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Zusammenfassung

Der zentrale Gegenstand dieser Arbeit ist die Optimierung und Beschleunigung 

eines Quantengatters. Neutrale Rydberg-Atome bilden die Grundlage für un- 

sere Simulationen; ein Qubit kann in der Hyperfeinstruktur eines Rydberg-Atoms 

encodiert werden. Für die Implementierung eines CZ-Quantengatters kann ein 

starker Rydberg-Blockademechanismus ausgenutzt werden; wir diskutieren unter 

anderem Phasenfehler, die durch eine unzureichend starke Blockade entstehen kön- 

nen. Darüber hinaus beschleunigen wir ein CZ-Quantengatter mit „counterdiabatic 

driving“ und prüfen, ob die Stabilität durch die Beschleuningung beeinträchtigt 

wird. Dieses CZ-Phasengatter erweitern wir anschließend zu einem CNOT-Gatter.

Abstract

The focus of this thesis lies on the optimization and acceleration of a quantum gate. 

Our simulations are based on neutral Rydberg atoms; a qubit can be encoded 

in the hyperfine structure of a Rydberg atom. To implement a CZ quantum 

gate, one can exploit a strong Rydberg blockade mechanism. We discuss phase 

errors that can arise if the blockade is not sufficiently strong. Furthermore, we 

accelerate a CZ quantum gate by means of counterdiabatic driving and check that 

the acceleration of the gate does not compromise its stability. Additionally, we 

extend the accelerated CZ phase gate to obtain a CNOT gate.
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1. Introduction

The impact of a functioning large-scale quantum computer can hardly be overesti- 

mated. The most prominent application is the prime factorization of large numbers 

via Shor’s algorithm [1] - a task whose unfeasibility in classical computing is the 

basis for current cryptosystems. Further applications include the simulation of pro- 

teins [2], optimization problems [3], search problems [4] etc. Large-scale quantum 

computers that can cope with the aforementioned tasks are not yet within reach, 

but there has been steady progress toward noisy, intermediate-scale quantum com- 

puters (NISQ) that will feature 50 to a few hundred qubits [5]. A great variety 

of physical platforms for quantum computing have been proposed and studied; 

among them are trapped ions [6], superconducting circuits [7], quantum dots [8] 

and neutral atoms [9]. Although some of these platforms seem to be more promis- 

ing than others, none of them has prevailed so far. In this thesis, we will focus 

on neutral Rydberg atoms. The first proposals to use these atoms for quantum 

computing were put forward more than twenty years ago, but a lot of progress has 

been made recently. 

In general, a quantum algorithm can be expressed as a series of measurements 

and single / two-qubit quantum gates [10, pp. 171-172]. On the Rydberg platform, 

these quantum gates can be implemented via laser fields that couple certain energy 

levels of the atoms. Quantum gates that are able to create entangled states are of 

particular interest; to implement these gates, we take advantage of the Rydberg 

blockade mechanism, which will be discussed later on. As we will see, this blockade 

mechanism is not perfect, which gives rise to phase issues. Two sections of this 

thesis are dedicated to the discussion of this imperfection. 

Qubits can be manipulated via different types of laser pulses. We are interested 

in adiabatic rapid passage (ARP) pulses. As the name suggests, these pulses rely 

on an adiabatic process, hence there is an adiabaticity condition that must not be 

violated. This condition limits the speed of the pulse operation. It is clear that we 

want to keep the total gate operation time as low as possible to avoid decoherence, 

thus we are looking for ways to accelerate ARP-based quantum gates. A method 

that is known as counterdiabatic driving [11] allows us to arbitrarily accelerate 

adiabatic evolution; we want to apply this method to an adiabatic two-qubit CZ 

phase gate. This particular phase gate is of interest to us because it provides the 

foundation for one of the most important two-qubit gates: the CNOT gate. The 

implementation of the CNOT gate is covered in the fourth chapter. Once we have 

built a CNOT gate, we have the means to simulate a small three-qubit quantum 

error correction (QEC) circuit that can correct bit flip errors on a single qubit. 

While QEC schemes offer great protection against all kinds of errors that can occur 

due to noise or faulty gate operation, they require substantial resources in terms
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of additional ancilla qubits. Given the relatively low count of qubits in the latest 

quantum computers, it is clear that qubits cannot be allocated for error correction 

purposes yet, but QEC schemes will be an integral part of quantum computers 

beyond the NISQ era. 

To avoid confusion, we make a brief remark about the terminology: we will refer 

to the CZ phase gate that is implemented by adiabatic rapid passage pulses as 

"adiabatic" CZ gate. This is not to be confused with adiabatic quantum computing 

[12]. The latter is a different approach to quantum computing that does not rely 

on quantum gates, but instead on quantum annealing. 

The thesis is structured as follows: after covering some basics in the second 

chapter, we will discuss the optimization and acceleration of the (non)adiabatic 

CZ gate in the third chapter. Afterwards, we will extend the accelerated CZ gate 

in chapter four to obtain a CNOT gate; in addition to that, chapter four contains 

a section about quantum error correction.

2



2. Preliminaries

The objective of this chapter is threefold: we want to discuss some basics of quan- 

tum computing, introduce the Rydberg platform featuring cold neutral atoms, 

and review the concept of counterdiabatic driving. After presenting a brief selec- 

tion of the various physical platforms for quantum computing, we focus on the 

Rydberg platform and derive the Hamiltonian that we will use in the following 

chapters. Subsequently, we describe how we can manipulate qubits using 𝜋 pulses 

and adiabatic rapid passage (ARP) pulses. This is followed by a section about 

counteradiabatic driving, which provides us with a useful tool to build fast adia- 

batic gates. The chapter ends with a section about quantum gates, in which we 

will particularly explain the composition of the CNOT gate. This composition 

determines the structure of this thesis; we will gradually build a CNOT gate and 

use it to build a more complex quantum circuit.

2.1. Platforms for quantum computing

The realization of quantum computers is challenging; the main requirements have 

been characterized by DiVincenzo [13, pp. 773-779]. We need

• "A scalable physical system with well characterized qubits"

• "The ability to initialize the state of the qubits to a simple fiducial state, 

such as |000....⟩"

• "Long relevant decoherence times, much longer than the gate operation time"

• "A ’universal’ set of quantum gates"

• "A qubit-specific measurement capability" 

There are various platforms that fulfill these requirements to a varying degree. 

The number of platform proposals is too high to give an overview in this section; 

we selected only a few platforms to illustrate the diversity and to highlight some 

of the challenges. A more detailed overview can be found in Nielsen and Chuang 

[10, pp. 283-352].

NMR
Nuclear magnetic resonance quantum computing is one of the most well-studied 

platforms. The two qubit states |0⟩ and |1⟩ are mapped to the Zeeman levels 

of nuclei in a magnetic field [14, p. 2]. In contrast to other platforms, a single
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qubit is represented by a large ensemble of spins which belong to molecules in a 

liquid sample. Single-qubit gates can be realized via standard NMR pulses and 

the spin-spin coupling allows for the implementation of two-qubit gates. Due to 

scaling issues, NMR quantum computing is not a viable option for building large 

quantum computers, but NMR research gave rise to some useful tools such as 

composite pulses that can be adopted for other platforms [15, p. 116].

Trapped ions
The proposal to map the two states of a qubit to the internal states of cold trapped 

ions was put forward by Cirac and Zoller [6]. Single-qubit operations can be per- 

formed by coupling different states with lasers; two-qubit gates can be realized via 

the excitation of shared vibrational states. High-fidelity single-qubit gates [16],[17] 

and two-qubit gates [18] have already been accomplished, making trapped ions one 

of the most promising platforms. Even though this platform features many advan- 

tages, such as long coherence times, high-fidelity gates and high-fidelity readout, 

the gate operation is slow compared to other platforms and the scaling proves to 

be difficult once again [19, pp. 3-4].

Superconducting circuits
This type of platform is essentially based on superconducting LC-circuits that form 

quantum harmonic oscillators. The energy levels of a quantum harmonic oscillator 

are evenly spaced, which is a problem if one wants to drive only certain transitions, 

therefore another nonlinear element (Josephson junction) is added to the circuit 

to get unevenly spaced energies [20, pp. 371-373]. Coherence requires the lack of 

dissipation in the circuit, which is achieved by zero resistance. High-fidelity gates 

have been demonstrated [21], but the platform is challenged by short coherence 

times and noise.

Rydberg atoms
In terms of scalability, neutral atoms have more potential since they can be ar- 

ranged in complex structures (as opposed to ions). Rydberg atoms can be excited 

to a Rydberg state |𝑟⟩ with a large principal quantum number 𝑛. The radius scales 

as 𝑛2, hence the state |𝑟⟩ features a large electric dipole moment. Jaksch et al. put 

forward the idea to use this long-range dipolar interaction to block the excitation 

of surrounding atoms to the Rydberg state; this Rydberg blockade provides a way 

to implement two-qubit gates [9]. There are multiple ways to encode a logical 

qubit in the level structure of a Rydberg atom; for instance, one could encode |0⟩
and |1⟩ in the hyperfine structure and use a Rydberg level as an auxiliary state for 

two-qubit gates. Heavy alkali atoms such as Rb and Cs have favorable properties 

with regard to laser cooling and hyperfine structure [22, p. 2317], hence these 

atoms are typically used in experiments. A comprehensive review of quantum 

computing with Rydberg atoms was published by Morgado and Whitlock [23].
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2.2. Rydberg platform

The following derivation is based on [24, pp. 13-15]. We consider a single Rydberg 

atom with three states |0⟩ , |1⟩ and |𝑟⟩. The atom interacts with two lasers with 

frequencies 𝜔𝐿1, 𝜔𝐿2 that drive the transition |0⟩ ↔ |1⟩ and |1⟩ ↔ |𝑟⟩, respectively. 

Neglecting decay processes, the Hamiltonian of the system is given by

�̂�(𝑡) =
∑︁

𝑛∈{0,1,𝑟}

𝐸𝑛 |𝑛⟩ ⟨𝑛|+ 𝑑 · �̂� . (2.1) 

For convenience, we set the energy of the ground state to zero. The electric field can 

be written as E = E𝐿1 cos(𝜔𝐿1𝑡)+E𝐿2 cos(𝜔𝐿2𝑡). By defining the Rabi frequencies 

as

Ω01 =
⟨0| 𝑑�̂�𝐿1 |1⟩

ℏ
, Ω1𝑟 =

⟨1| 𝑑�̂�𝐿2 |𝑟⟩
ℏ

, (2.2) 

we can write the Hamiltonian in matrix representation as

𝐻(𝑡) = ℏ

⎡ ⎣ 0 Ω01 cos(𝜔𝐿1𝑡) 0 

Ω†
01 cos(𝜔𝐿1𝑡) 𝜔01 Ω1𝑟 cos(𝜔𝐿2𝑡) 

0 Ω†
1𝑟 cos(𝜔𝐿2𝑡) 𝜔01 + 𝜔1𝑟

⎤ ⎦ , (2.3) 

where 𝜔01 = 𝐸1/ℏ and 𝜔1𝑟 = (𝐸𝑟−𝐸1)/ℏ. We enter a reference frame that rotates 

at the laser frequency by applying the following unitary transformation

𝑈(𝑡) =

⎡ ⎣1 0 0 

0 𝑒𝑖𝜔𝐿1𝑡 0 

0 0 𝑒𝑖(𝜔𝐿1+𝜔𝐿2)𝑡

⎤ ⎦ . (2.4) 

The Hamiltonian transforms as 𝐻new = 𝑈 𝐻old𝑈
† + 𝑖ℏ�̇� 𝑈 †.

𝐻(𝑡) = ℏ

⎡ ⎣ 0 Ω01 cos(𝜔𝐿1𝑡)𝑒
−𝑖𝜔𝐿1𝑡 0 

Ω†
01 cos(𝜔𝐿1𝑡)𝑒

𝑖𝜔𝐿1𝑡 𝜔01 − 𝜔𝐿1 Ω1𝑟 cos(𝜔𝐿2𝑡)𝑒
−𝑖𝜔𝐿2𝑡

0 Ω†
1𝑟 cos(𝜔𝐿2𝑡)𝑒

𝑖𝜔𝐿2𝑡 𝜔01 + 𝜔1𝑟 − 𝜔𝐿1 − 𝜔𝐿2

⎤ ⎦
(2.5)

= ℏ

⎡ ⎣ 0 Ω01/2 (1 + 𝑒−2𝑖𝜔𝐿1𝑡) 0 

Ω†
01/2 (1 + 𝑒2𝑖𝜔𝐿1𝑡) 𝜔01 − 𝜔𝐿1 Ω1𝑟/2 (1 + 𝑒−2𝑖𝜔𝐿2𝑡) 

0 Ω†
1𝑟/2 (1 + 𝑒2𝑖𝜔𝐿2𝑡) 𝜔01 + 𝜔1𝑟 − 𝜔𝐿1 − 𝜔𝐿2

⎤ ⎦
(2.6) 

The purpose of this transformation is not immediately obvious since the off- 

diagonal entries are still time-dependent, but now we can remove the time depen- 

dence by employing the rotating wave approximation (RWA), which states that 

the fast oscillating terms 𝑒±2𝑖𝜔𝐿𝑖𝑡 can be neglected provided that |𝜔01 − 𝜔𝐿1| ≪ 

|𝜔01 + 𝜔𝐿1| and |𝜔1𝑟 − 𝜔𝐿2| ≪ |𝜔1𝑟 + 𝜔𝐿2|. Furthermore, we define the detuning as 

follows:

𝛿 = 𝜔01 − 𝜔𝐿1 , ∆ = 𝜔01 + 𝜔1𝑟 − 𝜔𝐿1 − 𝜔𝐿2 . (2.7)
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Rydberg Interaction V

Qubit 1 Qubit 2

Figure 2.1.: Levels of two Rydberg atoms. The transitions are labeled with the corre- 

sponding Rabi frequency

With these changes, our final Hamiltonian reads

𝐻(𝑡) = ℏ

⎡ ⎣ 0 Ω01/2 0 

Ω†
01/2 𝛿 Ω1𝑟/2 

0 Ω†
1𝑟/2 ∆

⎤ ⎦ . (2.8) 

Having derived the Hamiltonian of a single Rydberg atom, we can now give the full 

Hamiltonian of a two-qubit system, which consists of two Hamiltonians describing 

the dynamics of a single Rydberg atom and an additional term that accounts for 

the Rydberg interaction V between the Rydberg states:

�̂� = �̂�1 ⊗ 1+ 1⊗ �̂�2 + V |𝑟⟩ ⟨𝑟| ⊗ |𝑟⟩ ⟨𝑟| . (2.9) 

We usually set ℏ to 1, so we will express the Rydberg interaction V in GHz or
MHz, as is common practice.

2.3. 𝜋 pulses and ARP pulses

The standard way to induce a population transfer between two levels is to use 

resonant 𝜋 pulses. By using the rotating frame transformation and the rotating 

wave approximation from the previous section, the Hamiltonian of a two-level 

system interacting with a laser field can be written as

𝐻(𝑡) =

[︂
0 Ω(𝑡)/2 

Ω(𝑡)/2 ∆(𝑡)

]︂
, (2.10)
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where Ω(𝑡) is the real Rabi frequency and ∆(𝑡) is the detuning. A complete 

population transfer can be achieved by applying a pulse with area
∫︀
Ω(𝑡)𝑑𝑡 = 𝜋

and ∆ ≡ 0, hence the name 𝜋 pulse. We used gaussian or discrete pulse profiles 

in our simulations. Another way of realizing the transfer is to use adiabatic rapid 

passage pulses. These pulses sweep through the resonance frequency [25, p. 147]. 

An example is given in Fig. 2.2; here, the Rabi frequency has a gaussian profile 

and the detuning is linear. Calculating the instantaneous eigenstates of the system 

yields

|𝜑+⟩ = 

1√︀
1 + 𝛽2

+

(𝛽+ |0⟩+ |1⟩) , |𝜑−⟩ = 

1√︀
1 + 𝛽2

−
(𝛽− |0⟩+ |1⟩) , (2.11) 

where 𝛽± = (−∆(𝑡)±Ω̄(𝑡))/Ω(𝑡) with Ω̄(𝑡) =
√︀

∆(𝑡)2 + Ω(𝑡)2. For small times, we 

have |∆| ≫ |Ω| and ∆ < 0, therefore |𝜑−⟩ ≈ |1⟩ and |𝜑+⟩ ≈ |0⟩, whereas for large 

times, we have |∆| ≫ |Ω| and ∆ > 0, leading to |𝜑−⟩ ≈ |0⟩ and |𝜑+⟩ ≈ |1⟩. The 

adiabatic theorem states that a system remains in its instantaneous eigenstate, 

provided that the change of the Hamiltonian is sufficiently slow and the spectrum 

consists solely of discrete, nondegenerate eigenvalues [26]. Consequently, we can 

transfer the population between |0⟩ and |1⟩ by applying the pulse adiabatically 

such that the system remains in its instantaneous eigenstate |𝜑+⟩ or |𝜑−⟩. The 

advantage of ARP pulses is that the fidelity of the transfer depends only weakly 

on the pulse amplitude, which means that ARP pulses are more robust than 𝜋
pulses. This robustness does not imply that ARP pulses are superior to 𝜋 pulses, 

since they are quite slow. Fig. 2.3 shows the result of violating the adiabaticity 

condition. Furthermore, 𝜋 pulses are more versatile: in a two level system, we can 

implement any rotation around the x-axis (of the bloch sphere) with an appropri- 

ately normalized 𝜋 pulse, whereas ARP pulses are only able to transfer population 

if the initial state is |0⟩ or |1⟩.

Figure 2.2.: Gaussian-shaped Rabi fre- 

quency Ω and linear detuning Δ of an 

ARP pulse

Figure 2.3.: Population transfer in a 

two-level system, visualized on a Bloch 

sphere. The red line is the result of 

perfect adiabatic transfer, the blue line 

shows imperfect transfer due to a viola- 

tion of the adiabaticity condition
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2.4. Counterdiabatic driving

Among others [27], Michael Berry proposed a powerful method to avoid unwanted 

transitions between instantaneous eigenstates entirely, enabling us to complete adi- 

abatic evolutions arbitrarily fast [11]. This method is known as "counterdiabatic 

driving", "transitionless quantum driving" or "superadiabatic driving". We follow 

Berry’s short derivation: consider an arbitrary Hamiltonian �̂�0 with nondegener- 

ate, discrete eigenvalues and instantaneous eigenstates |𝑛(𝑡)⟩,

�̂�0(𝑡) = 𝐸𝑛(𝑡) |𝑛(𝑡)⟩ . (2.12) 

In the adiabatic limit, the system remains in eigenstate |𝑛(𝑡)⟩ if it is initially 

prepared in |𝑛(0)⟩, gaining the following phase 𝛾𝑛(𝑡) in the process:

|𝜓𝑛(𝑡)⟩ = 𝑒𝑖𝛾𝑛(𝑡) |𝑛(𝑡)⟩ , where 𝛾𝑛(𝑡) = −1

ℏ

∫︁ 𝑡

0

𝐸𝑛(𝑡
′)𝑑𝑡′+

∫︁ 𝑡

0

⟨𝑛(𝑡′)|𝜕𝑡′𝑛(𝑡′)⟩ 𝑑𝑡′ .

(2.13) 

The first term accounts for the dynamical phase, the second term accounts for the 

geometric phase. Berry constructs a new Hamiltonian �̂�(𝑡) such that the states
|𝜓𝑛(𝑡)⟩ are not just the result of an adiabatic evolution; the states |𝜓𝑛(𝑡)⟩ become 

the exact solution of the Schrödinger equation. To find �̂�(𝑡), Berry defines the 

unitary operator
�̂�(𝑡) =

∑︁
𝑛

𝑒𝑖𝛾𝑛(𝑡) |𝑛(𝑡)⟩ ⟨𝑛(0)| (2.14) 

and notes that any unitary operator satisfies

𝑖ℏ𝜕𝑡�̂�(𝑡) = �̂�(𝑡)�̂�(𝑡) , where �̂�(𝑡) = 𝑖ℏ(𝜕𝑡�̂�(𝑡))�̂� †(𝑡) . (2.15) 

Therefore, �̂�(𝑡) can be obtained by substituting Eq. (2.14) in Eq. (2.15), which 

yields:

�̂�(𝑡) =
∑︁
𝑛

|𝑛(𝑡)⟩𝐸𝑛(𝑡) ⟨𝑛(𝑡)|⏟  ⏞  
= �̂�0

+ 𝑖ℏ
∑︁
𝑛

(|𝜕𝑡𝑛(𝑡)⟩ ⟨𝑛(𝑡)| − ⟨𝑛(𝑡)|𝜕𝑡𝑛(𝑡)⟩ |𝑛(𝑡)⟩ ⟨𝑛(𝑡)|)⏟  ⏞  
= �̂�CD

.

(2.16) 

Here, �̂�CD is the counterdiabatic Hamiltonian. Once we have computed �̂�CD, we 

simply need to add it to our original Hamiltonian in order to prevent diabatic 

evolution.

2.4.1. Landau-Zener Hamiltonian

We have already come across a variation of the Landau-Zener Hamiltonian in Eq. 

(2.10). The standard form reads:

𝐻(𝑡) = 

1

2

[︂
−∆(𝑡) Ω(𝑡) 

Ω(𝑡) ∆(𝑡)

]︂
, where ∆(𝑡) ∝ 𝑡 , (2.17)
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which is identical to Eq. (2.10) up to a time-dependent energy shift that does 

not change the dynamics of our system. We revisit the ARP pulse example, i.e., 

we assume the detuning to be linear and the Rabi frequency to have a gaussian 

profile like in Fig. 2.2. The eigenvalues of the system are shown in Fig. 2.4; we 

can see an avoided crossing. The band gap determines how fast we can change the 

Hamiltonian without causing diabatic evolution; a large band gap permits greater 

speed. One can show that the counterdiabatic Hamiltonian for this system is

𝐻CD =

[︂
0 −𝑖𝜃

−𝑖𝜃 0

]︂
, (2.18) 

where 𝜃(𝑡) = arctan(−∆(𝑡)/Ω(𝑡)), see [28, pp. 2-3]. Adding 𝐻CD to the original 

Hamiltonian yields perfect adiabatic evolution, as we can see in Fig. 2.5. We will 

encounter the Landau-Zener Hamiltonian again in the subsequent chapter 3 when 

we study more complex systems.

Figure 2.4.: Avoided crossing of eigen- 

values of a Landau-Zener Hamiltonian 

where Ω has a gaussian profile and Δ is 

linear

Figure 2.5.: Population transfer in a 

two-level system under an ARP pulse. 

The counterdiabatic driving clearly im- 

proves the fidelity of the transfer

2.5. Quantum gates

Classical computers are based on well-known logic gates such as the AND-, OR- 

and NOT gate [29, pp. 13-17]. A set of gates is said to be universal if we can 

construct any logic gate from this set. For instance, the AND gate and the OR 

gate form a universal set of classical computation [29, p. 18]. Similar to classical 

computation, we apply a series of quantum gates to implement quantum algo- 

rithms; each quantum gate corresponds to a unitary operation. In the following, 

we will give the definitions of some gates, beginning with single-qubit operations. 

These operations are restricted to the subspace of a single qubit. Using the basis
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{|0⟩ , |1⟩}, the matrix representation reads:

𝑅𝑥(𝜃) =

[︂
cos(𝜃 /2) −𝑖 sin(𝜃 /2)

−𝑖 sin(𝜃 /2) cos(𝜃 /2)

]︂
, (2.19)

𝑅𝑦(𝜃) =

[︂
cos(𝜃 /2) − sin(𝜃 /2) 

sin(𝜃 /2) cos(𝜃 /2)

]︂
, (2.20)

𝑅𝑧(𝜃) =

[︂
1 0 

0 exp(𝑖𝜃)

]︂
. (2.21) 

Each operation can be identified with a rotation on the Bloch sphere by the angle
𝜃. Next, we give the matrix representation of the CNOT (=Controlled NOT) gate 

in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}. 

CNOT =

⎡ ⎢⎢⎣
1 0 0 0 

0 1 0 0 

0 0 0 1 

0 0 1 0

⎤ ⎥⎥⎦ (2.22) 

As its name implies, the CNOT operation flips the target qubit if and only if the 

control qubit is in state |1⟩. Together with single-qubit operations, the CNOT 

gate forms a universal set of quantum computing, i.e., any unitary operation can 

be expressed as a series of single-qubit gates and CNOT gates [10, p. 191]. It 

is well-known that the CNOT gate can be decomposed into a series of single- 

qubit rotations combined with a CZ gate [10, p. 294]. Using the standard basis
{|00⟩ , |01⟩ , |10⟩ , |11⟩} again, the matrix representation of the CZ gate reads: 

CZ =

⎡ ⎢⎢⎣
−1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1

⎤ ⎥⎥⎦ . (2.23) 

Some authors define the CZ gate such that the state |11⟩ gets a 𝜋 phase instead of 

state |00⟩. An implementation of a CZ-based CNOT gate is presented in [30, p. 1]. 

Initially, we tried to follow this implementation, but the authors have implemented 

an inverted CNOT gate where the target qubit gets flipped if the control qubit is 

in state |0⟩ instead of |1⟩. To arrive at a standard CNOT gate, we added a 𝜋 pulse 

at the beginning and the end of their protocol. The protocol in [30, p. 1] features 

two 𝜋
2

pulses that are directed at the target qubit; these pulses differ from the 𝜋
pulses not only in terms of pulse area, but also in terms of relative phase, which 

controls the type of rotation. Unfortunately, the authors provide little information 

about the relative pulse phase, so we had to test different relative phases until we 

obtained a functioning CNOT protocol. The final protocol is depicted in Fig. 2.6.
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target 

qubit

control 

qubit

CNOT

𝑅𝑥(𝜋)

𝑅𝑦(
𝜋
2
))

CZ

𝑅𝑦(−𝜋
2
)

𝑅𝑥(𝜋)

Figure 2.6.: A sequence of operations that implements a CNOT gate. The circuit 

symbol of a CNOT gate is shown on the right side
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3. CZ gate

The entire chapter is dedicated to the CZ gate. To motivate the extensive discus- 

sion, we point out that the CZ gate is the foundation for our CNOT gate. We 

looked into adiabatic and nonadiabatic implementations of the CZ gate. Adiabatic 

gates are more robust, but this robustness comes at the expense of speed. The 

first section introduces a nonadiabatic CZ gate by Jaksch et al. [9, p. 2210]. After 

identifying an imperfection of this gate, we attempt to fix it. This is followed by 

a section about an adiabatic CZ implementation by Saffman et al. [31, pp. 2-4]. 

We chose this protocol over alternative protocols because it employs a simple one- 

photon excitation to populate the Rydberg state. Other protocols are based on 

two-photon excitations; their implementation would require a modification of our 

Rydberg model, since it does not feature an intermediate Rydberg level. Our con- 

tribution consists of the compensation of an unwanted phase and the application 

of counterdiabatic driving to the Saffman et al. protocol in order to create a fast, 

adiabatic CZ gate. The last section addresses the stability of our new protocol.

3.1. Nonadiabatic CZ gate

The standard approach to implement a CZ gate on the Rydberg platform was 

proposed by Jaksch et al. [9, p. 2210]. The paper elaborates on the implementation 

in the weak and strong blockade regime. We will focus on the latter. The protocol 

consists of three pulses: the first 𝜋 normalized pulse drives the transition between
|1⟩ ↔ |𝑟⟩ on the first qubit, the second 2𝜋 normalized pulse drives the transition 

between |1⟩ ↔ |𝑟⟩ on the second qubit, and the last pulse is identical to the first 

pulse. The pulse sequence is depicted in Fig. 3.1. A 𝜋 pulse-induced population 

transfer leads to the system state gaining a dynamical phase −𝜋 /2. In theory, the 

computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} evolves as follows:

|00⟩ Pulse 1−−−−→ −𝑖 |00⟩ Pulse 2−−−−→ −𝑖 |00⟩ Pulse 3−−−−→ − |00⟩ , (3.1)

|01⟩ Pulse 1−−−−→ −𝑖 |01⟩ Pulse 2−−−−→ −𝑖 |01⟩ Pulse 3−−−−→ − |01⟩ , (3.2)

|10⟩ Pulse 1−−−−→ −𝑖 |𝑟0⟩ Pulse 2−−−−→ −𝑖 |𝑟0⟩ Pulse 3−−−−→ − |10⟩ , (3.3)

|11⟩ Pulse 1−−−−→ −𝑖 |𝑟1⟩ Pulse 2−−−−→ −𝑖 |𝑟1⟩ Pulse 3−−−−→ − |11⟩ . (3.4) 

The protocol implements the CZ gate up to an irrelevant global phase. The Ry- 

dberg blockade, which we discussed in chapter 2, sets in during the evolution of 

state |11⟩; the first pulse excites the first qubit to |𝑟⟩. If the first qubit was not in 

state |𝑟⟩, the second pulse would excite the second qubit to |𝑟⟩ and back; the state
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would gain a phase −𝜋 in the process. But since the Rydberg state of the first 

qubit is populated, the second pulse fails to excite the second qubit to |𝑟⟩ and the 

system remains in state −𝑖 |𝑟1⟩.

3.1.1. Compensation of unwanted phase

If the Rydberg interaction V was infinite, the blockade mechanism would work 

perfectly, preventing the population of state |𝑟 𝑟⟩ completely. Naturally, we work 

with finite values for V, leading to an imperfect blockade mechanism. This results 

in the state |11⟩ gaining a small unwanted phase 𝜑𝑟 ∝ 1/V in addition to the 𝜋
phase. The other states of our computational basis are not affected since their 

evolution does not involve the Rydberg blockade. 

It is known that the imperfect Rydberg blockade causes errors: the effect of the 

imperfect blockade on the CZ gate fidelity was studied in [32, pp. 11-13]. Among 

other imperfections, the authors discuss an error that is caused by residual popula- 

tion in Rydberg states; the population emerges due to the imperfect blockade. The 

phase error is not mentioned. Presumably, this is because the authors considered 

a blockade regime where the residual population error is greater than the phase 

error. Contrary to this, we focus on very high Rydberg interactions V such that 

the residual population error is negligible compared to the phase error. 

A semi-analytical expression for 𝜑𝑟 can be easily obtained. It is not necessary 

to consider the full protocol or the full 9 × 9 Hamiltonian for this derivation; 

the blockade sets in during the second pulse, hence we focus on this part of the 

protocol. After we prepared our system in the initial state |11⟩, the first pulse 

transfers the population to |𝑟1⟩; the second pulse couples this state with |𝑟 𝑟⟩, 

therefore we effectively consider a two-level system consisting of |𝑟1⟩ and |𝑟 𝑟⟩. 

The corresponding submatrix of the Hamiltonian reads

𝐻(𝑡)red =

[︂
0 Ω2 

1𝑟/2 

Ω2 

1𝑟/2 V

]︂
, (3.5) 

where we used the basis {|𝑟1⟩ , |𝑟 𝑟⟩}. The eigenvalues of the system are

𝐸± =
V
2
± V

2

√︃
1 +

(︂
Ω2 

1𝑟

V

)︂2

. (3.6) 

We argue that the states |𝑟1⟩ , |𝑟 𝑟⟩ are approximately eigenstates of the system 

during the second pulse due to |V| ≫ |Ω2 

1𝑟|. The energy 𝐸− of "eigenstate" |𝑟1⟩
can be simplified by a Taylor series at 1

V = 0,

𝐸− = −(Ω2 

1𝑟)
2

4V
+𝒪

(︂
1

V2

)︂
. (3.7) 

During the second pulse, state |𝑟1⟩ gains some dynamical phase which is given by 

the integral over the energy 𝐸−:

𝜑𝑟 ≈ −
∫︁

(Ω2 

1𝑟)
2

4V
𝑑𝑡 , (3.8)
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where we integrate over the time interval of the second pulse. This is already 

our final expression for the unwanted phase since the last pulse only transfers the 

population of |𝑟1⟩ back to |11⟩ without generating any (unwanted) phases in the 

process. 

We found a way to compensate this phase by including a single-qubit phase gate 

in the original protocol and modifying the second pulse. Instead of applying a 2𝜋
normalized pulse to couple level |1⟩ and |𝑟⟩ like in the original protocol, we split 

the second pulse into two 𝜋 normalized pulses and apply a phase gate in between 

the pulses (see Fig. 3.1). The phase gate acts on level |1⟩ of the second qubit; in 

matrix representation, this operation reads⎡ ⎣1 0 0 

0 1 0 

0 0 1

⎤ ⎦⊗

⎡ ⎣1 0 0 

0 𝑒−𝑖𝜑𝑟 0 

0 0 1

⎤ ⎦ . (3.9) 

The undesirable effect of this phase gate operation is that it affects multiple states 

at once; the states |01⟩ , |11⟩ and |𝑟1⟩ get an additional compensation phase −𝜑𝑟

(if they are populated). Our intention is to fix only the phase of initial state |11⟩, 

but we cannot target this specific state with a single-qubit phase gate. That is why 

we split the second pulse into two pulses: the idea is to apply the phase gate at a 

time when states that should not be affected by the phase gate are not populated. 

We can check that our modified protocol satisfies this condition: initial state |00⟩
remains unaffected by all pulses, just like in the old protocol. The initial states
|01⟩ , |10⟩ , |11⟩ evolve as follows:

|01⟩ P 1−−→ −𝑖 |01⟩ P 2−−→ −𝑖 |0𝑟⟩ PG−−→ −𝑖 |0𝑟⟩ P 4−−→ − |01⟩ P 5−−→ − |01⟩ , (3.10)

|10⟩ P 1−−→ −𝑖 |𝑟0⟩ P 2−−→ −𝑖 |𝑟0⟩ PG−−→ −𝑖 |𝑟0⟩ P 4−−→ −𝑖 |𝑟0⟩ P 5−−→ − |10⟩ , (3.11)

|11⟩ P 1−−→ −𝑖 |𝑟1⟩ P 2−−→ −𝑖𝑒𝑖𝜑𝑟/2 |𝑟1⟩ PG−−→ −𝑖𝑒−𝑖𝜑𝑟/2 |𝑟1⟩ P 4−−→ −𝑖 |𝑟1⟩ P 5−−→ − |11⟩ .
(3.12) 

The nth pulse is denoted by P n and the phase gate is denoted by PG. We can 

see that the phase gate does not interfere with the evolution of initial states
|00⟩ , |10⟩ , |01⟩ since these states have evolved to |00⟩ ,−𝑖 |𝑟0⟩ ,−𝑖 |0𝑟⟩ at the time 

when we apply the phase gate. The effect of the compensation is shown in the 

next section.

3.1.2. Stability

To test the stability of the original protocol and study the effect of the phase 

compensation, we introduced a relative pulse area error 𝜖 on all pulses. Following 

an experiment conducted by Isenhower et al. [30, p. 2], we used 𝜋 pulses with a 

length of ∼ 750 ns and a Rydberg interaction V/2𝜋 ≈ 20MHz. The fidelity was 

obtained via ℱ = | ⟨𝜑ini| ĈZ† |𝜑out⟩ |2, where ĈZ is the operator associated with an 

ideal CZ operation and |𝜑ini⟩ , |𝜑out⟩ are the initial / output states, respectively. 

Each figure shows the fidelity obtained by the original protocol as well as the fidelity
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|0⟩
|1⟩

|𝑟⟩

|0⟩
|1⟩

|𝑟⟩

1 23

Qubit 1 Qubit 2
|0⟩
|1⟩

|𝑟⟩

|0⟩
|1⟩

|𝑟⟩

1 2 45

3

Qubit 1 Qubit 2

Figure 3.1.: The original CZ protocol is shown on the left side; 1 and 3 denote 𝜋 pulses, 

2 denotes a 2𝜋 pulse. The modified protocol is shown on the right side; 1,2,4,5 are 𝜋
pulses and 3 denotes a phase gate that acts on level |1⟩ of the second qubit

obtained by the modified protocol. A counterintuitive result can be observed 

in Fig. 3.4; a pulse area error can increase the fidelity of the original protocol 

in some cases, for instance if the initial state is 1√
2
(|00⟩ + |11⟩). Our modified 

protocol does not only increase the fidelity in this case, it also restores the expected 

behaviour by shifting the fidelity maximum back to 𝜖 = 0, suggesting that the 

unexpected behaviour of the fidelity is caused by the imperfect Rydberg blockade. 

To confirm this hypothesis, we approximated the fidelity in the appendix A.2; our 

approximations are only valid in the strong blockade regime. For the initial states
|10⟩ and |01⟩, an approximation of the fidelity is given by

ℱ ≈
(︂
1− (𝜋 𝜖)2

2

)︂2

. (3.13) 

Fig. 3.2 shows that this approximation describes the fidelity very well. Our mod- 

ified protocol does not improve the fidelity in this case because the evolution of
|01⟩ and |10⟩ does not involve the Rydberg blockade, therefore there is no phase 

to be compensated. For the initial state 1√
2
(|00⟩ + |11⟩), we got the following 

approximation:

ℱ ≈
⃒⃒⃒⃒
1

2

(︂
1 + 𝑒𝑖𝜑𝑟 + 2𝑖𝜑𝑟𝑒

𝑖𝜑𝑟𝜖+

(︂
𝜋2

4
− 1

4
𝑒𝑖𝜑𝑟(−4𝑖𝜑𝑟 + 8𝜑2

𝑟 + 𝜋2)

)︂
𝜖2
)︂ 

⃒⃒⃒⃒2
. (3.14) 

Here, 𝜑𝑟 =
∫︀

Ω2

4V𝑑𝑡 is the unwanted phase generated by the imperfect Rydberg 

blockade. Fig. 3.4 shows that this approximation is only valid in a very small 

neighborhood of 𝜖 = 0. Nevertheless, this expression confirms that the shift of 

the fidelity maximum is caused by the imperfect Rydberg blockade; if we set 𝜑𝑟

to zero, the fidelity reduces to ℱ ≡ 1, i.e., a small relative pulse area error does 

not increase the fidelity anymore. For the sake of completeness, we also give the 

fidelity approximation for the initial state 1√
2
(|01⟩+ |11⟩):

ℱ ≈
⃒⃒⃒⃒
1

2

(︂
1− (𝜋 𝜖)2

2 

+ 𝑒𝑖𝜑𝑟 + 2𝑖𝜑𝑟𝑒
𝑖𝜑𝑟𝜖+

(︂
𝜋2

4
− 1

4
𝑒𝑖𝜑𝑟(−4𝑖𝜑𝑟 + 8𝜑2

𝑟 + 𝜋2)

)︂
𝜖2
)︂ 

⃒⃒⃒⃒2
.

(3.15)
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As can be seen in Fig. 3.5, the approximation is accurate. The modified protocol 

performs slightly better in this case. 

The fidelity improvements which we achieved by phase compensation are rather 

unremarkable; this can be explained by our choice of parameters. The Rydberg 

interaction is very strong, therefore the unwanted phase is less of an issue.

Figure 3.2.: Stability of the 

(un)modified CZ protocol for initial 

state |01⟩

Figure 3.3.: Stability of the 

(un)modified CZ protocol for initial 

state |11⟩

Figure 3.4.: Stability of the 

(un)modified CZ protocol for initial 

state 1√
2
(|00⟩+ |11⟩)

Figure 3.5.: Stability of the 

(un)modified CZ protocol for initial 

state 1√
2
(|01⟩+ |11⟩)
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3.2. Adiabatic CZ gate

An adiabatic implementation of the CZ gate was proposed in [31, pp. 2-4]. The 

protocol consists of two ARP pulses, which we introduced in chapter 1. The pulses 

act on both atoms simultaneously. The detuning and Rabi frequency are given by:

Ω1 

1𝑟(𝑡) = Ω2 

1𝑟(𝑡) =

⎧ ⎨ ⎩
Ωmax
(1−𝑎1)

(︁
exp

(︁
− (𝑡−𝑇 /4)4

𝜏4

)︁
− 𝑎1

)︁
0 ≤ 𝑡 ≤ 𝑇 /2

Ωmax
(1−𝑎2)

(︁
exp

(︁
− (𝑡−3𝑇 /4)4

𝜏4

)︁
− 𝑎2

)︁
𝑇 /2 ≤ 𝑡 ≤ 𝑇 

, (3.16)

∆1(𝑡) = ∆2(𝑡) =

{︃
−∆max cos

(︀
2𝜋 𝑡
𝑇

)︀
0 ≤ 𝑡 ≤ 𝑇 /2 

∆max cos
(︀
2𝜋 𝑡
𝑇

)︀
𝑇 /2 ≤ 𝑡 ≤ 𝑇 

. (3.17) 

where 𝑇 = 0.54 µs is the time of the protocol and 𝜏 = 0.175 × 𝑇 . Since the Rabi 

frequency and detuning are the same for both qubits, we will omit the subscript 

and superscript in the following and just refer to the Rabi frequency / detuning by
Ω(𝑡) and ∆(𝑡). The parameters 𝑎1, 𝑎2 are chosen such that Ω(0) = Ω(𝑇 ) = 0. ∆max

and Ωmax are the respective maximum values. The pulse shape and the values for 

the parameters were taken from the paper. We used the same shapes from Eq. 

(3.16) and Eq. (3.17) with a minor modification concerning the smoothness of the 

detuning, as discussed in the next section.

Figure 3.6.: Rabi frequency Ω and de- 

tuning Δ to implement an adiabatic CZ 

gate, as proposed in [31, pp. 2-4]

Figure 3.7.: Modified adiabatic CZ pro- 

tocol with continuous detuning. The 

change does not impede the function of 

the protocol
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3.2.1. Detuning jump

We denote an instantaneous eigenstate of the system by |𝜑𝑖⟩. The corresponding 

energy of this state is denoted by 𝐸𝑖. For 𝑡→ 0, the states satisfy:

|𝜑1(𝑡)⟩ → |00⟩ , |𝜑2(𝑡)⟩ → |01⟩ , |𝜑3(𝑡)⟩ → |0𝑟⟩ , (3.18)

|𝜑4(𝑡)⟩ → |10⟩ , |𝜑6(𝑡)⟩ → 1√
2
(|1𝑟⟩+ |𝑟1⟩) , |𝜑5(𝑡)⟩ → |11⟩ , (3.19)

|𝜑7(𝑡)⟩ → |𝑟0⟩ , |𝜑8(𝑡)⟩ → 1√
2
(|1𝑟⟩ − |𝑟1⟩) , |𝜑9(𝑡)⟩ → |𝑟 𝑟⟩ . (3.20) 

Our computational basis is {|00⟩ , |01⟩ , |10⟩ , |11⟩}, therefore we are particularly 

interested in the evolution of the eigenstates |𝜑1(𝑡)⟩ , |𝜑2(𝑡)⟩ , |𝜑4(𝑡)⟩ and |𝜑5(𝑡)⟩. 

The detuning, which is depicted in Fig. 3.6, is discontinuous. We want a more 

realistic temporal behaviour. To understand the purpose of the jump, we need 

to consider phases. During the first pulse, the states |𝜑1(𝑡)⟩ , |𝜑2(𝑡)⟩ , |𝜑4(𝑡)⟩ and
|𝜑5(𝑡)⟩ collect some dynamical and geometric phase. The collection of geometric 

phase is intended, but the dynamical phase must be eliminated:∫︁ 𝑇

0

𝐸1(𝑡)𝑑𝑡 =

∫︁ 𝑇

0

𝐸2(𝑡)𝑑𝑡 =

∫︁ 𝑇

0

𝐸4(𝑡)𝑑𝑡 =

∫︁ 𝑇

0

𝐸5(𝑡)𝑑𝑡
!
= 0 . (3.21) 

Due to the symmetry ∆(𝑡) = ∆(𝑡 + 𝑇 /2), the dynamical phase collected from
𝑡 = 0 to 𝑡 = 𝑇 /2 gets cancelled by the dynamical phase collected from 𝑡 = 𝑇 /2
to 𝑡 = 𝑇 . The jump is not necessary for the compensation to work: for instance, 

we inserted a sine function with a duration 𝑇2 at 𝑡 = 𝑇 /2 to create a smooth 

connection (see Fig. 3.7). The new protocol time is denoted by 𝑇tot = 𝑇 + 𝑇2. 

There is no need to use a sine function; as long as the following conditions are 

satisfied, the compensation of the dynamical phase of |𝜑1(𝑡)⟩ , |𝜑2(𝑡)⟩ , |𝜑4(𝑡)⟩ and
|𝜑5(𝑡)⟩ is guaranteed:∫︁ 𝑇 /2+𝑇2

𝑇 /2

∆(𝑡)𝑑𝑡 = 0 , ∆(𝑇 /2) = ∆max , ∆(𝑇 /2 + 𝑇2) = −∆max . (3.22) 

We chose 𝑇2 = 𝑇 /10 to keep the total gate time low. The Rabi frequency remains 

zero during this time. 

Anticipating the discussion in one of the following sections, we point out that 

the dynamical phase of state |𝜑5(𝑡)⟩ is not exactly equal to zero. The cause and 

the workaround will be discussed in section 3.2.3.

3.2.2. Counterdiabatic driving

Calculation of 𝐻CD and degeneracies

To accelerate the adiabatic CZ gate while maintaining adiabatic evolution, we uti- 

lize counterdiabatic driving. In his derivation of the counterdiabatic Hamiltonian, 

Berry assumed the system to be nondegenerated (see section 2.4). Considering
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Figure 3.8.: Partial spectrum of 𝐻0 during the first pulse; the spectrum during the 

second pulse is identical to this spectrum, hence we cut it off. The last eigenvalue 𝐸9 is 

larger than the other eigenvalues due to the high Rydberg interaction V, therefore it is 

not on the scale of the figure. The avoided crossings are discussed in section 3.2.2

the spectrum of 𝐻0 in Fig. 3.8, it seems like our system is not suited for coun- 

terdiabatic driving: it is highly degenerated. It should be noted that Fig. 3.8 

only shows 8 of 9 eigenvalues; as a consequence of the high Rydberg interaction V, 

one eigenvalue is far greater than the others, hence it is not visible in the figure. 

Two of the degeneracies are maintained throughout the protocol: 𝐸2(𝑡) = 𝐸4(𝑡),
𝐸3(𝑡) = 𝐸7(𝑡). A general formula for counterdiabatic driving in degenerated sys- 

tems does not exist, although some authors have derived formulas that allow for 

degeneracy under certain conditions [33, pp. 2-3]. We can argue that our system 

is an exception in that the degeneracies do not cause any problems. To this end, 

it is helpful to consider the Hamiltonian 𝐻0:

0 0 0 0 0 0 0 0 0

0 0 Ω 0 0 0 0 0 0

0 Ω 2Δ 0 0 0 0 0 0

0 0 0 0 Ω 0 0 0 0

0 0 0 Ω 2Δ 0 0 0 0

0 0 0 0 0 2Δ 0 0 0

0 0 0 0 0 0 0
√
2Ω 0

0 0 0 0 0 0
√
2Ω 2Δ

√
2Ω

0 0 0 0 0 0 0
√
2Ω 2V + 4Δ

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐻0 = 1
2

(3.23) 

First, we change to a more convenient basis to write our original Hamiltonian 𝐻0

in block matrix form. In the basis {|00⟩ , |01⟩ , |0𝑟⟩ , |10⟩ , |𝑟0⟩ , 1√
2
(|1𝑟⟩ − |𝑟1⟩), |11⟩,

1√
2
(|1𝑟⟩ + |𝑟1⟩), |𝑟 𝑟⟩}, the Hamiltonian 𝐻0 takes the form which is shown above. 

The system factorizes into five subsystems that do not interact with each other; 

they are indicated by the red submatrices. The degeneracy is now also evident from
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the Hamiltonian 𝐻0, since the second and third submatrix-block are identical. It is 

readily seen that eigenvalue 𝐸1 belongs to the first submatrix, eigenvalues 𝐸2, 𝐸3

belong to the second submatrix, eigenvalues 𝐸4, 𝐸7 belong to the third submatrix, 

eigenvalue 𝐸8 belongs to the fourth submatrix and eigenvalues 𝐸5, 𝐸6, 𝐸9 belong 

to the last submatrix. Therefore, each subsystem is nondegenerated throughout 

the first pulse and we can use Berry’s formula for counterdiabatic driving as usual. 

In a first attempt to obtain 𝐻CD, we used a computer algebra program to com- 

pute the analytical eigenvalues and eigenvectors |𝜑𝑖(𝑡)⟩ of 𝐻0. Unfortunately, we 

did not succeed in obtaining an analytical expression for 𝜕
𝜕 𝑡
|𝜑𝑖(𝑡)⟩, hence we only 

calculated a numerical approximation of 𝐻CD. In order to get a numerical ap- 

proximation, we diagonalized the Hamiltonian 𝐻0 at sufficiently small equidistant 

time steps {𝑡𝑗}𝑗∈𝐽 , which provided us with a set of eigenstates for each time step. 

We used a linear interpolation between the eigenstates {|𝜑𝑖(𝑡𝑗)⟩}𝑗∈𝐽 to get an 

expression for the time-dependent instantaneous eigenstates |𝜑𝑖(𝑡)⟩. The deriva- 

tive at each time step was approximated by forward differencing: 𝜕
𝜕 𝑡
|𝜑𝑖(𝑡𝑗)⟩ ≈

(|𝜑𝑖(𝑡𝑗+1)⟩ − |𝜑𝑖(𝑡𝑗)⟩)/(𝑡𝑗+1 − 𝑡𝑗); an approximation of 𝜕
𝜕 𝑡
|𝜑𝑖(𝑡)⟩ is given by a fur- 

ther linear interpolation between { 𝜕
𝜕 𝑡
|𝜑𝑖(𝑡𝑗)⟩}𝑗∈𝐽 . Even though our approach to 

calculating the derivative is rather primitive and the convergence of the approxi- 

mation is slow, it proves to be sufficient: in general, we only need a few thousand 

interpolation points to obtain a counterdiabatic Hamiltonian that suppresses dia- 

batic evolution almost perfectly. Choosing a grid with more than 5000 points is 

unnecessary because additional points raise the gate fidelity by at most ∼ 10−7. 

Since we need relatively few grid points, the derivative 𝜕
𝜕 𝑡
|𝜑𝑖(𝑡)⟩ can be computed 

in a matter of seconds and it is not very beneficial to use a more sophisticated 

numerical differentiation method ( five-point stencil method etc.).

Relevant entries of 𝐻CD

The marked submatrices of Eq. (3.23) make it easy to understand the dynamics 

of the system: the evolution of the initial state |00⟩ is trivial. The evolution of the 

initial state |01⟩ is governed by the submatrix[︂
0 Ω/2 

Ω/2 ∆

]︂
, (3.24) 

where the basis is {|01⟩ , |0𝑟⟩}. Given that this submatrix represents a Landau- 

Zener Hamiltonian, we expect one avoided crossing between the eigenstates |𝜑2(𝑡)⟩
and |𝜑3(𝑡)⟩. The symmetry of our system and our pulses dictates that the evolution 

of the initial state |10⟩ is governed by the same submatrix, which is also evident 

from the Hamiltonian 𝐻0. It follows that we can observe another avoided crossing 

between state |𝜑4(𝑡)⟩ and state |𝜑7(𝑡)⟩. The last 3×3 submatrix cannot be reduced, 

meaning that the evolution of the initial state |11⟩ is complicated and the number 

of avoided crossings is not self-evident. The calculation of the counterdiabatic 

Hamiltonian shows that we have two avoided crossings: a) between state |𝜑5(𝑡)⟩
and |𝜑6(𝑡)⟩, b) between state |𝜑5(𝑡)⟩ and |𝜑9(𝑡)⟩. As previously mentioned, the
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energy 𝐸9 is a few orders of magnitude higher than the energies 𝐸1, ..., 𝐸8, thus, 

the avoided crossing between |𝜑5(𝑡)⟩ and |𝜑9(𝑡)⟩ has a huge band gap. We will 

show in the following paragraph that we do not need counterdiabatic driving to 

prevent this crossing. These considerations help us with construing the spectrum 

in Fig. 3.8. We can see the avoided crossing between 𝐸2 and 𝐸3 (and between 𝐸4

/ 𝐸7), indicated by the narrowing of the lines. The avoided crossing between 𝐸5

and 𝐸6 is visible as well. Obviously, the avoided crossing between 𝐸5 and 𝐸9 is 

not visible, which agrees with our expectations.

Figure 3.9.: Visualization of the entries 

of 𝐻CD. Note that the colorbar is loga- 

rithmic

Figure 3.10.: Fidelity difference |ℱ1 − 

ℱ2|, where ℱ1 denotes the fidelity of the 

protocol with full counterdiabatic driving 

and ℱ2 denotes the fidelity of the proto- 

col where weak entries of 𝐻CD were set to 

zero. The initial state was 1√
2
(|00⟩+|11⟩)

To identify the important entries of 𝐻CD, we computed max
𝑡∈[0,𝑇tot]

|(𝐻CD(𝑡))𝑖𝑗| for all 

entries 𝑖, 𝑗 = 1, ..., 9. A qualitative comparison is shown in Fig. 3.9. From this, 

we conclude that the strongest couplings of the counterdiabatic Hamiltonian are
|01⟩ ↔ |0𝑟⟩, |10⟩ ↔ |𝑟0⟩, |11⟩ ↔ |1𝑟⟩ and |11⟩ ↔ |𝑟1⟩. This raises the question 

whether the remaining couplings can be neglected to further simplify the coun- 

terdiabatic Hamiltonian. Further testing showed that we can indeed neglect these 

remaining entries; we computed the difference between the fidelity using the full 

counterdiabatic Hamiltonian and the fidelity using the simplified counterdiabatic 

Hamiltonian for various Rydberg interactions / protocol times. The results are 

shown in Fig. 3.10. Considering the structure of 𝐻CD, 𝐻0 and our previous dis- 

cussion, it is clear that the weak entries of 𝐻CD are meant to prevent the crossing 

between |𝜑5(𝑡)⟩ and |𝜑9(𝑡)⟩. Due to the huge band gap, counterdiabatic driving is 

not necessary for this particular crossing, which is also reflected in our results: set- 

ting weak matrix elements to zero caused a change in fidelity of order 10−7, which 

is negligibly small. The fidelity difference changes with the Rydberg interaction 

V since the band gap between |𝜑5(𝑡)⟩ and |𝜑9(𝑡)⟩ depends on V. Reducing the 

protocol time increases the fidelity difference as well since this raises the transition
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amplitudes between the eigenstates |𝜑5(𝑡)⟩ and |𝜑9(𝑡)⟩, causing the counterdiabatic 

driving to have a bigger effect. 

It should be mentioned that all entries of the counterdiabatic Hamiltonian are 

imaginary. In practice, this poses a problem because it is difficult to control 

the relative phase of a laser and the atomic wave function in the optical regime. 

Without going into detail, we refer to a paper [34] that puts forward a method 

to simulate 𝐻CD matrix elements by driven 𝐻0 matrix elements, which solves the 

relative phase issue.

3.2.3. Unwanted dynamical phase

As alluded to previously in section 3.2.1, the state |𝜑5(𝑡)⟩ does not only gather 

a geometric phase 𝜋, but as a consequence of the imperfect Rydberg blockade, 

it also gathers a small dynamical phase. Note that this is not the result of a 

diabatic evolution, i.e., the counterdiabatic driving does not remove the phase. We 

encountered this problem before in section 3.1.1. The fit in Fig. 3.12 reveals that 

the phase is proportional to 1/V, similar to the phase in section 3.1.1. However, 

the derivation of a semi-analytical expression for 𝜑𝑟 proves to be more complicated 

than in the previous section. One way to derive this would be to calculate the 

analytical expression for 𝐸5 with a computer algebra program and simplify the 

integral over 𝐸5 using symmetry arguments and approximations until we get the
1/V-dependence. We want to avoid dealing with the lengthy expression for 𝐸5, so 

we try a different approach: 𝐸5 is an eigenvalue of the last submatrix in 𝐻0, so we 

start with writing down the characteristic polynomial of this submatrix:

𝑝(𝑡) = −𝑡3 + 𝑡2(V + 3∆) + 𝑡(Ω2 − 2∆2 −∆V)− Ω2∆− 1

2
Ω2V . (3.25) 

Given that |V| ≫ |Ω|, |∆|, we know that one eigenvalue of the submatrix (namely 

the eigenvalue of |𝜑9⟩) is close to V, i.e. V is approximately a root of 𝑝(𝑡), so we 

expand 𝑝(𝑡)/(𝑡− V) in a Taylor series at 1/V = 0,

𝑝(𝑡)

𝑡− V
= 

1

2
Ω2 + ∆𝑡− 𝑡2 + 

1

V

(︂
Ω2∆− 1

2
Ω2𝑡+ 2∆2𝑡− 2∆𝑡2

)︂
+𝒪

(︂
1

V2

)︂
. (3.26) 

We neglect terms of order 𝒪
(︀

1
V2

)︀
and calculate the roots of the remaining poly- 

nomial:

𝐸± = 

1

2(1 + 2Δ
V )

⎛ ⎝∆±

√︃
−4

(︂
−1− 2∆

V

)︂ (︂
Ω2

2 

+ 

Ω∆

V

)︂
+

(︂
∆− Ω2

2V
+ 

2∆2

V

)︂2

− Ω2

2V
+ 

2∆2

V

⎞ ⎠ . (3.27) 

Performing a further Taylor series at 1/V = 0 yields:

𝐸± = 

1

2

(︁
∆± 

√
2Ω2 + ∆2

)︁
+

∓Ω2∆− Ω2
√
2Ω2 + ∆2

4V
√
2Ω2 + ∆2

+𝒪
(︂

1

V2

)︂
. (3.28) 

To check whether 𝐸5 is approximated by 𝐸+ or 𝐸−, we examined the corresponding 

eigenvector |𝜑5⟩. For times 0 ≤ 𝑡 ≤ 𝑇tot/2, the eigenvalue 𝐸5 is approximated by
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𝐸+. At 𝑡 = 𝑇tot/2, the submatrix is degenerated due to Ω(𝑡) = ∆(𝑡) = 0; we have
𝐸+ = 𝐸−, meaning that we have to reassign the eigenvalues to the eigenvectors for 

following times. For times 𝑇tot/2 ≤ 𝑡 ≤ 𝑇tot, the eigenvalue 𝐸5 is approximated by
𝐸−,

𝐸5 ≈

{︃
𝐸+ 0 ≤ 𝑡 ≤ 𝑇tot/2

𝐸− 𝑇tot/2 ≤ 𝑡 ≤ 𝑇tot
. (3.29) 

The dynamical phase of |𝜑5⟩ is given by the integral over 𝐸5. We insert our 

approximation and neglect terms of order 𝒪
(︀

1
V2

)︀
once more to arrive at∫︁ 𝑇tot

0

𝐸5(𝑡)𝑑𝑡 ≈
∫︁ 𝑇tot

0

∆(𝑡)𝑑𝑡+

∫︁ 𝑇tot/2 

0

√
2Ω2 + ∆2𝑑𝑡−

∫︁ 𝑇tot

𝑇tot/2

√
2Ω2 + ∆2𝑑𝑡

−
∫︁ 𝑇tot/2 

0

Ω2∆

4V
√
2Ω2 + ∆2

𝑑𝑡+

∫︁ 𝑇tot

𝑇tot/2

Ω2∆

4V
√
2Ω2 + ∆2

𝑑𝑡−
∫︁ 𝑇tot

0

Ω2

4V
𝑑𝑡 .

(3.30) 

Now we can exploit the symmetry of the Rabi frequency and the detuning. The 

first, fourth and fifth integral vanish due to symmetry reasons. In addition to that, 

the second integral is cancelled by the third integral. By considering the remaining 

integral, we can see that we have derived the 1/V-dependence we were looking for:

𝜑𝑟 =

∫︁ 𝑇tot

0

𝐸5(𝑡)𝑑𝑡 ≈ −
∫︁ 𝑇tot

0

Ω2

4V
𝑑𝑡 . (3.31)

⇒ 𝜑𝑟 ∝
𝑇tot

V 

(3.32) 

Interestingly, this expression is identical to the expression for 𝜑𝑟 in section 3.1.1 

even though we considered two different protocols. There are three ways to deal 

with this phase: the trivial solution is to increase the Rydberg interaction V; in 

practice, this can be achieved by working with a higher-lying Rydberg excitation. 

In a sense, the counterdiabatic driving is also a solution to this problem, because 

it enables us to arbitrarily reduce the protocol time 𝑇tot, rendering this phase 

insignificant. The third option is to modify the protocol in a similar fashion to 

our approach in section 3.1.1: we can make use of phase gates to compensate the 

phase. Just like in section 3.1.1, we have to insert the phase gates in such a way 

that they do not interfere with the evolution of initial states |00⟩ , |01⟩ and |10⟩. 

Applying a phase gate with matrix representation⎡ ⎣1 0 0 

0 𝑒−𝑖𝜑𝑟 0 

0 0 1

⎤ ⎦⊗

⎡ ⎣1 0 0 

0 𝑒−𝑖𝜑𝑟 0 

0 0 1

⎤ ⎦ (3.33) 

between the first and the second pulse has the intended effect, as can be readily 

seen: after the first pulse, the initial state |11⟩ has evolved to (|1𝑟⟩ + |𝑟1⟩)/
√
2, 

hence the phase gate adds a phase −𝜑𝑟 to this state. The initial states |00⟩ , |01⟩
and |10⟩ are not affected by the phase gate, since they have evolved to |00⟩ , |0𝑟⟩
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and |𝑟0⟩. We tested this compensation protocol and it seems to work well. Even 

so, we will refrain from using phase gates in the following because the effect of the 

counterdiabatic driving and the high Rydberg interaction V with which we work 

render the phase sufficiently small.

Figure 3.11.: Eigenvalue 𝐸5 on the in- 

terval [0, 𝑇tot]. The integral over 𝐸5

does not vanish completely, as the figure 

might suggest

Figure 3.12.: Unwanted dynamical 

phase as a function of Rydberg inter- 

action V. The red line indicates a fit
𝑓(V) = 𝑎/V with one parameter 𝑎

3.2.4. Stability

The application of counterdiabatic driving to the adiabatic CZ protocol is only a 

viable option if the protocol remains stable. We introduced several artificial errors 

in our new protocol to test the stability. In the following, we used the parameters
Ωmax/2𝜋 = 17MHz, ∆max/2𝜋 = 23MHz, 𝑇tot = 0.0297 µs and V/2𝜋 = 1.5GHz. 

For reasons of clarity, each plot features only three initial states: the evolution of
|00⟩ is trivial because the pulses do not couple to this state, so we omit this state. 

Besides, the evolution of |01⟩ and |10⟩ is analogous due to symmetry, therefore the 

plots only show |01⟩. We also included an exemplary superposition (|00⟩+|11⟩)/
√
2

to account for phase issues that do not affect non-superpositions. The fidelity was 

obtained via ℱ = | ⟨𝜑ini| ĈZ† |𝜑out⟩ |2, with ĈZ being the ideal CZ operator and
|𝜑ini⟩ , |𝜑out⟩ being the initial / output states, respectively. 

Fig. 3.13 shows the effect of a relative pulse area error which was introduced on 

all pulses: Ω𝜖 = Ω(1+𝜖). The Hamiltonian 𝐻0 depends on the error 𝜖, whereas the 

counterdiabatic Hamiltonian 𝐻CD corresponds to the unaltered Hamiltonian 𝐻0; 

if we had computed and applied the counterdiabatic Hamiltonian for each error
𝜖, it would have restored the correct behaviour of the protocol and therefore we 

would not have seen any changes in fidelity. The effect of the error depends on the 

initial state; for example, the initial state |11⟩ is more affected by the pulse area 

error than |01⟩. The reason is that |11⟩ evolves to 1√
2
(|𝑟1⟩+ |1𝑟⟩) and back. Some 

population remains in |𝑟1⟩ and |1𝑟⟩ due to the pulse area error. The initial state
|01⟩ evolves to |0𝑟⟩; again, some population remains in |0𝑟⟩, but the total loss of
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population is smaller than for initial state |11⟩, hence the fidelity is higher. The 

insensitivity of ARP pulses to parameter changes is also apparent from the figure: 

even if the pulse area has a rather large error of ±5%, the fidelity still remains 

above 0.9998. 

We also introduced an error on the detuning: ∆𝜖 = ∆(1 + 𝜖). The result is 

shown in Fig. 3.14. The detuning error and the pulse area error seem to produce 

the same changes in fidelity (compare Fig. 3.14 and Fig. 3.13). There is no trivial 

explanation for this; one can show that the relative detuning error and the relative 

pulse area error result in similar transition amplitudes between the instantaneous 

eigenstates, which yields similar fidelities. This is discussed in more detail in the 

appendix A.3 

Furthermore, we inserted a factor (1 + 𝜆) to scale the counterdiabatic Hamilto- 

nian.
𝐻 = 𝐻0 + (1 + 𝜆)𝐻CD (3.34) 

Fig. 3.15 shows the effect of this scaling factor. The system is more sensitive to 

this error compared to the detuning error or the pulse area error, but for −0.025 < 

𝜆 < 0.025, the fidelity is still sufficiently high (> 0.995). 

In addition to these errors, we also checked whether the protocol is sensitive to 

small delays 𝜏𝑠 between 𝐻0 and 𝐻CD.

𝐻(𝑡) = 𝐻0(𝑡) +𝐻CD(𝑡+ 𝜏𝑠) (3.35) 

The result can be seen in Fig. 3.16. With regard to the stability of the protocol, 

this is a particularly good result: the figure shows a plateau for −1 ns < 𝜏𝑠 < +1ns, 

which amounts to roughly ±3% of the total protocol time. This means that small 

timing errors barely affect the fidelity of the protocol. 

Based on these plots, we conclude that our new protocol is decently stable with 

regard to static pulse area / detuning errors and scaling / timing errors of 𝐻CD.

Figure 3.13.: Stability of the acceler- 

ated CZ gate with regard to relative 

pulse area errors

Figure 3.14.: Stability of the acceler- 

ated CZ gate with regard to relative de- 

tuning errors
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Figure 3.15.: Stability of the acceler- 

ated CZ gate with regard to scaling er- 

rors of 𝐻CD

Figure 3.16.: Stability of the acceler- 

ated CZ gate with regard to time shift 

errors 𝜏𝑠 between 𝐻0 and 𝐻CD
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4. CNOT gate

Having built a stable and fast CZ gate, the implementation of a CNOT gate is 

now straightforward. As we have shown in chapter 2, we need to add only four 

more pulses to the CZ protocol to obtain a CNOT gate. While this is a common 

approach to implement the CNOT [30, p. 1], [35, p. 3], [36, p. 3], it is not the 

most efficient concerning the number of pulses which are required. In particular, 

we also tested a (nonadiabatic) protocol [37, p. 4] that requires only four pulses 

in total. However, since we are especially interested in adiabatic quantum gates 

and the improvements that can be achieved by counterdiabatic driving, we decided 

to adopt the CZ approach. In this chapter, we will test the stability of our CZ- 

based CNOT gate. Afterwards, we will build a simple quantum error correction 

circuit composed of four CNOT gates, thereby demonstrating how we can unite 

counterdiabatic driving and quantum error correction (QEC). The QEC circuit 

that we will build is able to correct bit flip errors on a single qubit; more capable 

error correction schemes that can correct arbitrary errors on a single qubit exist, 

but they require more resources in terms of auxiliary qubits.

4.1. Parameters

Referring back to the decomposition of the CNOT gate (Fig. 2.6 in section 2.5), we 

can see that we need to perform four additional single qubit operations. The 𝑅𝑥(𝜋)- 

rotation in the subspace of the first qubit can be implemented with a standard
𝜋 pulse that we have been using throughout this thesis, but the 𝑅𝑦(

𝜋
2
)-rotations 

appear for the first time. This operation can be implemented by using a Rabi 

frequency with a phase shift of 𝜋
2
; in a two-level system, the corresponding Hamil- 

tonian reads [︂
0 𝑖Ω(𝑡)

−𝑖Ω(𝑡) ∆(𝑡)

]︂
, (4.1) 

where the real Rabi frequency Ω(𝑡) is normalized to 𝜋
2
. As we have mentioned 

before, in practice it is difficult to control the relative phase of a laser and the 

atomic wave function in the optical regime, therefore 𝑅𝑦-rotations are ususally 

decomposed into 𝑅𝑥- and 𝑅𝑧- rotations, which are easier to realize,

𝑅𝑦(𝜃) = 𝑅𝑥

(︁𝜋
2

)︁
𝑅𝑧(𝜃)𝑅𝑥

(︁
−𝜋
2

)︁
. (4.2) 

For simplicity, we will not use this decomposition since the 𝑅𝑦-rotations do not 

pose a problem in our simulation.
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Up to this point, the values that we used for the Rabi frequency, Rydberg in- 

teraction etc. were based on experiments. To our knowledge, no experiment has 

been conducted yet that combines the adiabatic CZ gate in [31, pp. 2-4] with 𝜋
pulses to create a CNOT gate, therefore we do not have any realistic values at 

hand for the following simulations. As a consequence, it makes sense to switch to 

a dimensionless framework. We introduce a characteristic time 𝜏0 and rewrite the 

Schrödinger equation as a function of 𝜏 = 𝑡/𝜏0,

𝑖 

𝜕

𝜕 𝜏
|𝜑(𝜏)⟩ = 𝜏0

ℏ
�̂�(𝜏) |𝜑(𝜏)⟩ . (4.3) 

The new time parameter 𝜏 and the new Hamiltonian �̂� ′ = 𝜏0
ℏ �̂� are dimensionless. 

Now we can choose dimensionless parameters. For simplicity, we use the same 

maximum value for all Rabi frequencies:

max
𝜏∈[0,𝜏tot]

|Ω1 

01(𝜏)| = max
𝜏∈[0,𝜏tot]

|Ω2 

01(𝜏)| = max
𝜏∈[0,𝜏tot]

|Ω1 

1𝑟(𝜏)| = max
𝜏∈[0,𝜏tot]

|Ω2 

1𝑟(𝜏)| = 𝜋 .

(4.4) 

Here, 𝜏tot denotes the total time of the CNOT protocol. In practice, the Rabi 

frequencies for the transitions |0⟩ ↔ |1⟩ and |1⟩ ↔ |𝑟⟩ are different, but the order 

of magnitude should be the same. For the maximum detuning, we use ∆max = 𝜋 23
17

such that the ratio of ∆max and Ωmax is the same as in the previous chapter. With 

this choice of parameters, a discrete 𝜋 pulse has the length 1 in dimensionless 

time units. The implementation of the adiabatic CZ gate would take ∼ 20 time 

units if we want to make sure not to violate the adiabaticity condition, but we 

can accelerate this gate arbitrarily with counterdiabatic driving, so we set the CZ 

gate time to 2, resulting in a total CNOT protocol time of ∼ 5.25 time units. 

Note that in theory, we do not have any lower boundary when it comes to the 

total gate time (except for limitations of numerical nature). We can implement 𝜋
and 𝜋

2
pulses arbitrarily fast if we allow for large Rabi frequencies; furthermore, 

we can reduce the delay between pulses to zero and the counterdiabatic driving 

enables us to choose an arbitrary value for the CZ gate time. In practice, there 

are numerous limitations. The Rabi frequencies have upper limits since the laser 

power is limited, the pulse lengths have lower limits since we cannot switch the 

lasers on and off arbitrarily fast, and the counterdiabatic driving is limited as well 

because the entries of 𝐻CD keep increasing if we reduce the protocol time. If the 

entries get too large, the counterdiabatic Hamiltonian cannot be realized anymore. 

We do not aspire to account for all of these limitations and find a realistic lower 

limit for the CNOT gate time, but we believe to have found a feasible degree of 

acceleration.

4.2. Stability

4.2.1. Propagation of phase errors

In our discussion of the CZ gate in 3.2.3, we showed that the initial state |11⟩ gained 

a small phase 𝜑𝑟 in addition to the geometric 𝜋 phase. If we do not implement any
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compensation schemes, the phase error caused by the imperfect Rydberg blockade 

will propagate through our CNOT gate. To analyze the effect of the error quanti- 

tatively, we need to trace the evolution of the initial states of the computational 

basis:

|00⟩ Pulse 1−−−−→ −𝑖 |10⟩ Pulse 2−−−−→ − 𝑖√
2
(|10⟩+ |11⟩) CZ gate−−−−→ 𝑖√

2
(|10⟩+ 𝑒𝑖𝜑𝑟 |11⟩) , (4.5)

|01⟩ Pulse 1−−−−→ −𝑖 |11⟩ Pulse 2−−−−→ − 𝑖√
2
(|11⟩ − |10⟩) CZ gate−−−−→ 𝑖√

2
(|10⟩ − 𝑒𝑖𝜑𝑟 |11⟩) , (4.6)

|10⟩ Pulse 1−−−−→ −𝑖 |00⟩ Pulse 2−−−−→ − 𝑖√
2
(|00⟩+ |01⟩) CZ gate−−−−→ 𝑖√

2
(|01⟩ − |00⟩) , (4.7)

|11⟩ Pulse 1−−−−→ −𝑖 |01⟩ Pulse 2−−−−→ − 𝑖√
2
(|01⟩ − |00⟩) CZ gate−−−−→ 𝑖√

2
(|00⟩+ |01⟩) . (4.8) 

It follows that the initial states |10⟩ and |11⟩ are not affected by the error. By 

considering the effect of the remaining two pulses and performing a small approx- 

imation, one can easily obtain the following result for initial states |00⟩ and |01⟩:

|00⟩ CNOT−−−→ 𝑒𝑖𝜑𝑟/2 |00⟩ , |01⟩ CNOT−−−→ 𝑒𝑖𝜑𝑟/2 |01⟩ . (4.9) 

This is a mixed result with regard to the fidelity of the CNOT operation. The 

unwanted phase 𝜑𝑟 is reduced by a factor of 2, but at the same time, the error has 

spread to another state. In the following section, we will observe that in certain 

cases, a series of CNOT operations can lead to an accumulation of unwanted phase, 

i.e., the phase can be problematic, hence it is of great importance to compensate 

it properly.

Figure 4.1.: Relative pulse area error 

in the CNOT protocol. The initial state 

was 1√
2
(|00⟩+ |01⟩) and the Rydberg in- 

teraction was V = 20Ω

Figure 4.2.: Relative pulse area error 

in the CNOT protocol. The initial state 

was 1√
2
(|00⟩+ |11⟩) and the Rydberg in- 

teraction was V = 20Ω

The stability analysis of the CNOT gate did not yield any particularly interesting 

results, that is to say, the CNOT protocol is sufficiently stable with regard to pulse 

area errors / detuning errors. Therefore, we restrict ourselves to showing the effect
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of a relative pulse area error for two exemplary initial states. The figures show 

that the protocol is less sensitive to errors on the ARP pulses (pulse 3 and 4) 

compared to errors on the 𝜋 or 𝜋
2

pulses; this is unsurprising since ARP pulses are 

more robust. Furthermore, we can see that an error can increase the fidelity, for 

instance if the initial state is 1√
2
(|00⟩+ |11⟩). We have observed this effect before 

when we studied the stability of the nonadiabatic CZ gate in section 3.1.2. It can be 

ascribed to the imperfect Rydberg blockade once again: a pulse error can partially 

compensate the unwanted phase, which effectively increases the fidelity. To observe 

this effect, we need to choose an initial state such that the CNOT operation leads to 

some unwanted relative phase, such as 1√
2
(|00⟩+|11⟩) CNOT−−−→ 1√

2
(𝑒𝑖𝜑𝑟/2 |00⟩+|10⟩) in 

Fig. 4.2. That is why we cannot observe the effect in Fig. 4.1; here, the unwanted 

phase is global and therefore irrelevant: 1√
2
(|00⟩+|01⟩) CNOT−−−→ 1√

2
𝑒𝑖𝜑𝑟/2(|00⟩+|01⟩).

4.3. Quantum error correction

Quantum error correction is essential for any upcoming large-scale quantum com- 

puter to deal with errors that occur due to decoherence, faulty gate operations etc. 

An introduction to quantum error correction and fault-tolerant quantum comput- 

ing can be found in Nielsen and Chuang [10, pp. 425-500]. In the following, we 

will only explain the basic idea behind the QEC circuit, as far as is needed for our 

application.

Figure 4.3.: Three-qubit quantum error correction circuit. The circuit can correct bit 

flips on a single qubit

The no-cloning theorem of quantum mechanics [38] states that we cannot simply 

make a copy of a qubit to protect the encoded information from errors. However, 

we can introduce auxiliary qubits to our system and encode a logical qubit in an 

ensemble of qubits. This is also a well-known approach in classical computing. 

The circuit that we will build in this section is based on three qubits; it is natural 

to encode the states |0⟩ and |1⟩ of a single logical qubit as follows:

|0⟩ ↦→ |000⟩ , |1⟩ ↦→ |111⟩ . (4.10) 

In general, a QEC circuit includes encoding the qubit, as well as measuring the 

auxiliary qubits to reveal the type of error that occured, and, if necessary, per- 

forming a recovery operation to correct the error. The set of errors that can be 

detected and corrected increases with the number of auxiliary qubits; for example,
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Table 4.1.: Error syndrome of the three-qubit error correction circuit

Type of error Result of measurement 

of qubit 2 and 3
NOT operation 

on qubit 1
No error |00⟩ no
Bit flip on Qubit 1 |11⟩ yes
Bit flip on Qubit 2 |10⟩ no
Bit flip on Qubit 3 |01⟩ no

6 auxiliary qubits are sufficient to correct an arbitrary error on a single qubit (see 

Steane code [39]). We consider a simple error correction circuit which is depicted 

in Fig. 4.3. Here, qubit 1 is the qubit that we want to encode, and qubit 2 and 

3 are auxiliary qubits that are prepared in state |0⟩. The first two CNOT gates 

encode qubit 1: 𝛼 |0⟩ + 𝛽 |1⟩ ↦→ 𝛼 |000⟩ + 𝛽 |111⟩. After the encoding phase, a 

potential bit flip error can occur. We will manually flip a qubit in our circuit to 

simulate an error. Two more CNOT operations are performed before the auxiliary 

qubits are measured. One can show that the measurement reveals the type of error 

that occured. Based on the result of the measurement, we perform a (conditional) 

NOT operation: the first qubit is flipped if and only if both the second and the 

third qubit were in state |1⟩. This concludes the error correction. To compute the 

fidelity after the correction, we trace over the subspaces B and C of the second 

and third qubit, respectively,

𝜌reduced = Tr𝐵(Tr𝐶(𝜌)) , (4.11) 

where 𝜌 is the total density matrix of the system after we performed the QEC 

protocol. The fidelity can be obtained by

ℱ = ⟨𝜑ini| 𝜌reduced |𝜑ini⟩ . (4.12) 

Here, 𝜑ini denotes the initial state of qubit 1. So far, we only considered two-qubit 

systems, meaning that we have to extend our Hamiltonian in order to simulate the 

QEC circuit. The extensions are trivial; we add another single-qubit Hamiltonian
�̂�3 and two interaction terms to account for Rydberg interaction between the 

second / third and first / third qubit.

�̂� = �̂�1 ⊗ 1⊗ 1+ 1⊗ �̂�2 ⊗ 1+ 1⊗ 1⊗ �̂�3 + V(|𝑟⟩ ⟨𝑟| ⊗ |𝑟⟩ ⟨𝑟| ⊗ 1) 

+ V(1⊗ |𝑟⟩ ⟨𝑟| ⊗ |𝑟⟩ ⟨𝑟|) + V(|𝑟⟩ ⟨𝑟| ⊗ 1⊗ |𝑟⟩ ⟨𝑟|) (4.13) 

With this extension, we can simulate the QEC circuit. The results are shown 

in table 4.2. The correction seems to work well, but there is some variation in 

fidelity depending on the initial state and the type of error. More specifically, the 

fidelity of the superpositions 1√
2
(|0⟩+ |1⟩) and 1√

2
(|0⟩+ 𝑖 |1⟩) is slightly lower if a 

bit flip error occurs on the second or third qubit. This is entirely caused by the 

imperfect Rydberg blockade. It may seem strange that the initial states |0⟩ and
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Table 4.2.: Results of the error correction. While the fidelity of the correction is gen- 

erally high, the imperfect Rydberg blockade can lead to accumulated phase errors that 

decrease the fidelity in some cases

Initial state 

of qubit 1
Bit flip error 

on qubit

Fidelity of qubit 1 

after correction 

for V = 200Ω

Fidelity of qubit 1 

after correction 

for V = 10Ω

|0⟩
1 >0.999999 >0.999999
2 >0.999999 >0.999999
3 >0.999999 >0.999999

|1⟩
1 >0.999999 >0.999999
2 >0.999999 >0.999999
3 >0.999999 >0.999999

1√
2
(|0⟩+ |1⟩)

1 >0.999999 >0.999999
2 0.999985 0.993684
3 0.999985 0.993684

1√
2
(|0⟩+ 𝑖 |1⟩)

1 >0.999999 >0.999999
2 0.999985 0.993684
3 0.999985 0.993684

|1⟩ are not affected; this is due to the fact that the fidelity is not an ideal measure 

for studying phase errors. A phase error can take the form of a global phase if 

we consider non-superpositions, and global phases do not decrease the fidelity. To 

understand why the fidelity depends on the type of error, we need to explicitly 

trace the evolution of each initial state once again; we skip the intermediate results 

here and just write down the final result for the initial state 1√
2
(|0⟩+ |1⟩) of qubit 

1,

1√
2
(|0⟩+ |1⟩) encoding, bit flip on−−−−−−−−−−−−→

qubit 1 and correction

1√
2
(𝑒2𝜑𝑟/2 |0⟩+ 𝑒2𝜑𝑟/2 |1⟩) , (4.14)

1√
2
(|0⟩+ |1⟩) encoding, bit flip on−−−−−−−−−−−−→

qubit 2 and correction

1√
2
(𝑒4𝜑𝑟/2 |0⟩+ |1⟩) . (4.15) 

As we can see, the imperfect Rydberg blockade leads to an irrelevant global phase
2× 𝜑𝑟

2
if the error occurs on qubit 2, whereas if the error occurs on qubit 2 (or 3), 

it leads to an accumulated relative phase 4 × 𝜑𝑟

2
, which decreases the fidelity. In 

general, if we subject a qubit in a superposition to 𝑛 subsequent CNOT operations 

where the qubit in question is the control qubit, it gains an unwanted relative 

phase of 𝑛 × 𝜑𝑟

2
. In larger circuits, this phase accumulation may necessitate the 

implementation of a phase compensation scheme, such as the one we proposed. 

Obviously, for a phase compensation scheme to be effective, the leading error must 

be caused by the imperfect Rydberg blockade; currently, it seems like errors caused 

by decay processes etc. are more significant.
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5. Conclusion and Outlook

5.1. Conclusion

We discussed a small unwanted phase 𝜑𝑟 that decreases the fidelity of the nonadi- 

abatic CZ gate by Jaksch et al. [9, p. 2210]. The phase arises due to the imperfect 

Rydberg blockade; it is inversely proportional to the Rydberg interaction V. Only 

the initial state |11⟩ is affected. If the Rydberg interaction V is far greater than the 

Rabi frequency, which is experimentally feasible, the fidelity loss due to this phase 

should be negligible compared to fidelity losses caused by laser imperfections, de- 

cay process etc. The Rydberg interaction V scales as 𝑛11 where 𝑛 is the principal 

quantum number [40, p. 110], i.e., choosing a higher-lying Rydberg excitation is 

a very effective way to increase V. If, however, the range of V is limited due to 

experimental constraints, one can also compensate the phase 𝜑𝑟 by including a 

single-qubit phase gate in the protocol. 

In addition to that, we accelerated an adiabatic CZ gate by Saffman et al. [31, 

pp. 2-4] by means of counterdiabatic driving. A stability analysis showed that the 

accelerated CZ gate is sufficiently stable with regard to static errors. The imperfect 

Rydberg blockade generates an unwanted phase again; it is identical to the phase 

from the nonadiabatic CZ gate. One can reduce this small phase even further by 

reducing the total protocol time with counterdiabatic driving or, trivially, choosing 

a higher Rydberg interaction V. Analogously to the nonadiabatic CZ gate, we 

showed that it is also possible to compensate this phase with two single-qubit 

phase gates. 

Subsequently, we extended the accelerated CZ protocol by four pulses to obtain 

a CNOT protocol. The phase issue persists if we do not employ any compensation 

schemes to compensate 𝜑𝑟: the initial states |00⟩ and |01⟩ gain an unwanted phase
𝜑𝑟/2 as a consequence of the CNOT operation. Finally, we built a small three- 

qubit error correction circuit. The circuit corrected bit flip errors on a single qubit 

with a high fidelity, but we observed an accumulation of phase in some cases, which 

illustrates the usefulness of our compensation schemes.

5.2. Outlook

The phase compensation schemes that we proposed for the nonadiabatic and adia- 

batic CZ gate work well in theory; however, we did not elaborate on the experimen- 

tal implementation. Our schemes are based on single-qubit phase gates; this type 

of phase gate can, for instance, be realized by AC Stark shifts [23, p. 8]. In general,
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single-qubit phase gates seem to be easy to implement [30, pp. 1-2], hence we do 

not anticipate any issues with the implementation of our compensation schemes. 

Our simple Rydberg atom model has an obvious inaccuracy: we did not account 

for decay processes. Typically, the lifetime of a Rydberg state is greater than stan- 

dard gate operation times, but there is some decay into hyperfine ground states as 

a result of spontaneous emission and stimulated emission by black-body radiation 

[23, p. 5]. Consequently, the gate fidelities that we computed are unrealistically 

high. To describe the dynamics of the system more accurately, we could move on 

to an open quantum system framework by substituting the Schrödinger equation 

for a Lindblad master equation, which allows us to account for the various decay 

rates. A further advantage of the master equation approach is that it allows for 

more sophisticated tests of the stability; we only tested the stability with regard to 

specific static errors, such as parameter errors. By using the master equation, we 

could introduce various types of noise. In a more thorough analysis, one could also 

account for laser crosstalk, laser phase noise, stray electric fields, Doppler-effects 

due to finite temperature etc. (see [41],[42]). 

Furthermore, the implementation of the accelerated adiabatic CZ protocol could 

be the subject of future work. In its current form, the counterdiabatic Hamiltonian 

is of little use outside the theoretical framework. The entries of 𝐻CD are imaginary, 

and it has been mentioned a few times before that this poses a problem since it 

is difficult to control the relative phase of the laser and the wave function in the 

optical regime. We already referred to the paper [34] that may solve this problem; 

the authors propose to simulate the entries of 𝐻CD by modulating the original 

Hamiltonian 𝐻0, which yields an effective counterdiabatic Hamiltonian. However, 

we have not worked out the details; the effective counterdiabatic Hamiltonian is 

still to be calculated and tested. We showed in section 3.2.2 that our Hamiltonian
𝐻0 is composed of two Landau-Zener Hamiltonians, a 3 × 3 Hamiltonian (and 

two trivial 1×1 Hamiltonians); effective counterdiabatic driving for Landau-Zener 

systems and a similar three-level system has already been demonstrated in [34, pp. 

6-10], which gives reason to believe that the method can be successfully applied 

to our Hamiltonian. 

In this thesis, we focused on the adiabatic CZ gate proposed in [31, pp. 2-4]. 

It is worth mentioning that other proposals for adiabatic CZ gates have been put 

forward, such as [43]. It may be interesting to test whether these CZ protocols can 

be accelerated by counterdiabatic driving and, if so, to compare these CZ protocols 

to our protocol in terms of stability and feasibility.
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A. Appendix

A.1. Norm preservation

We used Matlab’s ode45 solver for our numerical calculations. It is based on 

the Dormand-Prince method, which is an embedded Runge-Kutta method. The 

solver compares two solutions obtained by Runge-Kutta methods of order four and 

five at each step; this comparison yields an estimation of the local error. If the 

estimated error is greater than a certain threshold 𝜖, the time step size is reduced. 

Contrary to geometric integrators such as the Crank-Nicolson method, ode45 does 

not preserve the norm. Matlab allows us to manually adapt the tolerance 𝜖, so we 

reduced the tolerance until the accuracy was acceptable. Fig. A.1 shows the norm 

preservation as a function of the tolerance. Here, Norm(𝑦out) is the norm of the 

output vector of the script. It is impractical and unnecessary to push the limits 

of the tolerance; the computation time increases exponentially and the changes in 

fidelity which we studied were of order < 10−7, hence we usually worked with a 

tolerance of 10−9. The figure only shows the norm preservation for the adiabatic 

CZ script as an example, but the norm preservation of other scripts does not differ 

much from this figure. In conclusion, the lack of norm preservation of our solver 

does not invalidate our results since we worked with a low tolerance of 10−9.

Figure A.1.: Norm preservation and computation time as a function of the tolerance of 

the solver
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A.2. Fidelity approximation (nonadiabatic CZ 

gate)

We seek to derive an approximate expression for the fidelity of the nonadiabatic 

CZ protocol (without phase compensation) as a function of the relative pulse area 

error. For this purpose, we write down the unitary operators associated with the 

three pulses. The matrix representation of the operator corresponding to the first
𝜋 pulse with a relative pulse area error 𝜖 reads

𝑈1(𝜖) =

⎡ ⎣ cos(𝜋
2
(1 + 𝜖)) −𝑖 sin(𝜋

2
(1 + 𝜖)) 0

−𝑖 sin(𝜋
2
(1 + 𝜖)) cos(𝜋

2
(1 + 𝜖)) 0 

0 0 1

⎤ ⎦⊗

⎡ ⎣1 0 0 

0 1 0 

0 0 1

⎤ ⎦ , (A.1) 

where we used the single qubit basis {|0⟩ , |1⟩ , |𝑟⟩}. Since the third pulse is identical 

to the first pulse, we have 𝑈3(𝜖) = 𝑈1(𝜖). Provided that |𝑉 | ≫ |Ω| we can express 

the second pulse in the standard basis {|00⟩ , |01⟩ , |0𝑟⟩ , |10⟩ , |11⟩ , |1𝑟⟩ , |𝑟0⟩ , |𝑟1⟩ ,
|𝑟 𝑟⟩} as

𝑈2(𝜖) =

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 

0 cos(𝜋(1 + 𝜖)) −𝑖 sin(𝜋(1 + 𝜖)) 0 0 0 0 0 0 

0 −𝑖 sin(𝜋(1 + 𝜖)) cos(𝜋(1 + 𝜖)) 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 cos(𝜋(1 + 𝜖)) −𝑖 sin(𝜋(1 + 𝜖)) 0 0 0 

0 0 0 0 −𝑖 sin(𝜋(1 + 𝜖)) cos(𝜋(1 + 𝜖)) 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 𝑒𝑖𝜑𝑟(1+𝜖)2 0 

0 0 0 0 0 0 0 0 ⋆

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.2)

where 𝜑𝑟 =
∫︀

Ω2

4𝑉
𝑑𝑡 is the unwanted phase generated by the imperfect Rydberg 

blockade. In general, this phase depends on Ω and therefore on the relative pulse 

area error 𝜖, but we have removed this dependence by explicitly writing 𝜑𝑟(1+ 𝜖)2

and assuming that 𝜑𝑟 corresponds to the unaltered Rabi frequency. The last entry 

of the matrix is unknown, which is indicated by the star; the state |𝑟 𝑟⟩ gains some 

phase, but this entry is not needed for our approximation, so we do not bother 

to calculate it. The 9 × 9 matrix 𝑈 = 𝑈3𝑈2𝑈1 represents the entire CZ protocol, 

but due to |𝜑ini⟩ ∈ span(|00⟩ , |01⟩ , |10⟩ , |11⟩), we only need to consider a 4 × 4
submatrix of 𝑈 that acts on {|00⟩ , |01⟩ , |10⟩ , |11⟩}. Let 𝑈red denote this submatrix. 

As a reminder, the ideal CZ operation in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} reads 

CZ = diag(−1, 1, 1, 1) . (A.3) 

Now we can define the fidelity as follows:

ℱ = | ⟨𝜑ini| ĈZ
†
�̂�red⏟  ⏞  

=�̂�tot

|𝜑ini⟩ |2 . (A.4)
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Here, |𝜑ini⟩ is the initial state. A Taylor series of the 4× 4 matrix representation 

of the operator �̂�tot at 𝜖 = 0 yields

𝑈𝑎 =

⎡ ⎢⎢⎢⎢⎣
1 0 0 0 

0 1− (𝜋 𝜖)2

2
+𝒪(𝜖3) −𝑖𝜋 𝜖+𝒪(𝜖3) 0 

0 −𝑖𝜋 𝜖+𝒪(𝜖3) 1− (𝜋 𝜖)2

2
+𝒪(𝜖3) 0 

0 0 0
𝑒𝑖𝜑𝑟+2𝑖𝜑𝑟𝑒𝑖𝜑𝑟 𝜖+ 

(𝜋
2

4
− 1

4
(−4𝑖𝜑𝑟+8𝜑2

𝑟+𝜋2))𝜖2+𝒪(𝜖3)

⎤ ⎥⎥⎥⎥⎦ ,
(A.5) 

where we used the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}. This matrix allows us to give an 

approximation of the fidelity for arbitrary initial states and small relative pulse er- 

rors 𝜖. For example, the fidelity of the CZ gate for initial state |01⟩ is approximated 

by

ℱ ≈
(︂
1− (𝜋 𝜖)2

2

)︂2

. (A.6)

A.3. Relative pulse area error and relative 

detuning error (adiabatic CZ gate)

We want to explain why a relative pulse area error 𝜖 in the adiabatic CZ protocol 

leads to a very similar change in fidelity as a relative detuning error 𝜖 (see Fig. 

3.13 and 3.14). As we will see, this is due to the fact that the transition amplitudes 

between the instantaneous eigenstates are similar in both cases. To derive this, it 

is helpful to consider an alternative expression [11, p. 3] for the counterdiabatic 

Hamiltonian,

�̂�CD =
∑︁
𝑚

∑︁
𝑛

�̸�=𝑚

|𝑛⟩ ⟨𝑛| 𝜕𝑡�̂�0 |𝑚⟩ ⟨𝑚|
𝐸𝑚 − 𝐸𝑛

. (A.7) 

Since we consider a degenerated system, it seems like we cannot apply this for- 

mula. However, we showed that our Hamiltonian factorizes into 5 nondegenerated 

subsystems, i.e., we can apply the formula to each subsystem. By neglecting terms 

that contain the large Rydberg interaction V in the denominator, we obtain

�̂�CD = 𝑖
Ω̇

2∆

[︁
|01⟩ ⟨01| ⊗ |0𝑟⟩ ⟨0𝑟|+ |10⟩ ⟨10| ⊗ |𝑟0⟩ ⟨𝑟0|

+ 

1√
2
(|1𝑟⟩+ |𝑟1⟩)(⟨1𝑟|+ ⟨𝑟1|)⊗ |11⟩ ⟨11|+ ℎ.𝑐.

]︁
. (A.8) 

Now we can easily see how the relative errors affect the counterdiabatic Hamilto- 

nian. If we introduce a relative pulse area error Ω(1+ 𝜖), the new counterdiabatic 

Hamiltonian is exactly given by (1 + 𝜖) �̂�CD = �̂�𝜖
CD. Similarly, if we introduce 

a relative detuning error ∆(1 + 𝛿), the c.d. Hamiltonian is approximately given 

by 1
1+𝛿

�̂�CD ≈ (1 − 𝛿) �̂�CD = �̂�𝛿
CD. When we calculated the fidelity as a function 

of these errors, we did not use the new c.d. Hamiltonian for each error; instead,
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we used the old c.d. Hamiltonian �̂�CD that corresponded to �̂�0 without any er- 

rors. Having derived an approximate form of the new c.d. Hamiltonian, we can 

rewrite the total Hamiltonian which we used to obtain the fidelity. For the case of 

a relative pulse area error, we write the total Hamiltonian as

�̂�𝑝 = �̂�𝜖
0 + �̂�CD = �̂�𝜖

0 + �̂�𝜖
CD − 𝜖�̂�CD , (A.9) 

where the superscript 𝜖 indicates dependence on the error. The idea behind 

rewriting the Hamiltonian is that we now have a part �̂�𝜖
0 + �̂�𝜖

CD that yields per- 

fect adiabatic evolution: if we change to the basis of instantaneous eigenstates, 

this operator will become diagonal. Let �̂� 𝜖 

𝑝 be the corresponding change of ba- 

sis operator such that �̂� 𝜖 

𝑝�̂�
𝜖
0(�̂�

𝜖 

𝑝)
† is diagonal. The Hamiltonian transforms as

�̂� ′ = �̂� 𝜖 

𝑝�̂�old(�̂�
𝜖 

𝑝)
† + 𝑖(𝜕𝑡�̂�

𝜖 

𝑝)(�̂�
𝜖 

𝑝)
†,

�̂� ′
𝑝 = �̂� 𝜖 

𝑝( �̂�𝜖
0 + �̂�𝜖

CD)(�̂�
𝜖 

𝑝)
† + 𝑖(𝜕𝑡�̂�

𝜖 

𝑝)(�̂�
𝜖 

𝑝)
†⏟  ⏞  

diagonal operator

−�̂� 𝜖 

𝑝𝜖�̂�CD(�̂�
𝜖 

𝑝)
† . (A.10) 

If 𝜖 = 0, the Hamiltonian is diagonal and the transition amplitudes between in- 

stantaneous eigenstates are zero. If 𝜖 ̸= 0, the transition amplitudes are not equal 

to zero since �̂� 𝜖 

𝑝𝜖�̂�CD(�̂�
𝜖 

𝑝)
† contains off-diagonal entries. We repeat these steps for 

the case of a relative detuning error.

�̂�𝑑 = �̂�𝛿
0 + �̂�CD = �̂�𝛿

0 + �̂�𝛿
CD + 𝛿�̂�CD (A.11) 

Using the change of basis operator �̂� 𝛿 

𝑑 , we obtain

�̂� ′
𝑑 = �̂� 𝛿 

𝑑 ( �̂�𝛿
0 + �̂�𝛿

CD)(�̂�
𝛿 

𝑑 )
† + 𝑖(𝜕𝑡�̂�

𝛿 

𝑑 )(�̂�
𝛿 

𝑑 )
†⏟  ⏞  

diagonal operator

+�̂� 𝛿 

𝑑𝛿�̂�CD(�̂�
𝛿 

𝑑 )
† . (A.12) 

Now we make a rough approximation: we argue that �̂� 𝛿 

𝑑 and �̂� 𝜖 

𝑝 depend only 

weakly on 𝜖 and 𝛿 compared to 𝜖�̂�CD and 𝛿�̂�CD, so we assume �̂� 𝛿 

𝑑 ≈ �̂� 𝛿=0
𝑑 = 

�̂� 𝜖=0
𝑝 ≈ �̂� 𝜖 

𝑝. It follows that for 𝛿 = 𝜖, the last terms of �̂� ′
𝑝 and �̂� ′

𝑑 are identical 

up to a sign. Note that the transition amplitudes between the instantaneous 

eigenstates depend entirely on this last term, since the rest of the Hamiltonian 

is diagonal. Furthermore, the sign does not matter. We only care about the 

amount of population that we lose to other eigenstates as a consequence of diabatic 

evolution; this is not influenced by the sign. To illustrate this point, we consider 

initial state |01⟩ in Fig. 3.13 and 3.14: ideally, this state would evolve to − |01⟩
if we perform the adiabatic CZ protocol. If we introduce a relative pulse area 

error of 5%, the output state of the protocol is approximately −0.99996 |01⟩ −
(0.00549 − 0.00670𝑖) |0𝑟⟩. Similarly, if we introduce a relative detuning error of
5%, the output state is approximately −0.99996 |01⟩ + (0.00548 − 0.00671𝑖) |0𝑟⟩. 

In both cases, we lost some population to |0𝑟⟩. The sign of the coefficient of |0𝑟⟩
is different, but the fidelity is the same in both cases: ℱ = (0.99996)2.
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