1

v(p2)v̄(p2) =
1

2
(−i/p2 −me).

This leads to
1

4

∑
spins
|T |2 =

e4

4s2
tr
{
(−i/p1 +me)γ

µ(−i/p2 −me)γ
ν
}
× tr

{
(−i/p3 +mµ)γν(−i/p4 −mµ)γµ

}
.

In order to proceed further, we need to know how to evaluate traces of up to four gamma matrices.

Video: Lecture24Video05.mp4
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Traces of gamma matrices. We need to understand how to evaluate traces of the form tr{γµ1 · · · γµn}
To work them out we can use {γµ, γν} = 2ηµν , γ25 = 1 and {γµ, γ5} = 0. Also, tr{1} = 4. First we
prove that traces of an odd number of gamma matrices must vanish,

tr{γµ1 · · · γµn} = tr{γ25 γµ1γ25 · · · γ25γµn}
= tr{(γ5γµ1γ5) · · · (γ5γµ1γ5)}
= tr{(−γ25γ

µ
1 ) · · · (−γ25γµn)}

= (−1)ntr{γµ1 · · · γµn}.

This implies what we claimed.

Video: Lecture24Video06.mp4

Now for even numbers

tr{γµγν} = tr{γνγµ} = 1
2 tr{γµγν + γνγµ} = ηµνtr{1} = 4ηµν .

From this it also follows that
tr{/p/q} = 4p · q.

Now consider tr{γµγνγργσ}. This idea is to commute γµ to the right using {γµ, γν} = 2ηµν . Thus

tr{γµγνγργσ} = −tr{γνγµγργσ}+ 2ηµν tr{γργσ}
= tr{γνγργµγσ} − 2ηρµtr{γνγσ}+ 2ηµν tr{γργσ}
= −tr{γνγργσγµ}+ 2ησµ tr{γνγρ} − 2ηρµ tr{γνγσ}+ 2ηµν tr{γργσ}.

But by the cyclic property of the trace

tr{γνγργσγµ} = tr{γµγνγργσ}

which is also on the left hand side. Bringing it to the left and dividing by 2 gives

tr{γµγνγργσ} = ησµ tr{γνγρ} − ηρµ tr{γνγσ}+ ηµνtr{γργσ}
= 4(ησµηνρ − ηρµηνσ + ηµνηρσ).

This is the result we were looking for. Clearly by using this trick we can in principle evaluate traces
of an arbitrary number of gamma matrices.

Video: Lecture24Video07.mp4

Result so far. Coming back to e−e+ → µ−µ+ we find

1

4

∑
spins
|T |2 =

4e4

s2
[
−pµ1pν2 − pν1p

µ
2 + (p1 · p2 −m2

e)η
µν
]

×
[
−(p3)ν(p4)µ − (p3)µ(p4)ν + (p3 · p4 −m2

µ)η
µν
]

=
8e4

s2
[
(p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4)−m2

µ(p1 · p2)−m2
e(p3 · p4) + 2m2

em
2
µ

]
This looks already quite decent but it can be simplified even further in terms of Mandelstam
variables.

Video: Lecture24Video08.mp4
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Mandelstam Variables. The Mandelstam variables for a 2→ 2 process

p1 p2

p3 p4

are given by

s = −(p1 + p2)
2 = −(p3 + p4)

2,

t = −(p1 − p3)2 = −(p2 − p4)2,
u = −(p1 − p4)2 = −(p2 − p3)2.

Together with the squares p21, p22, p23, p24, the Mandelstam variables can be used to express all
Lorentz invariant bilinears in the momenta. Incoming and outgoing momenta are on-shell such
that p21 +m2

1 = 0 etc. The sum of Mandelstam variables is

s+ t+ u = −(p21 + p22 + p23 + p24) = m2
1 +m2

2 +m2
3 +m2

4.

Using these variables for example through

p1 · p4 = −1

2

[
(p1 − p4)2 − p21 − p24

]
=

1

2

[
u−m2

e +m2
µ

]
,

one finds for e−e+ → µ−µ+

1

4

∑
spins
|T |2 =

2e4

s2
[
t2 + u2 + 4s(m2

e +m2
µ)− 2(m2

e +m2
µ)

2
]
.

Video: Lecture24Video09.mp4

Differential cross section. From the squared matrix element we can calculate the differential
cross section in the center of mass frame. For relativistic kinematics of 2 → 2 scattering and the
normalization conventions we employ here one has in the center of mass frame

dσ

dΩ
=

1

64π2s

|~p3|
|~p1|

1

4

∑
spins
|T |2.

Let us express everything in terms of the energy E of the incoming particles and the angle θ between
the incoming e− electron momenta and outgoing µ− muon.

|~p1| =
√
E2 −m2

e, s = 4E2,

|~p3| =
√
E2 −m2

µ, t = m2
e +m2

µ − 2E2 + 2~p1 · ~p3,

~p1 · ~p3 = |~p1||~p3| cos θ, u = m2
e +m2

µ − 2E2 − 2~p1 · ~p3.

With these relations we can express dσ
dΩ in terms of E and θ only.

Video: Lecture24Video10.mp4
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Ultrarelativistic limit. Let us concentrate on the ultrarelativistic limit E � me,mµ so that we
can set me = mµ = 0. One has then |~p1| = |~p3| and

t2 + u2 = 8E4(1 + cos2 θ),
2(t2 + u2)

s2
= 1 + cos2 θ,

which leads to
dσ

dΩ
=

e4

64π2s
(1 + cos2 θ) =

α2

4s
(1 + cos2 θ).

In the last equation we used α = e2/(4π).

Video: Lecture24Video11.mp4

Electron-Muon Scattering. We can also consider the scattering process e−µ− → e−µ−,

e−

µ ν

e−

µ−

µ−

q1

k

q3

q2

q4

k = q1 − q3

iT = ū(q3)(−eγµ)iu(q1)

(
−i
ηµν − kµkν

k2

k2

)
ū(q4)(−eγν)iu(q2).

By a similar argument as before the term ∼ kµkν drops out,

T =
e2

(q1 − q3)2
ū(q3)γ

µu(q1)ū(q4)γµu(q2) (e−µ− → e−µ−).

Video: Lecture24Video12.mp4

Comparison to electron to muon scattering. Compare this to what we have found for
e−e+ → µ−µ+

T =
e2

(p1 + p2)2
v̄(p2)γ

µu(p1)ū(p3)γµv(p4),

where the conventions were according to

e−

µ

ν

e+

µ− µ+

p1

p1 + p2 = k

p2

p3 p4
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There is a close relation and the expressions agree if we put

q1 = +p1, u(q1) = u(p1),

q2 = −p4, u(q2) = u(−p4)→ v(p4),

q3 = −p2, ū(q3) = ū(−p2)→ v̄(p2),

q4 = +p3, ū(q4) = ū(p3).

Video: Lecture25Video01.mp4

Crossing symmetry. Recall that

(i/p+m) u(p) = 0 but (−i/p+m) v(p) = 0.

However one sign arises from the spin sums
2∑
s=1

us(p)ūs(p) = −i/p+m,

2∑
s=1

vs(p) v̄s(p) = −i/p−m = −
∑
s

us(−p) ūs(−p).

Because it appears twice, the additional sign cancels for |T |2 after spin averaging and one finds
indeed the same result as for e−e+ → µ−µ+ but with

sq =− (q1 + q2)
2 = −(p1 − p4)2 = up,

tq =− (q1 − q3)2 = −(p1 + p2)
2 = sp,

uq =− (q1 − q4)2 = −(p1 − p3)2 = tp.

We can take what we had calculated but must change the role of s, tand u ! This is an example of
crossing symmetries.

Electron-muon scattering in the massless limit. Recall that we found for e−e+ → µ−µ+ in
the massless limit me = mµ = 0 simply

1

4

∑
spins
|T |2 =

2e4

s2
[
t2 + u2

]
.

For e−µ− → e−µ− we find after the replacements u→ s, s→ t, t→ u,

1

4

∑
spins
|T |2 =

2e4

t2
[
u2 + s2

]
.

Video: Lecture25Video03.mp4

More on Mandelstam variables. To get a better feeling for s, t and u, let us evaluate them in
the center of mass frame for a situation where all particles have mass m.

p1
p2

p3

p4

θ
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pµ1 = (E, ~p), pµ2 = (E,−~p),
pµ3 = (E, ~p′), pµ4 = (E,−~p′).

While s measures the center of mass energy, t is a momentum transfer that vanishes in the soft
limit ~p2 → 0 and in the colinear limit θ → 0. Similarly, u vanishes for ~p2 → 0 and for backward
scattering θ → π.

Video: Lecture25Video04.mp4

s-, t- and u-channels. One speaks of interactions in different channels for tree diagrams of the
following generic types,

p1 p2

p3 p4

∝ 1

−s+m2
s-channel

p1

p3 p4

p2

∝ 1

−t+m2
t-channel

p1

p4

p2

p3

∝ 1

−u+m2
u-channel

Video: Lecture25Video05.mp4

Electron-muon scattering. For the cross section we find for e−µ− → e−µ− in the massless
limit

dσ

dΩ
=

1

64π2s

1

4

∑
spins

|T |2 =
α2[4 + (1 + cos θ)2]

2s(1− cos θ)2

This diverges in the colinear limit θ → 0 as we had already seen for Yukawa theory in the limit
where the exchange particle becomes massless.

Note that by the definition s ≥ 0 while u and t can have either sign. Replacements of the type
used for crossing symmetry are in this sense always to be understood as analytic continuation.

10.6 Relativistic scattering and decay kinematics

Video: Lecture25Video06.mp4

Covariant normalization of asymptotic states. For non-relativistic physics this we have used
a normalization of single particle states in the asymptotic incoming and out-going regimes such that

〈~p|~q〉 = (2π)3δ(3)(~p− ~q).
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For relativistic physics this has the drawback that it is not Lorentz invariant. To see this let us
consider a boost in z-direction

E′ =γ(E + βp3),

p1′ =p1,

p2′ =p2,

p3′ =γ(p3 + βE).

Using the identity
δ (f(x)− f(x0)) =

1

|f ′(x0)|
δ(x− x0),

one finds

δ(3)(~p− ~q) = δ(3)(~p′ − ~q′)dp
3′

dp3
= δ(3)(~p− ~q)γ

(
1 + β

dE

dp3

)
= δ(3)(~p′ − ~q′) 1

E
γ
(
E + βp3

)
=
E′

E
δ(3)(~p′ − ~q′).

This shows, however, that E δ(3)(~p− ~q) is in fact Lorentz invariant.

Video: Lecture25Video07.mp4

This motivates to change the normalization such that

|p; in〉 =
√
2Epa

†
~p(−∞)|0〉 =

√
2E~p |~p; in〉.

Note the subtle difference in notation between |p; in〉 (relativistic normalization) and |~p; in〉 (non-
relativistic normalization). This implies for example

〈p; in|q; in〉 = 2Ep(2π)
3δ(3)(~p− ~q).

With this normalization we must divide by 2Ep at the same places. In particular the completeness
relation for single particle incoming states is

11−particle =

∫
d3p

(2π)3
1

2E~p
|p; in〉〈p; in|.

In fact, what appears here is a Lorentz invariant momentum measure. To see this consider∫
d4p

(2π)4
(2π) δ(p2 +m2) θ(p0) =

∫
d3p

(2π)3
1

2E~p
.

The left hand side is explicitly Lorentz invariant and so is the right hand side.

Video: Lecture25Video08.mp4
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Covariantly normalized S-matrix. We can use the covariant normalization of states also in
the definition of S-matrix elements. The general definition is as before

Sβα = 〈β; out|α; in〉 = δβα + i Tβα(2π)4δ(4)(pin − pout).

But now we take elements with relativistic normalization, e.g. for 2→ 2 scattering

Sq1q2,p1p2 = 〈q1, q2; out|p1, p2; in〉.

We can calculate these matrix elements as before using the LSZ reduction formula to replace√
2Epa

†
~p(−∞) by fields. For example, for relativistic scalar fields√

2E~p a
†
~p(−∞) =

√
2E~p a

†
~p(∞) + i

[
−(p0)2 + ~p2 +m2

]
φ∗(p).

This allows to calculate S-matrix elements through correlation functions.

Video: Lecture25Video09.mp4

Cross sections for 2→ n scattering. Let us now generalize our discussion of 2→ 2 scattering
of non-relativistic particles to a scattering 2→ n of relativistic particles. The transition probability
is as before

P =
|〈β; out|α; in〉|2

〈β; out|β; out〉〈α; in|α; in〉
.

Rewriting the numerator in terms of Tβα and going over to the transition rate we obtain as before

Ṗ =
V (2π)4δ(4)(pout − pin)|T |2

〈β; out|β; out〉〈α; in|α; in〉
. (10.10)

But now states are normalized in a covariant way

〈p|p〉 = lim
q→p
〈p|q〉

= lim
q→p

2Ep(2π)
3δ(3)(~p− ~q)

= 2Ep(2π)
3δ(3)(0)

= 2EpV

One has thus for the incoming state of two particles

〈α; in|α; in〉 = 4E1E2V
2.

For the outgoing state of n particles one has instead

〈β; out|β; out〉 =
n∏
j=1

{2q0jV }.

The product goes over final state particles which have the four-momentum qnj . So, far we have thus

Ṗ =
V (2π)4 δ(4)(pin − pout)|T |2

4E1E2V 2
∏n
j=1{2q0jV }

.

Video: Lecture25Video10.mp4

– 154 –

https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture25Video09.mp4
https://www.thphys.uni-heidelberg.de/~floerchinger/assets/videos/Lecture25Video10.mp4


Lorentz invariant phase space. To count final state momenta appropriately we could go back
to finite volume and then take the continuum limit. This leads to an additional factor∑

~nj

→ V

∫
d3q

(2π)3

for each final state particle. The transition rate becomes

Ṗ =
|T |2

4E1E2V

(2π)4 δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

}
The expression in square brackets is known as the Lorentz-invariant phase space measure (sometimes
”LIPS”).

Video: Lecture25Video11.mp4

Flux and differential cross section. To go from there to a differential cross section we need
to divide by a flux of particles. There is one particle per volume V with velocity v = v1 − v2, so
the flux is

F =
|v|
V

=
|v1 − v2|

V
=

∣∣∣p31p01 − p32
p02

∣∣∣
V

.

In the last equality we chose the beam axis to coincide with the z-axis. For the differential cross
section we obtain

dσ =
|T |2

4E1E2|v1 − v2|
[LIPS].

The expression in the prefactor can be rewritten like

1

E1E2|v1 − v2|
=

1

p01p
0
2

∣∣∣p31p01 − p32
p02

∣∣∣ = 1

|p02p31 − p01p32|
=

1

|εµxyνpµ2pν1 |
.

This is not Lorentz invariant in general but invariant under boosts in the z-direction. In fact it
transforms as a two-dimensional area element as it should.

Video: Lecture25Video12.mp4

Differential cross section in the centre of mass frame. In the center of mass frame one has
p32 = −p31 = ±|~p1| and

1

|p02p31 − p01p02|
=

1

|~p1|(p01 + p02)
=

1

|~p1|COM
√
s

This leads finally to the result for the differential cross section

dσ =
|τ |2

4|~p1|COM
√
s

(2π)4δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

} .
Video: Lecture25Video13.mp4
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2 → 2 scattering. For the case of n = 2 one can write the Lorentz invariant differential phase
space element in the center of mass frame (exercise)[

(2π)4 δ(4)(pin − q1 − q2)
d3q1

(2π)32q01

d3q2
(2π)3q02

]
=

|~q1|
16π2

√
s
dΩ

such that
dσ

dΩ
=

1

64π2s

|~q1|
|~p1|
|T |2.

Video: Lecture25Video14.mp4

Decay rate. Let us now consider the decay rate of a single particle, i. e. a process 1 → n. We
can still use equation (10.10), but now the initial state is normalized like

〈α; in|α; in〉 = 2E1V.

We find then for the differential transition or decay rate dΓ = Ṗ

dΓ =
|T |2

2E1

(2π)4δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

}
In the center of mass frame one has E1 = m1. For the special case of 1→ 2 decay one finds in the
center of mass frame or rest frame of the initial particle

dΓ =
|T |2|~q1|
32π2m2

1

dΩ.

NEW LECTURE

10.7 Higgs/Yukawa theory

Video: Lecture25Video15.mp4

In the following two lectures we will discuss a quantum field theoretic model that extends somewhat
beyond quantum electrodynamics. We add to the theory a neutral massive scalar field that couples
to the fermions through a Yukawa interaction. One may see that additional massive scalar particle
as an analog of the Higgs boson, even though our model reflects only a few of the properties of the
real electroweak standard model.

We discuss the model as a further example for an interesting quantum field theory and because
we can nicely study there decay processes.

• A massive Higgs boson can decay into two fermions through the Yukawa interaction. This is
a tree level process and rather easy to calculate.

• Interestingly a neutral and massive Higgs boson can also decay into two photons. This process
is not allowed at tree level (because the Higgs boson is neutral), but it is induced by loop
diagrams. This will be the first loop diagram we will calculate in detail.

In the second part of the lecture course loop diagrams and their physical consequences will be
studied in much more detail. For the Higgs decay into photons we do not need renormalization yet,
which simplifies the discussion. Nevertheless there will be some new elements to be discussed.

Video: Lecture25Video16.mp4
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Action for Higgs/Yukawa theory and fermion mass. Let us consider the following extension
of QED by a neutral scalar field (with m = gv)

S[ψ̄, ψ,A, φ] =

∫
x

{
−iψ̄γµ (∂µ − ieAµ)ψ − imψ̄ψ −

1

4
FµνFµν −

1

2
φ
(
−∂µ∂µ +M2

)
φ− igφψ̄ψ

}
.

Note that a constant (homogeneous) scalar field φ modifies the fermion mass according to

meff = m+ gφ = g(v + φ)

In fact, one can understand the massses of elementary fermions (leptons and quarks) in the standard
model of elementary particle physics as being due to such a scalar field expectation value for the
Higgs field.

Video: Lecture25Video17.mp4

Propagators and vertices. In the theory above we have now different propagators
1

i
∆µν(x− y)

1

i
Sαβ(x− y)

1

i
∆(x− y)

with scalar propagator
∆(x− y) =

∫
p

eip(x−y)
1

p2 +M2
.

The vertices are

(−eγµ) g

10.8 Higgs decay into fermions

Video: Lecture26Video01.mp4

Higgs decay to fermions. Let us discuss first the process φ → f−f+. The fermions could be
leptons (e, µ, τ) or quarks (u, d, s, c, b, t). The Feynman diagram for the decay is simply

s2, f
+s1, f

−

p

q1 q2

According to the Feynman rules we obtain

iT = g ūs1(q1)ivs2(q2), T ∗ = g v̄s2(q2)us1(q1).

For the absolute square one finds

|T |2 = g2 ūs1(q1)vs2(q2) v̄s2(q2)us1(q1).

Video: Lecture26Video02.mp4
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Spin sums and Dirac traces. We will assume that the final spins are not observed and sum
them ∑

spins
|T |2 = g2 tr

{
(−i/q2 −m)(−i/q1 +m)

}
We used here again the spin sum formula∑

s

vs(p)v̄s(p) = −i/p−m,
∑
s

us(p)ūs(p) = −i/p+m.

Performing also the Dirac traces gives∑
spins
|T |2 = g2

(
−4q1 · q2 − 4m2

)
.

Video: Lecture26Video03.mp4

Kinematics in the Higgs boson rest frame. Let us now go into the rest frame of the decaying
particle where

p = (M, 0, 0, 0), q1 =
(
M
2 , ~q

)
, q2 =

(
M
2 ,−~q

)
,

with
~q2 = −m2 + M2

4 , q1 · q2 = −M
2

4
− ~q2 = −M

2

m2
,

and ∑
spins
|T |2 = 2 g2M2

(
1− 4

m2

M2

)
.

Note that the decay is kinematically possible only for M > 2m so that the bracket is always positive.

Video: Lecture26Video04.mp4

Decay rate. For the particle decay rate we get

dΓ

dΩ
=

|~q1|
32π2M2

∑
spins
|T |2 =

g2M

32π2

(
1− 4

m2

M2

)3/2

.

Because this is independent of the solid angle Ω one can easily integrate to obtain the decay rate

Γ =
g2M

8π

(
1− 4

m2

M2

)3/2

.

Video: Lecture26Video05.mp4

Dependence on fermion mass. If the scalar boson φ is the Higgs boson, the Yukawa coupling
is in fact proportional to the fermion mass m,

g =
m

V
.

One has then
Γ =

M3

32πv2
f

(
2m

M

)
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0 1
0.0

0.2

f(x)

where
f(x) = x2(1− x2)3/2

Decay into light fermions is suppressed because of small coupling while decay into very heavy
fermions is suppressed by small phase space or even kinematically excluded for 2m > M .

For Higgs boson mass of M = 125 GeV the largest decay rate to fermions is to bb̄ (bottom quark
and anti-quark). This corresponds to m = 4.18 GeV. The top quark would have larger coupling but
is in fact too massive (m = 172 GeV). (The lepton with largest mass is the tauon τ with m = 1.78

GeV.)

10.9 Higgs decay into photons

Video: Lecture26Video06.mp4

Higgs decay into photons. A Higgs particle can also decay into photons and this is in fact how
it was discovered. How is this possible? If we try to write down a diagram in the theory introduced
above we realize that there is no tree diagram. However, there are loop diagrams!

Consider the diagrams

q2q1 q2q1

These terms arise from the expansion of the partition function if the fermion propagator appears 3

times and there are 2 fermion-photon and one fermion-scalar vertices.

Video: Lecture26Video07.mp4

Signs in fermion loops. Schematically, the vertices are derivatives[
(−eγµ)

(
1

i

δ

δJµ

)(
i
δ

δη

)(
1

i

δ

δη̄

)]
or

[
g

(
1

i

δ

δJ

)(
i
δ

δη

)(
1

i

δ

η̄

)]
and they act here on a chain like[

(iη̄)

(
1

i
S

)
(iη)

] [
(iη̄)

(
1

i
S

)
(iη)

] [
(iη̄)

(
1

i
S

)
(iη)

]
.
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Note that the derivative with respect to η̄ can be commuted through the square brackets and acts
on η̄ from the left. Factors 1/i and i cancel. The derivative with respect to η receives an additional
minus sign from commuting and this cancels against i2. In this way the vertices can connect the
elements of the chain. However, for a closed loop also the beginning and end of the chain must
be connected. To make this work, one can first bring the (iη) from the end of the chain to its
beginning. This leads to one additional minus sign from anti-commuting Grassmann fields. This
shows that closed fermion lines have one more minus sign.

Video: Lecture26Video08.mp4

Position space representation. In position space and including sources, the first diagram is

x

yz

s µ

g(−1)
∫
x,y,z

tr
{[

1

i
S(x− y)

]
(−eγµ)

[
1

i
S(y − z)

]
(−eγν)

[
1

i
S(z − x)

]}
×
∫
u,v,w

[
1

i
∆µα(y − u)

]
(iJα(u)

[
1

i
∆νβ(z − v)

]
(iJβ(v)

[
1

i
∆(x− w)

]
(iJ(w))

The trace is for the Dirac matrix indices.

Video: Lecture26Video09.mp4

Momentum space representation for first diagram. If one translates this now to momentum
space and considers the amputated diagram for an S-matrix element, one finds that momentum
conservation constrains momenta only up to one free integration momentum or loop momentum.
In fact, more generally, there is one integration momentum for every closed loop. The first diagram
is then

p

l + q1 l − q2

lq1

µ
q2

ν

(−1)ge2 ε∗µ(q1)ε∗ν(q2)
∫
l

1

[l + q1)2 +m2 − iε][l2 +m2 − iε][l − q2)2 +m2 + iε]

× tr
{[
−i(/l + /q1) +m

]
γµ
[
−i/l +m

]
γnu

[
−i(/l − /q2) +m

]}
Here we use here the abbreviation ∫

l

=

∫
d4l

(2π)4
.

Video: Lecture26Video10.mp4
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Momentum space representation for second diagram. For the second diagram we can write

µν

p

l + q2 l − q1

l

q2q1

(−1)ge2 ε∗µ(q1) ε∗ν(q2)
∫
l

. . .

where the integrand is the same up to the interchange q1 ↔ q2 and µ ↔ ν. We can therefore
concentrate on evaluating the first diagram.

Video: Lecture26Video11.mp4

Analytic continuation and Dirac traces. The Feynman iε terms allow to perform a Wick
rotation to Euclidean space l0 = il̃0E so that l2 is then positive. Let us count powers of l. First,
in the Dirac trace we have terms with up to 5 gamma matrices. However, only traces of an even
number of gamma matrices are non-zero.

With a bit of algebra one finds for the Dirac trace

tr
{[
−i(/l + /q1) +m

]
γµ
[
−i/l +m

]
γν
[
−i(/l − /q2) +m

]}
= −m tr

{
(/l + /q1)γ

µ/lγν + (/l + /q1)γ
µγν(/l − /q2) + γµ/lγν(/l − /q2)

}
+m3 tr {γµγν}

= −4m
[
(l + q1)

µlν + (l + q1)
ν lµ − (l + q1) · l ηµν

+ (l + q1)
µ(l − q2)ν + (l + q1) · (l − q2)ηµν − (l + q1)

ν(l − q2)µ

+ lµ(l − q2)ν + (l − q2)µlν − ηµν l · (l − q2)
]
+ 4ηµνm3

= −4m
[
4lµlν − l2ηµν − l2ηµν + 2qµ1 l

ν − 2qν2 l
µ − qµ1 qν2 + qν1 q

µ
2 − (q1 · q2)ηµν

]
+ 4ηµνm3.

NEW LECTURE

Video: Lecture26Video12.mp4

Feynman parameters. Let us now consider the denominator. One can introduce so-called
Feynman parameters to write

1

[(l + q1)2 +m2][l2 +m2][(l − q2)2 +m2]

= 2!

∫ 1

0

du1 · · · du3 δ(u1 + u2 + u3 − 1)
1

[u1[(l + q1)2 +m2] + u2[l2 +m2] + u3[(l − q2)2 +m2]]
3

= 2

∫ 1

0

du1 · · · du3
δ(u1 + u2 + u3 − 1)

[l2 + 2l(u1q1 − u3q2) + u1q21 + u3q22 +m2]
3 .

We have used here the identity (will be proven in the second part of the course QFT 2)

1

p1 · · · pn
= (n− 1)!

∫ 1

0

du1 . . . dun
δ(u1 + . . .+ un − 1)

[u1A1 + . . .+ unAn]
n .

In a next step one commutes the integral over u1 . . . u3 with the integral over l.
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Video: Lecture26Video13.mp4

Shifting momenta. It is useful to change integration variables according to

l + u1q1 − u3q2 → k,

l = k − u1q1 + u3q2.

Collecting terms we find for the first diagram

(−1)ge2 ε∗µ(q1) ε∗(q2) 2
∫ 1

0

du1 · · · du3 δ(u1+u2+u3−1)
∫

d4k

(2π)4
Aµν

[k2 + u1q21 + u3q22 − (u1q1 − u3q2)2 +m2]
3 ,

where

Aµν = −4m
[
4kµkν − k2ηµν + terms linear in k

+ 4(u1q1 − u3q2)µ(u1q1 − u3q2)ν − (u1q1 − u3q2)2ηµν

− qµ1 qν2 + qν1 q
µ
2 − (q1 · q2)ηµν − ηµν − ηµνm2

]
.

The integral over k is now symmetric around the origin.

Video: Lecture26Video14.mp4

A further cancelation. There is no contribution from linear terms in k and also the quadratic
terms cancels. In fact, one can prove that

lim
d→4

∫
ddk

(2π)d
4kµkν − (k2 +A)ηµν

(k2 +A)3
= 0.

We will develop the techniques to prove this in QFT2.

Video: Lecture26Video15.mp4

Result so far. Taking this as well as ε∗µ(q1)q
µ
1 = ε∗ν(q2)q

ν
2 = 0 and q21 = q22 = 0 into account leads

to
Aµν = −4m [1− 4u1u2] [q

µ
1 q
ν
2 − (q1 · q2)ηµν ] .

Note that this is symmetric with respect to (q1, µ)↔ (q2, ν), so we can add the second diagram by
multiplying with 2. We obtain

iT =8ge2mε∗µ(q1)ε
∗
ν(q2) [q

ν
1 q
µ
2 − (q1 · q2)ηµν ]

× 2

∫ 1

0

du1 · · · du3 δ(u1 + u2 + u3 − 1)[1− 4u1u3]

∫
d4k

(2π)4
1

[k2 + 2u1u3q1 · q2 +m2]
3

Video: Lecture26Video16.mp4
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Momentum integral. To evaluate the integral over k we note that in the rest frame of the
decaying scalar boson p = q1 + q2 = (M, 0, 0, 0) such that p2 = 2q1 · q2 = −M2. If we concentrate
on fermions that are very heavy such that m � M we can expand in the term u1u3q1 · q2 in the
integral over k. One finds to lowest order∫

d4k

(2π)4
1

[k2 +m2]3
= i

1

(4π)2
1

2m2
.

This i is due to the Wick rotation k0 = ik0E .

Video: Lecture26Video17.mp4

Integral over Feynman parameters. Also the integral over Feynman parameters can now
easily be performed

2

∫ 1

0

du1 . . . du3 δ(u1 + u2 + u3 − 1)[1− 4u1u3]

= 2

∫ 1

0

du1du3 θ(1− u1 − u3) [1− 4u1u3]

= 2

∫ 1

0

du1

∫ 1−u1

0

du3 [1− 4u1u3]

= 2

∫ 1

0

du1[(1− u1)− 4u1
1
2 (1− u1)

2]

= 2− 3 +
8

3
− 1 =

2

3
.

Collecting terms we find

iT = i
8ge2

3(4π)2m
ε∗µ(q1) ε

∗
ν(q2) [q

ν
1 q
µ
2 − (q1 · q2)ηµν ] .

Video: Lecture26Video18.mp4

Photon polarization sums and Ward identity. Before we continue we need to develop a
method to perform the spin sums for photons. In the squared amplitude expressions like the
following appear ∑

polarizations

|T |2 =
∑

polarizations

ε∗µ(q)εν(q)Mµ(q)Mν∗(q).

We have extended here the polarization vector of a photon from the amplitude by decomposing

T = ε∗µ(q)Mµ(q).

Let us choose without loss of generality qµ = (E, 0, 0, E) and use the polarization vector introduced
previously,

ε(1)µ =

(
0,

1√
2
,− i√

2
, 0

)
,

ε(2)µ =

(
0,

1√
2
,
i√
2
, 0

)
,
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such that

ε∗(1)µ ε(1)ν + ε∗(2)µ ε(2)ν =


0

1

1

0

 .

This would give
2∑
j=1

ε∗(j)µ ε(j)ν MµM∗ν = |M1|2 + |M2|2.

Video: Lecture26Video19.mp4

Ward identity. To simplify this one can use an identity we will prove later,

qµMµ(q) = 0.

This is in fact a consequence of gauge symmetry known as Ward identity. For the above choice of
qµ it follows

−M0 +M3 = 0

Accordingly, one can add 0 = −|M0|2 + |M3|2 to the spin sum

2∑
j=1

ε∗(j)µ ε(j)ν MµM∗ν = −|M0|2 + |M1|2 + |M2|2 + |M3|2 = ηµνMµM∗ν .

In this sense we can use for external photons

2∑
j=1

ε∗(j)µ ε(j)ν → ηµν .

Video: Lecture26Video20.mp4

Squared amplitude. With this we can now calculate the sums over final state photon polariza-
tions ∑

pol.

|T |2 =

(
8ge2

3 (4π)2m

)2 [
qν1 q

µ
2 − (q1 · q2)ηµν

][
qβ1 q

α
2 − (q1 · q2)ηαβ

]
×
∑
pol.

ε∗µ(q1) εα(q1)
∑
pol.

ε∗ν(q2) εβ(q2)

=

(
8ge2

3 (4π)2m

)2

2(q1 · q2)2 =
2g2α2

9π2m2
M4.

In the last step we have used that the momentum of the incoming Higgs particle is p = q1 + q2.
The square is given by the rest mass, p2 = −M2 = 2(q1 · q2). Here we also used that the photons
are massless, q21 = q22 = 0. We also used the fine structure constant α = e2/(4π).

Video: Lecture26Video21.mp4
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Decay rate. For the differential particle decay rate ϕ → γγ this gives in the rest frame of the
Higgs particle with |~q1| =M/2,

dΓ

dΩ
=

|~q1|
32π2M2

∑
pol.

|T |2 =
g2α2

9× 32π4m2
M3.

Finally, we integrate over solid angle Ω = (1/2)4π where the factor (1/2) is due to the fact that
the photons in the final state are indistinguishable. The decay rate for ϕ → γγ through a heavy
fermion loop is finally

Γ =
g2α2

144π3m2
M3

Note that because of g = m/v this is in fact independant of the heavy fermion mass m.

– 165 –


	What is quantum field theory?
	Functional integral
	Ising model in one dimension
	Continuum functional integral
	O(N) models in classical statistical equilibrium
	Non-linear sigma models
	Classical statistical thermodynamics

	Operators and transfer matrix
	Transfer matrix for the Ising model
	Non-commutativity in classical statistics
	Classical Wave functions

	Quantum Fields and Functional Integral
	Phonons as quantum fields in one dimension
	Functional integral for quantum fields
	Thermodynamic equilibrium
	Real time evolution
	Expectation values of time ordered operators
	Propagator
	Functional integral for expectation values of time-ordered operators

	Relativistic scalar fields and O(N)-models
	Lorentz invariant action.
	Lorentz invariance and antiparticles.
	Unified Scalar field theories
	Propagator for free field
	Magnetisation in classical statistics

	Non-relativistic bosons
	Functional integral for spinless atoms
	Spontaneous symmetry breaking, Bose-Einstein condensation and superfluidity

	Scattering
	Scattering of non-relativistic bosons
	The S-matrix
	Perturbation theory for interacting scalar fields
	From the S-matrix to a cross-section

	Fermions
	Non-relativistic fermions
	Grassmann fields
	Yukawa theory

	Lorentz symmetry and the Dirac equation
	Lorentz transformations and invariant tensors
	Lorentz group
	Generators and Lorentz Algebra
	Representations of the Lorentz group
	Transformation of Fields
	Functional Integral, Correlation Functions
	Spinor representations

	Quantum electrodynamics
	Invariant action for free electrons
	Dirac equation
	Functional integral for photons
	Feynman rules and Feynman diagrams
	Elementary scattering processes
	Relativistic scattering and decay kinematics
	Higgs/Yukawa theory
	Higgs decay into fermions
	Higgs decay into photons


