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Abstract

Within the topic of large scale structure formation in the early universe,

numerical simulations of the temporal evolution of cold dark matter in an

expanding universe remain an area of current research. The dynamics of

collisionless dark matter as modelled by the Vlasov-Poisson system may be

approximated by the Schrödinger-Poisson system. We investigate the nu-

merical accuracy of a scheme that integrates this Schrödinger method in one

spatial dimension using a Crank-Nicolson finite difference scheme. In par-

ticular, we focus on the non-linear growth regime and find that here, the

solver suffers a significant loss of accuracy. Moreover, we investigate the use

of a dynamic time step and find it capable of alleviating the loss of accuracy,

though it may not be sufficient to allow the solver to resolve a full scale

cosmological simulation in a sufficiently well-behaved and accurate manner.





Zusammenfassung

Auf dem Gebiet der Entstehung großskaliger Strukturen in frühen Univer-

sum sind numerische Simulationen zur zeitlichen Entwicklung kalter dunkler

Materie in einem expandierenden Universum weiterhin ein Gebiet aktueller

Forschung. Die Dynamik kollisionsfreier dunkler Materie, modelliert durch

die Vlasov-Poisson-Gleichungen, lässt sich durch die Schrödinger-Poisson-

Gleichusngen aproximieren. Wir untersuchen die numerische Genauigkeit

eines Verfahrens, das diese Schrödinger-Methode in einer Raumdimension

mittels eines Crank-Nicolson-Finite-Differenzen-Verfahrens integriert. Beson-

ders konzentrieren wir uns auf das Regime nichtlinearen Wachstums und

sehen, dass das Verfahren hier erheblich an Genauigkeit einbüßt. Weiter-

hin untersuchen wir die Nutzung eines dynamischen Zeitschrittes, welcher es

zwar gelingt den Genauigkeitsverlust zu lindern, die jedoch nicht zwingend

ausreichend ist, um es dem Verfahren zu gestatten, eine vollständige kosmol-

ogische Simulation auf ausreichend ordentliche und genaue Weise aufzulösen.
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Chapter 1

Introducing the 1D SPS solver

The complex dynamics of the expanding universe and the matter within is

often prohibitive to an analytical approach. In order to test theories and

make predictions beyond perturbation theory [1], numerical simulations are

therefore an important tool in cosmology. We will firstly recount the basic

principles of cosmic structure formation before introducing the Schrödinger-

Poisson method as a way of approximating self-gravitating, collisionless dark

matter and elaborating on the Predictor-Corrector Crank-Nicolson scheme

employed to integrate the Schrödinger-Poisson system in one spatial dimen-

sion.

The model we use for the numerical simulation of the formation of large-

scale structures in an expanding universe is based on several simplifying

assumptions. First, we assume that since dark matter greatly outweighs

baryonic matter according to astronomical observations, it will dominate the

process of structure formation. Thus, we model all matter as cold, dark and

collisionless. Second, we split the dark matter density into a homogeneous

background and an initially small perturbation from which structure will

evolve:

ρ(t, r) = ρm(t) (1 + δ(t, r)) . (1.1)

Here we take ρm(t) to be the average matter density

ρm(t) = 〈ρ(t,x)〉 , (1.2)
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which implies that

〈δ(t, r)〉 = 0. (1.3)

For the sake of the expansion of the universe, we will ignore the pertur-

bative part and resolve the equation of general relativity for a homogeneous,

isotropic universe. Within this expanding universe, the evolution of cold,

dark matter can be modelled using Newtonian mechanics since the gravi-

tational fields involved are sufficiently weak and the velocities involved are

non-relativistic [2].

1.1 The ΛCDM universe

The ΛCDM model of the expanding universe can be found using Einstein’s

equations in the presence of a cosmological constant Λ under the assumptions

of homogeneity and isotropy. The relevant solution of Einstein’s equations

is the Robertson-Walker metric [6] for a spatially flat universe, where the

expansion of the universe is governed by a time-dependent scale factor a (t)

which is defined such that a = 1 at present time and whose evolution obeys

H2(t) =

(
ȧ

a

)2

= H2
0

(
Ωm0a

3 + ΩΛ0

)
, (1.4)

where H(t) denotes the Hubble parameter, H0 the Hubble constant at

present time, Ωm0 the matter density parameter and ΩΛ0 the dark energy

density parameter arising from the cosmological constant Λ.

Note that we regard the matter-dominated era of the universe for struc-

ture formation, which is why we dropped contributions from radiation.

The density parameters are defined as

Ωm0 =
ρm0

ρc0
=

8πG

3H2
0

ρm0 (1.5)

and

ΩΛ0 =
Λc2

3H2
0

, (1.6)
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where the critical density ρc0 is given by

ρc0 =
3H2

0

8πG
(1.7)

and G is the gravitational field constant, ρm0 the average matter density at

present time and c the speed of light.

Observational data from the Planck Collaboration [3] places the values of

the present time matter density parameter at

Ωm0 = 0.308 (1.8)

while ΩΛ0 can then be computed by solving (1.4) for a = 1, in which case

H = H0 and thus

ΩΛ0 = 1− Ωm0 = 0.692. (1.9)

Since space in a ΛCDM universe is constantly expanding, it is useful

to introduce comoving coordinates when talking about distances and the

positions of objects. The physical position r is then given by

r(t) = a(t)x(t) (1.10)

in terms of the comoving position x(t).

As comoving distances do not increase with the expansion of space, the

average matter density in the comoving frame will remain constant:

〈ρ(t,x)〉 = ρm(t) = ρm0. (1.11)

Another quantity commonly used in astronomy is the cosmological red-

shift z, which relates to the scale factor a as

z =
1

a
− 1. (1.12)

1.2 The Vlasov-Poisson system

In the expanding universe, the motion ṙ of an object at position r relative to

an observer at r = 0 separates into a recession velocity due to the expansion
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of space and a peculiar velocity in respect to the comoving frame:

ṙ = ˙(ax) = ȧx + aẋ. (1.13)

In the comoving frame, the expansion is factored out and only the peculiar

velocity aẋ remains.

Using this, we write down the classical Lagrangian of a dark matter par-

ticle of mass m moving in a gravitational potential V (t,x) in the comoving

frame.

L(x, ẋ, t) =
m

2
(aẋ)2 −mV (t,x) (1.14)

or, using conjugate momentum and velocity

mu = p =
∂L

∂ẋ
= ma2ẋ, (1.15)

L(x,u, t) =
m

2a2
u2 −mV (t,x). (1.16)

Due to symmetry, the homogeneous part of the matter density does not

contribute to the gravitational potential apart from a constant. This is be-

cause any contribution with non-vanishing gradient would yield a preferred

direction and thus violate isotropy. Thus, the gravitational potential V (t,x)

in which the dark matter moves is defined by

∆xV (t,x) =
4πGρm0

a
δ(t,x). (1.17)

As we model dark matter as collisionless, it is clear that just monitoring

the density may be insufficient to fully capture the dynamics of, for example,

the gravitational collapse of a dark matter halo, where streams of dark matter

with different velocities may meet.

For studying the temporal evolution of dark matter, we will thus use the

phase space density f(t,x,u) which must fulfill∫
d3u f(t,x,u) =

ρ(t,x)

ρm0

= 1 + δ(t,x). (1.18)

A classical description of collisionless matter subject to its own gravity is

given by the Vlasov-Poisson system (VPS). It describes the evolution of the

phase-space distribution f(t,x,u) as follows:
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∂tf = − u

a2
· ∇xf +∇xV · ∇uf, (1.19)

∆xV =
4πGρm0

a

(∫
d3uf − 1

)
. (1.20)

As the VPS is, in essence, a collisionless Boltzmann equation in the pres-

ence of an external force defined by the potential V , it can similarly be

derived as an ensemble average of an N -particle system or by starting at the

phase-space trajectories and applying Liouville’s theorem [7, 8].

1.3 The Schrödinger method as a VPS ap-

proximation

It was shown in [7] that the VPS may be approximated in a specific way

using the so-called Schrödinger method.

We introduce the coupled Schrödinger-Poisson system (SPS) for the com-

plex scalar field ψ.

iµ∂tψ(t,x) =
[
− µ

2a2
∆ + V (t,x)

]
ψ(t,x), (1.21)

∆V (t,x) =
4πGρm0

a

(
|ψ(t,x)|2

〈|ψ(t,x)|2〉
− 1

)
. (1.22)

Here, µ is a free parameter which will determine the phase space resolution

of the model. We also introduce the Husimi distribution fH which is given

as the square amplitude of the Husimi representation ψH of ψ.

fH(t,x,u) = |ψH(t,x,u)|2 (1.23)

where

ψH(t,x,u) =
1

(2πµ)
3
2

1

(2πσ2
x)

3
4

∫
d3y exp

(
−(x− y)2

4σ2
x

− i

µ
u · y

)
ψ(t,y).

(1.24)
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It can then be shown analytically that the temporal evolution of the

Husimi distribution is, up to terms of O(µ2), equivalent to a coarse-grained

Vlasov-Poisson system for a phase space distribution f̄ smoothed by a Gaus-

sian filter as such:

f̄(t,x,u) =
1

(πµ)3

∫
d3yd3v exp

(
−(x− y)2

2σ2
x

)
exp

(
−2σ2

x

µ2
(u− v)2

)
f(t,y,v).

(1.25)

We say that the Husimi distribution approximates the coarse-grained

Vlasov-Poisson system in the following way:

∂t
(
f̄ − fH

)
= O(µ2). (1.26)

A full analytical proof of this Husimi-Vlasov correspondence may be found

in [7] and a numerical study in two spatial dimensions in [4]

1.4 The PC-CNFD Schrödinger-Poisson Solver

for 1D

We will now introduce the Predictor-Corrector Crank-Nicolson solver de-

veloped in [8] which integrates the SPS in one spatial and one temporal

dimension using a Crank-Nicolson finite difference scheme.

The solver uses the following dimensionless coordinates:

dξ =
1

µ
1
2

[
3

2
H2

0 Ωm0

] 1
4

dx, (1.27)

dτ =
1

a2

[
3

2
H2

0 Ωm0

] 1
2

dt, (1.28)

which allow the wave function and gravitational potential to be rescaled

in the following way:

Ψ(τ, ξ) =
ψ(τ, ξ)√
〈|ψ(τ, ξ)|2〉

, (1.29)

U(τ, ξ) =
a

µ

[
3

2
H2

0 Ωm0

]− 1
2

V (τ, ξ). (1.30)
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We can then rewrite the Schrödinger-Poisson equations (1.21) and (1.22)

for one spatial dimension in said coordinates to get a set of dimensionless

equations for the rescaled Ψ and U .

i∂τΨ =

[
−1

2
∂2
ξ + aU

]
Ψ, (1.31)

∂2
ξU = |Ψ|2 − 1. (1.32)

The solver integrates these equations on a 2D space-time interval

[0, L]× [0, τend] (1.33)

with periodic boundary conditions for the spatial dimension. Here L is the

size of the spatial domain and τend the final simulation time.

On this interval, Ψ and U are evaluated on a N ×M space-time mesh,

giving a uniform spatial grid with N points and a uniform temporal grid with

M points. An alternative way of characterizing this mesh is the spatial grid

resolution ∆ξ and the time step size ∆τ .

∆ξ =
L

N
, ∆τ =

τend
M

. (1.34)

The Laplace operator is approximated up to second order in ∆ξ using

the central finite difference method:

∂2

∂ξ2
F (ξ) =

F (ξ −∆ξ)− 2F (ξ) + F (ξ + ∆ξ)

∆ξ2
+O(∆ξ2). (1.35)

The thus discretized operator takes the form of a cyclic tridiagonal N × N
matrix, making it possible to solve (1.32) for U using a modified version of

the Thomas algorithm for tridiagonal matrices [8].

The unitary time evolution operator is approximated using the Cayley

form

U(τ + ∆τ, τ) '
(

1 + H
i∆τ

2

)−1(
1−H

i∆τ

2

)
, (1.36)

H(τ + ∆τ, τ) =
1

∆τ

∫ τ+∆τ

τ

dτ ′ H(τ ′), (1.37)
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which, after discretizing the Laplace operator as before, gives rise to an

implicit Crank-Nicolson scheme capable of solving the SPS up to second

order in ∆ξ and ∆τ .(
1 + H

i∆τ

2

)
Ψ(τ + ∆τ) =

(
1−H

i∆τ

2

)
Ψ(τ), (1.38)

where we use the approximation

H(τ + ∆τ, τ) = −1

2
∂2ξ +

1

2
(a(τ)U(τ) + a(τ + ∆τ)U(τ + ∆τ)) +O(∆τ 2).

(1.39)

However, instead of solving the set of nonlinear equations given by (1.38),

the scheme is employed in a predictor-corrector fashion, where in a first cycle,

the predictor cycle, (1.38) is solved after setting U(τ + ∆τ) = U(τ) to reach

a predicted wavefunction Ψ̃(τ + ∆τ) and a predicted potential Ũ(τ + ∆τ) by

solving (1.32). Ũ is used in a second cycle, the corrector cycle, where we set

U(τ + ∆τ) = Ũ(τ + ∆τ). The resulting wave function is then taken to be

Ψ(τ + ∆τ).

Avoiding the computationally expensive direct solution of (1.38) allows

the solver to integrate each time step using O(N) operations. This gives the

solver a total time complexity of O(N ·M) for a full integration of the SPS

on the 2D mesh, and its accuracy can be shown to be O(∆ξ2,∆τ 2).

A scheme for the construction of cosmological initial conditions is also

provided in [8]. The initial density contrast δ takes the form of a random

Gaussian field which is constructed in Fourier space, where the different per-

turbation modes do not correlate. While the phases of the different Fourier

modes are distributed uniformly, the absolute values obey a Rayleigh distri-

bution with a frequency-specfic variance depending on the continuous matter

power spectrum. The contructed cosmological initial conditions thus depend

directly on L, N since these determine the contributing frequencies in Fourier

space.

10



Chapter 2

Numerical Tests

2.1 Standard Convergence Tests

The truncation error is the accumulated error due to the numerical scheme,

including approximations such as the discretization of continuous variables,

functions and operations. For example, the solver we use approximates

derivatives using second order finite differences. As such, contributions of

∆ξ2 and higher orders will appear in the truncation error. The truncation

error is defined as the difference between the true solution of the problem and

its numerical approximation in some norm. We thus introduce the discretized

L2 norm

||Ψ||2 =

(
1

N

N∑
n=1

|Ψ(n∆ξ)|2
) 1

2

(2.1)

to define the truncation error

ε = ||Ψtrue −Ψnum||2 (2.2)

where Ψnum is the discretized wave function resulting from the numerical

scheme and Ψtrue is the discretized solution to the SPS (1.31).

The PC-CNFD method introduced in section 1.4 is approximatelyO(∆ξ2,∆τ 2).

Therefore, we can, for a given set of simulation parameters find constants Cξ

and Cτ so that

ε ≤ Cξ · (∆ξ)2 + Cτ · (∆τ)2 (2.3)
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for all sufficiently small ∆ξ, ∆τ .

Since Ψtrue is unknown, the truncation error ε can only be approximated.

We do this by choosing a reference solution Ψref computed using an appro-

priately fine space-time mesh and then taking

εapprox = ||Ψref −Ψnum||2 (2.4)

as an approximation for the true truncation error. Since

|ε− εapprox| ≤ ||Ψtrue −Ψref ||2, (2.5)

this approximation will naturally be more accurate the better Ψref approxi-

mates Ψtrue.

For cosmological initial conditions, the approximate truncation error can

only be used in a limited way. Since varying the number of points on the

spatial grid also changes what frequency modes of the matter power spectrum

contribute to the initial conditions, initial conditions for a finer grid do not

equate to simply a finer sampling of the same initial conditions. Thus it is,

as is, not easily possible to gauge the impact of the number of grid points

on the numerical accuracy of the solver using this method as the reference

solution Ψref must have the same number of grid points as the numerical

solution Ψnum to be tested.

2.2 Layzer-Irvine Test

Another test for the numerical accuracy of the SPS solver was introduced in

[4, 8]. The Layzer-Irvine test is a global energy test taking its name from the

Layzer-Irvine energy equation. Since total energy is not actually conserved

in the comoving, non-inertial frame in an expanding universe, it obeys a

non-trivial time dependence which we will briefly outline here:

We begin by separating the total energy per mass E into kinetic and

potential terms K and W :

E = K +W. (2.6)
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These terms can, according to (1.21), be expressed as

K =

∫
dx

µ2

2a2
|∇xψ(x, t)|2 = Cε

1

a2

∫
dξ |∇ξΨ(ξ, τ)|2 (2.7)

and

W =

∫
dx

1

2
V (x, t)|ψ(x, t)|2 = Cε

1

a

∫
dξ U(ξ, τ)|Ψ(ξ, τ)|2 (2.8)

where

Cε =
µ

3
2

2

〈
|ψ(τ, ξ)|2

〉 [3

2
H2

0 Ωm0

] 1
4

(2.9)

is a constant that results from rewriting the above expressions in dimension-

less coordinates according to (1.27) and inserting the rescaled wave function

and potential (1.29, 1.30).

Time derivation of the total energy per mass gives

dE

dt
= − ȧ

a
(2K +W ), (2.10)

which coincides with Layzer-Irvine energy equation for a classical homoge-

neous matter distribution in an expanding universe [5] due to the kinetic and

potential energy terms scaling with a in the same way.

After rewriting this as d
da

(aE) = −K, we can define the error

ε =
d
da

(aE)

−K
− 1 (2.11)

which can then be computed using numerical integration and five-point sten-

cil finite differences to O(∆ξ4).

This Layzer-Irvine test monitors the relative error of the change in total

energy due to the expansion of the universe.

2.3 Local Schrödinger Test

Since the solver is designed to integrate the SPS, it may also be viable to

test whether equation (1.31) holds. This gives us a local test by computing

for a given point in spacetime the difference between the left and right side
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of the dimensionless Schrödinger-Poisson equation relative to the amplitude

of the rescaled wave function Ψ in that point.

We define the average relative error

ε =

〈
|[i∂τ + 1

2
∂2
ξ − aU ]Ψ|
|Ψ|

〉
(2.12)

which we compute using finite differences up to O(∆ξ4,∆τ 4).
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Chapter 3

Probing the Non-Linear

Growth Regime

3.1 Numerical Accuracy in the Non-Linear

Regime

It was shown in [8] that for cosmological initial conditions, the results of the

solver are in good agreement with the predictions of perturbation theory in

the linear growth regime. As structure formation takes place largely in the

non-linear growth regime, we want to test whether the solver can accurately

solve the SPS outside the linear growth regime. As a first test, we use simu-

lation parameters as recommended in [8] for a simulation with cosmological

initial conditions:

µ = 10−12 Js

eV
, L = 250Mpc h−1, N = 221. (3.1)

For the time step, we take a base value of

∆τ = 0.004 (3.2)

which is decreased by a factor of two in each of the three subsequent runs.

This is equivalent to doubling the number of grid points M of the temporal

grid.
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10−2 10−1 100a

10−3

10−2

10−1

εtrunc
∆τ = 0.004

∆τ = 0.002

∆τ = 0.001

(a) Truncation error

We see from the truncation error (see Figure 3.1a) that at the onset of

the non-linear regime, the solver sees a significant and rapid loss in accuracy.

A smaller time step delays this, but does not seem to stop or even alleviate

it. The results of the Schrödinger test agree with this observation somewhat,

even if the drop in accuracy is registered at a later point in the simulation.

The Layzer-Irvine test, however, shows no loss of accuracy of this degree

and the corresponding error stays below 1% throughout the entire simulation.

This suggests firstly that the solver may not converge towards the true

solution in a controlled way within the non-linear regime for the chosen pa-

rameters. Secondly, it appears that the Layzer-Irvine test is not sensitive to

the loss of accuracy we experience as we leave the linear growth regime, mak-

ing it less useful for assessing whether our solution converges with ∆ξ2, ∆τ 2.
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10−2 10−1 100a

10−6

10−5

10−4

10−3

10−2

εLI
∆τ = 0.004

∆τ = 0.002

∆τ = 0.001
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(b) Layzer-Irvine test

10−2 10−1 100a

100

101

102

103

104

εSP
∆τ = 0.004

∆τ = 0.002

∆τ = 0.001

∆τ = 0.0005

(c) Local Schrödinger test

Figure 3.1: Results for the different numerical tests introduced in chapter 2.

To approximate the truncation error, the numerical solution for the smallest

time step used (∆τ = 0.0005) was used as reference wave function Ψref .

From the results of [8] we expect the linear growth regime to last until at

least z = 100.
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3.2 Testing Numerical Accuracy for fixed a

If we want to study the behaviour of the solver in the non-linear growth

regime more in depth, it is prudent to remind ourselves that the non-linearity

in the SPS comes from the contribution of the gravitational potential, the

term aU in (1.31).

The impact of this term increases with a as the universe expands and with

U as initially small perturbations in the matter distribution grow. To better

understand in what way each of these affect numerical accuracy, we set the

scale factor a to one fixed value aconst for the entirety of the simulation. This

allows us to better study under which conditions the non-linear contributions

may or may not affect the accuracy of the solver.

Physically, running the simulation with fixed a represents simulating a

non-expanding, static universe. Numerically, it fixes the strength of the non-

linear gravitational interaction, allowing us to gauge in which regimes our

solver remains stable.

As increasing the point densities of the spatial and temporal grids comes

with an increase in required computational resources, we will, for the sake

of this thesis, not be able to provide these tests for a full-scale cosmological

simulation. We take the following non-varying parameters:

µ = 10−12 Js

eV
, L = 2.5Mpc h−1. (3.3)

We choose a base grid size of

N = 215 (3.4)

and vary grid size by doubling the number of grid point for each of three

consecutive finer spatial grids. Additionally, we choose a base time step of

∆τ = 0.0008 (3.5)

which is halved each time for the three smaller time steps.

For the constant scale factor, we choose a base value

aconst = 0.02 (3.6)

with two higher values of aconst achieved by doubling this value.
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(a) aconst = 0.02
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(b) aconst = 0.04
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Figure 3.2: Results of the Schrödinger test and truncation error for simulation

runs with different fixed scale factors aconst.
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τend is chosen such that [0, τend] corresponds to a time frame from z = 200

to z = 0 in an expanding universe. More details on the relation between

superconformal time τ and scale factor a may be found in [8].

The Layzer-Irvine test is not used here as the Layzer-Irvine equation does

not apply in a static universe where a remains constant.

Of note is that the value of aconst has little effect on numerical accuracy

at simulation start, suggesting that the main reason for loss of accuracy in

the non-linear regime is, in fact, mostly due to the growth of the initial

perturbations, which happens earlier and faster for larger aconst.

Increasing spatial resolution seems to have only limited effect under our

conditions, though it may be more effective for larger domains. The effect of

varying the time step seems to be more pronounced for smaller spatial grids.

Generally, for a good spatial resolution, it seems more useful to vary the

time step to improve accuracy rather than to go to a finer spatial grid.

3.3 Adaptive Time Step

One way to improve the numerical accuracy of the solver suggested in [8]

is the implementation of a dynamically chosen time step instead of a static

time step.

We do this by introducing a coarser, uniform temporal grid to allow the

synchronisation of simulations using different and varying time steps. At

each step of the coarse grid, we evaluate all relevant time scales to arrive

at a target time step, based upon which the refinement of the coarse grid is

chosen.

Let M0 be the number of grid points in the coarse grid. The ith step of

the coarse grid corresponds to the time

τi = i
τend
M0

(3.7)

We refine the coarse grid by dividing the interval [τi, τi+1] into mi steps, where
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we choose mi such, that the dynamic time step

∆τdyn =
τi+1 − τi
mi

(3.8)

is close to the target time step.

We will now introduce some examples for time scales that may be used

in determining such a dynamic time step.

3.3.1 The Free Fall Time Scale

We first introduce the free fall time scale, defined here as the time needed

for a uniform spherical overdensity ρOD to collapse completely according to

classical Newtonian mechanics (1.19).

Solving the equations of motion in one spatial dimension yields the free

fall time

tfreefall =

√
2

4πGρOD
(3.9)

which we rewrite by transforming to dimensionless coordinates and replacing

the density contrast with the wave function amplitude:

τfreefall =

√
2

a (|Ψ|2 − 1)
. (3.10)

From this we can define the free fall time step up to a parameter Cfreefall

∆τfreefall = Cfreefall
1√

a (maxξ |Ψ|2 − 1)
(3.11)

where Cfreefall
!
<
√

2.

We use

Cfreefall = 0.002. (3.12)

3.3.2 The Flow Time Scale

For a specific velocity u, the spatial resolution ∆x gives a natural flow time

scale

tflow =
∆x

u
. (3.13)
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We define, within our system of dimensionless coordinates, the dimensionless

velocity

υ =
1

µ
1
2

[
3

2
H2

0 Ωm0

]− 1
4

u (3.14)

which gives us an expression of the flow time scale in code units:

τflow =
∆ξ

a2υ
. (3.15)

From the Husimi distribution, we can find that the average velocity at a

given position is

〈υ〉 = ∂ξφ (3.16)

where φ is the phase of the wave function:

Ψ =
√
Aeiφ. (3.17)

We can thus define the flow time step

∆τflow = Cflow
∆ξ

a2 maxξ |∂ξφ|
(3.18)

with a free parameter Cflow
!
< 1.

We use

Cflow = 0.5. (3.19)

3.3.3 Constant Physical Time

Since the dimensionless superconformal time τ defined in (1.28) relates to

the physical time t in a non-linear fashion, we may introduce a time scale

defined such that the corresponding physical time remains constant.

We define

∆τCPT = CCPT · a−2 (3.20)

where CCPT is a free parameter.

We use

CCPT0 = 5 · 10−6. (3.21)
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3.3.4 Effects on Numerical Accuracy

To gauge the effect of using a dynamic time step, we will first include a

control run using a static time step of

∆τ = 0.001. (3.22)

The second simulation will use a dynamic time scale combining free fall time

and flow time

∆τdyn = min {∆τstatic, ∆τfreefall, ∆τflow} , (3.23)

while a third run will use the CPT scale

∆τdyn = min {∆τstatic, ∆τCPT} . (3.24)

Finally, to be able to approximate the truncation error, we will use a

static time step of

∆τ = 0.000125 (3.25)

to compute a reference wave function.

In addition, we set the following parameters for all simulations:

µ = 10−12 Js

eV
, L = 10Mpc h−1, N = 218. (3.26)

As the onset of the dynamic time step for combined free fall and flow time

scales happens well in the regime where the numerical solutions drift apart,

it cannot prevent the increase in truncation error, though it does reduce its

growth greatly once it sets in (See Figure 3.4a). The CPT scale, setting in

at an earlier time, manages to suppress and delay the loss of accuracy to a

greater degree, though it does not prevent it completely. Whether this is due

to a growing error despite increasingly smaller time steps or due to the error

in the approximation of the truncation error itself is not possible to discern

at this point. In particular, the approximation of the truncation error is

connected to the error of the reference wave function (2.5), which may not

be sufficiently small here as ∆τdyn becomes smaller than the time step ∆τ =
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Figure 3.3: Evolution of the different dynamic time steps. Note that the

CPT scale follows the power law ∝ a−2. The combined time scale of freefall

time and flow time scale follows a relation closer to ∝ a−4.

0.000125 used to compute the reference wave function. We can, however, see

that using an adaptive time step is a promising avenue to increase numerical

accuracy, even if the different time scales must be carefully chosen in order

to anticipate and prevent the sharp drop in accuracy the static time step

experiences at the onset of the non-linear growth regime.

Another observation of of note is that directly after the onset of both

dynamic time scales, the local Schödinger test registers a temporary loss of

accuracy before an improvement is seen. It is possible that the change in

time step upsets the numerical scheme such that accuracy is indeed lost for

a transition period. It may also be that this is due to a larger error assigned

to time step sizes in that particular interval by the test as it also indicates

the reference time step of ∆τ = 0.000125 to possess a larger error. It may

be possible to discern which of these is true by modifying the dynamic time

step such that ∆τ changes more gradually during the transition from static

to dynamic time scales.
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Figure 3.4: Results for the different numerical tests for simulations using a

dynamic time step. Note that the graphs overlap due to using the same time

step as long as the dynamic time scales are larger than the static time step

∆τ = 0.001. Again, the Layzer-Irvine test shows little sensitivity to, e.g. the

changing time steps.
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Chapter 4

Conclusion

The tests we performed indicate that while the solver does indeed provide

good results for the linear growth regime, it may not be feasible to use it

to accurately integrate the non-linear growth regime as refining the space-

time mesh may not been sufficient to overcome the growing inaccuracies that

occur there. While a carefully chosen dynamic time step can alleviate this

problem without an unreasonable growth in computation time, this may not

be enough for a large-scale simulation to remain stable throughout the full

simulation time.

Of course, our results are mainly qualitative and we can see that the tests

we used have limitations that must be overcome should we desire to refine

our results to come to a more definite conclusion onto whether and for which

parameters the SPS solver can provide accurate results.

Using the truncation error has given us perhaps the clearest results, how-

ever its main drawback is, as addressed previously, that without an existing

analytic solution, we can only approximate the error for a given solution

using a sufficiently more accurate reference solution that must be computed

separately. This may, particularly for tests involving already very fine meshes

in space or time, such as when investigating dynamic time steps, prove pro-

hibitively expensive in terms of computational resources required.

The problem of using the Layzer-Irvine test to gauge numerical accuracy
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is that as seen, even when two solutions of the same initial conditions fulfill

the energy equation tested to a high degree, those solutions may still diverge

from one another without this being reflected in the energy test. This in-

sensitivity makes it difficult to use the test when tackling the problem of

accuracy within the non-linear growth regime.

The local Schrödinger test is difficult to interpret since its behaviour for

different N, M is somewhat counterintuitive. In particular, the averaged

local error seems to grow as ∆ξ decreases, and for high spatial resolutions,

said error may sometimes be smaller for larger ∆τ . Whether this mirrors

the actual accuracy, which might change in an unexpected way due to higher

order terms or whether this is a defect of the test is a priori not clear.

It may be possible to improve the local Schrödinger test by computing

the L2 norm of the difference between the left hand side and the right hand

side of equation (1.31) instead of taking a weighted average over all points

in space. Such a quantity could possibly be interpreted as an approximation

of the truncation error introduced in each time step divided by the time step

size ∆τ .

The simplest way of improving the data obtained and their quantitative

significance in particular would of course be to take for each set of tests the

average over multiple simulations using the same parameters.
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