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Abstract

In this thesis, we present theoretical investigations on a new view of the well-
known quantum kicked rotor that has recently been realised in experiments
at the Friedrich-Alexander University of Erlangen. In order to reproduce and
explain experimental data, the wavefunction of a rotor confined in the angle
space [−π, π) is unfolded into position space by a modulation integral over
the quasimomentum [1]. The central question of this thesis is motivated by
experimental observations: How does the dynamics of the wave function that
exhibits expansion or localisation depend on the kicking parameter? Based
on numerical calculations, we present a theory on the dispersive behaviour of
the dynamics depending on the kicking strength which is valid in a regime of
small kicking parameters. Here, our main observable constitutes the expansion
velocity of the wave function and we compare our results to Mathieu-theory
and tunneling in periodic potentials.
Furthermore, we introduce the survival probability to stay in the Brioullin zone
of the initial state which leads to a quantification how strong the wave function
expands or localises dependent on values of a higher kicking parameter regime.
It will be shown that we can reproduce experimental data by our numerical
simulations and find observables to characterise the aforementioned expansion
or localisation.





Zusammenfassung

In dieser Arbeit präsentieren wir theoretische Untersuchungen über eine neue
Variante des bekannten quantenmechanischen gekickten Rotors, die kürzlich
in Experimenten an der Friedrich-Alexander-Universität Erlangen realisiert
wurde. Mit dem Ziel, die experimentellen Daten zu reproduzieren und zu
erklären, wird die Wellenfunktion eines Rotors, die im Winkelraum [−π, π)

definiert ist, durch eine Phasenmodulation über den Quasiimpuls in den Ort-
sraum entfaltet [1].
Der zentrale Gegenstand der Untersuchungen dieser Arbeit is motiviert durch
experimentelle Beobachtungen: Wie hängt die Dynamik der Wellenfunktion,
die je nach Kickstärke Zerfaserung oder Lokalisierung aufweist, von diesem
Parameter ab?
Basierend auf numerischen Rechnungen, präsentieren wir eine Theorie über
das dispersive Verhalten der Dynamik in Abhängigkeit der Kickstärke, die
in einem Regime für kleine Parameter gültig ist. Hierbei ist unsere grundle-
gende Observable durch die Ausbreitungsgeschwindigkeit der Wellenfunktion
gegeben und wir ziehen zur Interpretation unserer Ergebnisse die Mathieu-
Theorie über Tunneleffekte in periodischen Potentialen vergleichend heran.
Weiterhin führen wir die Überlebenswahrscheinlichkeit, in der Brioullinzone
des Anfangszustands zu bleiben, ein. Dadurch ist es möglich, zu messen,
wie stark die Wellenfunktion in Abhängigkeit der Kickstärke zerfasert oder
lokalisiert. Hierbei untersuchen wir insbesondere einen Bereich für höhere
Kickstärken. Es wird gezeigt, dass wir die experimentellen Daten durch un-
sere numerischen Simulationen reproduzieren und Observablen fnden, um die
genannte Expansions- bzw. Lokalisierungsdynamik zu charakterisieren.



Contents

1 Introduction and Outline 2

2 Theoretical concepts 5
2.1 The Classical Kicked Rotor . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Standard Map . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Regular and chaotic motion . . . . . . . . . . . . . . . . 7

2.2 The Quantum Kicked Rotor . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Floquet operator . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The unfolded wave function in position space . . . . . . . . . . . 9

3 Methods 11
3.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Simulation of the wavefunction in position space . . . . . . . . . 13
3.3 Further techniques . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Results 16
4.1 Dynamics for a small kicking parameter k . . . . . . . . . . . . 16

4.1.1 Comparison of experiment and theory . . . . . . . . . . . 16
4.1.2 A quantitative theory for the dispersion dependent on k 18

4.2 Dynamics in the mixed regular-chaotic regime . . . . . . . . . . 23
4.2.1 Comparison of experiment and theory . . . . . . . . . . . 23
4.2.2 A model of the dynamical behaviour of the wave function 23

5 Conclusion and Outlook 32

6 Appendix 34
6.1 Derivation of the hopping coefficients Ja . . . . . . . . . . . . . 34
6.2 Fast Fourier transformation . . . . . . . . . . . . . . . . . . . . 35

Bibliography 39



1 Introduction and Outline

Beginning with a theory to explain mechanics formulated by Hamilton and
Newton, Henry Poincaré studied nonlinear perturbations of planetary orbits [2]
and opened a door to a new field of physics in the 19th century: Nonlinear dy-
namics and classical chaos. This way of classical mechanics shows a huge range
of applications in many fields such as statistical mechanics, hydrodynamics and
astronomy, for example the Henon-Heiles problem in celestial mechanics [3],
where for certain energies the considered system exhibits regular or chaotic
motion, repectively.
At the beginning of the 20th century the development of quantum mechan-
ics by Erwin Schrödinger, Werner Heisenberg and Paul Dirac, revolutionised
physics. Consequently, the questions about chaos and nonlinear phenomenons
occur also in quantum mechanics, which is originally formulated as a linear
theory. The studies by Eugene Wigner in the past century have led to a defini-
tion of chaos in quantum systems which lies in the investigation of its spectral
properties and considering that the classical corresponding system exhibits
chaotic dynamics [4].
This thesis treats a famous and well-known nonlinear oscillator system which
exhibits, dependent on certain parameter regimes, regular and chaotic dynam-
ics and has both applications and realisations in classical and quantum me-
chanics: The kicked rotor. It consists of a simple rotator periodically driven
by an external field. In classical mechanics the system is characterised by the
standard map which is also called Chirikov-Taylor-map [5]. Its quantum ver-
sion, the quantum kicked rotor (QKR), has been studied intensively in the past
years [6]. It was found that the physics of the quantum kicked rotor is related
to Anderson localisation in solid state physics [7]. Moreover, many experimen-
tal realisations of the QKR were established [8], such as the motion of cold
atoms along a line. The kicking is caused by a standing laser wave which is
switched on and off periodically in time. Newer experiments on kicked atoms
can be found in [9].

Yet, there is a new interest motivated by recent experiments at the Friedrich-
Alexander University of Erlangen. Those provide a realisation of the quantum
kicked rotor by the propagation of a light signal in an optical fiber. The sig-
nal is modulated in time and periodically amplified which leads to a discrete
kicking. Dependent on the kicking strength the signal exhibits two different
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kinds of motion in time, which constitute the central focus of the experimen-
tals. For some values of the kicking strength the signal localises in time and
for others it disperses. Fig. 1.1 shows the propagation of several signals in time
as a function of the kicking counter. Here, the initial states spread from their
original zone to outer ones. Now the question is: Is it possible to describe
this experiment by theoretical methods drawing back on known concepts of
the kicked rotor? Are we able to understand the experimental structures and
phenomena as a function of the kicking strength and is it possible to predict
for a given kicking strength if there is expansion or localisation? To answer
this question, we investiagte an observable that is known for some years but
that has not been studied in detail yet. It is given by the wave function in
position space ψ(x) that results as a continuous superposition of Bloch waves
(c.f. ch. 2), i.e. an integral over the quasi-momentum. The latter causes an
unfolding and a modulation of the periodic wave function in angle space (ro-
tor) to real space [1]. Since observations of the QKR dynamics typically take
place in momentum space this observable is a non-standard way of investigat-
ing its dynamics. The crucial difference between experiment and theory lies
in the fact that the experimental QKR localises or disperses in time, whereas
in theory this takes place in real space. Furthermore, the modulation of the
time evolved signal in the experiment stands in analogy to the unfolding of the
wave function together with a modulation over the quasi-momentum. In the
experiment a total of 40 values for the quasi-momentum have been reached so
far.

In this thesis, we present a theory for the dynamics of the quantum kicked
rotor in position space which is based on numerical calculations of the un-
derlying kicked rotor model (c.f. ch. 4). In order to explain the experimental
results, we focus on the dependence of the behaviour of the wave function on
the kicking strength.Therefore, we introduce a numerical model to reproduce
the experimental data and to analyse it. Here, we firstly consider small kicking
parameters and investigate the expansion rate of ψ(x), since in the experiment
the spreading effect becomes smaller the higher the kicking strength is within
this regime. To understand this phenomenon, we use the comparison with
Mathieu-theory and tunnelling in periodic potentials. Secondly, we study the
behaviour of the wave function in position space for higher values of the kick-
ing parameter at which the phase space of the classical corresponding system
exhibits mixed-regular and chaotic motion [2]. Here, we introduce the survival
probability to stay in the zone of the initial state, because the dependence of
the dynamics on the kicking parameter seems to be more arbitrary than for
the small range. Finally, we introduce further tools to analyse the expansion
and localisation dynamics in this mixed regular-chaotic regime.
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Figure 1.1: An experimental realisation of the quantum kicked rotor. The
darker the color of the shapes in the contour plot the less inten-
sity or probability density the single peaks show. This corresponds
to a spreading of the initial wave packets in time. Since we want
to understand the basic physics behind the experimental data, we
consider only one initial state in our theoretical simulation simil-
iar to that at t = 10. The picture was provided by courtesy of
the experimental group of U. Peschel at the Friedrich-Alexander
University of Erlangen.



2 Theoretical concepts

In this chapter, we introduce the fundamental theoretical concepts to describe
the kicked rotor in classical and quantum mechanics. In section 2.1 the clas-
sical dynamics of the kicked rotor model are presented. Firstly, starting with
the Hamilton function of the system we review the well-known standard map.
Secondly, we investigate the properties of the underlying phase space for differ-
ent system parameters. Section 2.2 contains a description of the corresponding
quantum mechanical system. Here, we explain the quantum map introducing
the time evolution operator of the system. Furthermore, two characteristic
phenomena of the quantum kicked rotor are shown and compared to the clas-
sical system. In section 2.3 we present a description of the wave function of the
quantum kicked rotor in position space which constitutes the central subject
of focus in this thesis.

2.1 The Classical Kicked Rotor

2.1.1 The Standard Map

As mentioned in the introduction (c.f. ch. 1), a definition of quantum chaos lies
in the comparison of a given quantum system with its corresponding classical
system that shows chaotic behavior. Therefore, we present a short illustration
of the classical kicked rotor which is discussed in detail in [2,10]. The Classical
Kicked Rotor describes the motion of a particle confined to a circle which is
periodically driven by an external field, as shown in fig. 2.1. In dimensionless
units the Hamiltonian of the system is given by:

H(p, θ; t) =
p2

2
+ k cos(θ)

∞∑
j=−∞

δ(t− jτ) (2.1)

Here, k is the kicking strength and τ stands for the kicking period. Moreover
δ(t− nτ) is the Dirac delta distribution which represents the discrete kicking
of the particle in regular time steps. Starting with Hamilton’s equations of
motion we are able to derive iterative equations in order to describe the time
evolution of the (angular) momentum and the angular position of the particle.
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θ

k

Figure 2.1: Model of a Classical Kicked Rotor: Motion of a particle with mass
m = 1 on a circle kicked periodically by an external field

Hamilton’s equations read:

ṗ = −∂H(p, θ; t)

∂θ
= k sin(θ)

∞∑
j=−∞

δ(t− jτ) (2.2)

θ̇ =
∂H(p, θ; t)

∂p
= p (2.3)

In order to derive iterative equations for p and θ we need to integrate the
equations of motion over one kicking period. Here, it is emphasised that the
kick acts instantaneously. The angle of the particle stays constant during a
kick whereas the momentum experiences a discontinuous change. During two
kicks, i.e. over one kicking period, the angle changes continuously due to
momentum conservation during the free time evolution. Integrating over one
period we obtain the standard map [5,11]:

pj+1 = pj +K sin(θj) (2.4)
θj+1 = θj + pj+1 mod (2π) (2.5)

Here, the stochasticity parameterK = kτ was introduced. It is obtained by the
substitution (p → τp) after integrating the equations of motion. In contrast
to this, we will see in section 2.2 that the quantum kicked rotor is described
by two control parameters, whereas in the classical case we only need K.

The stochasticity parameter K determines what kind of motion the particle
on the circle shows, i.e. the structure of the phase space. Increasing K leads
to a change from regular to chaotic phase space structures [2, 5].
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2.1.2 Regular and chaotic motion

From equations (2.4) and (2.5) it follows that both p and θ show a periodicity
of 2π. Therefore, we restrict the phase space into a cell with an area of 2π×2π,
thus the motion of the kicked particle in phase space is described by a toral
map. For small stochasticity parameter (e.g. K ≈ 0.3), which induces quasi
regular dynamics of the system, the KAM-tori rest invariant under the external
perturbation. If we increase the stochasticity parameter to K = Kcrit. ≈ 0.972,
we observe that the torus, which corresponds to the separatrix of the classical
pendulum (last KAM-torus), breaks and the remaining islands are surrounded
by a chaotic sea. The islands around the first order fixed-point in (0, 0) shrinks
with increasing K and finally bifurcates. At this point, the island is stretched
until it splits up into two islands around fixed-points of higher order [12]. For
K > 5 a completely chaotic phase space remains, but tiny regular structures
around the many fixed-points of higher orders can be found applying a high
numerical resolution.

2.2 The Quantum Kicked Rotor

2.2.1 Floquet operator

The primary aim of this thesis is to investigate the quantum kicked rotor which
has many important experimental realisations in atom optics such as laser-
cooled atoms (sodium and cesium) driven by a standing laser wave [13, 14]
which is switched on and off periodically in time in order to simulate the kicks.
The standing wave induces a periodic potential which acts on the atoms. This
experiment was firstly performed by Raizen and coworkers in 1999 [1, 8, 15].
In contrast to classical system described in section 2.1, the atoms which are
kicked by the standing wave potential move on a line.

In SI-units the Hamiltonian of the quantum kicked rotor for a particle of mass
m is given by:

Ĥ ′ =
P̂ 2

2m
+ V0 cos

(
2π

a
X̂

) ∞∑
j=−∞

δ(t− jT ) (2.6)

The amplitude of the standing wave is described by V0 and a is the spatial
period of the periodic potential. To rescale the given Hamiltonian in Bloch
units we divide eq. (2.6) by EBloch = 8Er, where Er = ~2k2r

2m
stands for the recoil

energy of a photon scattering off an atom [16]. This leads to the dimensionless
Hamiltonian which reads:

Ĥ =
p̂2

2
+ k cos(θ̂)

∞∑
j=−∞

δ(t− jτ) (2.7)
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Here we set θ = 2π
a

(x mod (2π)). Alternatively, we can write the Hamiltonian
as follows:

Ĥ ′′ =
p̂2

2
τ + k cos(θ̂)

∞∑
j=−∞

δ

(
t

τ
− j
)
, (2.8)

where j represents the kick counter. In order to describe the time evolution
of a quantum state the unitary Floquet operator is used which we construct
via integration of the Hamiltonian in eq. (2.7) over the kicking period τ . Con-
sequently, the Floquet operator determines the dynamics of a state from one
kick to the following one. Thus, the time evolution is discretised by the kicks
themselves and the state at time n is obtained by applying the Floquet oper-
ator n times to the initial state. The unitary Floquet operator consists of a
part which corresponds to the kick and a free evolution term:

Û = K̂F̂ = e−ik cos(θ̂)e−iτ
p̂2

2 (2.9)

In θ-representation the kicking operator K̂ = e−ik cos(θ̂) is in simple diagonal
form whereas in momentum representation we find:

〈p′| K̂ |p′′〉 =

∫ ∫
dθdθ′ 〈p′|θ〉 〈θ| e−ik cos(θ̂) |θ′〉 〈θ′|p′′〉 = Kp′−p′′ (2.10)

where Kn = (−i)nJn(k) and the Jn(k) are the Bessel functions of the first
kind [17].

Now we introduce a model to link the particle moving along a line to the one
on the circle known from the classical problem. At this, we use the spatial
periodicity of the potential. The unitary operator Û commutes with spatial
translations by multiples of 2π. Due to the invariance of the potential with
respect to spatial translation, this symmetry demands a conserved quantity.
With the help of Bloch’s theorem [18] we find that the latter is given by the
quasi-momentum β ∈ [0, 1) in the above dimensionless units and that we are
able to write the wave function as a product of a 2π-periodic function and a
plane wave. In general, this means that the wave function of a particle moving
along a line can be described by a superposition of Bloch waves:

ψ(x) =

∫ 1

0

dβeiβxuβ(x) (2.11)

Here, uβ(θ) = uβ(θ + 2π) holds, so the wave packet of the particle in position
space is constructed as an unfolding of periodic functions which are defined
on the circle, i.e. in the θ-zone [−π, π). In other words we describe ψ(x) as a
continuous superposition of particles moving on the circle. From now, on we
call those β-rotors with the wavefunction uβ(θ) = uβ(x mod(2π)).
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The momentum can be written as p := n+ β where the quasi-momentum β is
interpreted as the fractional part and n as the integer part of the momentum.
Consequently, we need to redefine the Floquet operator for a β-rotor:

Ûβ(t) = e−ik cos(θ̂)e−i
τ
2

(N̂+β)2 (2.12)

Here, N̂ represents the angular momentum operator (with eigenvalues n ∈ N)
which has the θ-representation N̂ = −i d

dθ
with periodic boundary conditions

[19].

2.3 The unfolded wave function in position space

In this thesis we want to simulate the wavefunction of the quantum δ-kicked
rotor as obtained from Bloch’s theorem in eq. (2.11). To achieve this, we
start with a wave function of a single particle in the θ-zone, i.e. a β-rotor on
the circle. As defined in section 2.2, n ∈ N describes the angular momentum
eigenvalues corresponding to the basis of our Hilbertspace {|n〉}. As it can
be found in various textbooks such as [18] a plane wave in θ-representation is
given by:

〈θ|n〉 =
1√
2π
einθ (2.13)

Furthermore we denote |ψ〉 the states of the particle that moves on a line in
x-space and that we want to obtain as a superposition of β-rotors. The wave
function of a β-rotor in θ-representation is defined as:

〈θ|ψβ〉 =
1√
2π

∞∑
n=−∞

〈n+ β|ψ〉 einθ (2.14)

This corresponds to a discrete Fourier-transformation from n-space to the θ-
zone. Moreover the momentum representation of the β-rotor state is given
by:

〈n|ψβ〉 =

∫ 2π

0

〈n|θ〉 〈θ|ψβ〉 dθ =
1

2π

∫ 2π

0

∞∑
m=−∞

ei(m−n)θ 〈m+ β|ψ〉 dθ

=
∞∑

m=−∞

δ(m− n) 〈m+ β|ψ〉 = 〈n+ β|ψ〉 =: 〈p|ψ〉

With help of the Fourier transformation and eq. (2.11) we obtain:∫ 1

0

dβeiβxuβ(x) =: ψ(x) = 〈x|ψ〉 =
1√
2π

∫ ∞
−∞

dp 〈p|ψ〉 eipx (2.15)

In our simulations we will compute the wave function ψ(x) numerically follow-
ing eq. (2.11) and (2.14). Our initial state is defined in the angular momentum
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representation and is described by the same function for all β-rotors. The full
time evolution for each β-rotor after t kicks is executed applying Ûβ from eq.
(2.12) t times:

ψβ(n, t) = Û t
βψβ(n, 0) (2.16)

Then we apply the Fourier transformation eq. (2.14) to obtain 〈θ|ψβ〉 = uβ(θ) =

uβ(x) and finally obtain ψ(x) using eq. (2.11).

In the follwing the initial unfolded wavefunction ψ(x, t = 0) is calculated since
it has a characteristic form and reappears in the time evolved wave function
for certain values of the kicking strength as we will explain in chapter 4. Let
uβ(x, 0) =: u(x) be the initial wavefunction which is identical for every value
of β. Then it follows:

ψ(x) =

∫ 1

0

dβeiβxu(x) =
eix − 1

ix
u(x) (2.17)

⇒ |ψ(x)| =
∣∣∣∣sin(x

2
)

x
2

u(x)

∣∣∣∣ =
∣∣∣sinc(x

2

)
u(x)

∣∣∣ (2.18)

The here derived sinc-function plays an important role in classical wave op-
tics, for example in the single slit experiment where it determines the intensity
distribution of the diffraction pattern of coherent light.

In our numerical calculations we set the initial wave function uβ(θ) symmet-
rically around zero in the θ-zone [−π, π). This is shown in fig. 3.1 in ch. 3 for
a Gaussian wave packet, i.e. a coherent state with minimal uncertainty [18].
The time evolution and the unfolding of the wave function, in order to con-
struct ψ(x, t) according to eq. (2.11), imply that further zones on the x-axis,
i.e. further wells in the periodic potential are occupied. This means that the
probability density spreads depending on the kicking parameter k as we al-
ready mentioned in chapter 1. In other words, the spatial probability density
changes in time and may flow from the central zone [−π, π) to others. For a
certain parameter regime in k we will use the survival probability to analyse
the dynamics of the "kicked wave packet":

Psurv(t) =

∫ π

−π
dx|ψ(x, t)|2 (2.19)



3 Methods

3.1 Numerical Methods

The foundation of our numerical simulations of the QKR model is formed by
a Fortran95 programme. It contains the computation of the wave function in
momentum space R and angle space [−π, π). The latter is used to calculate
the unfolded wave function described in eq. (2.11). Here, we focus on the nu-
merical description of a single β rotor, whereas we describe the transition to
ψ(x) in the next section.

In all simulations the initial coherent state is set in momentum space which
has a finite base of length N = 2m,m ∈ N. The fact that N has to be a power
of two arises from the condition of the used Fast Fourier transformation [20,21]
we need to switch between momentum and θ-space. To symmetrise the initial
wave function in momentum space around the origin, we choose a discrete
grid of n = −N

2
,−N

2
+ 1, ..., N

2
. The initial coherent state has the shape of a

Gaussian distribution which can be found in detail in [18]:

ψ(n, t = 0) =
1√√
2πσn

exp

(
−(n− n0)2

4σ2
n

− inθ0

)
(3.1)

From eq. (3.1) it immediately follows that the Fourier transform ψ̂(θ, t = 0)

has also a Gaussian shape and is centered around θ0 in angle space. The latter
is described by a grid θj = 2π

N
j, where j ∈ {−N

2
, ..., N

2
} In this thesis, we

investigate the dynamics of the QKR whose Hamiltonian reads

Ĥ =
p̂2

2
− k cos(θ̂)

∞∑
j=−∞

δ(t− jτ) (3.2)

which differs from eq. (2.7) only by a minus sign in the potential term. Conse-
quently, the dynamics of the system is still the same if we shift the angle space
[0, 2π) by π to obtain the zone [−π, π). Since we investigate the dynamics
of an initial Gaussian state which is centered around the stable fixed point
of the map deduced by eq. (2.1) , we choose θ0 = 0, so the initial state is
set in the minimum of the negative cosine which can also be seen in fig. 3.1.
Moreover we simulate the motion of a rotor, thus periodic boundary condi-
tions for the wave function in angle representation are assumed for all times:
ψ(θ = −π) = ψ(θ = π) ∀t.
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-3 Π -2 Π -Π 0 Π 2 Π 3 Π

Figure 3.1: Initial state of a β-rotor set in the minimum of the negative cosine
shaped potential.

Now, having a well-defined initial coherent state, we can start the time evolu-
tion of the rotor using the unitary Floquet-operator from eq. (2.12)
Û = K̂F̂ = eik cos(θ̂)e−iτ

N̂2

2 as described in ch. 2. Here, we consider a rotor with
β = 0 for the sake of simplicity. The time evolution of an initial state follows
from eq. (2.16) and is given by:

ψ(t) = (Û)tψ(0) (3.3)

This can be performed numerically in a quite efficient way following these
steps:

• Definition of the initial state ψ(n, t = 0) in momentum representation

• Application of the free evolution operator F̂ to obtain the state F̂ψ(n, t =

0)

• Fast Fourier Transformation of the state F̂ψ(n, t = 0) into angle space
[−π, π)

• Application of the kicking operator K̂ to obtain the state K̂F
[
F̂ψ(n, t = 0)

]
• Inverse Fast Fourier Transformation back to momentum space to obtain

the time evolved state ψ(n, t = 1)

• To obtain the time evolution up to any discrete time t, we have to repeat
the described steps t-times.
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The kicking operator K̂ and the free time evolution realised by F̂ are both in
diagonal form in the θ- and n-basis respectively, thus the matrix multiplication
on the defined vectors ψ(j) and ψ(θj) reduce to scalar multiplications on each
component with a phase e−iτ

j2

2 and eik cos(θj), where j ∈ {−N
2
,−N

2
+ 1, ..., N

2
}.

3.2 Simulation of the wavefunction in position
space

Following the instructions from sec. 3.1 in order to compute the time evolved
wave function of a rotor in momentum space, we now introduce the most
important numerical concepts to obtain the unfolded wave function ψ(x).
Here we start with a set of Nβ time evolved β-rotors with the wave func-
tions ψβ(θ, t) =: uβ(x mod(2π)). Note that we are interested in the transition
θ → x for which the condition θ = x mod(2π) holds. Numerically we define
the x-axis with the same resolution as the angle space and set ∆x = ∆θ = 2π

N
.

The aforementioned unfolding has to be computed for every point x ∈ R and
we shortly explain the numerical solution to this.
Starting with the time evolved wavefunction uβ(θ) which is defined in [−π, π),
we expand the angle space to the whole real axis by writing the latter as
a stringing together of many zones [−mπ,mπ], where m is an even integer
number. This is described by the following function:

g : [0, 2π]→ Rnum. : θj 7→ θj + 2π

(
l − Nzone

2
− 1

)
(3.4)

Here it holds, that l = 1, ..., Nzone, where Nzone = 200 was set in our sim-
ulations. From eq. 3.4 it follows that the real axis is simulated by an in-
terval [−Nzone

2
π, Nzone

2
π]. Note again, that our initial state is centered around

0 ∈ [−π, π) and that there is a translation of π to the interval [0, 2π) as it can
be verified in fig. (6.1) in the appendix (c.f. ch. 6). The unfolding of the wave
function is given by the integral from eq. (2.11) which reads:

ψ(x) =

∫ 1

0

dβeiβxuβ(x), (3.5)

where uβ(x) = uβ(x + 2π) holds. Moreover, we write eq. 3.5 as a complex
curve integral as it can be found in [22] and approximate it by a Riemann sum
as shown in the following:∫ 1

0

dβeiβxuβ(x) =

∫ 1

0

dβ cos(βx)uβ(x) + i

∫ 1

0

dβ sin(βx)uβ(x) (3.6)

≈
Nβ−1∑
k=0

cos(βkx)uβk(x)∆βk + i

Nβ−1∑
k=0

sin(βkx)uβk(x)∆βk, (3.7)
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where βk ∈ [0, 1), ∆βk = βk+1 − βk = 1
Nβ

and k = 0, ..., Nβ. The expression
in eq. (3.7) can be easily implemented in our Fortran95 code. In our investi-
gations we chose Nβ = 100 so that the deviation between the approximation
above and the original integral over β is negligible. Furthermore, we note that
the wave function ψ(x) is normalised if the components uβ(x) have a normal-
isation of one since we integrate over the unity interval [0, 1].

Moreover, we remark that the unfolding of the initial Gaussian wave function
in angle space [−π, π) which is centered around θ0 = 0 leads to a function of x
that shows a periodicity of Nβ = 100, which is a consequence of the modulation
with phases eiβx for ∆β = 1

100
. Fig. 3.2 visualises this showing an extract of

the unfolded initial wave function of the coherent state over the numerical real
axis consisting of 200 zones. Here, we observe that the wave function shows
axial symmetry with respect to the origin and that the initial state lives with a
probability of almost 1 in the central zone [−π, π) corresponding to the angle
space. Since we start with an equal initial state in θ-representation for each
value of β, the squared absolute value of the wave function in position space
is given by eq. (2.18) and has the form:

ψ(x, t = 0) =

∣∣∣∣sin(x
2
)

x
2

∣∣∣∣2 1√
2πσθ

exp

(
−(x mod(2π))2

2σ2
θ

)
(3.8)

3.3 Further techniques

The survival probability Psurv(t) to stay in the central zone [−π, π), described
in eq. (2.19) is calculated by another Riemann sum over the unfolded wave
function ψ(x) at each discrete time t. Moreover, in order to obtain a qualitative
comparison between experimental data as shown in fig. 1.1 and numerical
simulations of the wave function, we used a Python script to create data of
ψ(x) at times between 0 and 2500 kicks. With the help of a Matlab programme
a surface plot of the resulting graph containing the wave function in space and
time can be made.
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Figure 3.2: The unfolded initial wave function in position space. Due to its
Gaussian shape it is symmetric around zero in accordance to its
original representation in angle space. This picture shows only a
small part of the wave function over 6 zones which have a width of
2π each.



4 Results

In this chapter we present our results on the investigation of the wave func-
tion in position space, which was motivated by experimental data from the
Friedrich-Alexander University of Erlangen as described in ch. 1. All simula-
tions were performed on the quantum kicked rotor model as described in ch. 2.
In the experiments, the kicking period is held constant at the value τ = 0.66,
consequently the only control parameter is the kicking strength k. As it is
easily seen from the experimental data, there are several ranges for the kicking
strength k in which different kinds of dynamics take place.

Firstly, the dynamics for small k is investigated to compare experimental and
theoretical results. Since for kτ < Kcrit the corresponding classical phase
space shows nearly-integrable, i.e. regular motion [12], we present a theory for
the dispersion of the wave packet along the real axis using the approach of the
classical pendulum. The results are compared to Mathieu-theory for tunnelling
in periodic potentials. Secondly, we describe the dynamics for higher values
of k where the classical phase space shows mixed regular-chaotic behaviour.
Here, the survival probability to stay in the central zone as a function of k
constitutes the main observable.

4.1 Dynamics for a small kicking parameter k

4.1.1 Comparison of experiment and theory

According to the description in ch. 3 we unfold the time evolved wave function
from the θ-zone into position space following eq. (2.11) in order to study its
dynamics dependent on the kicking strength k. Fig. 4.1 shows a comparison
of experimental data and our simulations for k = 0.24 (τ = 0.66). We directly
observe that the theoretical model of the QKR is in good qualitative accor-
dance with the results from the experiment. The color in the contour plots
corresponds to the probability density of the wave packet. Both in the exper-
imental data and in our simulation a characteristic pattern of the probability
density up to 1000 kicks can be observed and the peaks with the highest in-
tensity are located in the zones furthest away from the origin. For larger times
the probability density in the theoretical simulation loses more and more in-
tensity since the highest peaks have already drifted away from the considered
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Figure 4.1: Spreading of the wave function for k = 0.24 (τ = 0.66): a) The
left picture shows experimental data describing the dynamics of
an initial coherent state in the central zone. Here, we recall that
time t in the experiment corresponds to position x in our notation
as it was introduced in ch. 1. During the time evolution the state
spreads and its maximal peak moves to outer zones. b) The picture
on the right shows a simulation following the QKR model. Here
we find a similar behaviour of the wave function in position space
to the one that is observed in the experiment.

window of 30 zones on the real axis. In contrast to this monotonous behaviour
the experimental data (left plot in fig. 4.1) show an increase of the probability
density for large times and a breaking of the pattern which occurs until 1000
kicks. This phenomenon is due to interference of the state initially located at
x=10 with the four, time evolved states which are initially located around x=0
as mentioned in ch. 1.
Fig. 4.2 shows simulations of the dispersion of the wave function in position
space and we observe that the central peak survives longer the higher the
kicking parameter k is set. The numbers of used quasi-momenta β for the
unfolding integral and modulation are 40 in the experimental and 100 in the
theoretical simulation (c.f. ch. 3). Moreover, β was chosen equidistantly from
[0, 1) and β0 = 0 was set. To perform these simulation we recorded the data of
the unfolded wave function for 100 time points between 1 and 2500 kicks. The
contour plot was created to show the probability density dependent on time
and position by using an interpolation function between the single snapshots.
We conclude that for small parameters of k we can reproduce the experimental
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Figure 4.2: The spreading of the wave function in position space for a kicking
strength k = 0.36 (upper plot) and k = 0.66 (lower plot), with
τ = 0.66 for each k.

data and observe that the spreading of the wave function decreases with higher
values of k (c.f. fig. 4.2). For kicking parameters larger than k ≈ 0.5 the wave
function saturates in position space and the dispersion stops or moves very
slowly until a time of 2500 kicks, respectively.

4.1.2 A quantitative theory for the dispersion dependent
on k

The qualitative observations made in sec. 4.1.1 for k ∈ [0.24, 0.5] lead to several
questions. Firstly, why is the wave function spreading in position space and
how does this phenomenon quantitatively depend on the kicking parameter
k? Secondly, what exactly happens during this dispersion process, and why is
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there a critical value of k at which the wave function essentially saturates in
the central zone?

To answer the first questions we need to measure the spreading rate of the
wave packet in dependence on the kicking strength k. In order to achieve this
we determine the velocity of the highest peak of the unfolded wave function,
i.e the part with the highest probability amplitude, as it can be well seen in
fig. 4.3. This is numerically done by computing the unfolded wave function in

0
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Figure 4.3: Unfolded wave function in position space after 550 Kicks for an
initial Gaussian wave packet in the central zone. The position of
largest the peaks (red circles) is determined in order to measure
the spreading rate of the wave packet.

appropriate time steps in the window of 1 to 1500 Kicks and measuring the
position of the maximum at each point in time. But this can be quite difficult
because the peaks are oscillating with a period of about 10 kicks. Since the
dispersion of the wave packet behaves quite linearly (which can be seen in fig.
4.1), we calculate the spreading rate , i. e. the dispersion velocity vdisp = ∆x

∆t

from the slope of the resulting linear fit through the data points. The described
process is repeated for different kicking parameters in the aforementioned range
to obtain the spreading velocity as a function of k.
Now we know the quantitative behaviour of the dynamics of the wave func-
tion by having received several points of the velocity vdisp dependent on the
kicking strength. But these results need to be explained by a physical model
which we find by considering the corresponding classical phase space and the
Hamiltonian of the kicked rotor system for the given range of k. At first, we



Results 20

investigate the classical phase space showing regular motion for a stochasticity
parameter K = kτ = k · 0.66 where k ∈ [0.24, 0.66] as it can bee seen in fig.
4.4.

Figure 4.4: The phase space of the classical kicked rotor system for K = kτ =

0.3 shows regular behaviour and the area within the separatrix
possesses a similar structure to one of the classical pendulum.

The initial Gaussian wave packet in the θ-zone is centered around the stable
fixed-point in (0,0) as shown in ch. 3. This corresponds to the minimum in the
periodic kicking potential V (θ) = −k cos(θ)

∑∞
j=−∞ δ(t− j), c.f. eq. (3.2). The

motion of a particle along an orbit in phasespace as shown in fig. 4.4 corre-
sponds to an oscillation process but in quantum mechanics a further possibility
of motion lies in tunneling out of the classical barriers as it is described for
example in [23, 24]. Consequently, a good candidate to explain the expansion
of the wave function in time lies in the tunnelling of the wave packet out of
the central zone (c.f. fig. 4.1).

In order to confirm this assumption, we need to find a comparable observable
to our velocity vdisp as a function of the kicking parameter k. The required
observable is given by the tunneling matrix element Γ which, as we will show,
coincides with the spreading velocity vdisp with a certain accuracy. Since the
Hamiltonian of the quantum kicked rotor contains a time-dependent potential
it will be difficult to calculate the exact tunneling rate of the wave packet.
But fortunately, for small kicking parameters k ≤ 0.5 we can approximate the
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classical phase space of the kicked rotor by the one of the pendulum as it can
be clearly seen in fig. 4.4. Here, we emphasize that we consider an initial wave
function located in the stable fixed-point, thus this approximation is valid in
our problem. Moreover the Hamiltonian of the classical pendulum is given
by [12]:

H(p, x) =
p2

2
− V0 cos(x) (4.1)

Here, V0 denotes the strength of the external static field (e.g. gravity) and we
note that there is no time dependence in eq. (4.1). Now, it is possible to obtain
the tunneling rates from one potential well of the cosine to the next one. To
achieve this, we need some help from Mathieu-theory for tunnelling in periodic
potentials which we describe in detail in chapter 6. In order to compute the
tunneling matrix element (or hopping coefficient) Γ ≡ Ja, we find the matrix
representation of the given Hamiltonian:

Ĥ =
p̂2

2
− V0 cos(x̂), H(x+ 2π) = H(x) (4.2)

Note that we investigate x which is a continous variable of the real axis. Using
Bloch’s theorem which is applicable on any Hamiltonian with a 2π-periodicity
we obtain the following Schrödinger equation:

Ĥ(x)ψαβ (x) = Eα
βψ

α
β (x), (4.3)

where ψαβ (x) denotes a Bloch wave as defined in ch. 2 and α sets the index
of the occupied energy band. We note that in our case α equals 1 since we
investigate the tunneling of a particle in the ground state |n〉 from lattice site n
to n±1, where n ∈ Z. Applying the tight-binding method on the Hamiltonian
defined in eq. (4.2) we derive the tunneling matrix element Ja = Vnn′ as it
follows [18]:

Vnn′ = 〈n|H |n′〉 =

∫
dxW ∗

n(x)H(x)Wn′(x), (4.4)

where we used the Wannier function 〈x|n〉 = Wn(x). Using the definition of
the Wannier functions as the Fourier transforms of the Bloch waves we obtain
the following result:

Vnn′ = 〈cos(k(n− n′))Eα
β 〉β ∈ R (4.5)

V0 = 〈Eα
β 〉β ∈ R (4.6)

Thus the hopping coefficients are given by the average of the energy eigen-
values Eα

k modulated with a cosine and the tunneling matrix element Ja is
determined by the width of the energy band in the Brioullin-zone.
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Moreover, as it is reported in [25], for the tunnelling into the next nearest
neighbour well it holds:

Ja ≡ Γ ∝ e−c
√
V0 , (4.7)

where c is a constant perfactor. In the following we compare the measured
velocity vdisp to the hopping coefficients. Firstly, it is important to match the
quantity V0 from eq. (4.2) with an appropriate one occuring in our model. At
this, we consider the Hamiltonian of the QKR use the pendulum approximation
which is valid for small values of k as τ is held constant:

H =
p2

2
− k cos(x)

∞∑
j=−∞

δ(t− jτ) (4.8)

=
p2

2
− k

τ
cos(x)

∞∑
j=−∞

δ(
t

τ
− j) (4.9)

≈ p2

2
− k

τ
cos(x) (4.10)

In the last step we used that the δ-function can be written as a series of
plane waves which equals one in 0th order. The hopping coefficients were
numerically computed as a function of the parameter

√
k
τ
where τ = 0.66 and

k ∈ [0.24, 0.44], according to eq. (4.5) and (4.6). We compare them with the
measured data points for the velocity vdisp with respect to eq. (4.7),
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Figure 4.5: Comparison of the hopping coefficients Ja (black) which were nu-
merically computed as a function of the parameter V0 =
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and

the peak velocity vdisp.
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From fig. 4.5 we observe an acceptable accordance between the simulation
data and the values calculated from Mathieu-theory within the given error.
The latter results from the graphic method of measurement as described above.
An improvement of the measuring method would be to determine the "center
of mass" of the highest peaks in the dispersing wave packet. But in order
to explain the behaviour of the wave packet as a function of k, the values of
vdisp provide a good approximation. Thus, we have found a quantitative model
to explain the dispersion of the wave function in position space in a certain
range of the kicking parameter k. The comparison with the tunnelling matrix
elements Ja stays within its range of validity.

4.2 Dynamics in the mixed regular-chaotic
regime

4.2.1 Comparison of experiment and theory

In the following, we investigate the dynamics of the wave function in position
space for higher values of k keeping τ fixed as in our former considerations.
Another interesting phenomenon, known from the experiment, occurs within
the range k ∈ [2, 4] where the wave function shows a systematic change of
dispersion and localisation as a function of k. What makes this process worth
being further investigated, is that a localisation can abruptly change to strong
spreading dynamics et vice versa by a small change of the kicking strength
(∆k . 0.05) as we see in fig. 4.6.
In contrast to section 4.1 , where we could find a continuous and regulary
dependence of the dynamics on the kicking parameter, we do not find an ob-
vious law of motion which the system obeys. We note that the wave function
exhibits two different kinds of motion strongly sensitive to a small change in
k. Despite, the simulation does not reproduce the experiment exactly. A sys-
tematic comparison between the experimental data and our simulations shows
that there are slight shifts of the k values at which the spatial delocalisation
and localisation change.
An explanation to this phenomenon could lie in the under- or overestimation
of the kicking parameter k in the experimental setup as it has often occured
in QKR experiments with cold atoms described in [26,27].

4.2.2 A model of the dynamical behaviour of the wave
function

In order to find a model to explain the remarkable dynamics of the wave
function and its dependence on the kicking strength k, we need to describe



Results 24

Figure 4.6: Experimental data for spreading (upper plot) and localisation
(lower plot) of a wave packet in position space for higher values of
the kicking parameter k. In the upper picture the kicking strength
holds k = 3.47 and in the lower one k = 3.55. We observe a sharp
change of the dynamics of the wave packet.
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the occuring motion by an appropriate observable. As it turned out in the
work underlying this thesis, the spreading velocity known from section 4.1 is
useless because, in the aforementioned parameter regime of k ∈ [2, 4], the wave
function does not spread in the same way as it does for small kicking strengths.
As we observed in our simulations, the central peak has a maximal probability
amplitude if we neglect the oscillations which we mentioned in section 6.1. One
may rather describe the dynamics of the wave packet as a form of probability
loss to the other zones in the case of a value for k at which the wave function
"defibrates". If localisation occurs probability is "conserved" in the central
zone. Therefore an appropriate observable may be found in the probability to
stay in the central zone [−π, π) which is given by eq. (2.19).

Psurv(t) =

∫ π

−π
|ψ(x, t)|2dx (4.11)

This observable was chosen because it replaces a spreading velocity and pro-
vides us with information how the wave function behaves at any point in
time. Furthermore, it can be calculated quickly and ressource-efficiently by
our numerics because we only need to integrate the probability density over
the central zone. Other equivalent methods would be the measurement of the
probability of presence in the whole position space without the central zone
where the integral above is executed over R\ [−π, π). But obviously this yields
exactly 1 − Psurv(t). Another observable is given by measuring the overlap of
the time evolved wave function |ψ(t)〉 in the central zone with the initial state
|ψ(t = 0)〉, which differs from the first mentioned method by the fact that it
measures a relative probability or fidelity (c.f. [28]) compared to the initial
state.

As it follows in fig. 4.7, we show our results for the observable Psurv(t) which
we computed over a time of 2500 kicks and a range of 92 parameters for the
kicking strength k ∈ [2, 4] where we set τ = 0.66. In order to identify the most
important aspects of the dynamics, only several graphs of Psurv(t) are shown
which reflect a characteristic dependence on the kicking strength. For some
values of k the probability function Psurv(t) shows strong oscillations as it can
be seen in the picture in the upper left corner in fig. 4.7. This is assumed to
be the same phenomenon that was described in sec. 6.1, caused by oscillations
of the probability density within the central zone. Moreover, we can identify a
dramatic change of the survival probability for certain values of k. For example
the central picture in the upper row and the one in the lower left corner show
localisation of the wave function in the central zone, whereas the pictures in
the upper right and the central one in the lower row exhibit minima in the
survival probability. The latter corresponds to a spreading of probability to
the outer zones. For kicking strengths in the range 3.77 ≤ k ≤ 3.95, an almost
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Figure 4.7: The survival probability Psurv(t) was computed for many values of
the kicking parameter k ∈ [2, 4] and one can observe sharply differ-
ent kinds of motion for certain parameter ranges. For example the
red curve in the central picture of the upper line shows localisation
of the wave function in the central zone, whereas in the picture
in the upper right corner a minimum around a time of 1200 kicks
occurs which corresponds to a dispersion of the wave function. The
order of the plots following an increasing k is given by: black, red,
green, blue, orange.
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Figure 4.8: These diagrams show the survival probability to stay in the central
zone for different times at τ = 0.66 and as a function of the kicking
strength k. There are two main peaks where the wave function lo-
calises at k ≈ 2.5 and k ≈ 3.5. These peaks are clearly dominant for
times larger than 1500 kicks. On the other hand a spreading of the
probability density occurs for k & 3 where a minimum is observable
that is minimal for about 1000 kicks. The shown range k = 2, ..., 4

corresponds to a stochastic parameter K = kτ ≈ 1.33, ..., 2.66.

linear decrease of the survival probability occurs. The figures shown here, il-
lustrate a good accordance with the experimental results.

To obtain a deeper understanding of this observable, we will consider the av-
erage survival probability as a function of the kicking parameter k at certain
time steps averaged over a small time interval, ∆t ≈ 10 kicks, for the reason
of the mentioned oscillations. Following this we obtain the diagrams shown
in fig. 4.8 which were created for cuts at the times 500, 1000, 1500, 2000 and
2500 kicks using the data which was plotted in fig. 4.7. From fig. 4.8 we obtain
characteristic maxima of Psurv(t) at k ≈ 2.5 and k ≈ 3.5 which correspond
to localisation whereas the minimum around k ≈ 3 means a spreading of the
probability density out of the central zone. But the most important result is
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the following: The kind of motion the system exhibits in the considered pa-
rameter range k ∈ [2, 4] is not only dependent on the kicking strength but also
on time itself.

Finally, we consider the classical phase space for the parameter range of k ∈
[2, 4]. Since τ = 0.66, the critical value Kcrit is already exceeded and the phase
space of the classical kicked rotor exhibits mixed-regular and chaotic behaviour.
The phase space corresponding to the value K = kτ = 2.04 ·0.66 = 1.3464 was
computed and is presented in fig. 4.9. As mentioned in chapter 2, the classical

Figure 4.9: The classical phase space shows mixed-regular and chaotic be-
haviour for K ≈ 1.346.

phase space has the only control parameter kτ . Therefore, a possible way to
find out if the behaviour of the wave function in position space is caused by
classical or quantum mechanical effects lies in the variation of k and τ keeping
the stochasticty parameter K constant. We computed numerically a further
data set of Psurv(t) (and the corresponding cuts at fixed times, as shown in fig.
4.10) for the range of k ∈ [1, 4] and fixed kicking period τ = 1 as it is set in the
experiment. Unfortunately, there are no experimental data yet with which we
can compare our results from the simulations presented in fig. 4.10. But we
remark that the dependence of the survival probability on k for τ = 1 differs
from the one we obtained for τ = 0.66 considering the range where kτ = const.
From fig. 4.10 it follows that the survival probability shows two characteristic
peaks (around k ≈ 2.5 and k ≈ 3.5) which slightly shrink in time, whereas
its behaviour for larger kicking strengths indicates (apart from a localisation
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Figure 4.10: The survival probability at different times for τ = 1 as a function
of the kicking strength k. Here, the range of k corresponds to
K = kτ ≈ 1, ..., 4.
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peak at k ≈ 3.25) a dispersion of the wave function in position space. Here, we
note that for K = 4 the corresponding classical phase space is already strongly
chaotic (up to regular structures remaining from the central island).

Since the classical dynamics is only governed by the stochastic parameter K =

kτ , we plot the data from fig. 4.8 and fig. 4.10 together as a function of K
for 500 and 2000 kicks (c.f. fig. 4.11). Using this, we may better analyse the
overlapping regions for the different kicking periods.
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Figure 4.11: The two diagrams show the rescaled survival probabilities from fig.
4.8 and fig. 4.10 as a function of the stochastic parameter K = kτ .
The blue curve corresponds to the probability for τ = 0.66 and
the black curve to τ = 1. The upper diagram belongs to cuts at
500 and the lower one to those at 2000 kicks.



Results 31

Moreover, we present the positions of the maxima on the k- and kτ -axis re-
spectively in tab. 4.1. We notice that for the position kτ ≈ 2.3 the maxima in

τ k K = kτ

0.66 2.5 3.5 3.75 1.7 2.3 2.5

1 1.25 2.25 3.25 1.25 2.25 3.25

Table 4.1: Positions of the maxima in the diagrams in fig. 4.8 and fig. 4.10 de-
pendent on the kicking parameter k and the stochasticity parameter
K = kτ .

fig. 4.8 and fig. 4.10 almost coincide and consequently the classical phase space
seems to be responsible for this. On the other hand, we cannot find a good
accordance between the other peaks. Finally, we note that for τ = 1 the sur-
vival probability is smaller than for τ = 0.66 in general, thus tunneling effects
become stronger with increasing τ , which is our effective ~, i.e. it determines
how many quantised states are set in a given phase space volume.



5 Conclusion and Outlook

In this thesis we investigated a variant of the quantum kicked rotor model
which has been realised in recent experiments. In order to explain experi-
mental results on the dynamics of the wave function in position space and
especially its dependence on the kicking parameter k we performed the un-
usual unfolding of the wave function as a continuous superposition of Bloch
waves following eq. (2.11).
In the first part of our evaluation of the numerical data we introduced the
dispersion velocity vdisp as a significant observable in order to measure the
quantitative dependence of the spreading of the wave function for small values
of the kicking parameter. Here, the essential assumption lies in the approx-
imation of the standard map by the well-known classical phase space of the
pendulum, which is valid for small kτ . Using this ansatz we were able to
compare the spreading velocity vdisp with the hopping coefficients Ja which are
obtained from Mathieu-theory as it is shown in chapter 6. This confirms that
the spreading at small k is caused by a tunneling process in the periodic phase
space along the x−direction.

In the second part we considered a regime of larger kicking parameters for the
fixed kicking period τ = 0.66. Also here, we observe good qualitative accor-
dance of our numerical simulations with the experimental data. In order to
describe the dynamics and its behavior with respect to small changes in the
kicking strength, the survival probability Psurv(t) was defined to measure the
amount of probability which stays in the central zone and which flows to the
outer ones during the temporal evolution for certain values of k.
Since a straightforward functional dependence of the dynamics on k was not
found, more quantities have had to be involved in our computations. We com-
pared our data corresponding to τ = 0.66 with further numerical simulations
of the same kind with a varied effective Planck constant τ . From the so far
analysed data we can assume that the behaviour of the wave function in po-
sition space in the given parameter regime is influenced by the classical phase
space (c.f. tab. 4.1). Moreover, we expect that the more τ is decreased the
more classical the dynamics becomes and tunneling will be suppressed. In
general, more data for different values of τ should be produced and analysed,
since no mechanics - neither classical nor semiclassical, for the structure of the
main observable Psurv(t) could be found.
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A possible mechanism may be resonant-assisted tunneling which is mediated
by classical resonances of higher-order within the main pendulum like island
in phase space (around the stable fixed-point) [24]. Further influences may lie
in coherent destruction of tunneling as it can be found in [29].



6 Appendix

6.1 Derivation of the hopping coefficients Ja
The Hamiltonian of the system is given by:

Ĥ =
p̂2

2
− V0 cos(x̂) =

1

2

∂2

∂x2
− V0 cos(x̂), H(x+ 2π) = H(x) (6.1)

The energy eigenvalue equation is given by:

Ĥ(x)ψαk (x) = Eα
kψ

α
k (x), (6.2)

where the functions ψαk (x) are Bloch waves which can also be written as
ψαk (x) = eikxuαk (x). Here, α denotes the band index. In order to derive the
tunnelling matrix element, i.e. the hopping coefficient Ja which determines the
tunnelling rate of a particle from site n to site n± 1 in the periodic potential.
Let the ket |n〉 be the groundstate of the particle localised at the lattice site
n, i.e. the Wannier state. Using this we can write the Hamiltonian in matrix
form:

Ĥ =
∑
n,n′

|n〉 〈n| Ĥ |n′〉 〈n′| =
∑
n

En |n〉 〈n|+
∑
〈n,n′〉

Vnn′ |n〉 〈n′|+ h.c. (6.3)

The 〈n, n′〉 index means that the sum runs over the nearest neighbours. This
is the well-known tight-binding approximation which is described in detail in
Sakurai (c.f. [18]) or other textbooks. The interesting part of the Hamilto-
nian is

∑
〈n,n′〉 Vnn′ |n〉 〈n′| since it stands for the leakage of particles to the

neighbouring lattice sites due to tunnelling. Therefore Vnn′ determines the
tunnelling matrix element Ja and can be computed as follows:

Vnn′ = 〈n| Ĥ |n′〉 =

∫
dx

∫
dx′ 〈n|x〉 〈x| Ĥ |x′〉 〈x′|n′〉 (6.4)

=

∫
dx 〈n|x〉H(x) 〈x|n′〉 (6.5)

=

∫
dxW ∗

n(x)H(x)Wn′(x), (6.6)

where the identity
∫
dx |x〉 〈x| = 1 was used. In the last equation we used the

Wannier function 〈x|n〉 = Wn(x). They are defined as the Fourier transforms
of the Bloch waves:

Wn(x) =

∫ 1
2

− 1
2

dke−iknψαk (x) (6.7)
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It follows for the coefficients Vnn′ :

Vnn′ =

∫
dx

∫ 1
2

− 1
2

dk

∫ 1
2

− 1
2

dk′eikne−ik
′n′
ψ∗αk (x)Ĥψαk′(x) (6.8)

=

∫
dx

∫ 1
2

− 1
2

dk

∫ 1
2

− 1
2

dk′eikne−ik
′n′
ψ∗αk (x)Eα

k′ψ
α
k′(x) (6.9)

=

∫ 1
2

− 1
2

dk

∫ 1
2

− 1
2

dk′eikne−ik
′n′
δ(k − k′)Eα

k′ (6.10)

=

∫ 1
2

− 1
2

dke−ik(n′−n)Eα
k (6.11)

=

∫ 1
2

0

dke−ik(n′−n)Eα
k −

∫ − 1
2

0

dke−ik(n′−n)Eα
k (6.12)

=︸︷︷︸
k→−k

2

∫ 1
2

0

cos(k(n− n′))Eα
k dk (6.13)

Consequently, the hopping coefficients are given by the following mean values
[30]:

Jnn′ = 〈cos(k(n− n′))Eα
k 〉k ∈ R due to the relation Eα

k = Eα
−k (6.14)

J0 = 〈Eα
k 〉k ∈ R (6.15)

Note on the matrix representation of Ĥ:
The matrix representation of Ĥ in eq. (6.3) can be derived using the {|n〉}
basis. We consider the potential part of the Hamiltonian.

Vnn′ = 〈n|V̂ (x)|n′〉 = −V0

∫
dx

∫
dx′ 〈n|x〉 〈x| cos(x̂)|x′〉 〈x′|n′〉 (6.16)

= −V0

∫
dxeix(n−n′) cos(x) (6.17)

= −V0

2

∫
dx
[
eix(n−n′+1) + eix(n−n′−1)

]
(6.18)

∝ [δn,n′−1 + δn,n′+1] (6.19)

From the last equation (6.19) the tridiagonal structure of eq. (6.3) is obtained,
where the kinetic term of eq. (6.1) determines the diagonal elements.

6.2 Fast Fourier transformation

As it was described in ch. 3 the numerical computation of the quantum kicked
rotor requires the use of a discrete Fourier transformation which is applied on
the vector components of the defined wave function ψ(n) in momentum and
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ψ(θn) in angle space respectively (n=1,...,N). [21] provides a very clear illus-
tration of the discrete Fourier transformation and we present a short summary
in the follwing.

Given a discrete periodic function f : R → C, t 7→ f(t) over an equidistant
grid tk = k∆t, where k ∈ Z and ∆t ∈ R+ with a period T for which it holds
T = N∆t, N ∈ N. Now we can write the N values of f in a unique vector
representation y ∈ CN with components yj = f(j∆t) and set T = 2π without
loss of generality since T does not appear in the Fourier coefficients of f . For
the Fourier coefficients of y it holds:

ck :=
1

2π

N−1∑
j=0

yje
−i 2π

N
kj∆t, k = 0, 1, ..., N − 1 (6.20)

This definition induces a bijective linear function DFT : CN → CN , which
is called discrete (finite) Fourier transformation (DFT) and has an inverse
function which is called inverse discrete Fourier transformation (IDFT). One
writes y = (y0, ..., yN−1) 7→ c = (c0, ..., cN−1).

DFT : ck =
1

N

N−1∑
j=0

yje
−i 2π

N
kj, k = 0, 1, ..., N − 1 (6.21)

IDFT : yj =
N−1∑
k=0

cke
i 2π
N
jk, j = 0, 1, ..., N − 1 (6.22)

In the special case that N = 2m,m ∈ N holds, there is a algorithm called Fast
Fourier Transform invented by Cooley and Tukey in 1965 [31]. It reduces the
numerical effort of the DFT dramatically and instead of N2 matrix multipli-
cation one ends up with N

2
log2(N). Applying this theory on our initial wave

function in momentum space ψ(n) we can easily compute its Fourier transform
in angle space and we obtain:

ψ(l) =
(
F [ψ̂(θ)]

)
l
=

1

N

N∑
j=1

ψ(θj)e
−i 2π

N
lj (6.23)

ψ̂(θj) = (F [ψ(n)])l =
N∑
l=1

ψ(l)ei
2π
N
jl (6.24)

In fig. 6.1 we show an example of a Gaussian state in momentum representation
and its Fourier transform in angle space as it was implemented in the numerical
codes and routines.
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Figure 6.1: Plots of the initial wave function in momentum representation (up-
per figure) and its Fourier transform in angle space (lower figure).
The angle-representation state is "centered" around the origin in
the zone [−π, π).
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