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Abstract

The Bose-Hubbard model o�ers both theoretically and experimentally a great
access to studies of bosonic many-body-systems in periodic potentials. In this
thesis we will apply it to a two-dimensional lattice consisting of 2×2 potential
pots. The �rst part of our studies will concern the spectral characteristics of
di�erent 2×2 systems and particularly the in�uence of their geometry. Motivated
by current experimental observations of the re�lling process in a Bose-Hubbard
chain after one lattice site is emptied, we will then proceed by opening the system
in the second part. By use of a master equation approach, we investigate the
impact of di�erent kinds of interactions with the environment on the dynamics of
the system.

Zusammenfassung

Das Bose-Hubbard-Modell stellt sowohl theoretisch als auch experimentell einen
guten Zugang zur Beschreibung bosonischer Viel-Teilchen-Systeme in periodischen
Potentialen dar. In dieser Arbeit werden wir es auf ein zweidimensionales Gitter,
bestehend aus 2×2 Potentialtöpfen, anwenden. Der erste Teil unser Untersuchun-
gen betri�t die spektralen Eigenschaften verschiedener 2×2-Systeme und den Ein-
�uss, den deren Geometrie dabei spielt. Motiviert durch aktuelle experimentelle
Beobachtungen von Au�üll-Prozessen in einer eindimensionalen Bose-Hubbard-
Kette, nachdem ein Gitterplatz geleert wurde, werden wir im zweiten Teil dazu
übergehen, das System zu ö�nen und die Auswirkung verschiedener Arten von
Wechselwirkungen mit der Umgebung auf die Dynamik des Systems betrachten.
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Chapter 1

Introduction and Motivation

While the Bose-Hubbard model for bosonic many body systems in periodic, one-
dimensional lattices already has undergone extensive analysis [1, 2, 3], recently
these examinations have been extended to higher-dimensional setups as well [4, 5].
The model-systems we will consider throughout this thesis will be two-dimensional
lattices consisting of 2×2 sites.

After the introduction of the theoretical framework necessary for our examina-
tions (chapter 2), in section 3.1, we will construct a model in order to simulate
a re�lling process, observed in a one-dimensional Bose-Hubbard chain in recently
performed experiments [6]. Here the spacial extend of the lattice sites compli-
cates the situation such that the re�lling dynamics can not easily be described by
the one-dimensional model. We will try to solve this problem by implementing
a virtual pot corresponding to a higher excited state. Section 3.2 is dedicated to
a general analysis of the spectral properties of 2×2- Bose-Hubbard Hamiltonians
dependent on the structure of the couplings between the sites. We will then pro-
ceed by opening our model system and numerically simulate the dynamics under
di�erent forms of interactions with the environment governed by a master equation
approach.
Due to e�ciency reasons we will rely on the quantum jump method for all calcu-
lations in those simulations.
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Chapter 2

Theoretical Foundation

2.1 Master Equation Formalism

The description of a quantum system as a state-vector evolving in time is in fact
an approximation, where we assume the system to be closed from its environment.
In reality this is never possible to be achieved and while in certain cases the e�ects
that arise from couplings to the environment can be neglected, we want to focus
on systems where they have a great in�uence on the behavior and therefore require
a density matrix approach.

Although the dynamics of such a system cannot be written in terms of a unitary
time evolution given by the Hamilton operator H, it is still possible to formulate
the Master Equation in Lindblad form for the density matrix % preserving trace
and positivity of % [7].

%̇ = − i
~

[H, %] + L[%] (2.1)

Here the Born-Markov approximation is used that requires the environment to
have "a weak memory", meaning that correlations in the reservoir decay much
faster than the typical timescale of our system [7].
L[%] - the Liouvillian - is taking into account that our system is open and can be
written in the form:

L[%] =
∑
i

γi(Ai%A
†
i −

1

2
A†iAi%−

1

2
%A†iAi) (2.2)

The Ai are the Lindblad operators and represent dissipation processes, while the
γi give the rates, at which those occur.
As one would expect, by setting L[%] = 0, one obtains the von Neumann equation
valid for a closed system.

Our �rst goal will therefore be to �nd a suitable model for H, to simplify the
problem as far as possible and to understand the unitary dynamics. Then we will
proceed by investigating the e�ects of added dissipative processes.
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2.2 The Bose-Hubbard Model

The quantum system we consider throughout this thesis will be a bosonic many-
body-system in a periodic, su�ciently deep potential, so that a tight binding
approximation can be applied and only the lowest Bloch band is occupied [8].
Experimentally this can be realized with ultra-cold atoms in an optical lattice.
In such a case accurate predictions of the dynamics can be made by use of the Bose-
Hubbard model, claiming H to be of the following form in second quantization
formalism [8]:

H =
L∑
n=1

εini +
U

2

L∑
i=1

ni(ni − 1)−
L∑
i=1

i∑
j=1

Jij(a
†
iaj + a†jai) (2.3)

where ni = a†iai and a
†
i , ai are the creation and annihilation operator for the i-th

site of the periodic lattice, obeying the bosonic commutation relation [aj, a
†
i ] = δij.

Each term in this sum has an intuitively accessible meaning: The εi correspond to
an on-site potential, U is the interaction strength between particles in the same
well and Jij = Jji is the tunneling-coe�cient between the i-th and j-th site.
While in the standard 1-D-Bose-Hubbard model (Jij = δ1,|j−i|) the sites are or-
dered along a chain, we consider a more general form, keeping it open which sites
to couple.

In the latter we will always refer to the number of sites as L and consider states
with the total particle number N =

∑L
n=1 ni, which is conserved by the Hamilto-

nian time evolution because [H,N ] = 0.
This allows us to perform all calculations in the �nite dimensional subspace of the
Fock space spanned by states of the form1:

|0, 0, ..., 0, N〉
|0, 0, ..., 1, N − 1〉
|0, 0, ..., 2, N − 2〉

...
|N, 0, ..., 0〉

The dimension D of this subspace is the number of possibilities to distribute N
particles to L sets:

D =

(
N + L− 1

N

)
=

(N + L− 1)!

N !(L− 1)!
(2.4)

In that way the Schrödinger equation and the von Neumann equation become
systems of D or D2 ordinary di�erential equations (ODEs), respectively.

1At this point the recursive structure of the basis should be noted:
basis(N,L) = {{(i)} ⊗ basis(N − i, L− 1) for i ≤ N}
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2.3 Symmetries and Spectral Statistics

Symmetries can be used to cancel out redundancies in the description of a system.
In our case we will �nd symmetry operators S, which commute with the Hamilto-
nian of the system: [H,S] = 0
As the spectral theorem states, we then can �nd an orthonormal basis B of the
Hilbert space, built from eigenvectors of both H and S. By ordering the basis
with respect to the eigenvalues of S and applying a basis transformation to this
reordered basis UB′ , it can be achieved that the Hamilton operator has block form,
each block Hi related to an eigenvalue of the symmetry.

UB′HU
−1
B′ =


H1 · · · 0

H2
...

...
. . .

0 · · · Hk

 (2.5)

There are two reasons for doing this: First, when we choose our starting state to
obey the same symmetry, it is su�cient to consider only one block for the time
evolution of this state and therefore we can reduce the numerical e�ort of the in-
tegration.
The second reason is that we want to analyze the behaviour of the system concern-
ing chaos or regularity. Our methods of choice use results from Random Matrix
Theory (RMT) [9] to compare the following three quantities of the spectrum with
predicted statistics.
As a �rst indicator we will observe the nearest neighbour spacings in the spectrum.
For reasons of comparability to the RMT predictions we have to separate this lo-
cal property from global trends in the spectrum. This has to be done through a
suitable rescaling, normalizing the average spectral density ρ̄ = 1 and therefore
dismissing the global trend without loosing the information about local �uctua-
tions. This technique is called the unfolding [10] of the spectrum.
It can be shown that in an integrable system, the energy levels are distributed
independently. This results in Poisson-distributed spacings s [11]:

PPois(s) = e−s (2.6)

The chaotic case can be described by an ensemble of random matrices {HR},
obeying the following demands:

HR = H†R = H t P (HR) = P (UHRU
−1) (2.7)

The �rst equation of (2.7) implies time reversal of the system, the latter should hold
for any orthogonal basis transformation U−1 = U t and guaranties the independence
of the probability P from the choice of the basis. By using these properties one
can show that the probability distribution for the spacings of the eigenvalues in
the ensemble follow a Wigner-Dyson distribution:

PWD(s) =
sπ

2
e−

π
4
s2 (2.8)
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(a) Poisson statistics (2.6)
(regular)

(b) Wigner-Dyson statistics (2.8)
(chaotic)

Figure 2.1: Predicted Spectral densities

The main di�erence between those densities is that in a regular system the max-
imum lies at zero re�ected in a so-called clustering of the energy levels, while in
the latter case the density vanishes at zero resulting in level repulsion [10]. The
maximum of the second distribution is instead at one due to the unfolding.

Alternatively, as recently has been shown [12, 13, 14], it is possible to analyze the
probability density of the dimensionless variable ri de�ned by the ratio of adjoining
spacings si, si+1:

0 ≤ ri :=
min(si, si+1)

max(si, si+1)
≤ 1 (2.9)

The crucial advantage is that there is no need for an unfolding, because this ratio
is free of the global trend of the spectrum. By assuming that si and si+1 are
independent random variables obeying (2.6) or (2.8) respectively, one can derive
the following densities:

Preg(r) = 2
(1+r)2 Pchaos(r) ≈ 27

4
(r+r2)

(1+r+r2)5/2
(2.10)

(a) regular (b) chaotic

Figure 2.2: Probability Density P(r) according to (2.10)

9



While the latter two methods only characterize the nearest neighbor statistics in
the spectrum, it is also possible to examine the range L of these correlations, by
evaluation of the quadratic deviation of the unfolded spectral density ρ from its
mean ρ:

Σ2(L) =

〈(∫ Ẽ+L

Ẽ

dE
(
ρ(E)−ρ(E)

))2〉
Ẽ

(∗)
=

〈(∫ Ẽ+L

Ẽ

ρ(E)dE−L
)2〉

Ẽ

(2.11)

where 〈·|·〉Ẽ denotes an average such that the interval runs over the whole spectral
range and (∗) holds because %(E) = 1 due to the unfolding. Again, the results can
be compared to RMT-predictions to identify chaotic or regular behavior:

Σregular(L) = L (2.12)

Σchaotic(L) =
2

π2

(
ln(2πL) + γ + 1− π2

8

)
+O(

1

L
) (2.13)

In the second equation the Euler constant γ ≈ 0, 57722 is appearing.
Generally, one will �nd accordance to these predictions from a not too small value
L (so that the O( 1

L
)-term is negligible) up to some system-dependent value.

As already stated, the symmetries of the system represent a redundancy in the de-
scription and each of the symmetrized subsystems evolves in time decoupled from
the others. Such a statistic analysis thus only makes sense for each subsystem
separately, otherwise the mixing of several blocks leads to the fact that the nearest
neighbor spacings we compute do not necessarily belong to the same sub-spectrum.

The relevant symmetries for our problem are the discrete permutations of the
occupation numbers:

P |n1, · · · , nL〉 = |ni1 , · · · , niL〉 (2.14)

The reason for this is that the second quantization formalism already takes into
consideration the indistinguishability of the particles and the tight-binding ap-
proximation in the Bose-Hubbard model guaranties the particles to be located in
one of L sites.

2.4 Numerical Methods

Some of the e�ects we want to observe in the latter, will only arise when N is
adequately high. Because the dimensionality S increases fast with N, our possibility
to integrate the emerging systems of ODEs e�ciently is essential for the results.
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2.4.1 Quantum Jump Method

The time evolution of a state vector |ψ〉 corresponds to the integration of D cou-
pled ODEs, while the evolution of the density matrix % requires integration of D2

ODEs. For later purposes D will be in the order of 103, so that the numerical
e�ort in the second case is 3 orders of magnitude higher.

The density matrix % can be written in the following form:

% =
∑

α pα |ψα〉 〈ψα|
(∑

α pα = 1
)

(2.15)

This allows the interpretation of % as an ensemble of |ψα〉 distributed with the clas-
sical probabilities pα. Keeping this in mind, it is not surprising that it is possible
to consider the time evolution of % as a statistic process, where each realization
corresponds to a so-called quantum trajectory

∣∣ψ(i)(t)
〉
. Instead of propagating

the density matrix directly in time, we can calculate a su�ciently high number of
trajectories separately to estimate the process through an ensemble average.

For concrete application this means one has to calculate each quantum trajectory
independently and then approximate the desired expectation values of observables
by averaging over the realizations

∣∣ψ(i)(t)
〉
.〈

Ô
〉

(t) = Tr
(
Ô%(t)

)
= lim

R→∞

1

R

R∑
i=1

〈
ψ(i)(t)

∣∣Ô∣∣ψ(i)(t)
〉

(2.16)

We can give an estimation of the statistical error resulting from the �nite number
of realizations R by calculating the standard deviation from the average. Taking
this into account, we are able to choose R accordingly to the desired precision:

σ2(R, t) =
1

R(R− 1)

R∑
i=1

(
Ô(i)(t)−O(t)

)2 ∼ 1

R
(2.17)

In all our applications the propagation of
∣∣ψ(i)

〉
will be a peace-wise determinis-

tic process, where the development of the state vector is caused by an e�ective
Hamiltonian

He� = H − i

2

∑
i

γiAiA
†
i (2.18)

interrupted by sudden quantum jumps2 when the norm of
∣∣ψ(i)

〉
reaches a random

value η ∈ [0, 1]. This arti�cial reduction of the norm only serves to determine the
exact moment of the next jump and will be removed afterwards by renormalizing
the state. Even though we have to iterate this process, we can easily parallelize
these computations in contrast to the propagation of % where each integration step
needs the information of the previous one.
The exact procedure used to generate the trajectories is adapted from [7] and
carried out precisely in the appendix (6.4).

2induced by the projection with the related Lindblad operator: |ψ′〉 = Ai|ψ〉
‖Ai|ψ〉‖
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2.4.2 Integration of ODEs

As an integrator we decide for the in Python implemented routine Odeint that is
an implementation of the Fortran package LSODA [15, 16]. The algorithm dy-
namically changes between the integration methods Adams and BFD in order to
deal with sti� as well as with non-sti� problems.

Another advantage of this integrator is its adaptive step size, maximizing the in-
tegration step, under the condition that the error of the calculated solution does
not exceed a speci�ed value. On the other hand, this means that the algorithm
needs some iterations until the optimal step size is reached.

When using this integrator in the quantum jump method we have to check the norm
of |ψ〉 after appropriate time steps δt. Before starting the procedure we therefore
estimate a value for δt such that it is far smaller (≈ 2 orders of magnitude) than
the typical time between two quantum jumps given by the inverse rate at which
the norm decreases:

δt <<
1

〈ψ|
∑

i γiAiA
†
i |ψ〉

(2.19)

This δt gives the points in time for which an output is generated, that allows us
to calculate the norm. In between these points the integrator will use a su�cient
number of steps to stick to a given error boundary.

The last problem to solve is to avoid calling odeint for only integrating a single
step δt alone. On the other hand, we don't know exactly when the next quantum
jump is going to happen. All information calculated beyond the time of the jump
will have to be discarded. We therefore estimate another step ∆t on the basis of
the di�erence of the norm from the value η where the next jump will happen and
the rate at which the norm has decreased between the last two time steps. Then
we calculate {|ψ(t0 + δt)〉 , |ψ(t0 + 2δt)〉 , . . . , |ψ(t0 + ∆t)〉}. If the norm reaches
the value of η at a certain point in this range, we perform the jump and use this
time as starting-point for the next calculation, otherwise the last point is used.
This procedure is repeated until a �nal value tend is reached.
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Chapter 3

Analysis of the Closed System

3.1 Construction of our Model

Our goal in the following is to �nd an appropriate model to simulate numerically
the re�lling dynamics in a 1-D-Bose-Hubbard chain realized with ultra-cold atoms
in an optical lattice.
The experimental setup [6] we refer to, consists of a lattice with a number of sites
L in the order 20− 100 and an average particle number per site of n ≈ 600.
The pot in the middle gets emptied to a particle number ∼ 10% of its original
value and the occupation number in the central site is observed until the average
�lling is reached again.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Particlenumber N

100

101
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103

104
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th

e
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e
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L=9
L=8
L=7
L=6
L=5
L=4
L=3

Figure 3.1: DimensionalityD as function of particle number N for various numbers
of pots L (eq. 2.4)

As the above �gure indicates, it is far beyond our reach to simulate this system
directly1. Instead, we will restrict ourselves to the emptied pot and its nearest
neighbors. One should be aware that this approximation does alter the temporal
progress of the occupation numbers of the exterior sites:
While in the experiment they can be assumed to be constant due to the high
number of involved sites, in our model they will reduce by 1

3
each since N = const.

1For example for L = 5 and N = 20 we would already need more than 7Gb of RAM only to
save every entry of the Hamiltonian
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The fact that we can observe a re�lling process at all is remarkable. As already
shown in [17], a high di�erence in the occupation number of connected sites leads
to a suppression of the tunneling and a so called self trapped state. This can be
understood as a consequence of energy conservation:
By comparison of the total energy of the states

∣∣N
2
, 0, N

2

〉
and

∣∣(N
2
− 1), 1, N

2

〉
(N

even) one �nds a di�erence of:

∆E =
U

2

(
N
2

(N
2
− 1)− (N

2
− 1)(N

2
− 2))

)
= U(N

2
− 1) (3.1)

With increasing N this di�erence gets larger and the two states get out of reso-
nance. According to [6] the 2-dimensional spacial extend of the lattice sites is the
reason for a nonzero e�ective tunneling coe�cient.

Figure 3.2: Experimental
con�guration2

Even though the trapping frequency along the
Bose-Hubbard chain is su�ciently high to assume
that only the lowest energy band is occupied, the
one perpendicular to it is far smaller. This makes
it possible for a particle in one of the full sites to
tunnel into a radial excited state in the central
site.
Our attempt to include this circumstance into our
discussion, is to split up the central site in two
virtual sites: one with a potential ε > 03 and one
with ε = 0. Considering that the eigenfunctions of
the harmonic oscillator form an orthonormal ba-
sis, 〈ψi|ψj〉 = δij it is reasonable to set J = 0 for
the unitary transition between excited and ground
state, while the tunneling coe�cient from the ad-
joining cites in the excited state should be cor-
rected by factor 0 < η < 1 corresponding to a
smaller overlap between the wave functions.

Leaving the model as it is, the time evolution would be unitary and thus re-
versible. After all this is totally contrary to the experimental observations, where
the system tends to a state with equal �lling in each site.
To model this we will suggest di�erent Lindblad operators corresponding to envi-
ronmental interactions that will prohibit the system from oscillating and destroy
coherence.
Their physical origin lies in thermal collisions with the surrounding gas or with the
laser. In conclusion our Hamiltonian is based on a system of the following kind:

2taken from [6] with kind permission of Sandro Wimberger
3thus being referred to as 'excited state'
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31

2

0

J J

Jtop = ηJ Jtop = ηJε > 0

ε = 0

Figure 3.3: model for the re�lling dynamics

An excited oscillator state is introduced as a virtual pot with a potential ε > 0. The

curved lines indicate a not yet speci�ed dissipative process.

3.2 Chaos and Regularity

According to our latest considerations all further calculations will base on a 2-D-
Bose-Hubbard model with the number of sites L = 4.
We take this as an impetus for a general spectral analysis of the Hamiltonians
corresponding to the following 3 graphs. For a systematic approach to the analysis
of a wider range of systems, we would like to refer the interested reader to [18].
The �rst one simply arises from our model in the limit of ε → 0; η → 1, in the

3

1

2

0

(a) Fig. 3.3 with
ε→ 0; η → 1

3

1

2

0

(b) periodic bound-
ary conditions

3

1

2

0

(c) completely con-
nected graph(CCG)

Figure 3.4: Systems of interest

second one we have imposed periodic boundary conditions connecting the sites
number 0 and 3. Although there is not a direct connection between system (c)
and our model because we explicitly demand the coupling between site 1 and 2
to vanish, we will �nd a trend in the behavior of such systems for an increasing
number of couplings, which is why it will be an interesting case.

15



The Hamilton operator depends on two parameters U and J , but by writing

H = J · H
J

= J

(
U

2J

L∑
i=1

n̂i(n̂i − 1)−
∑

couplings(i,j)

(a†iaj + a†jai)

)
(3.2)

one easily can see that J gives the time scale of the dynamic, while the qualitative
behavior only depends on the ration U

2J
. We therefore set J ≡ 1

~ measuring time
in units of J

~ and choose the control parameter of the system to be U .
The symmetries we chose to achieve block structure of our Hamiltonians are the
two permutations P12 and P03 de�ned by:

Pij |n1, . . . , ni, . . . , nj, . . . , nL〉 := |n1, . . . , nj, . . . , ni, . . . , nL〉 (3.3)

Obviously the symmetries commute and both ful�ll P 2
12 = P 2

03 = 1 which im-
plies that the eigenvalues are λ12 = λ03 = ±1.

For every permutation P there exists an n ∈ N such that:

P n = 1 (⇒ λn = 1) (3.4)

Only using this general property, it is possible to give a way to construct an
normalized basis {|eλ〉} from the vectors of the Fock basis {|e〉}, where each |eλ〉
is an eigenvector of P:4

|e′λ〉 =
n−1∑
i=0

λ−iP i |e〉 |eλ〉 =
|e′λ〉
‖e′λ‖

(3.5)

Because then:

P |eλ〉 =
n−1∑
i=0

λ−iP i+1 |e〉 =
n∑
i=1

λ−(i−1)P i |e〉

= λ

( n−1∑
i=1

λ−iP i + λ−nP n︸ ︷︷ ︸
=λ−0P 0

)
|e〉 = λ |eλ〉

If two symmetries commute, this procedure can be repeated to get eigenvectors of
both symmetries.
As described in section (2.3) we can now apply a basis transformation to this new
basis, which we �rst ordered by the eigenvalues of P03 then P12. In the following
we use the notation Hλ03,λ12 referring to the block of the transformed Hamiltonian
that corresponds to the eigenvalues λ03, λ12. We focus on the analysis of H−1,+1

because in 2 of the 3 cases we consider, the blocks to equal eigenvalues can be
decomposed further by making use of the symmetry P20 · P31.

As a �rst indicator whether our systems behave regular or chaotic, we vary our
control parameter U in the interval [0.01,100] in logarithmic steps and use a χ2-test
to compare the unfolded spacings to the RMT predictions.

4to guaranty linear independence, identical vectors obtained through this constructions have
to be omitted
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Therefore we have to calculate the eigenvalues ofH−1,+1(U) numerically and unfold
the spacings of the spectrum by the following procedure [3]:

(i) We order the spectrum {Ei}

(ii) E ′i = Ei−Emin
Emax−Emin → E ′i ∈ [0, 1]

(iii) Spacings: Si = Ei+i − Ei

(iv) unfolded Spacings: S ′i = Si
〈Si〉nn

= 2nn+1
E′i+nn+1−E′i−nn

Si

with the free parameter nn giving the number of spacings for a local average 〈Si〉nn.
To compare this discrete distribution to the densities given in (2.6) and (2.8) we
display our data in a histogram with Nbins bins. Then we calculate the di�erence
of the fraction of spacings found in the interval of the i-th bin Ii = [ai, bi] and the

one given by
∫ bi
ai
P (S)dS =: N expected

i .
As a measure of deviation from the chaotic or regular behavior we de�ne:

χ2(U,Nbins) =

Nbins∑
i=1

(N expected
i −N spectrum

i )2

N expected
i

(3.6)

χ2
log(U) := min

Nbins

{
log

(
χ2(Nbins, U)

Nbins − 1

)}
(3.7)

where the latter is �nally independent of the number of bins. Here one has to be
careful with setting a range of Nbins to vary over. A choice of Nbins = 1 is not a
reasonable one but will give a very small deviation from both the chaotic and the
regular case because single interval contains all spacings.
While in Fig.(3.5)(a) χ2

log,chaos stays smaller than zero for most values over two
orders of magnitude (10−2−100) this behavior can only be observed over one order
(10−1 − 100) in (b) and in (c) one can not even identify a signi�cant minimum of
the curve. Additionally values of the minima increase from (a) → (c).

(a) no diagonal coupling (b) one diagonal coupling (c) two diag. couplings (CCG)

Figure 3.5: χ2
log(U)

The deviation from the chaotic case (red triangles) and from the integrable system

(blue line). 15 ≤ Nbins ≤ 35 and nn = 5 in the unfolding; particle number N = 20
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We only presented the χ2
log-plots for N = 20, but we �nd the same qualitative

behavior for the whole tested range of 10 ≤ N ≤ 30.

For of the cases with one diagonal coupling where χ2
log gets minimal, we exemplarily

display the distribution of the unfolded spacings and perform further analysis as
introduced in section (2.3).
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0
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Figure 3.6: Statistics for one diagonal coupling; N=20

Chaotic case (U = 0.657) in the top row; regular (U = 0.0443) in the bottom. Data

obtained from spectral analysis (black) vs predictions for chaotic (red) and regular

(blue) systems

Our data �ts well the predictions for both of the methods. Though the statis-
tical �uctuations around the theoretical curves in (3.6)(b) and (c) are not small,
the integrated density shows good concordance, since it is statistically more stable.

So far we only analyzed nearest neighbor statistics. In the next step we will
characterize the range of correlations in the spectrum by applying a Σ2-test. While
�g. (3.7) (b) shows the expected behavior, (a) only coincides with the linear curve
over a tiny interval.
Although our choice of nn = 5 provided good results in the nearest neighbor
statistics, this range is too short for optimal results in the long range correlation.
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(a) N=20; regular; nn=5 (b) N=20; chaotic; nn=5

(c) N=20; regular; nn=10

Figure 3.7: Σ2-test (one diagonal coupling)

Predictions for a regular (blue) and a chaotic (red) system. Obtained data (black).

Accordance with theoretical predictions gets better for the regular system (a) → (c).

For the CCG system, even the most chaotic case �ts far better to the predictions for
regular systems, so that we conclude it to behave regular over the whole parameter
range. These observations are in good agreement to the results of [19] where it
could be shown that CCG systems can at least in the limit L→∞ be described by
an in�nitely ranged mean �eld approximation. Our data indicates that not only
this extreme case shows greater regularity, but that even adding single couplings
could serve as a method to regularize a system.
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Figure 3.8: CCG U=0.112 (where least regularity is expected from �g. (3.5)(c))

Normalized histogram of the obtained data (step); theoretical predictions for the

chaotic(green) and regular(blue) case
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3.3 Dynamics and System Parameters

Our model system involves the unknown parameters (N,U, η, ε) and for every
dissipative process we add, we have to specify another rate γi. This high amount
of parameters makes an analysis of the unitary dynamics in advance inevitable.
In this section, we will set η = 1 and examine the behavior of the system when
we vary ε for given N and U . More precisely we are interested in the average
occupation number of the excited state nex giving a measure how resonant the
excited state is with the pots of high �lling.

(a) N = 17; U = 1 (b) N = 17; U = 5 (c) N = 10; U = 5

Figure 3.9: Average �lling in the excited state nex as a function of ε

The �lling shows peak-structure around a value εmax that increases with N and U .

Fig. (3.9) displays nex averaged over t = 100 ~
J
5. We can observe a peak in each

of the curves. The value εmax where best resonance is achieved is displayed as a
function of N for various values U in �g. (3.10).

5 1 0 1 5 2 0
0
5

1 0
1 5
2 0
2 5
3 0  U = 1

 U = 2
 U = 3
 U = 5

ε ma
x[J

]

N

Figure 3.10: Values εmax where
best resonance is found

U[J] C cshift
1 0.62± 0.07 2.86± 0.55
2 1.61± 0.18 4.59± 1.47
3 2.79± 0.17 6.56± 1.28
5 4.37± 0.3 6.61± 1.92

As the graphs show, we �nd approximately lin-
ear behavior. In order to compare this trend to
eq. (3.1) for the energy di�erence that causes
the self-trapping, we �t linear curves of the fol-
lowing form:

εmax = C(
N

2
− 1)− cshift (3.8)

with the slope C
2
and a constant cshift, that is

caused by the small size of the system, allow-
ing the excited state to stay in resonance even
after it is already occupied by one particle. For
U > 1 the values of C coincide within their
3-σ-range with U . We therefore conclude that
introducing an on-site potential ε is indeed the
right approach to dissolve self-trapping and a
value according to (3.1) is the right choice if a
small �lling in the excited state is desired.

5initial state: |N, 0, 0, N〉 (N even) or 1√
2
(|N, 0, 0, N+1〉+ |N+1, 0, 0, N〉) (N odd)

20



Chapter 4

Interactions with the Environment

31

2

0
J J

Jtop = ηJ Jtop = ηJε > 0

ε = 0

In the following we always consider
a system with N = 20, and an ini-
tial state |10, 0, 0, 10〉. According
to the considerations of sec. (3.3)
we will choose ε = U(N

2
− 1) = 18.

Together with η = 0.3 this will
result in the following unitary dy-
namics:

Figure 4.1: Unitary Dynamics

Occupation number in the exterior (blue) sites, the excited (red) and the ground state

(green)

With this choice of parameters, we get a self trapped state, only with a small
oscillation of amplitude ∆n < 1 in the excited state and the half of this value in
the exterior sites. The �lling of the ground state is negligible, guaranteeing that
the cause of the re�lling are environmental interactions.
After using the symmetry P03 to obtain block form of the Hamiltonian, we will
observe the dynamics of the symmetry-reduced subsystem given through Master
Equations with the 3 following Liovillians. The time evolution is performed by use
of the quantum jump method.
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4.1 Global Noise

In a �rst, naive approach we assume, that the decoherence is induced by noise,
acting on each pot with the same rate κ. The corresponding Lindblad operators
for such a process are the particle number operators of the sites {ni}:

L[%] =
κ

2

3∑
i=0

(2ni%n
†
i − n

†
ini%− %n

†
ini) (4.1)

The time step δt at which the norm of our trajectories ‖ψ(i)‖ is evaluated has to
be much smaller than the typical time between 2 jumps, meaning:

1

k
〈∑3

i=0 nin
†
i

〉 n†i=ni

≥
ni≤10

1

k · 2 · 102
=

1

200κ
>> δt (4.2)

Following this, we calculate the time evolution for a range of parameters.

(a) U = 2; κ = 0.005 (b) U = 2; κ = 0.01

(c) U = 2; κ = 0.05 (d) U = 4; κ = 0.05

Figure 4.2: Global noise with parameter κ for U = 2J and U = 4J

Filling of the exterior sites (blue), the excited state (red) and the ground state (green).
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Even though we can observe the expected S-shape of the �lling in ground state
in each of �g. 4.2 (a-c) this model leads to an increasing particle number in the
excited state as well. The equilibrium value of nex is only a little smaller than the
one of the sites with ε = 0. This di�erence in the stationary state even decreases
with rising κ. This can be understood in the following way: A greater value of
κ corresponds to a higher collision rate and therefore a higher temperature in
the thermal cloud surrounding the Bose-Einstein condensate. Though the excited
state has an on-site potential and is therefore energetically unfavorable, the system
tends to a more disordered process for rising κ.
In the experiment [6] one can clearly observe a decreasing of the width of the
condensate in the central site over time. Because the spread of an excited oscillator
state is larger than the one of the ground state, we therefore would expect the exact
opposite of what is visible in 4.2.

4.2 Local Noise for the Excited State

This approach is similar to the previous, but because we identify the pot with an
excited oscillator state, this time we take into account that such a state has to
have a far wider spreading and therefore o�ers the thermal cloud surrounding the
condensate a bigger target for collisions.
By assuming that these collisions are the dominant factor, we neglect noise terms
for the other pots and apply a high collision-rate κ in the excited state. The
resulting Liovillian then is:

L[%] =
κ

2
(2n2%n

†
2 − n

†
2n2%− %n†2n2) (4.3)

where the time step of the quantum jump method δt has to obey:

1

k
〈
nexn

†
ex

〉 n†i=ni

≥
nex≤2

1

k · 22
=

1

4κ
>> δt (4.4)

Fig. 4.3 shows the development of the particle numbers over time. The shape
of the curve coincides very well with the results of the experiment: As expected
the excited state gets emptied and the �lling of the ground state increases in
an S-shaped curve. The problem is, that this process happens on a time scale
approximately one order of magnitude larger than the experimental re�lling.
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Figure 4.3: U = 2; κ = 0.5

One could think, that a higher value of kappa could accelerate this process but as
Fig.(4.4) shows, a higher value of kappa results in a larger slope in the �rst part
of nground(t), but also the occupation number of the excited state decreases faster.
This e�ectively reduces the jump rate again and in total we get an even larger
re�lling time.

Figure 4.4: U = 2; κ = 1

Filling of the exterior sites (blue), the excited state (red) and the ground state (green).

A higher κ results in a faster rise of nground �rst, after a short time it decreases such

that in total the re�lling time gets even larger.

Although with this type of process we can match the course of the re�lling, it is
not possible to match the time scale as well.
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4.3 Excitation and Relaxation

This time we consider two contra-acting processes that take place simultaneously
and will lead to a dynamic equilibrium. The operator A↑ = a1a

†
2 represents the

excitation of a particle in the ground state, by receiving energy through a collision
with a particle in the cloud and A↓ represents the contrary process. Their form

is the same as the part in the Hamiltonian responsible for the tunneling Jijaia
†
j,

but we explicitly do not demand γ↑ = γ↓ contrary to the Hamiltonian tunneling.
Moreover - in accordance with the underlying model - we allow the total energy
to change under excitation and relaxation.

A↑ = a1a
†
2; A↓ = a2a

†
1; A

†
↑ = A↓

L[%] =
γ↓
2

(2A↓%A↑ − A↑A↓%− %A↑A↓) +
γ↑
2

(2A↑%A↓ − A↓A↑%− %A↓A↑) (4.5)

and:

1

γ↑ 〈A↑A↓〉+ γ↓ 〈A↓A↑〉
& 1

1

(γ↑ + γ↓)(n2 + 1)n1

≥ 1

(γ↑ + γ↓)2 · 10
>> δt (4.6)

As one would expect, the resulting �lling in the ground state of the middle pot
depends on the relation between the two parameters γ↑,γ↓, while the re�lling time
depends on the total rate of jumps occurring and therefore their sum.

(a) γ↓ = 0.8; γ↑ = 0.1 (b) γ↓ = 0.9; γ↑ = 0.1

Figure 4.5: Occupation numbers of the di�erent sites as a function of time.

Exterior sites (blue), excited state (red) and ground state (green)

1γ↑ 〈A↑A↓〉+ γ↓ 〈A↓A↑〉 ≤ (γ↑ + γ↓)max{〈A↑A↓〉 , 〈A↓A↑〉}
= (γ↑ + γ↓)

〈
a†1a1a2a

†
2

〉
≈ (γ↑ + γ↓)(n2 + 1)n1
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As a next step we observe which pairs (γ↑, γ↓) will lead to an equal �lling in the
exterior sites and the ground state of the middle pot. Fig (4.6) shows γ↑(γ↓) such
that this condition is ful�lled.

Figure 4.6: Relation between relaxation- and excitation-rate for equal �lling out-
come

(a) Smoothed out graph (γ↑ = 0.125; γ↓ = 1.3) (b) Inverse re�lling time

Figure 4.7: Inverse re�lling time obtained from smoothed out results γ↑ + γ↓

Plotted is the inverse of the time where we �rst reached 90% of the �nal value for the

occupation number of the ground state n1. The error bars are gained by di�erence

between 1/t where 85% �lling is reached.

For small values of γ↑ we �nd the almost linear relation
γ↓
γ↑
≈ 8 resulting in an equal

�lling outcome and re�ll rate, that rises with the excitation and relaxation rate.
This can clearly be distinguished from an other regime, where a far higher relax-
ation rate is needed to establish an equal �lling and inverse re�lling time stagnates.

The rate at which jumps are occurring is proportional both to γ and to the number
of particles inhibiting the ground and the excited state. When γ↑ and γ↓ are small,
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an increase of their value will enhance the re�lling process because the system
would not leave the self trapped state only through the unitary dynamics. After
a few jumps happened, the self trapping is repealed and the unitary dynamics
contribute to the re�lling. The induced decoherence in the central site guaranties
that constant occupation numbers are reached and suppress oscillations.

But when γ↑ + γ↓ is in the order of magnitude of the tunneling coe�cient J = 1,
during the re�lling a total jump rate is reached that is so high, that the repeatedly
performed measurements in form of jumps between the excited and the ground
state are so rapid, that no further re�lling through the unitary dynamics is expe-
rienced.

Similar e�ects have already been observed for local particle loss processes, where
a rising loss rate prohibits particles to tunnel in the lossy site [4, 3] indicating a
quantum Zeno e�ect [20].

Finally, it should be noted that so far in this section we only considered a process
between the excited and the ground state to happen. By adding a small noise term
for the exterior sites, we can achieve getting a more S-shaped curve (as observed
in [6]) �g. (4.8)(b). If κ is chosen too big, the noise dominates the relaxation/ex-
citation process and the equilibrium outcome is di�erent: �g. (4.8)(b).

(a) κ = 0 (b) κ = 0.001 (c) κ = 0.01

Figure 4.8: γ↓ = 0.9; γ↑ = 0.1; added noise in the exterior sites

Occupation numbers: exterior sites(blue) excited state (red) and ground state (green)
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Chapter 5

Conclusion

The analysis of the spectral properties of di�erent 2× 2 systems revealed a trend
towards regularity for an increasing number of couplings. Due to [19] where it is
stated that a completely connected graph can be described by an in�nite range
mean-�eld approximation in the limit of the number of sites L → ∞, we expect
this to be not a property of the special case L = 4 but a more general characteris-
tic which should be investigated - and currently is in [18] - for larger systems as well.

In the second part we considered a model introducing an excited oscillator state
as a virtual pot to a one-dimensional Bose-Hubbard chain to simulate the re�lling
after draining of the central site. We suggested di�erent forms of environmental
interactions and their corresponding Liouvillians where the combination of an ex-
citation and a relaxation process turned out to be to most promising assumption.
Its main �aw though is, that the rates γ↑ for the excitation and γ↓ for the relax-
ation have to be adjusted "by hand" to see a re�lling process in the experimentally
observed form. For a wide range of parameters the progress of the occupation num-
bers show qualitatively similar behavior. The �lling in equilibrium only depending
on the ratio

γ↓
γ↑

and its timescale on their sum. After exceeding a certain limit we

cannot �nd a matching pair
γ↓
γ↑

leading to an equilibrium value with equal �lling in

the ground state of the central site and the exterior sites. Its cause might be the
high rates of jumps occurring between excited and ground state prohibiting other
particles to tunnel into each of them.
With the appropriate choice of parameters it is possible to describe the systems
dynamic at least approximately. On the one hand this is remarkable due to the
high order of simpli�cation of our model, on the other hand one might criticize
that a number of parameters which have to be tuned to achieve this is too large.

As a next step it would be interesting if one can �nd a relation between the two
rates leading to an equal �lling outcome and its dependency of the other system
parameters. Considering the fact that the origin of both processes is assumed
to lie in thermal collisions with the surrounding particle cloud, it might even be
possible to relate the rates via thermodynamical considerations. However getting
better accordance with the experimental results may require a di�erent approach
involving dynamically changing rates or even other Lindblad operators.
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Chapter 6

Appendix

6.1 Spectral Analysis: Symmetry Transformation

1 import numpy as np
2 import math
3 from copy import deepcopy
4 from general import svtxt
5

6 def f1(x): #≡ P03

7 tm=np.zeros ([4,4], dtype=int)
8 tm [0][3]=1
9 tm [1][1]=1

10 tm [2][2]=1
11 tm [3][0]=1
12 return list(np.dot(tm,x))
13

14 def f2(x): #≡ P12

15 tm=np.zeros ([4,4], dtype=int)
16 tm [0][0]=1
17 tm [1][2]=1
18 tm [2][1]=1
19 tm [3][3]=1
20 return list(np.dot(tm,x))
21

22 def order(basis ,f): #constructs
23 S=len(basis)
24 L=len(basis [0])
25 result =[[] ,[]]
26 b=list(deepcopy(basis))
27 for x in b:
28 if f(x)==x:
29 result [0]. append ([x])
30 else:
31 result [0]. append ([x,f(x)])
32 result [1]. append ([x,f(x)])
33 b.remove(f(x))
34 return result
35

36 def reorder(ordered ,f):
37 S=len(ordered)
38 L=len(ordered [0])
39 result =[[[] ,[]] ,[[] ,[]]]
40 b=list(deepcopy(ordered))
41 for i in range (2):
42 for x in b[i]:
43 if f(x[0])==x[0]:
44 result[i][0]. append(x)
45 else:
46 result[i][0]. append(x+[f(z) for z in x])
47 result[i][1]. append(x+[f(z) for z in x])
48 try:b[i]. remove ([f(z) for z in x])
49 except:b[i]. remove ([f(z) for z in x[:: -1]])
50 return result
51

52 def constr(basis ,reordered):
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53 S=len(basis)
54 L=len(basis [0])
55 U=np.zeros([S,0])
56 structure =[len(x) for y in reordered for x in y]
57 for i in range (2):
58 for j in range (2):
59 for x in reordered[i][j]:
60 y=np.zeros([S,1])
61 l=len(x)
62 if l==4:
63 for n in range (2):
64 for m in range (2):
65 y[basis.index(x[int(n*l/2+m)])]+=( -1) **(j*n+i

*m)*0.5
66 elif l==2:
67 for n in range (2):
68 y[basis.index(x[n])]+=( -1) **((i+j)*n)/math.sqrt

(2)
69 elif l==1:
70 y[basis.index(x[0]) ]+=1
71 U=np.hstack ((U,y))
72 return (U,structure)

Listing 6.1: symmetries.py

6.2 Spectral Analysis: Unfolding & χ2

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import math
4 from scipy.special import pdtr
5

6 def unfold(nn,E_list):
7 E=E_list
8 l=len(E)
9 print(E[-1]-E[0])

10 E=[(e-E[0])/(E[-1]-E[0]) for e in E ]#E_list ->[0,1]
11 S=[E[i+1]-E[i] for i in range(l-1)]
12 S_n=np.array ([(2* nn+1)*S[i]/(E[i+nn+1]-E[i-nn]) for i in range(nn,l-

nn -1)])
13 return S_n
14

15 def chi2(S_n ,N_bins):
16 x=np.linspace(0,np.amax(S_n),N_bins +1)
17 y_regular=1-np.exp(-x)
18 y_chaos=1-np.exp(-np.pi/4*x**2)
19 value ,bins ,patches=plt.hist(S_n ,bins=x,normed=True ,label="spectrum")
20 plt.clf()
21 mean_c =[ y_chaos[i+1]- y_chaos[i] for i in range(N_bins)]
22 chi_c=sum((mean_c -value*(x[1]-x[0]))**2/ mean_c)
23 mean_r =[ y_regular[i+1]- y_regular[i] for i in range(N_bins)]
24 chi_r=sum((mean_r -value*(x[1]-x[0]))**2/ mean_r)
25 return [chi_c/(N_bins -1),chi_r /(N_bins -1)]

Listing 6.2: unfolding.py
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6.3 Construction of the Fock Basis and the Hamil-

tonian

1 import numpy as np
2 from math import *
3 from copy import deepcopy
4

5 def build(N,L):
6 if L==1:
7 return [[N]]
8 else:
9 M=[[i]+x for i in range(N+1) for x in build(N-i,L-1)]

10 return M
11

12 def H_e(N,U,elist ,Jlist ,jump):#returns hermitean Hamiltonian and
Jumpoperators

13 L=len(elist)
14 basis=build(N,L)
15 S=len(basis)
16 Ham=np.zeros ([S,S])
17 m=deepcopy(basis)
18 #diagonal terms of H
19 for i in range(S):
20 Ham[i][i]=np.dot(elist ,basis[i])+sum([x*(x-1)*U for x in basis[i

]])
21 #offdiagonal terms of H
22 for i in range(0,L-2):#loop over couplings
23 for j in range(S):#loop over basis vectors
24 if m[j][0]!=0:
25 m[j][0] -=1
26 m[j][i+1]+=1
27 y=basis.index(m[j])
28 m[j][0]+=1
29 m[j][i+1] -=1
30 Ham[j][y]+=-sqrt(m[j][0])*sqrt(m[j][i+1]+1)*Jlist [0][i]
31 Ham[y][j]=Ham[j][y]
32 if m[j][ -1]!=0:
33 m[j][-1]-=1
34 m[j][i+1]+=1
35 y=basis.index(m[j])
36 m[j][ -1]+=1
37 m[j][i+1] -=1
38 Ham[j][y]+=-sqrt(m[j][-1])*sqrt(m[j][i+1]+1)*Jlist [-1][i]
39 Ham[y][j]=Ham[j][y]
40 #Jump -operators
41 if jump:
42 jump_op =[]
43 for i in range(L-3):#loop over jump -operators
44 temp=np.zeros([S,S])
45 for j in range(S):#loop over basis vectors
46 if m[j][i+2]!=0:
47 m[j][i+2] -=1
48 m[j][1]+=1
49 y=basis.index(m[j])
50 m[j][i+2]+=1
51 m[j][1] -=1
52 temp[y][j]+= sqrt(m[j][1]+1)*sqrt(m[j][i+2])
53 jump_op.append(temp)
54 return Ham ,jump_op
55 else:
56 return Ham

Listing 6.3: ham_epsilon.py
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6.4 Principle of the Quantum Jump Method

(i) A random η ∈ [0, 1] is obtained through a pseudo-random number generator

(ii) ψ gets propagated in time with the e�ective HamiltonianHe� = H− i
2

∑
i γiA

†
iAi

→ Result: [ψ(ti)] at the time steps ti

(iii) calculate ‖ψ(ti)‖ ∀ti

(iv) if ‖ψ(ti)‖ > η then the renormalized ψ(ti)
‖ψ(ti)‖ is saved in a .txt-�le.

(v) if ‖ψ(ti)‖ ≤ η then a quantum jump will happen.
→ we decide, which one will happen:

1. for each possible Ai we calculate pi = γi 〈ψ(ti)|A†iAi|ψ(ti)〉

2. we calculate the cumulative sum, normalized to unity: Pi =
∑i
j=0 pi∑
j pi

3. another random variable r ∈ [0, 1] is generated

4. when i is the lowest index where r ≤ Pi then jump no. i is executed

5. |Ai|ψ(ti)〉
‖|Ai|ψ(ti)〉‖ is saved in the .txt and used as initial value in the next time

evolution; the following ψ(tj), j > i are discarded

(vii) if no jump occurred the last value of ψ(ti) is used as initial value without
normalizing it

Explicit realization for the initial value "y0" a Hamiltonian "H ", the list of Lind-
blad operators "jump_op" and the corresponding list of rates "gamma":

1 import numpy as np
2 from scipy.integrate import odeint
3 import math
4 from general import wline
5

6 def timeevo_QJ(H,y0 ,tend ,dt,dtmax ,gamma ,jump_op ,savepath):
7

8 #derivative function
9 def fH(y,t):

10 re=np.dot(H,y[l:]) -0.5*np.dot(jumpsum ,y[:l])
11 im=-np.dot(H,y[:l]) -0.5*np.dot(jumpsum ,y[l:])
12 return 2*np.pi*np.hstack ((re,im))
13

14 #initialize evolution
15 file=open(savepath ,mode='w')
16 jumplist =[ gamma[i]*np.dot(jump_op[i].T,jump_op[i]) for i in range(len

(gamma))]
17 jumpsum=np.sum(jumplist ,0)
18 l=len(y0)
19 tnow=0
20 Dt=0
21 start=rv(y0)
22 norm=1
23 ny=np.random.rand (1) [0]
24

25

26 #time -evolution
27 while(tnow <tend):
28 #evolution from tnow untill tnow+Dt
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29 step=min(max(np.log(norm/ny)*Dt ,10*dt),tend -tnow+dt,dtmax)
30 print("t= %s norm( %s / %s ) start new timeevolution with step %s

(Dt= %s )" %tuple(np.round([tnow ,norm ,ny ,step ,Dt],2)))
31 temp=odeint(fH ,start ,np.arange(tnow ,tnow+step ,dt),atol =10**-8,

rtol =10** -8) [1:]
32 start=temp[-1]
33 for x in temp:
34 #calculate norm of x
35 norm=math.sqrt(np.sum(absv(x)))
36

37 #NO JUMP
38 if norm >ny:
39 line=np.hstack ((tnow ,cv(x)/norm))
40 wline(file ,line)
41 tnow+=dt
42

43

44 #JUMP
45 else:
46 #which jump?
47 projection =[np.hstack ((np.dot(op ,x[:l]),np.dot(op ,x[l:]))

) for op in jump_op]
48 p_norm =[np.sqrt(np.sum(absv(projected))) for projected in

projection]
49 p=[ gamma[i]* p_norm[i] for i in range(len(gamma))]
50 p=np.cumsum(p)/np.sum(p)
51 rand=np.random.rand (1)
52 jump_index=np.where(p>rand)[0][0]
53

54 #execute jump
55 print(tnow ,"QUANTUM JUMP NR.:",jump_index)
56 start=projection[jump_index ]/ p_norm[jump_index]
57 line=np.hstack ((tnow ,cv(start)))
58 wline(file ,line)
59 norm=np.sum(absv(start))
60 ny=np.random.rand (1)
61 tnow+=dt
62 break
63 print(tnow ,norm)
64 Dt=dt/np.log(math.sqrt(np.sum(absv(temp [-2])))/math.sqrt(np.sum(

absv(temp [-1]))))

Listing 6.4: time_evo_qj.py
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6.5 Time Evolution for Local Noise

1 from Hamilton_full_epsilon import build ,H_e ,n
2 from Timeevolution_QJ_sym import timeevo_QJ
3 import numpy as np
4 import os
5 from time import process_time as ptime
6 from datetime import datetime
7 from sys import argv
8 from sym import U_S ,transfm ,transfv
9 import pprint

10

11 #HAM -parameters
12 N=24
13 L=4
14 U=1
15 eta =0.3
16 J=1
17 J_list =[[J,J*eta],[J,J*eta]]
18 eps=U*(N/2-1)
19

20 #EVO -parameters
21 t=150
22 dt=0.05
23 kappa =[0.6]
24 startstate =[N/2,0,0,N/2]
25 #indexlist =[231 ,421 ,574 ,694 ,785 ,851 ,896 ,924 ,939 ,945]
26

27

28 #kappa =[0.05]
29

30 #NAME -parameters
31 path="/remote/lin5a/fischer_d/data/noise_sym/N24/"
32 #path="C:\\ Users \\ Rossbach Maler \\ Desktop \\ auswertung \\test \\"
33 name=str(argv [1])+"N"+str(N)+"k"+str(kappa)+"J"+str(J)+"eta"+str(eta)
34

35 pprint.pprint(locals ())
36

37

38 def main():
39 basis=build(N,L)
40 S=len(basis)
41 Ham=H_e(N,U,[0,0,eps ,0],J_list ,False)
42 tm_S ,block_i=U_S([[3,1,2,0]],N,L)
43

44

45 y0=np.zeros([S])
46 y0[basis.index(startstate)]+=1
47 by0=transfv(y0,tm_S ,block_i [1], block_i [2])
48

49

50 bham=transfm(Ham ,tm_S ,block_i [1], block_i [2])
51 bn=transfm(n(2,N,L),tm_S ,block_i [1], block_i [2])
52

53 t1=ptime ()
54 x=np.arange(0,t,dt)
55 timeevo_QJ(bham ,by0 ,t,dt,dt*100,kappa ,[bn],path+name+".txt")
56 t2=ptime ()
57 print(t2 -t1)
58

59 main()

Listing 6.5: local_noise.py
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