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Abstract

Within the topic of large scale structure formation in the early universe,
numerical simulations of the temporal evolution of cold dark matter in an
expanding universe remain an area of current research. The dynamics of
collisionless dark matter as modelled by the Vlasov-Poisson system may be
approximated by the Schrodinger-Poisson system. We investigate the nu-
merical accuracy of a scheme that integrates this Schrodinger method in one
spatial dimension using a Crank-Nicolson finite difference scheme. In par-
ticular, we focus on the non-linear growth regime and find that here, the
solver suffers a significant loss of accuracy. Moreover, we investigate the use
of a dynamic time step and find it capable of alleviating the loss of accuracy,
though it may not be sufficient to allow the solver to resolve a full scale

cosmological simulation in a sufficiently well-behaved and accurate manner.






Zusammenfassung

Auf dem Gebiet der Entstehung grofiskaliger Strukturen in frithen Univer-
sum sind numerische Simulationen zur zeitlichen Entwicklung kalter dunkler
Materie in einem expandierenden Universum weiterhin ein Gebiet aktueller
Forschung. Die Dynamik kollisionsfreier dunkler Materie, modelliert durch
die Vlasov-Poisson-Gleichungen, lasst sich durch die Schrodinger-Poisson-
Gleichusngen aproximieren. Wir untersuchen die numerische Genauigkeit
eines Verfahrens, das diese Schrodinger-Methode in einer Raumdimension
mittels eines Crank-Nicolson-Finite-Differenzen-Verfahrens integriert. Beson-
ders konzentrieren wir uns auf das Regime nichtlinearen Wachstums und
sehen, dass das Verfahren hier erheblich an Genauigkeit einbiifit. Weiter-
hin untersuchen wir die Nutzung eines dynamischen Zeitschrittes, welcher es
zwar gelingt den Genauigkeitsverlust zu lindern, die jedoch nicht zwingend
ausreichend ist, um es dem Verfahren zu gestatten, eine vollstandige kosmol-

ogische Simulation auf ausreichend ordentliche und genaue Weise aufzulésen.
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Chapter 1

Introducing the 1D SPS solver

The complex dynamics of the expanding universe and the matter within is
often prohibitive to an analytical approach. In order to test theories and
make predictions beyond perturbation theory [1], numerical simulations are
therefore an important tool in cosmology. We will firstly recount the basic
principles of cosmic structure formation before introducing the Schrodinger-
Poisson method as a way of approximating self-gravitating, collisionless dark
matter and elaborating on the Predictor-Corrector Crank-Nicolson scheme
employed to integrate the Schrodinger-Poisson system in one spatial dimen-
sion.

The model we use for the numerical simulation of the formation of large-
scale structures in an expanding universe is based on several simplifying
assumptions. First, we assume that since dark matter greatly outweighs
baryonic matter according to astronomical observations, it will dominate the
process of structure formation. Thus, we model all matter as cold, dark and
collisionless. Second, we split the dark matter density into a homogeneous
background and an initially small perturbation from which structure will

evolve:
p(t,r) = pn(t) (1+4(t,1)). (1.1)
Here we take p,,(t) to be the average matter density

pm(t) = (p(t,%)) , (1.2)
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which implies that
(0(t,r)) = 0. (1.3)

For the sake of the expansion of the universe, we will ignore the pertur-
bative part and resolve the equation of general relativity for a homogeneous,
isotropic universe. Within this expanding universe, the evolution of cold,
dark matter can be modelled using Newtonian mechanics since the gravi-
tational fields involved are sufficiently weak and the velocities involved are

non-relativistic [2].

1.1 The ACDM universe

The ACDM model of the expanding universe can be found using Einstein’s
equations in the presence of a cosmological constant A under the assumptions
of homogeneity and isotropy. The relevant solution of Einstein’s equations
is the Robertson-Walker metric [6] for a spatially flat universe, where the
expansion of the universe is governed by a time-dependent scale factor a (t)

which is defined such that a = 1 at present time and whose evolution obeys

H(t) = (9)2 = H{ (Qmoa® + Qo) | (1.4)

where H(t) denotes the Hubble parameter, Hy the Hubble constant at
present time, €2, the matter density parameter and 25, the dark energy
density parameter arising from the cosmological constant A.

Note that we regard the matter-dominated era of the universe for struc-
ture formation, which is why we dropped contributions from radiation.

The density parameters are defined as

Pmo G
Qo = = —Pm 1.5
0 20 3H§P 0 ( )
and A2
C
= — 1.
AO 3H3’ ( 6)



where the critical density p.g is given by

3
PcO0 = 87TG

(1.7)

and G is the gravitational field constant, p,, the average matter density at
present time and c¢ the speed of light.
Observational data from the Planck Collaboration [3] places the values of

the present time matter density parameter at
Qo = 0.308 (1.8)

while Q5 can then be computed by solving (1.4)) for a = 1, in which case
H = Hy and thus

Qro =1 — Qo = 0.692. (1.9)

Since space in a ACDM universe is constantly expanding, it is useful

to introduce comoving coordinates when talking about distances and the

positions of objects. The physical position r is then given by
r(t) = a(t)x(t) (1.10)

in terms of the comoving position x(t).
As comoving distances do not increase with the expansion of space, the

average matter density in the comoving frame will remain constant:

(p(t, %)) = pm(t) = pmo- (1.11)

Another quantity commonly used in astronomy is the cosmological red-

shift z, which relates to the scale factor a as

1
= - —1. 1.12
i= (1.12)

1.2 The Vlasov-Poisson system

In the expanding universe, the motion r of an object at position r relative to

an observer at r = 0 separates into a recession velocity due to the expansion



of space and a peculiar velocity in respect to the comoving frame:
= (ax) = ax + ax. (1.13)

In the comoving frame, the expansion is factored out and only the peculiar
velocity ax remains.
Using this, we write down the classical Lagrangian of a dark matter par-

ticle of mass m moving in a gravitational potential V' (¢,x) in the comoving

frame.
. m .\2
£(x,%,t) = 5 (ax)” — mV(t,x) (1.14)
or, using conjugate momentum and velocity
0L
mu=p= o = ma’x, (1.15)
£(x,u,t) = w2 mV (t,x). (1.16)
Y Y 2a2 Y

Due to symmetry, the homogeneous part of the matter density does not
contribute to the gravitational potential apart from a constant. This is be-
cause any contribution with non-vanishing gradient would yield a preferred
direction and thus violate isotropy. Thus, the gravitational potential V' (¢, x)
in which the dark matter moves is defined by

. 47TGpm0

ALV (L, x) 5(t,x). (1.17)

a

As we model dark matter as collisionless, it is clear that just monitoring
the density may be insufficient to fully capture the dynamics of, for example,
the gravitational collapse of a dark matter halo, where streams of dark matter
with different velocities may meet.

For studying the temporal evolution of dark matter, we will thus use the

phase space density f(¢,x,u) which must fulfill

/dgu f(t,x,u) = plx) 14 0(t, x). (1.18)

Pmo
A classical description of collisionless matter subject to its own gravity is
given by the Vlasov-Poisson system (VPS). It describes the evolution of the

phase-space distribution f(¢,x,u) as follows:
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O f = —%-foJrVEV-Vuf, (1.19)

AV = TCPmo (/d3uf - 1) . (1.20)

a

As the VPS is, in essence, a collisionless Boltzmann equation in the pres-
ence of an external force defined by the potential V', it can similarly be
derived as an ensemble average of an N-particle system or by starting at the

phase-space trajectories and applying Liouville’s theorem |7}, 8].

1.3 The Schrodinger method as a VPS ap-

proximation

It was shown in [7] that the VPS may be approximated in a specific way
using the so-called Schrodinger method.

We introduce the coupled Schrédinger-Poisson system (SPS) for the com-
plex scalar field .

Db (t, x) = [—Q%A TV, x)} W(t,x), (1.21)
_ 4G pino |¢(t7X)|2 .
AV(t,x) = = ((\w(t,x)|2> 1) . (1.22)

Here, p is a free parameter which will determine the phase space resolution
of the model. We also introduce the Husimi distribution fy which is given

as the square amplitude of the Husimi representation ¢y of 1.

fu(t,x,u) = [y (t,x,u)|? (1.23)
where
! 1 x—y)? i
Yy (t,x,u) = (27w)% (27“7%)% /d3y exp (—T‘g — ;u . y) Y(t,y).
(1.24)



It can then be shown analytically that the temporal evolution of the
Husimi distribution is, up to terms of O(u?), equivalent to a coarse-grained
Vlasov-Poisson system for a phase space distribution f smoothed by a Gaus-

sian filter as such:

f _ ! 3yd3v ex ——<X_Y)2 ex —2;"% u-—v)? v
ft.x,u) = ) /d yd p( 202 > p( 2 ( ) )f(t,y, ).
(1.25)

We say that the Husimi distribution approximates the coarse-grained

Vlasov-Poisson system in the following way:
0, (F — fu) = OG2). (1.26)

A full analytical proof of this Husimi-Vlasov correspondence may be found

in 7] and a numerical study in two spatial dimensions in [4]

1.4 The PC-CNFD Schrodinger-Poisson Solver
for 1D

We will now introduce the Predictor-Corrector Crank-Nicolson solver de-
veloped in [8] which integrates the SPS in one spatial and one temporal
dimension using a Crank-Nicolson finite difference scheme.

The solver uses the following dimensionless coordinates:

113

N

dé¢ = — | =H3Qpo| dz, (1.27)
lu,i _2 ]
1 [3 13

dr = = _§H§Qm0_ dt, (1.28)

which allow the wave function and gravitational potential to be rescaled

in the following way:

(T,

)
U(r €)= —nDS) 1.29
"= e em (129
Ulr, ):%E ngo]_2V(T,§). (1.30)
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We can then rewrite the Schrodinger-Poisson equations ([1.21)) and ([1.22))
for one spatial dimension in said coordinates to get a set of dimensionless

equations for the rescaled ¥ and U.

, 1
10,V = {—iag + aU} v, (1.31)
U = [V]* — 1. (1.32)

The solver integrates these equations on a 2D space-time interval
[07 L] X [O, Tend] (133)

with periodic boundary conditions for the spatial dimension. Here L is the
size of the spatial domain and 7.,4 the final simulation time.

On this interval, ¥ and U are evaluated on a N x M space-time mesh,
giving a uniform spatial grid with /N points and a uniform temporal grid with
M points. An alternative way of characterizing this mesh is the spatial grid

resolution A¢ and the time step size Ar.

o L _ Tend
Ag = &, Ar = (1.34)

The Laplace operator is approximated up to second order in A using

the central finite difference method:

0’ F(€— A —2F(8) + F(E+ Af)

S F(©) = A

e + O(AE?). (1.35)

The thus discretized operator takes the form of a cyclic tridiagonal N x N
matrix, making it possible to solve for U using a modified version of
the Thomas algorithm for tridiagonal matrices [8].

The unitary time evolution operator is approximated using the Cayley

form

. —1 .
U(r + AT, 7) =~ (1 + HZATT) (1 - HZATT> : (1.36)

1 T+AT . )
H(r+ A7, 7) = E/ dr" H(7'), (1.37)



which, after discretizing the Laplace operator as before, gives rise to an
implicit Crank-Nicolson scheme capable of solving the SPS up to second
order in A¢ and Ar.

(1 + HZATT) U(r+ A7) = (1 - HZATT) U(r), (1.38)

where we use the approximation

H(r + A7, 7) = —%825 + % (a(T)U(7) + a(t + AT)U(T + AT)) + O(AT?).
(1.39)

However, instead of solving the set of nonlinear equations given by ,
the scheme is employed in a predictor-corrector fashion, where in a first cycle,
the predictor cycle, is solved after setting U(7 + A7) = U(7) to reach
a predicted wavefunction ¥(7 + A7) and a predicted potential U( + A7) by
solving . U is used in a second cycle, the corrector cycle, where we set
U(t + A7) = U(r + A7). The resulting wave function is then taken to be
V(T + AT).

Avoiding the computationally expensive direct solution of allows
the solver to integrate each time step using O(NV) operations. This gives the
solver a total time complexity of O(N - M) for a full integration of the SPS
on the 2D mesh, and its accuracy can be shown to be O(A&? AT?).

A scheme for the construction of cosmological initial conditions is also
provided in [§]. The initial density contrast § takes the form of a random
Gaussian field which is constructed in Fourier space, where the different per-
turbation modes do not correlate. While the phases of the different Fourier
modes are distributed uniformly, the absolute values obey a Rayleigh distri-
bution with a frequency-specfic variance depending on the continuous matter
power spectrum. The contructed cosmological initial conditions thus depend
directly on L, N since these determine the contributing frequencies in Fourier

space.
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Chapter 2

Numerical Tests

2.1 Standard Convergence Tests

The truncation error is the accumulated error due to the numerical scheme,
including approximations such as the discretization of continuous variables,
functions and operations. For example, the solver we use approximates
derivatives using second order finite differences. As such, contributions of
AE?% and higher orders will appear in the truncation error. The truncation
error is defined as the difference between the true solution of the problem and
its numerical approximation in some norm. We thus introduce the discretized

Lo norm

Iw]l, = (%Dwmsn?) (21)

to define the truncation error
€= ||\Ijtrue - \I/num||2 (22)

where W,,.,,, is the discretized wave function resulting from the numerical
scheme and W,,,. is the discretized solution to the SPS .
The PC-CNFD method introduced in section [1.4)is approximately O(A&2, At?).
Therefore, we can, for a given set of simulation parameters find constants Cy
and C; so that
€ < Ce- (AL + Cr - (Ar)? (2:3)

11



for all sufficiently small A, Ar.
Since Wy, is unknown, the truncation error € can only be approximated.
We do this by choosing a reference solution V¥,.s computed using an appro-

priately fine space-time mesh and then taking

€approx = H‘Pref - \IjnumHQ (24)

as an approximation for the true truncation error. Since

|‘E - 6approac| S H‘Ptrue - \I]refH% (25)

this approximation will naturally be more accurate the better V,., approxi-
mates Vi ye-

For cosmological initial conditions, the approximate truncation error can
only be used in a limited way. Since varying the number of points on the
spatial grid also changes what frequency modes of the matter power spectrum
contribute to the initial conditions, initial conditions for a finer grid do not
equate to simply a finer sampling of the same initial conditions. Thus it is,
as is, not easily possible to gauge the impact of the number of grid points
on the numerical accuracy of the solver using this method as the reference
solution W,.r must have the same number of grid points as the numerical

solution W,,,,, to be tested.

2.2 Layzer-Irvine Test

Another test for the numerical accuracy of the SPS solver was introduced in
[4, 8]. The Layzer-Irvine test is a global energy test taking its name from the
Layzer-Irvine energy equation. Since total energy is not actually conserved
in the comoving, non-inertial frame in an expanding universe, it obeys a
non-trivial time dependence which we will briefly outline here:
We begin by separating the total energy per mass E into kinetic and
potential terms K and W:
E=K+W. (2.6)
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These terms can, according to (|1.21]), be expressed as

K= [a e nr =y [avaenr e
and
W= /dx Vi, Oz, 82 = C. 1 /ng ENUED?E  (28)
where 1
<|¢ 7,€)] >{ H{Q mor (2.9)

is a constant that results from rewriting the above expressions in dimension-
less coordinates according to (1.27) and inserting the rescaled wave function

and potential ((1.29} [1.30)).

Time derivation of the total energy per mass gives

dE a
—=—02K+W 2.10
—=-2eK+W), (210)

which coincides with Layzer-Irvine energy equation for a classical homoge-
neous matter distribution in an expanding universe [5] due to the kinetic and
potential energy terms scaling with a in the same way.

After rewriting this as < (aE) = — K, we can define the error

% (aF)
—-K

—1 (2.11)

€ =

which can then be computed using numerical integration and five-point sten-
cil finite differences to O(A&?).
This Layzer-Irvine test monitors the relative error of the change in total

energy due to the expansion of the universe.

2.3 Local Schrodinger Test

Since the solver is designed to integrate the SPS, it may also be viable to
test whether equation ((1.31)) holds. This gives us a local test by computing

for a given point in spacetime the difference between the left and right side

13



of the dimensionless Schrédinger-Poisson equation relative to the amplitude
of the rescaled wave function ¥ in that point.

We define the average relative error

_ <|[¢aT + %"— aU]\I/|> (2.12)

which we compute using finite differences up to O(A&*, Art).
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Chapter 3

Probing the Non-Linear
Growth Regime

3.1 Numerical Accuracy in the Non-Linear
Regime

It was shown in [§] that for cosmological initial conditions, the results of the
solver are in good agreement with the predictions of perturbation theory in
the linear growth regime. As structure formation takes place largely in the
non-linear growth regime, we want to test whether the solver can accurately
solve the SPS outside the linear growth regime. As a first test, we use simu-
lation parameters as recommended in [8] for a simulation with cosmological

initial conditions:
o= 10—123—3, L =250Mpch™, N =2%, (3.1)
For the time step, we take a base value of
AT =0.004 (3.2)

which is decreased by a factor of two in each of the three subsequent runs.
This is equivalent to doubling the number of grid points M of the temporal
grid.
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€trunc
AT = 0.004
AT = 0.002
1 —— A7 =0.001
1071 4
1072 E
1073 4
T T T T T T T T T T T T T L |
1072 107! 10°
a

(a) Truncation error

We see from the truncation error (see Figure that at the onset of
the non-linear regime, the solver sees a significant and rapid loss in accuracy.
A smaller time step delays this, but does not seem to stop or even alleviate
it. The results of the Schrodinger test agree with this observation somewhat,
even if the drop in accuracy is registered at a later point in the simulation.

The Layzer-Irvine test, however, shows no loss of accuracy of this degree
and the corresponding error stays below 1% throughout the entire simulation.

This suggests firstly that the solver may not converge towards the true
solution in a controlled way within the non-linear regime for the chosen pa-
rameters. Secondly, it appears that the Layzer-Irvine test is not sensitive to
the loss of accuracy we experience as we leave the linear growth regime, mak-

ing it less useful for assessing whether our solution converges with A2, Ar2.
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1072 { == A7 =0.004
—— A7 =0.002
—— A7 =10.001
107% 4 —— A7 =0.0005 "
1 i [ ‘
] ""”\[”l‘“
w4 R
] “ '
1077 5 \
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L T T T T T T T T T
1072 a 1071 10°
(b) Layzer-Irvine test
€sp
L] = Ar=o0.004
1074 — Ar=0.002
] — Ar=0.001
10° - AT = 0.0005
102 4
10' 4
10° 3
. T ™ T T T T T T
1072 1071 10°

a

(c) Local Schrédinger test

Figure 3.1: Results for the different numerical tests introduced in chapter

To approximate the truncation error, the numerical solution for the smallest

time step used (A7 = 0.0005) was used as reference wave function W,.;.

From the results of [8] we expect the linear growth regime to last until at
least z = 100.
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3.2 Testing Numerical Accuracy for fixed a

If we want to study the behaviour of the solver in the non-linear growth
regime more in depth, it is prudent to remind ourselves that the non-linearity
in the SPS comes from the contribution of the gravitational potential, the
term aU in (|1.31)).

The impact of this term increases with a as the universe expands and with
U as initially small perturbations in the matter distribution grow. To better
understand in what way each of these affect numerical accuracy, we set the
scale factor a to one fixed value a.,ns for the entirety of the simulation. This
allows us to better study under which conditions the non-linear contributions
may or may not affect the accuracy of the solver.

Physically, running the simulation with fixed a represents simulating a
non-expanding, static universe. Numerically, it fixes the strength of the non-
linear gravitational interaction, allowing us to gauge in which regimes our
solver remains stable.

As increasing the point densities of the spatial and temporal grids comes
with an increase in required computational resources, we will, for the sake
of this thesis, not be able to provide these tests for a full-scale cosmological

simulation. We take the following non-varying parameters:

Js

p=10"12 e L =2.5Mpch™. (3.3)

We choose a base grid size of
N =2 (3.4)

and vary grid size by doubling the number of grid point for each of three

consecutive finer spatial grids. Additionally, we choose a base time step of
AT = 0.0008 (3.5)

which is halved each time for the three smaller time steps.

For the constant scale factor, we choose a base value
Qeonst — 0.02 (36)

with two higher values of a..ns achieved by doubling this value.

18



10*

103

102

10t

104
108
102

10t

10*
103
102

10"

104
108
102

10t

Schrodinger Test Truncation Error
1N = 2P — A7 = 0.0008
1071 E — A7 =0.0004
] —— A7 = 0.0002
] — A7 =0.0001
T T T T 1072 4§ T T T
JN =2
E 1071 4
T T T T 1072 45 T T T
] N = 217
1071 4
T T T T 1072 1 T T T
| N =2"
1” 107" 4
T T T T 1072 T T T
0 10 20 30 0 10 20 30

(a) Aeonst — 0.02

19




10*

103

102

10t

104
108
102

10t

10*
103
102

10"

104
108
102

10t

Schrodinger Test

Truncation Error

m— A7 = 0.0008
— A7 =0.0004
— A7 =0.0002
— A7 =0.0001

[N =2
107" 4
L ————
T T T T 1072 4 T
| N =216

\

E 1071 5
T T T T 1072 H T
] N = 217
E | 1071 A
J
T T T T 1072 1 T
] N . 218 /
F 1071 5
T T T T 1072 T
0 10 20 30 0 10

(b) Qconst — 0.04

20

20 30




Schrodinger Test Truncation Error
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Figure 3.2: Results of the Schrédinger test and truncation error for simulation

runs with different fixed scale factors aconst-
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Tena 18 chosen such that [0, 7.,4] corresponds to a time frame from z = 200
to z = 0 in an expanding universe. More details on the relation between
superconformal time 7 and scale factor a may be found in [§].

The Layzer-Irvine test is not used here as the Layzer-Irvine equation does
not apply in a static universe where a remains constant.

Of note is that the value of a..,s has little effect on numerical accuracy
at simulation start, suggesting that the main reason for loss of accuracy in
the non-linear regime is, in fact, mostly due to the growth of the initial
perturbations, which happens earlier and faster for larger @,y

Increasing spatial resolution seems to have only limited effect under our
conditions, though it may be more effective for larger domains. The effect of
varying the time step seems to be more pronounced for smaller spatial grids.

Generally, for a good spatial resolution, it seems more useful to vary the

time step to improve accuracy rather than to go to a finer spatial grid.

3.3 Adaptive Time Step

One way to improve the numerical accuracy of the solver suggested in [8]
is the implementation of a dynamically chosen time step instead of a static
time step.

We do this by introducing a coarser, uniform temporal grid to allow the
synchronisation of simulations using different and varying time steps. At
each step of the coarse grid, we evaluate all relevant time scales to arrive
at a target time step, based upon which the refinement of the coarse grid is
chosen.

Let My be the number of grid points in the coarse grid. The ith step of
the coarse grid corresponds to the time

.Tend

T = 1
My

(3.7)

We refine the coarse grid by dividing the interval [7;, 7;11] into m; steps, where
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we choose m; such, that the dynamic time step
Ti+1 — T4
ATgyn = ———- 3.8
dyn m; ( )
is close to the target time step.
We will now introduce some examples for time scales that may be used

in determining such a dynamic time step.

3.3.1 The Free Fall Time Scale

We first introduce the free fall time scale, defined here as the time needed

for a uniform spherical overdensity pop to collapse completely according to
classical Newtonian mechanics ((1.19)).

Solving the equations of motion in one spatial dimension yields the free

/ 2
ttreefall = -~ 3.9
freefall 4rGpop (3.9)

which we rewrite by transforming to dimensionless coordinates and replacing

fall time

the density contrast with the wave function amplitude:

2

Tfreefall = (WP =1 (3.10)

From this we can define the free fall time step up to a parameter C'tyeefau

1
AT reefa :Cree a 3.11
prectt = Creesats o = 1) (3.11)

!
where Clreefan < V2.
We use
C'treefan = 0.002. (3.12)

3.3.2 The Flow Time Scale

For a specific velocity u, the spatial resolution Ax gives a natural flow time
scale

Ax
Erlow = —— . 3.13
£l " (3.13)
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We define, within our system of dimensionless coordinates, the dimensionless

velocity
1
113 e
v=—1 {— ngo] u (3.14)
M§ 2
which gives us an expression of the flow time scale in code units:
Ag
ow = ——. 3.15
Thow = —5° (3.15)

From the Husimi distribution, we can find that the average velocity at a
given position is

(v) = 0o (3.16)

where ¢ is the phase of the wave function:
U = VA (3.17)

We can thus define the flow time step

A¢

—_— 1
a? maxg |O¢¢| (3.18)

A7—flow = CVflow

|
with a free parameter Clp, < 1.
We use
Cliow = 0.5. (3.19)

3.3.3 Constant Physical Time

Since the dimensionless superconformal time 7 defined in ([1.28]) relates to
the physical time t in a non-linear fashion, we may introduce a time scale

defined such that the corresponding physical time remains constant.
We define
Arepr = Copr-a™ (3.20)

where Copr is a free parameter.
We use
Copro=5-107°. (3.21)
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3.3.4 Effects on Numerical Accuracy

To gauge the effect of using a dynamic time step, we will first include a

control run using a static time step of
AT = 0.001. (3.22)

The second simulation will use a dynamic time scale combining free fall time

and flow time
ATgyn = min {ATgaric, ATrreetail, ATfiow} (3.23)
while a third run will use the CPT scale
ATgyn = min {ATsatic, ATopr}. (3.24)

Finally, to be able to approximate the truncation error, we will use a
static time step of
AT = 0.000125 (3.25)

to compute a reference wave function.

In addition, we set the following parameters for all simulations:

= 10*12£, L =10Mpch™!, N =28 (3.26)
eV

As the onset of the dynamic time step for combined free fall and flow time
scales happens well in the regime where the numerical solutions drift apart,
it cannot prevent the increase in truncation error, though it does reduce its
growth greatly once it sets in (See Figure . The CPT scale, setting in
at an earlier time, manages to suppress and delay the loss of accuracy to a
greater degree, though it does not prevent it completely. Whether this is due
to a growing error despite increasingly smaller time steps or due to the error
in the approximation of the truncation error itself is not possible to discern
at this point. In particular, the approximation of the truncation error is

connected to the error of the reference wave function (2.5)), which may not

be sufficiently small here as A7y, becomes smaller than the time step AT =
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Figure 3.3: Evolution of the different dynamic time steps. Note that the
CPT scale follows the power law o< a=2. The combined time scale of freefall

time and flow time scale follows a relation closer to o< a~%.

0.000125 used to compute the reference wave function. We can, however, see
that using an adaptive time step is a promising avenue to increase numerical
accuracy, even if the different time scales must be carefully chosen in order
to anticipate and prevent the sharp drop in accuracy the static time step
experiences at the onset of the non-linear growth regime.

Another observation of of note is that directly after the onset of both
dynamic time scales, the local Schodinger test registers a temporary loss of
accuracy before an improvement is seen. It is possible that the change in
time step upsets the numerical scheme such that accuracy is indeed lost for
a transition period. It may also be that this is due to a larger error assigned
to time step sizes in that particular interval by the test as it also indicates
the reference time step of A7 = 0.000125 to possess a larger error. It may
be possible to discern which of these is true by modifying the dynamic time
step such that A7 changes more gradually during the transition from static

to dynamic time scales.
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(c) Local Schrodinger test

Figure 3.4: Results for the different numerical tests for simulations using a
dynamic time step. Note that the graphs overlap due to using the same time
step as long as the dynamic time scales are larger than the static time step
A7 = 0.001. Again, the Layzer-Irvine test shows little sensitivity to, e.g. the

changing time steps.
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Chapter 4
Conclusion

The tests we performed indicate that while the solver does indeed provide
good results for the linear growth regime, it may not be feasible to use it
to accurately integrate the non-linear growth regime as refining the space-
time mesh may not been sufficient to overcome the growing inaccuracies that
occur there. While a carefully chosen dynamic time step can alleviate this
problem without an unreasonable growth in computation time, this may not
be enough for a large-scale simulation to remain stable throughout the full
simulation time.

Of course, our results are mainly qualitative and we can see that the tests
we used have limitations that must be overcome should we desire to refine
our results to come to a more definite conclusion onto whether and for which
parameters the SPS solver can provide accurate results.

Using the truncation error has given us perhaps the clearest results, how-
ever its main drawback is, as addressed previously, that without an existing
analytic solution, we can only approximate the error for a given solution
using a sufficiently more accurate reference solution that must be computed
separately. This may, particularly for tests involving already very fine meshes
in space or time, such as when investigating dynamic time steps, prove pro-
hibitively expensive in terms of computational resources required.

The problem of using the Layzer-Irvine test to gauge numerical accuracy
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is that as seen, even when two solutions of the same initial conditions fulfill
the energy equation tested to a high degree, those solutions may still diverge
from one another without this being reflected in the energy test. This in-
sensitivity makes it difficult to use the test when tackling the problem of
accuracy within the non-linear growth regime.

The local Schrodinger test is difficult to interpret since its behaviour for
different N, M is somewhat counterintuitive. In particular, the averaged
local error seems to grow as A decreases, and for high spatial resolutions,
said error may sometimes be smaller for larger A7. Whether this mirrors
the actual accuracy, which might change in an unexpected way due to higher
order terms or whether this is a defect of the test is a priori not clear.

It may be possible to improve the local Schrodinger test by computing
the Ly norm of the difference between the left hand side and the right hand
side of equation instead of taking a weighted average over all points
in space. Such a quantity could possibly be interpreted as an approximation
of the truncation error introduced in each time step divided by the time step
size AT.

The simplest way of improving the data obtained and their quantitative
significance in particular would of course be to take for each set of tests the

average over multiple simulations using the same parameters.
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