
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis in Physics
submitted by

Tim Zimmermann

born in Nürtingen (Germany)

2018





A Simple Model for the Temporal Evolution of
Cold Dark Matter

This Bachelor Thesis has been carried out by Tim Zimmermann at the
Institute for Theoretical Physics

under the supervision of
Prof. Dr. Luca Amendola

and
Prof. Dr. Sandro Wimberger.





Abstract

The formation of Large Scale Structures in the early universe is understood as the
result of the gravitational collapse of dark matter particles starting from dynamically
"cold" initial conditions (CDM). A theoretical description of the temporal evolution
of CDM can be developed in the framework of classical Hamiltonian mechanics
yielding a set of coupled differential equations known as Vlasov-Poisson System
(VPS). Unfortunately, directly solving this system is not easy, both analytically
and numerically. However, by modeling CDM as a complex scalar field one obtains
a type of non-linear Schrödinger equation which approximates the VPS in a well
behaved manner. Purpose of this thesis is to outline key aspects of this "Schrödinger
Method" and present a comprehensive numerical scheme for the temporal evolution
of CDM in 1D. After investigating the numerical accuracy as well as its scalability
properties, the presented solver is used to conduct numerical studies on structure
formation for both synthetic and cosmological initial conditions. In accordance with
the theoretical expectation, we find our numerical model for Schrödinger-governed
CDM to (i) recover the prototypical evolution stages in phase space and (ii) obeying
the dynamics predicted by Linear Perturbation Theory.

Zusammenfassung

Die Entsteheung großskaliger Strukturen im frühen Universum ist als Resultat des
gravitativen Kollapses dunkler Materie aus einem dynamisch kalten Anfangszustand
(CDM) heraus zu verstehen. Aus theoretischer Sicht ergeben sich die dazugehöri-
gen Differentialgleichungen, das sogenannte Vlasov-Poisson System (VPS), aus einer
klassich, hamilton’schen Betrachtung. Es zeigt sich jedoch, dass die direkte Lösung
dieser Differentialgleichungen aus analytischer und numerischer Sicht sehr aufwen-
dig ist. Eine alternative CDM Beschreibung ergibt sich durch Modellierung dunkler
Materie über ein komplexwertiges Skalarfeld, dessen Zeitentwicklung einer nichli-
nearen Schrödinger Gleichung gehorcht und eine Approximation des VPS darstellt.
Ziel dieser Arbeit ist es zentrale Aspekte dieser „Schrödinger Methode“vorzustellen
sowie ein numerisches Verfahren zur Simulation von CDM in 1D zu entwickeln. Nach
Untersuchung der numerischen Genauigkeit sowie der Skalierbarkeit der verwende-
ten Lösungsmethode betrachten wir die Dynamik von CDM sowohl für künstliche
als auch kosmologische Anfangsbedingungen. Übereinstimmend mit der Theorie,
erigbt sich, dass (i) CDM unter Verwendung der Schrödinger Methode dieselben
prototypischen Stadien im Phasenraum durchläuft und (ii) Resultate der Linearen
Störungstheorie auch im numerischen Modell gültig sind.
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Chapter 1

Summary of Cosmological Concepts

Prior to introducing the Schrödinger method, it is advisable to summarize basic
cosmological relations on which the following discussion is based on. Furthermore,
a short introduction to the dynamics governing the non-homogeneous universe, as
well as an important limiting case of the Vlasov-Poisson system (VPS), the so called
dust model, are presented.

1.1 The Homogeneous Universe

The expansion of space is described in terms of the dimensionless cosmic scale factor
a(t) whose value at the present time t0 is conveniently set to unity,

a(t0) ≡ a0 = 1. (1.1)

Another often used quantity is the redshift z which is defined as:

a =
1

1 + z
. (1.2)

If we aim to describe the trajectory of an object with respect to an expanding
cosmological background, both the physical length, in which we measure distances,
as well as the objects position are time-dependent. Introducing the physical position
r(t), we have:

r(t) = a(t)x(t), (1.3)

where x(t) denotes the comoving position and the time parameter t will always
measure proper time. It is common practice to transform to moving coordinates
since this frame of reference factors out the expansion of space itself.

Consider for instance the Lagrangian L of a classical particle, confined in an
arbitrary potential V:

L =
1

2
m (ȧx+ aẋ)2 −mV (1.4)

=
1

2
m(a2ẋ2 + ȧ2x2 + 2aȧẋx)−mV. (1.5)

Recall that the Lagrangian is only determined up to the total time derivative of an
arbitrary function G(x, t), i.e. the underlying equations of motion stay invariant
under the transformation:

L 7→ L+
dG
dt
. (1.6)
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CHAPTER 1. SUMMARY OF COSMOLOGICAL CONCEPTS

Thus, upon introducing G = −1
2
maȧx2 and V ′ = V + 1

2
aäx2, one can recast (1.4)

into the form:

L =
1

2
ma2ẋ2 +mV ′ ⇒ p ≡ dL

dẋ
= ma2ẋ. (1.7)

The conjugate momentum p will become useful in section 1.2 and following.
Returning to the scale factor, the expansion of space obeys the Friedmann-Lemaître
equation,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
, (1.8)

and the adiabatic equation,

d
dt
(
a3ρc2

)
+ p

d
dt
(
a3
)

= 0, (1.9)

where we assumed a spatially flat universe. In this context, G denotes the gravi-
tational constant, c the speed of light, Λ the cosmological constant and p pressure.
The quantity ρ(t) corresponds to the total mass density of the universe and consists
of a relativistic and non-relativistic, i.e. matter, contribution:

ρ(t) = ρm(t) + ρr(t). (1.10)

It should be emphasized that all the above mentioned densities are solely time-
dependent due to the assumption of homogeneity of the universe.

Both contributions are conveniently measured in units of the critical density,

ρc(t) =
3H2(t)

8πG
, ρc0 =

3H2
0

8πG
, (1.11)

in which quantities with subscript 0 will always denote present time values. Nor-
malizing each individual density yields the dimensionless density parameters Ωm(t)
and Ωr(t):

Ωi(t) =
ρi(t)

ρc(t)
i ∈ {m, r}. (1.12)

It’s easy to see from (1.9) that both densities scale differently with the scale factor
since non-relativistic matter is assumed to be pressureless:

ρm(t) = ρm0 · a−3 = Ωm0ρc0 · a−3 (1.13)
ρr(t) = ρr0 · a−4 = Ωr0ρc0 · a−4. (1.14)

Recent observations [4] yield experimental values for the present time density pa-
rameters:

Ωm0 = 0.308, Ωr0 = 9.16 · 10−5. (1.15)

Structure formation occurs at redshifts z < 10 and because (1.14) suggests a faster
decrease of the relativistic density, we can set:

ρ(t) = ρm(t). (1.16)

Substituting (1.16) and (1.13) into (1.8), one obtains the evolution equation of the
cosmic scale factor in a ΛCDM universe:

H2(a) = H2
0

(
Ωm0a

−3 + ΩΛ0

)
, (1.17)
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CHAPTER 1. SUMMARY OF COSMOLOGICAL CONCEPTS

where we set ΩΛ0 = Λc2

3H2
0
. Specializing (1.17) to a = 1 shows that ΩΛ0 = 1 − Ωm0.

Using (1.12), (1.11), (1.13) as well as the just derived ΛCDM-Friedmann-Lemaître
equation (1.17), it is evident that the time-dependence of the matter density param-
eter Ωm(a) can be written as:

Ωm(a) =
Ωm0

Ωm0 + ΩΛ0a3
. (1.18)

We will end the discussion on the homogeneous universe by considering the time-
dependence of a in the matter dominated era for redshifts of order z ≈ 102, where
the start of the simulation is typically set. For such large redshifts the first term
in (1.17) dominates due to its a−3 scaling. Hence, we can drop the second term in
(1.17) and find the ansatz

a ∝ t
2
3 (1.19)

to solve the simplified Friedmann-Lemaître equation.

1.2 Structure Formation as N-body Problem

Structure formation is obviously not the result of the temporal evolution of a per-
fectly homogeneous matter density such as ρm(t), but origins from small initial per-
turbations δρ(x, t) that slowly start to grow due to gravitational interaction with
the surrounding over- and underdense regions (see section 2.3 for further details).
Therefore, it is customary to express the total non-homogeneous matter density as:

ρ(x, t) = ρm(t) + δρ(x, t) = ρm(1 + δ(x, t)). (1.20)

The quantity δ(x, t) denotes the density contrast given by:

δ(x, t) =
δρ

ρm(t)
. (1.21)

Since we want to recover the homogeneous description of the universe at least in a
statistical sense, we enforce statistical homogeneity for the perturbed density field:

〈ρ(x, t)〉 = ρm(t) ⇒ 〈δ(x, t)〉 = 0. (1.22)

More details on the form of the density contrast as well as how this initial pertur-
bation field is generated are outlined in section 3.6.

Analogously, we can split up the total gravitational potential Φ in an homoge-
neous part φ and a contribution associated with the density fluctuations δρ, referred
to as peculiar potential V :

Φ(x, t) = φ(x, t) + V (x, t). (1.23)

The peculiar potential is the solution to Poisson’s equation which in comoving co-
ordinates reads:

4V = 4πGa2δρ
(1.13)
=

4πGρm0

a
δ. (1.24)

Large scale structure formation is typically developed in the context of N -body
Hamiltonian dynamics. However, for the sake of simplicity we will not develop the
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CHAPTER 1. SUMMARY OF COSMOLOGICAL CONCEPTS

theory starting with the N -body Hamiltonian as it is presented in [22] but instead
give a more intuitive overview. Dark matter is typically modeled as collisonless,
self-gravitating set of particles that, upon appropriate averaging, can be described
in terms of a phase space distribution f(x,p, t). Integrating this phase space distri-
bution over momentum space yields the number density,

n(x, t) =

∫
d3pf(x,p, t), (1.25)

and an alternative representation for the density contrast:

δ(x, t) =
n(x, t)

〈n(x, t)〉V
− 1 =

∫
d3pf(x,p, t)

〈
∫
d3pf(x,p, t)〉V

− 1. (1.26)

Consider now a small phase space volume d3xd3p around (x,p). Particles inside
this volume experience an acceleration depending on the local gravitational poten-
tial V (x, t). Thus, the phase space volume transforms to d3x′d3p′ centered around
(x′,p′), where:

x′ = x+ ∆t · p (1.27)
p′ = p−∆t ·m∇V. (1.28)

Assuming a collisonless evolution, the number of particles enclosed in the cell before
and after the time step ∆t stays invariant:

f(x+ p∆t,p−m∇V∆t, t+ ∆t)d3x′d3p′ = f(x,p, t)d3xd3p (1.29)

Liouville’s theorem assures d3xd3p = d3x′d3p′ such that, after expanding (1.29) up
to first order in ∆t, we arrive at the three dimensional Vlasov-equation, also known
as collisionless Boltzmann equation:

0 = ∂tf + ẋ · ∇xf −m∇xV · ∇pf (1.30)
(1.7)
= ∂tf +

p

ma2
· ∇xf −m∇xV · ∇pf. (1.31)

Following the convention of [8], we introduce a canonical conjugate velocity u = p/m
such that (1.30) can be written as:

0 = ∂tf +
u

a2
· ∇xf −∇xV · ∇uf, (1.32)

where the potential V is self-consistently calculated via Poisson’s equation, (2.2):

4V (1.26)
=

4πGρm0

a

( ∫
d3pf(x,p, t)

〈
∫
d3pf(x,p, t)〉V

− 1

)
. (1.33)

This is the Vlasov-Poisson System (VPS). As mentioned before, cold dark matter is
characterised by kinematic cold initial conditions, implying the initial phase space
density f(x,u, t) forms a thin sheet in phase space with vanishing thickness. More-
over, if we assume the velocity field u(x, t) to be irrotational, we can write the initial
phase space distribution as:

fcold(x,u, tinit) = n(x, tinit)δD (u−∇xφu(x, tinit)) . (1.34)
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u

x

u

f (x, u, t)

(a) Initial phase space sheet,
representing cold initial
conditions. For each
value of x exists only
one non-zero value of
f(x, u, t).

x

u

x

f (x, u, t)

(b) Moment of shell cross-
ing. The phase space
sheet is perpendicular to
the x-axis. The dust
model breaks down at
this point.

x

u

1

2

3

f (x, u, t)

(c) Multi-streaming regime.
For x-values inside the
multi-stream region exist
multiple non-zero values
of f(x, u, t).

Figure 1.1: Prototypical stages in the evolution of cold dark matter in phase space

Demanding for the existence of a velocity potential φu assures the phase space sheet
to be initially unfolded such that for each value of x only one non-zero value of
f exists (see Figure 1.1a). Setting the initial density according to (1.34) is com-
mon practice for cosmological simulations (e.g. [19]) and can be understood more
intuitively if one calculates the zeroth and first moment of (1.32) with respect to
velocity. We refer to Appendix A for the calculation and only present the resulting
differential equations:

∂tn+
1

a2
∇x · (nu) = 0 continuity equation (1.35)

∂tu+
1

a2
(u · ∇x)u+∇xV = 0 Euler equation. (1.36)

Accordingly, cold dark matter can initially be understood as an irrotational, pres-
sureless fluid, confined in its own gravitational potential. [8, 22] call (1.35) the
dust model of cold dark matter and in section 3.6 we’ll derive equations for the
construction of the initial velocity potential φu based on this model.
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Chapter 2

The Schrödinger Method

The Schrödinger method introduces an alternative, simpler model one can employ to
calculate the temporal evolution of CDM. Instead of describing dark matter as grav-
itationally interacting particles, we consider the dynamics of a complex valued field
ψ(x, t), in analogy to quantum mechanics referred to as wave function, interacting
with its own gravitational potential. By using a particular ansatz for the wave func-
tion, known as Madelung representation, we recover a second order approximation
to the hydrodynamical description (1.35). A more detailed analysis, carried out by
[18, 22], shows that the correspondence between Vlasov-governed dark matter and
the Schrödinger method is not limited to the approximation of the dust model, but
extends beyond the linear growth regime of perturbation modes. We will summarize
the key aspects of this correspondence and close this chapter with a perturbative
examination of the Schrödinger method as found in [25].

2.1 Governing Equations

The dynamics of the scalar field ψ(x, t) is determined by the Schrödinger-Poisson
System (SPS) which in comoving coordinates reads:

iµ∂tψ(x, t) =

[
− µ2

2a2
4+ V (x, t)

]
ψ(x, t), (2.1)

4V (x, t) =
4πGρm0

a

(
|ψ(x, t)|2

〈|ψ(x, t)|2〉V
− 1

)
, (2.2)

where the parameter µ can be set to

µ =
h̄

m
(2.3)

in order to recover the standard Schrödinger equation. Hence, µ determines the
minimal resolution in phase space, spanned by comoving position x and conjugate
velocity u.

Apart from treating the Schrödinger method as an approximation to the classical
description of dark matter, (2.1) can also be understood as distinct model for dark
matter competing against the well established CDM paradigm. In this Fuzzy Dark
Matter approach, ultralight bosonic particles of mass m ≥ 10−24 eV [11] form a
Bose-Einstein condensate whose dynamical evolution obeys (2.1). [17], for instance,
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CHAPTER 2. THE SCHRÖDINGER METHOD

promotes this model and uses three dimensional simulation results to calculate mass
density profiles of dark matter haloes, from which a particle mass of m = 8 · 10−23

eV is deduced.
As seen in section 1.2, VPS describes the evolution of dark matter in terms of

a phase space distribution. In order to obtain an equivalent description for the
Schrödinger approach [24] employed the Husimi representation of ψ, which can be
understood as a coarse grained version of the Wigner function. The latter one is
defined as:

fW (x,u, t) =
1

(2πµ)3

∫
d3x′ψ

(
x+

x′

2

)
ψ

(
x− x

′

2

)
e
iu·x′
µ . (2.4)

Convolving (2.4) with a Gaussian filter yields the Husimi representation fH :

fH(x,u, t) =
1

(2πσxσu)3

∫
d3x′d3u′e

− (x−x′)2
2σ2
x e

− (u−u′)2
2σ2
u fW (x′,u′, t). (2.5)

By setting both variances according to Heisenberg’s uncertainty principle,

σuσx =
µ

2
, (2.6)

the Husimi function represents a quasi-probability distribution which is always pos-
itive (see Appendix E), a property which the Wigner representation does not share.
Analogous to VPS, for which we defined the number density as the zeroth moment
of the marginal distribution for the peculiar velocity u (see (1.25)), we adopt the
argumentation of [8] and define the same quantity for the Schrödinger approach as
the solution to the integral:

n(x, t) ≡
∫

d3ufH(x,u, t). (2.7)

The velocity integral can be carried out analytically (see Appendix B):

n(x, t) =
1√

2πσ2
x

3

∫
d3x′e

− (x−x′)2
2σ2
x |ψ(x′, t)|2. (2.8)

Apparently, the number density is given as the convolution of the wave function’s
norm square with a Gaussian kernel of width σx. Hence, the Schrödinger method in
its continuous formulation (2.1) and (2.2) is controlled by only two parameters, the
phase space resolution µ, setting the minimal uncertainty between position x and
conjugate velocity u, as well as a spatial smoothing scale σx.

2.2 Madelung Representation

To justify our choice for the evolution equation consider the Madelung representa-
tion of the wave function, in which the modulus encodes the previously introduced
number density n(x, t) and the phase is determined by a function φu(x, t):

ψ(x, t) =
√
n(x, t) exp

(
i
φu(x, t)

µ

)
. (2.9)

7



CHAPTER 2. THE SCHRÖDINGER METHOD

Substituting (2.9) into (2.1) and separating real and imaginary part (see Appendix
C), we arrive at:

0 = ∂tn+
1

a2
∇x · (nu)

0 = ∂tu+
1

a2
(u · ∇x)u+∇xV −

µ2

2a2
∇
(
4
√
n√
n

)
,

(2.10)

where we assumed, in accordance with (1.34), an irrotational flow by setting:

u(x, t) = ∇φu(x, t). (2.11)

Accordingly, we recover the hydrodynamic dust model introduced in section 1.2 with
an additional O(µ2) correction term called quantum stress Q whose gradient acts as
an additional force in Euler’s equation:

Q =
µ2

2a2

(
4
√
n√
n

)
. (2.12)

In the limit of µ → 0 both the SPS and the dust model derived from the Vlasov-
equation are equivalent. As discussed in more detail in [8, 22], the Madelung repre-
sentation is only valid for n(x, t) 6= 0. This typically happens when shell crossings
set in, which in phase space corresponds to a region where the distribution sheet
is perpendicular to the position axis such that the kinematic cold conditions are
violated. The reader is referred to Figure 1.1 for a graphical illustration of this
stage in the temporal evolution. At those points, the phase of ψ is ill-defined, and
the assumption of an irrotatinoal flow (2.11) breaks down. However, at times before
shell-crossing (2.9) and (2.1) yield a O(µ2) approximation for cold dark matter. This
will become useful for the construction of the initial conditions in section 3.6.

Interestingly, the correspondence between VPS and SPS is not restricted to the
dust model. In fact, it is possible to show [18] that the Husimi representation for
the Schrödinger-Poisson wave function approximates the VPS such that:

∂tfH = ∇xV · ∇ufH − u · ∇xfH +O(µ) (2.13)

Moreover, [22] proofs that after coarse graining Vlasov’s equation in the same man-
ner as the Wigner function,

f(x,u, t) =
1

(2πσxσu)3

∫
d3x′d3u′e

− (x−x′)2
2σ2
x e

− (u−u′)2
2σ2
u f(x′,u′, t), (2.14)

Husimi’s representation of ψ approximates the smoothed temporal evolution of
f(x,u, t) in the following sense:

∂tf = ∂tfH +O(µ2). (2.15)

The reader is referred to [22] for an analytical and [8, 11] for a numerical study on
the correspondence of SPS and VPS.

8



CHAPTER 2. THE SCHRÖDINGER METHOD

2.3 Linear Perturbation Theory for the SPS

In order to properly generate cosmological initial conditions as well as interpreting
the simulation results, it is necessary to consider the growth of density fluctuations in
the SPS for early simulation times, i.e. during matter domination. We recapitulate
the argumentation in [25] and take the hydrodynamic description of the Schrödinger
method as starting point:

0 = ∂tn+
1

a2
∇x · (nu) ,

0 = ∂tu+
1

a2
(u · ∇x)u+∇xV −

µ2

a2
∇
(
4
√
n√
n

)
.

(2.16)

Next, we decompose the number density,

n(x, t) = nm0(1 + δ(x, t)), (2.17)

and consider (2.16) in the linear regime δ � 1. Note (2.16) is already transformed
to comoving coordinates which is why the background density in (2.17) is time-
independent (comoving densities are constant). Moreover, the velocity u(x, t) as well
as the potential V (x, t) correspond to the peculiar matter motion and its associated
potential. Hence, both quantities have to be considered as perturbations so that no
further decomposition is necessary.

Inserting (2.17) into (2.16) and (2.2), and neglecting higher order terms yields
evolution equations for the density contrast:

0 = ∂tδ +
1

a2
∇xu = 0, (2.18)

0 = ∂tu+∇xV −
µ2

4a2
4
(
4δ

1 + δ

)
, (2.19)

4V =
3H2

0

2a
Ωm0δ, (2.20)

where we replaced ρm0 with (1.12). Next, compute the time derivative of (2.18),
take the gradient of (2.19) and linearise further to combine all three equations into:

∂ta
2∂tδ −

3H2
0 Ωm0

2a
δ +

µ2

4a2
44δ = 0. (2.21)

It is customary to transform the spatial coordinate to the frequency domain, para-
metrized by the wavenumber k, to obtain:

∂ta
2∂tδk −

3H2
0 Ωm0

2a
δk +

µ2

4a2
k4δk = 0, δk ≡ δ̂(k, t). (2.22)

According to the results of section 1.1, we can set:

a =

(
t

t0

) 2
3

, H2 = H2
0 Ωm0a

−3 (2.23)

during matter domination such that (2.22) can be recast into the form:

w2∂2
wδk + (w2 − 6)δk = 0 with w ≡ µk2

H0

√
Ωm0a

. (2.24)

9



CHAPTER 2. THE SCHRÖDINGER METHOD

This is solved by:

δk =
3 cosw − w2 cosw + 3w sinw

w2
. (2.25)

For sufficiently small wavenumbers k, we find:

δk ∝ w−2 ∝ a, (2.26)

whereas high wavenumber perturbations oscillate in the frequency domain. The crit-
ical value w2 = 6 defines a stability criterion, also known as Jeans scale, separating
the oscillation and growth regime:

kJeans = (6aΩm0)
1
4

√
H0

µ
. (2.27)

The initial scale factor and the wavenumber of the perturbation determine the initial
value of w. Since w ∝ a−

1
2 , an initially oscillating mode will eventually pass the

critical value of w2 = 6 and start to grow linearly in a. Note this consideration is
only valid in the linear regime, i.e for δ � 1.

10−1 100 101

w

10−3

10−1

101

103

105

|δk|2

w−4

Figure 2.1: Growth behavior for density perturbation modes. Low frequency modes scale
with a, whereas high frequency modes are oscillating until they pass the Jeans
scale, represented by the dashed line. Note that we plot |δk|2 and not |δk|.
The behavior of both quantities is qualitatively the same. |δk|2, however, is
closely related to the matter power spectrum which will become important in
section 4.3.

Going back to Poisson’s equation in (2.20) it is evident that growing modes do
not change the source term of the gravitational potential due to their linear scaling
in a. Thus, we expect the potential V to stay constant on large scales during the
evolution in the linear regime.
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Chapter 3

The 1D Schrödinger Poisson Solver

In this chapter, we discuss the key characteristics of the integration method being
used to simulate structure formation in one spatial dimension. After introducing a
dimensionless form of the SPS, the numerical treatment of Schrödinger’s equation
and Poisson’s equation are discussed in more detail. Integrating (2.1) in time is
not trivial since the involved Hamiltonian H(x, t) is time-dependent and nonlinear.
Due to the time-dependence of H, the Hamiltonian does not commute with itself for
different times t1 and t2, [H(t1), H(t2)] 6= 0, and therefore makes it impossible to con-
struct an analytical expression of the unitary time evolution operator U(t, t0). The
non-linearity, introduced by the source term of Poisson’s equation (2.2), gives rise to
non-linear systems of equations which are computationally expensive to solve. We
address both of this problems with the Predictor-Corrector-Crank-Nicolson scheme
(PC-CNFD). After a detailed discussion on how cosmological initial conditions are
constructed, we proceed by conducting a standard convergence study as well as a
cosmologically motivated accuracy test, introduced by [8], to assess the behavior
of PC-CNFD for the physical problem at hand. At last, the numerical scalability
regarding time and memory complexity is considered.

3.1 Dimensionless Equations and Discretization

Up till now, all equations were given in three spatial dimensions and integrating
(2.1) and (2.2) in 3 + 1 dimensions would be ideal from a physical perspective.
However, the numerical treatment of the 3D problem is beyond the scope of this
thesis which is why we specialize all equations to one spatial dimensions. Apart
from the increased numerical simplicity of the one dimensional case, it might even
be possible to reduce the three dimensional problem to a series of one dimensional
sub-problems by applying an alternating-direction implicit method (see [6] on top of
PC-CNFD. [8] implemented this strategy for the 2 + 1 case successfully, although
not with PC-CNFD as 1D integrator. We refer to section 4.3 for further details.

The Schrödinger method for one spatial dimension reads:

iµ∂tψ(x, t) =

[
− µ2

2a2
∂2
x + V (x, t)

]
ψ(x, t),

∂2
xV (x, t) =

4πGρm0

a

(
|ψ(x, t)|2

〈|ψ(x, t)|2〉V
− 1

)
.

(3.1)

First, it is necessary to choose length and time scales which can be used to normalize

11
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the physical time t and the comoving position x in such a way that as many time
dependencies and constants are absorbed into the chosen scales. A particularly good
choice was used by [17], which we adopt. Let ξ and τ be the dimensionless space
and time parameter, defined by:

ξ ≡ 1

µ
1
2

[
3

2
H2

0 Ωm0

] 1
4

x, (3.2)

dτ ≡ 1

a2

[
3

2
H2

0 Ωm0

] 1
2

dt. (3.3)

The infinitesimal time parameter dτ (without the constants) is also known as super
conformal time and is a common choice for VPS solvers such as described in [19,
20]. By choosing the dimensionless potential U and wave function Ψ as:

U(ξ, τ) ≡ a

µ

[
3

2
H2

0 Ωm0

]− 1
2

V (ξ, τ), (3.4)

Ψ(ξ, τ) ≡ |ψ(ξ, τ)|2

〈|ψ(ξ, τ)|2〉V
=
|ψ(ξ, τ)|2

nm0

, (3.5)

one can recast the SPS in (3.1) into the form:

i∂τΨ =

[
−1

2
∂2
ξ + aU

]
Ψ, (3.6)

∂2
ξU = |Ψ|2 − 1. (3.7)

Next, a general numerical concept has to be chosen with which (3.6) and (3.7) are
considered in more detail. [17], for instance, employs a split-operator technique that
exploits the diagonality of the kinetic and potential operator in momentum and real
space respectively by alternating the representation of ψ in each integration step.
We, however, make use of a finite difference approach in which derivatives with
respect to the spatial and temporal parameter are approximated by finite difference
formulas, relying on the values of the wave function and potential at discrete points in
the computational space-time domain. Thus, it is necessary to introduce a temporal
and spatial grid on which functions are evaluated.

Let L be the size of the simulation domain and τend the final time of the simulation
such that the space time grid fills the 2D interval:

[0, L]× [0, τend]. (3.8)

We use an uniform grid for both parameters and divide the space interval in N and
the time interval in M parts such that the space time point (ξn, τm) is given as:

(ξn, τm) = (n ·∆ξ,m ·∆τ) =

(
n · L

N
,m · τend

M

)
,

n = 1, . . . , N,

m = 0, . . . ,M.
(3.9)

Note that we omit all grid points (ξ0, τm), because we enforce periodic boundary
conditions for the spatial dimension and only consider non redundant grid points.
The wave function Ψ(ξ, τ) is discretized by evaluation on the discrete mesh. Given
a specific value of τm it can be represented as a N -dimensional vector:

Ψm = (Ψm
1 Ψm

2 . . .Ψm
N−1 Ψm

N)T, Ψm
n ≡ Ψ(ξn, τm). (3.10)

All other functions are discretized in the same fashion.

12
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3.2 Poisson Equation

The solution to Poisson’s equation (3.7) is obtained by approximating the second
derivative with the standard finite difference formula:

∂2

∂ξ2
Um
n =

Um
n+1 − 2Um

n + Um
n+1

∆ξ2
+O(∆ξ2). (3.11)

Thus, solving Poisson’s equation (3.7) is equivalent to solving the matrix equation,

MUm = |Ψm|2 − 1, (3.12)

where |.|2 acts component-wise and M is a cyclic tridiagonal matrix of the form:

M =



−2κ κ 0 . . . 0 κ

κ −2κ κ 0 . . . 0

0
. . . . . . . . . ...

... . . . . . . . . . 0

0 . . . 0 κ −2κ κ

κ 0 . . . 0 κ −2κ



, κ =
1

∆ξ2
. (3.13)

It should be emphasized that the non-zero elements in the upper right and lower left
corner are the result of the periodic boundary conditions. The solution strategy for
such a matrix equation is discussed in section 3.4. By summing over all row vectors
ofM , it is evident that matrix is rank deficient, i.e rank(M ) 6= N . This constraints
the structure of the source vector |Ψm|2− 1 since (3.12) is only solvable if and only
if:

rankM = rank
(
M |(|Ψ|2 − 1)

)
, (3.14)

where rank(.|.) denotes the rank of the extended coefficient matrix. Hence, to assure
the existence of a solution the source vector needs to fulfill:

N∑
i

|Ψm
n |2 − 1 = 0 ⇔ 〈|Ψm

n |2 − 1〉 = 0. (3.15)

Fortunately, the right hand side (RHS) of (3.12) coincides with the discretized den-
sity contrast δm, for which due to the assumption of statistical homogeneity:

〈δm〉 = 0 (3.16)

holds true. The solution Um, however, is not unique but only determined up to a
constant vector (the solution to the homogeneous version of (3.12)), since:

rank(M |(|Ψm|2 − 1)) < N. (3.17)

We fix the constant such that the discrete potential has vanishing mean:

〈Um〉 = 0. (3.18)

13



CHAPTER 3. THE 1D SCHRÖDINGER POISSON SOLVER

3.3 Schrödinger Equation

3.3.1 Predictor Corrector Crank-Nicolson

The Schrödinger equation in (3.6) is a non-linear partial differential equation with
time-dependent Hamiltonian, in which both the non-linearity and the time depen-
dence are introduced by the gravitational potential. Solving a discretized version
of (3.6) means finding a solution vector Ψm+1 for τm+1 when the Ψm at time τm is
known. The formal solution to this problem is given in terms of the unitary time
evolution operator U :

Ψm+1 = U(τm+1, τm)Ψm. (3.19)

Unfortunately, since the Hamiltonian in (3.6) is time dependent, there is no simple
analytical expression for U . To circumvent this problem, we follow the argumenta-
tion of [15] and write U as an operator exponential:

U(τm+1, τm) = exp
(
−i∆τHm)

, (3.20)

where Hm is a time-independent, effective Hamiltonian determined by the Magnus
expansion:

H
m

=
1

∆τ

∫ τm+1

τm

dτH(τ)︸ ︷︷ ︸
H1

+
i

2∆τ

∫ τm+1

τm

dτ
∫ τ ′

τm

dτ ′′ [H(τ ′′),H(τ ′)]︸ ︷︷ ︸
H2

+ . . . . (3.21)

To obtain a numerical scheme that can be employed to solve (3.6) two steps are
required. First, we have to truncate the expansion in (3.21) after a certain number
of terms and secondly, it is necessary to approximate the integrals in the remaining
terms to some order of accuracy.

Truncation of the Magnus Expansion It is shown in [15] that by keeping only
the first term in the expansion, the matrix exponential can be approximated up to
O(∆τ 3) if we set:

U(τm+1, τm) =

(
1 +

i

2
H

1
∆τ

)−1

·
(

1− i

2
H

1
∆τ

)
, (3.22)

also known as Cayley form. This approximation is unitary U = U † which is why
the mass of the wave function,

M [Ψ] =

∫
dξ|Ψ|2, (3.23)

is conserved. A more common form to express (3.22) is:(
1 +

i

2
H

1
∆τ

)
Ψm+1
n =

(
1− i

2
H

1
∆τ

)
Ψm
n ⇔ M+Ψm+1

n = M−Ψm
n , (3.24)

where M+ and M− are N × N matrices, whose matrix elements depend both on
the still unspecified space discretization of the effective Hamiltonian H1 and the

14
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enforced boundary conditions. Since the first integral in (3.21) only concerns the
time parameter, it is convenient to write H1 as:

H
1

= K +U
1
, (3.25)

in which K and U 1 are again N ×N matrices and only U 1 is influenced by the ap-
proximation discussed in Integral Approximation. Employing the central difference
approximation for the second derivative,

∂2

∂ξ2
Ψm
n =

Ψm
n+1 − 2Ψm

n + Ψm
n+1

∆ξ2
+O(∆ξ2), (3.26)

the effective Hamiltonian takes again the form of a cyclic tridiagonal matrix:

H
1

=



−2κ+ U
1

1 κ 0 . . . 0 κ

κ −2κ+ U
1

2 κ 0 . . . 0

0
. . . . . . . . . ...

... . . . . . . . . . 0

0 . . . 0 κ −2κ+ U
1

N−1 κ

κ 0 . . . 0 κ −2κ+ U
1

N



, (3.27)

where we used the short hand U1

n = U
1

nn and κ = − 1
2∆ξ2 . Note that the matrix U 1

is always diagonal independent of the discretization of the kinetic term. This cyclic
matrix structure stays the same for the matrices M± which read:

M± =



1± β1 α∓ 0 . . . 0 α∓

α∓ 1± β2 α∓ 0 . . . 0

0
. . . . . . . . . ...

... . . . . . . . . . 0

0 . . . 0 α∓ 1± βN−1 α∓

α∓ 0 . . . 0 α∓ 1± βN



, (3.28)

where we set:

α∓ = ∓ i∆τ

4∆ξ2
, βn =

i∆τ

2∆ξ2
+
i

2
∆τU

1

nn. (3.29)
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The constructed scheme is implicit, meaning in order calculate the wave function at
time τm+1 one has to solve the matrix system:

M+Ψm+1
n = M−Ψm

n ⇒ Ψm+1
n =

(
M+

)−1
M−Ψm

n . (3.30)

Since such a system has to be solved for each time step, it is crucial for the matrix
solver to take advantage of the sparseness of the matrix M+. We address this task
in section 3.4.

Integral Approximation We approximate the integral of H1 by applying the
trapezodial rule ([see 6]):

H1 =
1

∆τ

∫ τm+1

τm

dτH(τ) =
1

2
(H(τm) +H(τm+1)) +O(∆τ 2) (3.31)

⇔ U
1

=
1

2

(
a(τ)Um + a(τ + ∆τ)Um+1

)
. (3.32)

Since (3.31) has a truncation error of O(∆τ 2), we lose one order of accuracy com-
pared to (3.22), implying the constructed implicit scheme, also known as Crank-
Nicolson method (CNFD) is of order O(∆ξ2,∆τ 2). Moreover, it conserves mass
and energy in case of a static cosmological background (see [16]). A more detailed
discussion of these aspects is given in section 3.7.

Unfortunately, CNFD treats the potentialUm+1 implicitly, requiring the solution
of a non-linear system of equation in each time step, which is both computationally
expensive and numerically unfavourable. To circumvent this problem, we treat the
Crank-Nicolson scheme, as proposed in [16, 21], in a Predictor-Corrector fashion,
that is, we predict an intermediate solution Ψ̃m+1 by applying the Crank-Nicolson
method with U 1

= a(τ)U 1:

Ψm U
1
=a(τ)Um

−−−−−−−−−−−−−−→
predictor step

Ψ̃m+1. (3.33)

Afterwards, the predicted wave function is used to solve Poisson’s equation (3.7) to
obtain a predicted potential Ũm+1 which then serves in the corrector step as follows:

Ψm
U

1
= 1

2(a(τ)Um+a(τ+∆τ)Ũm+1)
−−−−−−−−−−−−−−−−−−−→

corrector step
Ψm+1. (3.34)

By treating U 1 explicitly in both steps, it is only necessary to solve two uncoupled,
linear system of equations, namely the discretized Schrödinger and Poisson equation,
rather than one coupled non-linear system per time step. According to [16], applying
this straight forward approach still preserves mass and is capable of conserving
energy up to O(∆τ 3) per time step.
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3.4 Cyclic Tridiagonal Matrix Solver

As mentioned in and 3.2 and 3.3.1, PC-CNFD and the discrete Poisson equation
demand for the solution of the matrix equation,

Mx = y, (3.35)

in which M is a N × N matrix with cyclic tridiagonal element structure shown
in (3.28). Standard Gaussian elimination takes O(N3) steps, making it unfeasible
for the Schrödinger-Poisson solver since the formal matrix inversion needs to be
computed for each time step. Tridiagonal matrices, however, can be solved efficiently
with a, for the sparseness for the matrices adjusted, type of Gaussian elimination
also known as Thomas algorithm. Applying this matrix solver yields the solution to
(3.35) in O(N) steps being the optimal algorithmic complexity for matrix solvers
working purely sequential. Applying Thomas’ Algorithm to (3.35) consists of two
steps. First, (3.35) needs to be recast into an appropriate tridiagonal form. Secondly,
the resulting tridiagonal system has to be solved numerically.

Transformation to Tridiagonal Form Following the reasoning of [7], we drop
the last row of (3.28) and bring the last column to the right yielding a "condensed"
tridiagonal system which for generic matrix elements ai, bi and ci reads:

a1 c1 0 . . . 0

b2 a2 c2 0
...

0
. . . . . . . . . 0

... 0 bN−2 aN−2 cN−2

0 . . . 0 bN−1 aN−1


︸ ︷︷ ︸

M4



x1

x2

...

xN−2

xN−1


= y −



b1

0

...

0

cN−1


xN , (3.36)

with y as the first N − 1 rows of the right hand side of (3.35), which in the case of
(3.30) takes also only O(N) steps to compute when we omit all zero multiplications
in the sparse matrix vector product. (3.36) is solved by the ansatz:

x = v +w · xN , (3.37)

where v and w solve the following tridiagonal matrix equations:

M4v = y,

M4w = −
(
b1 0 . . . 0 cN−1

)T

.
(3.38)

If v and w are known, the remaining element xN of the complete solution vector
to the cyclic system (3.35) is obtained by ordinary back substitution for the last
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matrix row of M omitted in the beginning:

xN =
yN − cNv1 − bNvN−1

aN + cNw1 + bNwN−1

. (3.39)

Thus, solving the cyclic tridiagonal matrix equation (3.28) is equivalent to solving
the two tridiagonal equations in (3.38) and one back substitution step (3.39).

Thomas Algorithm The numerical solution for the tridiagonal matrix equation
(3.38) is based on the observation that the LU-decomposition of M+

4 yields banded
matrices L and U :

a1 c1 0

b2 a2 c2

. . . . . . . . .

bN−2 aN−2 cN−2

0 bN−1 aN−1


︸ ︷︷ ︸

M+
4

=



1 0

l2 1

. . . . . .

lN−2 1

0 lN−1 1


︸ ︷︷ ︸

L



d1 u1 0

d2 u2

. . . . . .

dN−2 uN−2

0 dN−1


︸ ︷︷ ︸

U

.

(3.40)
As outlined in [7], the matrix elements of L and U are iteratively obtained through:

li =
bi
di−1

di =

{
ai i = 1

ai − liui−1 i 6= 1
ui = ci. (3.41)

After the decomposition, we solve

LUx = y ⇔
Lx̃ = y

Ux = x̃
(3.42)

by ordinary forward and backward substitution:

x̃i =

{
yi, i = 1,

yi − lix̃i−1, i 6= 1,
(forward substitution) (3.43)

xi =

{
x̃i
dn
, i = N − 1,

x̃i−uixi+1

di
, i 6= N − 1.

(backward substitution). (3.44)

Each stage in the solution process, i.e decomposition, forward substitution and back-
ward substitution, takes O(N) steps. Recall the calculation of the source vector y
take also O(N) steps which is why the computational complexity of one time step of
the PC-CNFD, as well as the calculation of the gravitational potential scales linearly
with the number of grid points. Moreover, if only non-zero elements of the involved
sparse matrices are stored, the memory consumption is also of order O(N).
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3.5 Super Conformal Time

PC-CNFD demands the value of the cosmic scale factor a(τ) in each time step. The
super conformal time parameter τ , however, was only defined by its differential:

dτ =
1

a2

[
3

2
H2

0 Ωm0

] 1
2

dt. (3.45)

Accordingly, it is necessary to integrate (3.45) to obtain τ(a). Inverting τ(a) then
yields the scale factor as a function of super conformal time. Adopting the imple-
mentation of [20], we first express (3.45) as:

dτ =
1

ȧa2

[
3

2
H2

0 Ωm0

] 1
2

da (3.46)

dτ =
1

H(a)a3

[
3

2
H2

0 Ωm0

] 1
2

da (3.47)

dτ
(1.17)
=

1

a3

[
3Ωm0

2(Ωm0a−3 + ΩΛ0)

] 1
2

da (3.48)

dτ =

[
3Ωm(a)

2a3

] 1
2

da, (3.49)

where Ωm(a) = Ωm0

Ωm0+ΩΛ0a3 . Unfortunately, it is not possible to integrate (3.49)
analytically, which is why we divide the interval [ainit, aend] into K parts of size
∆a = aend−ainit

K
and perform the integration numerically:

τ(ak) = τ(ak−1) +
dτ
da

∣∣∣∣
ak−1+ 1

2
∆a

·∆a, (3.50)

where we fix the integration constant by setting τ(a0) = 0. If we seek for values of
τ in between two points of the scale factor grid, we perform a linear interpolation:

τ(a) =
1

∆a
[(a− ak)τ(ak+1) + (ak+1 − a)τ(ak)] , k =

⌊
a− ainit

∆a

⌋
. (3.51)

If the value τ(a′) is known, then inverting τ(a), to obtain a′ is equivalent to solving

0 = τ(a)− τ(a′) (3.52)

for a. In agreement with [20], we find the root of (3.52) by applying a simple
bisection algorithm for which the initial bounding interval of a is set to [ainit, aend].
Tests show that only ≈ 10 interval splittings are enough to reach an accuracy of
|ak − ak−1| ≤ 10−9 which is sufficient for our purposes.
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Figure 3.1: Super conformal time τ as a function of the cosmic scale factor for a ∈ [ 1
201 , 1]

and a scale factor grid with K = 106 points. The chosen initial value of a
corresponds to a redshift of z = 200 being a typical starting value for the
simulation.

3.6 Cosmological Initial Conditions

As described in more detail in section 2.2, the Madelung form,

ψ(x, t) =
√
n(x, t)ei

φu(x,t)
µ , (3.53)

is a valid representation of the wave function for times before shell crossing, i.e in the
linear-growth regime characterized by δ � 1. Therefore, we will use it as a starting
point for the construction of a discrete initial wave function Ψ0 and potential U 0.
Switching to dimensionless quantities, the ansatz for the continuous wave function
reads:

Ψ(ξ, τinit) =
√

1 + δ(ξ, τinit)e
i
φu(ξ,τinit)

µ . (3.54)

If the initial wave function Ψ(ξ, τinit) is known, the gravitational potential follows
directly by solving:

∂2
xU(ξ, τinit) = |Ψ(ξ, τinit)|2 − 1. (3.55)

We omit the time parameter τinit in the following discussion since all quantities are
meant to be evaluated at initial time if not stated otherwise. For the initial density
contrast δ and velocity potential φu we proceed as outlined in [14].
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3.6.1 Density Contrast

From Real Space to Fourier Space Following the argumentation of [5], the
initial density contrast is assumed to be a realization of a Gaussian random field.
In the discrete case considered here, this coincides with the real density contrast
vector,

δ = (δ1 δ2 . . . δN)T ∈ RN , (3.56)

being drawn from a N -variate Gaussian distribution with covariance matrix Σ. Ac-
cordingly, the probability of realizing a particular density perturbation field is given
by:

P(δ)dδ1 . . . dδN =
1(√

2π|Σ|
)N exp

(
−1

2
δTΣδ

)
dδ1 . . . dδN (3.57)

By statistical homogeneity (1.22), this Gaussian has zero mean:

〈δ〉 = 0. (3.58)

Thus, any element of the covariance matrix Σ can be written as:

Σij
(3.58)
= 〈δiδj〉 = 〈δ(ξi)δ(ξj)〉

= 〈δ(ξi)δ(ξi + rij)〉
≡ c(rij),

(3.59)

where rij is the dimensionless distance between both points. We deviate from the
classical notation and denote the correlation function with c(r) rather than ξ(r) to
avoid any confusion with the space parameter. Note that c is only a function of
distance - a consequence of the enforced statistical isotropy.

To construct the initial density contrast δ, we switch to Fourier space parametrized
by the dimensionless wavenumber κ. Let us define the following discrete Fourier
transformations:

δ̂j =
1

N

N∑
n=1

δne
−iξnκj , δn =

N∑
j=1

δ̂je
iξnκj . (3.60)

Assuming the still unspecified distribution of the complex valued vector,

δ̂ = (δ̂1 δ̂2 . . . δ̂N)T ∈ CN , (3.61)

has a vanishing mean,
〈δ̂〉 = 0, (3.62)

the second moment and the variance of the distribution coincide and can be calcu-
lated (see Appendix D):

〈δ̂i
∗
δ̂j〉 =

1

L
δKij P1D(kj), P1D(kj) =

∫ L

0

dre−ikjrc(r), (3.63)

where δKij is a Kronecker delta and P1D(kj) denotes a rescaled version of the continu-
ous matter power spectrum obtained by the CAMB project code [10] which we treat
as black box for our purposes. Further details on the rescaling process are given in
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section 3.6.1. Note P1D is a function of the standard wavenumber kj and not the
previously introduced dimensionless wavenumber κj. Both are related by:

κj = µ
1
2

[
3

2
H2

0 Ωm0

]− 1
4

kj (3.64)

We conclude from (3.63) that different Fourier modes δ̂i are uncorrelated. Moreover,
the second moment of the distribution for |δ̂i| (which obviously has not a vanishing
mean) is given by:

〈|δ̂j|2〉 =
1

L
P1D(kj). (3.65)

To find an expression for the distribution function for the individual Fourier modes,
we follow the argumentation in [5] and first note that due to the missing correlation
of different modes, the distribution of δ factorizes into the distribution of each mode:

P(δ̂)
∏
j

dδj =
∏
j

P(δ̂j)dδj. (3.66)

Thus, it suffices to focus on one single mode only. Since each mode δ̂i is a linear
combination of Gaussian random variables δn (see (3.60)) each mode will be drawn
from a two dimensional Gaussian, which in turn factorizes into a Gaussian for real
and imaginary part separately if we assume that both are uncorrelated and, further-
more, share the same variance. Let σ2(kj) denote this mode specific variance for
both the real part Aj and imaginary part Bj such that:

δ̂i = Aj + iBj. (3.67)

We than arrive at:

P(Aj)P(Bj)dAjdBj =
1

2πσ2(kj)
exp

(
−1

2

A2
j

σ2(kj)

)
exp

(
−1

2

B2
j

σ2(kj)

)
dAjdBj.

(3.68)
Transforming to polar coordinates δ̂j = |δ̂j|eiφj yields:

P(|δ̂j|)P(φj)d|δ̂j|dφj =
|δ̂j|
σ2(kj)

exp

(
−1

2

|δ̂j|2

σ2(kj)

)
d|δ̂j|︸ ︷︷ ︸

Rayleigh

dφj
2π︸︷︷︸

uniform

. (3.69)

Lastly, we seek for a relation between the variance σ2(kj) and the second moment
〈|δ̂j|2〉 of a Rayleigh distribution. A simple calculation shows:

〈|δ̂j|2〉 =

∫ ∞
0

d|δ̂j||δ̂j|2
|δ̂j|
σ2(kj)

exp

(
−1

2

|δ̂j|2

σ2(kj)

)
= 2σ2(kj) ⇒ σ2(kj) =

1

2L
P1D(kj).

(3.70)

On balance: To construct the real perturbation vector δ, we switch to the frequency
domain. This allows us to treat each complex perturbation mode δ̂j individually
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without worrying about any correlation with other modes. Each mode is then con-
sidered in its polar representation:

δ̂j = |δ̂j|eiφj . (3.71)

As a consequence of the assumed missing correlation between real and imaginary
part of δ̂j the phase of each mode φj is drawn from a uniform distribution in [0, 2π),
whereas its modulus |δ̂j| obeys a Rayleigh distribution with a frequency specific
variance, determined by the one dimensional matter power spectrum P1D(kj). After
each mode was generated, we simply retransform to real space. Figure 3.2 depicts
this procedure graphically.

From 3D to 1D In 3.6.1 the matter power spectrum P1D(k) was introduced
as a black box determining the variance of each perturbation mode. The initial
condition generator relies on the software package CAMB for this purpose. CAMB,
however, only computes three dimensional matter powerspectra and assumes an
infinite computational domain. Hence, it is necessary to rescale the true output of
CAMB, namely P3D(k), to one spatial dimension.

According to (3.63), the one dimensional matter power spectrum P1D coincides
with the unnormalized Fourier modes of the Fourier series for the correlation function
c(r):

c(r) =
1

L

N∑
j=1

P1D(kj)e
ikjr. (3.72)

Assuming c(r)→ 0 sufficiently fast for r →∞ in (3.63), we can expand the compu-
tational domain to infinity by writing:

c(r) =
1

2π

2π

L

N∑
j=1

P1D(kj)e
ikjr L→∞−−−→ 1

2π

∫ ∞
−∞

dkP1D(k)eikr. (3.73)

Consider now the variance of the density perturbation field δ(x):

〈δ2(x)〉 ≡ c(0)
(3.73)
=

1

2π

∫ ∞
−∞

dkP1D(k). (3.74)

The universe is assumed to be isotropic, implying P1D is only a function of the
wavenumber modulus |k|:

〈δ2(x)〉 =
1

2π

∫ ∞
−∞

dkP1D(|k|) =
1

π

∫ ∞
0

dkP1D(|k|) =

∫ ∞
0

d ln k · k
π
P1D(|k|). (3.75)

In three spatial dimensions, we find:

〈δ2(x)〉 =
1

(2π)3

∫
d3kP3D(|k|) =

1

2π2

∫ ∞
0

dk ·k2P3D(|k|) =

∫ ∞
0

d ln k · k
3

2π2
P3D(|k|).

(3.76)
Demanding for a variance independent of the number of dimensions, we arrive at:

P1D(|k|) =
k2

2π
P3D(|k|). (3.77)
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Figure 3.2: Construction of the initial density contrast. The upper panels shows the
course of the frequency dependent standard deviation of the Rayleigh distri-
bution used to draw the modulus of δ̂i (see equation (3.70)). The domain
size is chosen to be L = 500 Mpc h−1, where h denotes the dimensionless
Hubble parameter. The mid-panels show exemplary how the mode ensemble
with frequencies k = 10−2, 100, 103 h Mpc−1 is distributed. For generating
cosmological initial conditions only one δ̂j per frequency kj is drawn. To vi-
sualize the effect of the varying standard deviation all polar plots are scaled
to the standard deviation σ1 at k = 1h Mpc−1. After each perturbation
mode was drawn, a discrete Fourier transformation yields the initial density
contrast in real space, illustrated in the lower panel for a zoomed-in spatial
domain of 10 Mpc h−1.
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Figure 3.3: Comparison of the three dimensional (green) and one dimensional matter
power spectrum (orange). High frequency modes gain power due to the
dimension rescaling

Analyzing (3.75) in more detail, it is evident that the dimensionless quantity,

∆1D(k) =
k

π
P1D(k), (3.78)

measures the contribution of a logarithmic interval to the total density variance
〈δ2(x)〉.

By evaluating (3.77) only at discrete frequencies kj, we can rewrite the variance
of the Rayleigh distribution in (3.70) in terms of the 3D power spectrum:

σ(kj) =
1

4πL
k2P3D(kj). (3.79)

Linear Rescaling We will now return to our previous notation and write out the
time dependence explicitly, this time, however, in terms of the cosmic scale factor
a. It is common practice to use the 3D matter power spectrum at present time a0

as a starting point to generate an initial perturbation field since the structure of the
matter power spectrum at earlier times is strongly influenced by relativistic effects,
which are not considered in the Newtonian limit of structure formation. Thus,
it is necessary to rescale the present spectrum P3D(k, a0) back to the considered
simulation start time ainit. In the linear evolution regime, one can write the time
dependence of an initial density fluctuation δ(x, ainit) as (i.e [13]):

δ(x, a) = D+(a)δ(x, ainit), (3.80)

where D+(a) denotes the linear growth factor for which [9] derives the following
approximation in the case of a ΛCDM universe:

D+(a) =
5a

2
Ωm(a)

[
Ω4/7
m (a)− ΩΛ(a) +

(
1 +

1

2
Ωm(a)

)(
1 +

1

70
ΩΛ(a)

)]−1

. (3.81)

Let G(a) denote the linear growth factor, normalized to unity at present time a0,

G(a) =
D+(a)

D+(a0)
, (3.82)
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so that δ(x, ainit) can be obtained by rescaling the linearly evolved density contrast
δ(x, a0):

δ(x, ainit) = G(ainit)δ(x, a0). (3.83)

Evaluating (3.65) at present time and substituting (3.70), (3.77) as well as (3.83)
yields:

σ(kj, ainit) =
1

4πL
k2G2(ainit)P3D(kj, a0). (3.84)

This is the expression used in Figure 3.2 for the frequency dependent Rayleigh
standard deviation.

3.6.2 Velocity Potential

We start by recasting the time derivative of the density contrast with respect to
physical time t into a form that explicitly depends on the density contrast itself:

∂tδ(x, t) = δ
1

δ
∂ta

∂δ

∂a
= δ

a

δ
H
∂δ

∂a
. (3.85)

Using (3.80), one finds:
a

δ

∂δ

∂a
=

d lnD+(a)

d ln a
≡ f, (3.86)

where f denotes the linear growth rate. A good approximation for f is given by [9]:

f(a) ≈ Ω4/7
m (a). (3.87)

Since typical simulation start times correspond to redshifts of order z ≈ 102, we can
set f = 1 for our purposes. Recall the linearized continuity equation (2.18)

0 = ∂tδ +
1

a2
∂xu = 0. (3.88)

Inserting (3.85) and (2.11) into the continuity equation yields:

∂2
xφu(x, tinit) = −a2

initHδ(x, tinit), (3.89)

which upon retransforming into code units reads:

∂2
ξ

(
φu(ξ, τinit)

µ

)
= −

(
2ainit

3Ωm(ainit)

) 1
2

δ(ξ, τinit). (3.90)

Thus, generating an initial phase for the wave function is equivalent to solving
Poisson’s equation with the source term given in (3.90).

3.7 Numerical Accuracy

Since PC-CNFD relies for the computation of both time and space derivatives on
finite difference approximations, it is evident that the overall numerical accuracy is
determined by the chosen time step size ∆τ and grid resolution ∆ξ. The former one
might be set statically or in a dynamic fashion, whereas the separation between two
spatial grid points is controlled by the constant point density L

N
. The theoretical
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rational for finding a reasonable parameter set is to vary ∆τ and N until higher
order terms in the truncation error ε are neglectable, i.e:

ε = ||Ψtrue −Ψnum||2 = Cξ (∆ξ)p + Cτ (∆τ)q, (3.91)

where Ψtrue corresponds to the discretized solution of the continuous problem (3.6)
and ||.||2 is the discrete L2-norm defined as:

||Ψ||2 =

(
1

N

N∑
n=1

Ψ2
n

) 1
2

. (3.92)

The exponents p and q coincide with the formal order of accuracy of the employed
scheme. In the case of CNFD without the Predictor-Corrector step p = q = 2. In
principle, one would have to verify the condition (3.91) every time new initial condi-
tions or different temporal and spatial domain sizes are used [12]. Unfortunately, the
exact solution utrue is not known in our case, neither for purely synthetic nor cosmo-
logical initial conditions, which is why we have to fall back to less strict conditions
for the convergence of PC-CNFD depending on the initial conditions used.

3.7.1 Synthetic IC - Standard Convergence Study

Section 4.1 studies the gravitational collapse of a sinusoidal perturbation in phase
space (see (4.7)) for a phase space resolution of µ = 1 ·10−12 Js

eV . To assess the numer-
ical accuracy of PC-CNFD for this particular choice of initial conditions, we replace
the unknown, exact solution Ψtrue with a reference wave function Ψref computed on
a very fine grained space-time grid defined by:

Nref = 218, ∆τref = 6.25× 10−5. (3.93)

Calculating the LHS of (3.91) for different values of ∆τ and N at z = 0 yields Figure
3.4, where we can distinguish between an asymptotic (blue) and non-asymptotic
region (red). The former regime is characterized by a truncation error approximation
ε that follows roughly a power law, Figure 3.5 - 3.6.

Apart from the inevitable truncation error, PC-CNFD might also be affected by
an iteration error which arises due to the Predictor-Corrector step used to approx-
imate the non-linear system of equations discussed section 3.3.1. If this is the case,
increasing the number of Predictor-Corrector cycles in (3.33) should increase the
numerical accuracy at the expense of required computation time. Figure 3.4 as well
as 3.5 - 3.6, however, show that increasing the number of Predictor-Corrector cycles
has no observable impact on the measured numerical accuracy.
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(a) One Predictor-Corrector cycle
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(b) Two Predictor-Corrector cycles

Figure 3.4: Convergence study for synthetic initial conditions defined in (4.7) at z =
0. The blue region corresponds roughly with the asymptotic regime of PC-
CNFD in which the error ε is expected to follow a power law. Consider
Figure 3.5 and 3.6 for the behavior of ε in this regime for fixed ∆τ and N
respectively (here indicated as dashed line).

In a naive approach, one might consider even more refined space-time grids than
(3.93) to be a better choice yielding more accurate numerical solutions. Unfortu-
nately, depending on the quantities we are interested in, memory and computation
time constraints have to be taken into account as well. As discussed in section 4.1,
the memory consumption of one phase space snapshot is of order O(N2). Hence,
we find the reference grid (3.93) to be a reasonable choice for the considerations in
section 4.1.
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(b) N = 217

Figure 3.5: Approximated truncation error ε for fixed N or ∆τ . One Predictor-Corrector
cycle.
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Figure 3.6: Approximated truncation error ε for fixed N or ∆τ . Two Predictor-Corrector
cycles.

3.7.2 Cosmological IC - Layzer-Irvine Equation

The convergence study employed in section 3.7.1 relied on the assumption that
consecutive mesh refinements do not change the initial conditions. Apparently,
this is not the case for cosmological initial conditions since a refined spatial grid
coincides with a refined frequency grid and therefore results in an increased number
of initial density perturbations. Thus, it is not possible to monitor the truncation
error (3.91) and it is necessary to use a different quantity reflecting the numerical
accuracy throughout the simulation time. The obvious choice for such a quantity
are constants of motion such as the mass of the wave function:

M [ψ] =

∫
dx|ψ(x, t)|2. (3.94)

As mentioned in section 3.3.1, PC-CNFD is inherently norm preserving, independent
of the discretization resolution {∆ξ,∆τ}. Hence, monitoring M [ψ] can not be used
as an reliable indicator for the numerical accuracy since it is only influenced by
round-off errors induced by the finite precision arithmetic and floating point number
representation. Consider Figure 3.7 for the variations of M [ψ] with respect to z =
200.

The next candidate is a properly defined energy per mass which in a static
universe, i.e. a(t) = 1, three spatial dimensions and physical coordinates r reads
(see [2]):

E[ψ] =

∫
d3r

(
µ2

2
|∇ψ|2 +

1

2
V |ψ|2

)
. (3.95)

However, performing the temporal evolution in a non-static ΛCDM cosmology in-
troduces an explicit time-dependence into (3.95) such that dE

dt = 0 is not satisfied
anymore.
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Figure 3.7: Time-dependence of M [ψ] for N = 221, τ = 0.004 and µ = 1 · 10−12 Js
eV .

Fluctuations are caused by round-off errors.

Following the argumentation of [8], one way to quantify the numerical accuracy
of the solver is to monitor if the time-dependence of E follows the theoretical ex-
pectation described by the Layzer-Irvine equation. According to [8], one can derive
the SPS in the context of classical field theory by setting

E =

∫
d3xE [t, ψ, iµψ] (3.96)

as the Hamiltonian and
d
dt
ψ = {E,ψ} (3.97)

as evolution equation. E denotes the Hamiltonian density and is given by:

E =
µ2

2a2
|∇xψ(x, t)|2 +

1

2
V (x, t)|ψ(x, t)|2 (3.98)

=
µ2

2a2
|∇xψ(x, t)|2︸ ︷︷ ︸

K

− Gρm0

2a〈n〉V

∫
d3x′
|ψ(x, t)|2|ψ(x′, t)|2

|x− x′|︸ ︷︷ ︸
W

, (3.99)

where we expressed the solution to Poisson’s equation explicitly as convolution in-
tegral. In this description, iµψ is the canonically conjugate variable of ψ and the
total time derivative of an arbitrary functional A[ψ] obeys:

dA
dt

= ∂tA+ {E,A}, (3.100)

where {., .} represent Poisson brackets. Since {E,E} = 0, it holds:

dE
dt

= ∂tE. (3.101)
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Defining the total energy per mass E as sum of the kinetic energy K and gravita-
tional self energy W per mass unit,

E = K +W =

∫
d3xK +

∫
d3xW , (3.102)

and taking the different scaling behaviors of K ∝ a−2 and W ∝ a−1 into account,
we arrive at the aforementioned Layzer-Irvine equation:

d
dt

(K +W ) = −H(2K +W ) ⇔ d
da

(aE) = −K(a). (3.103)

[8] suggests to monitor the relative error,

ε ≡
d
da (aE)

−K(a)
− 1, (3.104)

to determine the numerical accuracy of the SP solver. We will follow this sugges-
tion and write (3.104) in super conformal time τ , dimensionless comoving position
variable ξ and one spatial dimension:

ε =
dτ
da

d
da

(
a−1

∫
dξ|∂ξΨ|2 +

∫
dξU |Ψ|2

)
−a−2

∫
dξ|∂ξΨ|2

− 1. (3.105)

In order to calculate (3.105) at some τ during the simulation, time and space deriva-
tives have to be computed. We do this by employing a standard central differences 5
point stencil for both parameters which, for the space parameter for instance, reads:

∂ξΨ =
1

12∆ξ

(
Ψm
n−2 − 8Ψm

n−1 + 8Ψm
n+1 −Ψm

n+2

)
+O(∆ξ4). (3.106)

The integration over the space domain [0,∆ξ ·N ] is implemented by a direct appli-
cation of Simpson’s rule for periodic boundary conditions:∫ ξN

ξ1

dξf(ξ) =
N∑

n odd

4

3
fmn +

N∑
n even

2

3
fmn +O(∆ξ4). (3.107)

We will apply the introduced Layzer-Irvine test to determine numerical values for
the parameters {ρ = L

N
, µ,∆τ} applicable for a cosmic scale simulation. Therefore,

we set L = 250 Mpc h−1 for all following simulation runs and define a base point
number Nbase as starting point. Varying grid densities are achieved by doubling the
number of grid points in consecutive simulation runs. For the time step ∆τ and
phase space resolution µ we proceed analogously. The considered parameter base
values are chosen as:

Nbase = 218, ∆τbase = 5 · 10−4, µbase = 7.8125 · 10−13 Js
eV
. (3.108)

µbase was chosen so that all considered phase-space resolutions µ correspond to a
particle mass m with:

10−22 eV ≤ m ≤ 10−24 eV, (3.109)

being a desirable parameter range for dark matter simulations using the SPS [11].
Considering the numerical results presented in Figure 3.8, three major effects have
to be distinguished.
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Increasing precision with increasing point density Choosing a large number
of grid points tends to decrease the relative error |ε|. This effects is best observed
if one compares the accuracy results for N = 218, Figure 3.8a, and N = 221, Fig-
ure 3.8d, as well as for small time steps in general, for which the number of sign
changes of the error ε, observable as slowly oscillating features in the course of |ε|, is
significantly reduced. Since an increased point density of the spatial grid improves
the finite difference approximations, on which PC-CNFD as well as the Poisson
discretization rely on, this is the behavior we expect to see.

Increasing precision with decreasing phase space resolution By looking at
each simulation result for a chosen N and ∆τ individually, it is evident that a larger
value of µ, i.e. a worse phase space resolution, increases the numerical accuracy. This
behavior becomes plausible if one recalls that the velocity information is encoded
in the phase φu of the wave function, which is treated as a discretized quantity.
Therefore, the chosen mesh width ∆x, or correspondingly ∆ξ in code units, must
be capable of resolving changes in the wave function at points where the associate
velocity ∂xφu is maximal [8]:

∆x
maxx |∂xφu|

µ
� 1 ⇔ ∆ξ

maxξ |∂ξφu|
µ

� 1. (3.110)

Thus, decreasing µ violates this restriction more and more.

Increasing precision with increasing time step According to Figure 3.8, in-
creasing the time step ∆τ appears to have a positive impact on the numerical ac-
curacy, which is counterintuitive since smaller steps in the temporal domain should
result in a better approximation of the effective Hamiltonian, discussed in section
3.3.1. In fact, this effect is most likely a systematic error induced by setting the
time step statically. The evolution of large scale structures, however, involves vastly
different time scales, i.e. a "Hubble scale" modeling the expansion of space and a
dynamical timescale, capable of resolving frequent halo collapses, occurring in the
non-linear growth regime, close to z = 0. Therefore, setting the time step to large
results in an inaccurate description of the physical problem simply because critical
points in the simulation are not resolved precise enough. Our results strongly sug-
gest the application of an adaptive time step integrator, capable of resolving both
the Hubble and dynamic timescale. This might also be beneficial for the overall com-
putation time since the non-linear growth regime, in which the dynamical timescale
dominates, sets in at redshifts z ≈ 10. Thus, the greater part of the simulation is
spent in the linear regime for which a larger time step is acceptable.

Taking all the above effects into account, the rational for setting time and space
steps correctly is to use the largest number of grid points, as well as the smallest
time step possible such that the overall computing time is still acceptable (see section
3.8). We find

N = 221, ∆τbase = 4 · 10−3 (3.111)

to be a reasonable choice. Using these parameters, the relative error |ε| is at most
≈ 1% for all considered values of µ throughout the entire simulation time.
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(d) N = 221

Figure 3.8: Temporal evolution of the relative error |ε| between the RHS and LHS of the
Layzer-Irvine equation.
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3.8 Scalability

As discussed in section 3.4, PC-CNFD is expected to have an asymptotic complexity
of O(N) per time step. Assuming the temporal step size ∆τ is chosen statically,
this amounts to an overall time complexity of O(N ·M), with M the total number
of time steps. Adopting a time step of ∆τ = 0.004, one can easily verify the
predicted linear scaling of the required CPU time in N. Consider Figure 3.9 for the
results. Concerning memory consumption, we expect to find a linear scaling as well

217 218 219 220 221

N

101

102

CPU time [min]

∝ N

Figure 3.9: Time complexity of PC-CNFD. The green solid line represents the linear fit
result, error bars correspond to the standard deviation of the set of measured
CPU times for the 8 different values of µ introduced in section 3.7.2.

since PC-CNFD exploits the sparseness of all involved matrices by only storing non-
zero elements. Figure 3.10 supports this expectation. Deviations of the measured
memory consumption from the linear behavior for small grid point numbers are
most likely introduced by a constant offset that accounts for the total memory
used by static data structures such as the lookup table of the super conformal time
parameter, section 3.5.
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100
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Figure 3.10: Memory consumption of PC-CNFD. Green line and error bars as discussed
in Figure 3.9
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Chapter 4

Data Analysis

In the following we discuss the implementation of quantities such as Husimi’s func-
tion, the matter power spectrum or the density contrast. Furthermore, simulation
results for both synthetic initial conditions as well as cosmological initial conditions
are presented and interpreted.

4.1 Husimi Phase Space Representation

As discussed in section 2.1, the Husimi function can be understood as coarse grained
Wigner function in which both smoothing scales σu and σx obey Heisenberg’s un-
certainty principle:

fH(x, u, t) =
1

2πσxσu

∫
dx′du′e−

(x−x′)2
2σ2
x e

− (u−u′)2
2σ2
u fW (x′, u′, t), σxσu =

µ

2
. (4.1)

One major advantage of Husimi’s function compared to Wigner’s phase space rep-
resentation of ψ is the guaranteed non-negativity of (2.5). However, directly com-
puting (2.5) might violate this property due to numerical inaccuracies induced by
the finite precision computation of the two dimensional convolution. Therefore, it
would be advantageous to implement an expression of Husimi’s function which is
manifestly non-negative by definition. In fact, this can be achieved by a simple
manipulation of (2.5). The reader is referred to Appendix E for the derivation, the
result of which is:

ψH(x, u, t) =
1

(2πµ)1/2

1

(2πσ2
x)

1/4

∫ L

0

dx′ exp

(
−(x− x′)2

4σ2
x

− i

µ
ux′
)
ψ(x′, t) (4.2)

fH = |ψH(x, t)|2, (4.3)

where we adopted the notation of [8]. Transforming to code units in a discrete
domain, we have:

Ψm
H,kn =

1

(2πµ)1/4

1

(2πσξ)1/2

(
3

2
H2

0 Ωm0

)−1/8 N∑
j=1

exp

(
−(ξn − ξj)2

4σ2
x

− iνkξj
)

Ψm
j ,

(4.4)
fmH,kn = |Ψm

H,kn|2, (4.5)
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where the short hand ν = ∂τξ was used. (4.4) is implemented by a direct application
of the discrete convolution theorem which states that for two discretely sampled
functions, f and g, the convolution can be computed by:

F(f ∗ g) = F(f) · F(g), (4.6)

where F(.) denotes the application of a discrete Fourier transformation and ∗ the
convolution. From a computational point of view, calculating (4.4) takesO(N2 logN)
steps. One might speed up the convolution by exploiting the quasi-locality of a Gaus-
sian filtering, for which it is acceptable to restrict the support of the convolution
kernel to a few multiples of the smoothing scale σx without any significant loss in
precision. The memory requirements of (4.4), on the other hand, are manifestly
O(N2) such that one phase space snapshot for a spatial domain with N = 221 grid
points would amount to a memory consumption of ≈ 35 TB. Accordingly, calculat-
ing Husimi’s function is only feasible for smaller subdomains of the entire N × N
velocity-position grid.

In these smaller phase space patches, an initially cold density perturbation is
expected to undergo the evolution stages illustrated in Figure 1.1. We recover this
prototypical evolution by setting the initial perturbation field to:

δ(ξ, τinit) = A · cos

(
2π

L
ξ

)
, (4.7)

where L denotes the dimensionless form of the domain size L and A is a small
amplitude. Both are set as:

A = −0.1, L = 1 Mpc h−1. (4.8)

The initial wave function phase is computed according to (3.90). In accordance with
section 3.7.1, we set N = 218, ∆τ = 6.25 × 10−5 and µ = 10−12 Js

eV and obtain the
dynamics illustrated in Figure 4.1, for which the relative energy error of the Layzer-
Irvine test satisfies |ε| ≤ 1% as well. Evidently, after evolving in the single stream
regime up to z = 14, shell crossing occurs, marking the beginning of the multi stream
regime which lasts until the collapsed halo virializes around z = 1. The reader is
referred to [22], in which the gravitational collapse of a pancake density profile in
an Einstein-de Sitter 1 universe is studied.

Up till now, the choice of the smoothing scale σx was of no importance since it
does not effect the dynamics of the wave function. Computing derived quantities
such as a phase space representation or the density contrast, section 4.2, on the
other hand, heavily depend on this parameter. Its numerical value was chosen as a
typical galaxy radius of roughly 15 kpc. We will adopt this value for "cosmological
simulation conditions", i.e. initial conditions as discussed in section 3.6 and box
sizes of order 102 Mpc, as well.

1Ωm(a) = 1, ΩΛ(a) = 0
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Figure 4.1: Gravitational collapse of a sinusoidal density perturbation in a ΛCDM uni-
verse. The first panel depicts a snapshot in the single-stream regime which
ends with a shell crossing around z = 14 (second panel). After accumulating
more mass during the multi stream evolution (third panel), the collapsed
halo viralizes around z = 1(fourth panel). Each panel shows a distribution
normalized to the current maximum value of fH(ξ, ν, t), whereas the insets
illustrate the associated density contrast.We refer to [22] for a comparable
numerical study in an Einstein-de Sitter universe employing the Schrödinger
method and [20] for the Vlasov counterpart.
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4.2 Density Contrast

The number density n(x, t) can be calculated via (2.8) which in one spatial dimension
reads:

n(x, t) =
1√

2πσ2
x

∫ L

0

dx′e−
(x−x′)2

2σ2
x |ψ(x′, t)|2. (4.9)

Transforming to code units, the real quantity of interest becomes the dimensionless
density contrast which in the discrete case is given as:

δmn =
1√
2πσξ

N∑
n=1

e
− (ξn−ξ′n)2

2σ2
ξ
(
|Ψm

n |2 − 1
)
. (4.10)

The calculation of (4.10) is done by application of the convolution theorem (4.6).
Figures 4.2a - 4.2d depict exemplary the smoothed perturbation field δ(x) at z = 0
obtained for varying values of µ and a fixed smoothing scale σx = 15 kpc.
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35
δ

(a) µ = 5 · 10−11 Js
eV

Evidently, the number of smaller collapsed dark matter cores is greatly reduced
if the parameter µ decreases. This is plausible since smaller numerical values of µ
correspond to higher particle masses m. Hence, it is unlikely for smaller collapsed
cores to survive in the vicinity of a larger halo, due to its steeper gravitational
potential. Accordingly, one would expect to find denser haloes for smaller values of
µ. This effect, however, is not recovered by the simulation results and is most likely
the result of a poor time resolution in the non-linear evolution regime. We refer
to section 3.7.2 for a more detailed explanation of this systematic influence and to
section 4.2 for a discussion concerning the characteristics of the evolution of δ for a
given set of simulation parameters.
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(b) µ = 1.25 · 10−11 Js
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(c) µ = 3.13 · 10−12 Js
eV
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Figure 4.2: Final density contrast of a SPS simulation with cosmological initial condi-
tions, N = 221 grid points, σx = 15 kpc h−1 and different values of µ. The
number of smaller halos is significantly reduced if the phase space resolution
decreases

.

4.3 Matter Power Spectrum

The dimensionless, one dimensional matter power spectrum ∆1D was defined in
(3.78) as:

∆1D(k) ≡ k

π
P1D(k) =

k

π
L〈|δ̂|2〉, (4.11)

where 〈.〉 denotes the ensemble average. Since we only compute discrete Fourier
transformations, an additional rescaling is necessary:

∆1D(k) =
k

π
L〈|δ̂|2〉 =

k

π
L

〈
1

L2

∣∣∣∣∫ L

0

dxe−ikxδ(x)

∣∣∣∣2
〉

(4.12)

≈ k

π

L

N2

〈∣∣∣∣∣
N∑
x=1

e−ikjxnδn

∣∣∣∣∣
2〉

. (4.13)

Moreover, we approximate the ensemble average by calculating the arithmetic mean
over M = 60 realisations. Employing the parameter set discussed in section 3.7.2
yields the power spectra of Figure 4.3a-4.3d.
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According to linear perturbation theory, section 2.3, low frequency modes δ̂ are
expected to grow linearly with the cosmic scale factor a for sufficiently early simula-
tion times. This behavior is directly observable in Figure 4.3a - 4.3d since doubling
the redshift z results in a quadrupling of ∆1D ∝ 〈|δ̂|2〉. A violation of this linear
evolution signals the transition to the non-linear growth regime and depends on the
chosen value of µ. Consider Figure 4.4 for a more quantitative examination of this
evolution property. Moreover, comparing the spectra for a fixed z but varying µ
shows that the growth of high frequency components δ̂(k) is delayed, i.e. the growth
condition k < kJeans for a chosen value of k is already satisfied at earlier redshifts if
the numerical value of µ is sufficiently large.
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Figure 4.3: Comparison of the temporal evolution of the dimensionless matter power
spectrum ∆1D for different values of the phase space resolution µ. The
black, dashed line depicts the dimensionless, rescaled CAMB power spec-
trum ∆CAMB = k

πP1D used to set up the initial conditions. Deviations at
high frequencies are the result of Gaussian smoothing with (4.10). Note the
linear evolution for low frequency modes for early simulation times as well as
the delayed growth of perturbation modes for larger values of µ.

Recall the Jeans wavenumber (2.27) derived in section 2.3:

kJeans = (6Ωm0a)
1
4

√
H0

µ
∝ µ−

1
2 (4.14)
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Specializing to z = 100, the dimensionless power spectrum ∆1D shows good agree-
ment with the predicted behavior of |δ̂(k)|2 in Figure 2.1, in which the critical Jeans
wavenumber lies in the vicinity of the first oscillation peak of |δ̂(k)|2. Figure 4.5 de-
picts the corresponding points of ∆1D(z = 100) for varying phase space resolutions.
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Figure 4.4: Linear scaling of low frequency perturbations in the linear regime. A larger
numerical value of µ delays the transition to the non-linear regime, for which
∆1D ∝ a2 is not satisfied.
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Figure 4.5: Scaling behavior of the Jeans scale. Dots represent the extracted values of
∆1D at z = 100, whereas the green solid line is the fit result for the function
kJeans = α · µ−1/2 with α as fit parameter.
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Conclusion and Perspectives

Main purpose of this thesis was to construct a comprehensive numerical scheme for
the integration of the Schrödinger-Poisson system in one spatial dimensions. With
the help of a Predictor-Corrector version of the well known Crank-Nicolson scheme,
it was possible to address the numerical difficulties that arise due to the non-linear
and time-dependent nature of the Schrödinger-Poisson system, while still obtaining
a reasonable scaling behavior for memory and computation time. Our numerical
results recover the prototypical evolution stages of CDM in phase space and are
in good agreement with the theoretical predictions of linear perturbation theory.
Evidently, the physical problem and its numerical treatment, as it was discussed in
this thesis, are by no means exhausted and the possibilities for further investigations
and optimizations are rather diverse. A short overview is given below.

Examination of the Non-Linear Growth Regime As mentioned before, the
results of linear perturbation theory are restricted to the linear growth regime. A
particular interesting quantity that might be used to assess the results of PC-CNFD
in the non-linear regime is the halo mass function, which determines the halo abun-
dance per mass unit. Measuring this quantity is closely related to the question of
how a halo is defined. Common halo detection algorithms such as the Friends-of-
Friends algorithm rely on the measurement of particle distances for this purpose,
[23]. Obviously, this is not possible in the Schrödinger approach which is why a
different halo definition is needed. A possible approach might be to measure the
locality of the wave function on different sub-domains of the spatial grid. This is
closely related to the subject of quantum many body localisation, a problem of
recent interest in condensed matter physics, [3, 1].

Method Optimization The results presented in section 3.7.2 indicate that a
static time step integration scheme is most likely not capable of modeling the dy-
namics in the non-linear growth regime correctly. Indeed, resolving halo collapses
and mergers correctly is crucial if one aims to investigate quantities such as the halo
abundance. Hence, it is necessary to introduce a dynamical time scale τdyn that sets
the integration step ∆τ if τstatic > τdyn.

Higher Dimensions As mentioned in section 3, the final goal is the simulate
the dynamics of CDM in 3 + 1 dimensions. This might be achievable without
any significant modification on the current 1D solver with the application of an
alternative-direction implicit method (ADI). ADI is a type of operator splitting
technique, [6], in which we decompose the total Hamiltonian H dimension-wise,

H = Hx(t) +Hy(t) +Hz(t), (4.15)
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and treat each dimension separately in fractional time steps. Applying such a de-
composition assumes that the gravitational potential V is separable, i.e. spatial
dimensions do not couple (strongly) in V . This is most likely not the case which
is why an alternative approach might be to decompose H into a kinetic K and
potential operator V ,

H = K + V, (4.16)

and subsequently decompose K as in 4.15. In fact, this coincides with the decom-
position applied in [8].

47



Appendix A

Derivation of the Dust Model

The comoving Vlasov equation for cold initial conditions reads:

0 = ∂tf +
u

a2
· ∇xf −∇xV · ∇uf (A.1)

fcold(x,u, tinit) = n(x, tinit)δD (u−∇xφu(x, tinit)) , (A.2)

where δD is the Dirac delta function.

Continuity equation Integrating (A.1) over velocity space Ω yields:

∫
Ω

d3u
(
∂tf +

u

a2
· ∇xf −∇xV · ∇uf

)
= 0 (A.3)

∂t

∫
Ω

d3uf +
1

a2

∫
Ω

d3uu · ∇xf −∇xV ·
∫

Ω

d3u∇uf = 0 (A.4)

(A.5)

u and x are time-independent parameters in this description meaning the gradient
in the second integral can be moved in front:

∂t

∫
Ω

d3uf︸ ︷︷ ︸
=n(x,t)

+
1

a2
∇x ·

∫
Ω

d3uuf −∇xV ·
∫

Ω

d3u∇uf︸ ︷︷ ︸
=0 if |Ω|→∞

= 0 (A.6)

∂tn+
1

a2
∇x ·

∫
Ω

d3uunδD (u−∇xφu) = 0 (A.7)

(continuity equation) ∂tn+
1

a2
∇x · (n∇xφu) = 0. (A.8)

Euler equation Computing the first moment with respect to velocity yields:

∂t

∫
Ω

d3uuf +
1

a2

∫
Ω

d3uu (u · ∇xf)−
∫

Ω

d3uu (∇xV · ∇uf) = 0. (A.9)
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Consider the third integral component-wise:(∫
Ω

d3uu (∇xV · ∇uf)

)
j

=

∫
Ω

d3uuj

(
∂V

∂xi

∂f

∂ui

)
(A.10)

=
∂V

∂xi

∫
Ω

d3uuj
∂f

∂ui
(A.11)

=
∂V

∂xi


∫

Ω

d3u
∂ujf

∂ui︸ ︷︷ ︸
=0 if |Ω|→∞

(divergence theorem)

−
∫

Ω

d3u
∂uj
∂ui︸︷︷︸
δij

f

 (A.12)

= −n ∂V
∂xj

(A.13)

= −(n∇xV )j. (A.14)

For the second integral, we have:(
1

a2

∫
Ω

d3uu (u · ∇xf)

)
j

=
1

a2

∫
Ω

d3uujui
∂f

∂xi
(A.15)

=
1

a2

∂

∂xi

∫
Ω

d3uujuif (A.16)

(A.2)
=

1

a2

∂

∂xi

[
n
∂φu
∂xj

∂φu
∂xi

]
(A.17)

=
1

a2

[(
∂φu
∂xi

n

)
∂

∂xi

∂φu
∂xj

+
∂φu
∂xj

∂

∂xi

(
∂φu
∂xi

n

)]
(A.18)

=
1

a2
[n (∇xφu · ∇x)∇xφu +∇x · (∇xφun)∇xφu]j .

(A.19)

Inserting (A.14) and (A.19) into (A.9), we arrive at:

∂t(n∇xφu) +
1

a2
[n (∇xφu · ∇x)∇xφu +∇x · (∇xφun)∇xφu] + n∇xV = 0

(A.20)

n∂t∇xφu +∇xφu

[
∂tn+

1

a2
∇x · (n∇xφu)

]
︸ ︷︷ ︸

=0 (contiuity)

+
1

a2
n (∇xφu · ∇x)∇xφu + n∇xV = 0

(A.21)

(Euler equation) ∂t∇xφu +
1

a2
(∇xφu · ∇x)∇xφu +∇xV = 0.

(A.22)
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Appendix B

Number Density in the Schrödinger Poisson Method

Starting from (2.7), we first insert the definition of the Husimi (2.5) representation:

n(x, t) =
1

(2πσxσu)3

∫
d3ud3x′d3u′e

− (x−x′)2
2σ2
x e

− (u−u′)2
2σ2
u fW (x′,u′, t). (B.1)

fW does not depend on on u. Thus, we integrate over u and substitute expression
(2.4) for fW :

n(x, t) =
1

(
√

2πσx)3

1

(2πµ)3

∫
d3x′d3x′′d3u′e

− (x−x′)2
2σ2
x ψ

(
x′ +

x′′

2

)
ψ

(
x′ − x

′′

2

)
e
iu′·x′′
µ

(B.2)

=
1

(
√

2πσx)3

∫
d3x′d3x′′e

− (x−x′)2
2σ2
x ψ

(
x′ +

x′′

2

)
ψ

(
x′ − x

′′

2

)
δD(x′′) (B.3)

=
1

(
√

2πσx)3

∫
d3x′e

− (x−x′)2
2σ2
x |ψ(x′)|2. (B.4)
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Appendix C

Madelung Transformation

Consider the comoving Schrödinger equation and the Madelung representation of
ψ(x, t):

iµ∂tψ(x, t) = − µ2

2a2
4ψ(x, t) + V (x, t)ψ(x, t) (C.1)

ψ(x, t) =
√
n(x, t) exp

(
i
φu(x, t)

µ

)
. (C.2)

The time derivative and Laplacian of ψ can be written in terms of ψ:

∂tψ =

[
∂tn

2n
+
i

µ
∂tφu

]
ψ (C.3)

4ψ =

[
2n4n− (∇n)2

4n2
− u

2

µ2
+
i

µ

(
∇ · u+

∇n · u
n

)]
ψ, (C.4)

where we set ∇φu = u. Upon substitution into (C.1) and under the assumption
n(x, t) 6= 0 (C.1) can be written as:

iµ

[
∂tn

2n
+
i

µ
∂tφu

]
= − µ2

2a2

[
2n4n− (∇n)2

4n2
− u

2

µ2
+
i

µ

(
∇ · u+

∇n · u
n

)]
+ V.

(C.5)
Consider the imaginary and real part of (C.5) separately.

Imaginary Part

µ
∂tn

2n
= − µ2

2a2

1

µ

(
∇ · u+

∇n · u
n

)
(C.6)

⇔ ∂tn = − 1

a2
(n∇ · u+∇n · u) (C.7)

⇔ 0 = ∂tn+
1

a2
∇ · (nu) (continuity equation) (C.8)

Real Part

− ∂tφu = − µ2

2a2

(
2n4n− (∇n)2

4n2
− u

2

µ2

)
+ V. (C.9)

Taking the gradient yields:

−∂tu =
1

a2
(u · ∇)u+∇V − µ2

2a2
∇
(

2n4n− (∇n)2

4n2

)
. (C.10)
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Note that the assumption of an irrotational flow was used in:

1

2
∇u2 = (u · ∇)u+ u× (∇× u)

u=∇φ
= (u · ∇)u. (C.11)

A simple calculation shows:

2n4n− (∇n)2

4n2
=
4
√
n√
n
. (C.12)

Thus, we arrive at:

0 = ∂tu+
1

a2
(u ·∇)u+∇V − µ2

2a2
∇
(
4
√
n√
n

)
(modified Euler equation). (C.13)
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Appendix D

Correlation of Perturbation Modes in Fourier Space

〈δ̂∗i δ̂j〉 =

〈
1

N2

∑
n

δne
iκiξn

∑
m

δme
−iκjξm

〉
(D.1)

=
1

N2

∑
n

eiκiξn
∑
m

e−iκjξm 〈δnδm〉 (D.2)

=
1

N2

∑
n

eiκiξn
∑
m

e−iκjξneiκjrmc(rn) (D.3)

=
1

N2

∑
n

ei(κi−κj)ξn
∑
m

eiκjrmc(rn) (D.4)

=
1

N
δKij
∑
m

eiκjrmc(rn) (D.5)

The quantity
P̃ (κj) ≡

∑
m

eiκjrmc(rn) (D.6)

represents a dimensionless, discrete, power spectrum in code units. It relates to the
continuous P (kj) as follows:

〈δ̂∗i δ̂j〉 =
1

N
δKij
∑
m

eiκjrmc(rn) =
1

L

L

N
δKij
∑
m

eiκjrmc(rn) (D.7)

N→∞−−−→ 1

L
δKij

∫
dreikjrc(r) (D.8)

≡ 1

L
δKij P1D(kj). (D.9)
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Appendix E

Alternative Husimi Function Expression

We start with the convolution definition of Husimi’s function, insert expression (2.4)
for the Wigner phase space representation and set σxσu = µ

2
right from the begin-

ning. Omitting the time parameter in ψ, we have:

fH(x, u, t) =
1

2πµ

1

πµ

∫
dx′du′ exp

(
−(x− x′)2

2σ2
x

)
exp

(
−2σ2

x(u− u′)2

µ2

)
∫

dx
′′
ψ

(
x′ +

x′′

2

)
ψ

(
x′ − x

′′

2

)
exp

(
iu′x

′′

µ

)
. (E.1)

Set x
′′

2
= y and transform the corresponding differential:

fH(x, u, t) =

(
1

πµ

)2 ∫
dx′du′ exp

(
−(x− x′)2

2σ2
x

)
exp

(
−2σ2

x(u− u′)2

µ2

)
∫

dyψ (x′ + y)ψ (x′ − y) exp

(
2iu′y

µ

)
. (E.2)

Swap the integration order such that the u′ integral is treated first:∫
du′ exp

(
−2σ2

x(u− u′)2

µ2

)
exp

(
2iu′y

µ

)
(E.3)

=

∫
du′ exp

(
−2σ2

x

µ2

[
u′ −

(
u+

iµy

2σ2
x

)]2
)

exp

(
2iuy

µ

)
exp

(
−y2

2σ2
x

)
(E.4)

=

(
πµ2

2σ2
x

)1/2

exp

(
2iuy

µ

)
exp

(
−y2

2σ2
x

)
. (E.5)

We arrive at:

fH(x, u, t) =
1

πµ(2πσ2
x)

1/2

∫
dx′ exp

(
−(x− x′)2

2σ2
x

)
∫

dy exp

(
2iuy

µ

)
exp

(
−y2

2σ2
x

)
ψ (x′ + y)ψ (x′ − y) . (E.6)

Introduce the following variables:

v = x′ + y

w = x′ − y
⇔

x′ =
1

2
(v + w)

y =
1

2
(v − w)

, ⇒ det J =

∣∣∣∣∣∣∣∣∣
∂vx

′ ∂wx
′

∂vy ∂wy

∣∣∣∣∣∣∣∣∣ =
1

2
, (E.7)
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where J denotes the Jacobian. Transforming the integral (E.6) and recasting the
exponents yields:

fH(x, u, t) =
1

2πµ(2πσ2
x)

1/2

∫
dvdw exp

(
−(x− v)2

4σ2
x

)
exp

(
−(x− w)2

4σ2
x

)
exp

(
iuv

µ

)
exp

(
−iuw
µ

)
ψ (v)ψ (w) . (E.8)

We end up with two independent integrals, one being the complex conjugate of the
other. Hence, we can write:

ψH(x, u, t) =
1

(2πµ)1/2

1

(2πσ2
x)

1/4

∫
dx′ exp

(
−(x− x′)2

4σ2
x

− i

µ
ux′
)
ψ(x′, t) (E.9)

fH = |ψH(x, t)|2. (E.10)
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