
Quantum fermions 
from classical statistics 



quantum mechanics can be described 
by classical statistics ! 



quantum particle from  
classical probabilities  



Double slit experiment 

Is there a classical probability 
density w(x,t) describing  
interference ? 
 
 
 
Suitable time evolution law : 
local , causal ?   Yes ! 
 
Bell’s inequalities ? 
Kochen-Specker Theorem ? 

Or hidden parameters w(x,α,t) ?  
  or w(x,p,t) ?  



statistical picture of the world 

 basic theory is not deterministic 
 basic theory makes only statements about 

probabilities for sequences of events and 
establishes correlations 

 probabilism is fundamental , not determinism ! 

quantum mechanics from classical statistics : 
not a deterministic hidden variable theory 



Probabilistic realism 

Physical theories and laws 
only describe  probabilities  
  



Physics only describes probabilities 

Gott würfelt  



Physics only describes probabilities 

      Gott würfelt Gott würfelt nicht 



Physics only describes probabilities 

                Gott würfelt  Gott würfelt nicht 

humans can only deal with probabilities 



probabilistic Physics 

 There is one reality 
 This can be described only by probabilities 

 
one droplet of  water … 
 1020 particles 
 electromagnetic field 
 exponential increase of distance between two 

neighboring trajectories 

 



probabilistic realism 

The basis of Physics are probabilities  
for predictions of real events 



laws are based on probabilities 

determinism as special case : 
       probability for event = 1 or 0 

 
 
 
 

 law of big numbers 
 unique ground state … 



conditional probability 

   sequences of events( measurements )  
   are described by  
   conditional probabilities 

both in classical statistics 
and in quantum statistics 



w(t1) 

 not very suitable  
for statement , if  here and now 
a pointer falls down 

: 



Schrödinger’s cat 

conditional probability : 
if  nucleus decays 
then cat dead with wc = 1  
(reduction of  wave function) 



classical particle  
without  classical trajectory 



no classical trajectories 

also for classical particles in  microphysics : 
 
trajectories with sharp position  
and momentum for each moment  
in time are inadequate idealization ! 
 
still possible formally as limiting case 



quantum particle    classical particle 

 particle-wave duality 
 uncertainty 

 
 no trajectories 

 
 tunneling 

 
 interference for double 

slit 

 particle – wave duality 
 sharp position and 

momentum 
 classical trajectories 

 
 maximal energy limits 

motion 
 only through one slit 



quantum particle    classical particle 
 
 quantum - probability -

amplitude ψ(x) 
 

 Schrödinger - equation 

 classical probability  
     in phase space   w(x,p) 

 
 Liouville - equation for w(x,p) 
      ( corresponds to Newton eq.  
        for trajectories ) 



quantum formalism for 
classical particle 



probability distribution for  
one classical particle 

classical probability distribution 
in phase space 



wave function for classical particle 

classical probability  
distribution in phase space 

wave function for  
classical particle 

  depends on  
  position 
  and momentum !  

C 

C 



wave function for one 
classical particle 

 

   real 
   depends on position and momentum 
   square yields probability 

C C 

similarity to Hilbert space for classical mechanics 
by Koopman and von Neumann  
in our case : real wave function permits computation 
of  wave function from probability distribution 
( up to some irrelevant signs ) 



quantum laws for observables 

C C 



x 

y 

pz>0 pz<0 

ψ 



time evolution of  
classical wave function 



Liouville - equation 

describes classical time evolution of   
classical probability distribution 
for one particle in potential V(x) 



time evolution of  
classical wave function 

C 

C C 



wave equation 

modified Schrödinger - equation 

C C 



wave equation 

C C 

fundamenal equation for classical particle in 
potential V(x) 
replaces Newton’s equations 



particle - wave duality 

wave properties of  particles : 
 
continuous probability distribution 



particle – wave duality 
experiment if  particle at position x – yes or no : 
discrete alternative 
 
 
 
probability distribution  
for finding 
particle at position x : 
continuous 

1 

1 

0 



particle – wave duality 

All statistical properties of  classical particles 
 
can be described in quantum formalism ! 
 
                           no  quantum particles yet ! 



 
modification of Liouville equation 



modification of evolution for 
classical probability distribution 

HW 

HW 

C C 



quantum particle 

with evolution equation 
 
 
 
 

all expectation values and correlations for 
quantum – observables , as computed from 
classical probability distribution , 
coincide for all times precisely with predictions  
of quantum mechanics for particle in potential V 

C C C 



classical probabilities –  
not a deterministic classical theory 

quantum particle from  
classical probabilities in phase space ! 



zwitter 

difference between quantum and classical particles 
only through different time evolution 

continuous  
interpolation 

CL 

QM HW 



zwitter - Hamiltonian 

 γ=0     :    quantum – particle 
 γ=π/2 :    classical particle 

other interpolating Hamiltonians possible ! 



How good is quantum mechanics ? 

small parameter γ can be tested experimentally 
 
 
 
zwitter : no conserved microscopic energy 
static state :                          or 

 
C 



experiments for determination or 
limits on zwitter – parameter γ ? 

lifetime of  nuclear spin states > 60 h ( Heil et al.) : γ < 10-14 



fermions from classical statistics 



Classical probabilities for two 
interfering Majorana spinors 

Interference 
terms 



microphysical ensemble 

 states τ  
 labeled by sequences of occupation 

numbers or bits ns = 0 or 1 
 τ = [ ns ] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,…] 

etc. 
probabilities pτ > 0 



Classical wave function 

Classical wave function q is real , not necessarily positive 
Positivity of  probabilities automatic. 



Time evolution 

Rotation preserves 
normalization of  probabilities 

Evolution equation specifies dynamics 
simple evolution : R independent of  q 



(infinitely) many degrees of freedom 

s = ( x , γ ) 
x : lattice points , γ : different species 
 
 
number of  values of  s : B 
number of  states τ : 2^B 



Grassmann wave function 

Map between classical states and basis elements 
of  Grassmann algebra  

For every ns= 0 :   g τ contains factor ψs  

Grassmann wave function : 

s = ( x , γ ) 



Functional integral 

Grassmann wave function depends on t , 
since classical wave function q depends on t 
      (  fixed basis elements of Grassmann algebra ) 

 
               Evolution equation for g(t) 

 
 

                     Functional integral 



 Wave function from  
functional integral  

L(t) depends only  
on ψ(t) and ψ(t+ε)  



Evolution equation 

 Evolution equation for classical wave function , 
and therefore also for classical probability 
distribution , is specified by action S 
 

 Real Grassmann algebra needed , since classical 
wave function is real 



Massless Majorana spinors in 
four dimensions 



Time evolution 

linear in q , non-linear in p 



One particle states 

One –particle wave function obeys 
Dirac equation  

: arbitrary static “vacuum” state 



Dirac spinor  in  
electromagnetic field 

one particle state obeys Dirac equation  
complex Dirac equation in electromagnetic field 



Schrödinger equation 

     Non – relativistic approximation : 

 Time-evolution of particle in a potential 
described by standard Schrödinger equation. 

 Time evolution of probabilities in classical 
statistical Ising-type model generates all 
quantum features of particle in a potential , as 
interference ( double slit ) or tunneling. This 
holds if initial distribution corresponds to one-
particle state. 
 



quantum particle from  
classical probabilities  



what is an atom ? 

 quantum mechanics : isolated object 
 quantum field theory : excitation of complicated 

vacuum 
 classical statistics : sub-system of ensemble with 

infinitely many degrees of freedom 



i 



Phases and complex structure 

introduce complex spinors : 

complex wave function : 



h 



Simple conversion factor for units 



unitary time evolution 

ν 



fermions and bosons 

ν 



[A,B]=C 



non-commuting observables 

 classical statistical systems admit many product 
structures of observables 

 many different definitions of correlation 
functions possible , not only classical correlation ! 

 type of measurement determines correct selection 
of correlation function ! 

 example 1 : euclidean lattice gauge theories 
 example 2 : function observables 



function observables 



microphysical ensemble 

 states τ  
 labeled by sequences of occupation 

numbers or bits ns = 0 or 1 
 τ = [ ns ] = [0,0,1,0,1,1,0,1,0,1,1,1,1,0,…] 

etc. 
probabilities pτ > 0 



function observable 



function observable 

s 

I(x1) I(x4) I(x2) I(x3) 

normalized difference between occupied and empty bits in interval 



 generalized function observable 

normalization 

classical 
expectation 
value 

several species α 



position 

classical observable :  
fixed value for every state τ 



momentum 

 derivative observable 

classical observable :  
fixed value for every state τ 



complex structure 



 classical product of position and 
momentum observables 

commutes ! 



different products of observables 

differs from classical product 



Which product describes correlations of 
measurements ? 



coarse graining of information 
for subsystems 



density matrix from coarse graining 

• position and momentum observables use only  
  small part of  the information contained in pτ , 
 
• relevant part can be described by density matrix 
 
 
 
 
• subsystem described only by information  
  which is contained in density matrix  
• coarse graining of  information 



quantum density matrix 

density matrix has the properties of 
   a quantum density matrix 



quantum operators 



quantum product of observables 

the product 

is compatible with the coarse graining 

and can be represented by operator product 



incomplete statistics 

classical product 
 
 

 
 
 

 is not computable from information which 
    is available for subsystem ! 
 cannot be used for measurements in the subsystem ! 



classical and quantum dispersion 



subsystem probabilities 

in contrast : 



squared momentum 

quantum product between classical observables : 
maps to product of  quantum operators 



non – commutativity  
in classical statistics 

commutator depends on choice of  product ! 



measurement correlation 

 correlation between measurements of positon 
and momentum is given by quantum product 

 this correlation is compatible with information 
contained in subsystem 
 



               coarse graining 
 

from fundamental fermions  
at the Planck scale 

to atoms at the Bohr scale 

p([ns]) 

ρ(x , x´) 



conclusion 

 quantum statistics emerges from classical statistics 
    quantum state, superposition, interference,   

entanglement, probability amplitude 
 unitary time evolution of quantum mechanics can 

be described by suitable time evolution of 
classical probabilities 

 conditional correlations for measurements both 
in quantum and classical statistics 



end 



Can quantum physics be described 
by classical probabilities ? 

“ No go “ theorems 
 

          Bell , Clauser , Horne , Shimony , Holt 
 
    implicit assumption : use of classical correlation function for 

correlation between measurements 
 
          Kochen , Specker 
 
    assumption : unique map from quantum operators to classical 

observables 
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