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Abstract

We develop a perturbation series for the Quantum Kicked Rotor without
gravity close to quantum resonance. Therefore we construct the quantum
propagator of this problem in angular space and do a perturbation series of
the phase of the multi-dimensional integral expression that gives the time
evolved state. Doing this we can calculate these integrals analytically. Sub-
sequently we study the range of validity of this perturbative result by com-
parison to numerical simulations. Further we look at a kind of two dimen-
sional kicked rotor by treating the case of a periodical change of the kicking
strength, when this new period is an integer multiple of the kicking period.
For this problem we study the pseudo-classical phase space, in particular the
occurrence and stability of fixed points, again close to quantum resonance.

Zusammenfassung

Wir entwickeln eine Störungsreihe für den gravitationsfreien getretenen Quan-
tenrotor in der Nähe einer Quantenresonanz. Für dieses Problem geben wir
den Propagator im Winkelraum an. Die Abweichung von der Quantenreso-
nanz behandeln wir als Störung und führen eine Störungsentwicklung der
Phase des mehrdimensionalen Integrals durch, das den zeitentwickelten Zu-
stand ergibt. Dadurch können wir das Problem auf analytisch berechenbare
Integrale zurückführen. Anschließend untersuchen wir den Gültigkeitsbereich
dieser Entwicklung durch Vergleich mit numerischen Simulationen. Des Wei-
teren betrachten wir eine Art zweidimensionale Erweiterung des getretenen
Quantenrotors, indem wir die normalerweise konstante Trittstärke durch eine
sich periodisch ändernde ersetzen. Wir beschränken uns hier auf den Fall, dass
diese neue Periode mit der Trittperiode kommensurabel ist, speziell wählen
wir die neue Periode als ein ganzzahliges Vielfaches der alten. Für dieses
Problem betrachten wir den pseudo-klassischen Phasenraum, genauer das
Auftreten und die Stabilität von Fixpunkten nahe einer Quantenresonanz.
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1 Introduction and Outline

The kicked rotor model is a quite simple system: a rigid rotor that expe-
riences δ-like gravitational kicks. But even this simple Hamiltonian system
shows chaotic behavior and thus can be used as a toy model for chaotic
systems. Furthermore there are many systems that can be mapped to this
model. Its classical description is given by the standard map which had been
made famous by B. Chirikov in 1979 [1]. An intuitive way to study quantum
dynamics of chaotic systems is to start from the quantized version of this
model: the Quantum Kicked Rotor. Treating the quantum version yielded
two new phenomena. First Dynamical Localization [2], which means that
the mean energy stops growing after a certain break time. It was shown
that this phenomenon is closely linked to Anderson localization in solid state
physics [3]. And second the occurrence of quantum resonances at which the
mean energy increases ballistically [2]. The Quantum Kicked Rotor is even
more interesting since it can be realized in experiment [4]. One experimental
realization of the Quantum Kicked Rotor are cold atoms moving along a line
being kicked by an periodically switched on and off standing light wave which
was realized for a first time in [5]. Newer experiments use Bose-Einstein con-
densates, e.g. [6].
A powerful tool to investigate the behavior of the Quantum Kicked Rotor
close to these resonances are the so called ε-classics that have been devel-
oped by Fishman, Rebuzzini and Guarneri in 2003 [7]. In the last years this
method provided a deeper understanding of the Quantum Kicked Rotor [8].
A straightforward way to treat a system very close to a specific state is to do
a perturbation series. In this thesis we will treat the Quantum Kicked Rotor
from the quantum propagator point of view. Then we will do a perturbation
series starting from the quantum propagator of the Quantum Kicked Rotor
and will reduce the complicated multi-dimensional integral to the well-known
Gaussian integrals. Having such an approach the first question one should
ask is for the range of validity. Therefore we will compare our perturbation
theory to numerical simulations which can be performed quite easily for the
Quantum Kicked Rotor.
In the past there have been many investigations in quantum chaos and quan-
tum information using fidelity, which is defined as the overlap of two wave
functions that develop under slightly different dynamics. This measure of
stability was developed since the classical definition of chaos, namely that
the difference between two initially neighboring states increases exponen-
tially with time, becomes meaningless when one does the step to quantum
systems, where the time evolution is unitary [9]. Because of the importance
of this quantity we will check whether our perturbative approach allows stud-
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ies about it.
In the last part of this thesis we will expand the simple Quantum Kicked
Rotor with a constant kicking strength to a kind of two-dimensional version
by discussion of a kicking strength changing periodically in time. This intro-
duces a second time period to the system. For simplicity we will restrict to
the special case of commensurable time periods. In particular only the case
that the kicking strength will modulate with a time period that is an integer
multiple of the period of the kicks. For this case we will study the occurrence
of fixed points in the ε-classical phase space.
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2 Preliminaries

In this chapter we will introduce the theoretical background for our later
studies. Therefore we will give a brief overview of some concepts of the
quantum propagator formalism. Further we will present the Quantum Kicked
Rotor and the concrete realization we are interested. We will explain what
quantum resonances are and how ε-classics allow us to study the behavior
close to this resonances.

2.1 The Quantum Propagator

The quantum propagator is a solution of the Schrödinger equation with very
specific initial conditions:(

i~
∂

∂t
− Ĥ

)
K(x, t|x0, 0) = 0, (1)

lim
t→0

K(x, t|x0, 0) = δ(x− x0). (2)

The propagator formalism comes from the theory of path integration, which
was developed by R. Feynman [10]. The propagator includes the whole in-
formation on the dynamics of the system. Once it is known, we can get the
time evolution of an initial state Ψ(x0, 0) by evaluating the integral

Ψ(x, t) =

∫ ∞
−∞

dx0K(x, t|x0, 0)Ψ(x0, 0). (3)

We can treat the propagator as transition amplitude and express it in terms
of the more familiar unitary time evolution operator Û :

K(x, t) = 〈x, t|Û |x0, 0〉 (4)

= 〈x, t|T exp

{
− i

~

∫ t

0

dt′Ĥ(t′)

}
|x0, 0〉. (5)

Starting from the well-known propagator of a free particle [11, 12]

Kf (x, t|x0, 0) =
( m

2πi~t

) 1
2

exp

(
im(x− x0)2

2~t

)
(6)

we will study some simple examples to get an intuition of the quantum prop-
agator formalism in appendix A.
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2.2 The Quantum Kicked Rotor

First let us consider the classical kicked rotor: a single particle of unit mass
on a ring (unit circle). This particle is kicked periodically with a force k in
a fixed direction. A single kick is considered to be δ-like.

Figure 1: Kicked Rotor.

The Hamiltonian of this problem reads:

H(p, θ, t) =
p2

2
+ k cos(θ)

+∞∑
ν=−∞

δ(t− ντ), (7)

where p is the angular momentum, τ the time period of the kicking, k the
kicking strength and the position on the ring is characterized by the angle θ.
Calculating Hamilton’s equation of motion from the Hamiltonian above and
integration over one period gives

pν+1 = pν + k sin θν+1 (8)

θν+1 = θν + pντ mod 2π. (9)

By introducing J = pτ , one finds the so called Standard Map [1]:

Jν+1 = Jν + κ sin θν+1 (10)

θν+1 = θν + Jν mod 2π, (11)

with the stochasity parameter or classical kicking strength κ = kτ . The phase
space of this problem is a cylinder. But the map is 2π-periodic in momentum
as well. Therefore the phase space structure can be taken periodic in the
momentum direction, which gives a torus. In the quantum version we replace
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the classical observables p and θ by operators, which results in quantization
of the momentum in multiples of ~. The Floquet operator (one period time
evolution operator) from right after a kick till right after the next one is given
by:

Û = e−
i
~k cos(θ̂)e−

i
~
p̂2

2
τ . (12)

The factorization in a free and a kicking part is only possible due to the δ-like
kicking potential. This fact makes the Quantum Kicked Rotor amendable to
analytical treatment and simplifies numerical computations as explained in
section 4.1.

2.3 Kicked Atoms

Motivated by the experimental implementation [4], we are interested in a
particle moving along a line instead of a circle. More precisely an atom
moving on a line being kicked by a periodic potential, which is created by
a standing laser wave, that is switched on and off periodically in time. The
idealized δ-like kicks can be approximated in experiments if the time for
which the laser is on is chosen such that the atom’s motion during this time
is negligible. The Hamiltonian reads [13]:

H ′(p, x, t) =
p2

2m
+ V0 cos(2π

x

a
)
∞∑

ν=−∞

δ(t− nτ). (13)

We set m = 1 and identify the amplitude of the potential V0 with the kicking
strength k. Since our Hamiltonian is periodic in x, Bloch’s theorem holds
and we can express the eigenfunction of the stationary Schrödinger equation
as combinations of plane waves and periodic functions:

Ψ(x) =

∫ 1

0

dβψβ(x)eiβx, (14)

where ψβ(θ) = ψβ(θ + 2π). The momentum of one Bloch wave is

p = n+ β, (15)

where n is an integer and β ∈ [0, 1). Here and below we set ~ = 1. Thus
our single particle along a line can be mapped onto a family of so called β
rotors. The quasi-momentum β is for each rotor a constant of motion. The
Floquet operator for one single β-rotor reads

Ûβ = e−ik cos(θ̂)e−i
(N̂+β)2

2
τ , (16)
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where N̂ = −i d
dθ̂

with periodic boundary conditions. An special case is the
behavior of the system, if the free time evolution part in the Floquet operator
equals unity. This means that N kicks of strength k are equal to one kick
of strength Nk. In this regime the momentum grows linear in time and
therefore the energy increases quadratically. The condition for this is:

τ = 2πl, l ∈ N, β =
1

2
+
j

l
j = 0, 1, ..., l − 1. (17)

These resonances of the system, that do not occur in the classical kicked
rotor, are known as quantum resonances.

2.4 Dynamics Near to Resonance: ε-classics

A powerful method to study dynamics close to a quantum resonance was
developed by S. Fishman, I. Guarneri and L. Rebuzzini in [7]. We consider
τ = 2πl+ ε, with integer l and a small deviation from the resonance ε. After
rescaling k̃ = |ε|k, Î = N̂ |ε| and using e−iπlN̂

2
= e−iπlN̂ the Floquet operator

reads:

Ûβ = e−
i
|ε| k̃ cos(θ̂)e

− i
|ε|

(
Î2

2sgn(ε)
+Î(πl+βτ)

)
e−

i
2
β2τ . (18)

Here |ε| takes over the role of ~. For the free evolution we find an effective
Hamiltonian

H̃ =
I2

2sgn(ε)
+ I(πl + βτ). (19)

This corresponds to the case of an initial velocity, which is treated in A.4.
Using the result we had for periodic boundary conditions (A.2), the one
period propagator (n+ → (n+ 1)+) for this Hamiltonian is

K(θ, n+ 1|θ0, n) = (2πiε)−
1
2 e−

i
2
β2τ
∑
µ∈Z

e
i
2ε

(θ−θ0−2πµ−(πl+βτ))2 . (20)
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3 A Perturbation Series for the Quantum Kicked

Rotor

In this section we develop a perturbation series for the Quantum Kicked
Rotor. First we transform the integral expression for the propagated state
such that the integration boundaries change from 0 and 2π to ±∞. For this
expression we give a perturbation series up to second order in

√
|ε| and reduce

this multi-dimensional integral under one restricting assumption, which we
discuss at the end of this section, to a product of one-dimensional Gaussian
integrals that can be evaluated analytically.

3.1 Transforming the Propagator

The time evolved state from t = n+ to t = (n+ 1)+ including one kick reads

ψ(θ, t = n+ 1) = e−ik cos θ
∫ 2π

0

dθ0K(θ, t = n+ 1|θ0, t = n)ψ(θ0, n). (21)

For t = N we find by iterating the formula above

ψ(θN , N) = (2πiε)−
N
2 e−i

N
2
β2τ

×
∫ 2π

0

dθN−1 . . .

∫ 2π

0

dθ0 ×
∑

m1...mN∈Z

exp

[
−ik

N∑
r=1

cos θr

+
i

2ε

N∑
j=1

[θj − θj−1 − (πl + τβ)− 2πmj]
2

]
ψ(θ0, 0). (22)

From now on we write θN = θ, substitute ξ = (πl+ τβ) and change variables

ηj = θj − θj−1 − ξ ⇔ θj = θ − (N − j)ξ −
N∑

l=j+1

ηl. (23)

Thus the bounds change accordingly∫ 2π

0

dθN−1 . . .

∫ 2π

0

dθ0 →
∫ θ−ξ

−2π+θ−ξ
dηN

∫ −ηN+θ−2ξ

−2π−ηN+θ−2ξ
dηN−1

. . .

∫ θ−Nξ−
∑N
l=2 ηl

−2π+θ−Nξ−
∑N
l=2 ηl

dη1

, (24)
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since ηj = −θj + θ − (N − j)ξ −
∑N

l=j+1 ηj for 1 ≤ j ≤ N .
Therefore we get for one integral∑

mj∈Z

∫ αj

αj−2π
e−ik

∑N
r=1 cos[θ−(N−r)ξ−

∑N
l=r+1 ηr]ei

(ηj+2πmj)
2

2ε

×ψ

(
θ −Nξ −

N∑
l=1

ηl

)
dηj,

(25)

where αj is some constant, which we do not need to make explicit here. We
set uj = ηj + 2πmj and find

∑
mj∈Z

∫ αj+2πmj

αj+2π(mj−1)
exp

[
−ik

N∑
r=1

cos[θ − (N − r)ξ −
N∑

l=r+1

ur] + i
u2j
2ε

]

×ψ

(
θ −Nξ −

N∑
l=1

ul

)
duj.

(26)

Since the term 2πmj in the arguments of the 2π-periodic functions cos(x),
eix and the 2π-periodic initial state vanishes we can contract each j-integral
to
∫∞
−∞ duj and have

ψ(θ,N) = (2πiε)−
N
2 e−i

N
2
β2τ

∫ ∞
−∞

duN . . .

∫ ∞
−∞

du1

× exp

[
−ik

N−1∑
j=1

cos[θ − (N − j)ξ −
N∑

l=j+1

ul]

+
i

2ε

N∑
j=1

u2j

]
ψ

(
θ −Nξ −

N∑
l=1

ul

)
. (27)

Finally we substitute xj =
uj√
|ε|

and get

ψ(θ,N) = (2πisgn(ε))−
N
2 e−i

N
2
β2τ

∫ ∞
−∞

dxN . . .

∫ ∞
−∞

dx1

×e−ik
∑N−1
j=1 cos[θ−(N−j)ξ−

√
|ε|
∑N
l=j+1 xl]

×e
i
2
sgn(ε)

∑N
j=1 x

2
jψ

(
θ −Nξ −

√
|ε|

N∑
l=1

xl

)
. (28)
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3.2 Perturbation Series

We start with the quantum propagator

ψ(θ,N) = (2πsgn(ε)i)−
N
2 e−i

N
2
β2τ−ik cos θ

∫ ∞
−∞

dxN . . .

∫ ∞
−∞

dx1

×e−ik
∑N−1
j=1 cos

(
θ−(N−j)ξ−

√
|ε|
∑N
l=j+1 xl

)

×e
i
2
sgn(ε)

∑N
j=1 x

2
jψ

(
θ −Nξ −

√
|ε|

N∑
l=1

xl

)
, (29)

where

ξ = πl + 2πlβ + sgn(ε)|ε|β = γ + βsgn(ε)|ε|, γ = πl(1 + 2β). (30)

Since we are interested in the behavior near to resonances (i.e. |ε| small),
we expand our expression in orders of δ =

√
|ε|. An expansion in orders of

ε is not possible because this would yield terms like |ε|− 1
2 that have to be

evaluated at |ε| = 0. As initial state we consider a plane wave

ψ(θ, 0) = ein0θ, (31)

where we have chosen the normalization such that the norm in momentum
space is 1 and the normalization factor of the Fourier transform is given to
the normal Fourier transform.
The propagator of our system has a typical phase structure that results from
the unitary time evolution operator. In this picture each energy eigenstate
evolves with a specific phase and the phase structure in combination with the
hermiticity of the Hamilton operator guaranties an unitary time evolution.
To keep this phase structure of the propagator we will not do a classical
Taylor expansion of the whole term, but only of the exponents. For simplicity
we will neglect the global phase

e−i
N
2
β2τ (32)

in the following calculation. Thus there are two terms, which we have to
expand:

f(δ) = cos

(
θ − (N − j)γ − (N − j)sgn(ε)δ2β − δ

N∑
l=j+1

xl

)
(33)

g(δ) = −Nsgn(ε)δ2β − δ
N∑
l=1

xl. (34)
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We find (the second one is already given in orders of δ)

f(δ) = cos (θ − (N − j)γ) + δ

[
N∑

l=j+1

xl sin (θ − (N − j)γ)

]

+
δ2

2

[
−

(
N∑

l=j+1

xl

)2

cos (θ − (N − j)γ)

+2(N − j)sgn(ε)β sin (θ − (N − j)γ)

]
+O(δ3) (35)

g(δ) = −δ
N∑
l=1

xl − δ2sgn(ε)Nβ. (36)

Using terms up to second order the propagated wave function reads

ψ(θ,N) = (2πsgn(ε)i)−
N
2 e−ik cos(θ)

×
∫ ∞
−∞

dxN . . .

∫ ∞
−∞

dx1e
−ik

∑N−1
j=1 (cos[θ−(N−j)γ]+δ[sin[θ−(N−j)γ]

∑N
l=j+1 xl])

×e−ik
∑N−1
j=1

(
δ2

2

[
− cos[θ−(N−j)γ](

∑N
l=j+1 xl)

2
+sin[θ−(N−j)γ]2(N−j)sgn(ε)β

])
×e

i
2
sgn(ε)

∑N
j=1 x

2
jein0(θ−Nδ2sgn(ε)β−δ

∑N
l=1 xl). (37)

Below we will use

N−1∑
j=1

(
aj

N∑
l=j+1

xl

)
=

N∑
j=1

(
xj

j−1∑
r=1

ar

)
(38)

with the convention
∑0

r=1 = 0 and

N−1∑
j=1

aj

 N∑
l=j+1

xl

2

=

N∑
j=1

x2j j−1∑
r=1

aj

+ 2

 N∑
j=1

xj

 N∑
r=j+1

xr

j−1∑
s=1

as

 . (39)
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The argument of the whole exponential earg is

arg = −ik
N∑
j=1

cos [θ − (N − j)γ] + δ

sin [θ − (N − j)γ]
N∑

l=j+1

xl


−ik

N−1∑
j=1

 δ2

2

− cos [θ − (N − j)γ]

 N∑
l=j+1

xl

2

+ sin [θ − (N − j)γ] 2sgn(ε)(N − j)β


+

i

2
sgn(ε)

N∑
j=1

x2j + in0

(
θ −Nγ −Nδ2sgn(ε)β − δ

N∑
l=1

xl

)
(40)

= −ik cos(θ)− ik

N−1∑
j=1

(
cos [θ − (N − j)γ] +

δ2

2
sin [θ − (N − j)γ] 2sgn(ε)(N − j)β

)
+in0(θ −Nγ −Nδ2sgn(ε)β)− ikδ

N∑
j=1

xj j−1∑
r=1

sin[θ − (N − r)γ]


+ik

δ2

2

N∑
j=1

x2j j−1∑
r=1

cos[θ − (N − r)γ]


+ikδ2

N∑
j=1

xj
j−1∑
r=1

cos[θ − (N − r)γ]

 N∑
s=j+1

xs

+
i

2
sgn(ε)

N∑
j=1

x2j − in0δ

N∑
l=1

xl (41)

= −ik cos(θ)− ik

N−1∑
j=1

(
cos [θ − (N − j)γ] +

δ2

2
sin [θ − (N − j)γ] 2sgn(ε)(N − j)β

)
+in0(θ −Nγ −Nδ2sgn(ε)β) +

N∑
j=1

−x2j
 sgn(ε)

2i
+

1

2i
kδ2

j−1∑
r=1

cos[θ − (N − r)γ]


+

N∑
j=1

[
xj

(
− ikδ

j−1∑
r=1

sin[θ − (N − r)γ] + ikδ2

j−1∑
r=1

cos[θ − (N − r)γ]

 N∑
s=j+1

xs

−in0δ

)]
. (42)

13



Evaluating the xj dependent parts, we have for one j∫ ∞
−∞

dxje
∑N
j=1[−x2j(

sgn(ε)
2i

+ 1
2i
kδ2

∑j−1
r=1 cos[θ−(N−r)γ])]

×e
∑N
j=1[xj(−ikδ

∑j−1
r=1 sin[θ−(N−r)γ]+ikδ2(

∑j−1
r=1 cos[θ−(N−r)γ])

∑N
s=j+1 xs−in0δ)]

= (2πi)
1
2

(
sgn(ε) + kδ2

j−1∑
r=1

cos[θ − (N − r)γ]

)− 1
2

exp

(
− i

2

(
sgn(ε) + kδ2

j−1∑
r=1

cos[θ − (N − r)γ]

)−1
×

×

[
kδ

j−1∑
r=1

sin[θ − (N − r)γ]− kδ2
(
j−1∑
r=1

cos[θ − (N − r)γ]

)
N∑

s=j+1

xs

+n0δ

]2)
, (43)

where we used ∫ ∞
−∞

dxe−Ax
2+Bx =

√
π

A
e
B2

4A (44)

for A ∈ C|Re(A) ≥ 0.

Since
(

sgn(ε) + kδ2
∑j−1

r=1 cos[θ − (N − r)γ]
)−1
≈ 1 if the sum does not reach

k−1δ−2 and we restricted ourselves to terms up to second order in δ, the

squared term in the exponential becomes
[
kδ
∑j−1

r=1 sin[θ − (N − r)γ] + n0δ
]2

.

That simplifies our calculations a lot because the terms including other x
dropped. The validity of this approximation is discussed in 3.3. Thus each
xj-integral results in a term independent of the other xj’s.

(2πi)
1
2

(
sgn(ε) + kδ2

j−1∑
r=1

cos(θ − (N − r)γ)

)− 1
2

×e−
i
2
sgn(ε)[kδ

∑j−1
r=1 sin[θ−(N−r)γ]+n0δ]

2

. (45)
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Combining our results we find

ψ(θ,N) = sgn(ε)−
N
2 e−i

N
2
β2τ

×e−ik cos(θ)−ik
∑N−1
j=1 [(cos[θ−(N−j)γ]+δ2sgn(ε)β sin[θ−(N−j)γ](N−j))]

×ein0(θ−Nγ−Nδ2sgn(ε)β)

×

 N∏
j=1

(
sgn(ε) + kδ2

j−1∑
r=1

cos[θ − (N − r)γ]

)− 1
2


×e

∑N
j=1

{
− iδ2

2
sgn(ε)[k

∑j−1
r=1 sin[θ−(N−r)γ]+n0]

2
}
. (46)

3.3 Validity of the Simplification in the Perturbation
Series

As mentioned above, we do a simplification, which is valid for(
1 + kδ2

j−1∑
r=1

cos(θ − (N − r)γ)

)−1
≈ 1, (47)

where γ = πl(1 + 2β). But for l = 1 this seems not to be valid for β = 0.5
or very close to that point. The behavior of

j−1∑
r=1

cos(θ − (N − r)γ) = cos(θ)

j−1∑
r=1

cos((N − r)γ)

+ sin(θ)

j−1∑
r=1

sin((N − r)γ). (48)

is shown in figure 2. For β = 0.5 the sum term will become dominant and
our perturbation series will not be valid any more. This will be investigated
below in a less heuristic way. Here and in all following studies we will restrict
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to the case l = 1. We evaluate the sums to find a more meaningful expression.

j−1∑
r=1

cos[(N − r)γ] (49)

=
1

2

(
eiNγ

j−1∑
r=1

e−irγ + e−iNγ
j−1∑
r=1

eirγ

)
(50)

=
1

2

(
eiNγ

1− e−iγ(j−1)

eiγ − 1
+ e−iNγ

1− eiγ(j−1)

e−iγ − 1

)
(51)

=
sin(γ

2
(j − 1))

2 sin(γ
2
)

(
ei(Nγ−γ

j−1
2
− γ

2 ) + e−i(Nγ−γ
j−1
2
− γ

2 )
)

(52)

=
sin
(
γ
2
(j − 1)

)
sin
(
γ
2

) cos

(
(N − j

2
)γ

)
. (53)

Similar calculation gives:

j−1∑
r=1

sin[(N − r)γ] =
sin
(
γ
2
(j − 1)

)
sin
(
γ
2

) sin

(
(N − j

2
)γ

)
. (54)

We identify the problematic term as

1

sin
(
γ
2

) . (55)

a) b)

Figure 2: Behavior of the critical sums for N = 100, l = 1: a) β = 0.4 b)
β = 0.5.
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To fulfill the condition (47) we should at least guarantee

1

sin
(
γ
2

) < 1

kδ2
. (56)

Thus we have to restrict the validity of our perturbative result accordingly.

Figure 3: Behavior of the critical term 1

sin( γ2 )
.
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4 Technical Aspects

This section gives a short overview about the techniques we used to calculate
numerical reference data and our perturbative results.

4.1 Numerics

To check our perturbative results, we simulate our system numerically. There
are two features of the Floquet operator that are fruitful for numerical calcu-
lations: first, the Floquet operator factorizes as explained above and second,
both the free evolution and the kicking part can be represented by diagonal
matrices in the corresponding space. The transition between momentum and
θ space can be implemented by a Fast Fourier Transform. As explained in
appendix B the FFT-Subroutine will induce the way how we have to trans-
late between the physical meaningful variables θ and n and the corresponding
computational vectors. The application flow of the numerical code is sketched
in figure 4.

Figure 4: Diagram of numerical calculation.

4.2 Calculation of the Perturbation Series

For the perturbation series we use a FORTRAN code, which calculates Ψ(θν)
for each θν of our discrete θ space. The formula for the wave function after
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N kicks contains the following sums

S1 =
N∑
j=1

cos(θ − (N − j)γ), (57)

S2 =
N∑
j=1

(N − j) sin(θ − (N − j)γ), (58)

IS1 =

j−1∑
r=1

cos(θ − (N − r)γ), (59)

IS2 =

j−1∑
r=1

sin(θ − (N − r)γ). (60)

Using trigonometric addition theorems these can be written as

S1 = cos(θ)
N∑
j=1

cos((N − j)γ) + sin(θ)
N∑
j=1

sin((N − j)γ), (61)

S2 = sin(θ)
N∑
j=1

(N − j) cos((N − j)γ)

− cos(θ)
N∑
j=1

(N − j) sin((N − j)γ), (62)

IS1 = cos(θ)

j−1∑
r=1

cos((N − r)γ) + sin(θ)

j−1∑
r=1

sin((N − r)γ), (63)

IS2 = sin(θ)

j−1∑
r=1

cos((N − r)γ)− cos(θ)

j−1∑
r=1

sin((N − r)γ). (64)

This allows to calculate the sums once for a whole θ grid and thus speeds
up the calculation. In principle one can evaluate S1, IS1, IS2 in the same
way as it is done in the investigation of the simplification in the perturbation
series, but this would not cause an additional speed up since the number of
float point operations will not be decreased.
For our calculations we use one processor of a machine with four QX9650
processors a 3.66GHz and 8GB RAM. The following graph shows the com-
putation time needed for the numerical (black) and perturbation series (red)
dependent on the number of kicks for Nbas = 1024. The peaks in the curves
may correspond to a reduced usage of the processor due to other calculations
on the same machine. One should note that for calculations with stepwise
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increasing number of kicks N in the numerical calculation one can start from
the former wave function while for the perturbation series there is no feature
like this. For the dependency of Nbas we expect for the numerics Nbas logNbas,
for our perturbation we will have a linear increasing.

Figure 5: needed CPU time for perturbative (red) and numerical calculation
(blue). Fitted slopes: numerics: 4.575 · 10−5, perturbation: 1.657 · 10−2.
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5 Investigation of the Perturbation Series

A perturbation series is more or less useless if one does not know its range of
validity. Therefore we present after a presentation of first results the criterion
we use to quantify how good the perturbative calculations are for plane waves
and our results. We treat the case of an initial Gaussian in momentum space
and finally check the use of our result for studies of fidelity.

5.1 Results

First simulations show that for small δ (recall:|ε| = δ2) the perturbation is
quite good for several hundreds of kicks. But for larger δ it is dramatically
worse. This will be studied in a more sophisticated way in the following
subsection.

a) b)

Figure 6: Comparison between the numerically computed wave function (red)
in θ space and the one obtained with the perturbative approach for k = 4,
n0 = 0, β = 0.1. a) N = 200, δ = 0.01 b) N = 10, δ = 0.1.

5.2 Time of Validity

To quantify the deviation between numerical and perturbative calculation
we use the overlap function

o(N) =

∑Nbas

j=1 Ψ∗num(θj, N)Ψper(θj, N)∑Nbas

j=1 Ψ∗num(θj, N)Ψnum(θj, N)
. (65)

We say the perturbation is okay for

|o(N)− 1| < 0.1. (66)
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The value on the RHS is chosen, such that there is a visible but not too large
deviation.
The following two graphs show one example when the deviation reaches the
criterion. The second plot shows the wave function in momentum space.

a) b)

Figure 7: Comparison between perturbative (red) and numerical (black) wave
function when the deviation reaches the criterion in θ space (a) and momen-
tum space (b) for k = 3.5, n0 = 4, β = 0.123, δ = 0.1.

In θ space we have visible deviations between numerics and perturbation,
but real and imaginary part are still similar. In the modulus squared in
momentum space one can recognize in both curves the initial momentum
quite easily, but the spreading in the perturbative approach is larger.
Using this criterion we calculated it on the following grid of parameters:

k ∈ [0.25, 4.5] (67)

β ∈ [0.001, 0.5] (68)

δ ∈ [0.02, 0.2] (69)

The structure of the tc-surface seems quite similar for different δ, only the
scale varies. To the data we fitted the function

tc = a0 + a1δ
a2 (70)

We found that a2 ≈ −2, for β not close to 0.5. a0, a1 are functions of k and
β. Governed by this result, we fixed the exponent of δ to −2 and only fit with
the two parameters a1 and a0, where our main interest is in a1. The result
for a1 is shown in figure 9. a0 was always of order one. As one naively would
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a)

b)

Figure 8: tc-surfaces for different δ: a) δ = 0.02, b) δ = 0.2.

Figure 9: a1-surface. The color scale is adjusted such that the behavior in
the middle of the plane is visible.
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expect, the approximation is better for small k, since here the influence of
the kick is not too large. In addition we recognize, that a1 decreases if one
gets close to the resonant value of β, where our perturbation looses validity.
Further we checked the dependency on the sign of ε and found that there is
no significant difference in the development of the overlap for negative ε with
respect to positive ones.

Figure 10: Evolution of the overlap for positive and negative ε.
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5.3 Initial Gaussian State in Momentum Space

So far we treated only initial δ-peaks in momentum space. In the following
subsection we will apply our formalism to initial Gaussian states in momen-
tum space. These states are interesting since they are coherent states in one
particle quantum dynamics. Transforming between momentum and position
conserves the shape of these states and they have minimal uncertainty.
We start from the initial state

Ψ̃(n, 0) =
e−

(n−n0)
2

4σ2

(2πσ2)−
1
4

(71)

in momentum space. In θ space this reads

Ψ(θ, 0) =
∑
m∈Z

eimθΨ̃(m, 0) (72)

=
∑
m∈Z

e−
(m−n0)

2

4σ2

(2πσ2)−
1
4

eimθ. (73)

So the wave function is a superposition of plane waves. For each of them, one
repeats what was done before. The propagated wave function is a weighted
sum of such results.

Ψco(θ,N) =
∑
m

cmΨm(θ,N), (74)

where Ψm is the perturbatively time evolved plane wave with momentum m.
For our calculations we restrict to

|m− n0| < 5σ. (75)

The behavior of a1 for these initial states is illustrated in figure 11. a1
becomes larger for σ = 2 in comparison to the plane wave, which can be
understood as an annihilation of errors of the contributing plane waves. This
effect vanishes for larger σ. The strange structure for σ = 2 for large β may
arise from the loss of validity for these β.
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a)

b)

Figure 11: a1 for initial Gaussian states. a) a1(β, σ) b) a1(k, σ).
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5.4 Fidelity

Fidelity is defined as the overlap of two wave functions that develop under
slightly different dynamics. It is a common measure of stability in quantum
mechanics or quantum information [14]. In our case this slightly different
dynamics means slightly different k. We will use a normalized version of
fidelity

f(N) =
|
∑

j Ψ∗k1(θj, N)Ψk2(θj, N)|√∑
j |Ψk1(θj, N)|2

∑
j |Ψk2(θj, N)|2

. (76)

As criterion for being off we now use the normalized difference of fidelity:

|fnum − fper|
fnum

> 0.1 (77)

These results show that unfortunately the deviation between numerical and
perturbative wave function dominates. This implies that further studies of
fidelity using our perturbative result are meaningful just for very small per-
turbation parameters, i.e. |ε| → 0.
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a)

b)

Figure 12: Comparison between perturbative (red) and numerical (black)
results of fidelity calculations for different sets of parameters.
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6 2D Kicked Rotor

In order to mimic higher dimensional systems one can look at modified ver-
sions of the normal kicked rotor [15], where one for example replaces the
former time independent kicking strength by a periodic one [16]. This leads
to two periodicities in time: first the kicking period T1 and second the period
of the kicking strength T2. The Hamiltonian we use reads:

H =
p2

2
+ k(1 + cos(2π

t

T2
)) cos(θ)

∑
ν∈Z

δ(t− νT1), (78)

where p is the momentum, k the kicking strength and θ the angle on the
ring. To make this Hamiltonian periodic in time we have to choose T1 and
T2 commensurable. In the following we will restrict ourselves to the case
T2 = qT1 with integer q.

6.1 Classical Description

This Hamiltonian leads to a map that can be treated as a sequence of q
normal kicked rotor maps, but with the important change of a now time
dependent kicking strength:(

θn+1

pn+1

)
= Φ

(
θn
pn

)
, (79)

Φ = φq ◦ φq−1 ◦ · · · ◦ φ1, (80)

where φm is given by

φm :

(
θm
pm

)
→
(

θm + pmT1
pm + km sin(θm+1)

)
(81)

and

km = k

(
1 + cos(2π

m

q
)

)
. (82)

In the same way as for the kicked rotor this map is 2π periodic in θ and p.

6.2 Quantum Mechanical and ε-classical Description

Since the Hamiltonian is periodic in time one can write down a Floquet
operator. Similar to the classical description it can be built up of blocks
corresponding to the normal kicked rotor:

U = T
q∏

m=1

[
e−ikm cos(θ̂)e−i

Î
2
τ
]

(83)
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Again we have quantum resonances for τ = 4πj with integer j. In the
following we will only treat the case τ = 4π. In analogy to the studies of
the Quantum Kicked Rotor we will use ε-classics to study the system close
to resonance. We find the effective Hamiltonian

H̃ =
I2

2sgn(ε)
+ k|ε|(1 + cos(2π

t

T2
)) cos(θ)

∑
ν∈Z

δ(t− νT1). (84)

This leads to the map:

Φ = φq ◦ φq−1 ◦ · · · ◦ φ1, (85)

where

φm :

(
θm
Im

)
→
(

θm + sgn(ε)Im
Im + km|ε| sin(θm+1)

)
(86)

and

km = k

(
1 + cos(2π

m

q
)

)
. (87)

In the same way as in the kicked rotor the important quantity beside the
periods is k|ε|.

a) b)

Figure 13: ε-classical phase space for q = 3 and different k|ε|. a) k|ε| = 0.613
b) k|ε| = 0.746. In both plots we started from a grid of 100 points over the
whole phase space and applied Φ 200 times.

6.3 Fixed Points

The phase space shown in figure 13a shows three islands of stability sur-
rounded by a chaotic sea. As usual in the center of each of them there is a
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Figure 14: Position (θ, I) of the fixed points in dependency of k|ε|.

stable fixed point. Since the chaotic behavior is dominated by k|ε|, we study
the development of the fixed points in dependency of this quantity.
While the fixed point at (0, 0) can be seen immediately from the map, the
others have to be calculated numerically. Since the mapping is point sym-
metric to (0, 0) we can restrict our studies to one of them. As shown in 14
the central island is less stable than the outer ones.
To treat the stability of the non traveling fixed point at (0, 0) in a more
sophisticated way we linearized the map around this point and check the
stability via the criterion [17]

|tr(M ′)| < 2, (88)

where M ′ is the linearized map around the fixed points. The point when
the central island becomes unstable that can be seen in figure 15 coincides
with the point when we see this instability in the phase space plots. Another
question one can ask is where are the outer islands with θ = 0 for k|ε| → 0
and can we understand their occurrence. To answer this question we will
give a heuristic argument: Lets consider the case k|ε| = 0 and for simplicity
we fix sgn(ε) = 1. The map Φ becomes the composition of q equal maps φ
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Figure 15: Stability analysis of the fixed point (0, 0) for q = 3. The fixed
point is stable if |tr(M)| (red) is less than 2 (green line).

and one gets:

Φ :

(
θ
I

)
→
(
θ + qI
I

)
. (89)

We are interested in 2πn = qI with integer n. Since we are periodic in I as
well we find q different values for I.
Expansion of the initial map in k|ε| for an certain value of q gives the same
result. This argument shows that the number of islands for small k|ε| arises
from the composition of single kicked rotor maps and their periodicity.
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7 Conclusion and Outlook

In the thesis we built an perturbation series for the Quantum Kicked Rotor
close to quantum resonance. Unfortunately we found that the range of our
perturbation series up to second order in δ =

√
|ε| is restricted to very small

detunings from resonance ε. Further it looses its validity if one takes a quasi-
momentum very close to the resonant value. But for this case there exists
a working pendulum approximation [18, 19]. At least at this point we see
no simple way to go to higher orders in the perturbation series since we ex-
pect folded multi-dimensional integrals which can not be solved analytically.
Nevertheless we have a perturbation theory for very small |ε| or for a small
number of kicks for which we can give the range of validity. One possible
extension could be the accelerated Quantum Kicked Rotor, where one deals
with an additional acceleration of the particle on the line [7].
The Quantum Kicked Rotor with a periodic change of the kicking strength
could be studied for the case of commensurable and incommensurable fre-
quencies starting from an ε-classical point of view. Moreover one can ask the
question how energy grows in this system. In particular what is the diffusion
constant, what is the break time for Dynamical Localization? Another ques-
tion might be the stability of quantum resonances if one treats the system
with noise as it has been done for example in the standard Quantum Kicked
Rotor [20, 21].
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A The Quantum Propagator - Some Exam-

ples

In this Appendix we will study some simple examples for the propagator
formalism starting from the well-known propagator of a free particle [11, 12]

Kf (x, t|x0, 0) =
( m

2πi~t

) 1
2

exp

(
im(x− x0)2

2~t

)
. (90)

Some of the following examples can be found in textbooks like [11, 12].

A.1 Bouncing Particle Between Two Walls

We consider the potential [22]

V (x) =

{
0 0 < x < a
∞ otherwise

(91)

and the initial state

ψ0(x) = δ(x− x0), (92)

where 0 < x0 < a.
For simplicity we will first study the simpler case of only one wall at x = 0.
The free propagator Kf (x, t|x0, 0) includes all possible paths starting from
x0 ending at x. But in our problem paths that cross the wall are not allowed.
These paths can be taken equivalent to paths starting from −x0 ending at
x, since a path from x0 to the point of last crossing the wall can be mirrored
at the wall. Thus we find the propagator for the problem with one wall

K(x, t|x0, 0) = Kf (x, t|x0, 0)−Kf (x, t| − x0, 0). (93)

The situation with two walls is a little bit more complicated. Now both walls
can be treated as mirrors and thus we get an infinite number of boxes on
the x-axis [ja, (j + 1)a] with j ∈ Z, where each wall acts as a mirror plane
between neighboring boxes. For the mirror sources we get

xj =

{
j · a+ x0 , j even

(j + 1) · a− x0 , j odd
. (94)

Paths crossing an odd number of walls are not allowed, while those crossing
an even number are allowed. The latter correspond to paths with reflections.
For the path crossing one wall we subtract Kf (x, t|x1, 0) and Kf (x, t|−x1, 0),
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Figure 16: Particle in front of a wall.

but this excludes allowed paths crossing two walls. Therefore we have to add
Kf (x, t|x2, 0) and Kf (x, t|−x2, 0). Thereafter we must subtract Kf (x, t|x3, 0)
and Kf (x, t| − x3, 0) and so on. Thus we get

K(x, t|x0, 0) =
∑
j∈Z

(−1)jKf (x, t|xj, 0). (95)

Or inserting xj and after some shifting of indices

K(x, t|x0, 0) =
∑
j∈Z

(Kf (x, t|2ja+ x0, 0)−Kf (x, t|2ja− x0, 0)) . (96)

A.2 Particle on a Ring

Next we are interested in a free particle on a ring [23]. The Hamiltonian is

H =
p2

2m
= − 1

2mR2

d2

dθ2
. (97)

In general the initial state after a time t is given by

ψ(x, t) =

∫
dx0K(x, t|x0, 0)ψ(x0, 0). (98)

In our case we have due to the periodicity of the position coordinate

ψ(θ, t) =

∫ 2π

0

dθ0K(θ, t|θ0, 0)ψ(θ0, 0), (99)

where the factor R from the measure is absorbed in the propagator. Due to
the periodic boundary conditions we have to take not only paths from θ0 to
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θ but also paths starting from θ0 + 2πj, where j ∈ Z, into account. Thus we
finally have:

K(θ, t|θ0, 0) =
∑
j∈Z

R
( m

2πi~t

) 1
2

exp

(
imR2(θ − θ0 − 2πj)2

2~t

)
(100)

Using Poisson’s formula [24]∑
j∈Z

f(j) =
∑
J∈Z

∫ ∞
−∞

f(x′)e−2πiJx
′
dx′ (101)

one can show that this is equal to the result we would get by expressing the
propagator via expanding the initial state in energy eigenstates |k〉 and using

the time evolution operator Ût = e−
i
~
∫ t
0 Ĥdτ . In our case these eigenstates are

plane waves 1√
2π
e−ikθ, which yields

K(θ, t|θ0, 0) =
∑
k∈Z

〈θ|k〉 exp

(
i

~
Ekt

)
〈k|θ0〉 =

∑
k

e−ik(θ−θ0)e−
i~k2t
2mR2 . (102)

A.3 Shifted Momentum

We now treat the case of shifted momentum

H =
(p+ p0)

2

2m
. (103)

Since the propagator can be regarded as transition amplitude, we can write:

K(xf , t|x0, 0) (104)

= 〈xf , t|x0, 0〉 = 〈xf , t|e−
i
~
∫ t
0 Ĥ(t′)dt|x0, 0〉 (105)

=

∫ ∫
dpdp′〈xf , t|p〉〈p|e−

i
~

(p̂+p0)
2

2m
t|p′〉〈p′|x0, 0〉 (106)

=

∫
dp〈xf , t|p〉e−

i
~

(p+p0)
2

2m
t〈p|x0, t〉 (107)

=
1

2π~

∫
dpe

i
~p(xf−x0)e−

i
~

(p+p0)
2

2m
t (108)

=
1

2π~

∫
dpe−

it
2m~ (p

2−2p(m
t
(xf−x0)−p0)+p20) (109)

=
1

2π~

∫
dpe−

it
2m~ (p−(

m
t
(xf−x0)−p0))2e−

it
2m~p

2
0e

it
2m

(m
t
(xf−x0−)p0)2 (110)

=
1

2π~

√
2π~m

it
e−

it
2m~p

2
0e

it
2m

(m
t
(xf−x0)−p0)2 (111)

=
( m

2πi~t

) 1
2
e−

it
2m~p

2
0e

it
2m

(m
t
(xf−x0)−p0)2 . (112)
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A.4 Initial Velocity

Starting from the Lagrangian

L =
m

2
(v + v0)

2 (113)

we get the canonical momentum p = m(v + v0) and the Hamiltonian

H = pv − L (114)

=
p2

2m
+ pv0. (115)

We find

K(xf , t|x0, 0) (116)

= 〈xf , t|x0, 0〉 = 〈xf , t|e−
i
~
∫ t
0 Ĥ(t′)dt|x0, 0〉 (117)

=

∫ ∫
dpdp′〈xf , t|p〉〈p|e

− i
~

(
p̂2

2m
+p̂v0

)
t
|p′〉〈p′|x0, 0〉 (118)

=

∫
dp〈xf , t|p〉e

− i
~

(
p2

2m
+pv0

)
t
〈p|x0, 0〉 (119)

=
1

2π~

∫
dpe

i
~p(xf−x0)e

− i
~

(
p̂2

2m
+p̂v0

)
t

(120)

=
1

2π~

∫
dpe−

it
2m~ [p2+2p(mv0−mt (xf−x0))] (121)

=
1

2π~

∫
dpe−

it
2m~ [p+(mv0−mt (xf−x0))]

2

e
imt
2~ (v0−

x0−xf
t

)2 (122)

=
1

2π~

√
2π~m

it
e

imt
2~ (v0−

xf−x0
t

)2 (123)

=
( m

2πi~t

) 1
2
e

imt
2~ (v0−

xf−x0
t

)2 . (124)

Another way to solve this problem is to start from (103) and gauge the term
p0
2m

away. This leads to a gauge factor of

ei
t
~
p20
2m . (125)

A.5 Time Evolution of a Particle in the 1-dim Har-
monic Oscillator

Starting from the harmonic oscillator Hamiltonian

H =
p2

2m
+
mω2

2
x2 (126)
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we want to study the time evolution of an initial Gaussian wave packet
centered at x0

ψ(xi, 0) =
(
2πσ2

)− 1
4 exp

(
−(xi − x0)2

4σ2

)
. (127)

The propagator of the harmonic oscillator is [11]

K(x, t|xi, 0) =
(

mω

2πi~ sin(ωt)

) 1
2

exp

(
imω

2~ sin(ωt)
[(x2 + x2i ) cos(ωt)− 2xxi]

)
.(128)

The state at time t is given by

ψ(x, t) =

∫ ∞
−∞

dxiK(x, t|xi, 0)ψ(xi, 0). (129)

After rearranging terms this reads

ψ(x, t) =
(
2πσ2

)− 1
4

(
mω

2πi~ sin(ωt)

) 1
2

exp

(
imω cos(ωt)x2

2~ sin(ωt)
− x20

4σ2

)
×
∫ ∞
−∞

dxi exp

{
−
(
mω cos(ωt)

2~i sin(ωt)
+

1

4σ2

)
x2i +

(
mωx

~i sin(ωt)
+

x0
2σ2

)
xi

}
.

(130)

The Gaussian integral can be computed via (44).

ψ(x, t) =
(
2πσ2

)− 1
4 ∆(t)−

1
2 exp

(
imω cos(ωt)x2

2~ sin(ωt)
− x20

4σ2

)
× exp

(
1

2mωσ2∆(t)

(
m2ω2σ2

i~ sin(ωt)
+mωxx0 +

~i sin(ωt)

4σ2x20

)), (131)

where ∆(t) = cos(ωt) + i~ sin(ωt)
2mωσ2 . We are interested in |ψ(x, t)|2. Therefore

we need the real part of the second exponential term which yields

1

2mσ2|∆(t)|2

(
−mω

2
x2 +mωxx0 cos(ωt) +

~2 sin2(ωt)

8mωσ4
x20

)
. (132)

Thus we finally have

|ψ(x, t)|2 = (2πσ2|∆(t)|2)−
1
2 exp

(
−(x− x0 cos(ωt))2

2σ2|∆(t)|2

)
. (133)

In agreement with Ehrenfest’s theorem the center of the wave packet oscil-
lates between −x0 and x0. The width oscillates with the same frequency ω.
In the limit ω = 0 we find the behavior of a free Gaussian wave packet

|ψ(x, t)|2 =

(
2πσ2

(
1 +

~2t2

4m2σ4

))− 1
2

exp

(
− (x− x0)2

2σ2(1 + ~2t2
4m2σ4 )

)
. (134)

41





B FFT Subroutine

In the numerical simulation we use a subroutine performing a discrete Fourier
transform between our computational variables x and p.

x = 1, . . . , Nbas (135)

p = 1, . . . , Nbas, (136)

where Nbas is the length of our basis. A common way to define a discrete
Fourier transform is:

Ψ̃p = F [Ψ] =

Nbas∑
x=1

e
−i 2π

Nbas
(p−1)(x−1)

Ψx (137)

Ψx = F−1[Ψ̃] =
1

Nbas

Nbas∑
p=1

e
i 2π
Nbas

(p−1)(x−1)
Ψ̃p. (138)

To find what the subroutine does, we tested it with δ-peaks and Gaussian
wave packets. We found:

Ψ̃p = Sisn=−1[Ψ] =

Nbas∑
x=1

e
−i 2π

Nbas
(p−1)(x−1)

Ψx (139)

Ψx = Sisn=1[Ψ̃] =

Nbas∑
p=1

e
i 2π
Nbas

(p−1)(x−1)
Ψ̃p, (140)

where isn is a parameter which is needed, if one calls the subroutine. This
parameter sets the sign in the exponential. Further one has to take care of
the missing normalization factor 1

Nbas
, which must be included by hand. An

other point of interest is the transition between the computational variables
x and p and the physical variables θ ∈ [0, 2π) and n ∈ Z. This transition is
induced by the FFT subroutine as follows:

x =
θx
2π
Nbas + 1 (141)

p =

{
n+ 1 n ≥ 0

Nbas + 1− |n| n < 0
. (142)
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Figure 17: Inverse FFT of Ψp = δp,11. black: subroutine, red: formula applied
by Maple.

Figure 18: FFT of Ψx = e−
(x−100)2

2√
2π

. black: subroutine, red: formula applied
by Maple.
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The transition p↔ n becomes clear, if one looks at the Fourier transform
of a Gaussian wave packet (fig. 18), where a Gaussian in n is expected.
Figure 19 may clarify the transition.

Figure 19: Transition between n and p.

The factor (x − 1) in x ↔ p transition could be verified by looking at the
data files of the inverse Fourier transform of a δ-peak, where x = 1 equaled
θ = 0.
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