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Quantum Reflection in Time and Space

The reflection of a particle from an attractive potential is called quantum reflection

and has no classical counterpart. It is possible to use a numeric approach that integrates

the time-dependent Schrödinger equation in one dimension to study quantum reflection

at a surface. This project uses the approach to analyse the time course of quantum

reflection and develops a model to describe it. It is shown that the time behaviour

of the reflection process is highly dependent on the shape of the incident particle’s

wave function. Furthermore, differences between quantum and classical reflection at

the surface are investigated. As experiments show that one-dimensional modelling of

quantum reflection is insufficient, an extension of the approach to two dimensions is

sought and assessed. Computational requirements for practically using the proposed

extension are extrapolated.

Quantenreflexion in Zeit und Raum

Die Reflexion eines Teilchens an einem attraktiven Potential wird Quantenreflexion

genannt und hat kein klassisches Gegenstück. Mit einem numerischen Ansatz, in dem

die zeitabhängige Schrödingergleichung in einer Dimension integriert wird, ist es möglich

Quantenreflexion an einer Oberfläche zu untersuchen. Dieses Projekt verwendet den

Ansatz, um den zeitlichen Verlauf von Quantenreflexion zu analysieren und entwickelt ein

Modell für dessen Beschreibung. Es wird gezeigt, dass das zeitliche Verhalten des Reflex-

ionsprozesses stark von der Gestalt des Wellenpakets des einfallenden Teilchens abhängig

ist. Darüber hinaus werden Unterschiede zwischen Quanten- und klassischer Reflexion

an der Oberfläche untersucht. Weil Experimente zeigen, dass eindimensionale Model-

lierung von Quantenreflexion ungenügend ist, wird eine zweidimensionale Erweiterung

des Ansatzes gesucht und bewertet. Die benötigte Rechenleistung für die praktische

Umsetzung der vorgeschlagenen Erweiterung wird extrapoliert.
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1 Introduction

The phenomenon quantum reflection denotes the reflection from an attractive potential.

Since there is no classical counterpart to this quantum mechanical effect, it might seem

quite surprising. But yet it is so fundamental that a simple example is usually covered in

introductory lectures to quantum mechanics [1]: A particle being reflected at a potential

step downwards is an example of quantum reflection. Nevertheless, this phenomenon

seems not to be known very widely [2].

Quantum reflection can be observed in the interaction between an atom and a surface

because the interaction potential has an attractive regime [3]. Quantum reflectivity

strongly depends on the energy of the incoming particle. In order to measure effects

due to quantum reflection, very slow particles have to be used. Experimentally, this is

achieved by tilting the atomic beam with respect to the surface, such that the normal

component of the velocity is small.

A one-dimensional numerical scheme for calculation of quantum reflection effects is

available [4]. However, in experiments with non-homogeneous, periodic surfaces, quantum

reflectivity depends on the incident angle with respect to the periodicity of the surface [5].

Thus, a one-dimensional approach to quantum reflection is insufficient and a possible

two-dimensional extension as suggested in this project is of interest.

A basic question which seems interesting is the time course and swiftness of quantum

reflection. Therefore, the reflection process is analysed in this project. A surface potential

has a repulsive regime in addition to the attractive regime. Apart from quantum

reflection in the attractive regime, an incident particle can also be classically reflected in

the repulsive regime. Calculations that motivate an experimental measurement of the

expected delay between classical and quantum reflection are carried out.
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2 Background

The interaction between atom and surface is described by the surface potential

V (x) = Ae−Kx − C3

(x− x0)3
(1)

with coefficients A,K,C3 and x0 dependent on the materials in question [6, 7].

Methods developed by B. Herwerth [4, 8] were employed to study quantum reflection

numerically in one dimension. In a nutshell, the wave function of the particle is sampled

at several grid points with spacing dx and propagated using a Crank-Nichelson scheme [9].

This involves solving the equation(
1 +

iHdt

2h̄

)
ψt+dt =

(
1− iHdt

2h̄

)
ψt (2)

for every time step dt. The derivative in the Hamiltonian

H = V (x)− h̄2

2m

∂2

∂x2
(3)

is discretised using a three-point approximation [10]

∂2

∂x2
ψ(x) ≈ 1

(dx)2
ψ(x− dx)− 2

(dx)2
ψ(x) +

1

(dx)2
ψ(x+ dx). (4)

This leads to the matrix on the left hand side of Eq. (2) being tridiagonal. An efficient

algorithm for tridiagonal matrices [9] was then used to solve the equation.

In order to study quantum reflection opposed to reflection at the full potential which

includes classical reflection, only the absorptive part

V (x) = −C3

x3
. (5)

of the potential is used. However, the potential’s singularity at x = 0 leads to numeric

issues. Since the potential becomes very deep, the equally spaced grid is insufficient and

artificial reflections of the wave function occur. This can be circumvented by introducing

a cut off point xstop. The potential is cut off at xstop and parabolically continued to a

linear regime. See Fig. 1 for an illustration of the potential. To avoid reflections at the

edge of the numeric box, an absorptive filter smoothly multiplying the wave function to

zero is applied.

An initial Gaussian wave packet with velocity v < 0 is propagated into the potential.
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Figure 1: Illustration of the potentials mentioned in the text. Classical reflection takes
place at the repulsive regime of the potential. Quantum reflection occurs in
the region where the potential depth equals the incoming particle’s energy
(see [11], p. 16). Hence, quantum reflection is expected to be similiar for all
three potentials shown.
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After allowing enough time for reflection, quantum reflectivity R can be calculated from

the reflected wave function ψtfinal
. This can be done both in coordinate space R =∫∞

xmin
|ψtfinal

(x)|2dx and momentum space R =
∫∞

0 |ψtfinal
(p)|2dp. The lower integration

bound xmin > 0 is chosen well out of the potential, ensuring that only reflected parts of

the wave function are taken into account. The lower bound of the integral in momentum

space must be zero, because the incoming particle has negative momentum and the

(elastically reflected) outgoing particle will have positive momentum. For calculation

of R in momentum space to succeed, it is important that the width ∆p is sufficiently

small. Otherwise, the wave packet is so wide that it always contains both negative and

positive momentum components, no matter whether the average momentum is positive

or negative.

The determined reflectivity is dependent on the choice of the potential cut off point

xstop. It shows a periodic behaviour in xstop which converges as xstop → 0. Reflectivity

for the physical potential without cut off can then be extrapolated as xstop → 0.

This method of numerically propagating the wave packet can be extended to two

dimensions using a split operator technique if the potential used is separable (see [12],

pp. 497f.), i.e. V (x, y) = Vx(x) + Vy(y). However, the physical potentials in question are

not separable and a different extension must be sought.
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3 Results

3.1 Two-dimensional numeric approach

3.1.1 Theoretical considerations

Generalisation of the one dimensional scheme onto a two dimensional n×m grid (m < n)

with spacings dx and dy is possible. On such a grid, n ·m values of ψ(x, y) have to be

stored. The Hamiltonian H then is a (n ·m)× (n ·m) matrix acting on this representation

of ψ. There are multiple possible orders in which the grid can be traversed and in which

the values of ψ are saved, each described by a one-to-one mapping

f : {1, . . . , n ·m} → {1, . . . , n} × {1, . . . ,m}. (6)

Examples of possible mappings f are shown in Figure 2.

As in the one dimensional case, the equation(
1 + iH

dt

2h̄

)
ψt+dt =

(
1− iH dt

2h̄

)
ψt (7)

needs to be solved. However, now the matrix on the left hand side, which we shall

call M , is not tridiagonal. It is still symmetric, so it was decided to calculate the

LLt decomposition which makes use of the symmetry. This then allows efficient back

substitution to obtain ψt+dt (see [9], p. 100). A close look at the algorithm reveals

that for a banded matrix with bandwidth b, the number of computation steps needed is

n ·m · b2, at least in the highest order. Therefore, it is reasonable to choose a mapping f

which results in M having low bandwidth.

The derivatives in the Hamiltonian H = V (x, y)− h̄2

2m
∂2

∂x2 − h̄2

2m
∂2

∂y2 can be expanded

with the three point approximation as in the one-dimensional case (Eq. (4)), separately for

each spatial direction. Then M has the following non-zero elements: diagonals (Eq. (8))

linear traversal diagonal traversal

↑
y

1 4 7 10

2 5 8 11

3 6 9 12

x→

↑
y

1 3 6 9

2 5 8 11

4 7 10 12

x→

Figure 2: Examples of two different mappings f for a 4× 3 grid. The numbers indicate
the index of the grid boxes.
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Figure 3: Examples of the matrix M = 1 + iH dt

2h̄ for the two mappings f from Fig. 2.
The non-zero components are given as d for the diagonals (Eq. (8)) and h, v
for the terms resulting from horizontally (Eq. (9)) and vertically (Eq. (10))
adjacent grid boxes, respectively. In the linear traversal, the matrix blocks
indicate one column of grid boxes each. In the diagonal traversal, they indicate
one diagonal each.

and off-diagonals where the grid box f(j) is adjacent to f(k) in x-direction (Eq. (9)) or

y-direction (Eq. (10)).

Mj,j = 1 + V (f(j)) i
dt

2h̄
+ i

2h̄2

2m(dx)2

dt

2h̄
+ i

2h̄2

2m(dy)2

dt

2h̄
(8)

Mj,k = −i h̄2

2m(dx)2

dt

2h̄
(9)

Mj,k = −i h̄2

2m(dy)2

dt

2h̄
(10)

Structures of M for the two mappings f considered as an example are shown in Figure 3.

In the following, an intuitive method which yields lower limits for the bandwidth b is

developed. Next, this is used to show b ≥ m if m is small enough such that n ≥ 2m− 1.

Having shown that a bandwidth lower than m is not possible, f from the first example

in Figure 2 can be used in computations. This common approach of traversing the grid

column-by-column results in a bandwidth m for every grid size and a rather simple

matrix M .
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For a fixed mapping f , let j be an arbitrary index, 1 < j < n · m. Colour all of

the grid boxes f(1), f(2), . . . , f(j) grey. Now consider the number p of non-coloured

(spatial) neighbour boxes of these grey boxes. Let k be the highest index of any of these

non-coloured neighbours. Then k ≥ j + p. Since f(k) is a neighbour to the grey-coloured

boxes, there is a box f(j′) with j′ ≤ j that is adjacent to f(k). This means that the

matrix element Mk,j′ is non-zero. Hence,

b ≥ k − j′ ≥ (j + p)− (j) = p. (11)

The number of neighbours p specifies a lower limit for the bandwidth b.

Now we need to use this neighbour counting method to show b ≥ m for n ≥ 2m− 1.

Subsequently, we will use the argument that a row (column) partially coloured contains

at least one horizontal (vertical) neighbour box. Care has to be taken to use only either

rows or columns in this argument at any one time because otherwise neighbours might

be counted twice. Assume we had a mapping f with a bandwidth lower than m and

choose j = m2, i.e. colour the first m2 grid boxes.

There is no completely coloured row with n coloured grid boxes: If there was, consider

the row with the least number k ≥ 0 of coloured grid boxes. This implies at least n− k
partially coloured columns hence neighbours. See Fig. 4 for an example. Apart from our

row with n coloured grid boxes, there are m− 1 further rows and thus distributing the

m2 coloured boxes yields k ≤ (m2 − n)/(m− 1). Then the number of neighbours p is

p ≥ n− k ≥ n− m2 − n
m− 1

=
nm−m2

m− 1
≥ (2m− 1)m−m2

m− 1
= m (12)

and the bandwidth is at least m.

Next, consider the number m′ of rows that contain coloured boxes. If m′ = m we

are finished, because none of the rows is completely coloured and that yields at least

m horizontal neighbours, one in each row. If however m′ < m there is one completely

uncoloured row. Also, there must be n′ > m columns with coloured boxes, because m′

rows and n′ columns can accommodate at most m′n′ boxes and there are m2 coloured

boxes in total. These n′ columns are partially coloured due to the one completely

uncoloured row and yield n′ > m vertical neighbours.

3.1.2 Practical considerations

The suitability of this numerical scheme concerning computational resources needed was

assessed and dependence of time and memory consumption on grid size n×m = 2nx×2ny
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completely coloured row

row with k = 1 coloured box

partially coloured columns

Figure 4: In this example with n = 5, m = 3, the bottom row is completely coloured.
The top row has the least coloured boxes; one, hence k = 1. This implies that
there are at least n− k = 4 partially coloured columns as indicated. Note that
the second column is not counted because it may well be fully coloured, as we
only have the information that the last row is completely coloured and the first
row has one coloured box.

measured.

In the highest order, the 2ny bands of L contain 2ny · 2nx+ny numbers. Hence, incorpo-

rating a static offset for components independent of nx and ny, memory usage is expected

to be described by

f(nx, ny) = A+B · Cnx+2ny (13)

with suitable constants A,B and C = 2. Memory usage of a program performing the

decomposition was measured for several grid sizes and is shown in Fig. 5. The deviations

at ny ≤ 3 are explained by the fact that Eq. (13) does not take into account lower orders

which are more significant for small ny. A fit to the data results in C ≈ 2 and confirms

that Eq. (13) describes memory usage.

The second significant indicator for the scheme’s performance is computation time. As

mentioned in section 3.1.1, about nmb2 computation steps are needed for bandwidth b.

As b = m has been chosen as the optimum, required time is estimated as 2nx+3ny , at the

highest order. Hence, the relation

f(nx, ny) = A+B · Cnx+3ny (14)

with C = 2 is expected for computation time. Since start up and initialisation of

the program proved to be negligible, A = 0 was fixed. Time needed for performing

the decomposition (user time) was measured for several pairs (nx, ny) of parameters.

Contrary to memory, the measured computation time will vary depending on system

13



Figure 5: Memory needed for banded storage of LLt decomposition. Memory usage
of the program was measured for all ny < nx, nx + 2ny ≤ 29. Parameters
of f(nx, ny) = A + B · Cnx+2ny were determined as A ≈ 14.02 MB, B ≈
1.86 · 10−5 MB, and C ≈ 1.99.
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Figure 6: Computation time of LLt decomposition. Computation time was measured
twice and averaged for each ny < nx, nx +2ny ≤ 29. Parameters of f(nx, ny) =
B · Cnx+3ny were determined as B ≈ 6.82 · 10−8 s and C ≈ 1.92.

15



load. Therefore, it was measured twice for each pair (nx, ny) and the average plotted in

Fig. 6. The fit results in C ≈ 2 and confirms Eq. (14).

Using the above data, resources needed for a two dimensional propagation can be

estimated. In one dimension, reasonable grid sizes are 216 grid points per 8µm [4]. On

the assumption that this spacing is also reasonable in the two-dimensional scheme, a

4µm × 2µm grid (nx = 15, ny = 14) would need about 130 terrabytes of memory and

about 35 years for an LLt decomposition. Clearly this is not feasible.

What may be possible is using periodic boundary conditions along the y-direction.

Then the grid height can be small and ny, which effects resources stronger than nx,

lower. Using periodic boundary conditions in the y-direction still makes it possible to

construct a matrix M with bandwidth m = 2ny . In fact, linear traversal as in Fig. 2 stays

possible. Because of periodic boundary conditions, there are more vertically adjacent

grid boxes and the free components in the first off-diagonal of M (see Fig. 3) will be filled

with v. Considerations that showed a bandwidth lower than m cannot be achieved stay

valid, because only lower bounds of the number of neighbours were needed and periodic

boundary conditions add neighbours.

A 2µm× 0.0625µm grid (nx = 14, ny = 9) needs about 67 gigabytes and 9 hours. If

a time dependent potential shall be used, the LLt decomposition has to be repeated

every few time steps. Then LLt decomposition should be the dominating factor as the

multiplication on the right hand side of Eq. (7) and back substitution is significantly

faster. Alternatively, in the case of a potential periodic in time, the decomposition can

be saved for multiple times which improves computation time at the cost of memory. In

conclusion, this method for two-dimensional propagation in a time-dependent potential

is presently not viable.

3.2 Time behaviour of reflection

The reflectivity

R =

∫ ∞
0
|ψt(p)|2dp (15)

can be measured not just in the limit t→∞ as explained in section 2 but at multiple

times t. This was done by performing a fast Fourier transformation [9] of the wave

function ψ(x) every few time steps and numerically integrating in the momentum domain.

The resulting time behaviour R(t) was analysed using the SciPy libraries for Python [13]

and proved qualitatively independent of the precise physical (and numeric) parameters

of the system, such as velocity and width of incoming particle. An example of the time

behaviour is shown in Fig. 7. It exhibits two important features which will be discussed
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Figure 7: Typical example of R(t) in both logarithmic and linear scale. It is clearly
visible that R saturates at the final reflectivity R∞ as t→∞.

hereafter.

3.2.1 Physical and numeric background

First, a saturation of the reflectivity at R∞ as t → ∞ is seen in both logarithmic and

linear plot (Fig. 7). Physically, this is due to the reflection process finishing. All of the

incoming particle has either been reflected or transmitted beyond the quantum reflection

point. Quantum reflectivity is not one, hence the final reflectivity is lower than one.

The time course R(t) of classical reflection however should saturate at R∞ = 1, because

transmission through a (sufficiently high) classical barrier does not happen. Therefore, a

unitarity check of the numerical method was carried out by computing R(t) for classical

reflection and successfully confirming R(t→∞) = 1.

The other feature is the abrupt pick-up of R after the constant regime at short t, which

is only visible in the logarithmic scale (Fig. 7). Both the constant regime and abrupt

pick-up visible are due to background.
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Figure 8: R(t) for different numbers of grid points 2npower. The background visible at
small t is dependent on numeric parameters.

Physically, the initial Gaussian wave packet already contains a small amount of

positive momentum, even though this will be minute in the case of mean momentum

p0 = −2m/s · 5 · 10−27kg = −10−26kg m/s and width ∆p = h̄/(2 · ∆x) = h̄/(2 · 0.08 ·
10−6m) = 6.6 · 10−28kg m/s, on the order of R(t = 0) ≈ 4 · 10−52, which is negligible with

respect to the numeric background discussed next. [14]

The dominating effect is numeric background. This is dependent on the numeric

parameters chosen, such as the number of grid points as can be seen in Fig. 8. Hence, the

rather abrupt pick-up of R(t) and its precise position have no physical meaning. Rather,

it indicates that reflectivity has started exceeding the numeric background, becoming

visible on the logarithmic plot.

3.2.2 Shape of reflectivity

The time behaviour of R(t) in Fig. 7 looks like an error function. This can be explained

physically. The error function is a cumulative integral of the normal distribution. Hence,

18



the derivative dR/dt resembles a Gaussian function

g(t) = A · exp
(
−B · (t− t0)2

)
. (16)

An advantage of looking at the derivative is that the (approximately constant) background

disappears. Eq. (16) is similar to the density of the initial wave packet

|ψ(x, t = 0)|2 =
1√

2πσ0

exp

(
−(x− x0)2

2σ2
0

)
(17)

with initial position x0 and width σ0.

Quantum reflection predominantly occurs at the position x̃ where the potential depth

is the same as the particle’s initial energy [5]. The amount dR reflected in a time step dt

is directly dependent on the density |ψ(x̃, t)|2,

dR(t)

dt
= R̃ · |ψ(x̃, t)|2. (18)

The reflectivity coefficient R̃ has units m/s and is not identical to R∞ = R(t→∞).

Let us simplify and assume, that the wave packet’s evolution till x0 resembles free

propagation. Then we have

|ψ(x̃, t)|2 =
1√

2πσ(t)
exp

(
−(x̃− (x0 + vt))2

2σ2(t)

)
(19)

with time-dependent width (see [1], p. 54)

σ2(t) = σ2
0 +

h̄2

4m2σ2
0

t2 (20)

and initial velocity v. Note that the particle is incident from the right and v < 0.

The above must be tested against simulated results. Fig. 9 shows a fit of Eqs. (18)

through (20). The fit describes this specific set of data very well. To ensure that quantum

reflection generally follows this pattern, fits to simulation results with various simulation

parameters v, σ0 and xstop were performed. Altogether, the fits looked as good as the

example in Fig. 9. Fit parameters resulting from these fits are shown in Figs. 10 through

12.

The residuals seen in Fig. 9 do not randomly scatter about zero as would be expected

for a statistically limited fit. Indeed, another effect must be taken into account: The

reflectivity coefficient R̃ is not constant as assumed in the fit. In fact, reflectivity is

19



Figure 9: Fits of Eqs. (18) through (20) to dR(t)/dt and corresponding residuals
dR(t)/dt − fit(t). Velocity v = −2m/s and mass m were fixed to the val-
ues used in the numeric simulation. Free parameters obtained with the fit are
R̃, σ0 and (x̃−x0). While the first fit uses all data, the second fit only considers
data around the peak, indicated by the vertical lines. The non-random residuals
are discussed in the text.
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Figure 10: Fit parameter σ0 plotted against σ0 used in the numeric simulation. Of course,
they are expected to be the same and lie on the identity. For most fit results,
this is the case.
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Figure 11: Fit parameter R̃ plotted against |v| used in the numeric simulation. Reflectivity
varying with xstop is not surprising [4]. A trend showing higher R̃ for lower
velocities is apparent and expected according to Shimizu [3].
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Figure 12: Fit parameter (x̃−x0) plus simulation parameter x0 plotted against theoretical
x̃ = 3

√
2C3/(mv2). The fit parameters are expected to lie on the identity. This

is not the case. The model used for the fit is insufficient as is discussed in the
text.
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strongly dependent on velocity of incident particles. Components of the wave function

reaching x̃ first are faster and have a lower R̃ whereas components being reflected later

have lower velocity and a higher reflectivity coefficient.

This effect is best seen in the second fit in Fig. 9, which was only optimised against

a small region of data near the peak. These components of the wave function can be

expected to have the same velocity and hence R̃. The corresponding residuals clearly

show that components being reflected first have a lower reflectivity and components

reflected later a higher reflectivity. However, at other parameters, the residuals are

exactly opposite: above zero before and below zero after the peak. This indicates that R̃

varying is not the correct explanation for the observation.

It is possible that further analysis of R(t) will reveal the relation between reflectivity

and incident velocity. However, this pattern of the residuals is also visible in a fit of the

above model to classical reflection. The main limitation of the above discussion is the

assumption of free propagation of the particle. As a matter of fact, at the reflection point

x̃ the particle has doubled its initial kinetic energy. This shows that even though the

approximation made describes the data very well, it is not sufficient. The spreading of

the wave packet due to a non-constant potential should be taken into account in future

work.

3.2.3 Quantum and classical reflection in comparison

Both classical and quantum reflection happen at a physical surface (see full potential in

Fig. 1). Therefore, it is conceivable that comparison between a classically and quantum

reflected wave packet provides a method to measure the potential, especially the part

between quantum and classical reflection point.

The full interaction potential between atom and surface (Eq. (1)) has a well depth

of 5.5meV for helium and silver (see [7], p. 3997). This is so deep that our numerical

scheme stops working and produces artificial reflections.

Two approaches were used to circumvent this issue and allow usage of the numerical

scheme. First, the absorbing boundary was removed from the attractive (parabolically

continued) potential. Parts of the wave packet transmitted through the quantum reflection

point will then not be absorbed but classically reflected at the left edge of the numeric

box.

Since quantum reflection is only a small percentage of classical reflection and the delay

is small, quantum reflection is not visible in R(t). Instead, R(t) looks just as discussed

above, saturating at R(t→∞) = 1 because all of the incident wave packet is eventually

reflected (classically).
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The delay between classical and quantum reflection can be identified by comparing the

fit parameters (x̃− x0) from simulations with and without absorbing boundary, as shown

in Fig. 13.

3.2.4 Experimentally isolating quantum and classical reflection

The second approach is modifying the parameters of the full interaction potential (Eq. (1)

and Fig. 1) such that it is considerably less deep. Additionally, in order to increase the

delay between quantum and classical reflection, the potential was artificially broadened

at the minimum by inserting a constant region.

Despite the modifications to the full interaction potential, results obtained with the

modified potential are physically interesting: Since both potentials exhibit the same

−C3/x
3 behaviour for large x, they are expected to affect quantum reflection similiarly.

Classical and quantum reflection can indeed be seen separately in sufficiently broad

potentials. In fact, multiple reflections as illustrated in Fig. 14 are visible. The reflectivity

R(t) (Fig. 15) shows R increasing to one in two steps, first quantum and then classical

reflection. Reflected wave functions (Fig. 16) show multiple peaks corresponding to

quantum, classical and multiple reflections.

The theoretical possibility of a spin echo experiment showing the delay between quantum

and classical reflection arises. A spin echo experiment makes use of an additional degree

of freedom, spin, to measure interference [11]. After travelling through a magnetic field,

an initial particle with equal spin up and down components will have separate spin up

and down packets with a time separation ∆t due to their distinct energies in the magnetic

field. The interaction with the surface potential is independent of spin. The overlap of

the two peaks after reflection in the potential can be measured. By scanning through ∆t,

the interference of the reflected particle is recovered.

In the present calculation, instead of scanning through ∆t, we scan through ∆x in

the reflected wave function. This is computationally favourable, does not need spin and

produces a similar result. Thus, we calculate the interference by cutting out the first two

peaks ψCR(x) and ψQR(x) from ψ(x, t = 4.8µs) (see Fig. 16) and applying a delay ∆x to

the second: ∫
ψCR(x)ψ∗QR(x+ ∆x)dx. (21)

The result can be seen in Fig. 17.

First of all, the peaks of the reflected particle are not at the same position. This

leads to the maximum of the interference not being at ∆x = 0. On the other hand,

the classically reflected particle has also picked up more phase because it has travelled
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Figure 13: Delay between classical reflection at the boundary of the numeric box (no
absorption filter) and quantum reflection (with absorption filter). (x̃ − x0)
is the distance between initial particle and reflection point. The difference
(x̃−x0)CR− (x̃−x0)QR is a measure for the spatial distance between classical
and quantum reflection points and hence an indication for the expected time
delay. Differences of the fit parameters (x̃− x0) are plotted for fixed v and
multiple parameters σ0, xstop as in Fig. 10. Note that the delay is negative at
larger velocities.
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...

incident wave packet

first peak

second peak

third peak

Figure 14: Diagram illustrating multiple reflections occurring in a widened potential.
Multiple reflections occurring can be seen in Fig. 15 as R(t) decreasing after
the first back-reflection and in Fig. 16 as multiple peaks travelling out of the
potential.

further. This leads to a phase shift in the interference. This phase difference could in

principle be measured for example in an atomic beam spin echo experiment as described

above.
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Figure 15: Reflection in a widened potential of a 3He particle with v = −2m/s. In the
logarithmic scale, quantum reflection and saturation and subsequent classical
reflection and saturation to R(t → ∞) = 1 is visible. Moreover, the linear
scale also shows multiple reflection that leads to R decreasing again.
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Figure 16: Wave functions after reflection from the widened potential. The broadened
potential does not look, but is indeed smooth, which can only be recognised at
the relevant length scale of ≈ 1-100nm. A smaller x-scale would be necessary
to see this. The wave function at 4µs shows the first two reflection peaks (see
Fig. 14) and in the later wave function three reflection peaks become visible.
The height of the first peak is significantly lower than that of the second peak,
because the probability for quantum reflection is lower than that of classical
reflection.
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Figure 17: Interference (Eq. (21)) of the first two peaks ψQR(x) and ψCR(x) cut out
of the reflection ψ(x, t = 4.8µs) (in Fig. 16). The velocity of the incoming
particle was −2m/s. The maximum is not at ∆x = 0. This shows that the
two peaks have a certain distance and have not been reflected simultaneously.
The phase difference shows the additional phase that has been picked up by
the classically reflected particle.
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4 Conclusion and Perspectives

A numerical scheme for analysing quantum reflection so far is available only in one

dimension (section 2). However, experiments show that one dimension is not sufficient

to understand quantum reflection from surfaces. An extension of the scheme to two

dimensions was sought (section 3.1.1). It involves computing the LLt decomposition of

a matrix, which should have a bandwidth as low as possible to speed up computations.

The minimum bandwidth achievable was determined to be the width m of the numerical

n×m grid (for n ≥ 2m− 1).

Next, the practical suitability of the two-dimensional scheme was assessed by extrapo-

lating time and memory usage (section 3.1.2). It involves computational costs too high

to be of any practical interest for the time being. Thus, explicit methods for integrating

the Schrödinger equation could be considered to tackle two-dimensional calculations.

The one-dimensional method was used to study quantum reflection in detail. In

particular, it is interesting to look at the time course of reflection and study the swiftness

and shape of the reflection process. First, a prominent feature in the time course of

reflection could be identified as background resulting from the numeric method used

(section 3.2.1).

A model was developed that explains the reflection process well (section 3.2.2). It is

based on the approximation that the initial wave packet propagates freely towards the

reflection point. Thereafter, the time course of the reflection process is highly dependent

on the shape of the initial wave packet. We observe deviations from the model which

remain an open question. The changing shape of the wave packet due to propagation in

the potential as opposed to free propagation has yet to be considered. Since quantum

reflection is non-trivially dependent on velocity, it is expected that a future analysis of

the deviations will reveal many details of the process.

When quantum reflection occurs at a surface, classical reflection needs to be considered

as well because the surface potential has a repulsive regime. The question whether and

how to differentiate between classical and quantum reflection arises naturally. Using the

model developed for the time course of quantum reflection, it is shown that classical and

quantum reflection at a surface potential show a relative delay dependent on incident

particle velocity (section 3.2.3).

Although the numeric approach encountered difficulties with the full interaction

potential because of the extremely deep attractive well, results obtained with a modified,

broader potential (section 3.2.4) are still interesting to experimentalists. It was shown that

in the widened potential, a phase as well as time shift between classically and quantum

31



reflected particle is visible. The real potential is not as broad, but it is considerably deeper.

This means that the acquired phase of the classically reflected particle is significant.

Experimentally, this would require a very smooth surface and shallow potentials, since

small variations in the attractive part of the potential may lead to large shifts in the

acquired phase and to possible decoherence.
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