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Abstract

Controlling quantum systems with the aim of utilizing their properties for new technology has
been a broad subject of research in recent years and bears great potential for advancements
in the near future. Implementing fast and high-fidelity quantum gates is essential for the
realization of new quantum computers in the next years. This thesis explores how fast-oscillating
Hamiltonians can be utilized to accelerate and improve entangling quantum gates. Our work is
based on a protocol for an adiabatic CZ gate, in which symmetric laser pulses are applied on
cold neutral Rydberg atoms. We apply a scheme that allows emulating counterdiabatic driving
using real Hamiltonians and thus can correct diabatic errors as well as an unwanted phase. We
analyze the error stability of the resulting gate and implement it into a simple quantum error
correction circuit in the form of a CNOT gate.

Kurzfassung

Die Kontrolle quantenmechanischer Systeme mit dem Ziel ihre Möglichkeiten für neue Tech-
nologien zu nutzen ist wichtiger Gegenstand der Forschung der letzten Jahre und bietet großes
Potential für zukünftige Entwicklungen. Die Realisierung eines schnellen Quantengatters mit
hoher Fidelität ist Grundlage für den Bau von Quantencomputern in den nächsten Jahren. In
dieser Arbeit befassen wir uns damit, wie schnell oszillierende Hamiltonians für die Beschleu-
nigung und Verbesserung verschränkender Quantengatter genutzt werden können. Die Arbeit
baut auf einem Protokoll für ein adiabatisches CZ-Gatter auf, in welchem symmetrische Laser-
pulse auf kalte, neutrale Rydberg-Atome angewendet werden. Wir wenden eine Methode an,
die es erlaubt "counterdiabatic driving" mit reellen Hamiltonians zu emulieren und dadurch
diabatische Fehler sowie einen zusätzliche Phase zu korrigieren. Wir testen das resultierende
Gatter auf seine Stabilität und implementieren es in einem einfachen Quantenfehlerkorrektur-
Schaltkreis in der Form eines CNOT-Gatters.
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1
∣∣∣ Introduction

Physics was revolutionized in the early 20th century with the formulation of quantum mechanics
by physicists like Schrödinger, Heisenberg, and later von Neumann. Problems that could not
be explained by classical physics could now be described using this newly developed formalism
[1, pp. 3-4]. Ever since, quantum mechanics has become an indispensable theory to describe
the world around us, spanning all fields of natural sciences [2, pp. 2-12].
However, it took another few decades until researchers started to go from merely describing
the world around us using quantum mechanics, to controlling quantum mechanical systems
and manipulating them for new purposes. In the late 60s and 70s researchers like Stratonovich,
Helstrom and Gordon [3, 4] worked out a quantum mechanical formulation for optical communi-
cations, laying the foundations of a new field now called quantum information theory. Motivated
by the success of classical information theory and computers in the 80s and 90s, David Deutsch
and Richard Jozsa among others started developing algorithms based on quantum systems [5,
6]. Such algorithms promise to solve problems that cannot be efficiently solved on a classical
computer, one of the most famous examples of this being Shor’s algorithm for the factorization
of prime numbers [7]. Around the same time, Richard Feynman pointed out that classical com-
puters would have significant problems simulating quantum mechanical systems, which could
be avoided by constructing a computer based on quantum systems [8]. This set the start for
the modern evolution of quantum computers, which have grown into a promising platform for
a broad band of applications.
There are various platforms for quantum computers being discussed in present research, exam-
ples being superconducting circuits, trapped ions and trapped neutral atoms [9, pp. 1-2]. In
this thesis, we will discuss the latter in form of strongly interacting Rydberg atoms. The idea
is to encode information in the internal states of the atoms and to make use of the atom-atom
interaction of higher excited Rydberg states. Cold neutral atoms can be trapped in lattices
using optical tweezers and excited using coherent lasers, such methods already allow arrays
containing up to > 100 qubits [10].
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1
∣∣ Introduction

In the first chapter, we will introduce a description of the Rydberg platform in more detail and
show, how we can use laser pulses to construct simple gates, operating on two-qubit systems.
We will further introduce the concept of counterdiabatic driving and effective counterdiabatic
driving, which is a powerful method to increase gate fidelities and accelerate gate times. In the
second chapter, we will discuss the applicability of these methods to an adiabatic controlled-
phase (or CZ) gate in order to improve the gate regarding fidelity and protocol time. We will
then test the gate for its stability under experimental errors. In order to test the CZ gate in
the context of a simple quantum algorithm, we will extend it to a CNOT gate and implement it
into a simple quantum error correction circuit. In the last section, we will address the problem
of having to drive two-qubit terms in order to realize the Hamiltonian and discuss an approach
for a possible workaround.
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2
∣∣∣ Physics background

To understand the results presented throughout this thesis, we have to introduce a variety of
physical concepts, which is the purpose of the following chapter. We start by introducing the
interaction between a qubit system with a laser which we then extend to the Rydberg platform
and how it interacts with lasers. We continue by discussing a set of two-qubit quantum gates
that can be implemented on the Rydberg platform. The chapter is concluded by introducing
the concepts of counterdiabatic driving and effective counterdiabatic driving, which can be used
to enhance the performance of quantum gates.

2.1 Qubit systems and adiabatic driving

Landau-Zener Hamiltonian and ARP-pulses

Before concerning ourselves with the three-state quantum systems we will end up using through-
out the thesis, it is worth having a look at more simple two-state systems. Some problems in
the three or more state systems can be reduced to the problems we discuss in the following.
Furthermore, it will hold as an exemplary system to introduce new concepts later on in the
chapter.
The Landau-Zener system describes the application of a pulse with frequency ωL on a system
of two states |0⟩ and |1⟩. Lev Landau and Clarence Zener discussed the system first in 1932
among others [11, 12, 13, 14]. The derivation presented here follows an approach similar to [15,
pp. 5-6] and [16, pp. 13-15]. The Hamiltonian of the system can be written as

H(t) = E0|0⟩⟨0|+ E1|1⟩⟨1|+ d̂E (2.1)
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where d̂ is the dipole operator and E = EL cos(ωLt) the electric field. We define the Rabi
frequency

Ω =
⟨0|d̂E|1⟩

ℏ
(2.2)

as well as ω01 = (E1 −E0)/ℏ. The diagonal entries of the dipole moment are zero, meaning we
can write d̂E = ℏΩcos(ωLt)(|0⟩⟨1|+ |1⟩⟨0|). Thus, the Hamiltonian can be rewritten in matrix
form

H(t) = ℏ

(
0 Ω cos(ωLt)

Ω cos(ωLt) ω01

)
(2.3)

after shifting it by a for the dynamics irrelevant amount of 1E0. Next, we go into a rotating
frame by applying the unitary transformation

U =

(
1 0

0 eiωLt

)
. (2.4)

In order to keep the dynamics of the system, the Hamiltonian transforms as H → UHU † +

iℏU̇U †. A calculation reveals that in the rotating frame, the Hamiltonian reads

H(t) = ℏ

(
0 Ω

2
(1 + e−2iωLt)

Ω
2
(1 + e2iωLt) ω01 − ωL

)
(2.5)

The rotating wave approximation (RWA) states that we can neglect the fast oscillating terms
if |ω01 − ωL|, |Ω| ≪ ωL. After defining the detuning ∆ = ω01 − ωL, the Hamiltonian reduces to

H(t) =
ℏ
2

(
0 Ω

Ω 2∆

)
. (2.6)

This is the standard form of the Landau-Zener Hamiltonian shifted by 1∆. The off-diagonal
elements drive transitions between the ground state |0⟩ and the excited state |1⟩. A complete
population transfer, i.e. a rotation of the state in the Bloch-sphere by π, can be achieved by
applying a pulse of area

∫
dt Ω(t) = π with zero detuning ∆(t) = 0. Since such π-pulses depend

on the exact area of the pulse, they are sensitive to pulse area errors. A more robust solution
will be discussed in the next section.
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Adiabatic theorem and ARP pulses

The adiabatic theorem in its original form was formulated by Max Born and Vladimir Fock
[17]. It states that if a system is initially in an eigenstate, it remains an eigenstate, given that
the Hamiltonian changes slowly enough and that there is a gap between the eigenvalue and the
rest of the Hamiltonians spectrum. A process that fulfills these conditions is called adiabatic, a
process that doesn’t is called non-adiabatic or diabatic.
Choosing the Rabi frequencies and the detuning such that the adiabatic condition is fulfilled
allows the evolution of an instantaneous eigenstate into the desired final state. For the Landau-
Zener system, a complete adiabatic population transfer can be achieved by choosing a large Rabi
frequency and a linear detuning ∆ ∝ t, sweeping through the frequencies [18]. The Rabi pulse
is usually chosen to be Gaussian, providing a continuous change of the Hamiltonian. These
so-called adiabatic rapid passage (ARP) pulses are less dependent on the specific pulse area
and more robust than π-pulses at the cost of requiring a slowly changing Hamiltonian. ARP
pulses can be used for example to avoid populations of unstable intermediate states [19]. In the
following, we will use ARP pulses as well as π-pulses in multi-qubit systems to create entangling
quantum gates.
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Figure 2.1: (a) ARP pulse with Gaussian-shaped Rabi pulse and linear detuning. (b) Population transfer
of the Landau-Zener system under the ARP pulse from (a).

Fidelity

The fidelity is an important measure to quantify how well a quantum mechanical process (for
example the application of a laser pulse on a qubit) performs. The fidelity between two density
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matrices is most generally defined as [20]

F(ρ, σ) :=

(
tr
√√

ρσ
√
ρ

)2

. (2.7)

Depending on the textbook one might also find the same definition without a square [2, pp.
409-411]. The fidelity is symmetric in its inputs i.e. F(ρ, σ) = F(σ, ρ). One can check that if
one of the states is pure ρ = |ψρ⟩⟨ψρ|, the fidelity can be written as

F(|ψρ⟩, σ) = ⟨ψρ|σ|ψρ⟩. (2.8)

If both states are pure, the fidelity reduces to the squared overlap between the states

F(|ψρ⟩, |ψσ⟩) = |⟨ψρ|ψσ⟩|2. (2.9)

We will use the fidelity mainly as a measure to calculate the overlap between a dynamically
produced output state (e.g. after applying an ARP pulse) and the state we want to produce
ideally.

2.2 Rydberg systems

For quantum computation, we need feasible quantum systems from which more complex quan-
tum circuits can be constructed. One promising platform was first brought up by Jaksch et
al. [21] in the form of cold neutral atoms with Rydberg states, also called Rydberg atoms or
Rydberg qubits. They have since been used in a variety of ways to create entangling multi-qubit
gates of which we will discuss a few in section 2.3. The Rydberg atoms we will use have two
ground states |0⟩ and |1⟩ that are encoded in the hyperfine splitting and the highly excited Ry-
dberg state |r⟩. A key feature of Rydberg atoms is a strong long-range dipole-dipole interaction
between two atoms that are in the excited Rydberg state. Typically, such systems are based
on Alkali atoms like Li, K, Rb and Cs that are laser-cooled and trapped in optical traps [9, pp.
3-5].
Suppose we have a Rydberg atom on which we apply two lasers with frequencies ωL1 and ωL2

that drive the transitions |0⟩ ↔ |1⟩ and |1⟩ ↔ |r⟩. In a similar fashion to the derivation of the
Landau-Zener Hamiltonian (2.6) one can show [15, pp. 5-6] [16, pp. 13-15] that in a rotating
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frame the system is described by the Hamiltonian

H(t) =
ℏ
2

 0 Ω01 0

Ω01 2δ Ω1r

0 Ω1r 2∆

 . (2.10)

where we defined

δ := ω01 − ωL1, ∆ := ω01 + ω1r − ωL1 − ωL2. (2.11)

In the following, we will set ℏ = 1 and δ = 0 as is commonly done. When describing a system of
two or more Rydberg qubits, an additional coupling term with a coupling strength V appears to
include the dipole-dipole interaction between two atoms in the Rydberg state. The Hamiltonian
for a two Rydberg atom system thus reads

H0(t) = H(A)(t)⊗ 1 + 1 ⊗H(B)(t) + V |r⟩⟨r| ⊗ |r⟩⟨r|. (2.12)

In this thesis, we mainly look at systems that are made up of two Rydberg atoms so in most
cases we refer to this Hamiltonian. Large Rydberg interactions V ≫ Ω,∆ cause high energy
levels of the Rydberg interacting two-qubit state |rr⟩. This causes a blockade of said state: the
presence of a Rydberg excited atom |r⟩ shifts the energy level of a second nearby atom so that
it will hardly be excited by the laser [22, p. 1]. We will exploit this so-called Rydberg blockade
mechanism for constructing two-qubit entangling gates. The Rydberg interaction scales with
n11 where n is the principal quantum number, such that values for V up to a few GHz can be
found in the literature [23, 24] and has been demonstrated for neutral atoms with separation
> 10 µm [25].

2.3 Quantum gates

Classical computer circuits are based on transforming binary inputs using different types of
Boolean logic gates [26, pp. 51-60]. In this thesis, we will put a large focus on the controlled-
NOT (or CNOT) gate, which is a two-bit gate, crucial for quantum computing. The CNOT
gate changes the second bit if and only if the first bit is 1. It is reversible, which means that it
does not erase any information or in other words, every output corresponds to a unique input.
Similar to the classical case, any operation on a qubit can be decomposed into a series of quan-
tum logic gates acting on it [26, pp. 69-87]. The similarities between classical and quantum
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computers were discussed early on for example by Richard Feynman [27] and David Deutsch
[28]. In contrast to its classical counterpart, a qubit can assume an infinite amount of super-
positions of 0 and 1, thus providing new possibilities that can be made use of in new quantum
computers. It follows from the Schrödinger equation that the time evolution of a quantum
mechanical state in an isolated system can be described by a unitary operator U(t) such that
|ψ(t)⟩ = U(t)|ψ(0)⟩. Therefore a quantum logic gate can always be represented by a unitary
matrix evolving the initial state |ψ(0)⟩ into a final state |ψ(t)⟩. Because the evolution matrix is
unitary, quantum gates are always logically reversible. Furthermore, any two-qubit operation
can be carried out by using only CNOT and single-qubit gates [2, p. 191]. Therefore it is of
great interest to develop a high-fidelity, fast and stable CNOT quantum gate.
We already discussed Rydberg atoms as a platform for quantum computing in the previous
section. Implementations of adiabatic and non-adiabatic entangling quantum gates based on
Rydberg atoms and Rydberg interactions have been demonstrated theoretically and experimen-
tally [21, 24, 23, 29, 30, 31]. Such gates have shown to be robust against errors like those caused
by thermal motion of atoms [29]. In the following we will introduce various two-qubit gates
based on Rydberg atoms, culminating in the implementation of a CZ-based CNOT gate.

Rydberg CPHASE gate

A first example of an entangling gate that exploits the Rydberg interaction is the CPHASE gate
as it was first introduced by Jaksch et al. [21]. In the computational basis {|00⟩, |01⟩, |10⟩, |11⟩}
the CPHASE gate reads

CPHASE =


eiϕ00 0 0 0

0 eiϕ01 0 0

0 0 eiϕ10 0

0 0 0 eiϕ11

 . (2.13)

Let us assume for now a mid-range Rydberg interaction i.e. V ∼ Ω,∆. The gate can be realized,
by applying two π pulses on both atoms, driving the transition |1⟩ ↔ |r⟩, with a waiting period
τ in between. During the waiting period, the state |rr⟩ gains a phase of −V τ under the presence
of the Rydberg interaction. Furthermore all states except |00⟩ gain a dynamical phase −π/2
during the application of the pulses, causing the protocol to act onto the computational basis

8
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states as
|00⟩ Ω1r−−→ |00⟩ τ−→ |00⟩ Ω1r−−→ |00⟩,
|01⟩ Ω1r−−→ −i|0r⟩ τ−→ −i|0r⟩ Ω1r−−→ −|01⟩,
|10⟩ Ω1r−−→ −i|r0⟩ τ−→ −i|r0⟩ Ω1r−−→ −|10⟩,
|11⟩ Ω1r−−→ −|rr⟩ τ−→ −e−iV τ |r1⟩ Ω1r−−→ e−iV τ |11⟩.

This protocol produces a CPHASE gate with ϕ00 = 0, ϕ01 = ϕ10 = π and ϕ11 = −V τ . The gate
is not very robust, as it is sensitive to the interaction strength, an issue that we will tackle in
the next subsection.

Non-adiabatic CZ gate

The sensitivity of the CPHASE gate motivates us to make use of the Rydberg blockade mech-
anism i.e. to work with V ≫ Ω,∆. This way, the fidelity of the gate will rather depend
on how well the blockade is working instead of the exact value of V . A special instance of a
CPHASE gate is the controlled-Z (or CZ) gate, fixing ϕ00 = 0 and ϕ01 = ϕ10 = ϕ11 = π. In the
computational basis, it reads

CZ =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (2.14)

Depending on the literature one might also find the relative minus between |11⟩ and the other
states. An approach to realize a CZ gate in the high Rydberg interaction regime was also
proposed by Jaksch et al. in the same paper as the CPHASE gate [21]. The protocol consists
of a π pulse driving the transition |1⟩ ↔ |r⟩ on the first qubit, a 2π pulse driving the same
transition on the second qubit and finally a repeated application of the first pulse. During the
second pulse, the Rydberg blockade prohibits state |r1⟩ from being excited into |rr⟩. Taking
also into account the dynamical phases of π/2 and π caused by the pulses, the protocol evolves

9
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the states as follows:

|00⟩ Ω
(A)
1r−−→ |00⟩ Ω

(B)
1r−−→ |00⟩ Ω

(A)
1r−−→ |00⟩,

|01⟩ Ω
(A)
1r−−→ |01⟩ Ω

(B)
1r−−→ −|01⟩ Ω

(A)
1r−−→ −|01⟩,

|10⟩ Ω
(A)
1r−−→ −i|r0⟩ Ω

(B)
1r−−→ −i|r0⟩ Ω

(A)
1r−−→ −|10⟩,

|11⟩ Ω
(A)
1r−−→ −i|r1⟩ Ω

(B)
1r−−→ −i|r1⟩ Ω

(A)
1r−−→ −|11⟩.

As said before, this gate tends to be more robust than the CPHASE gate as it does not depend
on the exact value of V . For finite Rydberg blockades, a small population will be excited to
|rr⟩ and cause a population error for the |11⟩ state. It is also known that a small phase error is
introduced in state |11⟩ due to an imperfect Rydberg blockade. This is discussed in more detail
in the thesis of Tim Ehret [15, pp. 14-15].

Adiabatic CZ gate

Saffman et al. [23] proposed an adiabatic implementation of a CZ gate. Tim Ehret modified
said protocol by including a continuous detuning [15, pp. 18-19]. The protocol consists of two
Gaussian-like pulses applied at the same time on both Rydberg atoms. Only the transition
|1⟩ ↔ |r⟩ is driven on both atoms simultaneously i.e. Ω

(A)
1r (t) = Ω

(B)
1r (t) ≡ Ω(t) and Ω

(A)
01 (t) =

Ω
(B)
01 (t) = 0. The detuning consists of two sine waves applied at the same time as the Gaussian

pulses and a third sine wave in between to avoid a discontinuous jump.

Ω(t) =


Ωmax
1−a1

(
exp

(
− (t−T/4)4

τ4

)
− a1

)
0 ≤ t ≤ T/2

0 T/2 ≤ t ≤ T/2 + T2
Ωmax
1−a2

(
exp

(
− (t−T2−3T/4)4

τ4

)
− a2

)
T/2 + T2 ≤ t ≤ T + T2,

(2.15)

∆(t) =


∆max cos

(
2πt
T

)
0 ≤ t ≤ T/2

−∆max cos
(

π(t−T/2)
T2

)
T/2 ≤ t ≤ T/2 + T2

∆max cos
(

2π(t−T2)
T

)
T/2 + T2 ≤ t ≤ T + T2

(2.16)

The offsets a1 and a2 are chosen such that the amplitude vanishes at the start and stop points
i.e. Ω(0) = Ω(T ) = 0. The parameters Ωmax and ∆max determine the maximum height of the
respective function, τ is the width of the Gaussian and T2 corresponds to the pause between
both pulses. The total protocol time is Ttot = T + T2.
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The protocol generates a phase of π for the initial states |01⟩, |10⟩ and |11⟩. State |00⟩ is not
affected by the pulses at all so it remains in its initial state. The time evolution of state |11⟩
can be seen in Fig. 2.2b and c.
A known issue of the gate is the collection of an unwanted dynamical phase by the state |11⟩
similar to the non-adiabatic CZ gate, such that it evolves as |11⟩ → −eϕr |11⟩. The phase is not
a product of diabatic evolution but of an imperfect Rydberg blockade. A detailed discussion
can be found in [15, pp. 23-25], where it is also shown that the phase can be approximated by

ϕr ≈ −
∫ Ttot

0

dt
Ω2

4V
∝ TtotΩ

2
max

V
. (2.17)

Although the Rydberg blockade can be chosen quite large, a finite blockade still causes small
errors. The presented phase error is an issue for superpositions of |11⟩ with other states. Next
to the presented phase issue, an imperfect Rydberg blockade also causes small diabatic errors.
Both these problems will be the subject of discussions in this thesis.
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Figure 2.2: (a) Rabi frequency Ω(t) and detuning ∆(t) for the implementation of the adiabatic CZ gate
including a continuous detuning. (b) Exemplary time evolution of the populations with initial state
|11⟩ under the adiabatic CZ gate and (c) the phase accumulated in state |11⟩. Notice that the generated
phase in the end is different from π due to the unwanted dynamical phase. The plateau in the phase
is due to the pulses being switched off. The parameters for the pulses are the same as in the Saffman
paper Ωmax/2π = 17 MHz, ∆max/2π = 23 MHz, T = 0.54 µs, T2 = T/10, τ = 0.175T .
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CNOT gate

In the computational basis of a two qubit system {|00⟩, |01⟩, |10⟩, |11⟩} the CNOT gate reads

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.18)

The CNOT gate can be constructed using the previously introduced CZ gate and single-qubit
rotations. The sequence we will use to construct to extend our CNOT gate is the following:

control
qubit

Rx(π)

CZ

Rx(π)

target
qubit

Rx

(
π
2

)
Rx

(
−π

2

)
=

where the gate on the right-hand side shows a CNOT gate. It was presented by Tim Ehret [15,
pp. 9-11] and uses the single qubit rotation matrices

Rx(θ) =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ]
, (2.19)

Ry(θ) =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ]
. (2.20)

In this thesis, we will focus on the CZ gate, which we can later turn into a CNOT gate assuming
we have perfect single-qubit operations. Even if we discuss the CZ gate most of the time, one
should keep in mind that this is done with the intent of constructing a CNOT gate.

2.4 Counterdiabatic driving

When a state is prepared in an eigenstate of the Hamiltonian H0(0) and the Hamiltonian varies
sufficiently slow in time, according to the adiabatic theorem the state follows the instantaneous
eigenstate of the Hamiltonian H0(t). As long as the Hamiltonian acts on a finite time scale,
transition amplitudes between instantaneous eigenstates are not exactly zero and if one tries
to implement faster gates these diabatic errors become larger. During the past years, a lot of

12



2
∣∣ Physics background

efforts have been made to achieve adiabatic evolution even on short time scales [32]. A particular
approach was first utilized by Demirplak and Rice [33] and later by Berry [34], although similar
ideas have been brought up before [35]. We follow here the approach of Berry, also presented
in [15, p. 8]. Consider a Hamiltonian with nondegenerate eigenstates |n(t)⟩ and eigenenergies
En(t)

H0(t)|n(t)⟩ = En(t)|n(t)⟩. (2.21)

For the adiabatic approximation, states prepared in the eigenstate |ψn(0)⟩ = |n(0)⟩ remain in
the instantaneous eigenstate, only gaining a phase γ(t), given by

γ(t) = −1

ℏ

∫ t

0

dt′ En(t
′) +

∫ t

0

dt′ ⟨n(t′)|∂t′n(t′)⟩, |ψn(t)⟩ = eiγn(t)|n(t)⟩. (2.22)

If the adiabatic states are the exact solutions of the Schrödinger equation, transitions can
be completely avoided. We therefore search for a Hamiltonian that satisfies iℏ∂t|ψn(t)⟩ =

H(t)|ψn(t)⟩. A unitary time evolution U(t) solves the Schrödinger equation iℏ∂tU(t) = H(t)U(t)

if
H(t) = iℏ(∂tU(t))U †(t). (2.23)

Furthermore one can fulfill U(t)|n(0)⟩ = |ψn(t)⟩ by choosing

U(t) =
∑
n

eiγn(t)|n(t)⟩⟨n(0)|. (2.24)

Inserting (2.24) into (2.23) yields

H(t) =
∑
n

|n(t)⟩En(t)⟨n(t)|︸ ︷︷ ︸
=H0(t)

+ iℏ
∑
n

(|∂tn(t)⟩⟨n(t)| − ⟨n(t)|∂tn(t)⟩|n(t)⟩⟨n(t)|)︸ ︷︷ ︸
=:HCD(t)

. (2.25)

The additional term HCD(t) we encounter in this new total Hamiltonian is called the counter-
diabatic (CD) Hamiltonian. By noticing that after differentiating (2.21) we get

⟨m|∂tn⟩ =
⟨m|∂tH0|n⟩
En − Em

(2.26)

the explicit derivative |∂tn⟩ can be eliminated and HCD can be rewritten to

HCD =
∑
n̸=m

|n⟩⟨n|∂tH0|m⟩⟨m|
Em − En

. (2.27)
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Adding this counterdiabatic Hamiltonian to the original Hamiltonian completely prevents dia-
batic evolution i.e. transitions between instantaneous eigenstates in the system.
Another perspective is presented in [36, p. 2]. Under an arbitrary unitary transformation, the
Hamiltonian transforms as H0 → U †H0U−iU †U̇ . With the right choice of U , we can diagonalize
the first term while the second term produces off-diagonal elements. However, this second term
can be canceled by adding an extra

HCD = iU̇U † (2.28)

to H0. Then the instantaneous eigenstates of H0 + HCD remain eigenstates of H0 and evolve
into the desired final states. Thus, we can also calculate HCD by finding a U that diagonalizes
H0, which can be done well for few-level systems by finding its eigenvectors.

Example: Landau-Zener CD-driving

Given a Landau-Zener Hamiltonian as in (2.6) one can show that the instantaneous eigenvectors
of H0 are

v =

{(
− sin θ

cos θ

)
,

(
cos θ

sin θ

)}
, (2.29)

where θ = 1
2
arctan(−Ω/∆) [36, pp. 2-3]. The Hamiltonian can thus be diagonalized by the

unitary matrix

U =

(
− sin θ cos θ

cos θ sin θ

)
. (2.30)

The CD Hamiltonian follows directly from that by using (2.28)

HCD =

(
0 −iθ̇
iθ̇ 0

)
. (2.31)

The full Hamiltonian H = H0 +HCD will prevent diabatic evolution of the system. If we take
Ω(0) = Ω(T ) = 0, the initial and final eigenstates turn out to be |0⟩ and |1⟩. Under adiabatic
evolution, a qubit prepared in one of the eigenstates will evolve into either eigenstate, gaining
a phase at most.

2.5 Effective counterdiabatic driving

For any non-degenerate system described by a time-dependent Hamiltonian, we can calculate a
counterdiabatic Hamiltonian using (2.27). However, when facing quantum systems in practice,
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one only has access to limited realizable Hamiltonians. The desirable Hamiltonian may not
necessarily be constructed from the available setup, which can only control certain interactions
on the system. A workaround for this problem was proposed by Petiziol et al. [37], using the
initially available interactions controlled by H0(t) to construct an effective counterdiabatic field
HE(t) that emulates HCD(t).
The time evolution of a state from a given initial time tn to tn + T is unitary under the
Schrödinger equation and can be described by a unitary time evolution operator U(T ) or in
exponential form exp(M(T )). The exponent M(T ) can be written as an infinite sum in a
so-called Magnus expansion M(T ) =

∑
iM

(i)(T ). The first two terms of this expansion read

M (1)(T ) = − i

ℏ

∫ tn+T

tn

dt′ H(t′) (2.32)

M (2)(T ) = −1

2

(
i

ℏ

)2 ∫ tn+T

tn

dt′
∫ tn+t′

tn

dt′′ [H(t′), H(t′′)]. (2.33)

Higher order terms can also be calculated but are not necessary for our purpose. We divide
the time in a finite grid tn with size tn+1 − tn = T =: 2π/ω. The idea is to approximate the
time evolution caused by HCD between two times by using only the first term of its Magnus
expansion (i.e. approximating in the first order of 1/ω) and then finding a suitable "effective
counterdiabatic" (E-CD) Hamiltonian HE that emulates this approximated time evolution using
the available controls. We usually take ω to be large compared to the other quantities in the
system in order for the approximation to work. We choose HE (i) such that the first order term
M

(1)
E vanishes and (ii) to be proportional to

√
ω so we can emulate M (1)

CD using the second-order
Magnus expansion of the effective field

M
(1)
CD(T ) =M

(2)
E (T ). (2.34)

We need condition (i) so that the leading contribution is the second Magnus term, containing
the commutator of HE(t) with itself, which allows us to drive matrix elements not directly
targeted by HE. Condition (ii) is important so that M (2)

E is of the same order in ω as M (1)
CD.

These conditions are met by making the ansatz

HE(t) =
√
ω
∑
i

ci(t)Hi, (2.35)

ci(t) =
L∑

k=1

[Aik(t) sin(kωt) +Bik(t) cos(kωt)] , (2.36)
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where Hi are time-independent matrices. Usually, Hi are obtained as a decomposition of the
original Hamiltonian into control functions H0(t) =

∑
i ui(t)Hi. One can show that it is always

possible to successfully construct HE from a suitable choice of control functions [37, pp. 2-4].
Note that we could also include terms of higher order in 1/ω i.e. higher terms in the Magnus
expansion to improve results. However, one can make the error arbitrarily small by choosing ω
large enough and a first-order Magnus approximation suffices in our case.

Example: Landau-Zener E-CD driving

As seen in (2.31), the counterdiabatic Hamiltonian for the Landau-Zener problem contains
imaginary elements on the off-diagonals such that an experimental implementation is difficult.
We can overcome this issue by constructing an effective CD Hamiltonian. In this case, the
system allows us to make the ansatz

HE(t) =
√
ω

(
c1(t) c2(t)

c2(t) −c1(t)

)
= c1(t)σz + c2(t)σx. (2.37)

A calculation reveals (see A.3) that the second-order Magnus term is given by

M
(2)
E (T ) = iT

L∑
k=1

(A1kB2k −B1kA2k)σy

= iT (A11B21 −B11A21)σy

(2.38)

where in the second line we set L = 1 and the coefficients Aik and Bik are evaluated at tn. The
first-order Magnus term of the CD Hamiltonian is given by

M
(1)
CD(T ) = −i

∫ tn+T

tn

dt′ θ̇(t′)σy ≈ −iT θ̇(tn)σy. (2.39)

To obtain the desired time evolution, the condition M
(1)
CD(T ) = M

(2)
E (T ) must be fulfilled. This

can for example be done by choosing A11 = B21 = 0 and

A21 =

√
|θ̇| ≡ A, B11 = sgn(θ̇)

√
|θ̇| ≡ B. (2.40)
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The E-CD Hamiltonian takes the form

HE(t) =
√
ω

(
B cos(ωt) A sin(ωt)

A sin(ωt) −B cos(ωt)

)
. (2.41)

The results of using this effective counterdiabatic driving compared to ’true’ CD driving can
be seen in fig. 2.3. Fidelity improvements by effective CD driving have already been discussed
in more detail for more complicated systems [38]. It was previously mentioned that the error
becomes smaller in the limit of high ω, because higher order Magnus terms contribute with
higher orders of 1/ω. A quantitative analysis of this for the Landau-Zener system can be found
in A.1.
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Figure 2.3: Population transfer of the ground state |0⟩ for different driving methods: using only a
(non-adiabatic) Gaussian pulse (green), using CD driving (orange) and using effective counterdiabatic
driving (purple).

2.6 Numerics

We use the python modules QuTip [39] and NumPy [40] for most of our simulations. Given a
Hamiltonian, the time evolution of arbitrary state vectors and density matrices can be obtained
using QuTip’s sesolve function, which is a solver for the Schrödinger equation. We can test the
solver by calculating the time evolution of the input state |0⟩ under a π pulse and determining
the infidelity. The numerical errors produced this way were of order < 10−11. This is accurate
enough for our purposes; infidelities due to diabatic evolution in the cases discussed in this
thesis are usually of order > 10−5. It is also worth noticing that the results were relatively inde-
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pendent of the number of iterations used. For the E-CD driving we sometimes had to increase
the number of iterations because the Hamiltonian is rapidly changing, but in most cases, a few
hundred to thousand timesteps sufficed to obtain converging results.
Another crucial part is the development of a good algorithm to calculate counterdiabatic Hamil-
tonians. While it might be possible to calculate them analytically for simple systems, it can
get tedious quite fast for larger ones. An implementation in python included using (2.27) and
numerical estimation of the eigenvectors and eigenvalues using NumPy’s linalg.eigh function.
It suffices to calculate HCD for a few hundred times and use QuTip’s Cubic_Spline function to
quadratically interpolate between these points. We were able to test our numerical CD Hamil-
tonian by comparing it to known analytical results e.g. for the Landau-Zener system or the
adiabatic CZ gate as derived in section 3.1. The absolute errors were of order < 10−11 which is
well in the region of numerical noise.
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Counterdiabatic driving is a useful tool to accelerate a gate while maintaining adiabatic evolution
or increase the fidelity while keeping the gate time low. The goal of this chapter is to extend
an approach presented by Tim Ehret [15] who discussed CD driving for the adiabatic CZ gate
by Saffman et al. [23], presented in section 2.3. After that, we find a way to implement E-CD
driving for said protocol, show how it can enhance the gate, and test it for its stability. Finally,
we implement the proposed gate in an error correction circuit and end with a discussion on a
modified protocol that uses only single-qubit terms.

3.1 CD driving

A possibility to use CD driving for the adiabatic CZ gate was discussed by Tim Ehret [15, pp.
19-23]. While the system is highly degenerated, it turns out that it can be factorized into five
subsystems. As such, the degeneracy does not cause any problems in this case and it is valid
using the formula for the counterdiabatic Hamiltonian from (2.27).

Avoiding the unwanted dynamical phase using CD driving

The protocol suggested by Saffman et al. produces the CZ gate by making use of dynamical and
geometric phases, generated by the Gaussian-like pulses. We pointed out before that due to an
imperfect Rydberg blockade a small unwanted dynamical phase ϕr ∝ Ttot/V is generated in state
|11⟩, which decreases the fidelity of superposition states. From the approximated expression one
can see that the dynamical phase can be rendered arbitrarily small by making use of CD driving
and accelerating the protocol.
If one has access to CD driving, one might even go further and use only the CD Hamiltonian
without the original Hamiltonian H0 (except for the Rydberg blockade part). This corresponds
to switching off the pulses ∆ and Ω so that only HCD + HV acts on the system where HV =
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V |rr⟩⟨rr|. The CD Hamiltonian reproduces the same geometric phase in |11⟩ as the original
Hamiltonian, but not the dynamical phase. Depending on the system this might be an undesired
effect, however, in our case, it solves the unwanted phase problem completely. A quantitative
comparison of this effect is discussed in section 3.2.

Significant matrix elements

It was pointed out by Ehret before that only several entries of HCD contribute to the time
evolution of the states [15, pp. 21-23]. This can be seen when visualizing the maximum absolute
values of the entries of HCD (see Fig. 3.1). It can be concluded that for high Rydberg blockades
only the elements driving the transitions |01⟩ ↔ |0r⟩, |10⟩ ↔ |r0⟩, |11⟩ ↔ |r1⟩ and |11⟩ ↔
|1r⟩ contribute significantly. A quantitative test of this assumption can be found in Fig. 3.2
by comparing the difference in fidelity between using the full CD Hamiltonian or only the 8
mentioned significant entries. In the following, we will also show this result analytically.

|00〉 |01〉 |0r〉 |10〉 |11〉 |1r〉 |r0〉 |r1〉 |rr〉
column of HCD
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Figure 3.1: Visualization of the matrix entries of
HCD. Shown is the maximum absolute value of
each element during the protocol. The values
for T , Ωmax and ∆max are the same as in the
Saffman paper. The Rydberg blockade is chosen
to be V = 104 MHz.
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Figure 3.2: Difference between the fidelity using
the full HCD without H0 (F1) and after reducing
it to the 8 significant entries (F2). The parame-
ters T , Ωmax and ∆max are again the same as in
the paper. The initial state was (|00⟩+|11⟩)/

√
2.

Analytical derivation of the CD Hamiltonian

Before we turn to high Rydberg blockades, it is worth briefly looking at the case V = 0. Without
any interaction, the Hamiltonian H0 separates into two uncoupled systems that resemble shifted
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Landau-Zener systems. One may therefore check that H0 is diagonalized by

U =

 1 0 0

0 − sin θ cos θ

0 cos θ sin θ

⊗

 1 0 0

0 − sin θ cos θ

0 cos θ sin θ

 (3.1)

where θ = 1
2
arctan(−Ω/∆). The counterdiabatic Hamiltonian can be obtained by using HCD =

iU̇U †

HCD = −i


 0 0 0

0 0 θ̇

0 −θ̇ 0

⊗ 1 + 1 ⊗

 0 0 0

0 0 θ̇

0 −θ̇ 0


 . (3.2)

This confirms that in the V = 0 case the problem indeed just separates into two Landau-Zener
systems.
Turning to the case V → ∞, it will be beneficial to express H0 in the basis {|00⟩, |01⟩, |0r⟩,
|10⟩, |r0⟩, 1√

2
(|1r⟩ − |r1⟩), |11⟩, 1√

2
(|1r⟩ + |r1⟩), |rr⟩}, where the system decomposes into five

subsystems of which the largest has dimensions 3× 3

H0 =
1

2



0

0 Ω

Ω 2∆

0 Ω

Ω 2∆

∆

0
√
2Ω 0√

2Ω 2∆
√
2Ω

0
√
2Ω 4∆ + 2V


. (3.3)

Two of the three subsystems with off-diagonal elements resemble Landau-Zener-Systems for
which we know the terms that appear in HCD. Hence, the problem reduces to calculating the
counterdiabatic Hamiltonian of the bottom right 3 × 3 matrix. Alternatively one may argue
that only eigenvectors, that change when varying V , are the ones belonging to the 3× 3 matrix
in the bottom right corner. Therefore the other entries of HCD can later also be taken from the
V = 0 case.
Since the matrix is only 3×3, the eigenvectors could be calculated directly without any approx-
imation. We tried to do this, but the resulting terms quickly got very large and hard to work
with. Since the gate already operates in the regime of high Rydberg blockades it will prove
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sufficient and more convenient to restrict to V → ∞. This motivates us to follow a perturbative
approach by rewriting  0

√
2Ω 0√

2 2∆
√
2Ω

0
√
2Ω 4∆ + 2V

 =: V

(
H0 +

1

V
H1

)
(3.4)

The eigenvectors of the 3×3 matrix can be calculated by writing down and solving the eigenvalue
equation in first order 1/V . The result is

{v} =


 − sin θ′

cos θ′

−ν cos θ′

 ,

 cos θ′

sin θ′

−ν sin θ′

 ,

 0

ν

1


 (3.5)

(see A.2 for the detailed calculation), where we defined

θ′ =
1

2
arctan

(√
2
Ω

∆

)
, ν =

Ω√
2V

. (3.6)

The vectors are normalized up to the first order in 1/V . As we did before, we can construct a
matrix U from the eigenvectors that diagonalizes the 3× 3 Hamiltonian. The CD Hamiltonian
for the submatrix can then be easily determined using again

iU̇U † =

 0 −iθ̇′ 0

iθ̇′ 0 0

0 0 0

+O
(
1

V

)
(3.7)

The same result can be produced by adiabatically eliminating the |rr⟩ state and finding that
the remaining system is essentially a Landau-Zener system. To return to the full 9 × 9 basis
we have to include the terms of the CD Hamiltonian acting on the other subsystems. As said
before this includes only two Landau-Zener subsystems for which we know the solution. Thus
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the full CD Hamiltonian reads

HCD = −i



0

0 θ̇

−θ̇ 0

0 θ̇

−θ̇ 0

0

0 θ̇′

−θ̇′ 0

0


. (3.8)

Recall that this is in the basis including superposition states. Going back to the computational
basis {|0⟩, |1⟩, |r⟩} ⊗ {|0⟩, |1⟩, |r⟩}, the CD Hamiltonian takes the form

HCD = −i
[
θ̇
(
|01⟩⟨0r|+ |10⟩⟨r0|

)
+

θ̇′√
2

(
|11⟩⟨1r|+ |11⟩⟨r1|

)]
+ h.c. (3.9)

This is the exact form mentioned at the beginning of the chapter: in the limit of large V only
8 significant matrix elements appear in the Hamiltonian. It is not surprising that all elements
affecting the |rr⟩ state vanish, since in the limit we discussed the bandwidth is so large that the
population of this state is negligible. For sake of convenience, we may also rewrite (3.9) as

HCD = f1(P0 ⊗ σy + σy ⊗ P0) + f2(P1 ⊗ σy + σy ⊗ P1), (3.10)

where we defined the functions f1(t) := θ̇(t) and f2(t) := θ̇′(t)/
√
2 and the projectors P0 :=

|0⟩⟨0|, P1 := |1⟩⟨1| and Pr := |r⟩⟨r|. The matrix denoted as σy is a Pauli y-matrix in the basis
{|1⟩, |r⟩} so in this case what is really meant is

σy =

 0 0 0

0 0 −i
0 i 0

 . (3.11)
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The remaining HCD is characterized only by the two functions f1 = θ̇ and f2 = θ̇′/
√
2. Inserting

the definitions of θ and θ′, they can be identified as

f1 =
1

2

Ω∆̇− Ω̇∆

∆2 + Ω2
, f2 =

1

2

Ω∆̇− Ω̇∆

∆2 + 2Ω2
. (3.12)

Naturally, one may also extract these functions as a result of calculating HCD numerically after
choosing a large value for V . When we compared the functions deducted via the two methods,
the analytical and numerical f1 were identical up to numerical precision, while between f2 and
its numerical counterpart, we get a difference that falls off with 1/V . For the specific pulses
of the adiabatic CZ gate, the functions are visualized in Fig. 3.3. As can be seen from the
algebraic form, the functions differ the most at the points where the detuning ∆ reaches zero,
at which points f1 = 2f2. This will play a more important role later on when trying to construct
an E-CD Hamiltonian using single-qubit terms in section 3.5.

3.2 E-CD driving of the adiabatic CZ gate

In the previous section, we discussed that the counterdiabatic Hamiltonian for the adiabatic CZ
gate may be approximated as (3.10) in the limit of high Rydberg blockades. This Hamiltonian
is purely imaginary, which makes it difficult to realize experimentally. We already presented a
solution to this problem in the introduction, namely by using effective counterdiabatic driving.
The main contribution of this thesis will be to apply this method to the adiabatic CZ gate in
order to increase fidelity and reduce gate times. To do so, we have to find an ansatz for HE

that can emulate the CD Hamiltonian. A suitable choice will turn out to be

HE =
√
ω [c1(σx ⊗ P0 + P0 ⊗ σx) + c2(σx ⊗ P1 + P1 ⊗ σx) + c3(Pr ⊗ 1 + 1 ⊗ Pr)] (3.13)

with the ci defined as in (2.36) and with σx a Pauli x matrix, again in the basis {|1⟩, |r⟩}

σx =

 0 0 0

0 0 1

0 1 0

 . (3.14)

In order to anticipate a further discussion we want to note that this Hamiltonian is still challeng-
ing to realize experimentally since it contains two-qubit terms that do not allow to apply lasers
on one atom independent of the state of the other. We will discuss this issue and a possible
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workaround in section 3.5. Choosing the Fourier series of the ci in (2.36) to be of first order
L = 1, the condition M (1)

CD(T ) =M
(2)
E (T ) becomes

A11B31 −B11A31 = 2f1, A21B31 −B21A31 = 2f2 (3.15)

(see A.3 for the calculation). A possible solution is

A11 =
√
2|f1|, B31 = sgn(f1)

√
2|f1|,

B21 =
√
2|f2|, A31 = −sgn(f2)

√
2|f2|,

(3.16)

and B11 = A21 = 0, such that the coefficients read

c1 = A11 sin(ωt),

c2 = B21 cos(ωt),

c3 = A31 sin(ωt) +B31 cos(ωt).

(3.17)

We can now use this effective CD Hamiltonian to emulate CD driving on the two Rydberg atoms.
However, one should keep in mind that the driving frequency ω has to be chosen sufficiently
large.

Modifying the pulse shape

In the previous sections, we derived the functional form of f1 and f2 that make up HCD. We
can see in Fig. 3.3 that these functions are not continuous, since the time derivative of the Rabi
pulse Ω̇ is not continuous. This can raise problems if we try to use these functions for E-CD
driving. Therefore we aim to modify the Rabi pulse, such that the derivative is also continuous.
The pulses we have used so far are essentially Gaussian pulses of the form

Ω(t) =
Ωmax

N

[
exp

(
−(t− T/2)4

τ 4

)
− a

]
. (3.18)

With the scaling factor N = 1− a such that Ωmax = max{Ω(t)}. Since the second pulse is the
same as the first one just shifted by T/2 + T2, it will suffice to treat only the first pulse here.
The offset a is included so that one may impose Ω(0) = Ω(T/2) = 0 for the first pulse. To
make the derivative continuous, we further need to impose Ω̇(0) = Ω̇(T/2) = 0. This condition
requires at least adding a term quadratic in t so that the pulse remains symmetric, which leads
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to the ansatz
Ωmod.(t) =

Ωmax

N

[
exp

(
−(t− T/4)4

τ 4

)
− a− bt

(
t− T

2

)]
. (3.19)

Taking the derivative and imposing the aforementioned boundary conditions yields

a = exp

(
−(T/4)4

τ 4

)
, b =

T 2

8τ 4
a. (3.20)

The normalization factor N can be determined numerically to give max{Ωmod.(t)} = Ωmax. In
the following, we will use these modified pulses for the E-CD driving since they produced better
results in general.
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Figure 3.3: (a) Visualization of the two functions that constitute the CD Hamiltonian in the limit
V → ∞. The parameters are the same as in the original paper. (b) Visualization of the functions for
the modified Rabi pulse and detuning. By modifying the pulses we were able to get rid of the jumps
at the beginning and the end of each pulse.

Fidelity improvements by E-CD driving

Having completed the theoretical part behind the E-CD driving for the adiabatic CZ gate, we
can look at the numerics to test in which parameter regimes the E-CD driving can improve
the fidelity. The adiabatic gate proposed by Saffman et al. [23] works perfectly for large
Rydberg blockades in the adiabatic limit i.e. for arbitrarily long times or large pulses. If one
has experimental access only to smaller pulses and a finite Rydberg blockade, non-adiabatic
errors affect the fidelity of the gate and corrections are necessary. In Fig. 3.4 we compare the
fidelities with the input state (|00⟩+ |11⟩)/

√
2 using several different methods to recreate a CZ

gate: (a) the original Hamiltonian as proposed by Saffman et al., (b) the original Hamiltonian
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with E-CD driving and (c) only the E-CD Hamiltonian. We further show what results one
could get, having access to (d) the original Hamiltonian with CD driving or (e) only the CD
Hamiltonian.
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Figure 3.4: Infidelity of state |00⟩+ |11⟩ for different variations of the adiabatic CZ gate as discussed in
the text. The parameters were T = 0.54 µs, V/2π = 800 MHz and ω = 300 MHz.

The original protocol performs well around the parameters used in the original paper of Ωmax/2π

= 17 MHz and ∆max/2π = 23 MHz with infidelities < 10−3. Smaller Rabi pulses and lower
detuning cause diabatic errors that can be corrected using E-CD driving. For larger pulses, the
error is dominated by the unwanted dynamical phase. This issue cannot be avoided by adding
HE or HCD as can be seen from (b) and (d). As discussed previously, setting ∆ and Ω to zero
without changing the counterdiabatic driving solves this issue as can be seen in (c) and (e). It
thus appears that the E-CD driving works well for correcting errors due to non-adiabaticity and
avoiding the phase error.
Although these results might look good, we have to be careful with this reasoning. Fidelity
improvement by counterdiabatic driving usually comes at the expense of having to use large
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pulses. This is even more true for effective CD driving, which uses pulses proportional to the
square root of the E-CD frequency ω, which again has to be chosen large enough to produce
high-fidelity results. It would therefore be a better evaluation to discuss the results after limiting
the maximum pulse height of the E-CD Hamiltonian. A brief analysis under this viewpoint can
be found in A.4. However, we would now like to slightly shift the focus of our argument and
analyze how the presented methods can be used to accelerate the CZ gate.

Acceleration of the gate

In general, using E-CD driving to improve the fidelity or reduce the gate time comes down
to the same physics. When accelerating the protocol, the evolution of the states becomes less
adiabatic and the fidelity decreases. This is the same as what happens when keeping the gate
time constant and reducing the pulse height. We can see this better by taking a closer look at
the Schrödinger equation: rescaling the time as t→ t/s, the Schrödinger equation scales as

i∂t|ψ⟩ = H|ψ⟩ → is∂t|ψ⟩ = H|ψ⟩. (3.21)

If the Hamiltonian is also rescaled as H → sH, the dynamics of the system do not change. In
other words, accelerating the protocol time is equivalent to amplifying the Hamiltonian. While
the Rydberg interaction can be made rather large, it is still experimentally limited and the
Hamiltonian cannot be rescaled arbitrarily. If one tries to increase pulses in order to keep the
fidelity high for lower gate times, but not the Rydberg interaction, one eventually reaches a limit
where Ω,∆ ∼ V and the process is not adiabatic anymore. Thus, the feasible protocol time is
limited when having access to finite Rydberg blockades as can also be seen in Fig. 3.5. Using
the parameters from the original paper, accelerating the protocol by a factor of 2-3 produces
fidelities < 0.9 for all Rydberg interaction strengths V/2π < 1000 MHz, even after rescaling the
pulses accordingly. E-CD driving corrects for these diabatic errors, producing higher fidelities
as long as the E-CD frequency ω is chosen large compared to the protocol time. For ω = 300

MHz we get fidelities > 0.99 for accelerations up to a factor of 3 and > 0.9 for acceleration by
a factor of 20.
In conclusion, the E-CD-based CZ gate allows avoidance of errors due to diabatic evolution for
lower protocol times or low Rydberg interactions. It provides an advantage over the CZ gate
proposed by Saffman et al. [23] when working with medium to high Rydberg Blockades and
smaller protocol times at the expense of needing fast oscillating lasers.
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Figure 3.5: (a) Infidelity of the CZ gate as proposed by Saffman et al. using only H0. The Rabi pulse Ω
and the detuning ∆ are scaled inverse proportional to the total protocol time Ttot. (b) Infidelity using
the ECD-driven CZ gate HE + V |rr⟩⟨rr|. The E-CD frequency is ω/2π = 300 MHz

3.3 Stability analysis

Static amplitude errors

In experimental setups, the pulses used to produce the gate will be subject to errors that cannot
be controlled. We can test the stability of the protocol under such errors by introducing a small
relative error ε. First, we will test the protocol for small errors in the amplitude by replacing

f1(t) → f1(t)(1 + ε)

f2(t) → f2(t)(1 + ε).
(3.22)

As can be seen in Fig. 3.6 the fidelity appears as a quadratic function with its maximum at
ε ̸= 0. Similar observations have already been made and discussed in more detail in [41]. The
most likely explanation for this effect is that the amplitude error somehow compensates for non-
adiabatic errors. This is also in accordance with the stability curves of the accelerated protocol
in Fig. 3.6b. Smaller times increase fidelity loss due to non-adiabaticity. Therefore the relative
error ε has to be larger in order to compensate for these errors and the maximum gets shifted.

29



3
∣∣ E-CD driving of the adiabatic CZ gate

−0.04 −0.02 0.00 0.02 0.04
relative error ε

0.990

0.992

0.994

0.996

0.998

1.000

F
id

el
it

y
F

(a) Ttot = 0.594 µs

initial state |01〉
initial state |11〉
initial state 1√

2
(|00〉+ |11〉)

−0.04 −0.02 0.00 0.02 0.04
relative error ε

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

(b) Ttot = 0.198 µs

initial state |01〉
initial state |11〉
initial state 1√

2
(|00〉+ |11〉)

Figure 3.6: Stability of the CZ gate for different input states for (a) Ttot = 0.594 µs and (b) Ttot =
0.198 µs. The dashed lines show the fidelity at ε = 0. The Rydberg blockade was V/2π = 200MHz and
the E-CD frequency ω = 300 MHz.

In our case, the process is not perfectly adiabatic because we work with a finite E-CD frequency
ω. Increasing ω reduces non-adiabaticity and thus shifts the maximum of the stability function
towards ε = 0 as can be seen in Fig. 3.7a.
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Figure 3.7: (a) Stability of the CZ gate for different E-CD frequencies. The input state was (|00⟩ +
|11⟩)/

√
2. (b) Stability curve of the CZ gate as the arithmetic mean of 100 random errors from the

interval [−ε/2, ε/2]. The shaded area is the variance of the fidelities, the dashed lines show the fidelity
at ε = 0.

In a realistic experimental setup, the error ε is not fixed but rather fluctuates within a given
error interval [−ε/2, ε/2]. We simulate such variations by taking N = 100 random values from
the interval and averaging the fidelity. The result can be found in Fig. 3.7b. As can be seen,
the variance appears relatively large. This is due to the fact that the stability curve as in the
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previous Fig. 3.6 is anti-symmetric, such that small ε > 0 increase the fidelity while small ε < 0

decrease it. On average, the fidelity decreases by about 0.4% with an upper error boundary of
±2.5%. We can conclude that our protocol is stable with regard to small errors on the pulses.

Phase errors

For the E-CD driving, fast oscillating functions are needed. It makes sense to test the stability
with regard to relative phase errors between the sine and cosine functions included in the
Hamiltonian. In particular, we shift the cosine by a small phase δ

c1(t) = A11 sin(ωt) → A11 sin(ωt)

c2(t) = B21 cos(ωt) → B21 cos(ωt+ δ)

c3(t) = A31 sin(ωt) +B31 cos(ωt) → A31 sin(ωt) +B31 cos(ωt+ δ).

(3.23)

The results can be seen in Fig. 3.8. Contrary to the previous analysis, here the error is symmetric
around ε = 0. Looking at a larger interval, one could also see that the stability curve is 2π

periodic and has its minima at δ = nπ as we would expect from the 2π periodicity of the cosine.
A phase error of ±0.15 decreases the fidelity by 2-6% depending on the input state. This is still
a good result regarding the stability of the gate.
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Figure 3.8: Stability of the CZ gate under a relative phase error for (a) Ttot = 0.594 µs and (b)
Ttot = 0.198 µs. The dashed lines show the fidelity at ε = 0. The parameters are the same as in Fig.
3.6

In conclusion, we were able to show that the E-CD-based CZ gate is stable with regard to pulse
area errors as well as relative phase errors on the lasers. Accelerating the gate lowers the fidelity
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but still produces stable results.

3.4 Quantum error correction

The discussion around the CZ gate so far only makes sense if it can also be well implemented
into quantum circuits. We already presented a way to extend the CZ gate to a CNOT gate using
single qubit pulses. This section is dedicated to testing this CZ-based CNOT gate in a simple
quantum error correction (QEC) circuit, assuming that we have access to perfect single-qubit
operations.
Noise is a problem that can occur in quantum computers as much as it does in classical com-
puters. Examples are faulty gate operations or errors that occur due to decoherence. Classical
computers can deal with noise by copying bits and encoding the information in more than the
minimum bits needed to make the information more robust. In quantum mechanics, the no-
cloning-theorem forbids us to directly duplicate qubits [2, pp. 530-531]. However, it is still
possible to add redundant information to protect the information stored in qubits from noise.
A simple QEC circuit that corrects for potential unwanted bit flips is presented in [2, pp. 426-
429] and [42, pp. 296-297]. The circuit starts with the qubit we are interested in (we call it
qubit A), in state |x⟩ = a|0⟩ + b|1⟩. Furthermore, we use two auxiliary qubits (B and C) each
starting in state |0⟩. We can break down the protocol into the following steps.

(a) Apply two CNOT gates to entangle the qubits in state a|000⟩+ b|111⟩.

(b) Some perturbation of the system may cause an unwanted bit flip in qubit A, such that the
system is now in a state α(a|000⟩+ b|111⟩)+β(a|100⟩+ b|011⟩), where β is the amplitude
of the unwanted state. We simulate this by manually flipping this qubit.

(c) Again apply two CNOT gates. One can show that then the system is in state (a|0⟩ +
b|1⟩)α|00⟩+ (a|1⟩+ b|0⟩)β|11⟩.

(d) Measure the state of the auxiliary qubits B and C. If these qubits are in state |11⟩ flip
qubit A, otherwise do nothing.
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(a) (b) (c) (d)

|x⟩

Potential error

ρout

|0⟩

|0⟩

After applying the protocol, qubit A is again in state |x⟩, regardless if a flip occurred or not.
In our computations, we implement the protocol by calculating

|ψout⟩ = NOT · CNOTAC · CNOTAB · (flip) · CNOTAC · CNOTAB|ψin⟩ (3.24)

and tracing out systems B and C to obtain the density matrix representing the final state of
qubit A ρout = TrB,C(|ψout⟩⟨ψout|). The NOT gate flips qubit A, if qubit B and C are in state
|11⟩. The fidelity is then calculated via

F = ⟨x|ρout|x⟩. (3.25)

The results can be found in table 3.1. We could also include a potential bitflip on qubit B or C
instead of A. However, this produces the same fidelity as no bit flip at all, since in the end only
the fidelity of qubit A is measured and it does not make a difference for the protocol if only one
auxiliary qubit is flipped. In all cases the fidelity is > 0.999, demonstrating that the CZ gate
works well when being included in a more complex circuit.

Initial state |x⟩ Bit flip on qubit A Fidelity F

|0⟩ no 0.999254
yes 0.999403

|1⟩ no >0.999999
yes 0.999126

1√
2
(|0⟩+ |1⟩) no 0.999181

yes 0.999560

1√
2
(|0⟩+ i|1⟩) no 0.999181

yes 0.999190

Table 3.1: Fidelity after of the bitflip QEC circuit using our proposed CNOT gate. The parameters of
the CZ gate applied were T = 0.54 µs, Ωmax/2π = 17 MHz, ∆max/2π = 23 MHz as in the Saffman
paper, the Rydberg blockade is V/2π = 200 MHz and the ECD frequency ω/2π = 350 MHz.
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A more detailed analysis of how the QEC circuit affects certain input states can be seen in Fig.
3.9, where the difference between input and output density matrices is shown.
We remark that the infidelity of the gate does not increase linearly with the number of CNOT
gates included as one would might expect. When applying the gate once, a small population
remains in states like |1r⟩ and |r1⟩, which causes the fidelity of the gate to decrease. Because we
assume a closed system, this population is not lost so a repeated application of the gate might
bring some of the population back into the computational basis states, countering further loss
of fidelity. Therefore, the infidelity does not progress trivially and one at least has to be careful
drawing general conclusions from the presented example.
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Figure 3.9: Difference between different input density matrices and their output from the QEC circuit.
(a-d) show initial states |0⟩, |1⟩, (|0⟩ + |1⟩)/

√
2 and (|0⟩ + i|1⟩)/

√
2 without a bitflip. (e-h) show the

same results with an unwanted bitflip.

Quantum process tomography

Often the fidelity is not a satisfying quantity to characterize the quality of quantum mechanical
processes. Quantum process tomography (QPT) gives a more detailed and state-independent
representation of an experimental implementation e.g. of a quantum gate. The basic idea of
QPT is to represent the transformation of the density matrix of a process using a set of basis
matrices.
The explanation presented here follows [43, pp. 2-3] and [44, pp. 164-166]. Suppose we are
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given a process that can be described by a completely positive linear map

E(ρin) =
∑
i

AiρinA
†
i (3.26)

where ρin is the initial density matrix and {Ai} a set of operators that describe the transforma-
tion. Given a set of basis operators {Bn}, we can write out the map as

E(ρin) =
∑
mn

χmnBmρinB
†
n, (3.27)

where now the coefficients χmn contain the information on how the map transforms density
matrices. These coefficients can be interpreted as the entries of a N2 × N2 matrix χ. Writing
out the density matrix in its vector representation defined by

ρ =
∑
ij

ρij|i⟩⟨j| → ρ̃ =
∑
ij

ρij|i⟩ ⊗ |j⟩, (3.28)

the action of the linear map on the input density matrix can be expressed using a superoperator
U as E(ρ̃) = Uρ̃in = ρ̃out. It can be shown that this linear transformation can then be written
as

ρ̃out = Uρ̃in =
∑
mn

χmnB̃mB̃
†
nρ̃in. (3.29)

Using the vector representation of density matrices, we can determine U and χ (for more details
see [44, pp. 164-166]). Since we work with 3 state atoms we need a basis of hermitian 3 × 3

matrices. Such a basis is given by the Gell-Mann matrices and the unity matrix

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0

i 0 0

0 0 0

 , λ3 =

 1 0 0

0 −1 0

0 0 0

 ,

λ4 =

 0 0 1

0 0 0

1 0 0

 , λ5 =

 0 0 −i
0 0 0

i 0 0

 , λ6 =

 0 0 0

0 0 1

0 1 0

 ,

λ7 =

 0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 , I =

 1 0 0

0 1 0

0 0 1

 .

(3.30)
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We can treat the whole QEC circuit as a linear map acting on the density operator ρin = |x⟩⟨x|.
The result of the process tomography for the E-CD-based QEC circuit compared to an ideal
QEC circuit can be seen in Fig. 3.10
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Figure 3.10: Quantum tomography for the QEC circuit without (a) and with (b) an accidental flip of
qubit A and the Gell-Mann matrices as the basis. The transparent bars show the result obtained using
a perfect CZ gate. The parameters were the same as in Fig. 3.9.

3.5 Using single qubit Hamiltonians for the E-CD driving

The major issue of the method presented so far is the fact that the proposed Hamiltonian for
E-CD driving in (3.13) uses two-qubit terms that are difficult to realize in real systems. An
experimentally feasible E-CD Hamiltonian should have the form HE =M ⊗ 1 + 1 ⊗M , acting
on one system independent of the other. Making such an Ansatz for the E-CD Hamiltonian
heavily restricts us, so much that it turns out to be difficult to find a proper solution.
The problem can be made easier by making two assumptions. The first of which is assuming
f1 ≈ f̄ ≈ f2 for the functions in the CD Hamiltonian in (3.10). We can for example take f̄ to
be the arithmetic mean of f1 and f2. The second assumption is that the Rydberg Blockade V is
large so that we can add and subtract terms in the Hamiltonian affecting the state |rr⟩ without
changing the dynamics of the system. This allows us to write the CD Hamiltonian using single
qubit terms

HCD ≈ f̄(σy ⊗ 1 + 1 ⊗ σy). (3.31)
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One can see that this Hamiltonian has the same form as the one we obtained previously in the
case V = 0. Using this Hamiltonian and a single-qubit ansatz for the ECD Hamiltonian, we
find a possible solution to be

HE, mean =

√
2ωf̄


 0 0 0

0 0 sin(ωt)

0 sin(ωt) cos(ωt)

⊗ 1 + 1

 0 0 0

0 0 sin(ωt)

0 sin(ωt) cos(ωt)


 . (3.32)

We have to be careful since the approximation f1 ≈ f2 is not true in general. The analytical form
of the functions (3.12) suggests that the approximation is justified in domains where ∆ ≫ Ω.
Having points where ∆ vanishes, as is the case for the adiabatic CZ gate, can lead to problems
on the other hand. However, this method can still provide an advantage over the original
protocol in some parameter regimes. Our tests revealed that adding this mean-function E-CD
Hamiltonian to the original Hamiltonian improves the gate fidelity when accelerating the gate
and working in the regime of medium to high Rydberg blockades as can be seen in fig. 3.11.
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Figure 3.11: (a) Infidelity of the CZ gate as proposed by Saffman et al. using only H0. The Rabi pulse
Ω and the detuning ∆ scale inverse proportional to the total protocol time Ttot. (b) Infidelity using
the E-CD-driven CZ gate H0 + HE,mean with the mean function approximation f1 ≈ f2. The E-CD
frequency is ω/2π = 1000 MHz.

Using HE, mean without H0 as done previously did not result in convincing performance of the
gate so we will refrain from discussing this case. Because of that, the approach discussed in this
section does not avoid the unwanted dynamical phase error. We also need to turn the E-CD
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frequency ω higher in order to produce good results. The high-fidelity region in Fig. 3.11b can
be explained by the fact that smaller gate times reduce the unwanted phase error as well as
higher Rydberg blockades. In general, the mean function approximation is not exact and shows
to be more sensitive to the input state and other parameters, than the previously discussed
E-CD.
In conclusion, these results show that by modifying the effective counterdiabatic driving to be
more feasible for experimental setups, the performance is limited but can still enable us to
produce a high-fidelity CZ gate in parameter regimes where this is more difficult for the original
protocol. Some of the benefits gained from E-CD driving discussed in section 3.2 still apply in
some regimes and hold the potential to improve the gate.

38



4
∣∣∣ Conclusion and outlook

Conclusion

In this thesis, we looked at an implementation of a quantum CZ gate based on cold neutral
Rydberg atoms. We started from an approach provided by Tim Ehret [15] who used counterdia-
batic driving to enhance an adiabatic CZ gate based on Rydberg atoms proposed by Saffman et
al. [23]. We were able to find an analytic expression for the counterdiabatic Hamiltonian in the
limit of high Rydberg interactions and showed that it uses two different functions for driving
the transitions. Most importantly, we extended the CD approach by working out an effective
counterdiabatic (E-CD) Hamiltonian, which can emulate the time evolution of the imaginary
CD Hamiltonian using only real, fast-oscillating terms. We showed that the usage of such an
effective counterdiabatic Hamiltonian has multiple benefits, ultimately increasing the fidelity of
the gate. We saw that in the case of limited Rydberg interactions, the effective CD driving can
be utilized to avoid an unwanted dynamical phase error in state |11⟩ that is produced in the
original protocol. In addition, E-CD driving allows to reduce the gate times while keeping the
process adiabatic, i.e. the fidelity high. We tested the protocol for its stability under relative
pulse errors and relative phase errors and showed that it is robust under these variations. Fur-
thermore, we extended the CZ gate into a CNOT gate that could be implemented in a simple
quantum error correction circuit and demonstrated that the gate still produces good results
after multiple applications. Finally, we addressed the issue that the E-CD approach uses a
Hamiltonian, which is difficult to realize experimentally since it contains two-qubit terms. We
discussed an experimentally more feasible implementation of the gate which uses only single-
qubit terms. While the fidelity of this gate is more sensitive to the parameters used, we were
able to demonstrate that a more realistic implementation of the E-CD gate could be feasible.
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Technichal issues and outlook

The biggest issue of the E-CD-based CZ gate is the fact that it uses two-qubit terms, which
are not very easy to implement in an experimental setup. We discussed one possible approach
to solve this, by approximating the functions of the CD Hamiltonian to be equal. The results
produced this way do not seem too bad but leave room for improvement. We cannot make
use of the full potential of the E-CD driving e.g. by using only HE and avoid the unwanted
dynamical phase this way.
It might also be possible to find a basis, in which the E-CD Hamiltonian can be written using only
single-qubit terms. Then one could apply rotations before and after the CZ gate to transform
the computational basis states in the new basis, such that the CZ gate can be applied. However,
it is likely that such a basis does not exist in general or that we would need to apply entangling
gates before and after, defeating the whole purpose of our gate.
Another approach we considered is taking into account higher orders of the Magnus expansion.
It can be shown that terms contained in the fourth order Magnus expansion of HE + HV (in
particular the commutator [[[HV , HE] , HE] , HE]) contain the same matrix entries as the first
order Magnus expansion of HCD. This opens the possibility of e.g. using an approach similar
to section 3.5 and imposing M (1)

CD = M
(2)
E +M

(4)
E . Usually, the fourth-order term would decay

with a factor 1/ω faster, than the second-order term. But since the fourth order also includes
terms with HV , we can choose V just large enough to counter the 1/ω. This approach might
also require control of the Rydberg interaction V e.g. of the form HV = cos(ωt)V |rr⟩⟨rr|, which
could be done by varying the distance of the Rydberg atoms using optical tweezers. However, it
is difficult computing the terms of third and fourth order and we were not able to find a suitable
solution yet.
One could also think about a hybrid way of using H0 and the mean function Hamiltonian
HE, mean. For example, one could use the HE, mean as long as the mean function approximation
is reasonable and switch to H0 in between. This way one might be able to combine the benefits
of both methods.
A further issue is that so far we worked with a very limited model of Rydberg atoms and
assumed a closed system. Rydberg states have a finite lifetime so we need to take into account
decoherence errors. An open system model with a Lindblad equation replacing the Schrödinger
equation would also allow taking into account other technical sources of error like magnetic
noise, errors due to finite atom temperature and laser power fluctuations. A more detailed
analysis of these errors can be found in [22].
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A.1 Dependency on the ECD frequency

How well E-CD driving performs depends heavily on the E-CD frequency ω. It was previously
mentioned that higher-order Magnus terms contribute with higher orders in 1/ω. The next
terms we neglect are of order 1/ω2 so it is expected that the diabatic errors should decrease
proportionally to 1/ω2. This can also be checked by plotting the fidelity as a function of the E-
CD frequency as in Fig. A.1 for the E-CD-driven Landau-Zener protocol. We produced similar
results for an E-CD-driven STIRAP protocol.
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Figure A.1: Infidelity of the E-CD-driven Landau-Zener system with ARP pulses as a function of the
ECD frequency ω. The irregular behavior for large ω is presumably because we reach the numerical
limit of the simulation. The Gaussian pulse is normalized to 5 and the detuning is linear with ∆max = 20
MHz.
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A.2 CD Hamiltonian for V → ∞
In this section, we derive the eigenvectors of the 3×3 matrix from section 3.1. In (3.4) the 3×3

matrix was rewritten as 0
√
2Ω 0√

2 2∆
√
2Ω

0
√
2Ω 4∆ + 2V

 = V


 0

0

2


︸ ︷︷ ︸

:=H0

+
1

V

 0
√
2Ω 0√

2 2∆
√
2Ω

0
√
2Ω 4∆


︸ ︷︷ ︸

:=H1

 (A.1)

=: V (H0 + εH1) (A.2)

Where we defined ε := 1/V . The eigenvector equation then reads

(H0 + εH1) v = λv. (A.3)

Inserting the pertubational approach v = v0+ εv1 and λ = λ0+ ελ1 allows us to write down the
eigenequations in first order of ε

H0v0 = λ0v0 (A.4)

H0v1 +H1v0 = λ0v1 + λ1v0. (A.5)

Since H0 has two obvious eigenvalues λ0 = 0 and λ0 = 2 we can make a case distinction.

(i) In the case λ0 = 0 from equation (A.4) follows directly that v(3)0 = 0. Equation (A.5)
becomes  0

0

2v
(3)
1

+

 0
√
2Ω 0√

2Ω 2∆
√
2Ω

0
√
2Ω 4∆


 v

(1)
0

v
(2)
0

0

 = λ1

 v
(1)
0

v
(2)
0

0

 (A.6)

We can always fulfill the third line by choosing v(3)1 = − Ω√
2
v
(2)
0 . The first two lines reduce

to a 2×2 matrix problem, which is essentially the Landau-Zener problem with Ω →
√
2Ω.

The solution to this can therefore be taken from (2.29), with a slightly different angle of

θ′ =
1

2
arctan

(
−
√
2
Ω

∆

)
. (A.7)
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Thus, the two possible solutions read

{v} =


 − sin(θ′)

cos(θ′)

− Ω√
2V

cos(θ′)

 ,

 cos(θ′)

sin(θ′)

− Ω√
2V

sin(θ′)


 (A.8)

(i) In the second case λ0 = 2, equation (A.4) turns into 0

0

2v
(3)
0

 = 2

 v
(1)
0

v
(2)
0

v
(3)
0

 , (A.9)

such that v(1)0 = v
(2)
0 = 0. The second eigenvalue equation then turns into 0

0

2v
(3)
1

+

 0
√
2Ω 0√

2Ω 2∆
√
2Ω

0
√
2Ω 4∆


 v

(1)
0
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(2)
0

0

 = λ1

 0

0

v
(3)
0

+ 2

 v
(1)
1

v
(2)
1

v
(3)
1

 . (A.10)

The first line gives v(1)1 = 0 and the second line
√
2Ωv

(3)
0 = 2v

(2)
1 . The third line only gives

a value for λ1, but does not impose any restrictions on v
(3)
1 . We may just chose v(3)1 = 0

since it is negligible as v(3)0 ̸= 0. The solution to the eigenvalue problem is then

v = v
(3)
0

 0
Ω√
2V

1

 . (A.11)

Introducing ν := Ω√
2V

, the up to 1/V normalized eigenvectors are

{v} =


 − sin θ′

cos θ′

−ν cos θ′

 ,

 cos θ′

sin θ′

−ν sin θ′

 ,

 0

ν

1


 . (A.12)

47



A
∣∣ Appendix

A.3 Second order Magnus expansion

General case

Before looking at specific systems, we aim to calculate the second-order Magnus expansion for
a general E-CD Hamiltonian of the form in (2.36) (remember that here T is not the protocol
time):

M
(2)
E (T ) = −1

2

(
i

ℏ

)2 ∫ tn+T

tn

dt′
∫ t′

tn

dt′′ [HE(t
′), HE(t

′′)]

= −ω
2

∫ tn+T

tn

dt′
∫ t′

tn

dt′′
∑
i,j

ci(t
′)cj(t

′′) [Hi, Hj]︸ ︷︷ ︸
=:iρij

= −iω
2

∑
i ̸=j

∫ T

0

dt′
∫ t′

0

dt′′
L∑

k,l=1

(Aik(tn) sin(kωt
′) +Bik(tn) cos(kωt

′))

× (Ajl(tn) sin(lωt
′′) +Bjl(tn) cos(lωt

′′)) ρij

= −iω
2

∑
i ̸=j

L∑
k,l=1

∫ T

0

dt′
1

kω
(Aik(tn) sin(kωt

′) +Bik(tn) cos(kωt
′))

× (−Ajl(tn) cos(lωt
′) +Bjl(tn) sin(lωt

′) + Ajl(tn)) ρij.

(A.13)

In the third step we assumed the coefficients Aik and Bik to be approximately constant in the
interval [tn, tn + T ], which is reasonable in the limit of large ω. In the following we will drop
the argument of these coefficients for the sake of shorter notation. Next we can make use of
the fact that sin(kx) and cos(kx) are orthonormal with the integral from 0 to 2π as the inner
product. Therefore, the only nonzero terms are the ones involving sin2(kωt′) and cos2(kωt′)

M
(2)
E (T ) = −i1

2

∑
i ̸=j

L∑
k=1

1

k

∫ T

0

dt′
(
AikBjk sin

2(kωt′)−BikAjk cos
2(kωt′)

)
ρij

= −i1
2

∑
i ̸=j

L∑
k=1

1

k

π

ω
(AikBjk −BikAjk) ρij

= −iT
4

L∑
k=1

1

k

[∑
i<j

(AikBjk −BikAjk) ρij +
∑
i>j

(AikBjk −BikAjk) ρij

]

= −iT
4

L∑
k=1

1

k

∑
i<j

[(AikBjk −BikAjk) ρij + (AjkBik −BjkAik) ρji] .

(A.14)
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Using the commutator property ρij = −ρji, the final result is

M
(2)
E (T ) = −iT

2

∑
i<j

L∑
k=1

1

k
(AikBjk −BikAjk) ρij. (A.15)

ECD for the Landau Zener System

We now want to determine M (2)
E (T ) in the case of the Landau-Zener System with the ansatz

(2.37):
HE(t) = c1(t)σz + c2(t)σx. (A.16)

The second order Magnus expansion can be obtained using formula (A.15) for which we need
the commutators ρij. In this simple case we only have one namely

iρ12 = [σz, σx] = iσy. (A.17)

Fixing L = 1 we obtain

M
(2)
E (T ) = −iT

2
(A11B21 −B11A21)σy. (A.18)

E-CD for the adiabatic CZ gate

For the E-CD driving of the adiabatic CZ gate we made the ansatz (3.13) which we will here
simply write as HE(t) =

√
ω(c1(t)H1 + c2(t)H2 + c3(t)H3). Without going into detail, one finds

that
iρ12 = [H1, H2] = 0,

iρ13 = [H1, H3] = i(σy ⊗ P0 + P0 ⊗ σy),

iρ23 = [H2, H3] = i(σy ⊗ P1 + P1 ⊗ σy).

(A.19)

In our case it suffices to fix L = 1, such that by applying (A.15) the second order Magnus term
reduces to

M
(2)
E (T ) = −iT

2
[(A11B31 −B11A31) ρ13 + (A21B31 −B21A31) ρ23] . (A.20)

Realizing that the commutators are the matrices that make up the CD Hamiltonian, we can
write HCD(t) = f1(t)ρ13 + f2(t)ρ23. The left-hand side of the equation is then easily determined

M
(1)
CD(T ) = −i

∫ tn+T

tn

dt′ HCD(t
′) = −i

∫ tn+T

tn

dt′ f1(t′)ρ13 + f2(t
′)ρ23

= −iT (f1(tn)ρ13 + f2(tn)ρ23)

(A.21)
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where in the last line we assumed f1 and f2 to be approximately constant on the timescale T .
One can read off the set of equations as already presented in (3.15):

A11B31 −B11A31 = 2f1, A21B31 −B21A31 = 2f2. (A.22)

A.4 Fidelity improvement by E-CD driving for equal pulses

In section 3.2 we found that the usage of an E-CD Hamiltonian for the adiabatic CZ gate
provides significant fidelity improvements compared to the original protocol. We also remarked
that the E-CD Hamiltonian tends to use larger pulses, such that it would be fairer to compare
the fidelities with the E-CD frequency ω limited so that HE ∼ H0.
In particular, the amplitudes of the entires in HE are

√
2ω|f1(t)| and

√
2ω|f1(t)|. The highest

pulse amplitude used for the E-CD driving is thus ΩE, max = max
t,i

{
√
2ω|fi(t)|}, a condition for

equal pulse heights would then be Ωmax = ΩE, max. After defining fmax := max
t,i

{fi(t)}, we can

meet the condition by choosing

ω =
Ω2

max

2fmax
. (A.23)

The results of this can be seen in Fig. A.2. Fixing the pulse height restricts the power of E-CD
driving and limits the regions in which it provides an advantage over the original protocol.
For limited Rydberg blockades and large pulses, the unwanted phase error appears to be the
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Figure A.2: Infidelity of the CZ gate with initial state (|00⟩+ |11⟩)/
√
2 using the protocol as proposed by

Saffman et al. (green) compared to using the ECD CZ protocol (orange). We also plotted the infidelity
we would expect purely from the unwanted dynamical phase (purple). The parameters are T = 0.54 µs
and ∆max/Ωmax = 23/17 as in the Saffman paper and V = 1200 MHz.
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largest issue so that fidelity can be improved significantly by using the suggested E-CD gate. In
domains where the unwanted phase is not the leading issue, the original protocol produces peaks
to much lower infidelities, while on average both methods appear to produce similar fidelities.
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