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0.1 Organizational issues

There is a webpage to accompany this lecture: https://uebungen.physik.uni-heidelberg.de/
vorlesung/20182/qft1. Exercises will be proposed every week and discussed in tutorial classes.
The registration goes via the webpage above.

0.2 Literature

There is a large amount of literature on different aspects of quantum field theory. Here is only a
fine selection.

Statistical field theory / renormalization group

• John Cardy, Scaling and renormalization in statistical physics (1996)

• Giorgio Parisi, Statistical field theory (1998)

• Jean Zinn-Justin, Quantum field theory and critical phenomena (2002)

• Crispin Gardiner, Handbook of stochastic methods (1985)

Relativistic quantum field theory

• Mark Srednicki, Quantum field theory (2007)

• Michael Peskin & Daniel Schroeder, An introduction to quantum field theory (1995)

• Steven Weinberg, The quantum theory of fields I & II (1998)

Non-relativistic quantum field theory / condensed matter

• Alexander Altland & Ben Simons, Condensed matter field theory (2010)

• Lev Pitaevskii & Sandro Stringari, Bose-Einstein condensation (2003)

• Crispin Gardiner & Peter Zoller, The quantum world of ultra-cold atoms and light (2014)

Group theory

• Anthony Zee, Group theory in a nutshell for physicists (2016)
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0.3 Typos

Please send any typos to a.sengupta@thphys.uni-heidelberg.de.

1 Introduction

What is quantum field theory? Historically, quantum field theory (QFT) has been developed
as quantum mechanics for many (in fact infinitely many) degrees of freedom. For example, the
quantum mechanical description for electromagnetic fields (light) and its excitations, the photons,
leads to a quantum field theory. Quantum mechanics of photons, electrons and positrons is quantum
electrodynamics (QED) and so one can go on.

In contrast to the transition from classical mechanics to quantum mechanics, the step from
there to quantum field theory does not lead to a conceptually entirely new theoretical framework.
Still, it was historically not an easy development and a lot of confusion was connected with notions
like “second quantization” etc.

There are many new phenomena arising in a field theory setting. This includes collective
effects of many degrees of freedom, e. g. spontaneous symmetry breaking. Particle number is not
necessarily conserved and one can have particle creation and annihilation.

Historically, quantum field theory has been developed as a relativistic theory, which combines
quantum mechanics with Lorentz symmetry. This was necessary for quantum electrodynamics.
Until today, Lorentz symmetry remains to be a key incredient for the quantum field theoretic
description of elementary particle physics. It is not central for quantum field theory itself, however.
Concepts of quantum field theory can also be used to describe the quantum theory of many atoms,
for example ultra-cold quantum gases, or phonons in solids, or the spins composing magnets. These
systems are treated by non-relativistic QFT.

Probabilistic fields. One may characterize much of the content of the following lectures by two
main ingredients

(i) Fields (degrees of freedom at every point x)

(ii) Probabilistic theory (as every quantum theory is one)

In this sense, one may speak of quantum field theory as a probabilistic theory of fields. The
reader may note that “quantum” is missing in the above characterization. Indeed, in modern
developments, all probabilistic field theories, be they “quantum” or “classical”, are described with
the same concepts and methods based on the functional integral. The key element here is the one of
fluctuating fields as one has it in many situations. Something as tangible as the surface of an ocean
is already an example. The concepts are useful in many areas, ranging from statistical mechanics
to particle physics, quantum gravity, cosmology, biology, economics and so on. The common view
on all these subjects, based on the functional integral, will be the guideline of these lectures.

PFT, probabilistic field theory, would be a more appropriate name. We will nevertheless use
the traditional, historic name, QFT. Neither “quantum” nor “relativistic” are crucial conceptually.
Relativistic quantum field theory is from this perspective an important “special case”, to which we
will pay much attention.

2 Functional integral

2.1 Ising model in one dimension

Ising spin. An Ising spin has two possible values,

s = ±1. (2.1)
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One can also start somewhat more general with some two-level variable with possible values A1 and
A2 and relate them to the Ising spins via a map,

A1 → s = +1, A2 → s = −1. (2.2)

For example, a state could be occupied, n = 1, or empty, n = 0. These states can be mapped to
Ising spins via s = 2n− 1. From an information theoretic point of view, each Ising spin carries one
bit of information.

Ising chain. Let us consider a chain of discrete points x and take them to be equidistant,

x ∈ {xin, xin + ε, xin + 2ε, . . . , xf − ε, xf}. (2.3)

Now let us pose one Ising spin at each point or lattice site x and denote its value by s(x). For
example,

1 1 -1 -1 -1 1 -1 s
1 1 0 0 0 1 0 n
↑ ↑ ↓ ↓ ↓ ↑ ↓

In general, for P points, or lattice sites, there are N = 2P possible configurations. We can label
them by an index τ = 1, . . . , N . Let us write {s(x)} for a configuration of spins on the Ising chain,
which should be seen as an abbreviation for {s(xin), s(xin + ε), . . . , s(xf)}.

Action. We now introduce the concept of an euclidean action by assigning to each configuration
a real number,

{s(x)} → S({s(x)}) ≡ S[s], where S ∈ R. (2.4)

For example, one may have a next neighbor interaction and the action corresponds to

S[s] = −
∑
x

βs(x+ ε)s(x), (2.5)

where we use the following abbreviation for a sum over lattice sites

∑
x

=

xf−ε∑
x=xin

, (2.6)

and β is a real parameter.

Partition function. One can define a partition function as a sum over all configurations, weighted
by the exponential of minus the action,

Z =
∑
{s(x)}

e−S[s] =
∑
τ

e−Sτ . (2.7)

Note that the partition function is here a real and positive number, Z > 0.

Probability distribution. Let us now assign to each configuration a probability, {s(x)} →
p({s(x)}) = p[s], or in another notation, τ → pτ . We will set

p[s] =
1

Z
e−S[s]. (2.8)

Note the following properties

(i) positivity p[s] ≥ 0 (and p[s]→ 0 for S[s]→∞),

(ii) normalization
∑
{s(x)} p[s] =

∑
τ pτ = 1.
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Observables A[s]. We may construct an observable by assigning to every configuration τ a value
Aτ = A[s],

{s(x)} → A[s], τ → Aτ . (2.9)
In other words, the observable A has the value Aτ in the configuration τ .

Expectation value. The expectation value of an observable is then given by

〈A〉 =
∑
τ

pτAτ =
1

Z

∑
{s(x)}

e−S[s]A[s]. (2.10)

Two-point correlation. A correlation function of two observables is given by the expression

〈AB〉 =
∑
τ

pτAτBτ =
1

Z

∑
{s(x)}

e−S[s]A[s]B[s]. (2.11)

Local action. Oftentimes one can write the action as a sum of the form

S[s] =
∑
x

L (x), (2.12)

with L (x) depending only on the spins in some neighborhood of x. For our example (2.5) with
next neighbor interaction one would have

L (x) = −βs(x+ ε)s(x). (2.13)

In fact, the simplest version of the traditional Ising model has β = J
kBT

with interaction parameter
J , temperature T and Boltzmann constant kB. In this context, the Euclidean action corresponds
in fact to the ratio S = H

kBT
of Energy or Hamiltonian H and temperature as it appears in the

Boltzmann weight factor exp(− H
kBT

). The Hamiltonian is then obviously

H = −
∑
x

Js(x+ ε)s(x). (2.14)

Boundary terms. One must pay some attention to the boundaries of the Ising chain. Let us
denote by Lin a term that depends only on s(xin), the initial spin and similarly by Lf a term that
depends only on s(xf), the final spin. We write the action as

S =
∑
t

L (t) + Lin + Lf. (2.15)

By choosing Lin and Lf appropriately one can pose different boundary conditions, in general
probabilistic, or also deterministic as an approriate limit.

Typical problem. A typical problem one may encounter in the context of the Ising model in one
dimension is: What is the expectation value 〈s(x)〉 or the two-point correlation function 〈s(x1)s(x2)〉
for given boundary conditions specified by Lin and Lf?

Functional integral language. We now formulate the model in a language that is convenient
for generalization. We write for expectation values

〈A〉 = 1

Z

∫
Ds e−S[s]A, (2.16)

with the partition function
Z =

∫
Ds e−S[s]. (2.17)

The functional measure is here defined by∫
Ds =

∑
{s(x)}

=
∑
τ

=
∏
x

∑
s(x)=±1

. (2.18)

For a finite Ising chain, the functional integral is simply a finite sum over configurations.
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2.2 Continuum functional integral

Lattice functional integral. Let us now take a real, continuous variable φ(x) ∈ R instead of
the discrete Ising spins s(x) ∈ {+1,−1}. The position variable x is for the time being still labeling
discrete points or lattice sites. We then define the functional measure∫

Dφ =
∏
x

∫ ∞
−∞

dφ(x). (2.19)

This is now the continuum version of a sum over configurations. Indeed it sums over all possible
functions φ(x) of the (discrete) position x. To realize that indeed every function appears in

∫
Dφ

one may go back to a discrete variable, φ(x) ∈ {φ1, . . . , φM} with M possible values and take
M →∞.

Configuration. For every lattice site x we specify now a real number φ(x) which in total gives
then one configuration. Obviously there are now infinitely many configurations even if the number
of lattice sites is finite.

Path integral. At this point one can make the transition to a probabilistic path integral. To this
end one would replace x→ t and φ(x)→ ~x(t), such that the sum over functions φ(x) becomes one
over paths ~x(t). The functional measure would be

∫
D~x.

Action. The Euclidean action can be written as

S =
∑
x

L (x) + Lin + Lf, (2.20)

where L (x) depends on φ(x′) with x′ in the vicinity of x. Similarly, Lin depends on φ(xin) = φin
and Lf depends on φ(xf) = φf.

Lattice φ4 theory. Here we take the action local with

L (x) =
K

8ε
[φ(x+ ε)− φ(x− ε)]2 + εV (φ(x)), (2.21)

where the potential is given by

V (φ(x)) =
m2

2
φ(x)2 +

λ

8
φ(x)4. (2.22)

The partition function is
Z =

∫
Dφ e−S[φ], (2.23)

and a field expectation value is given by

〈φ(x)〉 = 1

Z

∫
Ds e−S[φ]]φ(x). (2.24)

The functional integral is here still a finite-dimensional integral where the dimension corresponds
to the number of lattice points P . The action S[φ] is a function of P continuous variables φ(x).

Continuum limit. Let us now take the limit ε→ 0 for xf−xin fixed. Of course, this means that
the number of lattice points P needs to diverge. The “lattice derivative”

∂xφ(x) =
1

2ε
(φ(x+ ε)− φ(x− ε)) (2.25)
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becomes a standard derivative, at least for sufficiently smooth configurations, where it exists. One
also has ∑

x

ε→
∫
dx, (2.26)

and the Euclidean action becomes

S =

∫
dxL (x) + Lin + Lf, (2.27)

where now
L (x) =

K

2
[∂xφ(x)]

2
+ V (φ(x)). (2.28)

The first term is called the kinetic term, the second the potential. In the limit ε→ 0 the action is
a functional of the functions φ(x).

Physical observables. As physical observables one takes those A[φ] for which the limit 〈A〉,
〈AB〉 and so on exists in the limit ε → 0. It will not always be easy to decide whether a given
A[φ] is a physical observable, but the definition is simple. For ε→ 0 the expression A[φ] is again a
functional.

Functional integral. The functional integral in the continuum theory is now defined as the
“continuum limit” of the lattice functional integral for ε → 0. By definition, this is well defined
for “physical observables”. One may ask: what are such physical observables? The answer to this
question is not simple, in general. One should note here that also very rough functions φ(x) are
included in the functional integral, although their contribution is suppressed. If the kinetic term in
the Euclidean action Skin =

∑
x
K
8ε [φ(x+ ε)− φ(x− ε)]2 diverges for ε→ 0, i. e. S →∞, then one

has e−S → 0 and the probability of such configuration vanishes. The corresponding limits may not
be trivial, however, because very many rough configurations exist.

Additive rescaling of action. Let us consider a change S → S′ = S + C or L (x) → L ′(x) =

L (x)+c̃ where C = (xf−xin)c̃. The partition function changes then like Z → Z ′ = e−CZ. Similarly,∫
Dφe−SA[φ]→ e−C

∫
Dφe−SA[φ]. (2.29)

But this means that C drops out when one considers expectation values like 〈A〉! It can even happen
that C diverges for ε→ 0 such that formally Z → 0 or Z →∞. But this is not a problem because
the absolute value of Z is irrelevant. The probability distribution p[φ] = 1

Z e
−S[φ] is unchanged.

2.3 O(N) models in classical statistical equilibrium

Classical thermal fluctuations. For the time being we are concerned with static (equilibrium)
aspects of field theory models at finite temperature. These field theories can arise for example from
a lattice model such as the Ising model if the latter is probed on distances that are large against the
typical microscopic scale or inter-particle distance ε. Formally one can then take the limit ε → 0

as discussed in the previous subsection. It turns out (and will become more clear latter on), that
in such a situation classical thermal fluctuations dominate over quantum fluctuations. We discuss
here therefore classical statistical field theories in thermal equilibrium.

Such theories have a probabilistic description in terms of functional integrals with weight given
by the Boltzmann factor e−βH . Here β = 1/T and we use now units where kB = 1 such that
temperature is measured in units of energy. In the following we will discuss possible forms of the
field theory and in particular the Hamiltonian H.
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Universality classes and models. In condensed matter physics, microscopic Hamiltonians are
often not very well known and if they are, they are not easy to solve. However, in particular in the
vicinity of second order phase transitions, there are some universal phenomena that are independent
of the precise microscopic physics. This will be discussed in more detail later on, in the context
of the renormalization group. Essentially, this arises as a consequence of thermal fluctuations and
the fact that at a second order phase transition fluctuations are important on all scales. Roughly
speaking, a theory changes in form when fluctuations are taken into account and can approach a
largely universal scaling form for many different microscopic theories that happen to be in the same
universality class.

In the following we will discuss a class of model systems. These are particularly simple field
theories for which one can sometimes answer certain questions analytically, but one can also see
them as representatives for their respective universality classes. In the context of quantum field
theory, we will see that these field theory models gain a substantially deeper significance.

Scalar O(N) models in d dimensions. Let us consider models of the form

βH[φ] = S[φ] =

∫
ddx

{
1

2
∂jφn∂jφn +

1

2
m2φnφn +

1

8
λ (φnφn)

2

}
. (2.30)

Here, φn = φn(x) with n = 1, . . . , N are the fields. We use Einsteins summation convention which
implies that indices that appear twice are summed over. We have formulated the theory in d spatial
dimensions (where in practice d = 3, 2, 1 or even 0 for condensed matter systems). The index j

is accordingly summed in the range j = 1, . . . , d. Although not very precise, one sometimes calls
S[φ] the Euclidean microscopic action. The square brackets indicate here that the action depends
on the fields in a functional way, which means it depends not on single numbers but on the entire
set of functions of space φn(x), with x ∈ Rd and n = 1, . . . , N .

Fields as vectors. One can consider φn(x) as a vector in a vector space of infinite dimension
where components are labeled by the spatial position x and the discrete index n. If in doubt, one
can go back to a lattice model where x is discrete.

Applications. Models of the type (2.30) have many applications. For N = 1 they correspond in
a certain sense to the continuum limit of the Ising model. For N = 2 the model can equivalently
be described by complex scalar fields. It has then applications to Bose-Einstein condensates, for
example. For N = 3 and d = 3 one can have situations where the rotation group and the internal
symmetry group are coupled. This describes then vector fields, for example magnetization. Finally,
for N = 4 and d = 4, the model essentially describes the Higgs field after a Wick rotation to
Euclidean space.

Engineering dimensions. In equation (2.30) we have rescaled the fields such that the coefficient
of the derivative term is 1/2. This is always possible. It is useful to investigate the so-called
engineering scaling dimension of the different terms appearing in (2.30). The combination βH or
the action S must be dimensionless. Derivatives have dimension of inverse length [∂] = L−1 and
the fields must accordingly have dimension [φ] = L−

d
2+1. One also finds [m] = L−1 and [λ] = Ld−4.

Note in particular that λ is dimensionless in d = 4 dimensions.

Symmetries. It is useful to discuss the symmetries of the model (2.30). Symmetries are (almost)
always very helpful in theoretical physics. In the context of statistical field theory, they are useful
as a guiding principle in particular because they still survive (in a sense to be defined) when the
effect of fluctuations is taken into account.
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For the model (2.30) we have a space symmetry group consisting of rotations and translations,
as well as a continuous, so-called internal symmetry group of global O(N) transformations. We
now discuss them step-by-step.

Rotations. Rotations in space are transformations of the form

xj → x′j = Rjkxk. (2.31)

The matrices R fulfill the condition RTR = 1 and we demand that they connect smoothly to the
unit matrix R = 1. This fixes det(R) = 1. Matrices of this type in d spatial dimensions form
a group, the special orthogonal group SO(d). Mathematically, this is a Lie group which implies
that all group elements can be composed of many infinitesimal transformations. An infinitesimal
transformation can be written as

Rjk = δjk +
i

2
δωmn J

jk
(mn), (2.32)

where Jjk(mn) = −i(δmjδnk−δmkδnj) are the generators of the Lie algebra and δωmn are infinitesimal,
anti-symmetric matrices. One may easily count that there are d(d− 1)/2 independent components
of an anti-symmetric matrix in d dimensions and as many generators. Finite group elements can
be obtained as

R = lim
N→∞

(
1+

i

2

ωmn
N

J(mn)

)N
= exp

(
i

2
ωmnJ(mn)

)
. (2.33)

Let us now work out how fields transform under rotations. We will implement them such that
a field configuration with a maximum at some position x before the transformation will have a
maximum at Rx afterwards. The field must transform as

φn(x)→ φ′n(x) = φn(R
−1x). (2.34)

Note that derivatives transform as

∂jφn(x)→ (R−1)kj(∂kφn)(R
−1x) = Rjk(∂kφn)(R

−1x). (2.35)

The brackets should denote that the derivatives are with respect to the full argument of φn and we
have used the chain rule. The action in (2.30) is invariant under rotations acting on the fields, as
one can confirm easily. Colloquially speaking, no direction in space is singled out.

Translations. Another useful symmetry transformations are translations x → x + a. The fields
get transformed as

φn(x)→ φ′n(x) = φn(x− a). (2.36)

One easily confirms that the action (2.30) is also invariant under translations. Colloquially speaking,
this implies that no point in space is singled out.

Global internal O(N) symmetry. There is another useful symmetry of the action (2.30) given
by rotations (and mirror reflections) in the “internal” space of fields,

φn(x)→ Onmφm(x). (2.37)

The matrices Onm are here independent of the spatial position x (therefore this is a global and not
a local transformation) and they satisfy OTO = 1. Because we do not demand them to be smoothy
connected to the unit matrix, they can have determinant det(O) = ±1. These matrices are part of
the orthogonal group O(N) in N dimensions. It is an easy exercise to show that the action (2.30)
is indeed invariant under these transformations.
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Partition function. The partition function for the model (2.30) reads

Z[J ] =

∫
Dφ e−S[φ]+

∫
ddx{Jn(x)φn(x)} (2.38)

We have introduced here an external source term
∫
ddx{Jn(x)φn(x)} which can be used to probe the

theory in various ways. For example, one can take functional derivatives to calculate expectation
values,

〈φn(x)〉 =
1

Z[J ]

δ

δJn(x)
Z[J ]

∣∣∣
J=0

, (2.39)

and correlation functions, e. g.

〈φn(x)φm(y)〉 = 1

Z[J ]

δ2

δJn(x)δJm(y)
Z[J ]

∣∣∣
J=0

=

∫
Dφ φn(x)φm(y) e−S[φ]∫

Dφ e−S[φ]
. (2.40)

Classical field equation. Note that in the the functional integral, field configurations φ(x) are
suppressed, if the corresponding action S[φ] is large. In the partition function (2.38), large contri-
butions come mainly from the region around the minima of S[φ]−

∫
x
Jnφn, which are determined

by the equation

δ

δφ(x)

(
S[φ]−

∫
ddx{Jn(x)φn(x)}

)
=

δS[φ]

δφn(x)
− Jn(x) = 0. (2.41)

Note that this equation resembles the equation of motion of a classical field theory. For the model
(2.30) one has concretely

δS[φ]

δφn(x)
− Jn(x) = −∂j∂jφn(x) +m2φn(x) +

1

2
λφn(x)φk(x)φk(x)− Jn(x) = 0. (2.42)

Note that this field equation is from a mathematical point of view a second order, semi-linear,
partial differential equation. It contains non-linear terms in the fields φn, but the term involving
derivatives is linear; therefore semi-linear. The equation involves the Euclidean Laplace operator
∆ = ∂j∂j and is therefore of elliptic type (as opposed to hyperbolic or parabolic).

The O(N) symmetric potential. The model in (2.30) can be generalized somewhat to the action

S[φ] =

∫
ddx

{
1

2
∂jφn∂jφn + V (ρ)

}
, (2.43)

where ρ = 1
2φnφn is an O(N) symmetric combination of fields and V (ρ) is the microscopic O(N)

symmetric potential. Of course, the previous case (2.30) can be recovered for V (ρ) = m2ρ+ 1
2λρ

2.
More general, V (ρ) might be some function with a minimum at ρ0 and a Taylor expansion

around it,
V (ρ) = m2(ρ− ρ0) +

1

2
λ(ρ− ρ0)2 +

1

3!
γ(ρ− ρ0)3 + . . . (2.44)

If the minimum is positive, ρ0 > 0, the linear term vanishes of course, m2 = 0. In contrast, if the
minimum is at ρ0 = 0 one has in general m2 > 0. Note that it costs a certain amount of energy
for the field to move away from the minimum. In particular, for large λ such configurations are
suppressed.
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Homogeneous solutions. It is instructive to discuss homogeneous solutions of the field equation,
i.e. solutions that are independent of the space variable x. For vanishing source Jn(x) = 0, and the
model (2.43) we need to solve

∂

∂φn
V (ρ) = φn

∂

∂ρ
V (ρ) = 0. (2.45)

This has always a solution φn = 0 and for ρ0 = 0 and positive m2 this is indeed a minimum of
the action S[φ]. For positive ρ0 the situation is more interesting, however. In that case, φn = 0 is
actually typically a maximum while the minimum is at φkφk = 2ρ0, i. e. at a non-zero field value.
One possibility is φ1 =

√
2ρ0 with φ2 = . . . = φn = 0, but there are of course many more. But such

a solution breaks the O(N) symmetry! One says that the O(N) symmetry is here spontaneously
broken on the microscopic level which technically means that the action S[φ] is invariant, but the
solution to the field equation (i. e. the minimum of S[φ]) breaks the symmetry. It is an interesting
and non-trivial question whether the symmetry breaking survives the effect of fluctuations. One
has proper macroscopic spontaneous symmetry breaking if the field expectation value 〈φn〉 is non-
vanishing and singles out a direction in field space. An example for spontaneous symmetry breaking
is the magnetization field in a ferromagnet.

2.4 Non-linear σ models

Constrained fields. It is also interesting to consider models where ρ = ρ0 is fixed. In fact, they
arise naturally in the low energy limit of the models described above when the fields do not have
enough energy to climb up the effective potential. Technically, this corresponds here to the limit
λ→∞ with fixed ρ0 and can be implemented as a constraint

φn(x)φn(x) = 2ρ0. (2.46)

Note that with this constraint, the field is now living on a manifold corresponding to the surface of
an N -dimensional sphere, denoted by SN−1. One can parametrize the field as

φ1 = σ, φ2 = π1, . . . φN = πN−1, (2.47)

where only the fields πn are independent while σ is related to them via the non-linear constraint

σ =
√
2ρ0 − ~π2. (2.48)

Linear and non-linear symmetries. The symmetry group O(N) falls now into two parts. The
first consists of transformations O(N − 1) which only act on the fields πn but do not change the
field σ. Such transformations are realized in the standard, linear way

πn → O(N−1)
nm πm, σ → σ. (2.49)

In addition to this, there are transformations in the complement part of the group (rotations that
also involve the first component σ). They act infinitesimally on the independent fields like

δπn = δαnσ = δαn
√
2ρ0 − ~π2, δσ = −δαnπn, (2.50)

where δαn are infinitesimal parameters (independent of the fields). Note that this is now a non-
linearly realized symmetry in the internal space of fields. This explains also the name non-linear
sigma model.
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Action. Let us now write an action for the non-linear sigma model. Because of the constraint
(2.46), the effective potential term in (2.43) becomes irrelevant and only the kinetic term remains,

S[π] =

∫
ddx

{
1

2
∂jφn∂jφn

}
=

∫
ddx

{
1

2
Gmn(~π)∂jπm∂jπn

}
. (2.51)

In the last equation we rewrote the action in terms of the independent fields πn and introduced the
metric in the field manifold

Gmn(~π) = δmn +
πmπn

2ρ0 − ~π2
. (2.52)

The second term originates from

∂jσ = ∂j
√
2ρ0 − ~π2 =

1√
2ρ0 − ~π2

πm∂jπm. (2.53)

Functional integral. Note that also the functional integral is now more complicated. It must
involve the determinant of the metric Gmn to be O(N) invariant. For a single space point x one
has ∫ ∏

n

dφn →
∫ ∏

n

dφn δ(φnφn − 2ρ0) = const×
∫ √

det(G(~π))
∏
n

dπn. (2.54)

Accordingly, the functional integral must be adapted.

Ising model. Everything becomes rather simple again for N = 1. The constraint φ(x)2 = 2ρ0
allows only the field values φ(x) = ±

√
2ρ0. On a discrete set of space points (a lattice), this leads

us back to the Ising model.

3 Operators and transfer matrix

Our lecture will be based on the discussion of functional integrals. These are a generalization of
ordinary, multi-dimensional integrals to the limit of infinitely many degrees of freedom, i. e. infinite
dimensional integrals. For bosons, the variables or fields all commute. (For fermions we will later
use the anti-commuting Grassmann variables). One has learned that non-commuting operators play
a crucial role in quantum mechanics. These non-commuting structures are not directly visible in
the bosonic functional integral which only contains commuting quantities. One may wonder how
such integrals can describe the non-commutative properties of quantum mechanics. The next two
lectures are devoted to reveal the structural relation between the operator formalism, known from
quantum mechanics and the functional integral.

3.1 Transfer matrix for the Ising model

Boundary problem for Ising chain. Let us consider the one-dimensional Ising model

S =
∑
x

L (x) + Lin + Lf, (3.1)

with
L (x) = −βs(x+ ε)s(x). (3.2)

We choose boundary conditions such that s(xin) = 1, s(xf) = 1. This can be implemented by

e−Lin = δ(s(xin)− 1), e−Lf = δ(s(xf)− 1), (3.3)

which in turn can be implemented by limits like

Lin = − lim
κ→∞

κ(s(xin)− 1). (3.4)
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Question: What is the expectation value 〈s(x)〉 for x in the bulk, i. e. between the endpoints xin
and xf ? The single configuration with minimal action has all spins aligned, s(x) = 1. There are,
however, many more configurations where some of the spins take negative values. Even though the
particular probability for one such configuration is smaller, this is outweighed by the number of
configurations. Qualitatively one expects something like in figure 1.

〈S〉

xin xf

x

Figure 1. Ising chain with spins at the endpoints fixed to s(xin) = 1 and s(xf) = 1. What is 〈s(x)〉 for x

between the endpoints?

In the bulk, far away from the boundaries, the average spin may vanish to a good approximation.
We look for a formalism to compute this behaviour as a function of the parameter β.

Product form of probability distribution. We can write e−S in product form

e−S = e−Lf+
∑

x L (x)+Lin = f̄f

[∏
x

e−L (x)

]
fin = f̄f

[∏
x

K (x)

]
fin (3.5)

with boundary terms f̄f = e−Lf and fin = e−Lin . Here K (x) depends on the two spins s(x) and
s(x+ ε), while fin depends on s(xin) and f̄f depends on s(xf).

Occupation number basis. Any function f(s(x)) that depends only on the spin s(x) can be
expanded in terms of two basis functions hτ (s(x)) where τ = 1, 2,

f(s(x)) = q1(x)h1(s(x)) + q2(x)h2(s(x)). (3.6)

We choose the occupation number basis with

h1(s) =
1 + s

2
= n, h2(s) =

1− s
2

= (1− n). (3.7)

This is easily seen by noting that the occupation number n has only the values 1 (for s = 1) and 0
(for s = −1), such that

n2 = n. (3.8)

Any polynomial in s can be written as an+ b, such that any f(s) can indeed be expressed in terms
of the two basis functions.

We note some properties of the basis functions. The relation

hτ (s)hρ(s) = δτρhρ(s) (3.9)

is simply verified by h2τ (s) = hτ (s) and h1(s)h2(s) = 0). Other useful relations are∑
s=±1

hτ (s) = hτ (s = 1) + hτ (s = −1) = 1, (3.10)

∑
τ

hτ (s) = h1(s) + h2(s) = 1, (3.11)

and finally by combination ∑
s=±1

hτ (s)hρ(s) = δτρ. (3.12)
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Transfer matrix. Let us now expand K (x) in terms of the basis functions hτ (s(x + ε)) and
hρ(s(x)),

K (x) = T̂τρ(x)hτ (s(x+ ε))hρ(s(x)). (3.13)

We use here the Einstein summation convention which implies summation over the indices τ and ρ.
The expansion coefficients T̂τρ(x) are the elements of the transfer matrix T̂ . This is a 2× 2 matrix.
Indeed using shorthands n̄ = n(t + ε), n = n(t) and similar for h̄τ , hτ , an arbitrary K (x) can be
written as

K = an̄n+ bn̄+ cn+ d

= T̂11h̄1h1 + T̂12h̄1h2 + T̂21h̄2h1 + T̂22h̄2h2.
(3.14)

Matrix product for transfer matrix. Consider now the product of two neighbouring factors
K (s+ ε) and K (x), summed over the common spin s(x+ ε)∑
s(x+ε)

K (x+ ε)K (x) =
∑
s(x+ε)

hτ (s(x+ 2ε))T̂τρ(x+ ε))hρ(s(x+ ε))hα(s(x+ ε))T̂αβ(x)hβ(s(x))

=
∑
ρ

∑
s(x+ε)

hτ (s(x+ 2ε))T̂τρ(x+ ε)T̂ρβ(x)hρ(s(x+ ε))hβ(s(x))

=
∑
ρ

hτ (s(x+ 2ε))T̂τρ(x+ ε)T̂ρβ(x)hβ(s(x))

= hτ (s(x+ 2ε))
[
T̂ (x+ ε)T̂ (x)

]
τβ
hβ(s(x)).

(3.15)

The second line uses hτhρ = δτρhρ and the third line
∑
s hρ = 1. We observe that the matrix

product of transfer matrices appears in this product. For the Ising model we have that K (x) is
the same for all x (except for different spins being involved), and therefore T̂ is independent of x.
One simply finds ∑

s(x+ε)

K (x+ ε)K (x) = hτ (s(x+ 2ε))
[
T̂ 2
]
τρ
hρ(s(x)). (3.16)

Doing one more similar step yields∑
s(x+2ε)

∑
s(x+ε)

K (x+2ε)K (x+ε)K (x) = hτ (s(x+3ε))
[
T̂ (x+ 2ε)T̂ (x+ ε)T̂ (x)

]
τρ
hρ(s(x)), (3.17)

and so one can go on.

Partition function as product of transfer matrices. One can write the partition function as

Z =

 xf∏
x=xin

∑
s(x)

 f̄f(s(xf))

(xf−ε)∏
x=xin

K (x)

 fin(s(xin))

=
∑
s(xf)

∑
s(xin)

f̄f(s(xf))hτ (s(xf))
[
T̂ (xf − ε) · · · T̂ (xin)

]
τρ
hρ(s(xin))fin(s(xin))

=
∑
s(xf)

∑
s(xin)

q̄β(xf)hβ(s(xf))hτ (s(xf))
[
T̂ · · · T̂

]
τρ
hρ(s(xin)) q̃α(s(xin))hα(s(xin)).

(3.18)

Here we have expanded f̄f and fin in terms of the basis functions,

f̄f(s(xf)) =q̄β(xf)hβ(s(xf)),

fin(s(xin)) =q̃α(xin)hα(s(xin)).
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Performing the sums over the initial and final spins leads to

Z = q̄τ (xf)
[
T̂ (xf − ε) · · · T̂ (xin)

]
τρ
q̃ρ(xin). (3.19)

This has the structure of an initial vector (or wave function) q̃(xin) multiplied by a matrix, and
then contracted with a final vector (or conjugate wave function) q̄(xf). We can use the bracket
notation familiar from quantum mechanics,

Z = 〈q̄(xf)|T̂ (xf − ε) · · · T̂ (xin)|q̃(xin)〉. (3.20)

This product formulae resembles quantum mechanics if one associates the transfer matrix with the
infinitesimal evolution operator U(t)

ψ(t+ ε) = U(t)ψ(t), (3.21)

where
U(t) = eiεH(t). (3.22)

With
ψ(tf) = U(tf − ε) · · ·U(tin)ψ(tin), (3.23)

one can write the amplitude inf the form

〈φ(tf)|ψ(tf)〉 = 〈φ(tf)U(tf − ε) · · ·U(tin)|ψ(tin)〉. (3.24)

Formally, the map between quantum mechanics and the classical statistics of the Ising model is

QM CS
U T̂

t x
ψ q̃

φ̄ q̄

A main difference to quantum mechanics is that T̂ does not preserve the norm of the wave function.

Computation of transfer matrix. We employ the defining relation of the transfer matrix,

eβs̄s = T̂τρ hτ (s̄)hρ(s), (3.25)

where we use the shorthand notation

s̄ = s(x+ ε), s = s(x). (3.26)

Using the decomposition
s = h1 − h2 = n− (1− n) = 2n− 1, (3.27)

and
βs̄s = β(h̄1 − h̄2)(h1 − h2) = β(h̄1h1 + h̄2h2 − h̄1h2 − h̄2h1), (3.28)

one obtains by analyzing the possible cases,

eβs̄s = eβ(h̄1h1 + h̄2h2) + e−β(h̄1h2 + h̄2h1). (3.29)

From this one can read off the transfer matrix

T̂ =

(
eβ e−β

e−β eβ

)
. (3.30)

Note that, in general, the transfer matrix T̂ is not a unitary matrix as for quantum mechanics. For
the Ising model T̂ (x) does not depend on x so that one obtains

Z = q̄τ (xf)
[
T̂P−1

]
τρ
q̃ρ(xin). (3.31)
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Periodic Boundary Condition. Replace Lf + Lin by −βs(xf)s(sin). This closes the circle by
defining xf and xin as next neighbours. The partition function becomes

Z = Tr
{
T̂P
}
. (3.32)

Diagonalising T̂ solves the Ising model in a simple way,

Z = λ+
P + λ−

P , (3.33)

with λ± the two eigenvalues of the transfer matrix,

λ+ = 2 cosh(β), λ− = 2 sinh(β). (3.34)

In the limit P →∞ only the largest eigenvalue λ+ contributes.

Generalisations. The transfer matrix can be generalised to an arbitrary number of Ising spins
sγ(x). For M spins, γ = 1, . . . ,M , the transfer matrix T̂ is an N×N matrix, N = 2M , τ = 1, . . . , N .

For example, if M = 2, T̂ is a 4×4 matrix. The basis functions in the occupation number basis
are taken as

h1 = n1n2, h2 = (1− n1)n2,
h3 = n1(1− n2), h4 = (1− n1)(1− n2).

(3.35)

This structure can be extended to arbitrary M . The basis functions obey the same rules as discussed
for M = 1. In particular, γ may denote a second coordinate y such that,

sγ(x)→ s(x, y). (3.36)

In this way one can define formally the transfer matrix for the two-dimensional Ising model. The
coordinate x denotes now lines in a two-dimensional plane, see fig. 2.

y

x

x x + ε

Figure 2. Illustration of the two dimensional Ising model.

More generally, in d dimensions, x denotes the partition of a particular d − 1 dimensional
hypersurface. The transfer matrix contains the information of what happens if one goes from one
hypersurface to the next one.
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3.2 Non-commutativity in classical statistics

Local observables and operators. A local observable A(x) depends only on the local spin s(x).
We want to find an expression for its expectation value in terms of the transfer matrix. For this
purpose we consider the expression∑
s(x)

K (x)A(x)K (x− ε) =
∑
s(x)

hτ (x+ ε)T̂τρ(x)hρ(x)Aγ(x)hγ(x)hα(x)T̂αβ(x− ε)hβ(x− ε), (3.37)

where we use the shorthand
hτ (x) = hτ (s(x)), (3.38)

and the expansion
A(x) = Aγ(x)hγ(s(x)). (3.39)

We employ
Aγ(x)

∑
s(x)

hρ(x)hγ(x)hα(x) =
∑
γ

Aγ(x)δργδγα, (3.40)

and introduce the diagonal operator

(Â(x))ρα =
∑
γ

Aγ(x)δργδγα =

(
A1(x) 0

0 A2(x)

)
. (3.41)

In terms of this operator we can write∑
s(x)

K (x)A(x)K (x− ε) = hτ (x+ ε)T̂τρ(x)Âρα(x)T̂αβ(x− ε)hβ(x− ε). (3.42)

The expectation value of A(x) obtains by an insertion of the operator Â(x),

〈A(x)〉 = 1

Z

∫
Dse−SA(x)

=
1

Z
q̄τ (xf)[T̂ (xf − ε) · · · T̂ (x)Â(x)T̂ (x− ε) · · · T̂ (xin)]τρq̃ρ(xin)

(3.43)

The operators T̂ (x) and Â(x) do in general not commute,

[T̂ (x), Â(x)] 6= 0. (3.44)

Non-commutativity is present in classical statistics if one asks questions related to hypersurfaces!
Let us concentrate on observables that are represented by operators Â which are independent of x.
As an example we take the local occupation number n(x) = 2s(x)− 1. The associated operator is

N̂ =

(
1 0

0 0

)
. (3.45)

If we want to obtain the expectation value at x, we need to compute

〈n(x)〉 = 1

Z
〈q̄f |T̂ (xf − ε) · · · T̂ (x)N̂ T̂ (x− ε) · · · T̂ (xin)|q̃in〉, (3.46)

where we employ a notation familiar from quantum mechanics,

〈q̄f|M̂ |q̃in〉 = (q̄f(xf))τM̂τρ(qin(xin))ρ. (3.47)

We may now consider the operator

N̂+ = T̂ (x)−1 N̂ T̂ (x), (3.48)
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and compute
〈q̄f|T̂ (xf − ε) · · · T̂ (x)N̂+T̂ (x− ε) · · · T̂ (xin)|q̃in〉 = 〈n(x+ ε)〉. (3.49)

When we use the same prescription (with x singled out as a reference point) the operator N̂

corresponds to the observable n(x), while N̂+ is associated to the observable n(x+ε). The operator
N̂+ is not diagonal and does not commute with N̂ ,

[N̂+, N̂ ] 6= 0. (3.50)

We conclude that non-commuting operators do not only appear in quantum mechanics. The ap-
pearance of non-commuting structures is an issue of what questions are asked and which formalism
is appropriate for the answer to these questions. One can actually device a Heisenberg picture for
classical statistical systems in close analogy to quantum mechanics. The Heisenberg operators de-
pend on x and do not commute for different x.

3.3 Classical Wave functions

Local Probabilities. The probability distribution is given by

p[s] =
1

Z
e−S[s], Z =

∫
Dse−S[s]. (3.51)

A local probability distribution at x, which involves only the spin s(x), can be obtained by summing
over all spins at x′ 6= x,

pl(s(x)) =
1

Z

∏
x′ 6=x

∑
s(x′)=±1

 e−S ≡ pl(x). (3.52)

It is properly normalized, ∑
s(x)=±1

pl(s(x)) = 1. (3.53)

The expectation value of the spin s(x) can be computed from pl(s(x)),

〈s(x)〉 =
∑

s(x)=±1

pl(s(x))s(x). (3.54)

If there would be a simple evolution law how to compute pl(x + ε) from pl(x), the problem could
be solved iteratively. Unfortunately, such a simple evolution law does not exist for the local proba-
bilities. We will see next that it exists for local wave functions or probability amplitudes.

Wave Functions. Define for a given x the actions S− and S+ by

S− =Lin +

x−ε∑
x′=xin

L (x′),

S+ =

xf−ε∑
x′=x

L (x′) + Lf,

S =S− + S+.

(3.55)

Here S− depends only on the Ising spins s(x′) with x′ ≤ x, and S+ depends on spins s(x′) with
x′ ≥ x.

The wave function f(x) is defined by

f(x) =

 x−ε∏
x′=xin

∑
s(x′)=±1

 e−S− . (3.56)
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Because we sum over all s(x′) with x′ < x, and S− depends only on those s(x′) and on s(x), the
wave function f(x) depends only on the single spin s(x). Similarly, we define the conjugate wave
function

f̄(x) =

 xf∏
x′=x+ε

∑
s(x′)=±1

 e−S+ , (3.57)

which also depends only on s(x).

Wave functions and local probability distribution. The product

f̄(x)f(x) =

∏
x′ 6=x

∑
s(x′)=±1

 e−S = Z pl(x), (3.58)

is closely related to the local probability distribution pl(x). One has∑
s(x)=±1

f̄(x)f(x) = Z. (3.59)

At this point we could employ the possibility of an additive renormalisation S → S + C in order
to normalise the partition function to Z = 1. The wave functions f̄ and f are then a type of
probability amplitudes, similar as in quantum mechanics. We have, however, two distinct types of
probability amplitudes, f and f̄ .

Quantum rule for expectations values of local observables. The expectation value of A(x)
can be written in terms of a bilinear in the wave functions.

〈A(x)〉 =
∑

s(x)=±1

A(x)pl(x)

=
1

Z

∑
s(x)=±1

f̄(x)A(x)f(x).
(3.60)

We expand again in the occupation number bases

f(x) = q̃ρ(x)hρ(x),

f̄(x) = q̄τ (x)hτ (x),

A(x) = Aσ(x)hσ(x).

(3.61)

Here q̃ρ(x) are the components of the wave function in the occupation number basis at x, and q̄τ (x)
are the components of the conjugate wave function. This yields for the expectation values

〈A(x)〉 = 1

Z
q̄τ (x)Aσ(x)q̃ρ(x)

∑
s(x)=±1

hτ (x)hσ(x)hρ(x). (3.62)

Using again the product properties of the bases functions one finds the “quantum rule” for the
expectation value as a bilinear in the wave functions,

〈A(x)〉 = 1

Z
〈q̄(x)|Â(x)|q̃(x)〉

=
1

Z

∑
σ

q̄τ (x)Aσ(x)δτσδσρq̃ρ(x).
(3.63)

Knowledge of the wave function at x is therefore sufficient for the computation of 〈A(x)〉.
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Evolution equation for the wave function. In contrast to the local probability distribution,
the x-dependence of the wave functions is a simple linear evolution law. This makes the wave
function the appropriate object for the discussion of boundary value problems and beyond. From
the definition of the wave function f(x) one infers immediately

f(x+ ε) =
∑

s(x)=±1

K (x)f(x). (3.64)

As it should be, f(x + ε) depends on the spin s(x + ε). The expansion in the occupation number
basis yields

f(x+ ε) = q̃τ (x+ ε)hτ (x+ ε)

=
∑

s(x)=±1

hτ (x+ ε)T̂τρ(x)hρ(x) q̃σ(x)hσ(x)

= T̂τρ(x)q̃ρ(x)hτ (x+ ε).

(3.65)

The linear evolution operator for the wave function is the transfer matrix.

q̃τ (x+ ε) = T̂τρ(x)q̃ρ(x), (3.66)

or, in a vector matrix notation
q̃(x+ ε) = T̂ (x)q̃(x). (3.67)

By the same type of argument one obtains for the conjugate wave function (as a row vector)

q̄(x) = q̄(x+ ε)T̂ (x), (3.68)

or, written as a column vector,
q̄(x) = T̂T (x)q̄(x+ ε), (3.69)

and
q̄(x+ ε) = (T̂T (x))−1q̄(x). (3.70)

In cases where T̂ is orthogonal, T̂−1 = T̂T , both q̄ and q̃ obey the same evolution law. The evolution
law is linear. The superposition law familiar from quantum mechanics follows. If q̃1(x) and q̃2(x)

are two solutions of the evolution equation, this also holds for linear combinations αq̃1(x)+βq̃2(x).

Continuous evolution. For a sufficiently smooth wave function q̃(x) one defines the derivative

∂q̃

∂x
=

1

2ε
(q̃(x+ ε)− q̃(x− ε))

=
1

2ε
(T̂ (x)− T̂−1(x− ε))q̃(x).

(3.71)

This yields the generalised Schrödinger equation

∂xq̃ =
∂

∂x
q̃ =Wq̃,

W (x) =
1

2ε

[
T̂ (x)− T̂−1(x− ε)

]
.

(3.72)

For the same L at every x, both T̂ and W are independent of x,

W =
1

2ε

[
T̂ − T̂−1

]
. (3.73)
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Step evolution operator. The additive renormalization of the action results in a multiplicative
renormalization of the transfer matrix. The step evolution operator is the transfer matrix normalized
such that the absolute value of the largest eigenvalue equals unity. For the Ising model, the step
evolution operator is given by

T̂ =
1

2 cosh(β)

(
eβ e−β

e−β eβ

)
. (3.74)

Equilibrium state. If only one eigenvalue of the step evolution operator equals unity in absolute
magnitude, the eigenstate to this eigenvalue is the unique equilibrium state q̃∗. For the Ising model
the equilibrium wave function is

q̃∗ ∼
(
1

1

)
. (3.75)

The equilibrium state is invariant under the evolution.

Boundary value problem. For given boundary conditions q̃(xin) and q̄(xf) are fixed. One can
use the evolution equation to compute both q̃(x) and q̄(x). The value of a local observable A(x),
with associated operator Â(x), follows from

〈A(x)〉 = 1

Z
〈q̄(x)|Â(x)|q̃(x)〉. (3.76)

Choose for q̃(xin) a decomposition into eigenfunctions of the transfer matrix T̂ , e. g. with eigenvalues
λ+ and λ−,

q̃(xin) = c+(xin)q̃+ + c−(xin)q̃−, (3.77)

such that
q̃(x) = q̃(xin +Nε) = c+(xin) (λ+)

N q̃+ + c−(xin) (λ−)
N q̃−. (3.78)

For λ+ = 1, the corresponding eigenfunction is the equilibrium wave function,

λN+ q̃+ = q̃+. (3.79)

For λ− ≤ 1 the contribution ∼ (λ−)
N q̃− vanishes for large N. This describes the approach to

equilibrium. The correlation length is directly related to λ−.

4 Quantum Fields and Functional Integral

In this lecture we will start from quantum mechanics and construct the functional integral. In the
last lecture we did functional integral→ operators. In this lecture we will do operators→ functional
integral. The aim of the lecture is once more to show the equivalence of the functional integral and
the operator formalism. We will do this already for quantum fields, establishing in this way also
the basic notions of quantum field theory in the operator formalism.

4.1 Phonons as quantum fields in one dimension

One-dimensional crystal. Consider a one-dimensional crystal of atoms with lattice sites xj = jε

and lattice distance ε. Denote the displacement from the equilibrium position at xj by Qj and the
momentum of the atoms by Pj . The Hamiltonian for small displacements can be taken quadratic
in Qj , and we decompose H = H0 +Hnn with

H0 =
∑
j

(
Pj

2

2M
+
D

2
Qj

2

)
, Hnn = −B

2

∑
j

Qj+1Qj . (4.1)
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Here Qj and Pj are quantum operators with the usual commutation relations

[Qj , Pk] = iδjk, [Qj , Qk] = 0, [Pi, Pj ] = 0. (4.2)

We use units where ~ = 1. The displacements are a quantum field,

Qj = Q(x). (4.3)

This is an operator field. For each x one has an operator Q(x). Similarly P (x) = Pj is a quantum
field. One may consider the pairs {Qj , Pj} as a common (two-component) quantum field.

Occupation number basis. At each site j we define annihilation and creation operators aj and
a†j . The annihilation operators are

aj =
1√
2

(
(DM)

1
4Qj + i(DM)−

1
4Pj

)
. (4.4)

The creation operators are

a†j =
1√
2

(
(DM)

1
4Qj − i(DM)−

1
4Pj

)
. (4.5)

Note that they are formally hermitian conjugates, a†j = (aj)
†. The commutation relations are

[aj , a
†
k] = δjk, [aj , ak] = 0, [a†j , a

†
k] = 0. (4.6)

Both a(x) = aj and a†(x) = a†j are operator fields. Inserting

Q(x) = Qj =
1√
2
(DM)−

1
4

(
aj + a†j

)
, (4.7)

and similar for Pj , we express the Hamiltonian in terms of a and a†,

H0 = ω0

∑
j

(
a†jaj +

1

2

)
= ω0

∑
j

(
n̂j +

1

2

)
, (4.8)

with the frequency w0 =
√
D/M . Occupation numbers at positions xj are expressed in terms of

the operator n̂j = a†jaj . It has the eigenvalues nj = (0, 1, 2, . . .). At each site j there are a number
nj of “phonons”. For B = 0 the system describes uncoupled harmonic oscillators, one at each lattice
site. We next need the next-neighbour interaction which involves products of aj , aj+1 etc.,

Hnn = −B
2

∑
j

Qj+1Qj

= −B
2

(DM)−
1
2

2

∑
j

(
aj+1 + a†j+1

)(
aj + a†j

)
.

(4.9)

Momentum Space. It is possible to diagonalize H by Fourier transform. To this end, we write

aj =
1√
N

∑
q

eiεqjaq, a†j =
1√
N

∑
q

e−iεqja†q. (4.10)

Here the sum is periodic in q, ∑
q

=
∑
|q|≤π

ε

, (4.11)
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and N =
∑
j is a normalization factor corresponding to the number of lattice sites. This yields

Qj =
1√
2N

(DM)−
1
4

∑
q

(eiεqjaq + e−iεqja†q)

=
1√
2N

(DM)−
1
4

∑
q

eiεqj
(
aq + a−q

†) , (4.12)

and therefore

Hnn = − B

4N
(DM)−

1
2

∑
j

∑
q

∑
q′

eiεq
′jeiεq(j+1)

(
aq + a−q

†) (a′q + a−q′
†) . (4.13)

Use now the following identity for discrete Fourier transforms,∑
j

eiε(q+q
′)j = N δq,−q′ , (4.14)

which corresponds to the familiar continuum expression∫
dx ei(q+q

′)x = 2πδ(q + q′). (4.15)

One obtains

Hnn = −b
∑
q

eiεq
(
aq + a−q

†) (a−q + a†q
)

= −b
∑
q

cos(εq)
(
aq + a†q

) (
a−q + a†−q

)
,

(4.16)

with b = B
4 (DM)−

1
2 . Similarly, one has

H0 = ω0

∑
q

(
a†qaq +

1

2

)
. (4.17)

At this stage, the Hamiltonian H involves separate q-blocks,

H =
∑
q

Hq, (4.18)

with
Hq = ω0

(
a†qaq +

1

2

)
− b cos(εq)

(
aq + a−q

†
)(
a−q + a†q

)
. (4.19)

Each block involves q and −q. What remains is the diagonalization of the q-blocks, done by the
Bogoliubov transformation,

aq = α(q)Aq + β(q)A†−q, a†q = α(q)A†q + β(q)A−q, (4.20)

where the commutation relations

[aq, a
†
q] = 1, [Aq, A

†
q] = 1, (4.21)

require
α(q)2 − β(q)2 = 1. (4.22)

One finds after some simple algebra

H =
∑
q

ωq

(
A†qAq +

1

2

)
, (4.23)
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with
ωq

2 =
D

M

(
1− B

D
cos(εq)

)
. (4.24)

Phonons can be described as uncoupled harmonic oscillators, one for every momentum q. They are
a free quantum field, which means that they do not interact with themselves.

The vacuum obeys, as usual Aq|0〉 = 0. This is not the same as for B = 0, where one has
aq|0〉 = 0. The vacuum can be a complicated object. The excitations, quasiparticles or simply
particles depend on the vacuum, e. g. the dispersion relation depends on B.

Dispersion relation. The equation

ω(q) = ωq =

√
D −B cos(εq)

M
, (4.25)

is called the dispersion relation. Consider the limit of small εq, where one can expand, cos(εq) =
1− 1

2ε
2q2, such that

ω2(q) =
D −B
M

+
ε2B

2M
q2. (4.26)

The dispersion relation corresponds to the energy momentum relation of the phonon-quasi-particles.
The sound velocity is given here by

v =

∣∣∣∣dωdq
∣∣∣∣ = ε2Bq

2Mω(q)
. (4.27)

For D > B the occupation relation has a gap, one needs positive energy even for a phonon with
q = 0. For many cases the interaction between atoms is of the form (Qj−Qj−1)2, involving only the
distance between two neighbouring atoms. Then D = B, phonons are gapless and the dispersion
relation becomes linear for small εq.

Generalisations. In three dimensions d = 3 one has q → ~q and the dispersion relation becomes
an equation for ω(~q).

Continuum limit. This corresponds to the limit ε→ 0.

Photons. For photons the dispersion relation is (in units where the velocity of light is unity,
c = 1),

ω(~q) = |~q|. (4.28)

There are two photon helicities.

Quantum fields for photons. For photons, the quantum fields would have to be the electric
field ~E(~q) in momentum space or ~E(~x) in position space and the magnetic field ~B(~q) or ~B(~x),
respectively. In other words, the electric field ~E and the magnetic field ~B are quantum operators!
One at each ~x or for each ~q.

Bosonic atoms without interaction. For free, non-relativistic atoms, the dispersion relation
is given by

ω(~q) =
~q2

2M
. (4.29)

For the grand-canonical ensemble, one includes a chemical potential, multiplying the total particle
number. This shifts effectively

ω(~q)→ ε(~q) =
~q2

2M
− µ. (4.30)

We will not distinguish ω(~q) and ε(~q) unless stated otherwise.

– 23 –



4.2 Functional integral for quantum fields

Free quantum boson gas in thermal equilibrium. For the Hamiltonian

H =
∑
q

ω(q)

(
a†qaq +

1

2

)
, (4.31)

the partition function in thermal equilibrium is given by the trace

Z = Tr e−βH , (4.32)

with β = 1
kBT

= 1
T (we use units where kB = 1). It decays into independent factors

Z =
∏
q

Tr e−βωq

(
a†qaq+

1
2

)
=
∏
q

Zq. (4.33)

We can compute the individual Zq,

Z = Tr e−β̃
(
a†a+ 1

2

)
, (4.34)

with β̃ = βωq (we omit the index q). As an example, for a free gas of bosonic atoms one has

ω(q) =
~q2

2M
− µ, (4.35)

with chemical potential µ. From Z(β, µ) one can derive all thermodynamics of the quantum boson
gas. This will be done in lecture 6 including interactions. In this lecture we will derive a functional
integral representation of the partition function

Z = Tr e−βH =

∫
Dφ e−S[φ], (4.36)

with Euclidean action

S =

∫ β
2

− β
2

dτ
∑
q

φ∗(τ, q)

(
∂

∂τ
+ ω(q)

)
φ(τ, q), (4.37)

and complex fields φ(τ, q).

Partition function with boundary conditions. Let us consider the expression

Z̃ = Tr
{
b e
−β̃

(
a†a+ 1

2

)}
. (4.38)

For b = 1 one has Z̃ = Z for thermodynamic equilibrium if β̃ = βω is real. More, generally, b is
a matrix in Hilbert space reflecting boundary conditions. For example, in the occupation number
basis one has

Z̃ = bnm

(
e
−β̃

(
a†a+ 1

2

))
mn

. (4.39)

We may take the “boundary term” b as a product of wave functions,

bnm = (ψin)n(φf)m, (4.40)

such that

Z̃ = (φf)m

(
e
−β̃

(
a†a+ 1

2

))
mn

(ψin)n

=

〈
φf

∣∣∣∣e−β̃(a†a+ 1
2

)∣∣∣∣ψin

〉
.

(4.41)
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Extension to complex formulation. Take imaginary β̃,

β̃ = iω∆t, (4.42)

and admit complex φf and ψin, defining 〈φf| by involving complex conjugation as in quantum
mechanics, e. g. 〈φf|m = (φ∗f )m. In general, Z̃ will now be a complex number. Everything remains
well defined.

Transition amplitude. With this setting Z̃ is the transition amplitude

Z̃ = 〈φf|e
−i∆tω

(
a†a+ 1

2

)
|ψin〉

= 〈φf|e−i∆tH |ψin〉.
(4.43)

Here H = ω
(
a†a+ 1

2

)
stands for Hq. If we take

ψin = ψ(tin), φf = φ(tf), (4.44)

the quantity Z̃ denotes the transition amplitude between ψ and φ at the common time tf,

Z̃ = 〈φ(tf)|ψ(tf)〉, ∆t = tf − tin, (4.45)

where
ψ(tf) = e−i(tf−tin)Hψ(tin). (4.46)

The square |Z̃|2 measures the probability that a given ψ(tin) coincides at tf with φ(tf). The transition
amplitude is a key element for the S-matrix for scattering to be discussed in coming lectures.

Split into factors. The idea is now to split β̃ into small steps by writing β̃ = (2N + 1)δ, where
|δ| � 1 and assuming N to be even. One has then

exp

{
−β̃
[
a†a+

1

2

]}
=

N∏
j=−N

exp

{
−δ
[
a†a+

1

2

]}
. (4.47)

For small δ, the exponential simplifies. This would not be necessary for the present very simple case,
but is very useful for more complicated Hamiltonians which involves pieces that do not commute
with each other. The split will be used to define a functional integral. Indeed, the expression (4.47)
looks already like a product of transfer matrices. At the end N → ∞ is possible. Define now the
operators

x̂ =
1√
2

(
a† + a

)
, p̂ =

i√
2

(
a† − a

)
, (4.48)

with commutation relation
[x̂, p̂] = i. (4.49)

Note that the operators x̂ and p̂ have similar properties as position and momentum operators. In
our context they are abstract operators, since for phonons or photons already a†a stands for a†qaq
in momentum space. Thus x̂ and p̂ have nothing to do with position and momentum of phonons
or photons. One has

Ĥ = a†a+
1

2
=
p̂2

2
+ V (x̂), V (x̂) =

x̂2

2
. (4.50)

This yields the expression

exp

{
−β̃
[
a†a+

1

2

]}
=

N∏
j=−N

exp

{
−δ
[
p̂2

2
+ V (x̂)

]}
, (4.51)

where
H̃ =

p̂2

2
+ V (x̂). (4.52)
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Eigenfunctions of x̂ and p̂. We next define eigenfunctions of the operators x̂ and p̂,

|x〉 such that x̂|x〉 = x|x〉, (4.53)

and
|p〉 such that p̂|p〉 = p|p〉. (4.54)

We can choose a normalization such that

〈x′|x〉 = δ(x′ − x), 〈p′|p〉 = 2πδ(p′ − p), (4.55)

and ∫
dx |x〉〈x| = 1,

∫
dp

2π
|p〉〈p| = 1. (4.56)

We next insert complete systems of functions between each of the factors,

N∏
j=−N

e−δH̃ =

 N+1∏
j=−N

dxj

 |xN+1〉〈xN+1|e−δH̃ |xN 〉〈xN | · · · |x1−N 〉〈x1−N |e−δH̃ |x−N 〉〈x−N |. (4.57)

Evaluation of factors. The factors 〈xj+1|e−δH̃ |xj〉 are complex numbers, no longer operators.
For their computation it is convenient to insert a complete set of p̂ -eigenstates,

〈xj+1|e−δH̃ |xj〉 =
∫
dpj
2π
〈xj+1|pj〉〈pj |e−δH̃ |xj〉. (4.58)

We next use for δ → 0 the expansion

exp
{
−δ
[
p̂2

2 + V (x̂)
]}

= exp
{
−δ p̂

2

2

}
exp {−δV (x̂)}+O(δ2), (4.59)

where the term ∼ O(δ2) arises from the commutator of x̂ and p̂. Corrections ∼ δ2 can be neglected
for δ → 0 such that

〈xj+1|e−δH̃ |xj〉 =
∫
dpj
2π

e−δ
pj

2

2 e−δV (xj)〈xj+1|pj〉〈pj |xj〉. (4.60)

No operators appear anymore in this expression and we only need

〈pj |xj〉 = e−ipjxj , 〈xj+1|pj〉〈pj |xj〉 = eipj(xj+1−xj). (4.61)

This yields the expression

〈xj+1|e−δH̃ |xj〉 =
∫
dpj
2π

exp
{
ipj(xj+1 − xj)− δ

[
p2j
2 + V (xj)

]}
. (4.62)

Functional integral. Insertion of these factors yields

e−β̃H̃ =

∫
dx−N

∫
dxN+1|xN+1〉 F 〈x−N |, (4.63)

with

F =

∫
Dφ′ exp


N∑

j=−N

[
ipj(xj+1 − xj)− δ

p2j
2 + δV (xj)

] , (4.64)

and functional measure ∫
Dφ′ =

 N∏
j=−N+1

∫ ∞
−∞

dxj

 N∏
j=−N

∫ ∞
−∞

dpj
2π

 . (4.65)

With boundary terms one obtains

〈φf|e−β̃H̃ |ψin〉 =
∫
dx−N

∫
dxN+1〈φf |xN+1〉 F 〈x−N |ψin〉. (4.66)
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4.3 Thermodynamic equilibrium

For thermodynamic equilibrium, Z = Tr e−β̃H̃ , one identifies xN+1 with x−N and includes no
integration over xN+1. The variable j is periodic, reflecting in

xN+1 = x−N , pN+1 = p−N . (4.67)

One has for any given q-mode
Z̃ = Tr eβ̃H̃ =

∫
Dφe−S , (4.68)

with

S = −
N∑
j=N

{
ipj(xj+1 − xj)− δ

[
p2j
2 + V (xj)

]}
, (4.69)

and ∫
Dφ =

∏
j

∫
dxj

∫
dpj
2π

 . (4.70)

For 2N + 1 factors one has (periodic boundary conditions) δ = β̃
2N+1 .

Matsubara modes. We can diagonalize the action S by a type of Fourier transform

xj =

N∑
n=−N

exp

(
2πinj

2N + 1

)
x̃n, x̃−n = x̃∗n, (4.71)

pj =

N∑
n=−N

exp

(
2πin(j + 1

2 )

2N + 1

)
p̃n, p̃−n = p̃∗n, (4.72)

such that

−
N∑

j=−N
[ipj(xj+1 − xj)] =

N∑
n=−N

[(2N + 1)sin
(

πn

2N + 1

)
(p̃∗nx̃n − p̃nx̃∗n)]. (4.73)

Here we use the identity (j = −N and j = N + 1 identified)

N∑
j=−N

exp
(
2πi(m− n)j

2N + 1

)
= (2N + 1)δm,n. (4.74)

Similarly, with V (xj) = x2j/2, one has

δ

2

N∑
j=−N

(x2j + p2j ) =
(2N + 1)δ

2

N∑
n=−N

(x̃∗nx̃n + p̃∗np̃n) =
β̃

2

N∑
n=−N

(x̃∗nx̃n + p̃∗np̃n). (4.75)

We next introduce complex number φn by

x̃n =
1√
2
(φn + φ∗−n), p̃n = − i√

2
(φn − φ∗−n), (4.76)

With
p̃∗nx̃n − x̃∗np̃n = i(φ∗nφn − φ∗−nφ−n), (4.77)

and
x̃∗nx̃n + p̃∗np̃n = φ∗nφn + φ∗−nφ−n. (4.78)
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we finally obtain for the action

S =

N∑
n=−N

[
2(2N + 1)isin

(
πn

(2N + 1)

)
+ β̃

]
φ∗nφn. (4.79)

At the end we take the limit N → ∞. In this limit the neglected terms (from commutators of x̂
and p̂) vanish. This yields the central functional integral equation for thermodynamic equilibrium,

Tr{e−βH} =
∫
Dφ e−S . (4.80)

For H = ω(a†a+ 1
2 ) one has

S =

∞∑
n=−∞

(2πin+ βω)φ∗nφn. (4.81)

(Recall that H̃ = a†a+ 1
2 and β̃ = βω.) The modes φn are called Matsubara modes, and the sum

over n is the Matsubara sum.
One can also translate the integration measure for the variables xj and pj to φn. With

φn = φnR + iφnI , (4.82)

one has ∫
Dφ =

∏
n

(∫ ∞
−∞

dφnR

∫ ∞
−∞

dφnI

)
. (4.83)

All variable transformations have been linear transformations and there is therefore no non-trivial
Jacobian. Recall that an overall constant factor of Z or additive constant in S is irrevelant.

Action for free quantum fields. Since Z factorises, Z =
∏
q Zq, the action for all momentum

modes is simply the sum of actions for individual momentum modes, S =
∑
q Sq. For a given

momentum mode one has β̃ = βωq. Thus for

H =
∑
q

ω(q)

[
a†qaq +

1

2

]
, (4.84)

one obtains

S =
∑
n

∑
q

[2πin+ βω(q)]φ∗n(q)φn(q)

=
∑
n

∑
q

β [iω̃n + ω(q)]φ∗n(q)φn(q).

One often denotes the dispersion relation by ω(q) or by ε(q). The quantities

ω̃n =
2πn

β
= 2πnT (4.85)

are called Matsubara frequencies. At this point we have formulated the thermodynamics of phonons
or photons as a functional integral. It is Gaussian and can easily be solved explicitely.

Euclidean time. We can consider the Matsubara modes φn as the modes of a discrete Fourier
transformation. Indeed, making a Fourier transformations of functions on a circle yields discrete
modes. Consider a function φ(τ), with τ parameterizing a circle with circumference β. Equivalently,
we can take τ to be a periodic variable with period β

τ + β ≡ τ. (4.86)
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The Fourier expansion reads

φ(τ) =
∑
n

exp

(
2πinτ

β

)
φn, (4.87)

with integer n. With

∂τφ(τ) =
∑
n

(
2πin

β

)
exp

(
2πinτ

β

)
φn

=
∑
n

iω̃n exp

(
2πinτ

β

)
φn,

one has ∫ β
2

− β
2

dτ {φ∗(τ)∂τφ(τ)} =
∑
n

iω̃n φ
∗
nφn, (4.88)

using ∫ β
2

− β
2

dτ exp

(
2πi(n−m)τ

β

)
= β δm,n. (4.89)

In this basis the action reads

S =

∫ β
2

− β
2

dτ
∑
q

[φ∗(τ, q) ∂τφ(τ, q) + ω(q)φ∗(τ, q)φ(τ, q)] . (4.90)

One calls τ the Euclidean time.

Local action. This action is a local action in the sense of lectures 2 and 3. Discretizing τ on a
lattice with distance ε, and with τ = jε, j = −N · · ·N periodic, ε = β

2N+1 ,

∂τφ(τ) =
1

ε
[φ(τ + ε)− φ(τ)] , (4.91)

One can write (with
∑
τ ≡

∑
j)

S =
∑
τ

L (τ), (4.92)

with

L (τ) =
1

2

∑
q

{φ(τ + ε)φ∗(τ)− φ∗(τ + ε)φ(τ) + εω(q) [φ∗(τ + ε)φ(τ) + φ(τ + ε)φ∗(τ)]} . (4.93)

Note that L (τ) is a complex function of complex variables φ(τ) and φ(τ + ε). The action involves
next neighbour interactions, similar to the Ising model. We could go the inverse way and compute
the transfer matrix. We know already the answer in the bosonic occupation number basis

T̂ = exp

[
− β

2N + 1

∑
q

ω(q)

(
a†qaq +

1

2

)]
, (4.94)

with 2N + 1 the number of time points. This is compatible with

Z = Tr
{
T̂ 2N+1

}
. (4.95)
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Quantum gas of bosonic atoms. For free bosonic atoms (without internal degrees of freedom)
the dispersion relation is

ω(q) =
~q2

2M
− µ, (4.96)

with µ the chemical potential. We can make a Fourier-transform to three-dimensional position
space,

S =

∫ β
2

− β
2

dτ

∫
d3x{φ∗(τ, ~x)∂τφ(τ, x) +

1

2M
~∇φ∗(τ, ~x)~∇φ(τ, ~x)− µφ∗(x)φ(x)} (4.97)

This is the action of a classical field theory (in Euclidean time).
Quantum field theory: the action defines the weight factor in a functional integral. Extremum

of action yield classical field equation. For QFT the fluctuations matter!

Interactions So far we have discussed models that represent quantum fields without interactions.
This is a very good approximation for photons if the energy is not too high. Free quantum field
theories can be represented in momentum space as uncoupled harmonic oscillators. For them the
description is simple both in the functional integral formalism (gaussian integration) and in the
operator formalism. The situation changes in the presence of interactions.
Consider a particle interaction between bosonic atoms.

H = H0 +Hint (4.98)

H0 =
∑
q

ω(q)

(
a†qaq +

1

2

)
(4.99)

Hint =
λ

2

∑
q1,q2,q3,q4

a†q4a
†
q3aq2aq1δ(q1 + q2 − q3 − q4). (4.100)

Two atoms with momentum q1 and q2 are annihilated, two atoms with momenta q3 and q4 are
created. Momentum conservation is guaranteed by the δ-function.
For the functional integral this adds to the action a piece

Sint =
λ
2

∫
dτ

∫
d3x[(φ∗(τ, ~x)φ(τ, ~x))2 − 2δφ∗(τ, ~x)φ(τ, ~x)] (4.101)

with δ ∼ λ a counterterm that corrects µ. A systematic treatment of interactions is rather hard in
the operator formalism. For the functional integral formulation powerful methods are available.

Zero temperature limit For T −→ 0 one has β −→ ∞. The circumference of the circle goes
to infinity. Instead of discrete Matsubara modes one has continuous modes with frequency ω̃ = q0
and therefore a continuous four-dimensional momentum integral. The momenta q0 and ~q appear,
however differently in the action. The same holds for the dependence of S on τ and ~x. There is
a first derivative with respect to τ , but a squared first derivative or second derivative with respect
to ~x. This difference will go away for relativistic particles. For bosonic atoms with a pointlike
interaction one finds for the T −→ 0 limit of the thermal equilibrium state

S =

∫
q

[
φ∗(q)

(
iω̃ +

~q2

2M
− µ+ λδ

)
φ(q)

+
λ

2

∫
q1

∫
q2

∫
q3

∫
q4

φ∗(q4)φ
∗(q3)φ(q2)φ(q1)δ(q4 + q3 − q2 − q1)

]
,

(4.102)

– 30 –



where we have chosen an appropriate continuum normalization of φ(q), with

φ(q) ≡ φ(ω̃, ~q) (4.103)∫
q

=
1

(2π)4

∫
dω̃d3~q (4.104)

δ(q) = (2π)4δ(ω)δ(q1)δ(q2)δ(q3). (4.105)

The δ function expresses conservation of the euclidean four momentum q. It reflects translation
symmetry in space and euclidean time τ . The limit T −→ 0 may be associated in some sense with
the vacuum, for µ chosen such that the mean particle number vanishes.

4.4 Real time evolution

Recall the transition amplitude for the quantum mechanical time evolution

〈φ(tf )|ψ(tf )〉 = 〈φ(tf )|U(tf − tin)|ψ(tin)〉 = 〈φ(tf )|e−i(tf−tin)H |ψ(tin)〉. (4.106)

Up to boundary terms this is the same expression as for thermal equilibrium, with a replacement

β → i(tf − tin). (4.107)

The split into infinitesimal pieces, Fourier-transforms etc can be done for complex β.
For β →∞ (T → 0), tf − tin →∞ one finds

〈φ(tf )|ψ(tf )〉 = B(tf , tin)ZM (4.108)

ZM =

∫
Dφ exp(−S). (4.109)

In the action we have to multiply the terms ∼ β by i,before taking the limit β −→∞. This results
(for µ = 0 ) in

S =

∫
q

[
φ∗(q)

[
iω̃ + i

(
~q2

2M
+ λδ

)]
φ(q)

+ i
λ

2

∫
q1

∫
q2

∫
q3

∫
q4

φ∗(q4)φ
∗(q3)φ(q2)φ(q1)δ(q3 + q4 − q1 − q2)

] (4.110)

After a Fourier-transform in ω̃ and ~q one finds, with time labeled now by t

S =

∫
x

[φ∗(x)∂tφ(x) +
i

2M
(~∇φ∗(x))(~∇φ(x)) + iλ

2
(φ∗(x)φ(x))2 + iλδϕ∗(x)ϕ(x)] (4.111)

where
x = (t, ~x),

∫
x

=

∫ ∞
−∞

dt

∫
d3~x. (4.112)

The transfer matrix for this functional integral is now

TM = exp{− i(tf − tin)
(2N + 1)

H} (4.113)

instead of
T̂ = exp

[
− β

(2N + 1)
H

]
. (4.114)

The matrix T̂M is a unitary matrix (for H† = H).
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Local Physics For observations and experiments done in some time involved around t the details
of boundary conditions at tf and tin play no role for large |tf − t| and |t− tin|. Doing physics now is
not much influenced by what happened precisely to the dinosaurs or what will happen in the year
10000. For many purposes the boundary term B(tf , tin) is just an irrelevant multiplicative factor in
Z which drops out from the expectation values of interest. One can then simply omit it and work
directly with ZM .

Minkowski action Define the Minkowski action SM by multiplying the euclidean action S with
a factor i

SM = iS, e−S = eiSM . (4.115)

The Minkowski action reads

SM = −
∫
x

φ∗(−i∂t −
∆

2M
)φ+ . . . . (4.116)

Variation of SM or S with respect to φ∗ yields for λ = 0 the free Schrodinger equation for a simple
particle

(−i∂t −
∆

2M
)φ = 0 (4.117)

i∂tφ = Hφ = − ∆

2M
φ (4.118)

There is a reason for that, but the connection needs a few steps, concentrating on simple particle
states. Recall that the functional integral describes arbitrary particle numbers. For λ 6= 0 the
classical field equation δS

δφ∗(x) = 0 is a non-linear equation, called Gross-Pitaevskii equation

i∂tφ = − ∆

2M
φ+ λ(φ∗φ)φ+ λδϕ (4.119)

This is not a linear Schrodinger equation for a quantum wave function, but has a different inter-
pretation.

Analytic continuation Replacing in the action (4.111)

t = −iτ (4.120)∫
x

= −i
∫
dτd3~x (4.121)

∂tφ = i∂τφ (4.122)

we get

S =

∫
dτd3x[φ∗

(
∂τ −

∆

2M

)
φ+

λ

2
(φ∗φ)2 + λδϕ∗ϕ]

This is precisely the action for the T → 0 limit (µ = 0) for thermal equilibrium! Thus the (euclidean)
action S for two models, one for the real time evolution, the other for the T = 0 limit of thermal
equilibrium, are related by analytic continuation. Note that SM is not the analytic continuation of
S, but rather related to S by a fixed definition. The sign of SM is of historical origin. For Fourier
transformation in momentum space

ω̃τ = ωM t = −iωMτ (4.123)

ωM = iω̃ ≡ q0 (4.124)
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Analytic Continuation: Compute quantities first in euclidean space.(T −→ 0 limit of thermal
equilibrium). Obtain correlation functions in momentum space. Continue the correlation functions
analytically to Minkowski space.

ω̃ → −iq0 (4.125)

ω̃2 → −q02 = q0q0η
00 = q0q0 (4.126)

relativistic theory
ω̃2 + ~q2 → q0q0 + qiqi = qµqµ = q2 (4.127)

q2E → q2M (4.128)

Big advantage : euclidean functional integral well defined! Numerical simulations etc. possible.

4.5 Expectation values of time ordered operators

Heisenberg picture in quantum mechanics. ÂH(t) : Heisenberg operators, depend on time.

ÂH(t) = U†(t, tin)ÂsU(t, tin), Âs = operator in Schrodinger picture (4.129)

Consider for t2 ≥ t1

ÂH(t2)B̂H(t1) = U†(t2, tinÂsU(t2, tin)U
†(t1, tin)B̂sU(t1, tin) (4.130)

and use
U†(t1, t2) = U(t2, t1) (4.131)

U(t3, t2)U(t2, t1) = U(t3, t1). (4.132)

With
U(t2, tin)U

†(t1, tin) = U(t2, t1)U(t1, tin).U
†(t1, tin) = U(t2, t1) (4.133)

one has
ÂH(t2)B̂H(t1) = U†(t2, tinÂsU(t2, t1)B̂sU(t1, tin) (4.134)

. In the Heisenberg picture, one keeps fixed |ψ〉 = |ψ(tin)〉 and describes the time evolution by the
t-dependence of the Heisenberg operators. The transition amplitude

〈φ(tin)|ÂH(t2)B̂H(t1)|ψ(tin)〉 = 〈A(t2)B(t1)〉φψ (4.135)

reads in the Schrodinger picture

〈A(t2)B(t1)〉φψ = 〈φ(tin)|U†(t2, tin)ÂsU(t2, t1)B̂sU(t1, tin)|ψ(tin)〉

= 〈φ(t2)|ÂsU(t2, t1)B̂s|ψ(t1)〉.
(4.136)

We may insert a complete set of states∫
dχ(t1)|χ(t1)〉〈χ(t1)| = 1, (4.137)

in order to obtain

〈A(t2)B(t1)〉ϕψ =

∫
dχ(t1)〈ϕ(t2)|ÂsU(t2, t1)|χ(t1)〉〈χ(t1)|B̂s|ψ(t1)〉

=

∫
dχ(t1)〈ϕ(t2)|Âs|χ(t2)〉〈χ(t1)|B̂s|ψ(t1)〉

(4.138)

This has an intuitive interpretation: The transition amplitudes are evaluated for B at time t1 be-
tween ψ(t1) and arbitrary intermediate states χ(t1). Then χ(t1) propagates in time to χ(t2), and
one evaluates the transition amplitude at t2 of A between χ(t2) and φ(t2). One finally sums over
intermediate states.
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Propagator Consider an initial vacuum state |0〉 for ϕ and ψ,

|ψ(tin)〉 = |0〉, |ϕ(tin)〉 = |0〉 (4.139)

Take for B̂s the creation operator a†(~x) which creates a particle at position ~x, and for Âs the
annihilation operator a(~x′) for a particle at ~x′. The state

a†(~x)U(t1, tin)|0〉 = |(~x, t1); t1〉 (4.140)

is a one particle state, where the particle sits at ~x at the time t1. For t > t1 the particle will move.
The wave function changes in the Schrodinger picture.

|(~x, t1)t〉 = U(t, t1)|(~x, t1); t1〉 (4.141)

Note that for |(~x, t1)t〉 the time argument t1 is a label(together with ~x) specifying which state is
meant. It is not the time argument in the Schrodinger evolution of this wave function. The latter
is given by t.
The transition amplitude at a given time t with a one particle state |(~y, t2); t〉 determines the
probability to find a particle that was at ~x at time t1 to be a particle that is at ~y at time t2. It
reads

G(~y, t2; ~x, t1) = 〈(~y, t2); t|(~x, t1); t〉. (4.142)

Take t = t2:
G(~y, t2; ~x, t1) = 〈0|U†(t2, tin)a(~y)U(t2, t1)a

†(~x)U(t1, tin)|0〉. (4.143)

In the Heisenberg picture this reads

G(~y, t2; ~x, t1) = 〈0|aH(~y, t2)a
†
H(~x, t1)|0〉. (4.144)

The transition amplitude G is called the propagator or Green’s function. It is a central quantity in
quantum field theory.

One particle wave function A one particle wave function at time t is a superposition

ψ1(t)〉 =
∫
~x

ϕ(~x, t)|(~x, t); t〉. (4.145)

The position representation of the one-particle wave function ϕ(~x, t) is defined by

ϕ(~x, t) = 〈(~x, t); t|ψ1(t)〉 (4.146)

Proof

〈(~x, t); t|ψ1(t)〉 =
∫
y

〈(~x, t); t|ϕ(~y, t)|(~y, t); t〉

=

∫
y

ϕ(y, t)〈(~x, t); t|(~y, t); t〉

=

∫
y

ϕ(y, t)δ(~x− ~y)

= ϕ(~x, t)

(4.147)
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Evolution The time evolution of a one particle wave function can be found from the time evolution
of |(~x, t1); t〉

ϕ(~y, t2) = 〈(~y, t2); t2|ψ(t2)〉

=

∫
~x

ϕ(~x, t1)〈(~y, t2); t2|(~x, t1); t2〉

=

∫
~x

G(~y, t2; ~x, t1)ϕ(~x.t1)

(4.148)

The propagator G allows one to compute the one-particle wave function at t2 from an initial wave
function at t1. This is Huygens’ principle for the propagation of waves.

Propagator from functional integral We employ the functional integral expression for the
evolution operator in the expression

G(~y, t2; ~x, t1) = 〈0|U†(t2, tin)a(~y)U(t2, t1)a
†(x)U(t1, tin)|0〉

= 〈0|fU(tf , t2)a(~y)U(t2, t1)a
†(x)U(t1, tin)|0〉

(4.149)

where
〈0|f = 〈0|U†(tf , tin), (4.150)

using
U†(tf , tin)U(tf , t2) = U†(t2, tin). (4.151)

One often calls |0〉 = |0〉in the initial vacuum at tin, and |0〉f = U(tf , tin)|0〉in the final vacuum
at tf . (For a time-translation invariant vacuum one has |0〉f = |0〉in.) We have derived before the
functional integral expression for the evolution operator

U(t2, t1) =

∫
dx(t2)

∫
dx(t1)|x(t2)〉F (t2, t1)〈x(t1)| (4.152)

with
F (t2, t1) =

∫
Dϕ(t1 < t′ < t2)exp{−

∫ t2

t1

dtL (t)} (4.153)

The integrals over x(t2) and x(t1) are not yet included in
∫
Dϕ(t1 < t′ < t2). Recall

x̂ = 1√
2
(a† + a), p̂ = i√

2
(a† − a) (4.154)

x̂|x(t)〉 = x(t)|x(t)〉, p̂|p(t)〉 = p(t)|p(t)〉 (4.155)

a = 1√
2
(x̂+ ip̂), a† = 1√

2
(x̂− ip̂) (4.156)

For the expression

U(t3, t2)ÂU(t2, t1) =

∫
dx(t3) dx

′(t2) dx(t2) dx(t1)|x(t3)〉

· F (t3, t2)〈x′(t2)|Â|x(t2)〉F (t2, t1)〉x(t1)|
(4.157)

we need the matrix element

〈x′(t2)|Â|x(t2)〉 =
∫

dp
2π (t2)〈x

′(t2)|p(t2)〉〈p(t2)|Â|x(t2)〉. (4.158)

For Â depending on a† and a replace

a→ 1√
2
(x(t2) + ip(t2)) (4.159)
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a† → 1√
2
(x(t2)− ip(t2)) (4.160)

(If necessary, the ordering of operators has to be performed conveniently.)

⇒ U(t3, t2)ÂU(t2, t1) =

∫
dx(t3)dx(t1)|x(t3)〉

∫
Dϕ(t1 < t′ < t3)

· exp
{
−
∫ t3

t1

dt′L (t′)

}
A(x(t2), p(t2))〈x(t1)|

(4.161)

The operator Â at t2 leads to the insertion of a function A(t2) into functional integral.
Recall the inverse: an observable A(t) in the functional integral results in the insertion of an oper-
ator Â in the chain of transfer matrices.
We have been here a bit vague with the precise choice of integrations. In a precise discrete formu-
lation one replaces

〈xj+1|e−i∆tĤ |xj〉 by 〈xj+1|e−i∆tĤÂ|xj〉 (4.162)

at the appropriate place in the chain.
We can now follow A(x(t2), p(t2)) through the chain of variable transformations:

xj → x̃n → 1√
2
(ϕn + ϕ∗−n)→ 1√

2
(ϕ(t) + ϕ∗(t)) (4.163)

pj → p̃n → − i√
2
(ϕn − ϕ∗−n)→ − i√

2
(ϕ(t)− ϕ∗(t)), (4.164)

resulting in the simple replacement rule

a→ ϕ(t) , a† → ϕ∗(t). (4.165)

This yields for the correlation function

G(~y, t2, ~x, t1) = Z−1
∫
Dϕ e−S[ϕ]ϕ(~y, t2)ϕ

∗(~x, t1) ≡ 〈ϕ(~y, t2)ϕ∗(~x, t1)〉. (4.166)

For complex functional integrals in Minkowski space we define expectation values similar to classical
statistical physics

〈A〉 = Z−1
∫
Dϕ e−S[ϕ]A[ϕ] (4.167)

Z =

∫
Dϕ e−S[ϕ]. (4.168)

Remarks:
-Origin of the normalization factor Z. We have not paid much attention to the normalization of
the wave function, the additive normalization of the action, and the formal boundary terms. All
this is accounted for by Z−1.
- Since A[ϕ] is a function(functional) of ϕ, variable transformations are straightforward.(No com-
plications with commutator relations as for a, a†. The Fourier transform of correlation function
reads

G(~q, t2; ~p, t1) =

∫
y

∫
x

e−i~q~y ei~p~x G(~y, t2; ~x, t1) (4.169)

Translation symmetry implies
G ∼ δ(~q − ~p). (4.170)

- So far we have assumed implicitly that the vacuum is trivial. In general 〈ϕ(~x, t)〉 may be different
from zero. A more general definition of the (connected) correlation function is given by

G(~y, t2; ~x, t1) = 〈δϕ(~y, t2)δϕ(~x, t1)〉, δϕ = ϕ− 〈ϕ〉 (4.171)
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Definition of quantum field theory A quantum field theory is defined by
(1) Choice of fields ϕ
(2) Action as functional of fields S[ϕ]
(3) Measure

∫
Dϕ

Correlation function is defined by

Gαβ = 〈ϕαϕ∗β〉 − 〈ϕα〉〈ϕ∗β〉, (4.172)

with α, β collective indices, e.g. α = (~x, t) or (~p, t).

No need of knowledge of vacuum. This is important, since the precise properties of the vacuum for
interacting theories are not known.

Chains of operators Consider for tn > tn−1 > .....t2 > t1 a chain of Heisenberg operators

G̃ = 〈0|Â(n)
H (tn)Â

(n−1)
H (tn−1) . . . Â

(2)
H (t2)Â

(1)
H (t1)|0〉 (4.173)

The Green’s function is a special case

G = 〈0|aH(t2)a
†
H(t1)|0〉. (4.174)

In complete analogy one finds the functional integral expression

G̃ = Z−1
∫

Dϕ e−SĀ = 〈A〉 (4.175)

for the observable
Ā = A(tn)A(tn−1) · · ·A(t2)A(t1) (4.176)

with
A(tn) = A(ϕ∗(tn), ϕ(tn)). (4.177)

Time ordering The product A(t′)A(t) = A(t)A(t′) is commutative. The product ÂH(t′)ÂH(t)

in general not. What happens to commutation relations?
Define the time order operator T by putting in a product of two Heisenberg operators the one with
larger time argument to the left. e.g. for t2 > t1

T (Â
(2)
H (t2)Â

(1)
H (t1)) = Â

(2)
H (t2)Â

(1)
H (t1)

T (Â
(1)
H (t1)Â

(2)
H (t2)) = Â

(2)
H (t2)Â

(1)
H (t1).

(4.178)

The time ordered operator product is commutative. Generalize to products with several factors.

〈0|T (ÂH)|0〉 = 〈A〉 (4.179)

On the left one has an operator expression, and on the right functional integral expression.

Transition amplitude for multiparticle states Consider two particles at t1 with momenta ~p1
and ~p2, and compute the transition amplitude to a two particle state at t2 > t1 with momenta ~p3
and ~p4.

G̃2,2 = 〈0|aH(~p4, t2)aH(~p3, t2)a
†
H(~p2, t1)a

†
H(~p1, t1)|0〉

= 〈ϕ(~p4, t2)ϕ(~p3, t2)ϕ∗(~p2, t1)ϕ∗(~p1, t1)〉
(4.180)

This is a four-point function. It is a basic element of scattering theory.
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5 Relativistic scalar fields and O(N)-models

5.1 Lorentz invariant action and antiparticles

Neutral relativistic scalar fields are the neutral pion π0 in QCD, or the inflaton or cosmon. A scalar
field is a real function χ(~x, t). In principle, its expectation value can be measured, similar to the
electric or magnetic field. Complex scalar fields are the charged pions and the Kaons, represented
by a complex scalar field χ(~x, t). An important field is the Higgs-doublet, represented by a two-
component complex scalar field χi(t), i=1,2.

Action The action has to respect the symmetries of the model. For a fundamental theory of
elementary particles they always include the Lorentz-symmetry and translations in space and time
(Poincare-symmetry). The functional measure is the canonical measure for real or complex functions
in four dimensional space. χ(x) = χ(xµ), xµ = (t, ~x).

We consider local actions of the form

S =

∫
x

L (x),

∫
x

=

∫
dt d3~x. (5.1)

L (x) = Lkin + iV + . . . (5.2)

Kinetic term The kinetic term Lkin involves derivatives of fields. For non-relativistic free atoms
we have found

Lkin = χ∗(x)∂tχ(x) +
i

2M ∂iχ
∗(x)∂iχ(x), ∂i =

∂
∂xi = ~∇i (5.3)

The two space derivatives are needed for rotation symmetry. Lorentz-symmetry needs again two
derivatives,

Lkin = i∂µχ∗(x)∂µχ(x), (5.4)

with
∂µ = (

∂

∂t
, ~∇) = (∂0, ∂i), (5.5)

∂µ = ηµν∂ν , ηµν =


−1

1

1

1

 . (5.6)

The scalar product of two four-vectors is invariant. We conclude that relativistic theories of scalars
involves two time derivatives. The kinetic term can be formulated for real fields in the same way.
Writing a complex field as two real fields (χ = 1√

2
(χ1 + iχ2)) one has

Lkin = i
2

N∑
a=1

∂µχa(x)∂µχa(x). (5.7)

Here N = 1 for a real scalar, N = 2 for a complex scalar and N = 4 for the Higgs doublet.

Potential The potential V involves no derivatives. It is a function of the fields

V (x) = V (χ(x)) = V (χ). (5.8)

Internal symmetries yield further restrictions. Charge conservation corresponds to the symmetry

χ→ eiαχ. (5.9)

The potential can only depend on

ρ = χ∗χ = 1
2 (χ

2
1 + χ2

2). (5.10)
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For the Higgs doublet, the symmetry is SU(2) such that

ρ = χ†χ = 1
2

4∑
a=1

χ2
a. (5.11)

Often one can expand
V (ρ) = µ2ρ+ 1

2λρ
2 + . . . (5.12)

One infers that
Lkin + V (ρ) (5.13)

has SO(N)- symmetry.

Two fields with one time-derivative Let us recall that differential equations with two deriva-
tives = two differential equations with one derivative. One field with two time-derivatives are
equivalent to two fields with one time derivative.
• We consider a free relativistic scalar field (complex):

L = i(∂µχ∗∂µχ+M2χ∗χ) (5.14)

In momentum space, ∂t = ∂0 = −∂0, one has

Lp = −i∂tχ∗∂tχ+ i(p2 +M2)χ∗χ (5.15)

Z =

∫
Dχ e−

∫
dt

∫
~p

Lp(t) (5.16)

We treat every ~p mode separately. Let us insert a unit factor∫
Dπ exp{−i(∂tχ∗ − π∗)(∂tχ− π)} = const = 1 (5.17)

such that

Z =

∫
DχDπ exp

[
−
∫
t

{
−i∂tχ∗∂tχ+ i(p2 +M2)χ∗χ

+ i∂tχ
∗∂tχ− i∂tχ∗π − iπ∗∂tχ+ iπ∗π

}]
.

(5.18)

This eliminates the term with two derivatives. What remains are two complex fields χ and π with
one time derivative,

Z =

∫
Dχ Dπ e−

∫
t

L , (5.19)

where, after doing a partial integration.

L = iχ∗∂tπ − iπ∗∂tχ+ i(p2 +M2)χ∗χ+ iπ∗π (5.20)

Perform next a variable transformation

χ(t) = 1√
2
(p2 +M2)−

1
4 (ϕ1(t) + ϕ2(−t)),

π(t) = − i√
2
(p2 +M2)

1
4 (ϕ1(t)− ϕ2(−t)).

(5.21)
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This yields

(p2 +M2)χ∗(t)χ(t) = 1
2 (p

2 +M2)
1
2 [ϕ∗1(t)ϕ1(t) + ϕ∗2(−t)ϕ2(−t)

+ϕ∗1(t)ϕ2(−t) + ϕ∗2(t)ϕ1(t)] ,

π∗(t)π(t) = 1
2 (p

2 +M2)
1
2 [ϕ∗1(t)ϕ1(t) + ϕ∗2(−t)ϕ2(−t)

−ϕ∗1(t)ϕ2(−t)− ϕ∗2(−t)ϕ1(t)] ,

i
(
(p2 +M2)χ∗χ+ π∗π

)
= i(p2 +M2)

1
2 [ϕ∗1(t)ϕ1(t) + ϕ∗2(−t)ϕ2(−t)] ,

(5.22)

and

i (χ∗∂tπ − π∗∂tχ) = 1
2 {(ϕ

∗
1(t) + ϕ∗2(−t))∂t(ϕ1(t)− ϕ2(−t))

+ (ϕ∗1(t)− ϕ∗2(−t))∂t(ϕ1(t) + ϕ2(−t))}
= ϕ∗1(t)∂tϕ1(t)− ϕ∗2(−t)∂tϕ2(−t).

(5.23)

Under the t-integral one can replace −ϕ∗2(−t)∂tϕ2(−t)→ ϕ∗2(t)∂tϕ2(t).
Taking the terms together we find the action for two particles with dispersion relation E =√

p2 +M2

S =

∫
dt
{
ϕ∗1∂tϕ1 + ϕ∗2∂tϕ2 − i

√
p2 +M2(ϕ∗1ϕ1 + ϕ∗2ϕ2)

}
(5.24)

where ϕi = ϕi(t).

Antiparticles The field χ with two time-derivatives describes a pair of fields ϕ1, ϕ2 with one time-
derivative. One field is the antiparticle of the other. Take χ to be a charged field with coupling to
the electromagnetic field.

∂µ → Dµχ = (∂µ − ieAµ)χ. (5.25)

Here Aµ is for this purpose an external field. Take Ai = 0 and constant electric potential A0. This
adds to L an additional term

∆L = eA0 [χ
∗(t)π(t)− π∗(t)χ(t)] (5.26)

One obtains after transforming to ϕ1 and ϕ2

∆L = eA0

[
− i

2 (ϕ
∗
1(t) + ϕ∗2(−t))(ϕ1(t)− ϕ2(−t))− i

2 (ϕ
∗
1(t)− ϕ∗2(t))(ϕ1(t) + ϕ2(−t))

]
= −ieA0(ϕ

∗
1(t)ϕ1(t)− ϕ∗2(−t)ϕ2(−t))

(5.27)

or
S =

∫
dt {ϕ∗1(∂t − ieA0)ϕ1 + ϕ∗2(∂t + ieA0)ϕ2 + . . .} (5.28)

We conclude that ϕ1 and ϕ2 have opposite electric charge. Same mass, opposite charge means on
antiparticle
We conclude that a complex scalar field with two derivatives describes a particle and an antiparticle.

5.2 Unified Scalar field theories

Euclidean space Analytic continuation yields

ηµν∂µ∂ν → δµν∂µ∂ν (5.29)

Another factor arises from dt = −idτ. In euclidean space the action therefore reads

⇒ S =

∫
x

1
2

∑
a

∂µχa∂µχa + V (ρ). (5.30)
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where now ∂µ = δµν∂ν and
∫
x
=
∫
dt
∫
d3~x. This is the four-dimensional O(N)-model introduced

in lecture 2. The euclidean action is also the one that appears for the T → 0 limit of thermal
equilibrium, while for T > 0 the τ -integration becomes periodic with period τ .
In euclidean space, the Lorentz-symmetry SO(1,3) gets replaced by the four dimensional rotations
SO(4). This symmetry is broken for T > 0 since space and time are no longer treated equally. One
should distinguish two different symmetries: SO(N) : internal symmetry, SO(d): space symmetry.

Unified description of scalar theories The euclidean O(N)-models in arbitrary dimension d,
admit a classical statistical probability distribution, with real action

p = Z−1e−S , Z =

∫
Dϕe−S . (5.31)

They can be simulated on a computer.

d = 1, 2, 3 models of classical statistical systems in d-dimensions
N = 3 magnets, 〈χa(x)〉 is magnetisation (order parameter).
N = 1 Ising type models.

N = 2, d = 2 Two dimensional x-y model with Kosterlitz-Thouless phase transition.
d = 4 relativistic scalar theories at T = 0.

If the euclidean model is solved, the n-point functions can be analytically continued to Minkowski
space

q0E = q0E = −iq0M = iq0M . (5.32)

n-point functions The task is the computation of n-point functions

G
(n)
ab...f (x1 . . . xn) = 〈χa(x1)χb(x2) · · ·χf (xn)〉, x ≡ x

µ (5.33)

or in Fourier space
G(n)(p1 . . . pn), p ≡ pµ (5.34)

Example of two point function

Gab(p1, p2) = 〈χa(p1)χb(p2)〉 − 〈χa(p1)〉〈χb(p2)〉 = G(p1)δ(p1 + p2)δab (5.35)

It can only depend on one momentum by virtue of d-dimensional translation symmetry. SO(d)-
rotations imply that G can only depend on

p2 = pµpνδ
µν , i.e. G(pµ) = G(p2) (5.36)

Analytic continuation does not change G(p2),one only has to switch to p2 = pµp
νηµν in momentum

space.

5.3 Propagator for free field

S =

∫
x

{
1
2∂

µχa∂µχa +
1
2M

2χaχa
}

(5.37)

Sum of independent pieces, each particle can be treated separately. Consider for simplicity one
complex field

S =

∫
x

∂µχ∗∂µχ+M2χ∗χ, (5.38)

and transform to Fourier space

S =

∫
q

(q2 +M2)χ∗(q)χ(q),

∫
q

=

∫
ddq

(2π)d
. (5.39)
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The propagator is defined as

G(p, q) = 〈χ(p)χ∗(q)〉 − 〈χ(p)〉〈χ∗(q)〉. (5.40)

We use a torus with discrete modes and take the volume to infinity at the end. For

S =
∑
q

(q2 +M2)χ∗(q)χ(q) (5.41)

the expectation value obeys

〈χ(p)〉 = Z−1
∫
Dχ exp(−S)χ(p) = 0. (5.42)

For p 6= q, one finds
〈χ(p)χ∗(q)〉 = Z−1

∫
Dχe−Sχ(p)χ∗(q) = 0. (5.43)

Only for equal momenta p = q the two point function differs from zero,

〈χ(q)χ∗(q)〉 = Z−1
∫
Dχe−Sχ(q)χ∗(q)

=

∫
dχ(q)e−(q

2+M2)χ∗(q)χ(q)χ∗(q)χ(q)∫
dχ(q)e−(q2+M2)χ∗(q)χ(q)

We can first compute the Gaussian integral

Z(M2) =

∫
dχ(q)e−(q

2+M2)χ∗(q)χ(q), (5.44)

and then take the derivative with respect to M2,

〈χ(q)χ∗(q)〉 = − ∂
∂M2 lnZ(M

2). (5.45)

The Gaussian integral has the solution

Z(M2) = π
q2+M2 , (5.46)

− lnZ = ln(q2 +M2)− lnπ, (5.47)
− ∂

∂M2 lnZ = 1
q2+M2 . (5.48)

We can summarise for the free propagator

G(q, p) = 1
q2+M2 δ(q − p). (5.49)

Propagator in Minkowski space The analytic continuation of the free euclidean propagator is
straightforward in momentum space:

G(p, q) = 1
(q2+M2)δ(p− q)

= 1
qµqµ+M2 δ(p− q)

= 1
−q20+~q2+M2 δ(p− q).

This propagator has poles at
q0 = ±

√
~q2 +M2. (5.50)

This corresponds to a particle and its antiparticle.
The solutions of the free field equations are

χ+ = e−i
√
q2+M2t (5.51)

χ− = e+i
√
q2+M2t = e−i

√
q2+M2 t̃, t̃ = −t (5.52)

Antiparticles appear as particles propagating backwards in time
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5.4 Magnetisation in classical statistics

Action σa(x) : magnets at every point x can be viewed as elementary magnets averaged over
small volumes. The Hamiltonian with next neighbour interaction reads in the continuum limit

H =

∫
x

K∂iσa(x)∂iσα(x) + cσa(x)σa(x) + d(σa(x)σa(x))
2 −Bσa(x). (5.53)

We take K > 0. This tends to align magnets at neighbouring points. The magnetic field B breaks
the O(N)-symmetry.
Symmetric magnets N=3, d=3
Asymmetric magnets N=2 or N=1
We have the classical partition function with

Z =

∫
Dσ e−βH =

∫
Dσe−S (5.54)

where the classical action is
S = βH (5.55)

Choose fields
σa(x) =

√
1
βKχa(x). (5.56)

With this normalisation the action reads

S =

∫
x

∂iχa(x)∂iχa(x) +
c
Kχa(x)χa(x) +

d
βK2 (χa(x)χa(x))

2 − B
√
β

K χa(x) (5.57)

or
S ≡

∫
x

∂iχa(x)∂iχa(x) +
m2

2 χa(x)χa(x) +
λ
8 (χa(x)χa(x))

2 − Jχa(x) (5.58)

The parameter m2 can be positive or negative. The name is purely historical, in analogy to the
mass term for a relativistic particle.

Magnetisation For m2 > 0 the microscopic magnets have for J = 0 a preferred value χa = 0.

For m2 < 0 the preferred value differs from zero for J=0,
The minimum of the potential

V0(ρ) = m2ρ+ λ
2 ρ

2, ρ = 1
2ϕaϕa, (5.59)

obeys ∂V0

∂ρ = m2 + λρ = 0. For m2 < 0 it occurs at ρ0 = −m
2

λ . A nonvanishing magnetic field
J prefers a certain direction. The minimum of V = m2ρ + λ

2 ρ
2 − ϕaJa defines the microscopic

magnetisation.
Question: What is the macroscopic magnetisation < χ(x) > in function of the magnetic field

J?
Fluctuations play a role! We consider m2 < 0 where things are most interesting. The factor

e−S is maximal if S is minimal. One first looks for the minimum of S and expands around it. The
minimum of S is given by the microscopic magnetisation. Take J = (J1, 0, 0) The configuration
with constant χ, χa(x) = χ0 minimises the kinetic term. Look for minimum of V ; it occurs in the
direction χ1

V = 1
2m

2χ2
1 +

λ
8χ

4
1 − Jχ1. (5.60)

Minimum of V
∂V
∂χ = m2χ1 +

λ
2χ

3
1 − J = 0. (5.61)
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If we take J > 0 a positive χ10 is preferred, being the minimum of V .
For small J > 0 one has

λ
2χ

2
10 = −m2, χ10 =

√
− 2m2

λ . (5.62)
Fluctuations tend to wash out the microscopic magnetisation. How strong is this effect?
Compute Z(J).
Then

∂lnZ
∂J =

〈∫
x

χ1

〉
= Ω〈χ1〉 = M̃ (5.63)

Here M̃ is the magnetisation in appropriate units and Ω the volume. We are interested here in
small J → 0.
Free Energy:

⇒ F = −T ln Z = − 1
β ln Z. (5.64)

If M̃(J → 0) 6= 0, one has spontaneous symmetry breaking.
Magnetisation in absence of magnetic field (J = 0):

V = λ
2 (ρ− ρ0)

2, ρ0 = −m
2

λ

ρ = χ∗χ = 1
2 (χ

2
1 + χ2

2)

expand around χ10, ρ0 = 1
2χ

2
10 (5.65)

χ1 = χ10 + δχ1

1
2χ

2
1 = ρ0 + χ10δχ1 +

1
2δχ

2
1

ρ− ρ0 = χ10δχ1 +
1
2δχ

2
1 +

1
2χ

2
2

Keep only terms quadratic in the fields
λ
2 (ρ− ρ0)

2 = λ
2χ

2
10δχ

2
1 = λρ0δχ

2
1

δ χ1 behaves as massive field, with M2 = 2λρ0 (5.66)
and propagator

G = 1
q2+2λρ0

χ2 behaves as massless field (only kinetic term) (5.67)
with propagator

G = 1
q2 (5.68)

The massless field is called a Goldstone boson.
Add small J

V = λ
2 (ρ− ρ0)

2 − Jχ1

= λρ0δχ
2
1 − Jχ10 − Jδχ1

(5.69)

The action takes the form
S = S0 +∆S

S0 = −ΩJχ10 (5.70)

∆S =

∫
x

1
2δχ1(x)(−∆+ 2λρ0)δχ1(x)− J δχ1(x) +

1
2χ2(x)(−∆)χ2(x)

Correspondingly, one obtains for the partition function in lowest order

Z0 = e−S0 = exp(ΩJχ10)

lnZ0 = ΩJχ10 (5.71)
M = ∂ lnZ0

∂J = Ωχ10

What are the corrections from ∆S? In later lectures.
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6 Non-relativistic bosons

6.1 Functional integral for spinless atoms

From relativistic to non-relativistic scalar fields. In this section we go from a relativistic
quantum field theory back to non-relativistic physics but in a quantum field theoretic formalism.
This non-relativistic QFT is in the few-body limit equivalent to quantum mechanics for a few
particles but also has interesting applications to condensed matter physics (many body quantum
theory) and it is interesting conceptually. We start from the action of a complex, relativistic scalar
field in Minkowski space

S =

∫
dtd3x

{
−∂µφ∗∂µφ−m2φ∗φ− λ

2
(φ∗φ)2

}
(6.1)

The quadratic part can be written in Fourier space with (px = −p0x0 + ~p~x)

φ(x) =

∫
d4p

(2π)4
eipxφ(p), φ∗(x) =

∫
d4p

(2π)4
e−ipxφ∗(p), (6.2)

as

S2 =−
∫

d4p

(2π)4
{
φ∗(p)

[
−(p0)2 + ~p2 +m2

]
φ(p)

}
=−

∫
d4p

(2π)4

{
φ∗(p)

[
−(p0 +

√
~p2 +m2)(p0 +

√
~p2 +m2)

]
φ(p)

}
.

(6.3)

One observes that the so-called inverse propagator has two zero-crossings, one at p0 =
√
~p2 +m2

and one at p0 = −
√
~p2 +m2. At this points the quadratic part of the action become station-

ary in the sense δ
δφ∗(p)S2 = 0. The zero-crossings also correspond to poles of the propagator.

These so-called on-shell relations give the relation between frequency and momentum for propa-
gating, particle-type excitations of the theory. In fact, p0 =

√
~p2 +m2 gives the one for particles,

p0 = −
√
~p2 +m2 the one of anti-particles. In the non-relativistic theory, anti-particle excitations

are absent. Intuitively, one assumes that the fields are close to fulfilling the dispersion relation for
particles, p0 =

√
~p2 +m2 which is for large m2 rather far from the frequency of anti-particles. One

can therefore replace in a first step

p0 +
√
~p2 +m2 → 2

√
~p2 +m2 ≈ 2m. (6.4)

Moreover, one can expand the dispersion relation for particles for m2 � ~p2,

p0 =
√
~p2 +m2 = m+

~p2

2m
+ . . . (6.5)

This leads us to a quadratic action of the form

S2 = −
∫

ddp

(2π)4

{
φ∗(p)

(
−p0 +m+

~p2

2m

)
2mφ(p)

}
, (6.6)

or for the full action in position space

S =

∫
dtd3x

{
φ∗

(
i∂t −m+

~∇2

2m

)
2m φ− λ

2
(φ∗φ)2

}
. (6.7)

It is now convenient to introduce rescaled fields by setting

φ(t, ~x) =
1√
2m

e−i(m−V0)tϕ(t, ~x). (6.8)
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The action becomes then

S =

∫
dtd3x

{
ϕ∗

(
i∂t − V0 +

~∇2

2m

)
ϕ− λ

8m2
(ϕ∗ϕ)2

}
. (6.9)

The dispersion relation is now with

ϕ(t, ~x) =

∫
dω

2π

d3p

(2π)3
e−iωt+i~pxϕ(ω, ~p), (6.10)

given by

ω = V0 +
~p2

2m
. (6.11)

This corresponds to the energy of a non-relativistic particle where V0 is an arbitrary normalization
constant corresponding to the offset of an external potential. The action in equation (6.9) describes
a non-relativistic field theory for a complex scalar field. As we will see, one can obtain quantum
mechanics from there but it is also the starting point for a description of superfluidity.

Symmetries of non-relativistic theory. The non-relativistic action in equation (6.9) has a
number of symmetries that are interesting to discuss. First we have translations in space and time
as well as rotations in space as in the relativistic case. There is also a global U(1) internal symmetry,

ϕ(x)→ eiαϕ(x), ϕ∗(x)→ e−iαϕ∗(x). (6.12)

By Noether’s theorem this symmetry is related to particle number conservation (exercise).

Time-dependent U(1) symmetry. There is also an interesting extension of the global U(1)
symmetry. One can in fact make it time-dependent according to

ϕ(x)→ eiα+βtϕ(x), ϕ∗(x)→ e−iα+βtϕ∗(x). (6.13)

All terms in the action are invariant except for

ϕ∗i∂tϕ→ ϕ∗e−i(α+βt) i∂t e
i(α+βt)ϕ(x) = ϕ∗(i∂t − β)ϕ. (6.14)

However, if we also change V0 → V0 − β we have for the combination

ϕ∗(i∂t − V0)ϕ→ ϕ∗(i∂t − β − V0 + β)ϕ = ϕ∗(i∂t − V0)ϕ. (6.15)

This shows that

ϕ(x)→ ei(α+βt)ϕ, ϕ∗ → e−i(α+βt)ϕ∗, V0 → V0 − β, (6.16)

is in fact another symmetry of the action in equationeq:nonrelativisticactionScalar. One can say
here that (i∂t − V0) acts like a covariant derivative. This says that (i∂t − V0)ϕ transforms in the
same (covariant) way as ϕ itself. The physical meaning of this transformation is a change in the
absolute energy scale, which is possible in non-relativistic physics.

Galilei transformation. Note that the action in equation (6.9) is not invariant under Lorentz
transformations any more. This is directly clear because derivatives with respect to time and space
do not enter in an equal way. However, non-relativistic physics is invariant under another kind of
space-time transformations, namely Galilei boosts,

t→ t, (6.17)
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~x→ ~x+ ~vt. (6.18)

One can go to another reference frame that moves relative to the original one with a constant
velocity. How is this transformation realized in the non-relativistic field theory described by equation
(6.9)? This is a little bit complicated and we directly give the transformation law,

ϕ(t, ~x)→ ϕ′(t, ~x) = ei
(
m~v·~x− 1

2m~v
2t
)
ϕ(t, ~x− ~vt). (6.19)

Indeed one can confirm that(
i∂t +

~∇2

2m

)
ϕ(t, ~x)→ ei

(
m~v.~x− 1

2m~v
2t
) [(

i∂t +
~∇2

2m

)
ϕ
]
(t, ~x− ~vt), (6.20)

so that the action (6.9) is invariant under Galilei transformations.

6.2 Spontaneous symmetry breaking: Bose-Einstein condensation and superfluidity

Effective potential. One can write the action in (6.9) also as

S =

∫
dtd3x

{
ϕ∗
(
i∂t +

~∇2

2m

)
ϕ− V (ϕ∗ϕ)

}
, (6.21)

with microscopic potential as a function of ρ = ϕ∗ϕ,

V (ρ) = V0ρ+
λ

2
ρ2 = −µρ+ λ

2
ρ2. (6.22)

At non-vanishing density one has V0 = −µ, where µ is the chemical potential. For, µ > 0 the
minimum of the effective potential is at ρ0 > 0. In a classical approximation where the effect of
fluctuation is neglected, one has the equation of motion following from δS = 0.

Bose-Einstein condensate. If the solution ϕ(x) = φ0 is homogeneous (constant in space and
time), it must correspond to a minimum of the effective potential. Without loss of generality we
can assume φ0 ∈ R and

V ′(ρ0) = −µ+ λρ0 = 0, (6.23)

leads to
φ0 =

√
ρ0 =

√
µ

λ
. (6.24)

Assuming that it survives the effect of quantum fluctuations, such a field expectation value breaks
the global U(1) symmetry spontaneously, similar to magnetization. This phenomenon is known as
Bose-Einstein condensation. One can see this as a macroscopic manifestation of quantum physics.
The mode with vanishing momentum ~p = 0 has a macroscopically large occupation number, which
is possible for bosonic particles. On the other side, it arises here in a classical approximation to the
quantum field theory described by the action in eq. (6.9). In this sense, a Bose-Einstein condensate
can also be seen as a classical field, similar to the electro-magnetic field, for example.

Bogoliulov excitations. It is also interesting to study small perturbations around the homoge-
neous field value φ0. Let us write

ϕ(x) = φ0 +
1√
2
[φ1(x) + i φ2(x)] , (6.25)

with real fields φ1(x) and φ2(x). The action in eq. (6.21) becomes (up to total derivatives)

S =

∫
dt d3x

φ2∂tφ1 + 1

2

2∑
j=1

φj
~∇2

2m
φj − V

(
φ20 +

√
2φ0φ1 +

1
2φ

2
1 +

1
2φ

2
2

) . (6.26)
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It is instructive to expand to quadratic order in the deviations from a homogeneous field φ1 and
φ2. The quadratic part of the action reads

S2 =

∫
dt d3x

{
−1

2
(φ1, φ2)

(
− ~∇2

2m + 2λφ20 ∂t

−∂t − ~∇2

2m

)(
φ1
φ2

)}
. (6.27)

In momentum space, the matrix between the fields becomes

G−1(ω, ~p) =

(
~p2

2m + 2λφ20 −iω
iω ~p2

2m

)
. (6.28)

In cases where the inverse propagator is a matrix, this holds also for the propagator. When the
determinant of the inverse propagator has a zero-crossing, the propagator has a pole. This defines
the dispersion relation for quasi-particle excitations,

detG−1(ω, ~p) = 0. (6.29)

Here this leads to
− ω2 +

(
~p2

2m
+ 2λφ20

)
~p2

2m
= 0, (6.30)

or

ω =

√(
~p2

2m
+ 2λφ20

)
~p2

2m
. (6.31)

This is known as Bogoliubov dispersion relation.
For small momenta, such that

~p2

2m
� 2λφ20, (6.32)

one finds

ω ≈
√
λφ20
m
|~p|. (6.33)

In contrast, for
~p2

2m
� 2λφ20, (6.34)

one recovers the usual dispersion relation for non-relativistic particles

ω ≈ ~p2

2m
. (6.35)

The low-momentum region describes phonons (quasi-particles of sound excitations), while the large-
momentum region describes normal particles.

Superfluidity. The fact that the dispersion relation is linear for small momenta is also responsible
for another interesting phenomenon, namely superfluidity, a fluid motion without viscosity.

7 Scattering

In this section we will discuss a rather useful concept in quantum field theory – the S-matrix. It
describes situations where the incoming state is a perturbation of a symmetric (homogeneous and
isotropic) vacuum state in terms of particle excitations and the outgoing state similarly. We are
interested in calculating the transition amplitude, and subsequently transition probability, between
such few-particle states. An important example is the scattering of two particles with a certain
center-of-mass energy. This is an experimental situation in many high energy laboratories, for
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Figure 3. Bogoliubov dispersion relation as in eq. (6.31) (solid line). Also shown is the low momentum
approximation (6.33) (dashed line) and the large-momentum approximation (6.35) (dotted line).

example at CERN. The final states consists again of a few particles (although “few” might be rather
many if the collision energy is high). Another interesting example is a single incoming particle, or
resonance, that can be unstable and decay into other particles. For example π+ → µ+ + νµ. As we
will discuss later on in more detail, particles as excitations of quantum fields are actually closely
connected with symmetries of space-time, in particular translations in space and time as well as
Lorentz transformations including rotations. (In the non-relativistic limit, Lorentz transformations
are replaced by Galilei transformations). The standard application of the S-matrix concept assumes
therefore that the vacuum state has these symmetries. The S-matrix is closely connected to the
functional integral. Technically, this connection is somewhat simpler to establish for non-relativistic
quantum field theories. This will be discussed in the following. The relativistic case will be discussed
in full glory in the second part of the lecture course.

7.1 Scattering of non-relativistic bosons

Mode function expansion. Let us recall that one can expand fields in the operator picture as
follows

ϕ(t, ~x) =

∫
~p

v~p(t, ~x) a~p, ϕ†(t, ~x) =

∫
~p

v∗~p(t, ~x) a
†
~p, (7.1)

with
∫
~p
=
∫

d3p
(2π)3 , annihilation operators a~p, creation operators a†~p, and the mode functions

v~p(t, ~x) = e−iω~pt+i~p~x. (7.2)

The dispersion relation in the non-relativistic limit is

ω~p =
~p2

2m
+ V0. (7.3)

Note that in contrast to the relativistic case, the expansion of ϕ(t, ~x) contains no creation operator
and the one of ϕ∗(t, ~x) no annihilation operator. This is a consequence of the absence of anti-
particles.

For the following discussion, it is useful to introduce a scalar product between two functions of
space and time f(t, ~x) and g(t, ~x),

(f, g)t =

∫
d3x {f∗(t, ~x)g(t, ~x} . (7.4)
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The integer goes over the spatial coordinates at fixed time t. Note that if f and g were solutions
of the non-relativistic, single-particle Schrödinger equation, the above scalar product were actually
independent of time t as a consequence of unitarity in non-relativistic quantum mechanics.

The mode functions are normalized with respect to this scalar product as

(v~p, v~p ′)t = (2π)3δ(3)(~p− ~p ′). (7.5)

One can write

a~p =(v~p, ϕ)t =

∫
d3xeiω~pt−i~p~xϕ(t, ~x),

a†~p =(v∗~p, ϕ
∗)t =

∫
d3xeiω~pt−i~p~xϕ∗(t, ~x).

(7.6)

The right hand side depends on time t and it is instructive to take the time derivative,

∂ta~p(t) =

∫
d3x eiω~pt−i~p~x[∂t + iω~p]ϕ(t, ~x)

=

∫
d3x eiω~pt−i~p~x

[
∂t + i

(
~p2

2m + V0

)]
ϕ(t, ~x)

=

∫
d3x eiω~pt−i~p~x

[
∂t + i

(
−

↼

~∇2

2m + V0

)]
ϕ(t, ~x).

(7.7)

We used here first the dispersion relation and expressed them ~p2 as a derivative acting on the mode
function (it acts to the left). In a final step one can use partial integration to make the derivative
operator act to the right,

∂ta~p(t) = i

∫
d3x eiω~pt−i~p~x

[
−i∂t −

~∇2

2m + V0

]
ϕ(t, ~x). (7.8)

This expression confirms that a~p were time-independent if ϕ(t, ~x) were a solution of the one-particle
Schrödinger equation. More general, it is a time-dependent, however. In a similar way one finds
(exercise)

∂ta
†
~p(t) = −i

∫
d3x e−iω~pt+i~p~x

[
i∂t −

~∇2

2m + V0

]
ϕ∗(t, ~x). (7.9)

Incoming states. To construct the S-matrix, we first need incoming and out-going states. In-
coming states can be constructed by the creation operator

a†~p(−∞) = lim
t→−∞

a†~p(t). (7.10)

For example, an incoming two-particle state would be

|~p1, ~p2; in〉 = a†~p1(−∞)a†~p2(−∞)|0〉. (7.11)

Bosonic exchange symmetry. We note as an aside point that these state automatically obey
bosonic exchange symmetry

|~p1, ~p2; in〉 = |~p2, ~p1; in〉, (7.12)

as a consequence of
a†~p1(−∞)a†~p2(−∞) = a†~p2(−∞)a†~p1(−∞). (7.13)
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Fock space. We note also general states of few particles can be constructed as

|ψ; in〉 = C0|0〉+
∫
~p

C1(~p) |~p; in〉+
∫
~p1, ~p2

C2(~p1, ~p2)|~p1, ~p2; in〉+ . . . (7.14)

This is a superposition of vacuum (0 particles), 1-particle states, 2-particle states and so on. The
space of such states is known as Fock space. In the following we will sometimes use an abstract
index α to label all the states in Fock space, i. e. |α; in〉 is a general incoming state. These states
are complete in the sense such that ∑

α

|α; in〉〈α; in| = 1, (7.15)

and normalized such that 〈α; in|β; in〉 = δαβ .

Outgoing states. In a similar way to incoming states one can construct outgoing states with the
operators

a†~p(∞) = lim
t→∞

a†~p(t). (7.16)

For example
|~p1, ~p2; out〉 = a†~p1(∞)a†~p2(∞)|0〉. (7.17)

7.2 The S-matrix

The S-matrix denotes now simply the transition amplitude between incoming and out-going general
states |α; in〉 and |β; out〉,

Sβα = 〈β; out|α; in〉. (7.18)

Because α labels all states in Fock space, the S-matrix is a rather general and powerful object. It
contains the vacuum-to-vacuum transition amplitude as well as transition amplitudes between all
particle-like excited states.

Unitarity of the S-matrix. Let us first prove that the scattering matrix is unitary,

(S†S)αβ =
∑
γ

(S†)αγSγβ

=
∑
j

〈γ; out|α; in〉∗ 〈γ; out|β; in〉

=
∑
j

〈α; in|γ; out〉〈γ; out|β; in〉

= 〈α; in|β; in〉
= δαβ .

(7.19)

We have used here the completeness of the out states∑
j

|γ; out〉〈γ; out| = 1. (7.20)

Conservation laws. The S-matrix respects a number of conservation laws such as for energy
and momentum. There can also be conservation laws for particle numbers, in particular also in
the non-relativistic domain. One distinguishes between elastic collisions where particle numbers do
not change, e.g. 2 → 2, and inelastic collisions, such as 2 → 4. In a non-relativistic theory, such
inelastic processes can occur for bound states, for example two H2 - molecules can scatter into their
constituents

H2 +H2 → 4H. (7.21)
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Connection between outgoing and incoming states. What is the connection between in-
coming and outgoing states? Let us write

a~p(∞)− a~p(−∞) =

∫ ∞
−∞

∂ta~p(t)

= i

∫ ∞
−∞

dt

∫
d3x eiω~pt−i~p~x

[
−i∂t −

~∇2

2m + V0

]
ϕ(t, ~x).

(7.22)

Annihilation operators at asymptotically large incoming and outgoing times differ by an integral
over space-time of the Schrödinger operator acting on the field. In momentum space with (px =

−p0x0 + ~p~x = −p0t+ ~p~x),

ϕ(t, ~x) =

∫
dp0

2ω

d3~p

(2π)3
eipxϕ(p), (7.23)

this would read
a~p(∞)− a~p(−∞) = i

[
−p0 + ~p2

2m
+ V0

]
ϕ(p). (7.24)

In a similar way one finds

a†~p(∞)− a†~p(−∞) = −i
∫ ∞
−∞

dt

∫
d3x e−iω~pt+i~p~x

[
−i∂t −

~∇2

2m + V0

]
ϕ∗(t, ~x)

= −i
[
−p0 + ~p2

2m
+ V0

]
ϕ∗(p).

(7.25)

Relation between S-matrix elements and correlation functions. For concreteness, let us
consider 2→ 2 scattering with incoming state

|~p1, ~p2; in〉 = a†~p1(−∞)a†~p2(−∞)|0〉, (7.26)

and out-going state
|~q1, ~q2; out〉 = a†~q1(∞)a†~q2(∞)|0〉. (7.27)

The S-matrix element can be written as

S~q1~q2,~p1~p2 = 〈~q1, ~q2; out|~p1, ~p2; in〉

= 〈0|T{a~q1(∞) a~q2(∞) a†~p1(−∞) a†~p2(−∞)}|0〉.
(7.28)

We have inserted a time-ordering symbol but the operators are time-ordered already anyway. Now,
one can use

a~q1(∞) = a~q1(−∞) + i

[
−q01 +

~q21
2m

+ V0

]
ψ(q1). (7.29)

However, a~q1(−∞) is moved to the right by time ordering and leads to a vanishing contribution
because of

a~q1(−∞)|0〉 = 0. (7.30)

So, effectively under time ordering, one can replace

a~q1(∞)→ i

[
−q01 +

~q21
2m

+ V0

]
ϕ(q1). (7.31)

By a similar argument, one can replace creation operators for t→ −∞ like

a†~p1(−∞)→ i

[
−p01 +

~p21
2m

+ V0

]
ϕ∗(p1). (7.32)
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The above argument is not fully correct. There is one contribution from the operators a~q(−∞) we
have forgotten here. In fact, the replacements a~q1(∞)→ a~q1(−∞) and a~q2(∞)→ a~q2(−∞) give

〈0|a~q1(−∞) a~q2(−∞) a†~p1(−∞) a~p2(−∞)|0〉. (7.33)

We need to commute the annihilation operators to the right using the commutation relation[
a~q(−∞), a†~p(−∞)

]
= (2π)3δ(3)(~p− ~q). (7.34)

This gives rise to a contribution to the S-matrix element

(2π)6
[
δ(3)(~p1 − ~q1) δ(3)(~p2 − ~q2) + δ(3)(~p1 − ~q2) δ(3)(~p2 − ~q1)

]
. (7.35)

But this is just the “transition” amplitude for the case that no scattering has occurred! There is
always this trivial part of the S-matrix and in fact one can write

Sαβ = δαβ + contributions from interactions. (7.36)

Let us keep this in mind and concentrate on the contribution from interactions in the following.
We obtain thus for the S-matrix element

〈~q1, ~q2; out|~p1, ~p2; in〉

= i4
[
−q01 +

~q21
2m

+ V0

] [
−q02 +

~q22
2m

+ V0

] [
−p01 +

~p21
2m

+ V0

] [
−p02 +

~p22
2m

+ V0

]
× 〈0|T{ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ∗(p2)}|0〉.

(7.37)

This shows how S-matrix elements are connected to time ordered correlation functions. This relation
is known as the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula, here applied to non-
relativistic quantum field theory.

The time-ordered correlation functions can be written as functional integrals,

〈0|T{ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ∗(p2)}|0〉 =
∫
Dϕ ϕ(q1)ϕ(q2)ϕ

∗(p1)ϕ
∗(p2) e

iS[ϕ]∫
Dϕ eiS[ϕ]

. (7.38)

We can now calculate S-matrix elements from functional integrals!

Relativistic scalar theories. Let us mention here that for a relativistic theory the LSZ formula
is quite similar but one needs to replace[

−q0 + ~q2

2m + V0

]
→
[
−(q0)2 + ~q2 +m2

]
, (7.39)

and for particles ϕ(q) → φ(q), ϕ∗(q) → φ∗(q), while for anti-particles ϕ(q) → φ∗(−q), ϕ∗(q) →
φ(−q).

7.3 Perturbation theory for interacting scalar fields

Let us now consider a non-relativistic theory with the action

S[ϕ] =

∫
dtd3x

{
ϕ∗
(
i∂t +

∇2

2m − V0
)
ϕ− λ

2 (ϕ
∗ϕ)2

}
. (7.40)

Compared to equation (6.9) we have rescaled the interaction parameter, λ
4m2 → λ. We introduce

now the partition function in the presence of source terms J as

Z[J ] =

∫
Dϕ exp

[
iS[ϕ] + i

∫
x

{J∗(x)ϕ(x) + J(x)ϕ∗(x)}
]
, (7.41)
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with x = (t, ~x) and
∫
x
=
∫
dt
∫
d3x. The source term can also be written in momentum space,∫

x

{J∗(x)ϕ(x) + J(x)ϕ∗(x)} =
∫
p

{J∗(p)ϕ(p) + J(p)ϕ∗(p)} , (7.42)

where
ϕ(x) =

∫
p

eipxϕ(p), ϕ∗(x) =

∫
p

e−ipxϕ∗(p), (7.43)

with ∫
p

=

∫
dp0

2π

d3~p

(2π)3
, (7.44)

and similar for J . Because the source term has the same form in position and momentum space,
we will sometimes simple write it as ∫

{J∗ϕ+ ϕ∗J} . (7.45)

One can generate correlation functions from functional derivatives of Z[J ], for example

〈ϕ(x)ϕ∗(y)〉 = 〈0|T {ϕ(x)ϕ∗(y)} |0〉

=

∫
Dϕ ϕ(x) ϕ∗(y) eiS[ϕ]∫

Dϕ eiS[ϕ]

=

(
(−i)2

Z[J ]

δ2

δJ∗(x)δJ(y)
Z[J ]

)
J=0

.

(7.46)

One can also take functional derivatives directly in momentum space, for example

δ

δJ∗(P )
exp

[
i

∫
{J∗ϕ+ ϕ∗J}

]
=

i

(2π)4
ϕ(p) exp

[
i

∫
{J∗ϕ+ ϕ∗J}

]
. (7.47)

In this sense one can write

〈ϕ(p) ϕ∗(q)〉 =
(

(−i)2
Z[J] (2π)

8 δ2

δJ∗(p)δJ(q)
Z[J ]

)
J=0

. (7.48)

Perturbation theory for partition function. Let us write the partition function formally as

Z[J ] =

∫
Dϕ exp

[
−iλ2

∫
x

(
−i δ

δJ(x)

)2 (
−i δ

δJ∗(x)

)2]
exp

[
iS2[ϕ] + i

∫
{J∗ϕ+ ϕ∗J}

]
, (7.49)

where the quadratic action is

S2[ϕ] =

∫
x

ϕ∗
(
i∂t +

~∇2

2m − V0
)
ϕ. (7.50)

Note that when acting on the source term in the exponent, every functional derivative −i δ
δJ(x)

results in a field ϕ∗(x) and so on. In this way, the quartic interaction term has been separated
and written in terms of derivatives with respect to the source field. We can now pull it out of the
functional integral and write

Z[J ] = exp

[
−iλ2

∫
x

(
−i δ

δJ(x)

)2 (
−i δ

δJ∗(x)

)2]
Z2[J ], (7.51)

with the partition function for the quadratic theory

Z2[J ] =

∫
Dϕ eiS2[ϕ]+i

∫
{J∗ϕ+ϕ∗J}. (7.52)
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The latter is rather easy to evaluate this in momentum space. One can write

S2 +

∫
{J∗ϕ+ ϕ∗J} =

∫
p

{
−ϕ∗

(
−p0 + ~p2

2m + V0

)
ϕ+ J∗ϕ+ ϕ∗J

}
=

∫
p

{
−
[
ϕ∗ − J∗

(
−p0 + ~p2

2m + V0

)−1](
−p0 + ~p2

2m + V0

)
×
[
ϕ−

(
−p0 + ~p2

2m + V0

)−1
J

]}
+

∫
p

{
J∗(p)

(
−p0 + ~p2

2m + V0

)−1
J(p)

}
.

(7.53)

Note that the last term is independent of the field ϕ and can be pulled out of the functional integral.
The functional integral over ϕ is of Gaussian form. One can shift the integration variable[

ϕ−
(
−p0 + ~p2

2m + V0

)−1
J

]
→ ϕ, (7.54)

and perform the functional integration in Z2[ϕ]. It yields then only an irrelevant constant and as
a result one finds

Z2[J ] = exp

[
i

∫
p

J∗(p)
(
−p0 + ~p2

2m + V0

)−1
J(p)

]
. (7.55)

In the following it will be useful to write also the interaction term in momentum space. One may
use

δ
δJ(x) =

∫
d4p δJ(p)δJ(x)

δ
δJ(p) =

∫
d4p
(2π)4 e

−ipx(2π)4 δ
δJ(p) =

∫
d4p
(2π)4 e

−ipxδJ(p) =

∫
p

e−ipxδJ(p). (7.56)

Here we defined the abbreviation
δJ(p) = (2π)4 δ

δJ(p) . (7.57)

In a similar way
δ

δJ∗(x) =

∫
p

eipxδJ∗(p). (7.58)

Using also ∫
x

eipx = (2π)4δ(4)(p), (7.59)

one finds for the partition function

Z[J ] = exp

[
−iλ2

∫
x

(
δ

δJ(x)

)2 (
δ

δJ∗(x)

)2]
Z2[J ]

= exp

[
−iλ2

∫
k1...k4

{
(2π)4δ4(k1 + k2 − k3 − k4)δJ(k1)δJ(k2)δJ∗(k3)δJ∗(k4)

}]
× exp

[
i

∫
p

J∗(p)
(
−p0 + ~p2

2m + V0

)−1
J(p)

]
.

(7.60)

One can now expand the exponential to obtain a formal perturbation series in λ.
Let us now come back to the S-matrix element for 2→ 2 scattering

〈~q1, ~q2; out|~p1, ~p2; in〉

= i4
[
−q01 +

~q21
2m + V0

] [
−q02 +

~q22
2m + V0

] [
−p01 +

~p21
2m + V0

] [
−p02 +

~p22
2m + V0

]
× 〈ϕ(q1)ϕ(q2)ϕ∗(p1)ϕ∗(p2)〉

= i4
[
−q01 +

~q21
2m + V0

] [
−q02 +

~q22
2m + V0

] [
−p01 +

~p21
2m + V0

] [
−p02 +

~p22
2m + V0

]
×
(

1
Z[J]δJ∗(q1)δJ∗(q2)δJ(p1)δJ(p2)Z[J ]

)
J=0

.

(7.61)
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If we now insert the perturbation expansion for Z[J], we can concentrate on the contribution at
order λ1 = λ, because at order λ0 = 1 we have only the trivial S-matrix element for no scattering
that we already discussed. At order λ we have different derivatives acting on Z2[J ],

• δJ(p1) for incoming particles with momentum ~p1

• δJ∗(q1) for outgoing particle with momentum ~q1

• δJ(k) and δJ∗(k) for the interaction term.

At the end, all these derivatives are evaluated at J = J∗ = 0. Therefore, there must always be
derivatives δJ and δ∗J acting together on one integral appearing in Z2[J ]. Note that

δJ(p1)δJ∗(q1)

[
i

∫
p

J∗(p)
(
−p0 + ~p2

2m + V0

)−1
J(p)

]
= i
(
−p01 +

~p21
2m + V0

)−1
(2π)4δ(4)(p1 − q1).

(7.62)
This implies that if two derivatives representing external particles would hit the same integral in
Z2[J ], one would have no scattering because ~p1 = ~q1 and as a result of momentum conservation
then also ~p2 = ~q2. Only if a derivative representing an incoming or outgoing particle is combined
with a derivative from the interaction term, this is avoided. By doing the algebra one finds at order
λ

〈~q1, ~q2; out|~p1, ~p2; in〉 = −i
λ

2
4 (2π)4δ(4)(q1 + q2 − p1 − p2). (7.63)

The factor 4 = 2 × 2 comes from different ways to combine functional derivatives with sources.
The overall Dirac function makes sure that the incoming four-momentum equals the out-going
four-momentum,

pin = p1 + p2 = q1 + q2 = pout. (7.64)

Quite generally, one can define for the non-trivial part of an S-matrix

〈β; out|α; in〉 = (2π)4δ(4)(pout − pin) i Tβα. (7.65)

Together with the trivial part from “no scattering”, one can write

Sβα = δβα + (2π)4δ(4)(pout − pin) i Tβα. (7.66)

By comparison of expressions we find for the 2 → 2 scattering of non-relativistic bosons at lowest
order in λ simply

T = −2λ, (7.67)

independant of momenta. More generally, the transition amplitude T is expected to depend on the
momenta of incoming and outgoing particles.

7.4 From the S-matrix to a cross-section

Let us start from an S-matrix element in the form

〈β; out|α; in〉 = (2π)4δ(4)(pout − pin) i T (7.68)

with transition amplitude T which may depend on the momenta itself. (For 2 → 2 scattering of
non-relativistic bosons, and at lowest order in λ, we found simply T = −2λ.) Let us now discuss
how one can relate S-matrix elements to actual scattering cross-sections that can be measured in
an experiment. We start by writing the transition probability from a state α to a state β as

P =
|〈β; out|α; in〉|2

〈β; out|β; out〉〈α; in|α; in〉
(7.69)
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The numerator contains a factor[
(2π)4δ(4)(pout − pin)

]2
= (2π)4δ(4)(pout − pin)(2π)4δ(4)(0). (7.70)

This looks ill defined but becomes meaningful in a finite volume V and for finite time interval ∆T .
In fact

(2π)4δ4(0) =

∫
d4x ei0x = V∆T. (7.71)

For the transition rate Ṗ = P
∆T we can therefore write

Ṗ =
V (2π)4δ(4)(pout − pin)|T |2

〈β; out|β; out〉〈α; in|α; in〉
. (7.72)

Moreover, for incoming and outgoing two-particle states, their normalization is obtained from

〈~p1, ~p2; in|~q1, ~q2; in〉 = lim
~qj→~pj

〈~p1, ~p2; in|~p1, ~p2; in〉

= lim
~qj→~pj

[
(2π)6

(
δ(3)(~p1 − ~q1)δ(3)(~p2 − ~q2) + δ(3)(~p1 − ~q2)δ(3)(~p2 − ~q1)

)]
=
[
(2π)3δ(3)(0)

]2
= V 2.

(7.73)

In a finite volume V = L3, and with periodic boundary conditions, the final momenta are of the
form

~p = 2π
L (m,n, l), (7.74)

with some integer numbers m,n, l. We can count final states according to∑
m,n,l

=
∑
m,n,l

∆m∆n∆l = L3
∑
m,n,l

∆p1∆p2∆p3
(2π)3

. (7.75)

In the continuum limit this becomes
V

∫
d3p
(2π)3 . (7.76)

The differential transition rate has one factor V d3p
(2π)3 for each final state particle. For 2 → 2

scattering,

dṖ = (2π)4δ(4)(pout − pin)|T |2 1

V

d3q1
(2π)3

d3q2
(2π)3

. (7.77)

We can go from the transition probability to a cross-section by dividing through the flux of incoming
particles

F =
1

V
v =

2|~p1|
mV

. (7.78)

Here we have a density of one particle per volume V and the relative velocity of the two particles
is v = 2|~p1|

m , in the center-of-mass frame where |~p1| = |~p2|, for identical particles with equal mass
m. This cancels the last factor V and we find for the differential cross-section

dσ =
|T |2m
2|~p1|

(2π)4δ(4)(pout − pin)
d3q1
(2π)3

d3q2
(2π)3

. (7.79)

In the center-of-mass frame one has also ~pin = ~p1 + ~p2 = 0 and accordingly

δ(4)(pout − pin) = δ(Eout − Ein) δ(3)(~q1 + ~q2). (7.80)
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The three-dimensional part can be used to perform the integral over ~q2. In doing these integrals
over final state momenta, a bit of care is needed because the two final state particles are indistin-
guishable. An outgoing state |~q1, ~q2; out〉 equals the state |~q2, ~q1; out〉. Therefore, in order to count
only really different final states, one must divide by a factor 2 if one simply integrates d3q1 and
d3q2 independently. Keeping this in mind, we find for the differential cross-section after doing the
integral over ~q2,

dσ =
|T |2m

2|~p1|(2π)2
δ(Eout − Ein)d3q1. (7.81)

We can now use
d3~q1 = |~q1|2d|~q1| dΩq1 (7.82)

where dΩq1 is the differential solid angle element. Moreover

Eout =
~q21
2m

+
~q22
2m

+ 2V0 =
~q21
m

+ 2V0, (7.83)

and
dEout

d|~q1|
= 2
|~q1|
m
. (7.84)

With this, and using the familiar relation δ(f(x)) = δ(x−x0)/|f ′(x0)|, one can perform the integral
over the magnitude |~q1| using the Dirac function δ(Eout − Ein). This yields |~q1| = |~p1| and

dσ =
|T |2m2

16π2
dΩq1 . (7.85)

For the simple case where T is independent of the solid angle ωq1 , we can calculate the total cross-
section. Here we must now take into account that only half of the solid angle 4π corresponds to
physically independent configurations. The total cross-sections is therefore

σ =
|T |2m2

8π
. (7.86)

In a final step we use T = −2λ to lowest order in λ (equivalent to the Born approximation in
quantum mechanics) and find here the cross-section

σ =
λ2m2

2π
. (7.87)

Let us check the dimensions. The action

S =

∫
dt d3x

{
ϕ∗
(
i∂t +

~∇2

2m − V0
)
ϕ− λ

2 (φ
∗φ)2

}
(7.88)

must be dimensionless. The field ϕ must have dimension

[ϕ] = length−
3
2 . (7.89)

The interaction strength λ must accordingly have dimension

[λ] =
length3

time
. (7.90)

Because [
~∇2

2m

]
=

1

time
, (7.91)

one has [m] = time
length2 and therefore [λm] = length. It follows that indeed

[σ] = length2 (7.92)

as appropriate for a cross-section.
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8 Fermions

So far we have discussed bosonic fields and bosonic particles as their excitations. Let us now
turn to fermions. Fermions as quantum particles differ in two central aspects from bosons. First,
they satisfy fermionic statistics. Wave functions for several particles are anti-symmetric under the
exchange of particles and occupation numbers of modes can only be 0 or 1. Second, fermionic
particles have half integer spin, i. e. 1/2, 3/2, and so on, in contrast to bosonic particles which
have integer spin 0, 1, 2 and so on. Both these aspects lead to interesting new developments.
Half-integer spin in the context of relativistic theories leads to a new and deeper understanding
of space-time symmetries and fermionic statistics leads to a new kind of functional integral based
on anti-commuting numbers. The latter appears already for functional integral representations of
non-relativistic quantum fields. We will start with this second-aspect and then turn to aspects of
space-time symmetry for relativistic theories later on.

8.1 Non-relativistic fermions

Pauli spinor fields. In non-relativistic quantum mechanics, particles with spin 1/2 are described
by a variant of Schrödinger’s equation with two-component fields. The fields are so-called Pauli
spinors with components describing spin-up and spin-down parts with respect to some axis. One
can write this as

Ψ(t, ~x) =

(
ψ↑(t, ~x)

ψ↓(t, ~x)

)
(8.1)

We also use the notation ψa(t, ~x) where a = 1, 2 and

ψ1(t, ~x) = ψ↑(t, ~x), ψ2(t, ~x) = ψ↓(t, ~x). (8.2)

The Pauli equation is a generalisation of Schrödinger’s equation (neglecting spin-orbit coupling),[(
−i∂t −

~∇2

2m + V0

)
1+ µB ~σ · ~B

]
Ψ(t, ~x) = 0, (8.3)

or equivalently [(
−i∂t −

~∇2

2m + V0

)
δab + µB ~σab · ~B

]
ψb(t, ~x) = 0. (8.4)

Here we use the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (8.5)

and ~B = (B1, B2, B3) is the magnetic field, while µB is the magneton that quantifies the magnetic
moment. Based on this, one would expect that the quadratic part of an action for a non-relativistic
field describing spin-1/2 particles is of the form

S2 =

∫
dtd3x

{
−Ψ†

[(
−i∂t −

~∇2

2m + V0

)
1+ µB ~σ · ~B

]
Ψ
}

(8.6)

However, we also need to take care of fermionic (anti-symmetric) exchange symmetry, such that for
fermionic states

|~p1, ~p2; in〉 = −|~p2, ~p1; in〉. (8.7)

To this aspect we turn next.
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Grassmann variables. So-called Grassmann variables are generators θi of an algebra, and they
are anti-commuting such that

θiθj + θjθi = 0. (8.8)

An immediate consequence is that θj2 = 0. If there is a finite set of generators θ1, θ2, . . . , θn, one
can write general elements of the Grassmann algebra as a linear superposition (with coefficients
that are ordinary complex (or real) numbers) of the following basis elements

1,

θ1, θ2, . . . , θn,

θ1θ2, θ1θ3, . . . , θ2θ3, θ2θ4, . . . , θn−1θn,

. . .

θ1θ2θ3 · · · θn.

There are 2n such basis elements, because each Grassmann variable θj can be either present or
absent.

Grade of monomial. To a monomial θj1 · · · θjq one can associate a grade q which counts the
number of generators in the monomial. For Ap and Aq being two such monomials one has

ApAq = (−1)p·qAqAp. (8.9)

In particular, the monomials of even grade

1,

θ1θ2, θ1θ3, . . . , θ2θ3, . . . , θn−1θn,

. . .

commute with other monomials, be the latter of even or odd grade.

Grassmann parity. One can define a Grassmann parity transformation P that acts on all gen-
erators according to

P (θj) = −θj , P 2 = 1. (8.10)

Even monomials are even, odd monomials are odd under this transformation. The parity even part
of the algebra, spanned by the monomials of even grade, constitutes a sub-algebra. Because its
elements commute with other elements of the algebra they behave “bosonic”, while elements of the
Grassmann algebra that are odd with respect to P behave “fermionic”.

Functions of Grassmann variables. Because of θ2 = 0, functions of a Grassmann variable θ
are always linear,

f(θ) = f0 + θf1. (8.11)

Note that f0 and f1 could depend on other Grassmann variables but not θ.

Differentiation for Grassmann variables. To define differentiation of f(θ) with respect to θ
we first bring it to the form

f(θ) = f0 + θf1 (8.12)

and set then
∂
∂θf(θ) = f1. (8.13)
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Note that similar to θ2 = 0 one has also
(
∂
∂θ

)2
= 0. One may verify that the chain rule applies.

Take σ(θ) to be an odd element and x(θ) an even element of the Grassmann algebra. One has then

∂
∂θf(σ(θ), x(θ)) =

∂σ
∂θ

∂f
∂σ + ∂x

∂θ
∂f
∂x . (8.14)

The derivative we use here is a left derivative.
Consider for example

f = f0 + θ1θ2. (8.15)

One has then

∂
∂θ1

f = θ2,
∂
∂θ2

f = −θ1, ∂
∂θ2

∂
∂θ1

f = 1, ∂
∂θ1

∂
∂θ2

f = −1. (8.16)

One could also define a right derivative such that

f
←−
∂
∂θ1

= −θ2, f
←−
∂
∂θ2

= θ1. (8.17)

Integration for Grassmann variables. To define integration for Grassmann variables one takes
orientation from two properties of integrals from −∞ to∞ for ordinary numbers. One such property
is linearity, ∫ ∞

−∞
dx c f(x) = c

∫ ∞
−∞

dx f(x). (8.18)

The other is invariance under shifts of the integration variable,∫ ∞
−∞

dx f(x+ a) =

∫ ∞
−∞

dx f(x). (8.19)

For a function of a Grassmann variable

f(θ) = f0 + θf1 (8.20)

One sets therefore ∫
dθ f(θ) = f1. (8.21)

Note that one has formally ∫
dθ f(θ) = ∂

∂θf(θ). (8.22)

In other words, we have defined ∫
dθ = 0,

∫
dθ θ = 1. (8.23)

This is indeed linear and makes sure that∫
dθ f(θ + σ) =

∫
dθ {(f0 + σf1) + f1 θ} =

∫
dθ f(θ) = f1. (8.24)

For functions of several variables one has∫
dθ1

∫
dθ2f(θ1, θ2) =

∂
∂θ1

∂
∂θ2

f(θ1, θ2). (8.25)

It is easy to see that derivatives with respect to Grassmann variables anti-commute

∂
∂θj

∂
∂θk

= − ∂
∂θk

∂
∂θj

, (8.26)

and accordingly also the differentials anti-commute

dθjdθk = −dθkdθj . (8.27)
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Functions of several Grassmann variables. A function that depends on a set of Grassmann
variables θ1, . . . , θn can be written as

f(θ) = f0 + θjf
j
1 +

1

2
θj1θj2f

j1 j2
2 + . . .+

1

n!
θj1 · · · θjnf j1···jnn . (8.28)

We use here Einsteins summation convention with indices jk being summed over. The coefficients
f j1···jkk are completely anti-symmetric with respect to the interchange of any part of indices. In
particular, the last coefficient can only be of the form

f j1···jnn = f̃nεj1···jn , (8.29)

where εj1···jn is the completely anti-symmetric Levi-Civita symbol in n dimensions with ε12...n = 1.

Let us now discuss what happens if we differentiate or integrate f(θ). One has

∂
∂θk

f(θ) = fk1 + θj2f
kj2
2 + . . .+ 1

(n−1)!θj2 · · · θjnf
kj2···jn
n (8.30)

and similar for higher order derivatives. In particular

∂
∂θn
· · · ∂

∂θ1
f(θ) = f12...nn = f̃n. (8.31)

This defines also the integral with respect to all n variables,∫
dθn · · · dθ1f(θ) = f12...n = f̃n =

∫
dnθf(θ) ≡

∫
Dθf(θ). (8.32)

Linear change of Grassmann variables. Let us consider a linear change of the Grassmann
variables in the form

θj = Jjkθ
′
k (8.33)

where Jjk is a matrix of commuting variables. We can write

f(θ) = f0 + . . .+
1

n!

(
Ji1j1θ

′
j1

)
· · ·
(
Jinjnθ

′
jn

)
εi1···in f̃n. (8.34)

Now one can use the identity

εi1...inJi1j1 · · · Jinjn = det(J) εj1...jn . (8.35)

This can actually be seen as the definition of the determinant. One can therefore write

f(θ) = f0 + . . .+ 1
n!θ
′
j1 · · · θ

′
jnεj1...jn det(J)f̃n. (8.36)

The integral with respect to θ′ is ∫
dnθ′f(θ) = det(J)f̃n. (8.37)

In summary, one has ∫
dnθf(θ) =

1

det(J)

∫
dnθ′f(θ). (8.38)

One should compare this to the corresponding relation for conventional integrals with xj = Jjkx
′
k.

In that case one has ∫
dnxf(x) = det(J)

∫
dnx′f(x′). (8.39)

Note that the determinant appears in the denominator for Grassmann variables while it appears in
the numerator for conventional integrals.
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Gaussian integrals of Grassmann variables. Consider a Gaussian integral of two Grassmann
variables ∫

dθdξ e−θξb =

∫
dθdξ (1− θξb) =

∫
dθdξ (1 + ξθb) = b. (8.40)

For a Gaussian integral over conventional complex variables one has instead∫
d(Rex) d(Imx) e−x

∗xb =
π

b
. (8.41)

Again, integrals over Grassmann and ordinary variables behave in some sense “inverse”. For higher
dimensional Gaussian integrals over Grassmann numbers we write∫

dnθdnξe−θjajkξk =

∫
dθndξn · · · dθ1dξ1e−θjajkξk . (8.42)

One can now employ two unitary matrices to perform a change of variables

θj = θ′lUlj , ξk = Vkmξ
′
m (8.43)

such that
UljajkVkm = ãlδlm (8.44)

is diagonal. This is always possible. The Gaussian integral becomes

dnθdnξ e−θjajkξk = det(U)−1 det(V )−1
∫
dnθ

′
dnξ

′
e−θ

′
lξ

′
l ãl =

n∏
l=1

ãl = det(ajk). (8.45)

Again this is in contrast to a similar integral over commuting variables where the determinant would
appear in the denominator.

Finally let us consider a Gaussian integral with source forms,∫
dnψ̄dnψ exp

[
−ψ̄Mψ + η̄ψ + ψ̄η

]
= Z(η̄, η). (8.46)

We integrate here over independent Grassmann variables ψ = (ψ1, . . . , ψn) and ψ̄ = (ψ̄1, . . . , ψ̄n)

and we use the abbreviation
ψ̄Mψ = ψ̄jMjkψk. (8.47)

The source forms are also Grassmann variables η = (η1, . . . , ηn) and η̄ = (η̄1, . . . , η̄n) with

η̄ψ = η̄jψj , ψ̄η = ψ̄jηj . (8.48)

As usual, we can write

Z(η̄, η) =

∫
dnψ̄dnψ exp

[
−(ψ̄ − ηM−1)M(ψ −M−1η) + η̄M−1η

]
. (8.49)

A shift of integration variables does not change the result and thus we find

Z(η̄, η) = det(M) exp
[
η̄M−1η

]
. (8.50)

In this sense, Gaussian integrals over Grassmann variables can be manipulated similarly as Gaussian
integrals over commuting variables. Note again that det(M) appears in the numerator while it
would appear in the denominator of bosonic variables.

We can now take the limit n→∞ and write∫
dnψ̄dnψ →

∫
Dψ̄Dψ, Z(η̄, η)→ Z[η̄, η], (8.51)

with
Z[η̄, η] =

∫
Dψ̄Dψ exp[−ψ̄Mψ + η̄ψ + ψ̄η] = det(M) exp

[
η̄M−1η

]
. (8.52)

In this way we obtain a formalism that can be used for fermionic or Grassmann fields.
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Action for free non-relativistic scalars. We can now write down an action for non-relativistic
fermions with spin 1/2. It looks similar to what we have conjectured before,

S2 =

∫
dtd3x

{
−ψ̄

[(
−i∂t −

~∇2

2m + V0

)
1+ µB~σ · ~B

]
ψ
}
, (8.53)

but the two-component fields ψ = (ψ1, ψ2) and ψ̄ = (ψ̄1, ψ̄2) are in fact Grassmann fields. Such
fields anti-commute, for example ψ1(x)ψ2(y) = −ψ2(y)ψ1(x). One should see the field at different
space-time positions x to be independent Grassmann numbers. Also, ψ1 and ψ̄1 are independent as
Grassmann fields. In particular ψ1(x)

2 = 0 but ψ̄1(x)ψ1(x) 6= 0. A partition function with sources
for the above free theory could be written down as

Z2[η̄, η] =

∫
Dψ̄Dψ exp

[
iS2[ψ̄, ψ̄] + i

∫
x

{
η̄(x)ψ(x) + ψ̄(x)η(x)

}]
(8.54)

Correlation functions can be obtained from functional derivatives of Z[η̄, η] with respect to the
source field η̄(x) and η(x). Some care is needed to take minus signs into account that may arise from
possible commutation of Grassmann numbers. For the quadratic theory one can easily complete
the square, perform the functional integral and write the partition function formally as

Z2[η̄, η] = exp

[
i

∫
x

η̄(x)
[(
−i∂t −

~∇2

2m + V0

)
1+ µB ~σ · ~B

]−1
η(x)

]
. (8.55)

The inverse of the operator (
−i∂t −

~∇2

2m + V0

)
1+ µB ~σ · ~B (8.56)

is a matrix valued Greens function. For a magnetic field that is constant in space and time, for
example pointing in z-direction, one can easily invert this operator in Fourier space,

Υ(x− y) =
∫

d4p

(2π)4

[(
−p0 + ~p2

2m + V0

)
1+ µB ~σ · ~B

]−1
eip(x−y). (8.57)

In the following we will set ~B = 0 for simplicity such that

Υ(x− y) = 1

∫
p

1

−p0 + ~p2

2m + V0 − iε
eip(x−y). (8.58)

The term iε makes sure that we take the right Greens function with time ordering. For a non-
relativistic theory at zero temperature and density, this equals the retarded Greens function.

Yukawa theory. Let us now investigate a theory for a non-relativistic fermion with spin 1/2 and
a real, relativistic scalar boson

S =

∫
dtd3x

{
−ψ̄

(
−i∂t −

~∇2

2m + V0 − iε
)
ψ − 1

2φ
(
∂2t − ~∇2 +M2 − iε

)
φ− gφψ̄ψ

}
. (8.59)

We will discuss this theory in terms of the partition function

Z[η̄, η, J ] =

∫
Dψ̄DψDφ eiS[ψ̄,ψ,φ]+i

∫
x
{η̄ψ+ψ̄η+Jφ}. (8.60)

As usual, by taking functional derivatives with respect to the source fields, one can obtain various
correlation functions. Our strategy will be to perform a perturbation expansion in the cubic term
∼ g. Let us first concentrate on the quadratic theory and the corresponding partition function
derived from the action

S2 =

∫
dtd3x

{
−ψ̄

(
−i∂t −

~∇2

2m + V0 − iε
)
ψ − 1

2φ(∂
2
t − ~∇2 +M2 − iε)φ

}
. (8.61)
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By doing the Gaussian integration one finds

Z2[η̄, η, J ] =

∫
Dψ̄DψDφ eiS2+i

∫
x

{
η̄ψ+ψ̄η+Jφ

}

= exp

[
i

∫
d4xd4y

{
η̄(x)Υ(x− y)η(y) + 1

2J(x)∆(x− y)J(y)
}] (8.62)

where Υ(x− y) is the Greens function for fermions in eq. (8.58). For the scalar bosons, the Green
function is

∆(x− y) =
∫

d4p

(2π)4
1

−(p0)2 + ~p2 +M2 − iε
eip(x−y). (8.63)

Again, the iε term makes sure that the Greens function corresponds to the time-ordered or Feynman
boundary conditions. One can also obtain this from a careful consideration of analytic continuation
from Euclidean space to real time /Minkowski space. Note that the iε term has in the functional
integral the form

eiS = e[i...+iε
∫
x
φ2(x)] = e−ε

∫
x
φ(x)2+i.... (8.64)

This is the same suppression term that also appears in the Euclidean functional integral. It makes
sure that functional integrals are converging and that the theory approaches the ground state on
long time scales. In the complex plane, positions of poles are shifted slightly away from the real
axis. This is illustrated in the left panel of the following figure. In fact this is equivalent to keeping
the poles at p0 = ±

√
~p2 +M2 but moving slightly in the integration contour. This is illustrated in

the right panel of the following figure.

−
√
~p2+M2+iε

+

√
~p2+M2−iε

p0
Im(p0)

Re(p0)

−
√
~p2+M2

+

√
~p2+M2

p0
Im(p0)

Re(p0)

Figure 4. Illustration of the contour integral for the time-ordered Feynman propagator. In the left panel
the poles are shifted slightly into the complex plane, in the right panel the integration contour is slightly
shifted. Both prescriptions lead to equivalent results.

Let us use either of these prescriptions to calculate the scalar field propagator in position space

∆(x− y) =
∫
dp0

2π

d3p

(2π)3
e−ip

0(x0−y0)+i~p(~x−~y)(
−p0 +

√
~p2 +M2 − iε

)(
p0 +

√
~p2 +M2 − iε

)− (8.65)

The strategy will be to close the integration contour at |p0| → ∞ and to use the residue theorem.
First, for x0 − y0 > 0, we can close the contour in the lower half of the complex p0-plane because
e−ip

0(x0−y0) → 0 there. There is then only the residue at p0 =
√
~p2 +M2 inside the integration

contour (the iε has already been dropped there). The residue theorem gives for the p0 integral

∆(x− y) =
∫

d3p
(2π)3

i

2
√
~p2+M2

e−i
√
~p2+M2(x0−y0) ei~p~x (for x0 − y0 > 0). (8.66)
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In contrast, for x0 − y0 < 0 we need to close the p0-integral in the upper half of the complex p0

plane. The residue theorem given then

∆(x− y) =
∫

d3p
(2π)3

i

2
√
~p2+M2

ei
√
~p2+M2(x0−y0) ei~p~x (for x0 − y0 < 0). (8.67)

These results can be combined to

∆(x− y) =
∫

d3p
(2π)3

i

2
√
~p2+M2

e−i
√
~p2+M2|x0−y0|+i~p~x

= iθ(x0 − y0)
∫

d3p
(2π)3

1

2
√
~p2+M2

e−i
√
~p2+M2(x0−y0)+i~p~x

+ iθ(y0 − x0)
∫

d3p
(2π)3

1

2
√
~p2+M2

ei
√
~p2+M2(x0−y0)+i~p~x

(8.68)

One can understand the first term as being due to particle-type excitations, while the second is due
to anti-particle-type excitations. The above Greens function is known as time ordered or Feynmann
propagator. For the non-relativistic fermion, the propagator integral over p0 has just a single pole
at p0 = ~p2

2m + V0 − iε,

Υ(x− y) = 1

∫
dp0

2π
d3p
(2π)3

1

−p0+ ~p2

2m+V0−iε
e−ip

0(x0−y0)+i~p~x. (8.69)

When x0 − y0 > 0 the contour can be closed below the real p0-axis, leading to

Υ(x− y) = i 1

∫
d3p
(2π)3 e

−i
(
~p2

2m+V0

)
(x0−y0)+i~p~x (x0 − y0 > 0). (8.70)

In contrast, for x0− y0 < 0, the contour can be closed above and there is no contribution at all. In
summary

Υ(x− y) = i θ(x0 − y0) 1
∫

d3p
(2π)3 e

−i
(
~p2

2m+V0

)
(x0−y0)+i~p~x. (8.71)

As a consequence of the absence of anti-particle-type excitations, the time-ordered and retarded
propagators agree here.

Let us also note the relation between propagators and correlation functions. For the free
(quadratic) theory one has〈

ψa(x)ψ̄b(y)
〉
=
(

1
Z2

δ
δη̄a(x)

δ
δηb(y)

Z2[η̄, η, J ]
)
η̄=η=J=0

= −iΥab(x− y),

〈φ(x)φ(y)〉 =
(

1
Z2

δ
δJ(x)

δ
δJ(y)Z2[η̄, η, J ]

)
η̄=η=J=0

= −i∆(x− y).

(8.72)

Note that some care is needed with interchanges of Grassmann variables to obtain the first expres-
sion. In a similar way one finds for the free theory

〈φ(x1) . . . φ(xn)〉 =
(

1
Z 2

(
−i δ

δJ(x1)

)
· · ·
(
−i δ

δJ(xn

)
Z2[η̄, η, J ]

)
η̄=η=J=0

=
∑

pairings
[−i∆(xj1 − xj2)] · · ·

[
−i∆(xjn−1 − xjn)

]
.

(8.73)

The sum in the last line goes over all possible ways to distribute x1, . . . , xn into pairs (xj1 , xj2),
(xj3 , xj4), . . ., (xjn−1

, xjn). This result is known as Wick’s theorem. It follows directly from the
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combinatorics of functional derivatives acting on Z2. For example,

〈φ(x1) φ(x2) φ(x3)φ(x4)〉 =[−i∆(x1 − x2)][−i∆(x3 − x4)]
+ [−i∆(x1 − x3)][−i∆(x2 − x4)]
+ [−i∆(x1 − x4)][−i∆(x2 − x3)].

(8.74)

In a similar way correlation functions involving ψ̄ and ψ can be written as sums over the possible
ways to pair ψ and ψ̄. For example〈

ψa1(x1)ψa2 ψ̄a3(x3)ψ̄a4(x4)
〉
=−

〈
ψa1(x1)ψ̄a3(x3)

〉 〈
ψa2(x2)ψ̄a4(x4)

〉
+
〈
ψa1(x1)ψ̄a4(x4)

〉 〈
ψa2(x2)ψ̄a3(x3)

〉
=− [−iΥa1a3(x1 − x3)][−iΥa2a4(x2 − x4)]
+ [−iΥa1a4(x1 − x4)][−iΥa2a3(x2 − x3)].

(8.75)

Note that correlation functions at quadratic level (for the free theory) need to involve as many fields
ψ as ψ̄, otherwise they vanish. Similarly, φ must appear an even number of times. For mixed
correlation functions one can easily separate φ and ψ, ψ̄ at quadratic level, because Z2[η̄, η, J ]

factorizes. For example,〈
φ(x1) ψa(x2) φ(x3)ψ̄b(x4)

〉
= [−i∆(x1 − x3)][−iΥab(x2 − x4)]. (8.76)

It is useful to introduce also a graphical representation. We will represent the scalar propagator by
a dashed line

− i∆(x− y) = x y (8.77)
The Feynman propagator for the fermions will be represented by a solid line with arrow,

− iΥab(x− y) = (x, a) (y, b) (8.78)

We can represent correlation functions graphically, for example, the mixed correlation function in
eqn. (8.76) would be

〈φ(x1)ψa(x2)φ(x3)ψ̄b(x4)〉 =

{
x1 x3

(x2, a) (x4, b)
(8.79)

Let us now also consider the interaction terms in the action. In the functional integral it contributes
according to

eiS[ψ̄,ψ,φ] = eiS2[ψ̄,ψ,φ] exp

[
−ig

∫
d4xφ(x)ψ̄a(x)ψa(x)

]
. (8.80)

Perturbation theory in g. We can assume that g is small and simply expand the exponential
where it appears. This will add field factors ∼ φ(x)ψ̄a(x)ψa(x) to correlation functions with an
integral over x and an implicit sum over a. The resulting expression involving correlation functions
can then be evaluated as in the free theory. For example,〈

φ(x1)ψb(x2)ψ̄c(x3)
〉
=
〈
φ(x1)ψb(x2)ψ̄c(x3)

〉
0

+

〈
φ(x1)ψb(x2)ψ̄c(x3)

[
−ig

∫
y

φ(y)ψ̄a(y)ψa(y)

]〉
0

+ . . .
(8.81)

The index 0 indicates that the correlation functions get evaluated in the free theory. Graphically,
we can represent the interaction term as a vertex

− ig
∫
y

∑
a

=

(y, a)

(8.82)

– 67 –



For each such vertex we need to include a factor −ig as well as an integral over the space-time
variable y and the spinor index a. To order g, we find for the example above

〈φ(x1)ψb(x2)ψ̄c(x3)〉 =
(x2, b)

(y, a)
(x3, c)

x1

+

(x2, b) (x3, c)

(y, a)

x1

=− ig
∫
y

[−i∆(x1 − y)][−iΥba(x2 − y)][−iΥac(y − x3)]

+ ig

∫
y

[−i∆(x1 − y)][−iΥbc(x2 − x3)][−iΥaa(y − y)].

(8.83)

The sign in the last line is due to an interchange of Grassmann fields. The last expression involves
the fermion propagator for vanishing argument

Υab(0) = δab

∫
d4p

(2π)4
1

−p0 + ~p2

2m + V0 − iε
= iθ(0)δabδ

(3)(0). (8.84)

We will set here θ(0) = 0 so that the corresponding contribution vanishes. In other words, we will
interpret

Υab(0) = lim
∆t→0

Υab(−∆t,~0) = 0. (8.85)

Although this is a little ambiguous at this point, it turns out that this is the right way to proceed.

Feynmann rules in position space. To calculate a field correlation function in position space
we need to

• have a scalar line ending on x for a factor φ(x), x

• have a fermion line ending on x for a factor ψa(x), (x, a)

• have a fermion line starting on x for a factor ψ̄a(x), (x, a)

• include a vertex −ig
∫
y

for every order g,
(y, a)

with integral over y.

• connect lines with propagators [−i∆(x− y)] or [−iΥab(x− y)]

• determine the overall sign for interchanges of fermionic fields.

S-matrix elements. To calculate S-matrix elements from correlation functions, we need to use
the LSZ formula. For an outgoing fermion, we need to apply the operator

i
[
−i∂t −

~∇2

2m + V0

]
〈· · ·ψa(x) · · · 〉 (8.86)

and also go to momentum space by a Fourier transform∫
x

e+iωpx
0−i~p~x. (8.87)
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The operator simply removes the propagator leading to x, because of

i
[
−i∂x0 −

~∇2
x

2m + V0

]
[−iΥab(x− y)] = δab

∫
d4p

(2π)4
eip(x−y)

−p0 + ~p2

2m + V0

−p0 + ~p2

2m + V0
= δabδ

(4)(x− y).

(8.88)

Moreover, all expressions are brought back to momentum space. One can formulate Feynmann
rules directly for contributions to iT as follows.

• Incoming fermions are represented by an incoming line ~p (to be read from right to
left) associated with a momentum ~p and energy ω~p = ~p2

2m + V0.

• Outgoing fermions are represented by an outgoing line ~p

• Incoming or outgoing bosons are represented by ←~p and ~p← respectively.

• Vertices contribute a factor −ig

• Internal lines that connect two vertices are represented by Feynmann propagators in momen-
tum space, e.g.

(p0, ~p) = −iδab

−p0+ ~p2

2m+V0

, (p0, ~p) = −i
−(p0)2+~p2+M2 (8.89)

• Energy and momentum conservation are imposed on each vertex.

• For tree diagrams, all momenta are fixed by energy- and momenta conservation. For loop
diagrams one must include an integral over the loop momentum lj with measure d4lj

(2π)4 .

• Some care is needed to fix overall signs for fermions.

• Some care is needed to fix overall combinatoric factors from possible interchanges of lines /
functional derivatives.

For the last two points it is often useful to go back to the algebraic expressions or to have some
experience. We will later discuss very useful techniques based on generating functionals.

Fermion-fermion scattering We will now discuss an example, the scattering of (spin polarized)
fermions of each other. The tree-level diagram is

(~p1, ↑)

(~q1, ↑)

(~p2, ↓)

(~q2, ↓)

(8.90)

Because the interaction with the scalar field does not change the spin, the outgoing fermion with
momentum ~q1 will have spin ↑, the one with momentum ~q2 will have spin ↓ . By momentum
conservation the scalar line carries the four momentum

(ω~p1 − ω~q1 , ~p1 − ~q1) =
(
~p21
2m −

~q21
2m , ~p1 − ~q1

)
= (ω~q2 − ω~p2 , ~q2 − ~p2) (8.91)
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The last equality follows from overall momentum conservation, p1 + p2 = q1 + q2. The Feynmann
rules give

iT = (−ig)2 −i
−(ω~p1 − ω~q1)2 + (~p1 − ~q1)2 +M2

. (8.92)

In the center-of-mass frame, one has ω~p1 = ω~p2 = ω~q1 = ω~q2 and thus

T =
g2

(~p1 − ~q1)2 +M2
. (8.93)

Note that for g2 → ∞, M2 → ∞ with g2/M2 finite, T becomes independent of momenta. This
resembles closely the λ(φ∗φ)2 interaction we discussed earlier for bosons.

More, generally, one can write

(~p1 − ~q1)2 = 2|~p1|2(1− cos(ϑ)) = 4|~p1|2 sin2(ϑ/2) (8.94)

where we used |~p1| = |~q1| in the center of mass frame and ϑ is the angle between ~p1 and ~q1 (incoming
and outgoing momentum of the spin ↑ particle). For the differential cross-section

dσ

dΩq1
=
|T |2m2

16(π)2
, (8.95)

we find
dσ

dΩq1
=
g4m2

16π2

[
1

4~p21 sin
2(ϑ/2) +M2

]2
. (8.96)

Another interesting limit is M2 → 0. One has then

dσ

dΩq1
=

g4m2

64π2~p21

1

sin4(ϑ/2)
. (8.97)

This is the differential cross-section form found experimentally by Rutherford. It results from the
exchange of a massless particle or force carrier which is here the scalar boson φ and in the case of
Rutherford experiment (scattering of α-particles on Gold nuclei) it is the photon. This cross section
has a strong peak at forward scattering ϑ → 0, and for ~p2 → 0. These are known as colinear and
soft singularities. Note that they are regulated by a small, nonvanishing mass M > 0.

9 Lorentz symmetry and the Dirac equation

Symmetries are basic concepts for the construction of a model. Particle physics in flat Minkowski
space is invariant under Lorentz transformations. Even though the cosmological solutions are not
Lorentz invariant, Lorentz invariance holds to a very good approximation on length and time scales
that are small compared to the “size” (inverse Hubble parameter) of the universe. The functional
integral formulation makes the implementation of symmetries easy. One imposes that the action S
is invariant under the symmetry transformations. This is sufficient if the functional measure is also
invariant. All symmetry properties follow the invariance of S and the functional measure.

9.1 Lorentz transformations and invariant tensors

Lorentz metric. The cartesian coordinates of space and time are t and x. They are denoted as
the contravariant vector

xµ = (t,x), t = x0. (9.1)

The corresponding covariant vector is

xµ = (−t,x) = (−x0,x). (9.2)
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We can always lower and raise indices with the metric tensor ηµν and its inverse ηµν , which are
here actually the same,

ηµν = ηµν =


−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

 . (9.3)

If we want to use a shorter notation, we can also say that our metric has the signature (−,+,+,+).
The explicit transformation equations are

xµ = ηµνx
ν and xµ = ηµνxν . (9.4)

We want to know under which transformations xµ → x′µ = Λµνx
ν the quantity xµxµ is invariant.

So we calculate
x′µx′µ = x′µx′νηµν = Λµρx

ρΛνσx
σηµν . (9.5)

This is equal to xµxµ if the condition

ΛµρΛ
ν
σηµν = ηρσ (9.6)

is fulfilled. Equation (9.6) is the defining equation for Λ. All transformations that fulfill (9.6)
are called Lorentz transformations. So-called proper, orthochronous Lorentz transformations that
can be obtained as a sequence of infinitesimal transformations. Particle physics is invariant under
the proper orthochronous Lorentz transformations for which we often use the shorthand “Lorentz
transformations”. The general transformations (9.6), which we often call “extended Lorentz trans-
formations”, comprise discrete transformations like parity and time reversal. Particle physics is not
invariant under those discrete transformations.

Transformation of tensors. Let us consider the contravariant and covariant four-momenta

pµ = (E,p) (9.7)

pµ = (−E,p) (9.8)

As we already discussed, we can raise and lower indices of vectors with the metric tensor ηµν and
the inverse ηµν . We can interprete ηµν and ηµν as matrices. As raising and lowering are inverse
operations, the multiplication of both matrices is the identity,

ηµνηνρ = δµρ. (9.9)

If we perform a Lorentz transformation

p′µ = Λµνp
ν , (9.10)

and lower indices on both sides, we get

ηµρp′ρ = Λµνη
νσpσ. (9.11)

We multiply with an inverse metric

p′κ = ηκµΛ
µ
νη
νσpσ (9.12)

Obviously, the tensor product on the right hand side should be

Λ ν
κ = ηκµΛ

µ
νη
νσ. (9.13)
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The covariant vector (lower index) transforms as

p′µ = Λ ν
µ pν . (9.14)

We use the metric tensor to raise and lower indices of tensors as well as for Λ ν
µ . An example for

the Lorentz transformation of a more complicated tensor is

A′µνρστ = Λµµ′Λ
ν
ν′Λ

ρ
ρ′Λ

σ′

σ Λ τ ′

τ Aµ
′ν′ρ′

σ′τ ′ (9.15)

The product of a covariant and a contravariant vector is a scalar: It is invariant under Lorentz
transformations,

s = aµbµ,

⇒ s′ = Λµρa
ρΛ σ

µ bσ = aρ ΛµρηµνΛ
ν
τ︸ ︷︷ ︸

ηρτ

ητσbσ = aρbρ = s. (9.16)

Generalisation: Two contracted Lorentz indices do not contribute to transformations:

(A′)µρ(B
′)ρν = Λ σ

µ ΛντAσρB
ρτ , (9.17)

e.g. C ν
µ = AµρB

ρν transforms as a 2-tensor.

Invariant tensors. We already mentioned that Lorentz transformations are defined in such a
way that the metric tensor ηµν is left invariant. Actually, there is only one more tensor that is
invariant under Lorentz transformations, and this is the totally antisymmetric tensor εµνρσ, the
relativistic generalization of the Levi-Civita tensor εijk tensor. The Levi-Civita symbol with four
indices εµνρσ is defined by total antisymmetry and

ε0123 = 1. (9.18)

It equals 1 for all cyclic permutations of (0, 1, 2, 3), and −1 for all anti-cyclic permutations. The
ε-tensor with raised indices, εµνρσ has just the opposite signs, e. g. ε0123 = −1.

Let us prove our statement that εµνρσ is invariant under Lorentz transformations. In the
following lines we will use the short hand notation Λ ν

µ → Λ, Λνσ → ΛT and ηµν → η. With this
notation, the defining relation (9.13) reads

ΛηΛT = η, (9.19)

If we compute the determinant on both sides, we find

det(Λ) = ±1. (9.20)

The determinant of Λ can also be calculated by

det(Λ) = 1

4!
Λ ν1
µ1

Λ ν2
µ2

Λ ν3
µ3

Λ ν4
µ4
εν1ν2ν3ν4ε

µ1µ2µ3µ4 =
1

4!
ε′µ1µ2µ3µ4

εµ1µ2µ3µ4 (9.21)

Here ε′ is the Lorentz transformed tensor. We can verify that ε′µνρσ is totally antisymmetric, thus
ε′µνρσ = c εµνρσ with constant c. Using εµνρσεµνρσ = 4! we obtain det(Λ) = c or

ε′µ1µ2µ3µ4
= det(Λ)εµνρσ = ±εµ1µ2µ3µ4

(9.22)

Only Lorentz transformations with det(Λ) = +1 will leave the ε-tensor invariant (the are called
proper). The special Lorentz transformations obey det(Λ) = 1 since they are continuously related
to the unit transformation.
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Analogy to Rotations. Equation (9.19) looks very similar to orthogonal transformations Omn
with

O1OT = OOT = 1, 1µν = δµν , (9.23)
where 1 is the unit matrix. In (9.19) the “Euclidean metric” δµν is simply replaced by the metric
tensor ηµν for Minkowski space. In short,

• Orthogonal transformations : δµν invariant.

• Lorentz transformation: ηµν invariant.

• Analytic continuation: δµν → ηµν .

The group of orthogonal transformations in three dimensions is denoted O(3). The analogy that we
just discussed motivates the name Pseudo orthogonal transformations O(1, 3) where the separated
1 indicates the special role of time in special relativity.

Derivatives. The derivative with respect to a contravariant vector is a covariant vector,

∂µ =
∂

∂xµ
. (9.24)

For example we have
∂µx

µ = 4. (9.25)
The momentum operator is

p̂µ = −i∂µ. (9.26)

Four-dimensional Fourier transformation. The four-dimensional Fourier transformation of
a function ψ(x) is defined as

ψ(x) =

∫
p

eipµx
µ

ψ(p). (9.27)

With pµ = (−ω, ~p) and pµx
µ = −ωt+ ~p~x this reads

ψ(t, ~x) =

∫
ω

∫
~p

e−iωt+i~p~xψ(ω, ~p). (9.28)

Note that pµxµ is Lorentz invariant.

Covariant equations. For a covariant equation the left hand side and right hand side have the
same transformation properties. An example is

∂µF
µν = Jν . (9.29)

These are two of the four Maxwell equations.

9.2 Lorentz group
Group structure. If we have two elements g1, g2 that are elements of a group G , the product of
these two elements will still be an element of the group

g3 = g2g1 ∈ G . (9.30)

In particular, we can write for matrices

(Λ3)
µ
ν = (Λ2)

µ
ρ(Λ1)

ρ
ν . (9.31)

A group contains always a unit element e such that

ge = eg = g (9.32)

for every group element g. For matrices, this unit element is δµν . Furthermore the inverse element
g−1 exists. Every matrix Λµν has an inverse matrix because the determinant of Λ is ±1. Finally,
for a group the multiplication law has to be associative, which is trivial for matrix multiplications.
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Discrete symmetries. The Lorentz transformations contain some discrete symmetries that we
discuss now.

Space reflection (parity). The space reflection transformation changes the sign of all space time
coordinates, xj → −xj for j ∈ {1, 2, 3} while time stays invariant t→ t. The corresponding matrix is

P =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (9.33)

The determinant is det(P ) = −1. The metric tensor ηµν is kept invariant under a space reflection,
PηPT = η.

Time reflection. The time reflection transformation is xj → xj for j ∈ {1, 2, 3} and t → −t.
The corresponding matrix is

T =


−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

 . (9.34)

The determinant of T is the same as for P , det(T ) = det(P ) = −1. Both transformations change
the sign of the ε-tensor and are therefore improper Lorentz transformations. Again, the metric
tensor is invariant under TηTT = η.

Space-time reflection. The combination of both space and time reflection is

PT =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (9.35)

This time the determinant is +1.

Continuous Lorentz Transformations. A continuous Lorentz transformation can be obtained
as a product of infinitesimal transformations. We use Lorentz transformation for the continuous
Lorentz transformations. Since no jumps are possible, the continuous Lorentz transformations have
a determinant +1, so we can immediately conclude that the discrete transformations P and T can’t
be described by continuous ones. As the product PT has a determinant +1, one could first think
that this may be obtained by continuous transformations, but this is not the case. The reason is
that infinitesimal transformations will never change the sign in front of time variable, but actually,
PT does exactly this. However, a discrete transformation that can be obtained by infinitesimal
ones is the reflection of x and y, so the product P1P2 with

P1 =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 , P2 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 , P1P2 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 . (9.36)

can be obtained as a continuous transformation, as familiar from rotations in two-dimensional space.
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9.3 Generators and Lorentz Algebra

Infinitesimal Lorentz Transformations. Let us consider the difference δpµ between a four-
momentum and the transformed four-momentum,

δpµ = p′µ − pµ = (Λµν − δµν)pν = δΛµνp
ν , (9.37)

with
Λµν = δµν + δΛµν . (9.38)

In a matrix representation, the infinitesimal Lorentz transformation is given by Λ = 1 + δΛ. The
defining relation of a Lorentz transformation (ΛηΛT = η) then leads to constraints for δΛ as follows.

ΛηΛT = η

⇔ (1 + δΛ)η(1 + δΛ)T = η

⇔ δΛ η + η δΛT = 0.

(9.39)

In this last line we neglected the 2nd order term in δΛ. If we write down this equation in the index
notation of eq. (9.6), we have

δΛµρηµσ + δΛνσηρν = 0,

or δΛµν + δΛνµ = 0.
(9.40)

This equation tells us that δΛµν is antisymmetric, but note that δΛµν is not antisymmetric. The
matrices have six independent elements, what is obvious for δΛµν = −δΛνµ. The number of inde-
pendent elements in a (antisymmetric) matrix is of course equal to the number of linear independent
(antisymmetric) matrices we can build. The physical meaning of these six matrices is that they
represent the possible three infinitesimal rotations and three infinitesimal boosts.

Generators. Let us write the infinitesimal transformation of the momentum vector in the fol-
lowing way,

δpµ = iεz(Tz)
µ
νp
ν , z = 1 . . . 6, (9.41)

where a sum over z is implied. Any infinitesimal Lorentz transformation can be represented as a
linear combination in this form

δΛµ ν = iεz(Tz)
µ
ν . (9.42)

For the six independent generators we choose

rotations : (T1)µν = (T1)
µ
ν =


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 , (9.43)

(T2)µν = (T2)
µ
ν =


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 , (T3)µν = (T3)
µ
ν =


0 0 0 0

0 0 −i 0
0 i 0 0

0 0 0 0

 (9.44)

boosts : (T4)µν =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , (T4)
µ
ν =


0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , (9.45)
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(T5)
µ
ν =


0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , (T6)
µ
ν =


0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0

 . (9.46)

Some remarks

• T1 is a rotation around the x-axis (only y and z components change). Similarly T2 is a rotation
around the y-axis and T3 a rotation around the z-axis.

• For the rotation matrices, raising and lowering of indices doesn’t change anything. The reason
is that the metric tensor has a -1 only in the zero component and the rotation matrices are
zero in the first row.

• For the boost matrices, raising of the first index changes the sign of the first row of the
matrix (see T4). After raising the index, the boost matrices are not any longer antisymmetric.
Explicitly,

(T4)
µ
ν = ηµρ(T4)ρν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 =


0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 . (9.47)

• To see that T1, T2 and T3 are really rotations, compare them to the well-known rotation
matrix in two dimensions,

R =

(
cosφ − sinφ

sinφ cosφ

)
. (9.48)

If φ = ε is infinitesimal, it becomes

R =

(
1 −ε
ε 1

)
. (9.49)

The difference to the identity is

δR =

(
0 −ε
ε 0

)
, (9.50)

But this is now equivalent to what we have in (9.6) when we write iε in front of the matrix.
The i in the definition of the generators is chosen such that T1, T2, T3 are hermitian matrices.

• Similarly, you can convince yourself that T4, T5 and T6 are boosts in x, y and z direction.

Lorentz algebra. The product of two group elements is again a group element. From this we
can conclude that the commutator of two generators must again be a generator. In general we can
therefore write

[Tx, Ty] = ifxyzTz, (9.51)

where the sum over z is implied. The fxyz are called the structure constants of a group. Whenever
one has to deal with groups, the structure constants are very important, because once we know
them, we know all algebraic relations for this group.

The central relation (9.7) can be shown as follows. Consider transformations

eiA, eiB , A = ε(A)
z Tz, B = ε(B)

y Ty (9.52)

The combined transformation
e−iAe−iBeiAeiB = eiC (9.53)
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is again an element of the group and therefore C = ε
(C)
w Tw. Use

eiAeiB = eiBeiA + [B,A] + . . . (9.54)

for showing in the combined transformation

1+ [B,A] = 1+ iC

[B,A] = iC

−ε(B)
y ε(A)

z [Ty, Tz] = iε(C)
w Tw.

(9.55)

It follows that the commutator −i[Tz, Ty] is a linear combination of generators,

− i[Tz, Ty] = c(zy)w Tw. (9.56)

The coefficients c(zy)w = fzyw can be identified with the structure constants.

Example Let us consider a rotation in three dimensional space. We want to rotate a system
• by an angle α around the y-axis,
• by an angle β around the x-axis,
• by an angle −α around the y- axis,
• and finally by an angle −β around the x-axis.

The result of a product of infinitesimal rotations is again an infinitesimal rotation,(
1− iβTx − 1

2β
2T 2
x

) (
1− iαTy − 1

2α
2T 2
y

) (
1 + iβTx − 1

2β
2T 2
x

) (
1 + iαTy − 1

2α
2T 2
y

)
= 1− αβ(TxTy − TyTx) = 1− iαβTz

(9.57)

The first order is zero, and the terms ∝ T 2
x and ∝ T 2

y cancel, too. The product αβ is the parameter
of the resulting infinitesimal transformation.
For the special case of a rotation in three dimensional space, one can show the commutation relation

[T1, T2] = iT3 (9.58)

by multiplication of the matrices specified before. More generally, the generators of rotations obey

[Tk, Tl] = iεklmTm for k, l,m ∈ {1, 2, 3}. (9.59)

The calculation of this example gives us already some commutation relations of the generators of
the Lorentz group, if we consider the Ti as 4 x 4 matrices with zeroes in all elements of the first
column and row. This is of course not surprising, as the three dimensional rotations are a subgroup
of the Lorentz group. The other structure constants fxyz where one element of x, y, z is 0 can also
be found from the specified matrices. We will give them later.

9.4 Representations of the Lorentz group

Remembering the spin matrices and their commutation relations, we discover that they are exactly
the same as for the generators of the rotation group SO(3):

sk = 1
2τk, where τk are Pauli matrices and,

[τk, τl] = 2iεklmτm, [sk, sl] = iεklmsm,
(9.60)

Note the difference between spin matrices si and Pauli matrices τi
The important thing we learn here is that the spin matrices τi/2 and the generators of rotations

in 3D space have the same algebraic relations. They correspond to different representations of the
rotation group. The Tm are a three-dimensional and the τm/2 are a two-dimensional representation
of the group SO(3).
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Representations and Matrices Let us summarize what we know about the Lorentz group: It
is SO(1, 3) and is generated by a set of 6 independent matrices Tz, which obey the commutation
relations

[Tx, Ty] = ifxyzTz. (9.61)

For x, y, zε1, 2, 3 we know already that fxyz = εxyz. The dimension of the matrices Tz depends on
the representation of the group: If we have a d-dimensional representation, the matrices will be
d× d.

d-dimensional representation: The set of d× d- matrices Tz obey the commutation relations
of a given group. In the physics literature, one often uses the representation to design (somewhat
improperly) also a d-component object on which the matrices Tz act.

For a vector, the dimension is d = 4 because we have three space and one time coordinate.
What happens if we want to transform a tensor? Consider the symmetric energy-momentum-
tensor Tµν = T νµ. We know that it has 10 independent elements: 4 diagonal and 6 off-diagonal
ones. Let us write all independent elements into a 10 dimensional vector ψα. The generator Tz that
transforms this vector into a new vector ψα + δψα (in complete analogy to the momentum pµ that
transformed into pµ + δpµ) must now be a 10× 10 matrix:

δψα = iεz(Tz)
α
βψ

β (9.62)

The elements of ψ are the elements of the energy-momentum tensor Tµν and we therefore know
the Lorentz transformations.

δTµν = iεz(Tz)
µν
µ′ν′T

µ′ν′
. (9.63)

Here (µν) = (νµ) is considered as a double index, α = (µν). In this equation, don’t mix up the
energy-momentum tensor and the generator! The elements of (Tz)

µν
µ′ν′ can easily be computed

from the known Lorentz transformation of a tensor.

Irreducible Representations We can decompose T into the trace and the remaining traceless
part T̃ :

T̃µν = Tµν − 1
4θη

µν . (9.64)

Here θ is the trace of the energy-momentum tensor and T̃µν is the traceless part. For the trace we
can also write

θ = Tµµ = ηνµT
µν . (9.65)

The trace is a scalar and thus doesn’t change under Lorentz transformations:

T
′ρ
ρ = T ρρ .. (9.66)

Furthermore, the traceless tensor T̃ remains traceless when it is transformed. It has nine indepen-
dent components. In this way, we have reduced the 10 representation to 9+ 1. The transformation
of traceless, symmetric tensors is represented by 9× 9 matrices as generators.

As an intermediate result we can now summarize:

Representation Dimension
scalar 1
vector 4

symmetric and traceless tensors 9
antisymmetric tensors 6

spinor ?
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9.5 Transformation of Fields

Scalar Field ϕ(x) How do scalar fields ϕ(x) transform? To find an answer to this question, we
recall the transformation of the space-time vector xµ:

x′µ = Λµνx
ν , x′µ = xµ + δxµ (9.67)

The value of the transformed field ϕ′ at the transformed coordinate x′ is the same as the field value
before the transformation.

ϕ′(x′) = ϕ(x). (9.68)

From this we find the transformed field value ϕ′ at the assigned coordinate

ϕ′(x) = ϕ(x− δx), (9.69)

since x− δx is transformed to x. We can visualise this by the following picture.

x− δxxx′ = x + δx

ϕ′(x) = ϕ(x− δx) ϕ(x− δx)

ϕ(x)ϕ′(x′) = ϕ(x)

Figure 5. Transformation of a scalar field

We want to consider field transformations of fixed coordinates and therefore employ

ϕ′(x) = ϕ(x) + δϕ(x) = ϕ(x− δx). (9.70)

The transformation of ϕ at fixed x is called an active transformation. In contrast, leaving ϕ

fixed and changing coordinates would be a passive transformation. (The combination of both
does not change the field, ϕ′(x′) = ϕ(x).)

The difference of the field δϕ can be expressed as follows.

δϕ = ϕ(x− δx)− ϕ(x)
= −∂µϕ(x) δxµ.

(9.71)

The second line comes from the definition of the derivative.
If we insert δxµ = δΛµνx

ν we get

δϕ = xνδΛ µ
ν ∂µϕ(x)

= −δΛµνxν∂µϕ(x)
= −iεz(Tz)µνxν∂µϕ(x)
= iεzLzϕ(x).

(9.72)

In the second to the last line we use (9.42) and in the last line we introduce the definition

Lz = −(Tz)µνxν∂µ. (9.73)

For the second equation one lowers one index of Λ and uses the antisymmetry.
For fields the Lz are the generators and not Tz because (9.72) is of the form (9.41). The generators
Lz contain a differential operator in this case! Fields are infinite dimensional representations in this
sense.
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The letter L was not chosen arbitrary, as L1, L2 and L3 are the angular momenta. For instance
L1 can be written as

L1 = −(T1)µνxν∂µ. (9.74)

T1 has only two non-zero elements: (T1)23 = −i and (T1)
3
2 = i, so

L1 = −ix2 ∂
∂x3 + ix3 ∂

∂x2 = −i(y∂z − z∂y). (9.75)

This is obviously the angular momentum as we know it from classical mechanics: L = r × p.
The transformation of fields with Lorentz indices has two ingredients. The first arises from the
transformation of coordinates, the second is related to the Lorentz indices. For scalars one has only
the coordinate part.

Vector Field Aµ(x) Contravariant vectors transform as :

Aµ(x) → A′µ(x) = Aµ(x) + δAµ(x), (9.76)

δAµ(x) = δΛµνA
ν(x) + xρδΛ σ

ρ ∂σA
µ(x). (9.77)

Here, δΛµνAν is the usual transformation law for covariant vectors and xρδΛ σ
ρ ∂σA

µ reflects the
change of the coordinates. This second term is always there, no matter what kind of field we are
transforming.

Covariant vectors transform as:

δAµ(x) = δΛ ν
µ Aν(x) + xρδΛ σ

ρ ∂σA
µ(x). (9.78)

The covariant derivative transforms as

∂µϕ(x) → (∂µϕ)
′(x) = ∂µ(ϕ(x) + δϕ(x)) = ∂µϕ(x) + δ∂µϕ(x),

δ∂µϕ(x) = ∂µδϕ(x) = ∂µ(x
ρδΛ σ

ρ ∂σϕ(x)) = δΛ σ
µ ∂σϕ(x) + (xρδΛ σ

ρ ∂σ)(∂µϕ(x)),
(9.79)

So, ∂µϕ transforms as a covariant vector. With a similar argument one finds that the contravariant
derivative transforms as a contravariant vector. This implies

δ(∂µϕ(x)∂µϕ(x)) = (xρδΛ σ
ρ ∂σ)(∂

µϕ(x)∂µϕ(x)), (9.80)

i.e. ∂µϕ(x)∂µϕ(x) transforms as a scalar.

Invariant Action This is a central piece, but with all the machinery we have developed it is
almost trivial. Now our works pays off.
Let f(x) be some (composite) scalar function

δf = xρδΛ σ
ρ ∂σf, (9.81)

examples are f = ϕ2 or f = V (φ) or f = ∂µϕ∂µϕ. It follows that

S =

∫
d4x f(x) is invariant, i.e. δS = 0. (9.82)

Proof:

δS =

∫
d4x δf(x)

=

∫
d4x xρδΛ σ

ρ ∂σf

=

∫
d4x ∂σ(x

ρδΛ σ
ρ f)−

∫
d4x δρσδΛ

σ
ρ ∂σf

= 0

(9.83)
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The first integral is zero because there are no boundary contributions. Total derivatives in L

will always be neglected, i.e. always
∫
d4x∂µA = 0. The second integral is zero because of the

antisymmetry of Λρσ:
δρσδΛ

σ
ρ = ηρσδΛρσ = 0. (9.84)

Examples It is now very easy to construct quantum field theories! Simply write down actions S
that are Lorentz invariant.
We will consider actions of the form

S =

∫
d4x

∑
k

Lk(x), (9.85)

where Lk are (composite) scalar quantities.
Here are some examples:

•L = ∂µϕ∗∂µϕ+m2ϕ∗ϕ (9.86)

This is a free charged scalar field, it describes particles with mass m like e.g. pions π± with
interactions neglected.

•L = 1
4F

µνFµν , Fµν = ∂µAν − ∂νAµ (9.87)

F is the electromagnetic field. This describes free photons.

•L = (∂µ + ieAµ)ϕ∗(∂µ − ieAµ)φ+ 1
4F

µνFµν (9.88)

This describes a charged scalar field interacting with photons and is called scalar QED. (We need
one more concept to do QED, we have to account for the spin of the electrons.)

9.6 Functional Integral, Correlation Functions

Measure ∫
Dϕ(x) is invariant. (9.89)

To prove this, we use the equivalence of active and passive transformations,

ϕ′(x) = ϕ(Λ−1x). (9.90)

For vectors we have ∫
DAµ =

∫
DA′µ × Jacobian (9.91)

But the Jacobian is detΛ = 1.

Comment : Is it always possible to find an invariant measure? There is a possible conflict with
regularization, i.e. with taking the continuum limit. E.g. lattice regularization is not Lorentz
invariant.
The answer to that question is that in all experience physicists have so far, lattice QFTs do work.
We assume in this lecture that

∫
Dϕ is invariant under Lorentz transformations.

Partition Function Z =
∫
Dφ e−S is invariant if

∫
Dϕ and S are invariant.

Correlation Function

〈ϕ(x)|ϕ(x′)〉 = Z−1
∫
Dφφ(x)φ(x′)e−S transforms as ϕ(x)ϕ(x′). (9.92)

This is a covariant construction. This makes it easy to construct an invariant S-matrix. Thus e.g.
scattering cross sections are Lorentz invariant.
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Summary Explicit Lorentz covariance is an important advantage of the functional formulation!
This is not so early implemented in the operator formalism! Recall that H is not invariant, it is a
three-dimensional object. S is a four-dimensional object.

Spinor representations of the Lorentz group Electrons have half-integer spin. We first look
at the rotation group SO(3), which is a subgroup of the Lorentz group. For nonrelativistic electrons
this subgroup is all that matters.
We look at a two-dimensional representation of the rotation group :

χ =

(
χ1(x)

χ2(x)

)
=

(
χ1

χ2

)
. (9.93)

The rotation subgroup SO(3) is given by

δχ = iεzTzχ+ δ′χ, z = 1, 2, 3, (9.94)

δ′χ(x) = xρδΛ σ
ρ ∂σχ(x). (9.95)

We will omit δ′ in the notation from now on. This universal contribution is the same for all fields.
It is implicitly added if we transform fields. The spinor representation of SO(3) is two-dimensional.
The three 2× 2 matrices Tz are given by the Pauli matrices:

Tz =
1
2τz, z = 1, 2, 3. (9.96)

Comment The χ(x) are Grassmann variables. This is not relevant for symmetry transformations.
Now we ask the question for relativistic electrons or neutrons:

• What are the spinor representations of the full Lorentz group, i.e. what are Tz for z = 1, . . . , 6?

• Are there two-dimensional representations, i.e. are there six 2× 2 matrices that obey

[Tx, Ty] = ifxyzTz? (9.97)

These questions belong to the mathematical field of representation theory. We do not attempt
to find the representation ourselves. Dirac, Pauli and Weyl did that for us. We only give the
representations and verify that they really are representations of the Lorentz group.

Dirac Spinors By Dirac spinors we mean the four-dimensional representation

ψ =


ψ1

ψ2

ψ3

ψ4

 , (9.98)

with generators
iεzTz =

i
2εµ̂ν̂T

µ̂ν̂ (9.99)

The six generators T µ̂ν̂ are now labeled by µ̂ν̂ instead of z. The factor 1
2 accounts for 1

2 (ε12T
12 +

ε21T
21) = ε12T

12 etc. with
T µ̂ν̂ = −T ν̂µ̂, εµ̂ν̂ = −εν̂µ̂. (9.100)

We put the hats on µ̂ and ν̂ to avoid confusion: the matrices T µ̂ν̂ are fixed 4 × 4 matrices and
Lorentz transformations do not act on them as they do on fields. Once again: e.g. T 12 is itself a
4 × 4 matrix, µ̂ν̂ = 12 is just a convenient label for this matrix, we could also have labelled it by
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z = 3.

The matrices T µ̂ν̂ are obtained as the commutators of the Dirac matrices γµ

T µ̂ν̂ = − i
4

[
γµ̂, γν̂

]
. (9.101)

The Dirac matrices γµ̂ are complex 4× 4 matrices. There are four of them:

γk =

(
0 −iτk
iτk 0

)
, k = 1, 2, 3 and γ0 =

(
0 −i1
−i1 0

)
, (9.102)

where τk, k = 1, 2, 3 are the Pauli matrices.
In the following, we often omit the hat for γµ, but remember that Lorentz transformations act only
on fields, whereas the matrices γµ are fixed.
If you compute the T-matrices(exercise!), you will find that they are of the form

Tµν =

(
Tµν+ 0

0 Tµν−

)
(9.103)

where the Tµν± are 2 × 2 matrices. The ij-components are rotations,

T ij+ = T ij− = 1
2ε
ijkτk, i, j, k ∈ {1, 2, 3}. (9.104)

E.g. for a rotation around the z-axis (ε12 = −ε21 ≡ ε3), we have

ε3T3 ≡ 1
2 (ε12T

12 + ε21T
21),

= ε3T
12 = ε3(

1
2ε

123τ3) = ε3
τ3
2 ,

(9.105)

confirming T3 = τ3
2 . If we denote(

ψ1

ψ2

)
= ψL,

(
ψ3

ψ4

)
= ψR,

(
ψL
ψR

)
= ψ, (9.106)

then ψL and ψR transform as 2-component spinors with respect to rotations.
The T 0k generators are boosts,

T 0k
+ = −T 0k

− = − i
2τk. (9.107)

The boost generators are not hermitian.
The commutation relations can be computed as

[Tµν , T ρσ] = i (ηµρT νσ − ηµσT νρ + ηνσTµρ − ηνρTµν) (9.108)

These are indeed the commutation relations of the Lorentz group.
We can compare with the defining vector representation by the identification

T1 = T 23, T2 = T 31, T3 = T 12,

T4 = T 01, T5 = T 02, T6 = T 03.
(9.109)

In the vector representation one has(
T µ̂ν̂

)µ
ν
= −i

(
ηµ̂µδν̂ν − ην̂µδµ̂ν

)
, (9.110)

e.g.

(T1)
µ
ν = (T 23)µ ν = −i

(
δ2µδ3ν − δ3µδ2ν

)
=


0, 0, 0, 0

0, 0, 0, 0

0, 0, 0,−i
0, 0, i, 0

 ,

(T4)
µ
ν = (T 01)µ ν = −i

(
−δ0µδ1ν − δ1µδ0ν

)
.

(9.111)

In this representation the commutation relation is easily established.
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Weyl Spinors As we have seen before, the matrices Tµν are block-diagonal, which means that
they do not mix all components of a 4-spinor Ψ into each other, but only the first two and the
last two. Mathematically speaking, there are two invariant subspaces, so the Dirac representation
is called reducible. This is why we introduce now the Weyl representation, which will be a two-
dimensional irreducible representation (irrep). We define

ΨL =


Ψ1

Ψ2

0

0

 , ΨR =


0

0

Ψ3

Ψ4

 . (9.112)

From now on, we will surpress the 0’s in the Weyl spinors and just write

ΨL =

(
Ψ1

Ψ2

)
, ΨR =

(
Ψ3

Ψ4

)
. (9.113)

We will later use Weyl spinors to describe neutrinos. For electrons we will need Dirac Spinors. This
is related to the fact that the parity transformation maps between ΨL and ΨR.

Parity Transformation The parity transformation is defined by

Ψ(x)→ γ0Ψ(Px), Px = (x0,−~x). (9.114)

How do the individual Weyl spinors transform? We observe that

γ0
(
ΨL
ΨR

)
= −i

(
ΨR
ΨL

)
. (9.115)

and therefore
(Ψ

′
)L = −iΨR, (Ψ

′
)R = −iΨL, (9.116)

Parity exchanges left and right components. This is indeed one of the reasons why we will need a
left-handed and a right-handed Weyl spinor to describe electrons. Neutrinos are described only by
a left-handed Weyl spinor, so obviously they violate parity!

Projection Matrix Now we introduce a matrix γ5, such that we can make a projection from the
Dirac to Weyl representation by

ΨL = 1
2 (1 + γ5)Ψ, (9.117)

ΨR = 1
2 (1− γ

5)Ψ. (9.118)

This is obviously fulfilled by

γ5 =

(
1 0

0 −1

)
, (9.119)

where the 1 represents a 2× 2-unit-matrix. One can check that

[γ5, Tµν ] = 0, (γ5)2 = 1. (9.120)

However, we want to treat the matrix γ5 in a more general way and express it in terms of the other
γ-matrices, so that we know it independently of the particular representation of the Dirac matrices.
First we show that for the relations (9.120) to hold, it is sufficient that

{γµ, γ5} = 0. (9.121)
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Proof:

γ5Tµν = − i
4γ

5(γµγν − γνγµ) = i
4 (γ

µγ5γν − γνγ5γµ) = − i
4 (γ

µγν − γνγµ)γ5 = Tµνγ5. (9.122)

One can check as an exercise that this relation is indeed fulfilled when we define

γ5 = −iγ0γ1γ2γ3 =

(
1 0

0 −1

)
. (9.123)

In our particular representation one has the properties

1 + γ5

2
=

(
1 0

0 0

)
,

1− γ5

2
=

(
0 0

0 1

)
(9.124)

or
γ5ΨL = ΨL, γ5ΨR = −ΨR. (9.125)

Dirac Matrices Let’s look in some more detail at the Dirac matrices we have used so far. Their
defining property is given by

{γµ, γν} = 2ηµν . (9.126)

This is known as the Clifford algebra. From this relation one can derive all the commutator
relations for the Tµν and γ5! For instance one can obviously see that (γi)2 =1, i= 1,2,3 and
(γ0)2 = −1. This is quite useful, since different books will use different representations of the
Clifford algebra(however, also take care for the signature of the metric in different books!). We can
go from one representation to another using a similarity transformation

γµ → γ′µ = AγµA−1. (9.127)

We can easily check that such a transformation does not change the anticommutator relations:

{γ′µ, γ′ν} = A{γµ, γν}A−1 = 2AηµνA−1 = ηµν . (9.128)

10 Quantum electrodynamics

10.1 Action and propagators

We are now ready to construct the action for quantum electrodynamics (QED). We have Grassmann
variables for fermions and the spinor representation of the Lorentz group. We start with free
electrons, and add the interactions with photons subsequently.

a) Invariant action for free electrons.
Kinetic term: We want to use the spinor representation discussed in the previous section to write
down Lorentz invariant actions for fermions. In fact, it is possible to write down an action consisting
only of a kinetic term with only one derivative:

S =

∫
d4x L , L = iΨ̄γµ∂µΨ = iΨ̄α(γ

µ)αβ∂µΨβ . (10.1)

As usual, Ψ denotes a column vector and Ψ̄ is a line vector,

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 , Ψ̄ =
(
Ψ̄1, Ψ̄2, Ψ̄3, Ψ̄4

)
. (10.2)

– 85 –



Here Ψα and Ψ̄α are independent Grassmann variables. The kinetic term for fermions involves only
one derivative. This is simpler than the kinetic term for scalars, where we must use two derivatives.
Under a Lorentz transformation, Ψ̄ and Ψ̄ transform as

δΨ = i
2εµνT

µνΨ, (10.3)

δΨ̄ = − i
2εµνΨ̄T

µν . (10.4)

One can introduce a complex structure in the Grassmann algebra by defining Ψ∗ through

Ψ̄ = Ψ†γ0 = (Ψ∗)T γ0. (10.5)

This is the defining relation for Ψ∗ in terms of Ψ̄. One can check the consistency of complex
conjugation with Lorentz transformations,

δψ∗ = − i
2εµνT

µνΨ∗, δΨ̄ = (δΨ)†γ0. (10.6)

Having defined Ψ∗, one could define real and imaginary parts ΨRe = 1
2 (Ψ + Ψ∗) and ΨIm =

− i
2 (Ψ−Ψ∗) and use those as independent Grassmann variables.

Transformation of Spinor Bilinears In order to verify the invariance of S we consider general
bilinear forms of spinors and check their properties under Lorentz transformations. We will only
consider infinitesimal Lorentz transformations here. The first relation we proof is

δ(Ψ̄Ψ) = 0. (10.7)

Indeed,
δ(Ψ̄Ψ) = δΨ̄Ψ + Ψ̄δΨ = − i

2 (Ψ̄T
µνΨ− Ψ̄TµνΨ) = 0. (10.8)

This means that Ψ̄Ψ transforms as a scalar under Lorentz transformations. Next we will show that

δ(Ψ̄γµΨ) = δΓµν(Ψ̄γ
νΨ) = εµνΨ̄γ

νΨ, (10.9)

i.e. it transforms as a contravariant vector under Lorentz transformations. This can be seen in
three steps. First we note that

δ(Ψ̄γρΨ) = δΨ̄γρΨ+ Ψ̄γρδΨ = − i
2εµν(Ψ̄T

µνγρΨ− Ψ̄γρTµνΨ̄) = − i
2εµνΨ̄[Tµν , γρ]Ψ. (10.10)

Second, we employ

γµγνγρ = γµ{γν , γρ} − γµγργν = 2ηνργµ − γµγργν . (10.11)

Using this, we find

[Tµν , γρ] = − i
4 (γ

µγνγρ − γνγµγρ − γργµγν + γργνγµ)

= − i
4 (2η

νργµ − γµγργν − 2ηµργν + γνγργµ − 2ηµργν

+ γµγργν + 2ηνργµ − γνγργµ)
= −i(ηνργµ − ηµργν)

(10.12)

Insertion of this commutation relation yields

δ(Ψ̄γρΨ) = − i
2 Ψ̄εµν(−i)(η

νργµ − ηµργν)Ψ = − 1
2 Ψ̄(ε ρµ γ

µ − ερνγν)Ψ = ερνΨ̄γ
νΨ (10.13)

Since we also know the transformation properties of ∂ρ, we can easily check that Ψ̄γρ∂ρΨ transforms
as a scalar:

δ(Ψ̄γρ∂ρΨ) = ερνΨ̄ + ενρΨ̄γ
ρ∂νΨ = ερνΨ̄γ

ν∂ρΨ+ ενρΨ̄γ
ν∂ρΨ = 0. (10.14)
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Electrons with mass m We would now like to look at a system of free electrons. Such a system
is described by

LH = iΨ̄γµ∂µΨ+ Im(Ψ̄Ψ) (10.15)

b) Dirac Equation The functional variation of the associated action S with regard to Ψ̄ leads
to the famous Dirac equation

δS

δΨ̄
= 0⇒ (γµ∂µ +m)Ψ = 0. (10.16)

The equation is relativistic covariant, because L is invariant. For a single particle state, this is also
the Schrödinger equation, with Ψ interpreted as a wave function. Then Ψ is a complex function
(not a Grassmann variable). This does not hold with interactions. But an external electromagnetic
field can be added.

Energy-Momentum Relation To get to the energy momentum relation for a relativistic par-
ticle, we square the Dirac equation

γν∂νγ
µ∂µΨ = m2Ψ. (10.17)

To evaluate this ansatz, we make use of the anticommutator relation for the γ matrices

1
2{γ

ν , γµ}∂ν∂µΨ = ηνµ∂ν∂µΨ = ∂µ∂µΨ = m2Ψ (10.18)

Now the last equation is exactly the Klein-Gordon equation (∂µ∂µ − m2)Ψ = 0, so we see that
solutions for (10.16) solve this equation.
Plane waves of the form Ψ = Ψ0 e

ipµxµ = Ψ0 e
−i(Et−px) are the easiest solutions, they lead to

(E2 − p2 −m2)Ψ = 0⇒ E2 = p2 +m2. (10.19)

So, E = ±
√
p2 +m2 are both solutions. What does the solution with the negative energy describe?

Hamiltonian Formulation We multiply (10.16) with −iγ0

− iγ0γµ∂µΨ = −i(γ0)2∂0Ψ− iγ0γk∂kΨ = iγ0mΨ (10.20)

and introduce
αk = −γ0γk = γkγ0 =

(
−τk 0

0 τk

)
β = iγ0 =

(
0 1

1 0

)
(10.21)

which lead to
iΨ̇ = −iαk∂kΨ+mβΨ (10.22)

In the momentum basis, we get the “relativistic Schrödinger equation”

iΨ̇ = HΨ with H = αkpk +mβ. (10.23)

Let’s switch to the rest frame of the particle (p = 0). For the Hamiltonian we get

H = m

(
0 1

1 0

)
(10.24)

This matrix mixes the Weyl spinors ΨL and ΨR

i∂t

(
ΨL
ΨR

)
= mβ

(
ΨL
ΨR

)
= m

(
ΨR
ΨL

)
(10.25)

We can verify that H has 2 eigenvectors with positive energy (E = +m), and 2 with negative energy
(E = −m). One sees again the negative energy states!
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Interpretation of Dirac Equation, Positrons We construct linear combinations of ΨL and
ΨR, which are mass eigenstates

Ψ± = 1√
2
(ΨL ±ΨR) and iΨ̇± = ±mΨ± (10.26)

By conjugating the equation for Ψ−

− iΨ̇∗− = −mΨ∗− ⇒ iΨ̇∗− = mΨ∗− (10.27)

we see that Ψ∗− is a mass eigenstate with positive eigenvalue E = +m. This field can be interpreted
as a new particle field, called the positron field. The positron is the antiparticle to the electron. An
essential consequence of Lorentz symmetry is the existence of antiparticles! We will see that Ψ∗−
has electric charge -e, while Ψ+ has charge e. We use Ψ+ for electrons and therefore e < 0.

c) Electrons and Positrons in the Electromagnetic Field We want to see, how electrons
and positrons act in the electromagnetic field, that means why they have opposite charges. The
electromagnetic field is given by Aµ = (−φ,A), and the covariant Lagrangian by

L = iΨ̄γµ(∂µ − ieAµ)Ψ + im ¯PsiΨ. (10.28)

This leads via least action principle to the following modifications of the Dirac equation

∂tΨ→ (∂0 + ieφ)Ψ,

∂kΨ→ (∂k − ieAk)Ψ,
(10.29)

or
iΨ̇ =

(
αk(pk − eAk) + eφ+

(
0 m

m 0

))
Ψ (10.30)

with
αk
(
ΨL
ΨR

)
=

(
−τk 0

0 τk

)(
ΨL
ΨR

)
=

(
−τkΨL
τkΨR

)
. (10.31)

The action of αk on the linear combinations (10.26) is as follows

αkΨ+ = −τkΨ−,
αkΨ− = −τkΨ+.

(10.32)

Now we can insert Ψ+,Ψ− into (10.30), and we get

iΨ̇+ = (m+ eφ)Ψ+ + i(∂k − ieAk)τkΨ−,
iΨ̇− = (−m+ eφ)Ψ− + i(∂k − ieAk)τkΨ+.

(10.33)

For the complex conjugate of Ψ− one finds

iΨ̇∗− = (m− eφ)Ψ∗− + i(∂k + ieAk)τ
∗
kΨ
∗
+ (10.34)

Thus Ψ∗−(positrons) has indeed the opposite charge as Ψ+(electrons).

d) Quantum electrodynamics We finally add a kinetic term for the photons

LF = 1
4F

µνFµν , Fµν = ∂µAν − ∂νAµ. (10.35)

Taking things together, we arrive at the functional integral for QED

Z =

∫
Dϕ exp (iSM ) ,

SM = −
∫
x

LM ,

LM = iΨ̄γµ(∂µ − ieAµ)Ψ + Im(Ψ̄Ψ) + 1
4F

µνFµν .

(10.36a)

(10.36b)

(10.36c)
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From there, all correlation functions can be computed! Precise computations with many decimal
places agree perfectly with observation.

e) Gauge symmetry The action of QED is invariant under local gauge transformations.

Ψ′(x) = eiα(x)Ψ(x), (10.37)

A′µ(x) = Aµ(x) +
1
e∂µα(x) (10.38)

α(x): depends on x, leads to change of ψ at every x independently → “local symmetry”.

Ψ̄γµ∂µΨ→ Ψ̄γµ∂µΨ+ i∂µαΨ̄γ
µΨ

− ieΨ̄γµAµΨ→ −ieΨ̄γµAµΨ− i∂µαΨ̄γµΨ⇒ iΨ̄γµ(∂µ − ieAµ)Ψ is invariant (10.39)

Fµν = ∂µAν − ∂νAµ ⇒ Fµν + Fµν +
1
e∂µ∂να−

1
α∂ν∂µα = 0

Fµν is invariant. It follows that L is invariant.
Local gauge invariance is an important principle for finding the action of a quantum field theory.
It is also related to renormalizability.

Renomalizability Gauge symmetry is a powerfull restriction for the choice of the action. Is it
sufficient? Consider a possible term

∆L = b
m Ψ̄[γµ, γν ]ΨFµν (10.40)

It is Lorentz invariant and gauge invariant. If we add it with an unknown coefficient b, predictions
will depend on this coefficient. Predictivity of QED, which only involves m and α = e2/4π, is lost.
Why is such a term not allowed? This is again related to renormalizability.

g) Non-relativistic limit of Dirac equation For the two-component spinor χ for the electron
one finds

i∂tχ = 1
2m (~p− e ~A)2 + eϕ− e

m
~S ~B, ~S = 1

2~τ (10.41)

For “weak ~A” one linearizes in ~A. For a constant ~B one takes ~A = − 1
2~r × ~B and obtains

1
2m (~p− e ~A)2 = ~p2

2m −
e

2m
~L~B, ~L : angular momentum (10.42)

This is the Schrödinger equation for atomic physics!
The magnetic field couples to

~L+ g~S, g = 2. (10.43)

QED corrections from fluctuations yield small correction to g − 2, which is computed to many
decimal places and well tested.
The derivation of the non-relativistic limit is done in several steps.
Step 1: Square the Dirac equation,

γν(∂ν − ieAν)γµ(∂µ − ieAµ)Ψ = m2Ψ. (10.44)

Step 2: From the Dirac algebra we use [γµ, γν ] = 4iTµν and obtain(
(∂µ − ieAµ)(∂µ − ieAµ) + eTµνFµν −m2

)
Ψ = 0 (10.45)

Step 3: We use TµνFµν = 1
2Bkτk +

i
2Ekτkγ

5, with τk =

(
τk 0

0 τk

)
. Also using Ψ±, we get

{
(∂µ − ieAµ)(∂µ − ieAµ)−m2 + eBkτk

}
Ψ+ = −ieEkτkΨ− (10.46)
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Step 4: We forget about positrons: For Ψ− = 0 one obtains an equation for a two component spinor
Ψ+. Introduce the non-relativistic wave function χ by

Ψ+ = e−imtχ. (10.47)

This yields

i∂tΨ = Hχ = (E −m)χ (10.48)

with non-relativistic Hamiltonian H. The non-relativistic limit is given by H << m. In this limit
one can neglect

∂2
t

m ,
A0∂t
m , (∂tA0)

m ,
A2

0

m . (10.49)

This yields the above non-relativistic result.

Functional integral for photons. For photons, the field one integrates over in the functional
integral is the gauge field Aµ(x). The field theory is described by the partition function

Z2[J ] =

∫
DA exp

[
iS2[A] + i

∫
JµAµ

]
=

∫
DA exp

[
i

∫
d4x

{
− 1

4 F
µνFµν + JµAµ

}] (10.50)

One can go to momentum space as usual

Aµ(x) =

∫
d4p

(2π)4
eipxAµ(p), (10.51)

and finds for the term in the exponential∫
x

{
−1

4
FµνFµν + JµAµ

}
=

1

2

∫
d4p

(2π)4
{
−Aµ(−p)

(
p2ηµν − pµpν

)
Aν(p) + Jµ(−p)Aµ(p) +Aµ(−p)Jµ(p)

}
.

(10.52)

The next step would now be to perform the Gaussian integral over Aµ by completing the square.
However, a problem arises here: The “inverse propagator” for the gauge field

p2ηµν − pµpν = p2Pµν(p) (10.53)

is not invertible. We wrote it here in terms of

P ν
µ (p) = δ ν

µ −
pµp

ν

p2
, (10.54)

which is in fact a projector to the space orthogonal to pν

P ν
µ (p)P ρ

ν (p) = P ρ
µ (p). (10.55)

As a projector matrix it has eigenvalues 0 and 1, only. However,

P ν
µ (p) pν = 0. (10.56)

The field Aν(p) can be decomposed into two parts,

Aν(p) =
i

e
pνβ(p) + Âν(p) (10.57)
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with
Âν(p) = P ρ

ν (p)Aρ(p) (10.58)

such that pνÂν(p) = 0. Moreover
β(p) =

e

ip2
pνAν(p). (10.59)

When acting on Âν(p), the projector P ν
µ (p) is simply the unit matrix.

Recall that gauge transformations shift the field according to

Aµ(x)→
1

e
∂µα+Aµ(x) (10.60)

or in momentum space
Aµ(p)→

i

e
pµα(p) +Aµ(p). (10.61)

One can therefore always perform a gauge transformation such that β(p) = 0 or

∂µAµ(x) = 0. (10.62)

This is known as Lorenz gauge or Landau gauge. We will use this gauge in the following and restrict
the functional integral to field configurations that fulfil the gauge condition.

Now we can easily perform the Gaussian integral,

Z2[J ] =

∫
DA exp

[
i

2

∫
p

{
−
(
Aµ(−p)− Jρ(−p)

Pρ
µ

p2

)
p2Pµν

(
Aν(p)−

P σ
ν

p2
Jσ(p)

)}]
× exp

[
i

2

∫
p

Jµ(−p)
Pµν(p)

p2
Jν(p)

]
= const× exp

[
i

2

∫
x,y

Jµ(x)∆
µν(x− y)Jν(y)

]
.

(10.63)

In the last line we used the photon propagator in position space (in Landau gauge)

∆µν(x− y) =
∫

d4p

(2π)4
eip(x−y)

Pµν(p)

p2 − iε
. (10.64)

In the last step we have inserted the iε term as usual.
In the free theory one has

〈Aµ(x)Aν(x)〉 =
1

i2

(
1

Z[J ]
− δ2

δJµ(x)δJν(y)
Z[J ]

)
J=0

=
1

i
∆µν(x− y). (10.65)

We use the following graphical notation

(x, µ) (y, ν) =
1

i
∆µν(x− y) (10.66)

or with sources iJµ(x) at the end points

=
1

2

∫
x,y

iJµ(x)
1

i
∆µν(x− y) iJµ(y). (10.67)
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Mode decomposition for free photons. To describe incoming and outgoing photons we need
to discuss free solutions for the gauge field. In momentum space, and for the gauge-fixed field
(Landau gauge), the linear equation of motion (Maxwell’s equation) is simply

p2P ν
µ (p)Âν(p) = p2Âµ(p) = 0. (10.68)

Non-trivial solutions satisfy p2 = 0. Without loss of generality we assume now pµ = (E, 0, 0, E); all
other light like momenta can be obtained from this via Lorentz-transformations. Quite generally, a
four-vector can be written as

Âν(p) =

(
b,
a1 + a2√

2
,
−ia1 + ia2√

2
, c

)
. (10.69)

From the Landau gauge condition pνÂν = 0 it follows that b = −c, so that one can write

Âν(p) = c× (−1, 0, 0, 1) + a1ε
(1)
ν + a2ε

(2)
ν (10.70)

with
ε(1)ν =

(
0,

1√
2
,
−i√
2
, 0

)
, ε(2)ν =

(
0,

1√
2
,
i√
2
, 0

)
. (10.71)

However, the term ∼ c is in fact proportional to pν = (−E, 0, 0, E). We can do another gauge
transformation such that c = 0. This does not violate the Landau gauge condition because of
pνpν = 0. In other words, the photon field has only two independent polarization states, chosen
here as positive and negative circular polarizations, or helicities.

In summary, we can expand free solutions of the photon field like

Aµ(x) =

2∑
λ=1

∫
d3p

(2π)3
1√
2Ep

{
a~p,λ ε

(λ)
µ (p) eipx + a†~p,λ ε

(λ)∗
µ (p) e−ipx

}
(10.72)

where Ep = |~p| is the energy of a photon. The index λ labels the two polarization states.
In the current setup, a~p,λ and a†~p,λ are simply expansion coefficients, while they become an-

nihilation and creation operators in the operator picture. The non-trivial commutation relation
becomes then [

a~p,λ, a
†
~p′,λ′

]
= (2π)3δ(3)(~p− ~p′)δλλ′ . (10.73)

LSZ reduction formula for photons. We also need a version of the Lehmann-Symanzik-
Zimmermann reduction formula for photons. Recall that for non-relativistic bosons we could replace
for the calculation of the interacting part of the S-matrix

a~q(∞)→ i
[
−q0 + ~q2

2m + V0

]
ϕ(q), (10.74)

a†~q(−∞)→ i
[
−q0 + ~q2

2m + V0

]
ϕ∗(q). (10.75)

For relativistic fields this is in general somewhat more complicated because of renormalization. This
will be discussed in more detail in the second part of the course. In the following we will discuss
only tree level diagrams where this plays no role. For photons one can replace for outgoing states√

2Ep a~p,λ(∞)→ iεν∗(λ)(p)

∫
d4x e−ipx[−∂µ∂µ]Aν(x)√

2Ep a
†
~p,λ(−∞)→ iεν(λ)(p)

∫
d4x eipx[−∂µ∂µ]Aν(x).

(10.76)

These formulas can be used to write S-matrix elements as correlation functions of fields. Note that
[−∂µ∂ν ] is essentially the inverse propagator in Landau gauge.
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Mode expansion for Dirac fields. We also need a mode expansion for free Dirac fields in order
to describe asymptotic (incoming and outgoing) fermion states. We write the fields as

ψ(x) =

2∑
s=1

d3p

(2π)3
1√
2Ep

{
b~p,s us(p) e

ipx + d†~p,s vs(p) e
−ipx

}
,

¯ψ(x) =

2∑
s=1

d3p

(2π)3
1√
2Ep

{
−i b†~p,s ūs(p) e

−ipx − id†~p,s v̄s(p) e
ipx
}
.

(10.77)

Again, b~p,s, d~p,s etc. can be seen as expansion coefficients and become operators in the operator
picture. The Dirac equation

(γµ∂µ +m)ψ(x) = 0, (10.78)

becomes for the plane waves

(iγµpµ +m) us(~p) e
ipx,+(−iγµpµ +m) vs(~p) e

−ipx = 0. (10.79)

To solve this one needs

(i/p+m) us(~p) = 0,

(−i/p+m) vs(~p) = 0,
(10.80)

with /p = γµpµ. We consider this first in the frame where the spatial momentum vanishes, ~p = 0,
such that pµ = (−m, 0, 0, 0),

/p = −γ0m = im

(
1

1

)
. (10.81)

The last equation holds in the chiral basis where

γµ = −i
(

0 σµ

σ̄µ 0

)
. (10.82)

with σµ = (1, ~σ) and σ̄µ = (1,−~σ). For the spinor us one has the equation

(i/p+m)us = m

(
+1 −1
−1 +1

)
us = 0. (10.83)

The two independent solutions are

u
(0)
1 =

√
m


1

0

1

0

 , u
(0)
2 =

√
m


0

1

0

1

 . (10.84)

The normalization has been chosen for later convenience. Similarly

(−i/p+m)vs(0) = m

(
1 1

1 1

)
vs(0) = 0 (10.85)

has the two independent solutions

v
(0)
1 =

√
m


0

+1

0

−1

 , v
(0)
2 =

√
m


−1
0

+1

0

 . (10.86)
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We see here that the Dirac equation has two independent solutions (for spin up and and down with
respect to some basis) for particles and two more for anti-particles. One can now go to an arbitrary
reference frame by performing a Lorentz transformation. That gives

us(~p) =

(√−pµσµ ξs√−pµσ̄µ ξs

)
, vs(~p) =

( √−pµσµ ξs
−√−pµσ̄µ ξs

)
, (10.87)

with a two-dimensional orthonormal basis ξs such that

ξ†sξr = δrs,

2∑
s=1

ξsξ
†
s = 12. (10.88)

Other identities involving us(~p), vs(~p) as well as

ūs(~p) = u†s(~p)iγ
0 = u†s(p)

(
1

1

)
,

v̄s(~p) = v†s(~p)iγ
0 = v†s(p)

(
1

1

)
,

(10.89)

have been discussed in exercises. They will be mentioned here once they are needed.

LSZ reduction for Dirac fermions. Finally, let us give the LSZ reduction formulas for Dirac
fermions (again neglecting renormalization effects)√

2Epb~p,s(∞)→ i

∫
d4x e−ipxūs(~p)(γ

µ∂µ +m)ψ(x),√
2Epd

†
~p,s(−∞)→ −i

∫
d4x e−ipxv̄s(~p)(γ

µ∂µ +m)ψ(x),√
2Epd~p,s(∞)→ −i

∫
d4x iψ̄s(x)(−γµ

←−
∂ µ +m)vs(x) e

−ipx,√
2Epb~p,s(−∞)→ −i

∫
d4x iψ̄s(x)(−γµ

←−
∂ µ +m)us(x) e

ipx.

(10.90)

The left-pointing arrows indicate here that these derivatives act to the left (on the field ψ̄s(x)).
These relations have been obtained as part of the exercises.

10.2 Feynman rules and Feynman diagrams

Feynman rules of QED. We are now ready to formulate the Feynman rules for a perturbative
treatment of quantum electrodynamics. The microscopic action is

S =

∫
d4x

{
− 1

4F
µνFµν − iψ̄γµ(∂µ − ieAµ)ψ − imψ̄ψ

}
= S2[ψ̄, ψ,A]−

∫
d4x eψ̄γµAµψ.

(10.91)

The last term is cubic in the fields ψ̄, ψ and Aµ, while all others terms are quadratic. We will
perform a perturbative expansion in the electric charge e.

Let us write the partition function as

Z[η̄, η, J ] =

∫
Dψ̄DψDA exp

[
iS[ψ̄, ψ,A] + i

∫ {
η̄ψ + ψ̄η + JµAµ

}]
(10.92)

with η̄ψ = η̄αψα where α = 1, . . . , 4 sums over spinor components. Formally, one can write

Z[η̄, η, J ] = exp
[
−e
∫
d4x

(
1

i
δ

δJµ(x)

)(
i

δ

δηα(x)

)
(γµ)αβ

(
1

i

δ

δη̄β(x)

)]
Z2[η̄, η, J ], (10.93)
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with quadratic partition function

Z2 =

∫
Dψ̄DψDA exp

[
iS2[ψ̄, ψ,A] + i

∫ {
η̄ψ + ψ̄η + JµAµ

}]
= exp

[
i

∫
d4xd4y η̄(x)S(x− y)η(y)

]
× exp

[
i

2

∫
d4xd4y Jµ(x)∆µν(x− y)Jν(y)

]
.

(10.94)

We have introduced here also the propagator for Dirac fermions, which is in fact a matrix in spinor
space,

Sαβ(x− y) =
∫

d4p

(2π)4
eip(x−y)(ipµγ

µ +m)−1αβ

=

∫
d4p

(2π)4
eip(x−y)

(−i/p+m1)αβ

p2 +m2 − iε
.

(10.95)

We can now calculate S-matrix elements by first expressing them as correlation functions which get
then evaluated in a perturbative expansion of the functional integral. These perturbative expressions
have an intuitive graphical representation as we have briefly discussed before. We concentrate here
on tree diagrams for which renormalization is not needed yet.

From the quadratic function one can obtain also Dirac field propagator

〈ψα(x)ψ̄β(y)〉 =
1

Z2

(
1

i

δ

δη̄α(x)

)(
i

δ

δηβ(y)

)
Z2

∣∣∣
η̄=η=J=0

=
1

i
Sαβ(x− y). (10.96)

We introduce a graphical representation for thus, as well,

(x, α) (y, β) =
1

i
Sαβ(x− y). (10.97)

With sources iη̄α(x) and iηβ(y) at the end this would be

=

∫
x,y

iη̄α(x)
1

i
Sαβ(x− y) iηβ(y) = i

∫
x,y

η̄(x)S(x− y)η(y). (10.98)

The conventions are such that the arrow points away from the source η and to the source η̄. It
can also be seen as denoting the direction of fermions while anti-fermions move against the arrow
direction. The Dirac indices α, β are sometimes left implicit when there is no doubt about them.

We now consider the full partition function and expand out the exponentials,

Z[η̄, η, J ] =

∞∑
V=0

1

V !

[∫
x

(
1

i

δ

δJµ(x)

)(
i

δ

δηα(x)

)(
−eγµαβ

)(1

i

δ

δη̄β(x)

)]V
×
∞∑
F=0

1

F !

[∫
x′,y′

iη̄α(x
′)

(
1

i
Sαβ(x

′ − y′)
)
iηβ(y

′)

]F
×
∞∑
p=0

1

P !

[
1

2

∫
x′′,y′′

iJµ(x′′)

(
1

i
∆µν(x

′′ − y′′)
)
iJν(y′′)

]P
.

(10.99)

The index F counts the number of fermion propagators (corresponding to fermion lines in a graphical
representation), the index P counts the number of photon propagators (photon lines). The index
V counts vertices that connect fermion and photon in a specific way. More specifically, each power
of this term removes one of each kind of sources and introduces −eγµαβ to connect the lines in the
graphical representation. In the full expression for Z[ ¯η, η, J ] many terms are present, in fact all
graphs one can construct with fermion lines, photon lines and the vertex.
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For example

Z = + + + . . .+

(10.100)

+ . . .+ + . . .+ + + . . .

One distinguishes connected diagrams where all endpoints are connected with lines to each
other, for example

or or or or (10.101)

Disconnected diagrams can be decomposed into several connected diagrams.
One also distinguishes tree diagrams and loop diagrams. Loop diagrams have closed loops of

– 96 –



particle flow, for example

or or

or or etc.

(10.102)

Tree diagrams have no closed loop, for example

or or (10.103)

To each of these diagrams with sources one can associate an expression, for example

=

iJν(w)

−eγµ

iη̄(x) iη(y)

∆µν(z − w)

S(x− z) S(z − y)

=

∫
x,y,z,w

iη̄(x)

[
1

i
S(x− z)

]
(−eγµ)

[
1

i
S(z − y)

]
iη(y)

[
1

i
∆µν(z − w)

]
iJν(w).

(10.104)

To calculate S-matrix elements we are mainly interested in the connected diagrams because discon-
nected diagrams describe events where not all particles scatter. Also, we concentrate here on tree
diagrams. Loop diagrams will be discussed somewhat later.

Now that we have seen how to represent Z[η̄, η, J ], let us discuss how to obtain S-matrix
elements. For example, for an outgoing photon we had the LSZ rule√

2Ep a~p,λ(∞)→ iεν∗(λ)(p)

∫
d4x e−ipx [−∂µ∂µ]Aν(x) (10.105)

To obtain the field Aν under the functional integral we can use

Aν(x)→
1

i

δ

δJν(x)
, (10.106)

acting on Z[η̄, η, J ]. Moreover, i[−∂µ∂µ] will remove one propagator line for the outgoing photon,

i [−∂µ∂µ]
1

i
∆ρσ(x− y) = [−∂µ∂µ]

∫
d4p

(2π)4
eip(x−y)

Pρσ(p)

p2 − iε

=

∫
d4p

(2π)4
eip(x−y)Pρσ(p)→ ηρσδ

(4)(x− y).
(10.107)
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The projector has no effect if the photon couples to conserved currents and the result is simply
ηρσδ

(4)(x− y). What remains is to multiply with the polarization vector

ε∗(λ)µ(p) (10.108)

for the out-going photon with momentum p. Also, the Fourier transform brings the expression to
momentum space. The out-going momentum is on-shell, i. e. it satisfies pµpµ = 0 for photons.
Similarly, for incoming photons we need to remove the external propagator line and contract with

ε(λ)µ(p) (10.109)

instead.
For out-going electrons we need to remove the external fermion propagator and multiply with

ūs(~p) where p is the momentum of the out-going electron satisfying p2 +m2 = 0 and s labels its
spin state. Similarly, for an incoming electron we need to contract with ius(p).

For out-going positrons we need to contract with ivs(p) (and include here one factor i because
iψ̄ appears in the LSZ rule in our conventions). For an incoming positron the corresponding external
spinor is v̄s(p).

Working now directly in momentum space, the photon propagator is represented by

− iPµν(p)

p2 − iε
= −i

ηµν − pµ pν
p2

p2 − iε
. (10.110)

The fermion propagator is

− i
−i/p+m

p2 +m2 − iε
. (10.111)

The vertex is as before −eγµ. Momentum conservation must be imposed at each vertex. Together
these rules constitute the Feynman rules of QED. One can work with the graphical representation
and then translate to formula at a convenient point. However, when in doubt, one can always go
back to the functional representation.

10.3 Elementary scattering processes

Compton Scattering. As a first example let us consider Compton scattering e−γ → e−γ

p1, s1

µ

ν

q1, λ1

p2, s2 q2, λ2

p1

p1 + q1

q1

p2 q2

p1, s1

ν

µ

q1, λ1

p2, s2
q2, λ2

p1

p1 − q2
q2

p2

q1
(10.112)

These are two diagrams at order e2, as shown above. The first diagram corresponds to the expression

ūs2(p2)(−eγν)
(
−i
−i(/p1 + /q1) +m

(p1 + q1)2 +m2

)
(−eγµ) ius(p1) ε(λ1)µ(q1) ε

∗
(λ2)ν

(q2). (10.113)
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Similarly, the second diagram gives

ūs2(p2)(−eγµ)
(
−i
−i(/p1 − /q1) +m

(p1 − q1)2 +m2

)
(−eγν) ius(p1) ε(λ1)µ(q1) ε

∗
(λ2)ν

(q2). (10.114)

Combining terms and simplifying a bit leads to

iT = e2ε(λ1)µ(q1) ε
∗
(λ2)ν

(q2) ūs2(p2)

[
γν
−i(/p1 + /q1) +m

(p1 + q1)2 +m2
γµ + γµ

−i(/p1 − /q2) +m

(p1 − q2)2 +m2
γν
]
us1(p1).

(10.115)

Electron-positron to muon-anti-muon scattering. As another example for an interesting
process in QED we consider e−e+ → µ−µ+. From the point of view of QED, the muon behaves like
the electron but has a somewhat larger mass. Diagrams contributing to this process are (we keep
the polarizations implicit)

e−

µ

ν

e+

µ− µ+

p1

p1 + p2 = k

p2

p3 p4

(10.116)

The corresponding expression is

iT = v̄(p2)(−eγµ) iu(p1)

(
−i
ηµν − kµkν

k2

(k2)

)
ū(p2) (−eγν) iv(p4), (10.117)

with k = p1 + p2 = p3 + p4. The external momenta are on-shell and the spinors u(p1) etc. satisfy
the Dirac equation,

(i/p1 +me)u(p1) = 0, (−i/p4 +mµ)v(p4) = 0, (10.118)

ū(p3)(i/p3 +mµ) = 0, v̄(p2)(−i/p2 +me) = 0. (10.119)

This allows to write

iv̄(p2) γ
µkµ u(p1) = iv̄(p2) (/p1 + /p2)u(p1) = v̄(p2) (−me +me)u(p1) = 0,

iū(p3) γ
νkν v(p4) = iū(p3) (/p3 + /p4) v(p4) = ū(p3) (−mµ +mµ) v(p4) = 0.

(10.120)

These arguments show that the term ∼ kµkν can be dropped. This is essentially a result of gauge
invariance. One is left with

T =
e2

k2
v̄(p2)γ

µu(p1) ū(p3)γµv(p4). (10.121)

To calculate |T |2 we also need T ∗ which follows from hermitian conjugation

T ∗ = e2

k2
v†(p4)γ

†
µū
†(p3) u

†(p1)γ
µ†v̄†(p2). (10.122)

Recall that ū(p) = u(p)†β with β = iγ0. With the explicit representation

γµ =

(
−iσ̄µ

−iσµ

)
, (10.123)

– 99 –



it is also easy to prove βγµ†β = −γµ. By inserting β2 = 1 at various places we find thus

T ∗ = e2

k2
v̄(p4)γµu(p3) ū(p1)γ

µv(p2) (10.124)

Putting together and using s = −k2 = −(p1 + p2)
2 we obtain

|T |2 =
e4

s2
ū(p1)γ

µv(p2) v̄(p2)γ
νu(p1) ū(p3)γνv(p1) v̄(p4)γµu(p3). (10.125)

To proceed further, we need to specify also the spins of the incoming and outgoing particles. The
simplest case is the one of unpolarized particles so that we need to average the spins of the incoming
electrons, and to sum over possible spins in the final state. Summing over the spins of the µ+ can
be done as follows (exercise)

2∑
s=1

vs(p4)v̄s(p4) = −i/p4 −mµ, (10.126)

and similarly for µ−
2∑
s=1

us(p3)ūs(p3) = −i/p3 +mµ. (10.127)

We can therefore write

ū(p3)γνv(p4) v̄(p4)γµu(p3) = tr
{
(−i/p3 +mµ)γν(−i/p4 −mµ)γµ

}
. (10.128)

Spins of the electron and positron must be averaged instead,

1

2

2∑
s=1

u(p1)ū(p1) =
1

2
(−i/p1 +me),

1

2

2∑
s=1

v(p2)v̄(p2) =
1

2
(−i/p2 −me).

(10.129)

This leads to

1

4

∑
spins
|T |2 =

e4

4s2
tr
{
(−i/p1 +me)γ

µ(−i/p2 −me)γ
ν
}
× tr

{
(−i/p3 +mµ)γν(−i/p4 −mµ)γµ

}
.

(10.130)
In order to proceed further, we need to know how to evaluate traces of up to four gamma matrices.

Traces of gamma matrices. We need to understand how to evaluate traces of the form tr{γµ1 · · · γµn}
To work them out we can use {γµ, γν} = 2ηµν , γ25 = 1 and {γµ, γ5} = 0. Also, tr{1} = 4. First we
prove that traces of an odd number of gamma matrices must vanish,

tr{γµ1 · · · γµn} = tr{γ25 γµ1γ25 · · · γ25γµn}
= tr{(γ5γµ1γ5) · · · (γ5γµ1γ5)}
= tr{(−γ25γ

µ
1 ) · · · (−γ25γµn)}

= (−1)ntr{γµ1 · · · γµn}.

(10.131)

This implies what we claimed. Now for even numbers

tr{γµγν} = tr{γνγµ} = 1
2 tr{γµγν + γνγµ} = ηµνtr{1} = 4ηµν . (10.132)

From this it also follows that
tr{/p/q} = 4p · q. (10.133)
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Now consider tr{γµγνγργσ}. This idea is to commute γµ to the right using {γµ, γν} = 2ηµν . Thus

tr{γµγνγργσ} = −tr{γνγµγργσ}+ 2ηµν tr{γργσ}
= tr{γνγργµγσ} − 2ηρµtr{γνγσ}+ 2ηµν tr{γργσ}
= −tr{γνγργσγµ}+ 2ησµ tr{γνγρ} − 2ηρµ tr{γνγσ}+ 2ηµν tr{γργσ}.

(10.134)

But by the cyclic property of the trace

tr{γνγργσγµ} = tr{γµγνγργσ} (10.135)

which is also on the left hand side. Bringing it to the left and dividing by 2 gives

tr{γµγνγργσ} = ησµ tr{γνγρ} − ηρµ tr{γνγσ}+ ηµνtr{γργσ}
= 4(ησµηνρ − ηρµηνσ + ηµνηρσ).

(10.136)

This is the result we were looking for. Clearly by using this trick we can in principle evaluate traces
of an arbitrary number of gamma matrices.
Coming back to e−e+ → µ−µ+ we find

1

4

∑
spins
|T |2 =

4e4

s2
[
−pµ1pν2 − pν1p

µ
2 + (p1.p2 −m2

e)η
µν
]

×
[
−(p3)ν(p4)µ − (p3)µ(p4)ν + (p3.p4 −m2

µ)η{µν)
]

= 8e4

s2

[
(p1.p4)(p2.p3) + (p1 · p3)(p2 · p4)−m2

µ(p1.p2)−m2
e(p3.p4) + 2m2

em
2
µ

] (10.137)

This looks already quite decent but it can be simplified even further in terms of Mandelstam
variables.

Mandelstam Variables.

p1 p2

p3 p4

(10.138)

s = −(p1 + p2)
2 = −(p3 + p4)

2

t = −(p1 − p3)2 = −(p2 − p4)2

u = −(p1 − p4)2 = −(p2 − p3)2
(10.139)

Together with the squares p21, p22, p23, p24, the Mandelstam variables can be used to express all
Lorentz invariant bilinears in the momenta. Incoming and outgoing momenta are on-shell such
that p21 +m2

1 = 0 etc. The sum of Mandelstam variables is

s+ t+ u = −(p21 + p22 + p23 + p24) = m2
1 +m2

2 +m2
3 +m2

4. (10.140)

Using these variables for example through

p1 · p4 = −1

2

[
(p1 − p4)2 − p21 − p24

]
=

1

2

[
u−m2

e +m2
µ

]
, (10.141)

one finds for e−e+ → µ−µ+

1

4

∑
spins
|T |2 =

2e4

s2
[
t2 + u2 + 4s(m2

e +m2
µ)− 2(m2

e +m2
µ)

2
]
. (10.142)
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From the squared matrix element we can calculate the differential cross section in the center of
mass frame. For relativistic kinematics of 2 → 2 scattering and the normalization conventions we
employ here one has in the center of mass frame

dσ

dΩ
=

1

64π2s

|~p3|
|~p1|
|T 2| = 1

64π2s

~p3
~p1

1

4

∑
spins
|T |2. (10.143)

Let us express everything in terms of the energy E of the incoming particles and the angle θ between
the incoming e− electron momenta and outgoing µ− muon.

|~p1| =
√
E2 −m2

e s = 4E2,

|~p3| =
√
E2 −mµ2 t = m2

e +m2
µ − 2E2 + 2~p1 · ~p3,

~p1 · ~p3 = |~p1||~p3| cos θ| u = m2
e +m2

µ − 2E2 − 2~p1 · ~p3.

(10.144)

With these relations we can express dσ
dΩ in terms of E and θ only. Let us concentrate on the

ultrarelativistic limit E � me,mµ so that we can set me = mµ = 0. One has then |~p1| = |~p3| and

t2 + u2 = 8E4(1 + cos2 θ), 2(t2+u2)
s2 = 1 + cos2 θ, (10.145)

which leads to
dσ

dΩ
=

e4

64π2s
(1 + cos2θ) =

α2

4s
(1 + cos2 θ). (10.146)

In the last equation we used α = e2/(4π).

Electron-Muon Scattering. We can also consider the scattering process e−µ− → e−µ−,

e−

µ ν

e−

µ−

µ−

q1

k

q3

q2

q4

k = q1 − q3 (10.147)

iT = ū(q3)(−eγµ)iu(q1)

(
−i
ηµν − kµkν

k2

k2

)
ū(q4)(−eγν)iu(q2). (10.148)

By a similar argument as before the term ∼ kµkν drops out,

T =
e2

(q1 − q3)2
ū(q3)γ

µu(q1)ū(q4)γµu(q2) (e−µ− → e−µ−). (10.149)

Compare this to what we have found for e−e+ → µ−µ+

T =
e2

(p1 + p2)2
v̄(p2)γ

µu(p1)ū(p3)γµv(p4) (10.150)
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where the conventions were according to

e−

µ

ν

e+

µ− µ+

p1

p1 + p2 = k

p2

p3 p4

(10.151)

There is a close relation and the expressions agree if we put

q1 = +p1, u(q1) = u(p1),

q2 = −p4, u(q2) = u(−p4)→ v(p4),

q3 = −p2, ū(q3) = ū(−p2)→ v̄(p2),

q4 = +p3, ū(q4) = ū(p3).

(10.152)

This identification makes sense, recall that

(i/p+m) u(p) = 0 but (−i/p+m) v(p) = 0. (10.153)

However one sign arises from the spin sums

2∑
s=1

us(p)ūs(p) = −i/p+m,

2∑
s=1

vs(p) v̄s(p) = −i/p−m = −
∑
s

us(−p) ūs(−p).

(10.154)

Because it appears twice, the additional sign cancels for |T |2 after spin averaging and one finds
indeed the same result as for e−e+ → µ−µ+ but with

sq =− (q1 + q2)
2 = −(p1 − p4)2 = up,

tq =− (q1 − q3)2 = −(p1 + p2)
2 = sp,

uq =− (q1 − q4)2 = −(p1 − p3)2 = tp.

(10.155)

We can take what we had calculated but must change the role of s, tand u ! This is an example of
crossing symmetries.

Recall that we found for e−e+ → µ−µ+ in the massless limit me = mµ = 0 simply

1

4

∑
spins
|T |2 =

2e4

s2
[
t2 + u2

]
. (10.156)

For e−µ− → e−µ− we find after the replacements u→ s, s→ t, t→ u,

1

4

∑
spins
|T |2 =

2e4

t2
[
u2 + s2

]
. (10.157)
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To get a better feeling for s, t and u, let us evaluate them in the center of mass frame for a situation
where all particles have mass m.

p1
p2

p3

p4

θ

(10.158)

pµ1 = (E, ~p), pµ2 = (E,−~p),
pµ3 = (E, ~p′), pµ4 = (E,−~p′).

(10.159)

While s measures the center of mass energy, t is a momentum transfer that vanishes in the soft
limit ~p2 → 0 and in the colinear limit θ → 0. Similarly, u vanishes for ~p2 → 0 and for backward
scattering θ → π.

For the cross section we find for e−µ− → e−µ− in the massless limit

dσ

dΩ
=

1

64π2s

1

4

∑
spins

|T |2 =
α2[4 + (1 + cos θ)2]

2s(1− cos θ)2
(10.160)

This diverges in the colinear limit θ → 0 as we had already seen for Yukawa theory in the limit
where the exchange particle becomes massless.
Note that by the definition s ≥ 0 while u and t can have either sign. Replacements of the type used
for crossing symmetry are in this sense always to be understood as analytic continuation.

s-, t- and u-channels. One speaks of interactions in different channels for tree diagrams of the
following generic types,

p1 p2

p3 p4

∝ 1

−s+m2
s-channel

p1

p3 p4

p2

∝ 1

−t+m2
t-channel

p1

p4

p2

p3

∝ 1

−u+m2
u-channel

(10.161)

10.4 Relativistic scattering and decay kinematics

Covariant normalization of asymptotic states. For non-relativistic physics this we have used
a normalization of single particle states in the asymptotic incoming and out-going regimes such that

〈~p|~q〉 = (2π)3δ(3)(~p− ~q). (10.162)
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For relativistic physics this has the drawback that it is not Lorentz invariant. To see this let us
consider a boost in z-direction

E′ =γ(E + βp3),

p1′ =p1,

p2′ =p2,

p3′ =γ(p3 + βE).

(10.163)

Using the identity
δ (f(x)− f(x0)) =

1

|f ′(x0)|
δ(x− x0), (10.164)

one finds

δ(3)(~p− ~q) = δ(3)(~p′ − ~q′)dp
3′

dp3
= δ(3)(~p− ~q)γ

(
1 + β

dE

dp3

)
= δ(3)(~p′ − ~q′) 1

E
γ
(
E + βp3

)
=
E′

E
δ(3)(~p′ − ~q′).

(10.165)

This shows, however, that E δ(3)(~p− ~q) is in fact Lorentz invariant. This motivates to change the
normalization such that

|p; in〉 =
√
2Epa

†
~p(−∞)|0〉 =

√
2E~p |~p; in〉. (10.166)

Note the subtle difference in notation between |p; in〉 (relativistic normalization) and |~p; in〉 (non-
relativistic normalization). This implies for example

〈p; in|q; in〉 = 2Ep(2π)
3δ(3)(~p− ~q). (10.167)

With this normalization we must divide by 2Ep at the same places. In particular the completeness
relation for single particle incoming states is

11−particle =

∫
d3p

(2π)3
1

2E~p
|p; in〉〈p; in|. (10.168)

In fact, what appears here is a Lorentz invariant momentum measure. To see this consider∫
d4p

(2π)4
(2π) δ(p2 +m2) θ(p0) =

∫
d3p

(2π)3
1

2E~p
. (10.169)

The left hand side is explicitly Lorentz invariant and so is the right hand side.

Covariantly normalized S-matrix. We can use the covariant normalization of states also in
the definition of S-matrix elements. The general definition is as before

Sβα = 〈β; out|α; in〉 = δβα + i Tβα(2π)4δ(4)(pin − pout). (10.170)

But now we take elements with relativistic normalization, e.g. for 2→ 2 scattering

Sq1q2,p1p2 = 〈q1, q2; out|p1, p2; in〉. (10.171)

We can calculate these matrix elements as before using the LSZ reduction formula to replace√
2Epa

†
~p(−∞) by fields. For example, for relativistic scalar fields√

2E~p a
†
~p(−∞) =

√
2E~p a

†
~p(∞) + i

[
−(p0)2 + ~p2 +m2

]
φ∗(p). (10.172)

This allows to calculate S-matrix elements through correlation functions.
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Cross sections for 2→ n scattering. Let us now generalize our discussion of 2→ 2 scattering
of non-relativistic particles to a scattering 2→ n of relativistic particles. The transition probability
is as before

P =
|〈β; out|α; in〉|2

〈β; out|β; out〉〈α; in|α; in〉
. (10.173)

Rewriting the numerator in terms of Tβα and going over to the transition rate we obtain as before

Ṗ =
V (2π)4δ(4)(pout − pin)|T |2

〈β; out|β; out〉〈α; in|α; in〉
. (10.174)

But now states are normalized in a covariant way

〈p|q〉 = lim
q→p
〈p|q〉

= lim
q→p

2Ep(2π)
3δ(3)(~p− ~q)

= 2Ep(2π)
3δ(3)(0)

= 2EpV

(10.175)

One has thus for the incoming state of two particles

〈α; in|α; in〉 = 4E1E2V
2. (10.176)

For the outgoing state of n particles one has instead

〈β; out|β; out〉 =
n∏
j=1

{2q0jV }. (10.177)

The product goes over final state particles which have the four-momentum qnj . So, far we have thus

Ṗ =
V (2π)4 δ(4)(pin − pout)|T |2

4E1E2V 2
∏n
j=1{2q0jV }

. (10.178)

To count final state momenta appropriately we could go back to finite volume and then take the
continuum limit. This leads to an additional factor∑

~nj

→ V

∫
d3q

(2π)3
(10.179)

for each final state particle. The transition rate becomes

Ṗ =
|T |2

4E1E2V

(2π)4 δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

} (10.180)

The expression in square brackets is known as the Lorentz-invariant phase space measure (sometimes
”LIPS”). To go from there to a differential cross section we need to divide by a flux of particles.
There is one particle per volume V with velocity v = v1 − v2, so the flux is

F =
|v|
V

=
|v1 − v2|

V
=

∣∣∣p31p01 − p32
p02

∣∣∣
V

. (10.181)

In the last equality we chose the beam axis to coincide with the z-axis. For the differential cross
section we obtain

dσ =
|T |2

4E1E2|v1 − v2|
[LIPS]. (10.182)
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The expression in the prefactor can be rewritten like

1

E1E2|v1 − v2|
=

1

p01p
0
2

∣∣∣p31p01 − p32
p02

∣∣∣ = 1

|p02p31 − p01p32|
=

1

|εµxyνpµ2pν1 |
. (10.183)

This is not Lorentz invariant in general but invariant under boosts in the z-direction. In fact it
transforms as a two-dimensional area element as it should. In the center of mass frame one has
p32 = −p31 = ±|~p1| and

1

|p02p31 − p01p02|
=

1

|~p1|(p01 + p02)
=

1

|~p1|COM
√
s

(10.184)

This leads finally to the result for the differential cross section

dσ =
|τ |2

4|~p1|COM
√
s

(2π)4δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

} . (10.185)

2 → 2 scattering. For the case of n = 2 one can write the Lorentz invariant differential phase
space element in the center of mass frame (exercise)[

(2π)4 δ(4)(pin − q1 − q2)
d3q1

(2π)32q01

dq2
(2π)3q02

]
=

|~q1|
16π2

√
s
dΩ (10.186)

such that
dσ

dΩ
=

1

64π2s

|~q1|
|~p1|
|T |2. (10.187)

Decay rate. Let us now consider the decay rate of a single particle, i. e. a process 1 → n. We
can still use equation (10.174), but now the initial state is normalized like

〈α; in|α; in〉 = 2E1V. (10.188)

We find then for the differential transition or decay rate dΓ = Ṗ

dΓ =
|T |2

2E1

(2π)4δ(4)(pin −
∑
j

qj

) n∏
j=1

{
d3qj

(2π)32q0j

} (10.189)

In the center of mass frame one has E1 = m1. For the special case of 1→ 2 decay one finds in the
center of mass frame

dΓ =
|T |2|~q1|
32π2m2

1

dΩ. (10.190)

10.5 Higgs/Yukawa theory

Let us consider the following extension of QED by a neutral scalar field (with m = gv)

S[ψ̄, ψ,A, φ] =

∫
x

{
−ψ̄γµ (∂µ − ieAµ)ψ − imψ̄ψ −

1

4
FµνFµν −

1

2
φ
(
−∂µ∂µ +M2

)
φ− igφψ̄ψ

}
.

(10.191)
Note that a constant (homogeneous) scalar field φ modifies the fermion mass according to

meff = m+ gφ = g(v + φ) (10.192)

In fact, one can understand the massses of elementary fermions (leptons and quarks) in the standard
model of elementary particle physics as being due to such a scalar field expectation value for the
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Higgs field. In the theory above we have now different propagators

1

i
∆µν(x− y)

1

i
Sαβ(x− y)

1

i
∆(x− y)

(10.193)

with scalar propagator
∆(x− y) =

∫
p

eip(x−y)
1

p2 +M2
. (10.194)

The vertices are

(−eγµ) g (10.195)

Higgs decay to fermions. Let us discuss first the process φ → f−f+. The fermions could be
leptons (e, µ, τ) or quarks (u, d, s, c, b, t). The Feynman diagram for the decay is simply

s2, f
+s1, f

−

p

q1 q2
(10.196)

According to the Feynman rules we obtain

iT = g ūs1(q1)ivs2(q2), T ∗ = g v̄s2(q2)us1(q1). (10.197)

For the absolute square one finds

|T |2 = g2 ūs1(q1)vs2(q2) v̄s2(q2)us1(q1). (10.198)

We will assume that the final spins are not observed and sum them∑
spins
|T |2 = g2 tr

{
(−i/q2 −m)(−i/q1 +m)

}
(10.199)

We used here again the spin sum formula∑
s

vs(p)v̄s(p) = −i/p−m,
∑
s

us(p)ūs(p) = −i/p+m. (10.200)

Performing also the Dirac traces gives∑
spins
|T |2 = g2

(
−4q1 · q2 − 4m2

)
. (10.201)

Let us now go into the rest frame of the decaying particle where

p = (M, 0, 0, 0), q1 =
(
M
2 , ~q

)
, q2 =

(
M
2 ,−~q

)
, (10.202)

with
~q2 = −m2 + M2

4 , q1 · q2 = −M
2

4
− ~q2 = −M

2

m2
, (10.203)
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and ∑
spins
|T |2 = 2 g2M2

(
1− 4

m2

M2

)
. (10.204)

Note that the decay is kinematically possible only for M > 2m so that the bracket is always positive.
For the particle decay rate we get

dΓ

dΩ
=

|~q1|
32π2M2

∑
spins
|T |2 =

g2M

32π2

(
1− 4

m2

M2

)3/2

. (10.205)

Because this is independent of the solid angle Ω one can easily integrate to obtain the decay rate

Γ =
g2M

8π

(
1− 4

m2

M2

)3/2

. (10.206)

If the scalar boson φ is the Higgs boson, the Yukawa coupling is in fact proportional to the fermion
mass m,

g =
m

V
. (10.207)

One has then
Γ =

M3

32πv2
f

(
2m

M

)
(10.208)

where
f(x) = x2(1− x2)3/2 (10.209)

0 1
0.0

0.2

f(x)

Decay into light fermions is suppressed because of small coupling while decay into very heavy
fermions is suppressed by small phase space or even kinematically excluded for 2m > M .

For Higgs boson mass of M = 125 GeV the largest decay rate to fermions is to bb̄ (bottom quark
and anti-quark). This corresponds to m = 4.18 GeV. The top quark would have larger coupling but
is in fact too massive (m = 172 GeV). (The lepton with largest mass is the tauon τ with m = 1.78

GeV.)

Higgs decay into photons. A Higgs particle can also decay into photons and this is in fact how
it was discovered. How is this possible? If we try to write down a diagram in the theory introduced
above we realize that there is no tree diagram. However, there are loop diagrams!
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Consider
q2q1 q2q1

(10.210)

These terms arise from the expansion of the partition function if the fermion propagator appears 3

times and there are 2 fermion-photon and one fermion-scalar vertices. Schematically, the vertices
are derivatives[

(−eγ)
(
1

i

δ

δJµ

)(
i
δ

δη

)(
1

i

δ

δη̄

)]
or

[
g

(
1

i

δ

δJ

)(
i
δ

δη

)(
1

i

δ

η̄

)]
(10.211)

and they act here on a chain like[
(iη̄)

(
1

i
S

)
(iη)

] [
(iη̄

(
1

i
S

)
(iη)

] [
(iη̄)

(
1

i
S

)
(iη)

]
. (10.212)

Note that the derivative with respect to η̄ can be commuted through the square brackets and acts
on η̄ from the left. Factors 1/i and i cancel. The derivative with respect to η receives an additional
minus sign from commuting and this cancels against i2. In this way the vertices can connect the
elements of the chain. However, for a closed loop also the beginning and end of the chain must
be connected. To make this work, one can first bring the (iη) from the end of the chain to its
beginning. This leads to one additional minus sign from anti-commuting Grassmann fields. This
shows that closed fermion lines have one more minus sign.

In position space and including sources, the first diagram is

x

yz

s µ

(10.213)

g(−1)
∫
x,y,z

tr
{[

1

i
S(x− y)

]
(−eγµ)

[
1

i
S(y − z)

]
(−eγν)

[
1

i
S(z − x)

]}
×
∫
u,v,w

[
1

i
∆µα(y − u)

]
(iJα(u)

[
1

i
∆νβ(z − v)

]
(iJβ(v)

[
1

i
∆(x− w)

]
(iJ(w))

(10.214)

The trace is for the Dirac matrix indices. If one translates this now to momentum space and
considers the amputated diagram for an S-matrix element, one finds that momentum conservation
constrains momenta only up to one free integration momentum or loop momentum.
In fact, more generally, there is one integration momentum for every closed loop. The first diagram
is then

p

l + q1 l − q2

lq1

µ
q2

ν

(10.215)
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(−1)ge2 ε∗µ(q1)ε∗ν(q2)
∫
l

1

[l + q1)2 +m2 − iε][l2 +m2 − iε][l − q2)2 +m2 + iε]

× tr
{[
−i(/l + /q1) +m

]
γµ
[
−i/l +m

]
γnu

[
−i(/l − /q2) +m

]} (10.216)

For the second diagram we can write

µν

p

l + q2 l − q1

l

q2q1

(10.217)

(−1)ge2 ε∗µ(q1) ε∗ν(q2)
∫
l

. . . (10.218)

where the integrand is the same up to the interchange q1 ↔ q2 and µ ↔ ν. We can therefore
concentrate on evaluating the first diagram. We use there the abbreviation∫

l

=

∫
d4l

(2π)4
. (10.219)

The Feynman iε terms allow to perform a Wick rotation to Euclidean space l0 = il̃0E so that l2 is
then positive. Let us count powers of l. First, in the Dirac trace we have terms with up to 5 gamma
matrices. However, only traces of an even number of gamma matrices are non-zero.

With a bit of algebra one finds for the Dirac trace

tr
{[
−i(/l + /q1) +m

]
γµ
[
−i/l +m

]
γν
[
−i(/l − /q2) +m

]}
= −m tr

{
(/l + /q1)γ

µ/lγν + (/l + /q1)γ
µγν(/l − /q2) + γµ/lγν(/l − /q2)

}
+m3 tr {γµγν}

= −4m
[
(l + q1)

µlν + (l + q1)
ν lµ − (l + q1) · l ηµν

+ (l + q1)
µ(l − q2)ν + (l + q1) · (l − q2)ηµν − (l + q1)

ν(l − q2)µ

+ lµ(l − q2)ν + (l − q2)µlν − ηµν l · (l − q2)
]
+ 4ηµνm3

= −4m
[
4lµlν − l2ηµν − l2ηµν + 2qµ1 l

ν − 2qν2 l
µ − qµ1 q

µ
2 + qν1 q

µ
2 − (q1 · q2)ηµν

]
+ 4ηµνm3

(10.220)

Let us now consider the denominator. One can introduce so-called Feynman parameters to write

1

[(l + q1)2 +m2][l2 +m2][(l − q2)2 +m2]

= 2!

∫ 1

0

du1 · · · du3 δ(u1 + u2 + u3 − 1)
1

[u1[(l + q1)2 +m2] + u2[l2 +m2] + u3[(l − q2)2 +m2]]
3

= 2

∫ 1

0

du1 · · · du3
δ(u1 + u2 + u3 − 1)

[l2 + 2l(u1q1 − u3q2) + u1q21 + u3q22 +m2]
3 .

(10.221)

We have used here the identity (will be proven in the second part of the course QFT 2)

1

p1 · · · pn
= (n− 1)!

∫ 1

0

du1 . . . dun
δ(u1 + . . .+ un − 1)

[u1A1 + . . .+ unAn]
n (10.222)
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In a next step one commutes the integral over u1 . . . u3 with the integral over l. It is useful to
change integration variables according to

l + u1q1 − u3q2 → k,

l = k − u1q1 + u3q2.
(10.223)

Collecting terms we find for the first diagram

(−1)ge2 ε∗µ(q1) ε∗(q2) 2
∫ 1

0

du1 · · · du3 δ(u1+u2+u3−1)
∫

d4k

(2π)4
Aµν

[k2 + u1q21 + u3q22 − (u1q1 − u3q2)2 +m2]
3

(10.224)
where

Aµν = −4m
[
4kµkν − k2ηµν + terms linear in k

+ 4(u1q1 − u3q2)µ(u1q1 − u3q2)ν − (u1q1 − u3q2)2ηµν

− qµ1 qν2 + qν1 q
µ
2 − (q1 · q2)ηµν − ηµν − ηµνm2

]
.

(10.225)

The integral over k is now symmetric around the origin. There is no contribution from linear terms
in k and also the quadratic terms cancels. In fact, one can prove that

lim
d→4

∫
ddk

(2π)d
4kµkν − (k2 +A)ηµν

(k2 +A)3
= 0. (10.226)

We will develop the techniques to prove this in QFT2.
Taking this as well as ε∗µ(q1)q

µ
1 = ε∗ν(q2)q

ν
2 = 0 and q21 = q22 = 0 into account leads to

Aµν = −4m [1− 4u1u2] [q
µ
1 q
ν
2 − (q1 · q2)ηµν ] . (10.227)

Note that this is symmetric with respect to (q1, µ)↔ (q2, ν), so we can add the second diagram by
multiplying with 2. We obtain

iT =8ge2mε∗µ(q1)ε
∗
ν(q2) [q

ν
1 q
µ
2 − (q1 · q2)ηµν ]

× 2

∫ 1

0

du1 · · · du3 δ(u1 + u2 + u3 − 1)[1− 4u1u3]

∫
d4k

(2π)4
1

[k2 + 2u1u3q1 · q2 +m2]
3

(10.228)

To evaluate the integral over k we note that in the rest frame of the decaying scalar boson p =

q1 + q2 = (M, 0, 0, 0) such that p2 = 2q1 · q2 = −M2. If we concentrate on fermions that are very
heavy such that m�M we can expand in the term u1u3q1 · q2 in the integral over k. One finds to
lowest order ∫

d4k

(2π)4
1

[k2 +m2]3
= i

1

(4π)2
1

2m2
. (10.229)

This i is due to the Wick rotation k0 = ik0E . Also the integral over Feynman parameters can now
easily be performed

2

∫ 1

0

du1 . . . du3 δ(u1 + u2 + u3 − 1)[1− 4u1u3]

= 2

∫ 1

0

du1du3 θ(1− u1 − u3) [1− 4u1u3]

= 2

∫ 1

0

du1

∫ 1−u1

0

du3 [1− 4u1u3]

= 2

∫ 1

0

du1[(1− u1)− 4u1
1
2 (1− u1)

2]

= 2− 3 +
8

3
− 1 =

2

3
.

(10.230)
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Collecting terms we find

iT = i
8ge2

3(4π)2m
ε∗µ(q1) ε

∗
ν(q2) [q

ν
1 q
µ
2 − (q1 · q2)ηµν ] . (10.231)

Photon polarization sums and Ward identity. Before we continue we need to develop a
method to perform the spin sums for photons. In the squared amplitude expressions like the
following appear ∑

polarizations

|T |2 =
∑

polarizations

ε∗µ(q)εν(q)M
µ(q)Mν∗(q) (10.232)

We have extended here the polarization vector of a photon from the amplitude by decomposing

τ = ε∗µ(q)M
µ(q). (10.233)

Let us choose without loss of generality qµ = (E, 0, 0, E) and use the polarization vector introduced
previously.

ε(1)µ = (0, 1√
2
,− i√

2
, 0) (10.234)

ε(2)µ = (0, 1√
2
, i√

2
, 0) (10.235)

such that

ε∗(1)µ ε(1)ν + ε∗(2)µ ε(2)ν =


0

1

1

0

 (10.236)

This would give
2∑
j=1

ε∗(j)µ ε(νj)M
µ M∗ν = |M1|2 + |M2|2. (10.237)

To simplify this one can use an identity we will prove later,

qµM
µ(q) = 0. (10.238)

This is in fact a consequence of gauge symmetry known as Ward identity. For the above choice of
qµ it follows

−M0 +M3 = 0 (10.239)

Accordingly, one can add 0 = −|M0|2 + |M3|2 to the spin sum
2∑
j=1

ε∗(j)µ ε(νj)M
µ M∗ν = −|M0|2 + |M1|2 + |M2|2 + |M3|2 = ηµνM

µM∗ν . (10.240)

In this sense we can use for external photons
2∑
j=1

ε∗(j)µ ε(νj)→ ηµν (10.241)

With this we can now calculate the sums over final state photon polarizations∑
pol.

|τ |2 =
(

8ge2

3 (4π)2m

)2
[qν1 q

µ
2 − (q1.q2)η

µν ][qβ1 q
α
2 − (q1.q2)η

αβ ]

∑
pol.

ε∗µ(q1) εα(q1)
∑
pol.

ε∗ν(q2) εβ(q2)

=
(

8ge2

3 (4π)2m

)2
2(q1.q2)

2 = 2g2α2

9π2m2π
4

(10.242)
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For the particle decay rate ϕ→ γγ this gives with |~q1| = M
2

dΓ
dΩ = |~q1

32π2M2

∑
pol.

|τ |2 = g2α2

9.32π4m2M
3 (10.243)

Finally, we integrate over solid angle Ω = 1
24π where the factor 1

2 is due to the fact that the photons
in the final state are indistinguishable. The decay rate for ϕ→ γγ through a heavy fermion loop is
finally

Γ = g2α2

144π3m2 M
3 (10.244)

Note that because of g = m
V this is in fact independant of the heavy fermion mass m.
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