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Abstract

What differs the quantum walk from its classical analogue is the description of the
walker by a wavefunction with superpositions in both the internal and external degree
of freedom and their entanglement. The one-dimensional discrete-time quantum walk
consists of a rotation of the intrinsic degree of freedom followed by a kick to the left or
right best described by the quantum kicked-rotor model. By breaking the periodicity
of the model Hamiltonian by preparing the walker in a ratchet state we can produce a
directed motion whose bias depends on the rotation or ’coin’ operators. Sequencing two
different coin operators, both of which produce a biased walk with a negative expectation
value of the walkers position, can produce a walk with a reversed bias. This paradoxical
observation is called Parrondo’s paradox. We investigate the possibility to realize this
paradox with a Bose-Einstein condensate by implementing the walks in the quantum
kicked-rotor model and analyze possible experimental difficulties.

Zusammenfassung

Was den Quantenwalk von seinem klassischen Analogon unterscheidet, ist die Beschrei-
bung des Walkers durch eine Wellenfunktion, die aus Superpositionen sowohl im inneren
als auch im äußeren Freiheitsgrades sowie deren Verschränkung besteht. Der eindimen-
sionale zeitdiskrete Quantenwalk besteht aus einer Rotation des inneren Freiheitsgrades,
gefolgt von einem Kick nach links oder rechts, der am besten durch das Modell des
kicked Quantenrotors beschrieben wird. Indem wir durch einen Ratchet-Zustand, in den
der Walker versetzt wird, die Periodizität des Hamiltonians des Modells brechen, können
wir eine gerichtete Bewegung erzeugen, deren Richtung von den Rotations- oder Münz-
Operatoren abhängt. Die Aneinanderreihung von zwei verschiedenen Münzoperatoren,
die beide einen voreingenommenen Walk mit einem negativen Erwartungswert der Po-
sition des Walkers erzeugen, kann einen Walk mit umgekehrter Vorspannung erzeugen.
Diese paradoxe Beobachtung wird als Parrondo-Paradoxon bezeichnet. Wir untersuchen
die Realisierbarkeit des Paradoxons in einem experimentellen Aufbau mit Bose-Einstein
Kondensaten, indem wir die Walks im quantum kicked-rotor Modell implementieren und
mögliche experimentelle Schwierigkeiten diskutieren.
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1 Introduction

Parrondo’s paradox presents the apparently paradoxical behaviour where two individu-
ally losing games can be played alternately in specific sequences resulting in a winning-
game [1, 2, 3]. Parrondo’s games are not only of use in physical but also for example
in biological systems when observing populations in sink habitats [4]. Other fields of
application are of course game theory as well as investing in stock markets [5].

In 1993 the quantum walk, which is in short a (deterministic) quantum mechanical
analogue to the classical random walk, was first introduced by Aharonov [6]. This
led to the recent description of quantum Parrondo’s games based on quantum walks
[7, 8]. The quantum walks can be distinguished between discrete-time and continuous-
time quantum walks. Since a lot of algorithms in classical computer science rely on
classical random walks, quantum walks are especially interesting in the field of quantum
computing. The presumption is that computation times can be sped up using such
quantum search algorithms which is shown in [9]. More recently, in [10] it is discussed
that quantum walks can be regarded as a primitive in universal quantum computing.

Most experimental realizations of quantum walks work with ultracold atoms in optical
lattices as proposed in [11]. In this thesis we will discuss a slightly different setup using
a quantum δ-kicked rotor walk which means that the observed Bose-Einstein condensate
(short BEC) is kicked periodically by δ-like pulses [12, 13]. We therefore only discuss
the discrete-time quantum walk rather than continuous quantum walk as we restrict the
time and momentum space to a finite set.

After briefly describing the theoretical background of the δ-kicked rotor and quantum
walks we will introduce the implementation of Parrondo’s paradox based on [14], a paper
that will accompany us over the entirety of the chapters. Implementing the paradox
consists of two different walks that are individually losing-games but become a winning-
game when played sequentially.
The key difference of this thesis that stands out compared to [14] is that we will not focus
on Parrondo’s paradox as a result of an ideal quantum walk. Instead we will analyze
the paradox based on quantum kicked rotor walks with the scope of an experimental
implementation based on a BEC.

We will start off by optimizing the environment of our walks, i.e. finding the ideal
kick-strength and initial state of our walker. Here a previously introduced concept of
quantum ratchets will be of big importance. Furthermore, we will check if the walk pa-
rameters proposed in [14] are indeed ideal in our case or if we are able to find a sequence
of walks with even better outcomes.
After the preliminary work we will continue by discussing the effect of noise on our
walks with the goal of finding a threshold value where the paradox is still observable. To
that point all walks were simulated with the assumption of being in perfect resonance
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(see sect. 2.1). In the experimental setup this is of course impossible as the BEC typi-
cally starts with a gaussian-like momentum distribution of finite width. That so-called
quasimomentum will be considered in addition to the noise to show that implementing
Parrondo’s paradox using a BEC is in fact possible.
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2 Preliminaries

2.1 The δ-kicked rotor model

In this section we introduce the quantum δ-kicked rotor model (QKR for short) which
is essential to understand the concept of Quantum Walks later on.
We will start off by taking a look at the experimental implementation of the QKR,
continue with the theoretical description of the model and briefly describe quantum
resonances as well as quantum ratchets in the end.

2.1.1 Experimental Implementation

The first experimental implementation of a QKR was done by the Raizen Group in
Austin, Texas [15] using cold atoms, whereas more recent realizations [16] use Bose-
Einstein condensates.

The atom optics kicked rotors basis are mostly alkali metals or 87Rb cooled down below
the critical temperature to transition to a Bose-Einstein-Condesate (BEC for short) us-
ing optical trap techniques. After being released from the trap, the BEC is exposed to a
pulsed standing wave formed by a laser beam shone onto a mirror such that the reflected
and incoming laser beams align. To control the phase, intensity and pulse length both
laser beams pass through an acousto-optic modulator.
After the atoms are exposed to a set of laser induced kicks, they are imaged via a time
of flight experiment. Here the atoms are expanding freely for a few milliseconds and
targeted with near resonant light afterwards, causing a fluorescence that is measured
with a charge-coupled device. Although reaching infinitesimal small pulse lengths is
impossible, experiments with reported pulse lengths of around 100ns − 1µs are a good
approximation [17].

2.1.2 Theoretical Description

In an idealized one-dimensional model, the dynamics of our kicked atoms can be de-
scribed by the dimensionless (ℏ = 1) Hamiltonian [18]:

Ĥ(t) =
p̂2

2
+ k cos(x̂)

∑
j∈Z

δ(t− jτ) (2.1)

with the position and momentum operators x̂ and p̂, the kicking strength k, the kick
period τ and a discrete time variable indicating the number of kicks j. In this thesis
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only rotors with an assumed fixed kicking strength are considered.
The evolution of the quantum system with an initial state |Ψ(0)⟩,

i
∂

∂t
|Ψ(t)⟩ = Ĥ(t) |Ψ(t)⟩ , (2.2)

can be described by an unitary operator Û(t)k, the Floquet-operator,

|Ψ(t)⟩ = Û(t) |Ψ(0)⟩ (2.3)

Û(t)k = exp(−i

∫ t+τ

t

Ĥ(t′)dt′) = e−ikcos(x̂)e−
i
2
τ p̂2 (2.4)

The Floquet-operator can be split into two parts, Û = K̂F̂ , where the first part K̂ =
e−ikcos(x̂) describes the action of the kick and the second part F̂ = e

−i
2
τ p̂2 describes the

free time evolution between two kicks.

The Hamiltonian (2.1) describes atoms moving on a line with a 2π-periodicity in position
space. The Bloch Theorem allows us to map onto the model of atoms moving a circle.
We introduce the spatial boundary condition θ = x mod 2π so that θ̂ becomes our new
(angular) position operator. Another consequence of the periodic boundary condition is
that only transitions between two states that are different by an integer n in momentum
are allowed. This allows us to rewrite the momentum in our dimensionless units as
p = n+β where n is the integer part of the momentum and an eigenvalue of the angular
momentum operator n̂ = −i d

dθ
. The conserved non-integer part β ∈ [0; 1) is the so-called

quasimomentum.

Figure 2.1: Momentum distribution of the quantum kicked rotor with kicking strength
k = 1.5 and initial momentum n0 = 0 after T = 10 (green), T = 20 (red)
and T = 30 (blue) kicks.
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2.1.3 Quantum resonances

The quantum resonant case of the δ-kicked rotor is met when its absorbed energy is
at its maximum. According to [19] there is a quadratical growth in the energy and a
corresponding linear growth in the momentum in perfect resonance.
In that case the free evolution part of the Floquet operator is equal to unity, F̂ =
e−

i
2
τ p̂2=1, and does not alter the wavefunction. The Floquet operator is then only

described by the kicks and simplifies to:

Û = e−ikcosθ̂ (2.5)

We can achieve this by choosing τ and β in such a way that

e−
i
2
τ(n̂+β)2 = e−i i

2
τ(n̂2+2n̂β+β2) !

= I. (2.6)

The β2-term can be neglected as it has no n-dependency and will therefore just produce
a global phase that cancels out in the computation of the probability distribution. This
leaves us with the resonance condition:

e−i i
2
τ(n̂2+2n̂β) !

= I. (2.7)

We can fulfill (2.7) by choosing τ = 2πl and β = 1
2
+ i

l
for l ∈ N and i ∈ {0, ..., l − 1}.

The simplest set of parameters we will always use in our computations to achieve quan-
tum resonance is τ = 4π and β = 0. The probability P (n, t|n0k) to measure the momen-
tum quantum number n after a total T steps in quantum resonance can be expressed
analytically as [19]:

P (n, T |n0k) = J2
n−n0

(kT ) (2.8)

where n0 is the initial momentum and Jm(x) =
∑∞

i=0

(−1)i x
2
2i+m

Γ(m+i+1)i!
is the Bessel function of

first kind and order m.

2.1.4 Quantum ratchet

The name of the quantum ratchet originates from the Brownian or Feynman-Smoluchowski
ratchet introduced by Feynman in [20]. It is a thought experiment about a perpetual
motion machine that is driven by the collision with single molecules. The resulting di-
rected motion out of equilibrium violates the second law of thermodynamics. Although
the correct explanation why the device fails was given by Smoluchowski [21], the thought
experiment was still essential in the development of Brownian motors [22]

In the QKR model a ratchet is a quantum system with a directed motion when kicked.
Quantum ratchets are essentially ultra-cold atoms with a superposition of at least two
momentum states in its initial state. They are produced experimentally by splitting
Bose-Einstein condensates into multiple momentum classes with a Bragg pulse. A more
comprehensive description can be found in [23].
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To achieve an ideal ratchet a relative phase of ϕ = π
2

from one involved state to the next
is used.
The most simple quantum ratchet state is a superposition of two adjacent momentum
states [24]:

|Ψ2⟩ =
1√
2
(|n = 0⟩+ eiπ/2 |n = 1⟩) (2.9)

It is of course possible to create ratchet states with more than two momentum states.
A more general expression for quantum ratchets is:

|Ψs⟩ =
1√
S

∑
s

eisπ/2 |n = s⟩ , s ∈ Z (2.10)

with s being an integer for the respective momentum state and S being the normalization
factor that is equal to the number of contributing states.

Figure 2.2: Momentum distribution of the quantum kicked rotor with kicking strength
k = 1.5 for N = 20 steps. Green displays the distribution with initial mo-
mentum n0 = 0 whereas red and blue are the distributions for the ratchet
states |Ψ2⟩ = 1√

2
(|n = 0⟩ + ei

π
2 |n = 1⟩) and |Ψ3⟩ = 1√

3
(e−iπ

2 |n = −1⟩ +
|n = 0⟩+ ei

π
2 |n = 1⟩).

The reason for the directed motion of ratchet states visualized in figure 2.2 is the 2π-
symmetry of the potential in (2.1) that is broken by the superposition of the ratchet.
Although the average momentum is directed to the left in figure 2.2, there is a signifi-
cant part of the distribution diffusing to the other side. The ratchet state with only two
momentum states seems to have a weaker ratchet effect compared to the state consisting
of three momentum states.
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This behaviour can be explained with the effective force on the atom,

Feff = |
∫ +π

−π

|Ψ(x)|2dV (x)

dx
dx| (2.11)

that depends on the gradient of the potential V (x) = cos(x) in (2.1).

By plotting the Ratchet states as well as V (x) in (angular) position space, we can observe
that the peaks in the wavefunction appear at a position with a maximum in the gradient
of V (x) and consequently a maximum in Feff . This can already explain why ratchet
states with a relative phase difference of π/2-between two adjacent momentum states
work best as it ensures that the peaks of the wavefunction are at the correct position.

Figure 2.3 shows that ratchet states consisting of more momentum states are better
localized at the maximum gradient of V (x). The effective force acting on those ratchet
states is therefore stronger, explaining the stronger ratchet effect.

Figure 2.3: The solid black line is the potential V (x) = cos(x) in position space. The
dashed line is the wave function of the ratchet state |Ψ2⟩ = 1√

2
(|n = 0⟩ +

ei
π
2 |n = 1⟩), the dotted line is the wavefunction of the state |Ψ3⟩ =

1√
3
(e−iπ

2 |n = −1⟩+ |n = 0⟩+ei
π
2 |n = 1⟩) and the dash-dot line is the wave-

function of the state |Ψ4⟩ = 1√
4
(e−iπ

2 |n = −1⟩ + |n = 0⟩ + ei
π
2 |n = 1⟩ +

eiπ |n = 2⟩)
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2.2 Quantum walks

2.2.1 Theoretical description

A classical random walk is a process modelling random motion of a particle. While the
space of the walk is discrete the time can be discrete or continuous.
The most simple and for us only interesting case is the one-dimensional discrete time
random walk. Here the motion of a particle placed at an initial position is in the form of
steps to the left or right determined by the outcome of an unbiased coin. After a certain
amount of steps the walker has a final momentum which distribution trends towards a
Gaussian distribution [25].

Often referred to as the quantum mechanical analogue to a classical random walk is the
quantum walk (short QW) that was first introduced by Aharonov [6]. The comparison
is rather misleading as the QW is not random but deterministic instead. For a compre-
hensive description see [9].
Here the walker has in addition to its external degree of freedom corresponding to the
position of the walker an internal degree of freedom, most commonly the spin (here often
referred to as coin-state).
The total Hilbert space describing the QW is given by:

H ≡ HP ⊗HC (2.12)

HP represents the position of the walker in momentum space and is spanned by the or-
thonormal vectors {|n⟩ : n ∈ Z} and HC , spanned by the orthonormal vectors {|0⟩ , |1⟩},
represents the "coin" states of the walker [26].
One step in the quantum walk consists of the application of two operators: The coin-
operator,

M̂(α, β, γ) =

(
eiα cos β −e−iγ sin β
eiγ sin β e−iα cos β

)
(2.13)

which is essentially a SU(2) rotation of the coin space instead of a classical coin flip.
The second operator is the shift-operator Û moving the walker to the left or right.
Whether the shift-operator moves the walker to the left or right is dependent on the
orientation in its internal degree of freedom, i.e. the coin-state previously altered by the
coin operator.

Many works analyzing quantum walks use a shift-operator that perfectly moves the
walker to the adjacent positions. As we approach a experimentally accurate description
of a quantum walk, the shift of the walker is performed by the Floquet-operator 2.3
introduced in sect. 2.1:

Û = e−i/2τ p̂2

(
e−ik cos(θ̂) 0

0 eik cos(θ̂)

)
(2.14)
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In other words we work with a quantum kicked rotor walk (short QKR walk) instead of
an ideal QW.
The results of these walks may differ from the ideal walk due to the walker not only
coupling to the adjacent positions. It is therefore essential to choose an appropriate
kicking strength k to imitate the ideal behaviour.

The probability distributions of quantum walks are drastically different from classical
random walks due to the quantum-mechanical nature of the system causing interference
effects between correlated positions.

Figure 2.4: Example trajectory and probability distribution of a classical random walk
in (a) versus a quantum walk (b) after T = 5 steps.

Another big difference between the classical and quantum walk that arises is the stan-
dard deviation that scales with

√
N in the classical but with N in the quantum case [25].

The total probability distribution is computed from the sum of the distributions of
the two internal coin states:

P (n;T ) = P0(n;T ) + P1(n;T )

= ⟨Ψ0(n, T )|Ψ0(n, T )⟩+ ⟨Ψ1(n, T )|Ψ1(n, T )⟩
= |Ψ0(n, T )|2 + |Ψ1(n, T )|2

(2.15)

Which is essentially the partial trace of the density matrix over the external degree of
freedom [27]. Therefore no overlap of the two internal states is included in (2.15).

2.2.2 Biased Walks

Biasing a classical random walk can be easily achieved by altering the probability of the
coins outcomes, e.g. a 70% chance to have an outcome resulting in a shift to the left
and a 30% chance to have an outcome shifting the walker to the right. The resulting
probability distribution after a certain amount of steps will be changed accordingly.
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In the quantum case we are also able to bias a walk towards one of the two sides by
modifying the parameters in the coin-operator M̂(α, β, γ) (2.13). In contrast to the
classical random walk the choice of the initial state in a QW is crucial to whether a bias
is possible or not.

An initial state that does not break the 2π-symmetry of the potential in sect. (2.1) will
always result in a symmetric probability distribution, making a biased walk impossible.
As discussed in sect. 2.1, ratchet states break the symmetry of the Hamiltonian resulting
in a directed motion. Having a superposition in the momentum space of the form (2.10)
is essential for our biased walk.
The quantum ratchet state is then prepared in a single internal state, |0⟩ in our example.
By applying a beam-splitter-coin,

Ŷ =
1√
2

(
1 i
i 1

)
, (2.16)

the initial state is brought into a superposition in its internal degree of freedom. The
resulting initial ratchet state that enables a bias in either one direction is of the form:

|Ψs(t = 0)⟩ = (
1√
S

∑
s

eisπ/2 |n = s⟩)P ⊗ 1√
2
(|0⟩+ i |1⟩)C (2.17)

Where subscripts P and C denote the momentum and coin space respectively.

2.2.3 Parrondo’s paradox

The paradox was first described by Parrondo in 1996 in connection to the paradox
around brownian ratchets and named three years later by Abbott in [1, 2]. The standard
classical paradox described by Abbott consisting of two Games can easily be adapted to
the quantum case by interpreting the games as quantum walks. The winning probability
of the two games, Pr−Pl is observed, where Pr is the probability of the walker to appear
on the right of the origin after a certain amount of steps and Pl is the probability to
appear on the left of the origin:

Pl =
−1∑

n=−∞

| ⟨Ψ0(n, T )|Ψ0(n, T )⟩ |+ | ⟨Ψ1(n, T )|Ψ1(n, T )⟩ | (2.18)

Pr =
∞∑
n=1

| ⟨Ψ0(n, T )|Ψ0(n, T )⟩ |+ | ⟨Ψ1(n, T )|Ψ1(n, T )⟩ | (2.19)

A game is called a losing-game when the probability to appear on the left of the origin
is greater than the probabiltiy to appear on the right, Pr − Pl < 0. Conversely when
Pr − Pl > 0 the game is winning and when Pr − Pl = 0 the game is a draw.

In [1] the two games (or walks) A and B are loosing games when individually played.
The paradoxical behaviour arises when a certain periodic sequence of the two games
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(AABBAABB... in [1]) is played which appears to be a winning-game (Pr − Pl > 0).
The losing-games are created by biasing the respective coin-operators of walk A and
walk B, MA(α, β, γ) and MB(α, β, γ), to the left. Of course the choice of the bias as
well as the sequence is essential to observe the paradox. Not every two biased coins can
create the paradoxical behaviour as well as not every sequence of two losing-games A
and B will create a winning-game.
It is also worth mentioning that the paradox works the other way around, i.e. two
winning-games that produce a losing-game.
In this thesis we chose the aforementioned definitions as they are consistent to most
works [26, 28, 14].
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3 Numerical realization

3.1 Computation

The momentum distributions and winning-probabilities of all quantum walks were sim-
ulated numerically using Python.
The basis we work in is of the finite size N = 2l, with l being an integer, for both the
position and momentum space, resulting in respective grids:

θj =
2π

N
j (3.1)

nj = −N

2
+ (j − 1) (3.2)

with j = 0, 1, ..., N .
The base length was chosen to be a power of two as the fast Fourier Transform from
the Python library "scipy" only works in those cases. The base length was also changed
individually depending on the number of steps since a base length that is too small will
impair the result and a basis that is too large will take unnecessary long to compute.
For T = 20 steps a base length of N = 27 and for T = 50 a length of N = 28 turned out
to be ideal.
The wavefunction is displayed by a two-dimensional array corresponding to the internal
and external degree of freedom. The initial ratchet state (2.17) for s ∈ {0, 1} is given
by:

Ψ(n = 0, j = 0) =
1

2

(
1
i

)
Ψ(n = 1, j = 0) =

i

2

(
1
i

) (3.3)

The form of the wavefunction simplifies the implementation of the walk a lot since we
can just multiply the coin-matrix M̂ (2.13) with every component n of the N-sized basis
and apply the kick Û afterwards.
Splitting up the Floquet-operator into two parts is important here as the free time
evolution F̂ is performed in the momentum space whereas the walker is kicked by K̂ in
the position space.
The diagonal nature of the Floquet-Matrix (2.14) allows us to split it into:

F̂ = e−i/2τ p̂2 (3.4)

K̂ =

(
e−ik cos(θ̂) 0

0 eik cos(θ̂)

)
(3.5)
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After applying the free-time-evolution we fast Fourier transform the wave function from
momentum into position space, apply the kick and transform back into momentum space.
All these actions assemble one step of the walk and are iteratively done T times.

Unless stated otherwise (i.e. in section 4.2) we always assume our QKR walks to be in
perfect resonance. To neglect the quasimomentum completely in the resonant case we
choose τ = 4π which fulfills (2.7) for β = 0.
We often use ideal QWs as a reference distribution for our QKR walks. The only
difference in the realization of the ideal QW is that the Floquet operator is replaced by
a shift-operator which moves the coin state |0⟩C to the left and |1⟩C . to the right:

Ŝ = (|1⟩ ⟨1|C ⊗
∑
n

|n+ 1⟩ ⟨n|P ) + (|0⟩ ⟨0|C ⊗
∑
n

|n− 1⟩ ⟨n|P ) (3.6)

With the entire wavefunction being described by a single array, momentum distributions
and winning probabilities can be computed via (2.15) and (2.18), (2.19) respectively.

Figure 3.1 below exhibits the probability distribution of an ideal quantum walk (left)
next to the distribution of a QKR walk (right) with the same coin M(90, 45, 0).

(a) Ideal Walk (b) QKR Walk

Figure 3.1: Momentum distribution of the ideal QW and the QKR walk after T = 50
steps with the coin-operator M(90, 45, 0). The walker in the QKR walk
was kicked with a kick strength k = 1.5 and was prepared in the ratchet
state 1√

2
(|n = 0⟩+ ei

π
2 |n = 1⟩ in momentum space.

The distributions differ significantly from each other, especially around n = 0 due to
the possibility of the non-ideal rotor to not only couple to the nearest-neighbours or to
not move at all. Therefore, it is very important to optimize the parameters of the QKR
walks before implementing Parrondo’s paradox.

Later on we observe walks with randomly generated disturbances (noise for example).
In those cases we compute an average probability P̄ over a given number of realizations
R:

P̄ (n, t) =
1

R

R∑
r=1

Pr(n, t) (3.7)
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3.2 Implementing the paradox

In this section the walks A and B as well as the sequence of walks showing the paradox-
ical behaviour are introduced.
Ref.[14] spared us a lot of work as the paper already proposes two coin operators
M̂A(αA = 137.2, βA = 29.4, γA = 52.1) and M̂B(αB = 149.6, βB = 67.4, γB = 132.5)
(matrices of the form 2.12) and the sequence ABBABB... that seem to display Par-
rondo’s paradox perfectly.
The key difference between our walks and the walks in [14] is that they assume an ideal
QW instead of the QKR walk we work with.
Therefore we cannot just adapt all parameters from [14] but need to create a perfect
foundation for our walks by optimizing the kick strength and initial state of the walker.

When done it is still unclear if the coin operators working perfectly in an ideal walk are
the optimum in our walks as well. In the end of this section we will check for better coin
operators in terms of the strength of the paradoxical behaviour and the experimental
viability.

(a) Walk A (b) Walk B

(c) Walk ABB

Figure 3.2: Probability distributions of the respective ideal walks (perfect nearest-
neighbour coupling (3.6)) after T = 50 steps. The walker was prepared
in a superposition in its internal degree of freedom, |0⟩ + i |1⟩, at position
|n = 0⟩.
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Figure 3.3: Winning probability Pr − Pl of the ideal walk A, B and ABB for T = 50
steps. The solid red line displays walk A, the dashed blue line displays
walk B and the orange dash-dot line displays walk ABB. The initial state
used is a superposition in the coin-space |0⟩+ i |1⟩ at position |n = 0⟩.

3.2.1 Finding the ideal initial state

As discussed in sect. 2.2 a walker in an initial ratchet state of the form (2.17) is requisite
to bias a walk. Using an initial state with only one momentum state will result in a fully
symmetric walk which makes it impossible to observe Parrondo’s paradox.
To find the ideal initial state we simulated walks for several different ratchet states for
T = 50 steps and a proposed kick strength k = 1.5 for walk A, walk B and the sequence
ABB using M̂A(137.2, 29.4, 52.1) and M̂B(149.6, 67.4, 132.5).

(a) Walk A (b) Walk B (c) Walk ABB

Figure 3.4: Winning probabilities Pr − Pl of the walks as a function of step number
for a total of T = 50 steps and a kick strength k = 1.5. In each of the
subfigures the blue line shows the non-ratchet initial momentum state:
|0⟩. The green line is the superposition of: |0⟩ + eiπ/2 |1⟩. The red line
is the superposition: e−iπ/2 |−1⟩ + |0⟩ + eiπ/2 |1⟩. The purple line is the
superposition: e−iπ/2 |−1⟩+ |0⟩+eiπ/2 |1⟩+eiπ |2⟩ and the brown line is the
superposition: e−iπ |−2⟩ + e−iπ/2 |−1⟩ + |0⟩ + eiπ/2 |1⟩ + eiπ |2⟩. The ideal
winning probability is displayed by the orange line.
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We compare the winning probabilities of each walk to the ideal walks using (3.6) in figure
3.4. Comparing the probability distributions is not conclusive here as the distribution of
the QKR walk shows major differences to the ideal case even for fitting ratchet states.

The simulations of the wavefunction with only one initial momentum state confirmed
our previous statement that a non-ratchet state always results in a draw (Pr − Pl = 0)
making it impossible to observe a paradoxical behaviour.
Furthermore the four-momentum and five-momentum initial states were not able to
recreate Parrondo’s paradox as walk A is not longer a losing-game (Pr−Pl > 0) in those
cases. The two-momentum ratchet is also not ideal as the winning probability in Walk
ABB trends to zero.
Only the three-momentum ratchet,

|Ψ3(t = 0)⟩ = 1√
6
(e−iπ/2 |n = −1⟩+ |n = 0⟩+ eiπ/2 |n = 1⟩)P ⊗ (|0⟩+ i |1⟩)C , (3.8)

results in walks remaining loosing/winning for the entirety of the steps making it the
optimal initial state.

This result may be surprising since we stated in sect. 2.1 that a quantum ratchet is better
localized in position space and less affected by dispersion with an increasing number of
momentum-states. It is important to keep in mind that a consequently stronger ratchet
effect does not necessarily result in better outcomes in our very specific case.

3.2.2 Optimizing the kick strength

As we stated in sect.2.2 an appropriate kick strength k is essential when trying to model
an ideal quantum walk. When the kicks on the walker are too strong not only the
adjacent but also positions further away are coupled resulting in major differences in
the probability distribution. There is also the possibility of the walker to remain at
the initial position when kicked (n → n) resulting in the peak around n = 0 that is
characteristic for the momenta distribution of QKR walks. That lazy part of the walk
is observable for every kick strength but has a greater impact on the distribution when
the kicks are too weak (see part C of the appendix).

A value of k = 1.5 was proposed and used as a first orientation as a fitting kick strength.
Several different kick strengths in the interval k ∈ [0, 5] were tested for T = 50 steps
with the just obtained ideal initial state (3.8).
All three walks A, B and ABB (using M̂A(137.2, 29.4, 52.1) and M̂B(149.6, 67.4, 132.5))
were again simulated for T = 50 steps and compared to the ideal walks with respect to
the winning probability Pr − Pl.
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In figure 3.5 a selection of outcomes is shown using different kick strengths. A more
detailed analysis can be found in part C of the appendix, showing both, the probability
distributions as well as the winning probabilities, for a bigger extent.

(a) Walk A (b) Walk B (c) Walk ABB

Figure 3.5: Winning probability Pr−Pl of all three walks as a function of step number
for a total of T = 50 steps. The walker was prepared in the initial state
according to (3.8) in every walk. Walks with a kick strength of k = 1.2
(green), k = 1.5 (red), k = 1.56 (purple) and k = 1.8 (brown) are shown.
The orange lines are the ideal reference walks.

It becomes clear why only kick strengths for a small interval of k ∈ [1.2, 1.8] are required
as we can already see that kicks with k = 1.2 are too weak resulting in a winning-walk
A and kicks with k = 1.8 seem too strong causing Pr − Pl in Walk ABB trending to
zero.
The proposed value k = 1.5 turned out to be best fitting with only small deviations to
the ideal walks. However after testing more values around k = 1.5, a kick strength of
k = 1.56 performed best in comparison to the ideal walks.

3.2.3 Finding the ideal coin operators

In this section we will check if the coin operators proposed in [14] are indeed ideal for
our QKR walk or if we can find a pair MA(αA, βA, γA) and MB(αB, βB, γB) resulting in
an even more paradoxical behaviour

A difficulty in the experimental realization of quantum walks that we need to address
first is the configuration of the coin operator. Although the parameter β can be ad-
justed precisely, α and γ have a much bigger inaccuracy. Being able to neglect one of
those parameters in both MA and MB without changing the outcomes drastically would
simplify the experimental realization a lot.

[26] and [29] introduce a theorem that allows us to set either α or γ in a coin operator
to zero when using a specific initial state and leaving the sum α + γ constant.
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Theorem 1: If the initial state |Ψ(t = 0)⟩ = 1√
2
(|n = 0⟩)P ⊗ (|0⟩+ i |1⟩)C, after t steps

quantum walk: Pr − Pl = X(β, t)sin(α + γ) where X(β, t) only depends on β and t.

Unfortunately the conditional initial state of the theorem is not met in our case as we
require to prepare the walker in a ratchet state (see sect. 2.2). Additionally [26] only
discusses ideal QWs. It is unclear a priori, if the theorem still holds for a QKR walk.
To check the validity of the theorem in our case we first tested it for the ideal QW but
changed the initial momentum state |n0⟩ = |0⟩ to a ratchet state |0⟩+ i |1⟩.
If the Theorem still holds for different initial states, the probability distribution of for
example walk A is supposed to be identical, when changing M̂A(α, β, γ) to M̂A(0, β, γ+
α):

(a) M̂A(137.2, 29.4, 52.1) (b) M̂A(0, 29.4, 189.3)

Figure 3.6: Probability distribution of the ideal walk A after T = 50 when using a
quantum ratchet as initial momentum state. The two subfigures show the
distribution before and after applying the theorem.

Figure 3.6 shows that the probability distributions are obviously identical which means
that the initial momentum state does in fact not matter for the validity of the theorem.
Whether the internal degree of freedom has an influence is still unclear but does not
matter at all to us as we have the same superposition in the coin space as the theorem
specifies.

In a next step the probability distributions for a QKR walk with kick strength k = 1.56
are compared when using the initial state proposed by the theorem.

Pr − Pl is of course identical (= 0) in the two cases since we have a fully symmetrical
simulation as the results of not using a quantum ratchet initially. Yet we can easily see
that the two probability distributions are no longer identical when changing the coin
operator according to Theorem 1 which means it is generally not valid in QKR walks.

Whether the winning probability Pr − Pl will change drastically when setting one of
the coin parameters to zero or if the theorem is still approximately true is still unclear.
Since our QKR walks are designed to be as close to an ideal walk as possible it seems
possible that neglecting one of the coin parameters will end up in qualitatively similar
outcomes.
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(a) M̂A(137.2, 29.4, 52.1) (b) M̂A(0, 29.4, 189.3)

Figure 3.7: Probability distribution of the QKR walk A after T = 50 with n0 = 0 and
kick strength k = 1.56. The two subfigures show the distribution before
and after applying the theorem.

We therefore analyzed QKR walks for three different cases to check if we can still neglect
one of the coin parameters without losing the paradoxical nature of our three walks.
According to the theorem α and γ were only changed by the same value ϵ such that the
sum remains constant:

α′
A = αA − ϵA γ′

A = γA + ϵA
α′
B = αB − ϵB γ′

B = γB + ϵB
(3.9)

resulting in new coin operators M̂A(137.2−ϵA, 29.4, 52.1+ϵA) and M̂B(149.6−ϵB, 67.4,
132.5 + ϵB).
The first case are the standard walks used as a reference,

ϵA = ϵB = 0 → M̂A(137.2, 29.4, 52.1)

M̂B(149.6, 67.4, 132.5)
(3.10)

In the second case we change αA and αB by the same amount, such that only α′
A = 0:

ϵA = ϵB = 137.2 → M̂A(0, 29.4, 189.3)

M̂B(12.4, 67.4, 269.7)
(3.11)

Only in the third case we choose different values of ϵA and ϵB such that α′
A = α′

B = 0:

ϵA = 137.2
ϵB = 149.6

→ MA(0, 29.4, 189.3)

M̂B(0, 67.4, 282.1)
(3.12)

In the third case, displayed in (c) of figure 3.8 , walk ABB is no longer a winning-game
in each individual step as its winning probability varies a lot around Pr − Pl = 0.
We therefore thought of a new observable, the integrated, time-averaged winning probal-
ity,

Pr − Pl(t) =
1

t

∫ t

0

Pr − Pl dt
′ (3.13)
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for a given step number t that turned out to be a much more robust observable.
By taking an isolated look at walk A and walk B we can observe that the outcomes
are not just qualitatively the same in all three cases but almost identical. The theorem
seems to apply at least approximately in these cases of the QKR walk.
However the outcome of walk ABB does change qualitatively when having two different
ϵA and ϵB in the respective coin operators.
Walk ABB in that third case remains a winning-game at all times when observing
the time-averaged winning probability (3.14). This means that the third case which is
supposedly easier to realise experimentally still shows the paradoxical behaviour, yet to
a lesser extent.

(a) ϵA = ϵB = 0 (b) ϵA = ϵB = 137.2 (c) ϵA = 137.2, ϵB = 149.6

Figure 3.8: Plots of the winning probability Pr − Pl for every walk as a function of
time with k = 1.56 and T = 50 steps. In all three subfigures the winning
probabilty of walk A is represented by the solid red line, walk B by the
dashed blue line and walk ABB by the dash-dot orange line. Only in (c)
there is an additional observable, the time-averaged winning probability of
walk ABB PR − PL(t) (brown dash-dotted graph). (a) displays the situ-
ation with M̂A(137.2, 29.4, 52.1) and M̂B(149.6, 67.4, 132.5); (b) shows the
outcomes with M̂A(0, 29.4, 189.3) and M̂B(12.4, 67.4, 269.7); (c) shows the
outcomes with M̂A(0, 29.4, 189.3) and M̂B(0, 67.4, 282.1). All subfigures
used the initial ratchet state 3.8.

At last we still need to check if the coins presented in [14] are already ideal. Here the
three cases in 3.7 were condensed to only two cases since the outcomes of the first two
are almost identical.

To check if M̂A(137.2, 29.4, 52.1) and M̂B(149.6, 67.4, 132.5) result in the best possible
outcome all six coin parameters were replaced by evenly spaced arrays: 0, 2π

50
, 2π
49
, ..., 2π

1
.

All possible combinations were then tested in walk A and B for only T = 20 steps to
reduce the overall computation time. The stepsize of 2π

50
(mod 2π) = 7.2(mod 360), which

is of course imprecise, was limited by the computation speed as it already resulted in
513 simulations for each of walk A and B.

Every pair of parameters that had a better outcome than figure 3.7 (a) in both walk A
and B was then tested for walk ABB. A better outcome with respect to walk A and B

20



means that the winning probability of the tested coin operator is lower (higher for walk
ABB) in every single step than the winning probability when using the proposed coin
operator.
Overall many coin operators were able to achieve better results in walk A and B indi-
vidually but failed in reproducing Parrondo’s paradox. None of the tested combinations
had a better outcome than the coin operators in [14], resulting in M̂A(137.2, 29.4, 52.1)
and M̂B(149.6, 67.4, 132.5) remaining ideal for that specific case.

The case with M̂A(0, 29.4, 189.3) and M̂B(0, 67.4, 282.1) was studied analogous to the
previous case with the key difference that two of the overall six parameters can be
neglected. This allows us to reduce the stepsize of the remaining arrays and increase the
extent of tested combinations drastically:

αi = 0

βi = 0,
2π

500
,
2π

499
, ...,

2π

1

γi = 0,
2π

500
,
2π

499
, ...,

2π

1

(3.14)

with i ∈ {A,B}.

Surprisingly not a single combination of the 5012 tested combinations resulted in a better
outcome in walk B. In contrast to that almost one fifth of the tested combinations in
walk A resulted in a better outcome. The selection of coin operators M̂A together with
the ideal coin operator M̂B were again tested for walk ABB.
After all we were not able to find a single set of coin parameters that resulted in walk ABB
being a winning-game in every individual step. However some of the tested walks resulted
in a bigger integrated winning probability than M̂A(0, 29.4, 189.3) and M̂B(0, 67.4, 282.1).
Figure 3.9 shows a 3D plot of the integrated winning probability against the selected
combinations of αA and βA that had better outcomes compared to M̂A(0, 29.4, 189.3).
Interestingly there are four identical looking packages of coin operators M̂A with good
outcomes.
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Figure 3.9: Integrated winning probability of Walk ABB as a function of βA and γA.
αA was constantly set to zero, M̂B(0, 67.4, 282.1) remained constant as well.
The walks were carried out with kick strength k = 1.56 for T = 20 steps.

We were able to determine a maximum in figure 3.9 at βA = 184.32 and γA = 246.96.
The two coin operators resulting in the best possible outcome are therefore
M̂A(0, 184.32, 246.96) and M̂B(0, 67.4, 282.1) which we will use in the following instead
of the coins proposed in [14].

(a) M̂A(0, 29.4, 189.3) and
M̂B(0, 67.4, 282.1)

(b) M̂A(0, 184.32, 246.96) and
M̂B(0, 67.4, 282.1)

Figure 3.10: Winning probability Pr − Pl as a function of step number for a kick
strength k = 1.56 and T = 50 steps. Walk A is represented by the
solid red line, walk B by the dashed blue line, walk ABB by the dash-
dot orange line and the time-averaged winning probability of walk ABB
Pr − Pl(t) by the brown dash-dot line. Both subfigures used the initial
ratchet state (3.8).
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4 Results

In this chapter we analyze different cases of walks based on the preliminary work from
previous chapters and discuss the results with respect to the experimental realization of
the Oklahoma group [12, 13].
We start off by checking the robustness to noise on the coin operators and proceed by
analyzing non-resonant walks. By combining these two effects we create a realistic exper-
imental environment and are able to observe if an experimental realization of Parrondo’s
paradox seems possible.

4.1 Noise

As mentioned before one of the biggest difficulties in realizing Parrondo’s paradox in
an experiment is the inaccuracy of the coin operator. In this section we analyze the
robustness of the coins M̂A(αA, βA, γA) and M̂B(αB, βB, γB) to noise on its parameters.

In sect. 3.2 we optimized the coin operators with respect to both its outcome and
the experimental realization. Now we apply noise to the coin operators and observe
the two cases M̂A(137.2, 29.4, 52.1), M̂B(149.6, 67.4, 132.5) and M̂A(0, 184.32, 246.96),
M̂B(0, 67.4, 282.1) with respect to their robustness to different noise strengths.
Since the parameter β can be adjusted very precisely, we only focus on the two remaining
parameters here. If one of the parameters is set to zero, there is of course no noise.
The noise can be described as a time-dependent dynamic parameter that is randomly
drawn from an interval δ(t) ∈ [δmin, δmax] in each step of the respective walk, such that:

α′
i = αi + δi1(t)

γ′
i = γi + δi2(t)

(4.1)

for M̂A(137.2, 29.4, 52.1) and M̂B(149.6, 67.4, 132.5) and :

γ′
i = γi + δi3(t) (4.2)

with i ∈ A,B. It is important to mention that different noise-values are drawn for α
and γ, hence the indices.

The figures in 4.1 exhibit the effect of different noise strengths on the winning probability
of our walks. All walks are carried out with a constant kick strength k = 1.56 starting
with the three-momentum ratchet state (3.8). The measured winning probability for a
total of T = 50 steps was averaged over R = 50 realisations according to (3.7).
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(a) δ(t) ∈ [− π
20 ,+

π
20 ]

(b) δ(t) ∈ [− π
10 ,+

π
10 ]

(c) δ(t) ∈ [−π
5 ,+

π
5 ]

Figure 4.1: Winning probability Pr − Pl as a function of step number for the re-
spective noise-strengths. The left subfigures show the results when using
M̂A(137.2, 29.4, 52.1) and M̂B(149.6, 67.4, 132.5); the right subfigures show
the results for M̂A(0, 184.32, 246.96) and M̂B(0, 67.4, 282.1). In each of the
simulations walk A (solid red line), walk B (blue dashed line) and walk
ABB (orange and brown dash-dot line) were observed. For walk ABB we
computed both, the individual winning probability (orange) as well as the
time-averaged winning probability Pr − Pl (brown).
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Apparently both cases are resistant to the smallest noise used here δ(t) ∈ [− π
20
,+ π

20
].

The most interesting simulation is seen in (b) with π
10

. As expected walk ABB has
better outcomes on the left; but in both cases, walk ABB remains a winning-game with
respect to the time-averaged probability. Surprisingly walk A with M̂A(137.2, 29.4, 52.1)
is not resistant to the noise in contrast to the right side M̂A(0, 184.32, 246.96) where the
winning probability is almost unaffected.
This proves our initial statement that neglecting one of the coin parameters does in fact
simplify the experimental realization.
Subfigure (c) emphasizes this as even walk ABB, which was generally speaking more
stable when the coin parameters are untouched, oscillates around zero. With respect to
the time averaged winning probability of walk ABB, all of the walks remain resistant to
the noise π

5
(mod 2π) ≡ 36 (mod 360) on the right side.

Therefore figure 4.1 only gives us an orientation of how stable the walks are and do not
provide a maximum noise strength the walk can manage without loosing its paradoxical
behaviour. To find a specific threshold value for the noise we need a more precise
investigation.
Since walks with M̂A(0, 184.32, 246.96) and M̂B(0, 67.4, 282.1) turned out to be most
stable only those cases were simulated in the following.
To find a threshold value we tested overall 100 different noise strengths between δ(t) ∈
[−0.2π,+0.2π] and δ(t) ∈ [−π/20,+π/20] for R = 50 realisations and observed the
integrated winning probability:

Pr − Pl(t = 50) =
1

50

∫ 50

0

Pr − Pl(t) dt (4.3)
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Figure 4.2: Integrated winning probability after T = 50 steps averaged over R = 50
realisations as a function of noise strength. The noise strength is given as
the interval size, π/6 for example corresponds to δ(t) ∈ [−π/12,+π/12].

It turns out that the noise-threshold is exactly at δ(t) ∈ [−π/3,+π/3]. Although there
are some larger noise intervals with a positive integrated probability we chose to set our
threshold value at the last noise-value before the winning probability turns negative.

Figure 4.3: Winning probability of walk A (red), walk B (blue) and walk ABB (orange)
as a function of step number for T = 50 steps and k = 1.56 with noise equal
to the threshold value δ(t) ∈ [−π/3,+π/3]. The brown dash-dot line is the
time-averaged winning probability of walk ABB that trends to zero after
around t = 10 steps but remains positive over all.
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With the winning probability in walk ABB oscillating around zero after only around
t = 10 steps it is questionable whether an observation under noise at the level of the
threshold value is actually useful.

How the three walks behave when simulating a non-resonant walk was nonetheless tested
for the threshold noise and is covered in the following section.

4.2 Non-resonant walks

So far we have always assumed our walks to be resonant, meaning that the momentum
operator p̂ in the Floquet operator (2.4) is fully described by an integer part n̂ since the
quasimomentum β is vanishing.
In reality we will never achieve the fully resonant case, the momentum will always follow
a fairly small normal distribution. The distribution is of the quasimomentum β, so that
we have the free time evolution described by (see (2.7)):

F̂ = e−
i
2
τ(n̂+2n̂β)) (4.4)

In this section we analyze our walks for the non-resonant case in addition to the noise
on the coin operators β-distributions of different widths.
In contrast to the noise-simulations, averaging over only R = 50 realisations will not
be sufficient to display the gaussian nature of the β-distribution. Figure 4.4 exhibits a
β-distribution for R = 200 realisations, which turned out to be enough to have constant
outcomes in our computations without taking too much time.

Figure 4.4: Beta-distribution for R = 200 realisations with a standard deviation σ =
0.02 around µ = 0.
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Figure 4.3 exhibits walks with M̂A(0, 184.32, 246.96) and M̂B(0, 67.4, 282.1) with kick
strength k = 1.56 and the three-momentum ratchet state (3.8) initially.
The quasimomentum-distributions for different standard deviations σ were included in
the Floquet-operator in addition to the coin noise δ(t) ∈ [−π

3
,+π

3
] as this was determined

as the threshold in 4.1.
All walks were carried out for T = 50 steps and averaged over said R = 200 realisations.
To avoid a double average we chose to generate only one set of δ(t) which is used in
each of the realisations. In contrast to previous walks we computed the time-averaged
winning probability Pr − Pl not only for walk ABB but in each of the three walks.
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(a) δ(t) ∈ [−π
3 ,+

π
3 ], σ = 0.005

(b) δ(t) ∈ [−π
3 ,+

π
3 ], σ = 0.01

(c) δ(t) ∈ [−π
3 ,+

π
3 ], σ = 0.02

Figure 4.5: Individual winning probability Pr − Pl (left) and time-averaged winning
probability Pr − Pl (right) as a function of step number in the non-resonant
case with noise. Walk A is displayed by the solid red line, walk B by the
dashed blue line and walk ABB by the orange dash-dot line. The width of
the quasimomentum-distribution is given by σ.

We can observe Parrondo’s paradox even in the σ = 0.02 case in the time-averaged
winning probability. Surprisingly walk A seems to be the most problematic walk as
Pr −Pl oscillates a lot around zero in subfigure (c). In figure 3.8 we first introduced the
time-averaged probabilities due to walk ABB not being a winning game in each individual
step when setting one of the coin parameters to zero. Despite using M̂A(0, 184.32, 246.96)
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and M̂B(0, 67.4, 282.1) and having noise as well as a quasimomentum, walk ABB remains
a winning-game in every single case. This is especially surprising when comparing to
the results from figure 3.10 and figure 4.3 as those outcomes were generally speaking
significantly worse despite assuming perfect resonance.
It seems like the non-resonant effects improved the outcome of walk ABB, but not of
walk A and walk B. One might think that the surprisingly good outcomes are due to
walk A oscillating around Pr − Pl = 0. The fact that we had this situation in figure 4.1
(b) without the exceptionally good outcomes in walk ABB disproves this consideration.
Observing the probability distribution of walk ABB explains this strange behaviour.

Figure 4.6 exhibits the averaged probability distribution after T = 50 steps for R = 200
realisations.

(a) Without Noise (b) δ(t) ∈ [−π/3,+π/3]

Figure 4.6: Momentum distribution after T = 50 steps for the resonant case (orange)
and the non-resonant cases with σ = 0.005 (blue), σ = 0.01 (red) and
σ = 0.02 (purple) when averaging over R = 200 values of β. (a) shows
the distributions when not including Noise and (b) when including the
threshold-noise. The inserted subfigures are closeups around n = 0 of the
respective distributions.

It appears that only the resonant case has an outstretched distribution along with the
characteristic peaks on the left and right of the basis. By adding the quasimomentum
there is no longer a ballistic motion of the walker reducing the distribution to the peak
around the initial positions. We can clearly see that the peak is becoming sharper
with an increase in σ. The noise has a contrary effect by stretching the momentum
distribution to the left and right. We can therefore expect that the noise worsens the
outcomes, however not to such an extent that the asymmetry of the peak is lost (see
figure 4.5).
The qualitatively good outcomes of walk ABB are therefore a result of the asymmetry
to the right in the peak which can be seen in the close-up of (a).
We also considered an insufficient amount of realisations as a possible error source and
therefore implemented the walks shown in figure 4.6 again for R = 400, 800 and 1600
realisations. Figure 4.7 shows the momentum distribution when averaging over R = 800
values of β again with and without including noise.
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(a) Without Noise (b) δ(t) ∈ [−π/3,+π/3]

Figure 4.7: Momentum distribution after T = 50 steps for the resonant case and the
non-resonant cases with σ = 0.005, σ = 0.01 and σ = 0.02 when averaging
over R = 800 values of β (color coding analogous to figure 4.6). (a) shows
the distributions when not including Noise and (b) when including the
threshold-noise.

The distributions shown in figure 4.7 (a) are almost identical to the previous ones shown
in figure 4.6 (a) where we averaged over only R = 200 values of β. When comparing the
two cases that include noise we can see some minor differences between figures 4.6 (b)
and 4.7 (b). If these differences are subject to statistical fluctuations or a consequence
of the difference in realisations, is unclear. With respect to only the quasimomentum,
however, we can safely conclude that R = 200 realisations are indeed sufficient.

To visualize the motion of the walker even more when having a quasimomentum in
contrast to the resonant case figure 4.8 shows a three-dimensional plot of the probability
distribution of walk ABB in each step for T = 50 (without noise).
We can observe that the quasimomentum restricts the walker massively. While the
distribution of the resonant case spreads approximately linearly to the left and right of
the momentum space, there is almost no motion observable in the non-resonant case.
Especially after around 10 steps the distribution remains nearly unchanged.
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(a) Resonant walk (σ = 0)

(b) Non-resonant walk (σ = 0.01)

Figure 4.8: Three-dimensional plot of the probability distribution in each step for the
resonant case (a) and the non-resonant case (b), averaged over R = 200
realisations.

After covering the effect of both noise and quasimomentum on our walks we want to
test whether Parrondo’s paradox is still observable for higher step numbers.
We therefore simulated the case that turned out to be the most relevant:
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kick strength k = 1.56

initial state |Ψ3(t = 0)⟩ = 1√
6
(e−iπ/2 |n = −1⟩+ |n = 0⟩+

eiπ/2 |n = 1⟩)P ⊗ (|0⟩+ i |1⟩)C
coin operator M̂A(0, 184.32, 246.96), M̂B(0, 67.4, 282.1)

noise δ(t) ∈ [− π
10
,+ π

10
]

quasi-momentum σ = 0.01

Table 4.1: Parameters for an experimentally feasible realisation of Parrondo’s paradox

for T = 500 steps and R = 200 realisations.

(a) Pl − Pr (b) Pr − Pl

Figure 4.9: Winning probability of walk A (red), walk B (blue) and walk ABB (or-
ange) for T = 500 steps averaged over R = 200 realisations with all walk
parameters according to tab. 4.1.

We can see that Pr−Pl of walk A and ABB start to oscillate around zero for larger step
numbers. Nonetheless in time average Pr − Pl a clear signal, and even more important,
the paradoxical behaviour in all three walks is still observable after T = 500 steps.
Although it is quite surprising that walk B which was the most stable walk out of the
three trends to zero first.
We can expect the other walks will also trend to zero, it is however very unlikely that
an experimental setup manages to produce a walk with T > 500 steps.
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5 Conclusion

5.1 Summary

This thesis presents the idea of Parrondo’s paradox and investigates how an experimental
setup using one-dimensional discrete time quantum walks can realize its content.

With the help of [14] we were actually able to find an optimized setting for the reproduc-
tion of the paradoxical behaviour with quantum kicked rotor walks. First we analyzed
different ratchet states in the momentum space to find an ideal initial state of our walker.
We continued by fixing the kick strength and by comparing the outcomes of our walks
to an idealized quantum walk. Here a kick strength of k = 1.56 resulted in the ’best’
possible quantum walks.

Referring to a theorem [29], which turned out to be approximately valid for our purposes,
we were able to neglect one parameter in both of the coin operators M̂A(α, β, γ) and
M̂B(α, β, γ) without changing the outcomes drastically. In further investigations of the
coin operators we found out that [14] already proposed an ideal coin operator in walk B.
In contrast to that we were able to find a coin operator that produced better outcomes
in both walk A and walk ABB.

With the preliminary work done we continued to analyze disturbances occurring in the
experimental setup. Different noise-strengths on both the coin operators from [14] and
the ones we numerically found were applied. Our initial thoughts that neglecting one of
the coin parameters simplifies the experiment turned out to be true as our coin operators
were in fact more resistant to the noise. The paradoxical behaviour of the walks were
still observable for a threshold-noise of δ(t) ∈ [−π

3
,+π

3
]. Therefore an experimental setup

should be able to adjust the coin operator with an accuracy of at least δ(t) ∈ [−π
3
,+π

3
].

The non-resonant walks analyzed in the end were surprisingly little affected by the
quasimomentum distributions. Some of the walks had even better outcomes than before
when assuming perfect resonance. It is safe to say that an experimental realization will
probably not fail due to antiresonance effects.

Finally we completed our description of an experimental recreation of Parrondo’s para-
dox by simulating our quantum walks in a somewhat realistic environment. Although
the winning probabilities trend to zero there is still a signal, and especially a paradoxical
behaviour, observable after T = 500 steps.
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5.2 Outlook

To finish this thesis we will briefly explain some more aspects we did not have the time
to investigate but might be interesting in relation to our research.

Our theoretical description of Parrondo’s paradox was according to most referenced
works restricted to only two coins A and B. Some investigations on this topic expand
our discussed case by considering a three sided coin [30] or introducing a second coin
[31]. A description of the paradoxical sequence produced by three different losing-walks
A, B and C is hard to find, especially when considering imperfect quantum kicked rotor
walks instead of the commonly used ideal quantum walks.
Finding such a third coin M̂C is presumably very challenging and will take a lot of
computing time when the sequence of the three walks is yet to be found.

Another aspect of our walks we did not have the time to investigate in depth is the so-
called ’light shift’. In the full derivation of the effective Hamiltonian which was skipped
in this thesis, one would end up with a cos2 dependence. With the trigonometrical
relation cos2(α) = 1/2(cos(2α) + 1) we end up with the known Hamiltonian (2.1). The
constant part of the relation leads to an offset which is called ’light shift’. This energy
shift leads to a dynamical phase whenever a kick is applied to the qubit (two-level
system). In the QKR model we can neglect this by shifting the energy by that constant
offset without changing the dynamics. This is allowed since we effectively have only a
one-level system. In the QKR walk, where we work with two internal states, such a
shift will change the dynamics of the system. Introducing a relative phase α′ in the
internal states at each step can cancel the effect of the non-vanishing ’light shift’. For a
comprehensive discussion of the ’light shift’ see [32].
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A Fast Fourier transformation

The Fast fourier transform we need to perform in each step between the free time
evolution and the action of the kick was taken from the python library scipy.
As shown in part C of the Appendix the FFT routine is quite intransparent for which
reason a more comprehensive description of the FFT is presented here.

The FFT is a discrete Fourier transform which means it transforms a finite sequence
of evenly spaced samples. The key to understand the FFT is the Danielson-Lanczos
Lemma [33] which reads that a discrete Fourier Transform of length N can be rewritten
as the sum of two discrete Fourier transforms each of length N/2. One of the two is
formed from the even-numbered points and the other one from the odd-numbered points.
The proof to the Lemma is:

Fk =
N−1∑
j=0

e2πijk/N fj

=

N/2−1∑
j=0

e2πi(2j)k/N f2j +

N/2−1∑
j=0

e2πi(2j+1)k/N f2j+1

=

N/2−1∑
j=0

e2πi(2j)k/N f2j +W k

N/2−1∑
j=0

e2πijk/N f2j+1

= F e
k +W k + F o

k

where W k = e2πi/N , F e
k is the kth even component of the original fj of the FT and

F o
k is the kth odd component. The Danielson Lanczos Lemma can be used recursively,

reducing the problem of computing to N/4 of the original data. This explains why the
FFT is restricted to base lengths of the size X2. When we continue applying the lemma
we will end up with overall N transforms of length one:

F eoeeoo...oee
k = fn for some n ∈ N

This means that we just need to compute a single point transform for every even and odd
pattern (overall log2(N) patterns). In other words only O(NlogN) operations instead
of the usual O(N2) are done in the FFT, hence the name.

To figure out which n corresponds to which pattern we need to rename e = 0 and o = 1
which results in a bit-reversed pattern. The FFT routine of the scipy library already
includes a bit-reversal in both the transformation into and from momentum space that
arranges the sequence in the correct order.
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B QKR walks

B.1 Resonance condition

In sect. 2.1 we mentioned Quantum resonances and stated that 2.6 is fulfilled by τ = 2πl
and β = 1

2
+ i

l
for l ∈ N and i ∈ {0, ..., l−1}; now we will derive that resonance condition.

By first choosing τ = 2πl (l ∈ N) 2.6 becomes:

e−
i
2
τ(n̂2+2n̂β) = e−iπl(n̂2+2n̂β) = I

The last equivalence is true under the condition:

(n̂2 + 2n̂β)l = 2z

for any z ∈ Z. Next we distinct between the two cases of l being either even or odd.
If l is odd we can reduce the condition to:

2n̂βl = 2z − n̂2l ⇔ n̂βl = z′ ⇒ β =
j

l

where z′ = z − n2l
2

∈ Z and j ∈ 0, ..., l − 1 since beta ∈ [0, 1). When l is odd we will end
up with similar expressions for β without changing any definitions. However we need to
distinct between the eigenvalues n being even or odd:

2nβl = 2z′ ⇒ β =


j
2l

for n even

2j+1
2l

for n odd

We can combine the two expressions by introducing i = j − l
2

for l even and i = j − l−1
2

for l odd. Finally we receive the expression we were looking for in 2.6:

β =
1

2
+

i

l
i ∈ 0, ..., l − 1

B.2 Theorem

In sect. 3.2 we introduced a Theorem that simplified our simulations of Parrondo’s
paradox by a lot. So far we did not provide a mathematical proof of its general validity.
In the following we will consider the initial state that is proposed by the theorem |Psi0⟩ =
1/
√
2(|n = 0⟩) ⊗ (|0⟩ + i |1⟩) and show that the average position after t steps is in fact

⟨x|x⟩ = G(β, t) sin(α + γ).
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We will start of with the corollary that the symmetry properties of distributions between
QWs with initial states |Psi0⟩ = |n = 0⟩⊗|0⟩ and |Psi0⟩ = |n = 0⟩⊗|1⟩ for an arbitrary
t are:

PR
|0⟩(β, x, t) = PL

|1⟩(β,−x, t)

PL
|0⟩(β, x, t) = PR

|1⟩(β,−x, t)

where L and R denote the distributions left and right of n = 0. [29] delivers a compre-
hensive mathematical proof of this corollary. However its validity can be easily demon-
strated graphically by computing the probability distribution of an ideal quantum walk
with the respective initial states: With the corollary we can know that:

|Ψ0⟩ = |n = 0⟩ ⊗ |0⟩ |Ψ0⟩ = |n = 0⟩ ⊗ |1⟩

{∑t
x=−t x[P

R
|0⟩(β, x, t) + PL

|1⟩(β, x, t)] = 0∑t
x=−t x[P

L
|0⟩(β, x, t) + PR

|1⟩(β, x, t)] = 0

Furthermore we can calculate the probability at position x after t steps when the initial
state is normalized, i.e. |Ψ0⟩ = (|n = 0⟩)⊗ (m |0⟩+ n |1⟩) with |m|2 + |n|2 = 1:{

PL(x) = |m|2PL
|0⟩ + |n|2PL

|1⟩ − (e−i(α+γ)m∗n+ ei(α+γ)mn∗)GL(β, x, t)

PR(x) = |m|2PR
|0⟩ + |n|2PR

|1⟩ − (e−i(α+γ)m∗n+ ei(α+γ)mn∗)GR(β, x, t)

where Gi(β, x, t) (i = L,R) is a function independent of α and γ. Again a more com-
prehensive mathematical explanation can be found in [29].
Combining the expressions we have we end up with the average position after t steps:

⟨x|x⟩ =
t∑

x=−t

x(PL(α, β, γ, x, t) + PR(α, β, γ, x, t))

= sin(α + γ)G(β, t)

where G(β, t) = −
∑t

x=−t x[G
L(β, x, t) +GR(β, x, t)] only depends on β, x and t.
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C Figures of the kick strength analysis

The figures below shows the momentum distribution after T = 50 steps (left) and the
winning probability as a function of step number (right) of walk ABB for the respective
kick strengths k of the QKR walks.
We chose walk ABB exemplary; walk A and B exhibits the same ballistic expansion with
increasing kick-strength. The winning probabilities however do not behave the same as
in walk ABB. The initial statement in sect. 3.2 that k = 1.56 has the best outcomes
is not contradictory to the figures below as the winning probabilities in the individual
walks are less stable for high kick strengths.

k = 0.5

k = 1.0
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k = 1.5

k = 2.0

k = 2.5
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k = 3.0

k = 3.5

k = 4.0
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k = 4.5

k = 5.0

k = 5.5
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D Example code

The following Python-code computes the momentum distribution as well as the winning
probability exemplary for walk A in the non-resonant case. By changing respective
parameters this code was also able to simulate other situations, e.g. the noise-analysis
or QKR walks without any disturbances.
Executing the code will give us the distribution for T = 50 steps with kick strength
k = 1.56 averaged over R = 200 realisations. Noise, coin operators and quasi-momentum
are according to tab. 4.1. Pr − Pl and Pr − Pl are named ’P_winA’ and ’P_winA1’
respectively; the momentum after t steps is ’meanprob’.

1 import math
2 import pylab
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from scipy.fft import fft , ifft , fftshift
6 import pandas as pd
7 import csv
8 import scipy
9

10 #Parameters and Operators
11

12 #Quantum Walk
13

14 R = 200 #Realisations
15 T = 50 #number of steps
16 P = 2**8 #base length
17 k1 = 1.56 #kickstrength left
18 k2 = -1.56 #kickstrength right
19

20 tau = 4*np.pi
21 p = np.arange(-P/2,P/2,1) #momentum space
22 theta = np.arange(0, 2*np.pi, (2*np.pi)/P) #angular position space
23

24 Psi = np.zeros(T, dtype = complex)
25

26 coin0 = np.array ([1, 0]) #|0>
27 coin1 = np.array ([0, 1]) #|1>
28

29 #kick operator
30 K_hat1 = np.exp(-1j*k1*np.cos(theta))
31 K_hat2 = np.exp(-1j*k2*np.cos(theta))
32

33 #Walk A
34

35 #Position of the walker , i.e. initial state:
36

37 prob = np.zeros([P,T,R])
38 prob1 = np.zeros ([P,T])
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39 meanprob = np.zeros ([P,T])
40

41 #winning probability
42 P_l = np.zeros(T)
43 P_r = np.zeros(T)
44 P_win = np.zeros(T)
45

46 deltaA2 = np.zeros(T)
47

48 for i in range(T):
49 deltaA2[i] = np.random.uniform(-(np.pi/3), (np.pi/3)) #noise
50

51

52 for r in range(R):
53 #initial ratchet state
54 posn0 = np.zeros ([P,2], dtype = complex)
55 posn0[P//2 -1] = -1j*( coin0+1j*coin1)*(1/np.sqrt (6))
56 posn0[P//2] = (coin0+1j*coin1)*(1/np.sqrt (6))
57 posn0[P//2+1] = 1j*( coin0+1j*coin1)*(1/np.sqrt (6))
58

59 beta = np.random.normal(loc = 0.0, scale = 0.02) #quasimomentum
60 F_hat = np.exp(-0.5j*tau*(p+beta)**2) #free time evolution
61

62

63 #applying the steps
64 for i in range(T):
65

66 #set coefficients and apply noise
67 alphaA = 0*np.pi/180
68 betaA = 184.32* np.pi/180
69 gammaA = 246.96 *np.pi/180+ deltaA2[i]
70

71 #coinoperator A
72 A00 = np.exp(1j*( alphaA))*np.cos(betaA) * np.outer(coin0 , coin0

)
73 A01 = -np.exp(-1j*( gammaA))*np.sin(betaA) * np.outer(coin0 ,

coin1)
74 A10 = np.exp(1j*( gammaA))*np.sin(betaA) * np.outer(coin1 , coin0

)
75 A11 = np.exp(-1j*( alphaA))*np.cos(betaA) * np.outer(coin1 ,

coin1)
76

77 A_hat = A00 + A01 + A10 + A11
78

79 #flipping the coin
80 for j in range(P):
81 posn0[j] = A_hat.dot(posn0[j])
82

83 #applying kick
84 posn0 [:,0] = F_hat * posn0 [:,0]
85 posn0 [:,1] = F_hat * posn0 [:,1]
86 posn0 [:,0] = ifft(posn0 [:,0])

45



87 posn0 [:,1] = ifft(posn0 [:,1])
88 posn0 [:,0] = K_hat1* posn0 [:,0]
89 posn0 [:,1] = K_hat2*posn0 [:,1]
90 posn0 [:,0] = fft(posn0 [:,0])
91 posn0 [:,1] = fft(posn0 [:,1])
92

93 #probability measurement
94 psiT = np.zeros ([2*P,T], dtype = complex)
95 for j in range(P):
96 psiT [2*j,i] = posn0[j,0]
97 psiT [2*j+1,i] = posn0[j,1]
98

99 for k in range(P):
100 prob[k,i,r] = abs(psiT [2*k,i])**2 + abs(psiT [2*k+1,i])**2
101

102 for k in range(P):
103 prob1[k,i] += prob[k,i,r]
104

105

106 for i in range(T):
107 for k in range(P):
108 meanprob[k,i] = 1/R * prob1[k,i]
109

110 #winning probability
111 for j in range(0, int(P/2)):
112 P_l[i] += meanprob[j,i]
113 P_r[i] += meanprob[int(P/2)+j,i]
114

115 P_r[i] = P_r[i] - meanprob[int(P/2),i]
116 P_win[i] = P_r[i] - P_l[i]
117

118 P_winA = np.zeros(T+1)
119 for i in range(T):
120 P_winA[i+1] = P_win[i]
121

122 #time -averaged winning probability
123 P_winA1 = np.zeros(T+1)
124 for i in range(T+1):
125 for j in range(i+1):
126 P_winA1[i] += P_winA[j]
127

128 for i in range(1,T+1):
129 P_winA1[i] = 1/(i) * P_winA1[i]
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