Quintessence a fifth force from variation of the fundamental scale

$\Omega_{\rm m} + X = 1$

Ω_h: 75%
Dark Energy

Quintessence

C.Wetterich

A.Hebecker, M.Doran, M.Lilley, J.Schwindt, C.Müller, G.Schäfer, E.Thommes, R.Caldwell, M.Bartelmann, K.Karwan

Dark Energy dominates the Universe

Energy - density in the Universe

Matter + Dark Energy

Matter: Everything that clumps

Wilkinson Microwave Anisotropy Probe

A partnership between NASA/GSFC and Princeton

Science Team:

NASA/GSFC

Michael Greason Bob Hill

Nils Odegard Janet Weiland

Brown

UCLA

UBC

Princeton Chris Barnes

Enchiro Komatsu Michael Nolta

Lyman Page Hiranya Peiris Licia Verde

mean values

$$\Omega_{\text{tot}} = 1.02$$

$$\Omega_{\rm tot} = 1.02$$
 $\Omega_{\rm m} = 0.27$

$$\Omega_{\rm b} = 0.045$$

$$\Omega_{\rm dm} = 0.225$$

Dark Energy

$$\Omega_{\rm m} + X = 1$$

$$\Omega_{\rm m}:25\%$$

h : homogenous , often Ω_{Λ} instead of $\Omega_{\rm h}$

Space between clumps is not empty:

Dark Energy!

Dark Energy density is the same at every point of space

"homogeneous "

 $\Omega_{
m h}$

Predictions for dark energy cosmologies

The expansion of the Universe accelerates today!

Supernovae 1a Hubble diagram

What is Dark Energy?

Cosmological Constant or

Quintessence?

Cosmological Constant - Einstein -

- Constant λ compatible with all symmetries
- No time variation in contribution to energy density

Why so small?

$$\lambda/M^4 = 10^{-120}$$

Why important just today?

Cosm. Const. static

Quintessence dynamical

Quintessence and solution of cosmological constant problem should be related!

Cosmological mass scales

■ Energy density

$$\rho \sim (2.4 \times 10^{-3} \text{ eV})^{-4}$$

- Reduced Planck mass M=2.44×10¹⁸GeV
- Newton's constant $G_N = (8\pi M^2)$

Only ratios of mass scales are observable!

homogeneous dark energy: $\rho_h/M^4 = 6.5 \cdot 10^{-121}$

matter: $\rho_{\rm m}/{\rm M}^4=3.5\ 10^{-121}$

Time evolution

$$\begin{tabular}{lll} $ & $\rho_{\rm m}/M^4 \sim a^{-3} \sim \\ & t^{-2} & matter dominated universe \\ & $t^{-3/2}$ & radiation dominated universe \\ \end{tabular}$$

 $\rho_{\rm r}/{\rm M}^4 \sim {\rm a}^{-4} \sim {\rm t}^{-2}$ radiation dominated universe

Huge age ⇒ small ratio

Same explanation for small dark energy?

Time dependent Dark Energy: Quintessence

- What changes in time?
- Only dimensionless ratios of mass scales are observable!
- V : potential energy of scalar field or cosmological constant
- V/M⁴ is observable
- Imagine the Planck mass M increases ...

Quintessence from time evolution of fundamental mass scale

Fundamental mass scale

Unification fixes parameters with dimensions

- Special relativity : c
- Quantum theory: h
- Unification with gravity:

fundamental mass scale

(Planck mass, string tension, ...)

Fundamental mass scale

- Fixed parameter or dynamical scale?
- Dynamical scale → Field
- Dynamical scale compared to what?

momentum versus mass

(or other parameter with dimension)

Cosmon and fundamental mass scale

- Assume all mass parameters are proportional to scalar field χ (GUT's, superstrings,...)
- \blacksquare $M_p \sim \chi$, $m_{proton} \sim \chi$, $\Lambda_{QCD} \sim \chi$, $M_W \sim \chi$,...

- χ may evolve with time : cosmon
- \blacksquare m_n/M: (almost) constant <u>observation</u>!

Only ratios of mass scales are observable

Example:

Field χ denotes scale of transition from higher dimensional physics to effective four dimensional description in theory without fundamental mass parameter

(except for running of dimensionless couplings...)

Dilatation symmetry

Lagrange density:

$$L = \sqrt{g}(-\frac{1}{2}\chi^2R + \frac{1}{2}(\delta - 6)\partial^{\mu}\chi\partial_{\mu}\chi + V(\chi) + h\chi\overline{\psi}\psi)$$

Dilatation symmetry for

$$V = \lambda \chi^4$$
, $\lambda = const.$, $\delta = const.$, $h = const.$

■ Conformal symmetry for δ =0

Dilatation anomaly

- Quantum fluctuations responsible for dilatation anomaly
- Running couplings: hypothesis

$$\partial \lambda/\partial \ln \chi = -A\lambda\,,\,\partial \delta/\partial \ln \chi = E\delta^2$$

- Renormalization scale μ: (momentum scale)
- E > 0 : crossover Quintessence

Dilatation anomaly and quantum fluctuations

- Computation of running couplings (beta functions) needs unified theory!
- Dominant contribution from modes with momenta ~χ!
- No prejudice on "natural value" of anomalous dimension should be inferred from tiny contributions at QCD- momentum scale!

Cosmology

Cosmology: χ increases with time!
(due to coupling of χ to curvature scalar)

for large χ the ratio V/M^4 decreases to zero

Effective cosmological constant vanishes asymptotically for large t!

Asymptotically vanishing effective "cosmological constant"

■ Effective cosmological constant ~ V/M⁴

$$\lambda \sim (\chi/\mu)^{-A}$$

$$V \sim (\chi/\mu)^{-A} \chi^4$$

$$\blacksquare$$
 M = χ

$$V/M^4 \sim (\chi/\mu)^{-A}$$

Weyl scaling

Weyl scaling:
$$g_{\mu\nu} \rightarrow (M/\chi)^2 g_{\mu\nu}$$
,
 $\phi/M = \ln (\chi^4/V(\chi))$

$$L = \sqrt{g}(-\frac{1}{2}M^2R + \frac{1}{2}k^2(\phi)\partial^{\mu}\phi\partial_{\mu}\phi + V(\phi) + m(\phi)\overline{\psi}\psi)$$

Exponential potential: $V = M^4 \exp(-\varphi/M)$

No additional constant!

Without dilatation – anomaly:

V = const.

Massless Goldstone boson = dilaton

Dilatation – anomaly:

 $V(\phi)$

Scalar with tiny time dependent mass: cosmon

Crossover Quintessence

$$\partial \delta/\partial \ln \chi = E \delta^2$$

(like QCD gauge coupling)

critical χ where δ grows large critical φ where k grows large

$$k^2(\phi) = \delta(\chi)/4$$

$$k^{2}(\phi) = 1/(2E(\phi_{c} - \phi)/M)$$

if
$$\varphi_c \approx 276/M$$
 (tuning!):

this will be responsible for relative increase of dark energy in present cosmological epoch

Realistic cosmology

Hypothesis on running couplings yields realistic cosmology for suitable values of A, E, φ_c

Quintessence cosmology

Quintessence

Dynamical dark energy, generated by scalar field

(cosmon)

C.Wetterich, Nucl. Phys. B302(1988)668, 24.9.87 P.J.E. Peebles, B.Ratra, ApJ. Lett. 325(1988)L17, 20.10.87

Prediction:

homogeneous dark energy influences recent cosmology

- of same order as dark matter -

Original models do not fit the present observations \dots Modifications (i.e. E > 0)

Quintessence

Cosmon – Field $\varphi(x,y,z,t)$

Homogeneous und isotropic Universe : $\varphi(x,y,z,t) = \varphi(t)$

Potential und kinetic energy of the cosmon -field contribute to a dynamical energy density of the Universe!

"Fundamental" Interactions

Strong, electromagnetic, weak interactions

gravitation cosmodynamics

On astronomical length scales:

graviton

+

cosmon

Dynamics of quintessence

- \blacksquare Cosmon φ : scalar singlet field
- Lagrange density $L = V + \frac{1}{2} \frac{k(\phi)}{\partial \phi} \partial \phi$ (units: reduced Planck mass M=1)
- Potential: $V=\exp[-\varphi]$
- "Natural initial value" in Planck era φ=0
- today: $\phi = 276$

Quintessence models

■ Kinetic function $k(\mathbf{φ})$: parameterizes the details of the model - "kinetial"

```
■ k(\phi) = k = const. Exponential Q.

■ k(\phi) = exp((\phi - \phi_1)/\alpha) Inverse power law Q.

■ k^2(\phi) = "1/(2E(\phi_c - \phi))" Crossover Q.
```

possible naturalness criterion:

$$k(\phi=0)/k(\phi_{today})$$
: not tiny or huge!

- else: explanation needed -

Cosmon

- Scalar field changes its value even in the present cosmological epoch
- Potential und kinetic energy of cosmon contribute to the energy density of the Universe
- Time variable dark energy : $\varrho_h(t) \text{ decreases with time !}$

Cosmon

■ Tiny mass

 $-m_c \sim H$

■ New long - range interaction

cosmon mass changes with time!

for standard kinetic term

$$\mathbf{m}_{c}^{2} = \mathbf{V}$$

for standard exponential potential, $k \approx const.$

$$m_c^2 = V''/k^2 = V/(k^2 M^2)$$

$$= 3 \Omega_h (1 - w_h) H^2/(2 k^2)$$

Cosmological equations

$$\ddot{\phi} + 3H\dot{\phi} = -dV/d\phi$$

$$3M^2H^2 = V + \frac{1}{2}\dot{\phi}^2 + \rho$$

Cosmic Attractors

Solutions independent of initial conditions

typically V~t -2

$$\varphi \sim \ln (t)$$

 $\Omega_{\rm h} \sim {
m const.}$

details depend on $V(\phi)$ or kinetic term

Quintessence becomes important "today"

Equation of state

$$p=T-V$$
 $\varrho=T+V$

pressure

energy density

kinetic energy

$$T = \frac{1}{2}\dot{\phi}^2$$

Equation of state

$$w = \frac{p}{\rho} = \frac{T - V}{T + V}$$

Depends on specific evolution of the scalar field

Negative pressure

$$\mathbf{w} < 0$$

 Ω_h increases (with decreasing z)

late universe with small radiation component:

$$w_h = \frac{1}{3\Omega_h(1-\Omega_h)} \frac{\partial \Omega_h}{\partial \ln(1+z)}$$

- w < -1/3

expansion of the Universe is accelerating

- w = -1

cosmological constant

Quintessence becomes important "today"

How can quintessence be distinguished from a cosmological constant?

Time dependence of dark energy

cosmological constant : $\Omega_h \sim t^2 \sim (1+z)^{-3}$

M.Doran,...

small early and large present dark energy

fraction in dark energy has substantially increased since end of structure formation

expansion of universe accelerates in present epoch

$$w_h = \frac{1}{3\Omega_h(1-\Omega_h)} \frac{\partial \Omega_h}{\partial \ln(1+z)}$$

Early dark energy

A few percent in the early Universe

Not possible for a cosmological constant

A few percent Early Dark Energy

If linear power spectrum fixed today (σ_8):

More Structure at high z!

Bartelmann, Doran,...

Early Dark Energy

A few percent in the early Universe

Not possible for a cosmological constant

 1σ and 2σ limits

Doran, Karwan,..

How to distinguish Q from Λ ?

- A) Measurement $\Omega_h(z) \iff H(z)$
 - i) $\Omega_h(z)$ at the time of structure formation, CMB emission or nucleosynthesis
 - ii) equation of state $w_h(today) > -1$
- B) Time variation of fundamental "constants"
- C) Apparent violation of equivalence principle

Quintessence and time variation of fundamental constants

Generic prediction

Strength unknown

C.Wetterich , Nucl.Phys.B302,645(1988) Strong, electromagnetic, weak interactions

gravitation cosmodynamics

Time varying constants

- It is not difficult to obtain quintessence potentials from higher dimensional or string theories
- Exponential form rather generic (after Weyl scaling)
- But most models show too strong time dependence of constants!

Quintessence from higher dimensions

work with J. Schwindt

hep-th/0501049

Quintessence from higher dimensions

An instructive example:

Einstein – Maxwell theory in six dimensions

$$S = \int d^6x \sqrt{-g} \left\{ -\frac{M_6^4}{2} R + \lambda_6 + \frac{1}{4} F^{AB} F_{AB} \right\} \label{eq:S}$$

Warning: not scale - free!

Dilatation anomaly replaced by explicit mass scales.

Metric

Ansatz with particular metric (not most general!) which is consistent with

d=4 homogeneous and isotropic Universe and internal U(1) x Z_2 isometry

$$ds^2 = \exp\left(-\frac{\phi(t)}{\bar{M}}\right) \left\{-dt^2 + a^2(t)d\vec{x}d\vec{x}\right\}$$

$$+\exp\left(\frac{\phi(t)}{\bar{M}}\right)r_0^2\{d\rho^2+B^2\sin^2\rho\ d\theta^2\}$$

$$r_0^2 = \frac{\bar{M}^2}{4\pi B M_6^4}$$

 $B \neq 1$: football shaped internal geometry

Exact solution

$$A_{\theta} = \frac{m}{2e_6}(1 - \cos \rho)$$

m: monopole number (integer)

$$H^2 = \frac{1}{3 \bar{M}^2} (\frac{1}{2} \dot{\phi}^2 + V(\phi))$$

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V}{\partial \phi} = 0$$

cosmology with scalar

and potential V:

$$V(\phi) = \bar{M}^4 \left\{ \frac{\lambda_6}{M_6^4 \bar{M}^2} \; e^{-\frac{\phi}{\bar{M}}} - 4\pi B \frac{M_6^4}{\bar{M}^4} \; e^{-\frac{2\phi}{\bar{M}}} + 2\pi^2 m^2 \frac{M_6^4}{e_6^2 \bar{M}^6} \; e^{-\frac{3\phi}{\bar{M}}} \right\}$$

Asymptotic solution for large t

$$H = 2t^{-1}, \quad \phi = 2\bar{M} \ln \frac{t}{\sqrt{10}M_6^2 \lambda_6^{-1/2}}$$

$$\Omega_h = \frac{V + \frac{1}{2}\dot{\phi}^2}{3\bar{M}^2H^2} \to 1$$

$$V + \frac{1}{2}\dot{\phi}^2 \propto t^{-2}$$

Naturalness

- No tuning of parameters or integration constants
- Radiation and matter can be implemented
- Asymptotic solution depends on details of model, e.g. solutions with constant $\Omega_h \neq 1$

problem:

time variation of fundamental constants

Are fundamental "constants" time dependent?

Fine structure constant α (electric charge)

Ratio electron to proton mass

Ratio nucleon mass to Planck mass

Quintessence and Time dependence of "fundamental constants"

Fine structure constant depends on value of cosmon field: α(φ)

(similar in standard model: couplings depend on value of Higgs scalar field)

Time evolution of φ
 Time evolution of α

Jordan,...

Standard – Model of electroweak interactions: Higgs - mechanism

- The masses of all fermions and gauge bosons are proportional to the (vacuum expectation) value of a scalar field φ_H (Higgs scalar)
- For electron, quarks, W- and Z- bosons:

$$m_{electron} = h_{electron} * \phi_{H}$$
 etc.

Restoration of symmetry at high temperature in the early Universe

Low T SSB $\langle \phi_H \rangle = \phi_o \neq 0$ High T SYM $<\phi_H>=0$

high T: less order more symmetry

example: magnets

In the hot plasma of the early Universe:

No difference in mass for electron and muon!

Quintessence: Couplings are still varying now!

Strong bounds on the variation of couplings interesting perspectives for observation!

Where to look for time variation of fundamental couplings?

- Nucleosynthesis
- Molecular absorption lines in the light of distant Quasars
- Oklo natural reactor
- Atomic clocks
- CMB

baryons:

the matter of stars and humans

 $\Omega_{\rm b} = 0.045$

Abundancies of primordial light elements from nucleosynthesis

Allowed values for variation of fine structure constant:

$$\Delta \alpha / \alpha$$
 (z=10¹⁰) = -1.0 10⁻³ GUT 1
 $\Delta \alpha / \alpha$ (z=10¹⁰) = -2.7 10⁻⁴ GUT 2

C.Mueller, G.Schaefer, ...

Time variation of coupling constants must be tiny —

would be of very high significance!

Possible signal for Quintessence

Violation of equivalence principle

Different couplings of cosmon to proton and neutron

Differential acceleration

"Violation of equivalence principle"

only apparent: new "fifth force"!

Apparent violation of equivalence principle

and

time variation of fundamental couplings

measure both the

cosmon — coupling to ordinary matter

Differential acceleration η

For unified theories (GUT):

$$\eta = -1.75 \ 10^{-2} \Delta R_z \left(\frac{\partial \ln \alpha}{\partial z}\right)^2 \frac{1 + \bar{Q}}{\Omega_h (1 + w_h)}$$

$$\Delta R_z = rac{\Delta Z}{Z+N} pprox exttt{0.1}$$
 η=Δa/2a

Q: time dependence of other parameters

Link between time variation of α

and violation of equivalence principle

typically:
$$\eta = 10^{-14}$$

if time variation of α near Oklo upper bound

to be tested by MICROSCOPE

Summary

$$_{\rm o} \ \Omega_{\rm h} = 0.75$$

o Q/Λ : dynamical und static dark energy will be distinguishable

• Q: time varying fundamental coupling "constants"

violation of equivalence principle

- Why becomes Quintessence dominant in the present cosmological epoch?
- Are dark energy and dark matter related?
- Can Quintessence be explained in a fundamental unified theory?

A few references

- C.Wetterich , Nucl.Phys.B302,668(1988) , received 24.9.1987
- P.J.E.Peebles,B.Ratra, Astrophys.J.Lett.325,L17(1988), received 20.10.1987
- B.Ratra, P.J.E. Peebles , Phys. Rev. D37, 3406(1988) , received 16.2.1988
- J.Frieman, C.T.Hill, A.Stebbins, I.Waga, Phys. Rev. Lett. 75, 2077 (1995)
- P.Ferreira, M.Joyce, Phys.Rev.Lett.79,4740(1997)
- C. Wetterich, Astron. Astrophys. 301, 321 (1995)
- P. Viana, A. Liddle, Phys. Rev. D57,674(1998)
- E.Copeland, A.Liddle, D.Wands, Phys. Rev. D57, 4686 (1998)
- R.Caldwell,R.Dave,P.Steinhardt , Phys.Rev.Lett.80,1582(1998)
- P.Steinhardt, L. Wang, I. Zlatev, Phys. Rev. Lett. 82,896 (1999)

Cosmodynamics

Cosmon mediates new long-range interaction

Range: size of the Universe – horizon

Strength: weaker than gravity

photon electrodynamics

graviton gravity

cosmon cosmodynamics

Small correction to Newton's law

Time evolution of fundamental couplings traces time evolution of quintessence

today w_h close to -1:

- Small kinetic energy
- Slow change of φ
- Slow change of α

Very small $\Delta \alpha / \alpha$ for low z!

Crossover quintessence and time variation of fundamental "constants"

Upper bounds for relative variation of the fine structure constant

- Oklo natural reactor $\Delta \alpha / \alpha < 10^{-7}$ z=0.13
- Meteorites (Re-decay) $\Delta \alpha / \alpha < 3.10^{-7}$ z=0.45
- Crossover Quintessence compatible with QSO and upper bounds!

Atomic clocks and OKLO

assumes that both effects are dominated by change of fine structure constant

Observation: $|\Delta \alpha / \alpha| < 2 * 10^{-15} / yr$

Munich group

Variation of fine structure constant as function of redshift

Three independent data sets from Keck/HIRES

$$\Delta \alpha / \alpha = -0.54 (12) \ 10^{-5}$$

Murphy, Webb, Flammbaum, june 2003

VLT

$$\Delta \alpha / \alpha = -0.06 (6) \ 10^{-5}$$

Srianand, Chand, Petitjean, Aracil, feb. 2004

Cosmon and time variation of couplings: fixed points

small coupling of cosmon to matter due to fixed points behavior

$$\alpha_{x}$$
: Unified gauge coupling at unification scale $M_{x} \sim \chi$

Yunning $\alpha_{x}(\chi)$:

 $\frac{\partial \alpha_{x}}{\partial \ln \chi} = b_{x} \alpha_{x} - b_{y} \alpha_{x}^{2}$
 $b_{z}, b_{y} > 0$

$$W$$
-fixed point reached for $\chi \gg m$

$$\alpha_{\chi_{\#}} = \frac{b_z}{b_{\psi}} \approx \frac{1}{40}$$

close to fixed point:
small time evolution of couplings
coupling to matter weaker
than gravitational strength

Field equations

$$R_{AB} - \frac{1}{2}Rg_{AB} = M_6^{-4}(T_{AB}^{(F)} + T_{AB}^{(M)} - \lambda_6 g_{AB}),$$

$$\partial_A(\sqrt{-g}F^{AB}) = 0.$$

Energy momentum tensor

$$T_{AB}^{(F)} = F_{AC}F_{B}{}^{C} - \frac{1}{4}F_{CD}F^{CD}g_{AB}$$

$$R_{AB} - \frac{1}{2}Rg_{AB} = M_6^{-4}(T_{AB}^{(F)} + T_{AB}^{(M)} - \lambda_6 g_{AB}),$$

$$\partial_A(\sqrt{-g}F^{AB})=0.$$

Free integration constants

M, B, $\Phi(t=0)$, $(d\Phi/dt)(t=0)$: continuous

m: discrete

Conical singularities

deficit angle

$$\Delta = 2\pi(1 - B)$$

singularities can be included with energy momentum tensor on brane

$$(T^{(B)})^{\nu}_{\mu}=\frac{B-1}{Br_0^2e^{\phi/\bar{M}}}\;M_6^4\left(\frac{\delta(\rho)}{\rho}+\frac{\delta(\rho-\pi)}{\pi-\rho}\right)\delta^{\nu}_{\mu}$$

bulk point of view: describe everything in terms of bulk geometry (no modes on brane without tail in bulk)

Dimensional reduction

$$L^{(4)} = -\frac{\bar{M}^2}{2}R + \frac{Z_1(\phi)}{4}F^{(1)}_{\mu\nu}F^{\mu\nu(1)}$$

$$+\frac{Z_2(\phi)}{4}F^{(2)}_{\mu\nu}F^{\mu\nu(2)}$$

$$+i\sum_{j}\bar{\psi}_{j}\gamma^{\mu}(\partial_{\mu}-iQ_{j}^{(1)}\bar{e}_{1}A_{\mu}^{(1)}-iQ_{j}^{(2)}\bar{e}_{2}A_{\mu}^{(2)})\psi_{j}$$

$$+\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi+V(\phi)$$

Time dependent gauge coupling

$$e_{1(2)} = \frac{\bar{e}_{1(2)}}{\sqrt{Z_{1(2)}}}$$

$$Z_1 = e^{\phi/\bar{M}}, \quad Z_2 = e^{2\phi/\bar{M}}$$

Realistic model: Crossover Quintessence

$$\partial \delta/\partial \ln \chi = E \delta^2$$
 (like QCD gauge coupling)

critical χ where δ grows large critical φ where k grows large

$$k^2(\phi) = \delta(\chi)/4$$

$$k^2(\phi) = "1/(2E(\phi_c - \phi)/M)"$$
 if $\phi_c \approx 276/M$ (tuning!)

Relative increase of dark energy in present cosmological epoch