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Zusammenfassung

Gegenstand dieser Diplomarbeit ist das Verhalten von instantan gekickten Atomen in
der direkten Umgebung der Frequenzen für resonanten Antrieb. Um gekickte Atome
zu beschreiben, bedienen wir uns des Modells des δ-gekickten Rotors, das die Evolution
von Teilchen, die einer periodischen äußeren Kraft unterliegen, angemessen beschreibt.
Die sich daraus ergebende Dynamik ist für große Kräfte chaotisch, weshalb wir den
Überlapp zweier anfangs identischer Wellenfunktionen unter leicht unterschiedlicher
Zeitentwicklung als ein Maß für die Stabilität einführen. Diese sogenannte Fidelity ist
vor Kurzem im Experiment für den speziellen Fall von resonantem Antrieb (der möglich
ist aufgrund der einfachen spektralen Eigenschaften des Quantenrotors) gemessen wor-
den. Auch für kleine Abweichungen von der Resonanzbedingung gibt es erste Messung-
en.
In dieser Arbeit stellen wir umfangreiche numerische Untersuchungen zur Fidelity in der
Nähe der Resonanzfrequenz niedrigster Ordnung vor, sowohl für einzelne Rotoren als
auch für gemittelte Ensembles. Weiterhin schlagen wir eine semiklassische Behandlung
vor, mit deren Hilfe wir eine analytische Beschreibung des beobachteten Verhaltens
ableiten können. Wir finden sehr gute Übereinstimmung zwischen numerischen und
analytischen Ergebnissen.

Abstract

This thesis investigates the behaviour of instantaneously kicked atoms in close vicinity
of the resonant driving frequencies. To describe instantaneously kicked atoms, we make
use of the δ-kicked rotor model, which accurately describes the evolution of particles
subject to a periodically acting external force. Since the dynamical evolution which
arises from this is chaotic for a larger driving force, one may introduce the overlap of
two initially identical wavefunctions with slightly different time evolution as a measure
of stability. This so-called fidelity has recently been measured in atom-optics experi-
ments for the special case of resonant driving (which is made possible by the simple
spectral features of the quantum rotor). There have also been attempts to measure
slight deviations from the resonance conditions.
In this thesis, we present a thorough numerical assessment of the fidelity close to the
resonant frequency of lowest order, both for single rotors and ensemble averages. Fur-
thermore, we propose a semiclassical treatment in order to derive an analytic description
of the observed behaviour. We find very good agreement between our numerical and
analytic results.
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Chapter 1

Introduction

1.1 Motivation

The definition and use of the overlap of two initially identical wavefunctions with
slightly different time evolution is deeply rooted in the historical development of sta-
tistical mechanics.
In the late 19th century, when Boltzmann first introduced his approach towards equi-
librium, Loschmidt was quick to point out that, since the underlying dynamics is sym-
metric in time, there should be no objection to return to the original non-equilibrium
state by simply reversing the velocities. This soon became known as the ”reversibility
paradox”. As a response, Boltzmann introduced his probabilistic interpretation of the
second law of thermodynamics and pointed out the importance of initial conditions. A
reversal of velocities is not realistic for a large number of particles, whose evolution is
also extremely sensitive to small errors. Ever since this dispute about the reversibility
of classical microscopic dynamic systems between Boltzmann and Loschmidt, people
have been looking for measures of reversibility. From the quantum-mechanical point
of view, Peres introduced the overlap of two initially identical wave functions with a
slightly different time evolution, the so-called fidelity, as such a measure in 1984 [1].
In honour of Loschmidt, this is also often given the name ”Loschmidt echo”, with the
interpretation of the projection of a state given to an unperturbed forward evolution fol-
lowed by a perturbed backward evolution onto the initial state (thus the name ”echo”).
Peres interpreted it as the probability for a system to be in a certain state after having
been exposed to different forward and backward evolutions.
Interestingly, this measure can be used both for classical and for quantum dynamics,
which has led to some interesting discoveries of relations between the two, especially for
quantum systems whose behaviour is strongly related to their classical correspondent.
For regular quantum systems deep in the semiclassical limit (i.e., their effective Planck’s
constant not being too large), it is well established to define action-angle variables [2]
at least locally, which allows us to use their classical analog in the leading order of
semiclassical approximations. Therefore, we can express quantum fidelity in terms of
classical quantities. By assuming perturbations with a non-zero time average, we find
two different general results [3]. For coherent initial states, the fidelity decay transpires
to be Gaussian, whereas for random initial states (which means pure states whose
coefficients are independent Gaussian random numbers), an algebraic decay is found,
depending on the dimension of the system.

1



2 CHAPTER 1. INTRODUCTION

For chaotic quantum systems, i.e. quantum systems with a corresponding classically
chaotic system, the spectrum of regimes is much richer and less dependend on the ini-
tial state. For very small perturbation strengths, perturbation theory still holds and
results in Gaussian decay (see [4]), under the assumption of eigenvalues and -functions
being uncorrelated and Gaussian distributed for strongly chaotic systems. This regime
is called the perturbative regime (PR) and it is the only one where a purely quan-
tum mechanical calculation is sufficient. Increasing the perturbation strength by a
small amount, we cross over to the Fermi golden rule regime (FGRR), where
exponential decay is preeminent [4, 5]. Here, the use of perturbative treatment is no
longer valid, requiring a semiclassical ansatz for the derivation. The next regime is
the Ljapunov regime, which is perhaps the most astonishing and therefore the one
which attracted a lot of attention, due to its independence of the perturbation strength.
Here, the fidelity decays exponentially, with the classical Ljapunov coefficient as decay
rate [6, 7]. This is remarkable, since it indicates a direct connection between classical
and quantum systems. Perturbing the system even stronger leads to the final break-
down of perturbation theory, even the classical one. Since the semiclassical treatment
ceases to be useful, there is no theoretical understanding yet for this regime, but an
even faster decay is expected. This regime is commonly known as the strong semi-
classical regime (SCCR) [8]. All four regimes have been experimentally verified
(e.g. in microwave billiards [9, 10]).
In Fig. 1.1, a graphic survey of the 4 different chaotic regimes can be found, depending
on time and perturbation strength. It is plausible that small perturbations need a
longer time to become evident than strong perturbations.

Figure 1.1: Schematic illustration of the qualitative dependence of the regimes on time t and
perturbation strength ε. This is of course but a qualitative overview, for details please refer to
the cited papers (especially [11] and [12] give a good overview).

A new access to the experimental realisation of the different regimes has been created
by a revival of experiments with cold and ultracold atoms [13]. Here, the δ-kicked rotor
plays an important role in the theoretical description of the experiments.
For this thesis, we investigate the kicked rotor system [14, 15, 16] in a special regime
of enhanced energy transport, the so-called quantum resonances. The rotor model
consists of a periodically driven pendulum with angle-dependent driving (see Fig. 1.2).
Continued energy absorption (more specific, a ballistic growth in energy) takes place for
certain driving frequencies, which can be proven to be rational multiples of π [17, 18].
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This frequency-matched driving leads to an unbound ballistic growth in energy.
Experimental realisations of the δ-kicked rotor build on modern atom optics: An en-
semble of cooled atoms is exposed to a pulsed laser beam of a specific frequency, which
is reflected by a mirror and thus constructs a stroboscopic one-dimensional standing
wave, also refered to as pulsed ”optical lattice” [19]. When the final position distribu-
tion of the atoms is measured after some time, this, combined with the time information,
renders it possible to extract information about their momentum distribution and con-
sequently their energies.
The only difficulty arising from this realisation is the difference in trajectories: While
the particle in the rotor model moves, as the name indicates, on a circle, the particle
in the experiment follows a straight line determined by the kicking potential. This
conflict can be resolved by use of the Bloch theorem for spatial periodicity, leading to
the conservation of a new quantum number, the ”quasimomentum” [20]. This leads to
a uniform description for both and results in mapping the kicked particle to the kicked
rotor problem.

Figure 1.2: Driven pendulum with an excursion-dependend external driving force k cos(θ),
experimentally realised by a pulsed laser wave.

The experiment has been realised with great success several times already (e.g. by
M. Raizen [13, 21, 22], G. Summy [23, 24] and R. Leonhardt [25, 26]). Since both
the preparation of cold and ultracold atoms and the tools of atomic optics such as
the modulation of optical lattices have reached hitherto unknown heights of precision,
theoretical results can be verified without being impaired by experimental inaccuracies
such as background noise, see e.g. [25].

The aim of this thesis is to observe the behaviour of the fidelity of the δ-kicked rotor
for slight deviations from resonance conditions. We perform comprehensive numerical
calculations to quantitatively characterize the dynamics for rotors with different ini-
tial quasimomenta over short and long time spans. The desire to also qualitatively
describe these observations makes it necessary to accurately put the quantum system
of the kicked rotor in the dynamical chaotic regime into context concerning the afore-
mentioned regimes. While chaotic dynamics prevails for higher values of the kicking
strengths, it is not possible to describe fidelity decay in this regime by one of the
derivations above. The reason for this is the finite resolution determined by the effec-
tive Planck’s constant, which is (per definition, since we want to investigate quantum
resonances) too large to resolve anything in a sensible way [26]. We therefore have to
employ a trick that was already used in [27, 28] and that will be explained in detail in
the next chapter: By utilising the perturbation ε, in our case the deviation from the
resonant frequency, as effective Planck’s constant, one may derive a pseudo-classical
phase space, which can (by coordinate transformations) be reduced to the well-known
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standard map. The dynamics displayed by this phase space are regular and adequately
resolved (see [29]). From the point of view of this ε-classical phase space, we will be
able to derive a description for resonant rotors which matches the one found from the
purely quantum mechanical calculations in the asymptotic case ε→ 0.

Working with the classical phase space equivalent derived by ε-classics (usable in the
vicinity of quantum resonances) is what essentially distinguishes our approach. Over
the last years, various attempts have been made to explain the behaviour of fidelity
for the δ-kicked rotor in different paramter regimes. For example, Sankaranarayanan
and Lakshminarayan found recurrences for the near-integrable regime [30] that can
be approximated by the harmonic oscillator, using very small kicking strengths and a
diminutive difference in kicking strengths. This, however, has no direct relation to our
results. We are (at least without ε-classics) deep in the chaotic regime, whereas in [30],
the phase space is pretty regular.
This is also the case for other publications, e.g. [31, 32]. All of them discuss the
behaviour of fidelity with underlying regular phase space, which is thus well understood
by know. However, almost no explanations can be found as to the behaviour of fidelity
in the chaotic regime (apart from numerical investigations). This is where our ansatz
offers a whole range of new possibilities: We are able to approach part of the chaotic
regime using the means known and tested for regular phase space.
Another important point, which we should mention here, is the different meaning of the
classical limit in the two approaches. For the δ-kicked quantum rotor, the semiclassical
limit consists of k → ∞ and τ → 0, while keeping their product constant. Using
ε-classics, we find a pseudoclassical limit ε → 0, for which we find ourselves at exact
quantum resonance.

As we shall see when exploiting the possibilities offered by ε-classics, the first results
are very promising. The harmonic oscillator approximation works well for the resonant
rotors and we are able to considerably enlarge our understanding of the fidelity close
to quantum resonance.

1.2 Outline of the thesis

Chapter 2 introduces the necessary theoretical and experimental preliminaries for the
study of periodically kicked atoms, including the phenomena of enhanced energy ab-
sorption (the so-called quantum resonances). It also reviews the work that has so far
been done on kicked atoms in quantum resonance [33]. The analytical derivation of
fidelity for single resonant rotors as well as for ensembles being averaged over quasi-
momentum is purely quantum mechanical [33]. As a further major point, we present
an overview of a possible experimental realisation for the measurement of fidelity for
δ-kicked atoms [34, 35, 36]. The chapter concludes with the derivation of ε-classical
phase space, an important tool which we will need in the following chapters.

In chapter 3, a range of interesting phenomena in the vicinity of the fundamental
quantum resonance is displayed, as obtained by numerical simulations. Furthermore,
a quantum-classical correspondence is drawn by calculating the corresponding classical
fidelity by use of the ε-classical standard map.
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Chapter 4 presents a new analytical access developed in this thesis. By using a semi-
classical approximation, it is possible to recover the result for the resonant rotor in
exact quantum resonance as obtained in chapter 2 from the viewpoint of ε-classical
phase space. From this result, we derive a formula for the behaviour of resonant and
near-resonant rotors for small detunings from quantum resonance conditions, which
successfully mirrors almost all the crucial features of the plots obtained by exact quan-
tum simulations.

Chapter 5 concludes with a brief summary of the results that have been obtained and
gives an outlook on further prospects and work to be done on this topic.

The appendices contain formulae and derivations which are used in this thesis.





Chapter 2

Preliminaries

In this chapter, we introduce both experimental and theoretical methods and review
known results on which the research of chapter three and four is based. We introduce
the modelling of our atomic system by the driven rotor in detail. Furthermore, an
overview of the relevant phenomena occuring in this system is given. Of those phenom-
ena, we shall especially make use of the already mentioned quantum resonances.
Another important topic is the behaviour of fidelity for the δ-kicked rotor at exact
quantum resonance, which will be calculated explicitly both for single rotors and for
ensembles. Furthermore, we will introduce a pseudo-classical phase space of the quan-
tum mapping close to resonance (as the Standard Map is to the quantum mapping
itself).

2.1 The δ-kicked rotor

The model

The fairly simple but important model of the δ-kicked rotor will be discussed in both its
classical and quantum mechanical treatment. While the classical kicked rotor is helpful
in understanding the transition into classical chaos [37], the quantum kicked rotor is also
a powerful theoretical tool which can be used to provide a good local approximation for
complex quantum systems [38], e.g. in the case of dynamical localisation for Rydberg
atoms in microwave fields [39, 40, 41].
What distinguishes the quantum kicked rotor from its classical counterpart is its discrete
spectrum and its number of parameter (two for the quantum case, only one for the
classical case). This is important to know in order to retrace the quantum trajectories
to the well-known Standard Map (also called Chirikov-Taylor Map), as we will do later,
using only one parameter instead of two (as is the case for the quantum kicked rotor,
where both kicking strength and the repetition rate of the kicks play an independent
role). The Standard Map is the classical analogue of the quantum evolution of the δ-
kicked rotor and displays regular, chaotic, and mixed dynamics for different parameter
regimes, inspiring a broad spectrum of research topics [42, 43, 44]. In the following,
we will briefly derive the Standard Map and give examples for the different dynamical
behaviour.

The Hamiltionian for a kicked particle consists of a free motion part, where there is

7
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no external influence acting, and the periodic kicks, which are experimentally realised
by a pulsed optical lattice with maximal depth of potential V0. The time between
two subsequent pulses is the period τ̃ . The Hamiltonian for a particle with mass m,
momentum p and space coordinate x reads:

H ′(t) =
p2

2m
+ V0 cos(2π

x

a
)

∞∑
j=−∞

δ(t− jτ̃), (2.1)

where a is the lattice constant. We will make use of experimentally meaningful units,
depicting our variables in terms of the characteristic recoil momentum kr = π

a for the

lattice as well as the recoil energy Er = k2
r~2

2m (the experimental units are based on
quantum-mechanical variables). By performing variable transformations

k =
V0T

~
, θ = 2kr mod 2π, P =

p

2kr~
, τ =

8ErT

~
τ̃ , (2.2)

the Hamiltonian can be written in the much clearer dimensionless form:

H(t) ≡ H ′(t)
8Er

=
P 2

2
+ k cos(θ)

∞∑
j=−∞

δ(t− jτ). (2.3)

T in the renormalisation is the Talbot time (actually, any characteristic time of the
system would do here). Make note that k is not the momentum here, but the force.
By using the Euler-Lagrange equations of motion,

Ṗ = −∂H(P, θ; t)
∂θ

= k sin(θ), (2.4)

θ̇ =
∂H(P, θ; t)

∂P
= P, (2.5)

one can relate P and θ immediately before the nth kick (notation: Pn, θn) recursively
to P and θ before the (n + 1)th kick. Since the rotation is continuous, the rotation
angle is not changed by the kicks, only by moving freely in betweeen for a period τ . P
is not changed by the free motion and the change induced by the kicks can be derived
by integrating the second equation of motion. Thus, the following iteration is found:

Pl+1 = Pl + k sin θl,

θl+1 = θl + τPl+1 mod 2π. (2.6)

This map is the afore mentioned Standard Map, already expressed in dimensionless
action-angle variables. There are two control parameters, namely τ and k. By defining
a new P by substituting P

τ , we obtain a new pair of equations which show periodicity
in θ and p very nicely:

Pl+1 = Pl + kτ sin θl,

θl+1 = θl + Pl+1 mod 2π. (2.7)

We have already defined θ as 2π-periodic, but P now also turns out to be periodic by
2π - the equations do not change by adding multiples of 2π to P. We are thus able to
plot a phase space cell of this size as representative of the whole phase space. We start
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out with 80 starting points with different initial momentum and θ = π. Iterating 500
times and plotting each trajectory, we obtain phase space portraits [45] of the Standard
Map (see Fig. 2.1).
The product kτ , also known as “stochasticity parameter” K, can be varied to observe
the transition from regular behaviour to chaotic dynamics in phase space. For K ' 1
(see [2]), a critical value is reached and the invariant curves are starting to dissolve.
For large K, all regular areas are destroyed, and only chaos remains.
If we now want to describe the quantum dynamics of a particle with the same (but
quantized) Hamiltonian, we have to rescale the system. Since we want to keep the
Standard Map as the classic analogue to our quantum mapping, we have to rescale τ
and k and, as it turns out, P as well. Our unitary Floquet operator (being the ordinary
time-evolution operator over one period) reads

Û = e−
i
~ [k cos(θ̂)+

R τ
0 dtP̂ 2/2] = e−

i
~ [k cos(θ̂)+τP̂ 2/2]. (2.8)

In order to keep the classical stochasticity parameter constant, we have to work Planck’s
constant into k and τ , in a way that the semiclassical limit is reached while keeping
the classical equivalent constant. We therefore define

P ′ =
P

~
, k′ =

k

~
, τ ′ = τ~, (2.9)

and have the quantum mapping

Û ′ = Û = e−ik′ cos(θ̂)−iτ ′P̂ ′2/2. (2.10)

The semiclassical limit then corresponds to k →∞ and τ → 0 [26].
The evolution operator yields the dynamics for one period, including free motion (P̂ ′2-
term) and the kick (k′-term). In order to look at the evolution of the wave function
over time, Û has to be applied a discrete number of times (time here is discretized
simply by taking the number of periods, i.e. kicks).

|ψ(t)〉 = Û t |ψ0〉 (2.11)

Numerically, this is implemented by first defining the inital state in momentum repre-
sentation and applying the free motion part of the Floquet operator. Then we make use
of the Fourier transformation to change into coordinate space, where we can directly
multiply the second part of the operator. This constitutes the most elegant and by far
the fastest way of calculating the time-evolved wave function for the δ-kicked rotor for
localized initial conditions and not too large times [46]. For the investigations in this
thesis, Fortran90 was used to implement the algorithms, and more than one function
was implemented following examples from [47].

As already mentioned in the introduction, the main difference between the δ-kicked
rotor (DKR) and kicked atoms in experiments lies in their trajectories: Originating
from the pendulum [14], the kicked rotor moves on a circle, whereas kicked atoms in
an optical lattice do not know such a boundary (see Fig. 2.2).
However, it is possible to retrace the description of kicked atoms to the space periodic
motion of the kicked rotor, thanks to the periodic potential of the standing wave (a
trick often used, e.g. in solid state physics). In order to perform this transformation,
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Figure 2.1: Illustration for regular (K = 0.1), mixed (K = 1), and chaotic (K = 10) behaviour
of the Standard Map. We use 80 equidistant starting points along θ = π and iterate 500 times,
resulting in 40000 points per picture.
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Figure 2.2: Illustration of the difference in motion between the kicked rotor in theory and
experiment.

we have to remember Bloch’s theorem, which asserts that any wave function can be
written as a Bloch wave, a product of a plane wave eiβx and a periodic wave function
ψβ(x), assuming that the system is invariant under discrete translations:

ψ(x) = eiβxψβ(x), ψβ(π) = ψβ(−π). (2.12)

Taking into account the spacing of the optical lattice a (for which the Hamiltonian of
our system is periodic), we find β constricted to the Brillouin zone [−π

a ,
π
a ]. By using an

appropriate scaling to dimensionless units, we can ascertain that β lies between 0 and
1 and thus constitutes the fractional part of the momentum. It is a constant of motion
(see above) and is also called quasimomentum. The total momentum then reads

P ′ = n+ β, n ∈ N, β ∈ [0, 1]. (2.13)

A pair of wave functions ψβ(x) with identical β, but different kicking strength k′ will
be called β-rotor in the following.
In general, the wave packet of a particle will consist of a superposition of Bloch waves:

ψ(x) =
∫ 1

0
dβeiβxψβ(x). (2.14)

Here, the crucial importance of the quasimomentum is clearly visible. Taking all kinds
of β, only very few will show resonant motion (see “quantum resonances” below) and
the behaviour of the wave packet will be largely determined by the bulk of nonresonant
rotors. Our motion is thus very much influenced by the fact that atoms in experiments
move on a line and not on a circle. This difference is also illustrated by the new
evolution operator. Inserting Eq. (2.13) into the Floquet operator and defining an
angular momentum operator N̂ = −i d

dθ (as the conservation of β suggests), we obtain:

Ûβ = e−ik′ cos θ̂e−i τ ′
2

( bN+β)2 = e−ik′ cos θ̂e−i τ ′
2

( bN2+2 bNβ+β2). (2.15)

The β2-part cancels out when calculating expectation values like the fidelity and can
thus be neglected. The Floquet operator of Eq. (2.15) therefore differs from the original
Floquet operator (2.10) for the kicked rotor by a phase 2N̂β.
Since all the relevant general rescalings have been performed by now, we shall return to
the use of variables without dashes in order not to complicate the notation. Of course,
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the variables will still refer to the rescaled quantities.

Quantum resonances

There are two relevant frequencies for kicked atoms: The characteristic frequency of the
system, namely the atomic recoil frequency (Er

~ ), which is determined by the parameters
of the standing wave, and the repetition rate of the pulses ( 1

τ ). If these happen to coin-
cide, there is no phase shift in between different kicks and we find a regime of enhanced
energy transport [17] which is otherwise suppressed by dynamical localisation [48, 49].
A number of subsequent kicks consequently have the same result as one kick with the
added kicking strengths of all the kicks. We find quadratic energy growth (see Fig. 2.3
and Eq. (2.16)). This phenomenon has since been confirmed experimentally [50].
Assuming quantum resonance conditions, which will be derived in the next paragraph,
results in a match of both the aforementioned frequencies. The mean energy can be
calculated easily by taking the expectation value. We take a plane wave ψ0(θ) = 1√

2π

ein0θ with initial integer momentum n0 as initial state (setting the quasimomentum to
zero). We denote the discrete time, i.e. the number of kicks, as t. One obtains for the
average energy:

Eav(t) = 〈ψ(t, θ)| − 1
2
∂2

θ |ψ(t, θ)〉

= −1
2
〈ψ∗0(θ)| Û−t∂2

θ Û
t |ψ0(θ)〉

= − 1
8π2

∫ 2π

0
dθe−in0θeikt cos(θ)∂2

θ [e−ikt cos θein0θ]

=
k2t2

4
+
n2

0

2
. (2.16)

Independently of the value of intial momentum, we find quadratic energy growth. If we
used a Gaussian wave packet instead of a plane wave, there would be additional factors
and the behaviour of energy growth would be obscured (since not only resonant rotors
would take part).
What does this mean in terms of our notation, what are the conditions for ballistic
spread occuring? The atomic recoil frequency is fixed. What we are able to change,
though, is the time between subsequent kicks. As it was shown, the free motion part
of the Floquet operator can be written in terms of integer (n) and fractional (β) part
of momentum. Since any phase factors would have to originate in the motion between
kicks, we set:

e−i τ
2
(n2+2nβ) = 1. (2.17)

Since we know e−iπln2
to be 1, it makes sense to take τ as a multiple of 2π. The first part

with n2 then gives the identity and only the second part (determined by β) matters.
We shall calculate the result for the first two fundamental quantum resonances:

• τ = 2π: β = 1
2

• τ = 4π: β = 1
2 or the special case of the rotor on a circle, β = 0
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Figure 2.3: Energy growth in and out of quantum resonance. The blue curve displays unbounded
ballistic energy growth for τ = 4π, a fundamental quantum resonance, the red curve describes
limited growth for τ = 1.

In general, the following conditions define our quasimomentum if we want to explore
quantum resonances:

Quantum resonance conditions:

τ = 2πl (l ∈ N), β = 1
2 + j

l mod (1), j = 0, 1, ..., l − 1

For the rotor wave packet to spread ballistically, that is, for quadratic energy growth
to occur, both conditions have to be fulfilled. If the condition in β is fulfilled, we speak
of “resonant β-rotors”.
There exist also higher order resonances for periods consisting of fractions of π. The
most general definition of quantum resonance conditions [17, 51] reads

τ = 4π
s

q
(s, q ∈ N), β =

m

2s
, 0 ≤ m < s, s ∈ N. (2.18)

q here is called the order of the resonance. We can therefore identify our two examples
as quantum resonances of second and first order respectively.
The quantum resonances of higher order are an interesting mathematical phenome-
non [52], but they can almost always be neglected in practice, since they are difficult to
resolve in experiments. However, as recent as 2006, experimental proof of the predicted
higher-order resonances [18, 53, 54] was found [55, 56]. In the following chapters,
though, we will only concentrate on fundamental quantum resonances.

Experimental realisation

The handling of cold (T ≈ 10µK) and ultracold(T ≈ 100nK) atoms has reached an
unprecedented control in the last few years, allowing model Hamiltonians like the δ-
kicked rotor to be realized almost to a point, without having to worry about impurities
and decoherence [57]. Early experiments with cold atoms were realized at Oxford by
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Summy et al. [58] and at NIST by Phillips et al. (who shared the Nobel Prize in 1997).
In the last few years, the trend went towards ultracold atoms [59, 60], which permit a
restriction of quasimomentum to a fraction of their range (up to 1%), allowing almost
exact modelling of small intervalls of β-rotors.
The idea of an experimental setup to realize the δ-kicked rotor system is conceivably
simple. A cloud of atoms is exposed to a standing laser wave (see Fig. 2.4). Pulsing
the laser in regularly spaced intervalls creates the external driving force, with the free
motion in between. Every time the laser is turned on, each atom experiences a force
~F = ~∇V , depending on the space coordinate. Sitting in one of the minima or maxima
of the potential V , the force is zero, whereas it gets maximal in the points of inflexion.
The final position distribution is easily obtained, as is the timing information, making
it possible to calculate and evaluate momentum distributions, mean energy, and other
observables of interest. For a detailed overview of experimental methods in atomic
optics, see [19] and [61]. For their applications, it is worth it to look at [62, 63, 64] and
[65].

Figure 2.4: Experimental scheme for the realisation of the δ-kicked rotor model (here shown
during a kick). A pulsed laser is reflected by a mirror, thus building a stroboscopic standing
wave that gives the atoms a kick each time it is turned on.

2.2 Fidelity – a measure of stability in quantum dynami-
cal systems

Definition, interpretation and significance

Fidelity is defined as the overlap of two initially identical wavefunctions which are
subject to a slightly different time evolution operator. Rather than evaluating the ex-
ponential divergence of trajectories as it is done in classical systems, where the inital
state is crucial to the evolution, we need to consider changes in the Hamiltonian for
quantum systems. Due to unitarity, the distance 〈ψ′|ψ〉 between initial quantum states
will not change by exposing them to the same evolution. This is why a different time
evolution is chosen to define fidelity as a measure of stability in quantum dynamical
systems:

F (t, δ) = |〈ψ |ψδ〉 (t)|2 =
∣∣∣〈ψ0|U †

0Uδ |ψ0〉
∣∣∣2 (2.19)
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where the propagator is given by the time-ordered exponential

Uδ(t) = T̂ e−
i
~

R t
0 dt′Hδ(t′), Hδ(t) = H0(t) + δV (t), (2.20)

where both H0 and V are symmetric in time. δ is a small perturbation parameter
(δ � 1) in the evolution.
There are two different interpretations for the fidelity:

• The so-called “Loschmidt echo”: An initial state ψ0 is evolved by an evolution
operator with an undisturbed Hamiltonian H0 to a time t

2 , then it is evolved for
another time t

2 using the slightly perturbed Hamiltonian Hδ. The overlap of the
evolved state after time t with the original state ψ0 is then interpreted as an echo.

• If two initially identical states are evolved with different Hamiltonians H0 and
Hδ, the overlap after a time t can be regarded as a measure of stability of the
system.

Connection to the correlation function

There is a direct connection between fidelity decay and temporal correlation decay.
We will derive it in detail here to underline that fidelity is nothing but a correlation
function itself. The definitions and calculations in this paragraph closely follow [11].
By using the interpretation of fidelity as an echo, we define the echo-operator as the
propagator in the interaction picture:

Mδ(t) = U0(−t)Uδ(t). (2.21)

This enables us to write the fidelity as the modulus square of the expectation value of
Mδ(t):

Fδ(t) = |〈ψ0|U0(−t)Uδ(t) |ψ0〉|2 = |〈Mδ(t)〉|2 . (2.22)

We also transfer the perturbation operator into the interaction picture:

Ṽ (t) = U0(−t)V (t)U0(t) →Mδ(t) = T̂ e−
i
~ δ

R t
0 dt′Ṽ (t′). (2.23)

Mδ(t) conveniently obeys the evolution equation with the effective Hamiltonian δṼ (t),

d

dt
Mδ(t) = − i

~
δṼ (t)Mδ(t). (2.24)

For small ε, it is allowed to use a perturbative treatment. We therefore expand Mδ(t)
in a Born series

Mδ(t) = 1 +
∞∑

m=1

(−iδ)m

~mm!

∫ t

0
dt1dt2...dtmT̂ Ṽ (t1)Ṽ (t2)...Ṽ (tm), (2.25)

and take the expectation value:

〈Mδ(t)〉 = 1− iδ

~

∫ t

0
dt′〈Ṽ (t′)〉 − δ2

~2

∫ t

0
dt′

∫ t′

0
dt′′〈Ṽ (t′)Ṽ (t′′)〉+O(δ3). (2.26)
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This leads to an approximation of the fidelity for small perturbations:

Fδ(t) = 1− δ2

~2

∫ t′

0
dt′

∫ t

0
dt′′C(t′, t′′) +O(δ4) (2.27)

with the 2-point-correlation function of the perturbation

C(t′, t′′) = 〈Ṽ (t′)Ṽ (t′′)〉 − 〈Ṽ (t′)〉〈Ṽ (t′′)〉. (2.28)

This approximation is valid for a regime where δ is appropriately small for the higher
order terms not to interfere. It is known as the linear response expression for the fidelity.
The only condition that has to be fulfilled is that 1 − Fδ(t) has to be small, i.e., we
have to have high fidelity. The expression is not necessarily restricted to small times.
With this simple derivation of fidelity for small δ, the connection between fidelity and
temporal correlation becomes clear: The faster the decay of C(t′, t′′) augments as a
function of | t′ − t′′ |, the slower the fidelity decays and vice versa. This is one of the
most important physical properties of quantum echo-dynamics.

For very short times (before the correlation function starts decaying), we only consider
C(0, 0), which causes the second part of the correlation function to drop out, and
therefore always find quadratic decay (similar for time-independent H):

F (t) = 1− δ2

~2
〈V 2〉t2 (2.29)

This is an important result, since although there appear to be all kinds of fidelity decay
for different systems, each decay starts out quadratically in the very beginning.

2.3 Kicked atoms in quantum resonance - a review

Fidelity for the kicked rotor at exact quantum resonance conditions has caused some
commotion, since, unlike a lot of research on fidelity in different systems, fidelity for an
ensemble of β-rotors averaged over quasimomenta shows an interesting effect on large
timescales: It saturates. This was first discovered in [36] and has since been confirmed
experimentally [35]. This behaviour is one of the few which can be calculated exactly,
without any kind of semiclassical approximation.
In this section, we shall review these calculations, which are the basis for the research
done in the vicinity of quantum resonances. However, we have to pay attention to the
fact that the perturbation δ in this case is the difference in kicking strengths ∆k =
k2 − k1. We shall start with calculating fidelity for single β-rotors, for ∆k > 0 and for
the fundamental quantum resonances 2πl. As initial state of a particle we will assume
a plane wave with momentum p0 = n0 + β:

ψβ(θ) =
1√
2π
δ(β − β0)ein0θ. (2.30)

The form of the plane wave, composed of a δ-function and the translation to the integer
momentum n0, originates in the form of the corresponding Fourier Transforms combined
with Eq. (2.14). The time evolved wave function can then be calculated by applying
the evolution operator (2.15):

ψβ(t, θ) = (Ûβ)tψβ(θ), (2.31)
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with
Ûβ = e−ik cos(θ̂)e−iπ(2β+1)lN̂ . (2.32)

Here, we have already used the identity e−iπn2l = e−iπnl for the eigenvalues n of the
angular momentum operator N̂ . The second part is nothing but a translation in θ-space
(see standard text books for quantum mechanics, e.g. [66]):

e−iπ(2β+1)lN̂ψβ(θ) = ψβ(θ − πl(2β + 1)). (2.33)

By iterating the application of the t translations and the following kicks, we find

ψβ(t, θ) = (Ûβ)tψβ(θ) (2.34)

= exp

−ik
t−1∑
j=0

cos(θ − jπl(2β + 1))

ψβ(θ − πl(2β + 1)). (2.35)

Denoting πl(2β + 1) := z, we can write the sum as

t−1∑
j=0

cos(θ − jz) = |Wt| cos(θ + arg(Wt)) (2.36)

with Wt =
∑t−1

j=0 e
−ijz. This becomes clear when writing the cosine as sum of complex

exponentials, factor out the |Wt| and write the remaining complex exponentials once
more as a cosine.
In order to calculate fidelity for one β-rotor, we sum two wavefunctions with different
kicking strengths over all possible integer momenta:

Fβ(t, k1, k2) =

∣∣∣∣∣
∞∑

n=−∞
ψ∗β(t, n, k1)ψβ(t, n, k2)

∣∣∣∣∣
2

. (2.37)

To calculate this explicitly, it is useful to write ψβ(θ) in momentum representation:

〈n|Û t
βψβ〉 =

1√
2π

∫ 2π

0
dθe−inθ−ik|Wt| cos(θ+arg(Wt))ψβ(θ − tz). (2.38)

Shifting θ to θ + arg(Wt), one obtains the simplified expression:

〈n|Û t
βψβ〉 =

1√
2π
ein arg(Wt)

∫ 2π

0
dθe−inθ−ik|Wt| cos(θ)ψβ(θ − tz − arg(Wt)). (2.39)

Now we insert this into the fidelity and use the Fourier transform of the δ-function to
calculate the fidelity as follows:

Fβ(t, k1, k2) =

∣∣∣∣∣
∞∑

n=−∞

1
(2π)2

∫ 2π

0
dθ

∫ 2π

0
dθ′e−in(θ−θ′)−i|Wt|(k1 cos(θ)−k2 cos(θ′))

∣∣∣∣∣
2

=
∣∣∣∣ 1
2π

∫ 2π

0
e−i|Wt|(k1−k2) cos(θ)

∣∣∣∣2 . (2.40)
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Figure 2.5: t−1-decay of fidelity for the δ-kicked rotor, numerically calculated with k1 = 4.0
and k2 = 4.1.

Making use of (A.1), we obtain the final result for the single β-rotor

Fβ(t) = J2
0 (|Wt|(k2 − k1)), (2.41)

which nicely agrees with the numerical simulations (Fig. 2.5).
If both kicking strengths k1 and k2 are equal, fidelity does not decay, but stays constant
at Fβ = 1. If the quasimomentum fulfills quantum resonance conditions (that is β =
1
2 + j

l mod (1), j = 0, 1, ..., l − 1), then |Wt| = t. We can now use the asymptotic
approximation (A.2) to calculate the fidelity for resonant rotors for large times:

Fβ(t) ' 2
πt∆k

cos2(t∆k − π

4
). (2.42)

The overlap decays like a power-law ∼ t−1 while oscillating, as can be seen in Fig. 2.5.
The long-time approximation already takes hold after only few kicks, yielding a very
good approximation of the numeric data.

We are now able to calculate the fidelity for the full ensemble of β-rotors. Full ensemble
fidelity for a uniform distribution of quasimomenta is defined and computed as

F (t, k1, k2) =

∣∣∣∣∣
∞∑

n=−∞

∫
dβψ∗β(t, n, k1)ψβ(t, n, k2)

∣∣∣∣∣
2

=
∣∣∣∣∫ 1

0
dβJ0(|Wt|(k2 − k1))

∣∣∣∣2 , (2.43)

thus averaging over an incoherent ensemble of β-rotors. It is very important to mark
that the modulus square here is taken only after the averaging has been performed,
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which is in accordance with the density operator definition of fidelity as it is used in
statistical mechanics. Several years before, the analytical results for full fidelity that
we will review in this chapter were supposed to be measured in an experimental setup
in Oxford by d’Arcy et al. [67], but unfortunately, they summed incoherently over the
quasimomenta – resulting in data with no assessable analytical equivalent. Without
the modulus square only being taken in the end, one could not derive the following
results.
Averaging over an incoherent ensemble of atoms yields:

F (t, k1, k2) =
∣∣∣∣∫ 1

0
dβJ0(|Wt|∆k)

∣∣∣∣2 (2.44)

=
∣∣∣∣∫ π

−π

dx

2π
J0(∆k sin(tx) csc(x))

∣∣∣∣2 (2.45)

=

∣∣∣∣∣∣
∫ π

−π

dx

4π2

t−1∑
j=0

2π
t
J0(∆k sin(x) csc(xt−1 + 2πjt−1))

∣∣∣∣∣∣
2

. (2.46)

This describes the behaviour of fidelity for β-averaged ensembles accurately at all times.
It is also possible in this case to find a long time approximation, because for t → ∞
and 2πj

t → α, the sum over j approximates the integral over α, resulting in

F (t→∞) →| 1
(2π)2

∫ π

−π
dx

∫ 2π

0
J0(∆k sin(x) csc(α)) |2 (2.47)

=
1

(2π)2
J2

0 (
∆k csc(α)

2
), (2.48)

where (A.3) was used to derive the latter expression. The asymptotic value for the
fidelity therefore only depends on ∆k, which is clearly visible in Fig. 2.6.

Figure 2.6: Saturation of fidelity at quantum resonance, on the left as calculated numerically
in [33] and on the right as measured in the experiment at Harvart by Prentiss et al. [35]. In
the first picture, the fidelity is plotted against the product ∆kt for different values of ∆k, so
the dip is always at the same x-coordinate. In the second picture, fidelity is denoted as f and
plotted against the discretized time, namely the number of kicks N, which leads to the dips of
the different ∆k-curves being dislocated.

After a small dip, saturation sets in and gives different, but constant values for different
∆k. The initial decay is determined by the resonant β-rotors. However, those soon
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surrender to the bulk of nonresonant rotors leading to saturation. There have been
predictions of fidelity plateaus in other systems in the past, but those were mostly
derived by semiclassical methods and unstable for larger times. The saturation of
fidelity found for the kicked rotor is the first stable fidelity plateau that is accounted
for so far.

As we have seen, fidelity in quantum resonance can nicely be calculated quantum-
mechanically, but what about small detunings ε from 2πl? This has also been inves-
tigated numerically in a rudimentary way in [36]. What was found is that for small
perturbations ε in the kicking period τ , the saturation previously seen is destroyed and
the fidelity globally starts decaying (see Fig. 2.7):

Figure 2.7: Decay of the fidelity for the kicked rotor at τ = 2π + ε, k1 = 0.6π and k2 = 0.8π,
taken from [36]. These values of the kicking strengths will be used frequently in this thesis,
since they correspond to the original kicking strengths used in the Oxford experiment [24].

Unfortunately, it is impossible to fit the decay to some exponential or power-law de-
cay, rendering further explorations difficult. It is at this point that we will start our
numerical investigations in the next chapter.

The fascinating thing about the fidelity for full ensembles which we have calculated
above is the fact that it is directly accessible in experiments. We will give an overview
of the experiment proposed in [36], which is also close to the experimental setup at
Harvard that first measured the predicted fidelity saturation. The experimental setup
is given in Fig. 2.8. It was inspired by a proposal for an experimental realisation of the
δ-kicked harmonic oscillator using an ion trap [68, 69].
The idea of the experiment is to use atoms with a forked substructure, such as the
hyperfine structure for cesium atoms, where the 62S1/2 ground state is split into (F =
3,mF = 0) and (F = 4,mF = 0). A π

2 Ramsey pulse with a frequency suited to the
energy level difference E2−E1 produces an equal population of the two levels, operating
on the initial state where all atoms are in the F = 3 state. After letting the particles
evolve for a time t according to the δ-kicked rotor Hamiltonian, a second π

2 Ramsey
pulse with a phase shift φ in reference to the first one returns the evolved states to
their measurable ground states.
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Figure 2.8: Experimental setup as proposed for the measuring of ensemble fidelity for the δ-
kicked rotor, taken from [36]. The atomic hyperfine structure was used to prepare the atom
in two equally populated sublevels by means of a Ramsey pulse. Since the two levels couple
differently to the external driving, their evolution during time t differs and this difference is
measurable after reprojection onto the two levels by a second Ramsey pulse.

One can express a Ramsey pulse with phase φ as:

R̂φ

[
ψ1

ψ2

]
=

1√
2

[
1 eiφ

e−iφ 1

] [
ψ1

ψ2

]
. (2.49)

The Ramsey pulses are assumed to happen instantaneously at the beginning and the
end of the kicked particle dynamics section (see Fig. 2.8). The phase between the two
Ramsey pulses being φ, we can then describe the full evolution (including the kicked
particle dynamics and the two Ramsey pulses) by the evolution operator

Ût,φ = R̂φŴtR̂0, (2.50)

which gives for the evolved states (assuming the initial states as ψ1 = 0 and ψ2 = ψ):

ψ1,φ =
1
2
e−iE1t(Û1,t + e−i((E2−E1)t−φ)Û2,t)ψ, (2.51)

ψ2,φ =
1
2
e−iE2t(−Û1,te

−i((E2−E1)t−φ) + Û2,t)ψ. (2.52)

What is measured in the experiment is the momentum distribution, in general for the
lower state, which can be easily calculated:

P (p, t, φ) =
1
4
| 〈p|Û1,tψ〉 |2 +

1
4
| 〈p|Û2,tψ〉 |2 +

1
2
<(e−i((E2−E1)t−φ)〈Û1,tψ|p〉〈p|Û2,tψ〉). (2.53)

To obtain the total probability, it is necessary to integrate over p, which yields the
probability for the particles to be in the lower level:

P (t, φ) =
1
2

[
1 + <

(
e−i((E2−E1)t)−φ)〈Û1,tψ|Û2,tψ〉

)]
. (2.54)
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This is already averaged over all the atoms of the experiment, i.e., over all quasimo-
menta, allowing us to derive the overlap of two evolved states with kicking strengths
k1 and k2 from the result. In analogy to the statistical density operator definition of
fidelity [33], it is possible to define the real part of P (t, φ) by the square root of the
fidelity multiplied with a factor:

<
[
e−i((E2−E1)t−φ)〈Û1,t|Û2,tψ〉

]
=

√
F (t) cos(φ′), (2.55)

where φ′ and φ differ by a constant shift. We have thus found the fidelity as a func-
tion of the total momentum probability. Using different values for φ, one can extract
the fidelity as a function of time, which allows the analytical expressions above to be
verified.

2.4 Underlying ε-classical phase space

Earlier in this chapter, the phenomenon of quantum resonance conditions has been
described in detail and fidelity in the fundamental quantum resonance has been cal-
culated explicitly. For the research done in the next two chapters, where we slightly
deflect from resonance, we need to use a new description of the underlying phase space.
In the original parameter regimes, we are deep in the chaotic regime (kτ & 5), but
our effective Planck’s constant τ is too big to resolve details. Therefore, we have to
use a trick that has already been useful in the context of quantum accelerator modes
for the δ-kicked rotor [27]. These calculations can also be found in [33, 28, 70] where
ε-classical phase space was first derived by making use of the special combination k|ε|
in the quantum kicked rotor.
We start out with the fundamental quantum resonances τ = 2πl (l ∈ N) and take a look
at their vicinity τ = 2πl+ ε, with a small detuning ε. The idea is to map the quantum
resonances to the classical nonlinear resonances of a similar model, thus producing a
direct correspondence between quantum evolution and classical mapping. This classical
mapping can further be retraced to the well-known Standard Map, as we shall see. The
only difference to the quantum mapping and the Standard Map of the beginning of
this chapter will be the effective Planck’s constant: We will use ε instead of τ here in
order to derive the iteration, which means that the ”classical” limit here is not related
to ~ → 0, but instead to ε→ 0 (that is, approaching the resonance). This new effective
Planck’s constant also has the additional advantage of the resolution being improved
vastly. The derived “classical” dynamics are baptized ε-classical in the following.
We start the semiclassical approximation by defining I = |ε|N = −i|ε| d

dθ and k → k|ε|,
so that we can rewrite the free evolution part of the Floquet operator as

e−i τ
2
(n+β)2 = e−iπln2

e−i ε
2
n2
e−iτnβe−i τ

2
β2

= e
−iπl I

|ε| e
−isign(ε) I2

2|ε| e
−iτβ I

|ε| e−i τ
2
β2
. (2.56)

We may once more drop the β2-part. As implied above, we now use ε as Planck’s
constant:

Uβ(t) = e
− i
|ε| (k̃ cos(θ)+ 1

2
sign(ε)I2+I(πl+τβ))

. (2.57)
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Compared to Eq. (2.10), we find Eq. (2.57) to be the formal quantisation of the map:

θt+1 = θt ± It + πl + τβ mod (2π),

It+1 = It + k̃ sin θt+1. (2.58)

By a change of variables,

(J = ±I + πl + τβ, ϑ = θ + π(1− sign(ε)/2),

we get the well known Standard Map, which we will refer to as ε-classical Standard
Map:

Jt+1 = Jt + k̃ sinϑt+1,

ϑt+1 = ϑt + Jt. (2.59)

In this notation, varying β from 0 to 1 is the same as scanning the phase space cell
from π to 3π, so different β’s depict different sections of the ε-classical phase space.
Depending on whether this makes for starting conditions on the resonance island in
the Standard Map or not, we find librational or rotational (sometimes even with higher
order resonances) motion. β = 1

2 results in J0 = 2π, which again gives the primary
resonance island. For these resonant rotors (β = 1

2), the trajectories are launched on
the island itself, resulting in quadratic energy growth, as expected for the quantum
resonances. The other values for β are symmetric around β = 1

2 , which is why only
smaller values below 0.5 are plotted in Fig. 2.9. Therefore, the ε-classical approximation
accounts for the quantum resonances in terms of the classical resonances of the Standard
Map. The addition εβ to the starting conditions dislocates the center of the island by
a small amount, but in most applications of ε-classics this is negligible.
For ε = 0, this pseudoclassic approximation is trivially exact for all times. It is further
valid only for very small values of ε (ε� 1) and if the time scales are not exceptionally
large (although this is also an automatic requirement imposed by the experiment). The
ε-classic description has proven to be very accurate if these conditions are fulfilled. It
is only spoiled by quantum effects such as tunneling on large time scales.
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Figure 2.9: Phase space portraits for the map (2.59) with k = 0.8π and ε = 0.05. On the right
is the ordinary Standard Map, on the left side single values of β partly reproduce it (red for
β = 0, blue for 0.1, magenta for 0.2, green for 0.3, yellow for 0.4, black for 0.5).



Chapter 3

Numerical investigation of
fidelity close to quantum
resonance

In the last chapter, we have reviewed numerical and analytical observations of the
behaviour of single β-rotors and ensembles at exact quantum resonance. This is only
possible if the wave function is known analytically, which is very rarely the case. As
soon as we leave the resonance even by a small deviation ε, it is not possible anymore to
find an analytic expression for the wave function as time evolves. In this chapter, we will
therefore focus on presenting numerical simulations showing the behaviour of kicked
atoms in the immediate vicinity of quantum resonance. Without loss of generality,
we concentrate our efforts on the fundamental quantum resonance (with dimensionless
kicking period τ = 2π), which means that our resonant rotors have quasimomentum
β = 1

2 (see also section 2.1).
At the beginning of this chapter, numerical results from quantum simulations showing a
selection of interesting phenomena for the investigated parameter range are presented.
We discuss in detail the dominant behaviour of the resonant rotors in the ensemble
calculations. The resonant rotors turn out to be the most interesting rotors for further
investigations since they even determine the behaviour of fidelity for full ensembles. We
shall first calculate their behaviour numerically and later model them in an analytic
expression (see chapter 4). Finally, we investigate the quantum-classical correspondence
of fidelity for our modelling system. In order to do this, we define a classical fidelity
which basically consists of counting the trajectories of the pseudoclassical ε-Standard
Map (2.59) which return to some defined starting area. Comparing quantum to classical
fidelity will then help to identify where the observed phenomena originate from.

3.1 Quantum calculations of fidelity close to resonance

3.1.1 Behaviour of fidelity for the full ensemble in β

As we observed in Fig. 2.7, fidelity for an averaged ensemble of β-rotors (with β uni-
formly distributed between 0 and 1) starts decaying as soon as we depart from exact
quantum resonance. Taking a closer look, however, there is more to their behaviour
than just decay: We observe characteristic fluctuations (see Fig. 3.1). The Fourier

25
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Figure 3.1: Upper panels: Fidelity close to resonance for an ensemble of 1000 β-rotors with
kicking strengths k1 = 0.8π and k2 = 0.6π and ε = 0.04 (left), ε = 0.07 (middle), and ε = 0.1
(right). β is uniformly distributed between 0 and 1. For full ensembles, we discover fluctuations
with a characteristic frequency (marked by red arrows) and its higher harmonics, as can be
seen by looking at the Fourier transform (lower panels). The spacing of the oscillations does
obviously depend on ε. An estimate of the mean noise threshold is plotted as a green line.

Transform of the fidelity shows a spectrum with regularly spaced peaks. In order to
decide which features of the Fourier Spectrum are of interest to us, we have to estimate
the noise threshold – otherwise, some of the most interesting features of Fourier Spec-
tra might turn out to be nothing but noise. To estimate the average noise, we look at
the Fourier Transform of fidelity after subtracting the characteristic oscillations. The
average of the remaining points of the Fourier Spectrum are displayed as the mean
noise threshold in Fig. 3.1.

For large times, the spacing between the largest oscillations in the fidelity represents a
period T , which corresponds to the smallest peak in the Fourier Transform. This peak
is unfortunately not resolved due to its small size compared to the offset of the Fourier
Transform (which is an inherent feature of the numeric realisation). We did analogue
computations for a wide range of parameters (0.01 < ε < 0.2 and 0.8 < k1, k2 <
5.0), obtaining similar oscillations dependent on the values of ε, k1, and k2. We can
deduce from these observations that what we have found is essentially one characteristic
frequency and its higher harmonics. But what kind of characteristic frequency could
we possibly be observing?
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In order to find an answer to that question, we will have to simplify our system.
The Hamiltonian for a kicked particle is too complicated to analytically derive any
characteristic frequencies. Using different arguments, we will first approximate the
kicked atom by a pendulum, and then the pendulum by the harmonic oscillator. This
will lead us to discover the time scales which are characteristic for our system.
In the following parts of this chapter, we heuristically use arguments based on such
approximations, whereas in chapter 4 we heavily rely on them to derive analytical
predictions for close to resonant rotors (in our case τ = 2π + ε, β ≈ 0.5).
Keeping in mind that we can map the evolution near the quantum resonance to the
ε-classical phase space of chapter 2, we find that the regular oscillations must come
from rotors situated on the island. The island section, however, is similar to the phase
space of the pendulum (see Fig. 4.2). This approximation will be illustrated in detail
in chapter 4 (see Fig. 4.2). Here, it will have to suffice that the Hamiltonian for the
kicked atoms, namely

H1 =
θ̇2

2
+ kε cos(θ)

∞∑
j=−∞

δ(t− jτ), (3.1)

can be approximated by a pendulum Hamiltonian. Their phase space is very similar
close to the fixed point, allowing a satisfying approximation. The main difference
consists in the change from discrete time to the continuum. This is done by Fourier
analysing the Hamiltonian in terms of the kick perturbation:

kε cos(θ)
∞∑

j=−∞
δ(t− jτ) = kε

∞∑
j=−∞

cos(θ − 2πjτt), (3.2)

where kε is small. Using a time averaging in order to eliminate the discrete time steps,
the higher frequencies can be neglected and only the term for j = 0 is significant (since
only this term is exactly on the resonance island and generates ballistic energy growth,
see Fig. 2.3). This approximation results in the pendulum Hamiltonian:

H2a =
θ̇2

2
+ kε cos(θ). (3.3)

Displacing θ by π, we obtain a slightly modified pendulum Hamiltonian,

H2b =
θ̇2

2
− kε cos(θ), (3.4)

from wich we are now able to derive the harmonic oscillator by making use of a small
angle approximation. We expand the cosine of θ around zero (which corresponds to
the fixed point) and thus find as an approximation of second order in θ the harmonic
oscillator with Hamiltonian

H3 =
θ̇2

2
+ kε

θ2

2
, (3.5)

where we have neglected the constant kε (from the zeroth order of the expansion),
since it has no significance when it comes to deriving equations of motion or expectation
values like the fidelity. As already mentioned, this approximation is only valid for small
angles θ, i.e., close to the fixed point.
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ε T = 2π/ω2b Tmeasured

0.1 93.5 94 (± 2)
0.05 132.3 133 (± 2)
0.01 295.8 295 (± 2)

Table 3.1: Comparison of the periods of the calculated period T and the measured period from
data like Fig. 3.1 for kicking strengths k1 = 0.8π and k2 = 0.6π, and various ε. The agreement
between both is excellent; the characteristic frequency is thus the beating frequency.

The harmonic oscillator, however, is a very simple system and has been investigated
quite thouroughly in most textbooks on classical and quantum mechanics. Using the
Hamilton-Jacobi equations, we can derive the equation of motion of a harmonic oscil-
lator with frequency ω:

d2θ

dt2
= −ω2θ. (3.6)

This equation is solved by a plane wave with frequency ω. Comparing (3.6) with the
equation of motion derived from (3.5), it follows that the harmonic oscillator approx-
imation of ε-classics should yield a frequency ω =

√
εk. As a consequence, a system

consisting of two harmonic oscillators with kicking strength k1, respectively k2, is de-
termined by two characteristic frequencies, namely the beating frequency (ω1−ω2) and
the sum of the characteristic frequencies of both systems (ω1 + ω2), where ωi =

√
εki.

Keeping this in mind, the frequencies of the fluctuations which we observed can be
identified with the beating frequency (baptized ωbf ):

ωbf = ω1 − ω2 =
√
|ε|(

√
k1 −

√
k2). (3.7)

The frequency (ω1 + ω2) is too large for us to observe in our numerical calculations.
The beating frequency can also be derived quantum mechanically. In order to do this,
we write the initial state ψ0 = ein0θ as a linear combination of the orthonormal set of
stationary states {|ψn(θ, t = 0)〉} = {|n〉} of the quantum harmonic oscillator:

ψ0 =
∑

n

cnψn, (3.8)

with coefficients cn =
∫
dθe−in0θψn(θ). For the evolution operator, we use the evolution

of the harmonic oscillator, and thus obtain for ψ(t):

ψ(t) =
∑

n

cne
−iEntψn(θ). (3.9)

Looking at the overlap of two such harmonic oscillators, we can use the fact that for
small differences in the frequencies (respectively the energies), the stationary states
stay the same in a first order approximation. Since our two frequencies, ω1 =

√
εk1

and ω2 =
√
εk2, are very close, we can assume that |n〉 ≈ |n′〉. After this diagonal

approximation (due to the orthonormal stationary states, which produce a δ-function),
the overlap reads:

〈ψ(t) | ψ′(t)〉 ≈
∑

n

| cn |2 ein(ω1−ω2)t. (3.10)

As expected, we find the beating frequency and its higher harmonics. Even taking
the modulus square according to the definition of the fidelity (see Eq. (2.19)) does not
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change that. The summed frequency ω1 + ω2 is lost in this first order approximation,
but it can be recovered when considering higher terms of the Taylor expansion of the
stationary states.
We have shown the origin of the beating frequency in the classical and the quantum
harmonic oscillator. In Table 3.1, we now compare measured values for different ε to
the ones calculated using Eq. (3.7). The agreement is more than convincing – we have
discovered where the characteristic frequency that we have observed comes from.
The most characteristic behaviour of the fidelity for the full β-ensemble thus originates
in the few resonant rotors. We shall illustrate their dominance in the next two sections
of this chapter by reducing the intervals of the β-rotor ensembles around β = 1

2 . We
expect to see an improvement in the resolution, since the bulk of non-resonant rotors
becomes smaller and does no longer obscure the few resonant rotors.

3.1.2 Behaviour of fidelity for ensembles of near resonant rotors

Figure 3.2: Fidelity close to resonance for ensembles of β-rotors with ε = 0.05, k1 = 0.8π and
k2 = 0.6π, restricted in β. Upper panel: Fidelity for an ensemble that is uniformly distributed
in β. Central panel: Fidelity for an ensemble where β is restricted to [0.4;0.6]. Lower panel:
Fidelity for an ensemble where β is even further restricted to [0.49;0.51]. The origin of the
oscillations obviously lies in the resonant rotors (β = 1

2 ).

That the oscillations truly have their origin in the few resonant rotors of the ensemble
can be shown by continuously reducing the intervals of the β-rotor ensembles. The
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oscillations become well resolved revival peaks and those peaks grow higher and higher,
the more we restrict the interval around β = 0.5. In Fig. 3.2, we first restrict the interval
in β to 20%, then to 2% of its inital width in the upper panel. The revivals become
visibly more pronounced with each restriction.
The observed revivals are also highly interesting from an experimentalist’s point of
view: They appear well within the measurable range (t < 200) [56] and recover more
than one third of the signal at t = 0 in Fig. 3.2. With ultracold atoms, β can be limited
to intervals of a size up to 0.01 [71, 72], making high resolution of the revival peaks
possible. We shall look more closely at the resonant rotors that seem to be the origin
for the characteristic fidelity peaks in the next section.

3.1.3 Behaviour of fidelity for resonant rotors

Before we return to the investigations of the revivals, which can also be found for single
resonant rotors, we will look at the short-time behaviour of resonant rotors close to
quantum resonance, which drastically changes compared to their behaviour at exact
resonance.

Observations on small time scales – Breakdown of algebraic decay for the
resonant rotor

We remember that the fidelity decays like t−1 in an oscillatory fashion at exact reso-
nance, see Eq. (2.41). During the first few kicks, the deviation ε from resonance should
not induce big changes. After a certain amount of kicks, however, the rotors have
completely lost any phase relation towards the kicking, and we expect the fidelity to
decay faster. Indeed, by once more taking momentum zero as the initial condition, we
observe a breakdown of the t−1-decay in Fig. 3.3. The onset of the breaktime depends
on the variation of our parameters, which we discuss below.
It is hard to decide on an objective time where a difference between the two graphs of
Fig. 3.3 is first visible – the t−1-decay of the upper envelope is quite distinctive, but
the influence of the perturbation on the lower envelope starts much earlier. We will
restrict our measurements to the upper envelope, though, since it seems to be better
resolved in our data.
The time of onset of the decay is measured manually as shown in Fig. 3.3. We are
thus able to estimate a dependence on the parameters (kicking strengths k1 and k2,
and deviation ε from the characteristic kicking period of 2π, the primary quantum
resonance) by scanning through single parameters while keeping the other parameters
fixed. In Fig. 3.4, all results concerning the dependence of the time of onset on the
perturbation and the kicking strengths are displayed. On the whole, we heuristically
find the following formula for the onset of the breakdown of the original algebraic decay:

tonset(k1, k2, ε) ∝
√
k1 −

√
k2√

ε
√
k1k2

. (3.11)

This is an important result because tonset determines the time scale on which the per-
turbation in the kicking period first takes effect. This is both of interest to theoretical
applications (since it determines the point where ε-classics are applicable) and to ex-
perimental realisations (where tiny defects of the setup might have long time effects
according to Eq. (3.11)).
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Figure 3.3: Upper panel: The expected algebraic decay of fidelity at exact quantum resonance is
shown for a single resonant rotor with kicking strengths k1 = 0.8π and k2 = 0.6π. Lower panel:
Introducing a perturbation ε = 0.001 in the kicking period to the system leads to a breakdown
of the algebraic decay. The measured time tonset is marked by a red arrow.

Observations on larger time scales

Now, we return to larger time scales. At the beginning of this chapter, we have found
that the oscillations observed for the full β-ensemble become peaks when the interval
around the resonant value for β (β = 1

2) is restricted. We can therefore make an edu-
cated guess that the origin of the revivals is to be found with the resonant rotors. And
indeed, we observe revivals for single resonant rotors in Fig. 3.5 – but more frequently
than we had expected.
The frequency of the revivals is two times the beating freqency ωbf , which we know to
be the difference between the two resonance frequencies of the elliptic fixed point:

ωres = 2ωbf = 2
√
|ε|(

√
k1 −

√
k2). (3.12)

Interestingly, for small deviations from the resonant value, such as β = 0.49, we find
once more the beating frequency itself. This is an unexpected result – why should the
frequency for β = 1

2 differ so drastically from the beating frequency of the harmonic
oscillator? The answer is surprisingly simple and actually has a classical origin, despite
our system being purely quantum mechanical. For this reason, we will discuss this
seemingly contradictory observation later in this chapter, when we look at the classical
analogue of fidelity for the kicked rotor.
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Figure 3.4: Measurements of tonset against various parameters. We find tonset ∝ ε−0.5 (for k1 =
5.1 and k2 = 5.0 (black), k1 = 3.1 and k2 = 3.0 (red), and for k1 = 1.1 and k2 = 1.0 (green)),
tonset ∝ (k1k2)−0.25 (for ε = 0.001 (green) and ε = 0.00001 (red)), and finally tonset ∝

√
k1 -√

k2 (here, ε = 0.00001). This altogether results in formula (3.11).

3.1.4 Behaviour of fidelity for nonresonant rotors

So far, we have only been looking at resonant rotors or at the effects caused by resonant
rotors in ensembles. There is, however, a reason why we do not observe any charac-
teristic effects from the nonresonant rotors in the full ensemble. While the rotors in
the vicinity of the resonant value show essentially the same behaviour as the resonant
rotors (namely revivals, even if not at the same frequency), the behaviour for nonreso-
nant rotors far from β = 1

2 (more precisely those for whom all corresponding classical
trajectories lie outside the principal resonance island centered at β = 1

2) changes drasti-
cally for small changes in β. It is therefore difficult to find a uniform description. Their
behaviour differs so strongly because they essentially scan different regions in ε-classical
phase space (see derivation in section 2.4). They follow rotational orbits outside the
island. In Fig. 3.6, a selection of curves displaying the fidelity of nonresonant rotors as
a function of time is shown.
One can see periodic oscillations for each nonresonant rotor, which makes sense in
relation to the corresponding orbits in ε-classical phase space. We can, however, not
set their different periods into context, since no description or explanation for the
behaviour of the fidelity for nonresonant rotors has been found yet.
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Figure 3.5: The revivals for a single resonant rotor with kicking strengths k1 = 0.8π and
k2 = 0.6π are displayed in red for ε = 0.1 (upper panel), ε = 0.01 (central panel), and for
ε = 0.001 (lower panel). They have half the period of the beating, T = π

ωbf
, which we observed

for the full ensemble (black curves in the two upper panels). The period of the beating is also
indicated by the arrows. The revivals are more and more obscured by quantum fluctuations
with larger frequencies for growing ε up to ε = 0.1, above which it is hard to make out the
revivals.

A special case which we want to point out, though, is the so-called antiresonant rotor
with β = 1 [73, 74]. The characteristic feature of this rotor is that without perturbation
(ε = 0), the free motion part of the unitary time evolution operator (2.10) changes sign
after every period, so we always return to the full overlap of the wavefunctions with
every second kick (see also the upper left panel of Fig. 3.7).
The amplitude of this hopping from full overlap to some smaller value depends on the
difference in kicking strengths. The stronger the kicking strengths differ, the more
distinct the corresponding wavefunctions.
If we now introduce a small perturbation, this does not hinder the beating back and
forth, but adds an overlaying decay, which strongly depends on ε (see Fig. 3.7). For
small but finite ε we also observe the building of an overlaying, unsteady but replicable
structure with a longer oscillation period

T ∝ 1
ε
. (3.13)

The antiresonant rotor is interesting in itself, but it does not make a noteworthy contri-
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Figure 3.6: Irregular oscillations occuring in the fidelity of nonresonant rotors with kicking
strengths k1 = 0.8π and k2 = 0.6π, and a deviation ε = 0.01 from the resonant kicking period.
The oscillating periods widely differ for β = 0 (upper panel), β = 0.3 (central panel) and β = 0.8
(lower panel).

bution to the ensemble (because the antiresonant rotor has only few tori in ε-classical
phase space, unlike the resonant rotor that occupies the full island) and will therefore
not be considered here any further. We will instead focus on the resonant rotors that
have such a huge impact on the ensemble. It is also the importance of the rotors with
resonant value in β that we will discuss in the following section on quantum-classical
correspondence.

3.2 Quantum-classical correspondence

So far, all the numerical data and observations have been provided by quantum sim-
ulations. However, we have also stressed the importance of the underlying pseudo-
classical phase space to our dynamics. Consequently, it makes sense to take a look
at a classical analog of the quantum fidelity, making use of the pseudoclassical phase
space of Eq. (2.59). Considering that in the last few years, both investigating classical
systems [75, 31] and comparing a classical phase space “fidelity” with its quantum coun-
terpart [76] has yielded interesting new insights and results, this is a very promising
ansatz. We will see which parts of the behaviour of quantum fidelity are really quan-
tum mechanical effects and what the parallels between quantum and classical fidelity
consist of.
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Figure 3.7: Behaviour of the fidelity for the antiresonant rotor with k1 = 1.1 and k2 = 1.0. Upper
left panel: The saw-like structure in the fidelity of the antiresonant rotor at exact quantum
resonance goes on infinitely. Introducing a perturbation to the kicking period, we find an
overlaying decay to the beating. Here, we display ε = 0.1 (lower left), ε = 0.01 (upper right)
and ε = 0.001 (lower right).

3.2.1 Methods

The classical analog of the quantum fidelity that we will be using is defined as [31]:

F (t) =
∫
dqdp%2t(q, p)%0(q, p) (3.14)

Keep in mind that the definition of fidelity in the classical case is very distinct from the
definition in the quantum mechanical case. Here, we will be looking at trajectories and
the probability for them to come back to an area close to the starting point, whereas
for the quantum fidelity, we have computed probability amplitudes of wave functions.
In the classical picture, a full ensemble means just averaging over all trajectories – in
the quantum picture, we will have distinctive effects due to interference, as we shall see
later. What is important here is to note that, even though we talk of classical fidelity,
the classical definition does not correspond perfectly to the quantum definition.

For numerical calculations, we use a number of starting points with I = 0 and θ
randomly chosen between 0 and 2π which correspond to the initial quantum wave
function with momentum zero. After evolving these points for a time t according to
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number of starting points noise ratio
100 3.38
1000 2.96
5000 2.89
10000 2.82
20000 2.77
50000 2.79
100000 2.69

Table 3.2: Table of noise ratios for differently seized ensembles. For ensembles consisting of
more than 20000 rotors, the noise ratio differs only very slightly – the curves are as smooth as
possible. Using larger numbers does not show any visible effects.

the ε - classical standard map with kicking strength k1,

θn = θn−1 + In−1 + π + (2π + ε)β,
In = In−1 + k1ε sin(θn), (3.15)

we use the inverted map

In = In−1 − k2ε sin(θn−1),
θn = θn−1 − In − π − (2π + ε)β, (3.16)

with a different kicking strength k2 to retrace trajectories, also counting t kicks. For
k1 = k2, the trajectories resume their starting positions after a time 2t. For slightly
different kicking strengths, however, the end points differ from the starting points. This
difference offers a way to obtain fidelity simply by counting the number of returned
points in an interval of the size 2ε around the starting line. We have been using
ensembles with about 20000 equidistantly distributed starting points, which gives us
sufficient statistics. Using larger ensembles only contributes to a slight smoothing of
the curves, as can be seen in Table 3.2. In the table, the noise ratio is defined as the
biggest value (peak) of the fidelity divided by the time-averaged fidelity.

3.2.2 Results

As can be seen in Fig. 3.8, the qualitative behaviour of quantum fidelity is very nicely
reproduced by our classical fidelity (3.14) based on the ε-classical map. For a single
resonant rotor, two times the beating frequency is characteristic for both approaches.
Interestingly, by averaging over the full ensemble in the classical approximation, any
sign of the beating frequency completely disappears. This can be understood by the
bulk of nonresonant rotors which participate in the average. In the quantum case, the
visible survival of the oscillations must be attributed to phase factors which are not
much influenced by the averaging. In the classical case, the revivals are only visible if the
percentage of resonant rotors in the full ensemble is high enough: For example, in the
case of 5000 nonresonant and 5000 resonant rotors, revivals with the beating frequency
will still be visible, of course (see Fig. 3.9). For our calculation, though, the contingent of
nonresonant rotors was much larger, since we used a practically equidistant distribution
along the coordinate axis. This is why we do not see the oscillations anymore.
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Figure 3.8: Comparison of classical (red) and quantum fidelity (black) for an ensemble of β-
rotors with 0 ≤ β ≤ 1 in the upper panel (the classical curve is shifted upwards by 0.2 for better
visibility) and for a single resonant rotor in the lower panel. The kicking strengths are k1 = 0.8π
and k2 = 0.6π, the deviation from quantum resonance ε = 0.01. For the single resonant rotor,
the revivals are nicely reproduced by the classical fidelity, whereas they are completely averaged
out for the full ensemble. For the quantum fidelity, the revivals remain visible in the latter case
due to interference effects.

What is also very interesting about the classical analog of the fidelity is the fact that it
is able to reproduce the doubling of the beating frequency for exactly resonant values
of β. In Fig. 3.10, we observe the doubled beating frequency for β = 0.5, whereas for
β = 0.49 only the beating frequency itself remains.

This can be explained very easily in its classical context by considering the symmetry of
the starting area of the trajectories. The starting points are defined on a slip of width
ε around I = 0 for β = 0.5 on the left side of Fig. 3.11, which displays the resonance
island of the ε-classical Standard Map. Owing to the symmetry of this position, they
return to this defined starting and counting area both after half a circle and after a full
circle of angular difference in the evolutions. For example, a resonant rotor with kicking
strength k1 = 0.8π and ε = 0.01 has trajectories all along the island, which, according
to the harmonic oscillator approximation, have a period of T = 2π√

kε
. However, since we

perform the backward evolution with a slightly different period (due to different kicking
strength), the trajectories do not return to the measuring area for a much longer time.
Only when the angular distance between forward and backward evolution is equal to
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Figure 3.9: Classical fidelity with 10000 β-rotors. If half of them is resonant (black curve),
the revivals are clearly visible and their frequency is twice the beating frequency. For 2500
(red curve) and 1250 (green curve) resonant rotors the amplitude visibly declines. For only 625
resonant rotors out of 10000 β-rotors, the revivals are barely visible anymore.

multiples of the full circle do the trajectories return to their original starting points,
causing the revivals in the classical fidelity. However, this is also true for multiples of
half a circle, since the initial distribution and its mirror image (reflected along the y-
axis) cannot be distinguished. This causes the doubling of the beating frequency which
we observe. For β slightly smaller or larger than the resonant value (see Fig. 3.11 on the
right), we are still on the island, but the defined starting and counting area is no longer
symmetric in its position on the island (see also the right panel of Fig. 3.12). This
is why we now observe only the beating frequency. The suppression of every second
revival is thus not due to coherence as one might be tempted to think, but instead due
to the influence of the classical trajectories. This is also the case for the semiclassical
and quantum observations, as we shall see in the next chapter.
The fact that the intermediate revivals occuring for the resonant rotor are slightly less
pronounced is due to the elliptic form of the resonance island, which is additionally
rotated in phase space by 45◦ with respect to the symmetric pendulum island (see, for
instance, the island in Fig. 4.2).

We have always assumed the harmonic oscillator approximation to be valid without
further assessment. But how good is this approximation truly? According to our
results, it is appropriate, since we found excellent agreement with the exact numerical
calculations. Taking a look at the ε-classical phase space, we soon find out why. In
Fig. 3.12, we display the trajectories of a single resonant rotor for the first 10 kicks.
As we can see, the different trajectories have different frequencies. For about the inner
half of the resonance island, however, we find approximately the same frequency. This
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Figure 3.10: Comparison of classical (red) and quantum fidelity (black) for β-rotors with β = 0.5
in the upper panel, β = 0.49 in the central panel and β = 0.47 in the lower panel. The kicking
strengths are as before k1 = 0.8π and k2 = 0.6π, the deviation from quantum resonance ε = 0.01.
If we decrease β and thus depart from resonance, we first see a doubling of the frequency before
the revivals completely disappear with growing distance of β from 0.5.

is the part which is well approximated by the harmonic oscillator. The trajectories
close to the border of the island do not contribute to the revivals because their periods
differ too much.
As we have seen, a purely classical understanding of the behaviour of the fidelity for
the kicked rotor in quantum resonance is possible. The classical fidelity for a single
resonant rotor recovers the characteristic feature, i.e. the revivals with the doubled
beating frequency, and allows us to explain them from a classical point of view. For
the full ensemble, it is only possible to recover the overall decay from the classical
fidelity, quite unlike the quantum fidelity which still retains some of the structure from
the resonant rotors after averaging. This is due to interference: For the quantum
fidelity (2.43), we add the products of the wavefunctions for different β over all values
of momentum before taking the modulus square.
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Figure 3.11: Schematic illustration of the starting and counting area on the resonance island
in ε-classical phase space. For β = 1

2 , the starting points lay on the red strip along the x-axis
inside the resonance island, to which they return after multiples of half the period. If β slightly
differs from the resonant value (see red strip of starting values on the right), the symmetry is
broken and revivals only occur after multiples of the full period. After half the period, they
are in the green strip and, according to the definition of the classical fidelity (3.14), do not
contribute to the fidelity.

Figure 3.12: Phase space illustration with spatial coordinate θ and momentum I. We used
kicking strength 0.8π and ε = 0.01. Left panel: The black trajectories display the trajectories
of an ensemble of 500 rotors started along the coordinate axis for the first 10 kicks (the red
curves are trajectories for single rotors for 10000 kicks). It is clearly visible that only about the
inner half of the circle has approximately the same period, which is assumed in the harmonic
oscillator approximation.Right panel: Already for small deviations from the resonant β = 0.5
(here β = 0.48), the yellow starting points do not cover the whole resonance island and thus,
the center of the island does not play a part in the calculation of fidelity anymore.



Chapter 4

Analytical theory for the
behaviour of fidelity for
resonantly kicked atoms

As we have seen in the last chapter, the behaviour of an ensemble of kicked atoms
is dominated by the few resonant rotors of the ensemble. Our aim is therefore to
find an analytic description of the fidelity for these most important rotors in the close
vicinity to quantum resonance, where the motion can be described by the quasi-regular
dynamics of ε-classical phase space (as reviewed in section 2.4). To reach this goal,
however, we first have to understand the numerically observed t−1-decay (see Fig. 2.5)
at exact quantum resonance from the point of view of ε-classics in the case ε → 0.
We shall start out by performing the complete quantum calculation of path integrals
for multiply connected spaces (which in this context just means that we calculate the
propagators for each separate kick and concatenate them to get the complete evolution,
for a discussion of the basic concepts, see [77]) and then examine further simplifications
of the dynamics, until only the most characteric features remain. This is done by
utilizing the pendulum dynamics, which will be shown to be a good fit for the resonant
island, in a semiclassical approximation. After having shown that this still yields the
expected t−1-decay, we shall be looking at a further simplification: Once more we use
a semiclassical approach, this time by approximating the pendulum by the harmonic
oscillator. We once more derive the characteristic decay for this most basic of all
dynamics.

In the end, after having illustrated that our simplifications do not change the charac-
teristic decay, we can deflect from quantum resonance by a small perturbation ε and
thus successfully derive the main result of this thesis, an analytical expression for the
fidelity of resonant rotors close to quantum resonance. It is important to note that we
consider only the vicinity of resonance for the harmonic oscillator. Otherwise, we would
have to solve elliptic integrals even for the comparatively simple case of the classical
pendulum, rendering our original problem nearly impossible to solve analytically.

41
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4.1 Understanding the t−1-decay from the ε-classical point
of view

4.1.1 Quantum calculation with path integrals for multiply connected
spaces

By means of path integration, it is possible to derive the well-known result Eq. (2.41),
a Bessel function of zeroth order, which has been shown to describe the resonant rotor
in quantum resonance. To this end, we make use of the substitutional variable Ĵ =
Î+τβ+π, where Î is the operator −iε d

dθ , acting on the Hilbert space of wave functions
with periodic boundary conditions in θ (recall section 2.4). The eigenfunctions are
therefore plane waves, which we also choose as initial wave functions, and we obtain
the eigenvalues λ = τβ + π + nε for Ĵ . Using the ε-classical picture [53], we take ε as
~, k′ = kε and Ĵ as our momentum in the well-known Floquet operator:

Ûδ−kick = e−
i
ε

R t
0 dtH

= e−i k′
ε

cos(θ̂)e−
i
ε

Ĵ2

2

= e−ik cos(θ̂)e−
i
ε

Ĵ2

2 . (4.1)

The propagator amplitude G describes the propagation from θ to θ′:

G(θ, θ′, k) = 〈θ | Ûδ−kick | θ′〉

=
1√
2π
e−ik cos θ′

∞∑
n=−∞

ein(θ−θ′)e−i
(τβ+π+nε)2

2ε

=
1√
2π
e−ik cos θ′

∞∑
n=−∞

ein(θ−θ′)e−
i
2ε

τ2β2
e−iτβn−i ε

2
n2−iπn− i

ε
πτβ−i π2

2ε . (4.2)

In the following, we will make use of a special trick [77] that can be performed using
the Jacobi theta function. The Jacobi theta function is defined as

Θ3(z, s) ≡
∞∑

n=−∞
eiπn2s+2inz, (4.3)

and has a special property that follows from Poisson’s summation formula:

Θ3(z, s) =
1√
−is

e
z2

isπ Θ3(
z

s
,−1

s
). (4.4)

In our propagator G, z = 1
2(θ − θ′ − τβ − π) and s = − ε

2π . It can then be written as

G(θ, θ′, k) =
1√
2π
e−ik cos θ′e−i τ2β2

2ε e−i π2

2ε e−
i
2
πτβΘ3

(
θ − θ′ − τβ − π

2
,− ε

2π

)
=

1√
iε
e−ik cos θ′−i τ2β2

2ε
−i π2

2ε
− i

2
πτβ+i

(θ−θ′−τβ−π)2

2ε

·
∞∑

n=−∞
e

i
ε
2π2n2−i 2nπ

ε
(θ−θ′−τβ−π) (4.5)

=
1√
iε
e−ik cos θ′−i τ2β2

2ε
−i π2

2ε
− i

2
πτβ

∞∑
n=−∞

e
i
ε
2π2n2+ i

2ε
(θ−θ′−τβ−π−2πn)2 .
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Figure 4.1: Illustration of the stepwise propagation needed while calculating the fidelity exactly
by use of multiply connected spaces. This picture is based on the interpretation of fidelity as
an echo measure.

We can now calculate the fidelity according to Fig. 4.1. As initial wave functions, we
take ψ(θ0) and ψ(θ′0). The step from θ to θ′ described by the propagator G is just
one iteration in the discretized time t. To reach a point t in time, we therefore have
to take this step t times to go from θ0, the starting point, to θt, our end point. Since
the fidelity describes the motion with kicking strength k1 up to a point t compared
to its backward evolution with kicking strength k2, we also have to consider the way
back from θt = θ′t to θ′0 (see Fig. 4.1). The wave functions are all normalised by 1√

2π
,

resulting in a factor
(

1
2π

)t. This yields the following expression for the fidelity:

F =
∣∣∣∣∫ dθ0G(θ0, θ1, k1)...

∫
dθt

∫
dθ′t−1G

∗(θ′t−1, θ
′
t, k2)...∫

dθ′0G
∗(θ′0, θ

′
1, k2)Ψ∗(θ0)Ψ(θ′0)

∣∣∣∣2
=

∣∣∣∣∣ 1
2π

(
1
iε

)t ∫
dθ0...

∫
dθt

∫
dθ′t−1...

∫
dθ′0

·
∑
n,n′

e
i
2ε

Pt
k=1(θk−θk−1−τβ−π−2πn)2

· e−
i
2ε

Pt
l=1(θ′l−θ′l−1−τβ−π−2πn′)2

·e−ik1
Pt

k=1 cos θkeik2
Pt

l=1 cos θ′l

∣∣∣2 .

(4.6)

The upper and lower bounds are not explicitly written down in Eq. (4.6). In this thesis,
undefined integrals like that are to be understood as covering a phase space cell, i.e.,
going from 0 to 2π. Since the motion is restricted to this phase space cell anyway, we
are able to expand the boundaries and obtain an integral going from −∞ to ∞. This
will be very useful later on, when we are able to use standard formulae for these infinite
integrals.
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As wave functions at time t = 0, we use normalized plane waves 1√
2π
ein0θ0 with mo-

mentum n0 = 0. In order to perform a stationary phase approximation [78], we forget
about the kicking part of the propagator and only take into account the quadratic part
of the action (called S in the following):

S =
1
2

t∑
k=1

(θk − θk−1 − τβ − π − 2πn)2 − 1
2

t∑
k=1

(θ′k − θ′k−1 − τβ − π − 2πn′)2 (4.7)

This is allowed because it means that we will only average over the oscillating phase of
e

i
ε
S , leaving the exponential of the summed-up kicks alone. This averaging is done by

means of a stationary phase approximation, which will be explained briefly.
The idea of the stationary phase approximation [79, 80], an asymptotic analysis of
oscillatory integrals, is the following: For exponents consisting of a large prefactor
(in our case 1

ε ) and an analytic function with a global minimum, we may expand the
function around this minimum, neglecting smaller function values as phases which will
more or less cancel. Since λ is assumed as being small, an expansion up to second order
is sufficient here. Thus, an integral of the form

I =
∫ ∞

−∞
dxe−λf(x) (4.8)

with large λ and analytic, oscillating f(x) with Taylor expansion

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 + ... (4.9)

around a global minimum x0 (meaning f ′(x0) = 0) can be approximated by

I = e−iλf(x0)

∫ ∞

−∞
dxe−

λ
2
f ′′(x)(x−x0)2

=

√
2π

λf ′′(x0)
e−λf(x0). (4.10)

Now, we shall this to our case, which is slightly more complicated. We choose a fixed
variable from among the θk and call it θp. For the first derivative ∂S

∂θp
, we have to

consider both the terms for k = p and k = p+ 1, resulting in

∂S

∂θp
= 2θp − θp−1 − θp+1

!= 0. (4.11)

However, for the end point k = t and the starting point k = 0, things are a bit different:

∂S

∂θt
= θ′t−1 − θt−1 + 2π(n′ − n),

∂S

∂θ0
= θ0 − θ1 + τβ + 2πn+ π

=⇒ θk = θ0 + k(τβ + π) mod 2π. (4.12)
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θp can thus be described in terms of θ0, as can all the other θk. We can therefore
lose all the variables θk by performing stationary phase approximations, leading to the
simplified expression for the fidelity,

F =
∣∣∣∣ 1
2π

det(A− 1
2 )

∫
dθ0e

i(k2−k1)
Pt

k=1 cos (θ0+k(τβ+π))

∣∣∣∣2 , (4.13)

with the determinant of the matrix Ai,j =
(

∂2S
∂θi∂θj

)−1/2
equal to 1 (for this notation,

see [81]). We have thus performed two times t independent stationary phase approxima-
tion or 2 multidimensional ones, resulting in the well-known expression for the fidelity,
Eq. (4.13). Analogous to the derivation for the single resonant rotor in section 2.3,
Eq. (4.13) can be written as:

F (k1, k2, t) = J2
0 (t |k1 − k2|). (4.14)

We have just successfully retrieved the same expression for the fidelity decay of the res-
onant rotor as derived by the purely quantum-mechanical calculation. Unfortunately,
it is impossible to deduce the characteristics of the resonant rotor that is slightly out
of resonance from this comprehensive path integration. The stationary phase approxi-
mation singles out just one orbit, so we would have to find some way to stop half-way
through the stationary phase approximation, which is something for which (at least to
our knowledge) the proper mathematical tools are missing. But as we will see, it is not
necessary to use the exact quantum computation – much simpler approximations turn
out to be sufficient for our purpose.

4.1.2 Semiclassical approximation with the propagators for the pen-
dulum

In the literature describing ε-classical phase space [28, 82], the dynamics of resonant
rotors are usually approximated by substituting the area near the resonance island of
the Standard Map of ε-classics corresponding to quantum resonance by the appropri-
ate pendulum phase space. This means that while we had a stroboscopic picture of
phase space before, we now switch to continuous time (i.e., the pendulum is exposed
to kε cos(θ) at all times). While the trajectories of the pendulum take the form of a
circle close to the center and become more and more eye-shaped when approaching
the separatrix, the invariant curves of resonant motion in ε-classical phase space take
a more elliptic form and are rotated by about 45◦ in clockwise direction (see Fig. 4.2).
The congruency between both trajectories and therefore the quality of the pendulum
approximation obviously improves the closer one gets to the stable elliptic fixed point.
We will see, by deriving the t−1-decay from this approximation, that the substitution
of the true phase space by the pendulum one is sufficient in our case.

The pendulum Hamiltonian (corresponding to its ε-classical analogon) is

H =
I2

2
− kε cos(θ) (4.15)

and the equation of motion
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Figure 4.2: Comparison of the phase space portraits of the pendulum (black) with separatrix
(red) and the ε-classical Standard Map (green) of Eq. (2.59). Both curves were plotted for
kicking strength k = 0.8π and perturbation ε = 0.05. The differences between their trajectories
are clearly visible, yet our approximation is good enough to yield reasonable analytical results.

θ̈(t) = −kε sin(θ(t)). (4.16)

Phase space portraits for the pendulum display trajectories of the form

I = ±
√

2(E + kε cos(θ(t))), (4.17)

with the total energy of the system E. For E < −kε, we obtain no curves (since θ̇
is imaginary). If −kε < E < kε, the curves are closed curves, corresponding to the
pendulum swinging forth and back (oscillatory motion). Oscillations near the center are
almost circular, which is why the approximation for small angles by the first terms of
the Taylor expansion is good. E = kε results in the separatrix which divides librational
and rotational motion. For E > kε, the curve is open, corresponding to the pendulum
swinging through complete circles (rotational motion).
Now we make use of the pendulum approximation. For τ = 2π+ ε and β = 1

2 , we start
on the resonance island centered at zero in ε-phase space. First, we rescale our spatial
coordinate, which will simplify our later considerations significantly:

θ̃(t) = θ(t
√
kε), (4.18)
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leading to the equation of motion

¨̃
θ(t) = k ε θ̈(t

√
kε) = −k ε sin(θ̃(t)). (4.19)

Using this, we can write for the action

S(θ, θ′, t, kε) =
∫ t

0
dt′

[
1
2
d ˜θ(t)
dt

2

− kε cos(θ̃)

]

= kε

∫ t

0
dt′

[
1
2
θ̇2(t′

√
kε)− cos(θ(t′

√
kε))

]
=
√
kε

∫ t
√

kε

0
dt′

[
1
2
θ̇2 − cos(θ)

]
=
√
kεS(θ, θ′, t

√
kε, 1)

' (θ(t
√
kε)− θ0)2

2t
− tkε cos(θ0), (4.20)

where we used a linear approximation for small times in the last line.
The semiclassical propagator for the motion defined by Eq. (4.19) is given by

G(θ, θ′, t) =
1√
2πiε

√
| V (θ, θ′, t) |e

i
ε
S(θ,θ′,t)+iφ (4.21)

with the so-called Van Vleck determinant (for more background on semiclassical meth-
ods and definition of path integration, see [81])

V (θ, θ′, t) = det
(
∂2S(θ, θ′)
∂θ∂θ′

)
. (4.22)

φ is the Maslov index (and therefore dependent on the topology of the phase space),
and will not be of further interest or significance to us here since it just adds a phase
that drops out when calculating the fidelity.
The definition of fidelity via the propagator amplitudes reads:

F (t, ε, k1, k2) = |〈Ψ(k1, t) | Ψ(k2, t)〉|2

=
∣∣∣∣∫ dθ

∫
dθ′

∫
dθ′′G∗

1(θ, θ
′, t)G2(θ′′, θ′, t)Ψ0(θ′′)Ψ∗

0(θ)
∣∣∣∣2 , (4.23)

with Ψ0(θ′′) and Ψ∗
0(θ) once more plane waves with momentum zero and normalisation

factor 1√
2π

.
Now we insert the propagator (4.21) for the pendulum into the fidelity:

F =
∣∣∣∣ 1
2π

∫
dθ0

∫
dθ1

∫
dθ2

√
| V1 || V2 |

1
2πiε

ei
(θ1−θ0)2

2tε
−itk1 cos θ0 ·

e−i
(θ1−θ2)2

2tε
+itk2 cos θ1

∣∣∣∣2 . (4.24)

Here, both Van Vleck determinants yield t−1 (one is in fact negative, but this is of no
importance for the fidelity itself because of the modulus square in its definition). A
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first stationary phase approximation with respect to θ0 (λ = 1
ε ) yields θ0 = θ1, since

we average over the phase S1 (which is a part of the action S times a factor i),

S1 =
i

2t
(θ1 − θ0)

2 ,

∂S1

∂θ0
= − i

t
(θ1 − θ0) ,

∂2S1

∂θ2
0

=
i

t
. (4.25)

We thus obtain for the fidelity according to Eq. (4.10):

F =
∣∣∣∣ 1
4π2ε

∫
dθ1

∫
dθ2

√
| V1 || V2 |

√
2πεteit cos θ1(k2−k1)e−i

(θ1−θ2)2

2tε

∣∣∣∣2 . (4.26)

A second stationary phase approximation in analogy to the one above, but this time
with respect to θ2, leads to

F =
∣∣∣∣ 1
2π

∫
dθ1e

it cos θ1(k2−k1)

∣∣∣∣2 , (4.27)

where t−1 has been inserted for each Van Vleck determinant. The last integral gives
us the Bessel function of zeroth order and a factor of 2π (see (A.1.) in the appendix),
which means that the fidelity of one resonant rotor at ε = 0 is as expected

F (k1, k2, t) = J2
0 (t | k2 − k1 |). (4.28)

We have thus retrieved the result of section 2.3 by use of the pendulum approximation.
However, as soon as we deflect from ε → 0 (the case that we have just calculated),
elliptic integrals will appear and make the calculation very difficult, if not impossible.
For this reason, we will have a look whether any further simplification is possible.

4.1.3 Semiclassical approximation with the propagators for the har-
monic oscillator

We have succeeded in deriving the desired result J2
0 (t |k2 − k1|) by use of the pendulum

approximation. Now, we go one step further and approximate the pendulum by the
harmonic oscillator. We do not explicitly calculate the propagator for the harmonic
oscillator via the action here as we did in the last section, but instead help ourselves
to the well-known propagator for the quantum-mechanical case (the derivation is per-
formed in detail in Appendix B), exchanging ~ with ε in accordance with ε - classics.
We will then use stationary phase approximations to derive the characteristic algebraic
decay once more.
Our initial wavefunctions are once more equal to 1√

2π
, since we use plane waves with

momentum zero. We recall the definition of the fidelity in the propagator formalism:

F (t, ε, k1, k2) =
∣∣∣∣∫ dθ

∫
dθ′

∫
dθ′′G∗

1(θ, θ
′, t)G2(θ′′, θ′, t)Ψ(θ′′)Ψ∗(θ)

∣∣∣∣2 (4.29)
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We use the following formula for the harmonic oscillator propagator in ε-classics [70]
(by taking ε as the new Planck’s constant):

G(θ, θ′, t) =
(

ω

2πiε sin(ωt)

)1/2

e
iω

2ε sin(ωt)
{(θ2+θ′2) cos(ωt)−2xθθ′}

. (4.30)

A proper derivation of this propagator is given in the appendix. For ω, we use the
harmonic oscillator frequency

√
kε of ε-classics (3.6), which we derived in the previous

chapter. Now, we make the assumption that ωt � 1, which is roughly the same as
requesting the time to be smaller than one period of the beating. Then we can expand
the sines and cosines in the above formula as follows:

ω

sin(ωt)
≈ 1
t

ωt

ωt− (ωt)3

6

≈ 1
t

(
1 +

kε

6
t2

)
=

(
1
t

+
kε

6
t

)
, (4.31)

cos(ωt) ≈ 1− (ωt)2

2
≈ 1− kε

2
t2. (4.32)

Inserting these perturbation series and the propagators into the definition of fidelity
leads to

F (t, ε, k1, k2) =

∣∣∣∣∣ 1
2π

∫
dθ

∫
dθ′

∫
dθ′′

1
2πiε

(
1
t

+
k1ε

6
t

) 1
2
(
−1
t
− k2ε

6
t

) 1
2

· e
−i
2εt

(1+
k1
6

t2){(θ′2+θ2)(1− εk1
2

t2)−2θθ′}

· e
i

2εt
(1+

k2
6

t2){(θ′′2+θ′2)(1− εk2
2

t2)−2θ′θ′′}
∣∣∣2

=

∣∣∣∣∣ 1
4π2εt

(
1 +

(k1 + k2)ε
6

t2 +
k1k2ε

2

36
t4

) 1
2
∫
dθ

∫
dθ′

∫
dθ′′

· e
i

2εt
{(θ′′−θ′)2−(θ′−θ)2}e

itk1
6

{θ′2+θ2+θ′θ}

·e
−itk2

6
{θ′2+θ′′2+θ′θ′′}

∣∣∣2 .

(4.33)

Now, we perform a stationary phase approximation with respect to θ and obtain:

F =

∣∣∣∣∣
√

2πεt
4π2εt

(
1 +

(k1 + k2)ε
6

t2 +
k1k2ε

2

36
t4

) 1
2
∫
dθ′

∫
dθ′′

·e
i

2εt
(θ′−θ′′)2e

itk1
2

θ′2e−
itk2

6
(θ′2+θ′′2+θ′θ′′)

∣∣∣2
(4.34)

by using

S1 =
i

2t
(θ′ − θ)2,

∂S1

∂θ
= − i

t
(θ′ − θ) != 0,

∂2S1

∂θ2
=

i

εt
. (4.35)

A second stationary phase approximation, this time with respect to θ′′, is performed
and leads to:
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F =

∣∣∣∣∣ 1
2π

(
1 +

(k1 + k2)ε
6

t2 +
k1k2ε

2

36
t4

) 1
2
∫
dθ′e

it
2

θ′2(k1−k2)

∣∣∣∣∣
2

=
1

t(k1 − k2)

(
1 +

(k1 + k2)ε
6

t2 +
k1k2ε

2

36
t4

)
=

1
(k1 − k2)

(
1
t

+
(k1 + k2)ε

6
t+

k1k2ε
2

36
t3

)
, (4.36)

where Eq. (A.5.) has been used.
Although we cannot recover the Bessel functions by this relatively coarse approxima-
tion, the overall t−1-decay for small time scales is nicely visible. The other terms can
be neglected since we assume both ε and t to be small.
The harmonic oscillator approximation is the most simple way to retrieve the most
important of the characteristics of the single resonant rotor: It allows us to derive
the typical t−1-decay. Plus: The harmonic oscillator naturally has a characteristic
frequency, which corresponds to

√
εk (compare section 3.1). It is therefore only to

be expected that a pair of harmonic oscillators is characterized by the sum and the
difference of its frequencies,

√
ε(
√
k1 +

√
k2) and

√
ε(
√
k1 −

√
k2) (a frequency which

we have already observed in our numerical investigations). We may thus assume the
approximation by the harmonic oscillator to be adequate. We shall now see whether
this proves to be true.

4.2 Semiclassical approximation close to quantum reso-
nance for resonant and near-resonant rotors

We have already proven the accuracy of approximating our resonant rotors by the
harmonic oscillator for small times. Now, in order to illustrate the validity of the
harmonic oscillator approximation which we will further use in this section, we take a
closer look at what exactly happens on the principal resonance island in phase space.
As already mentioned, this island has often been substituted very successfully by the
corresponding pendulum in literature [28, 82]. To even further simplify our dynamics,
we have then approximated the pendulum by the harmonic oscillator. But does this
simplification really still preserve our necessary information? To show that it does
indeed, we place a coherent state on the island representing the non-linear resonance of
the ε-classical phase space. As expected, it does not decay [39], but instead oscillates
regularly (see Fig. 4.3), with the observed frequency equal to the beating frequency of
the harmonic oscillator. We also observe higher harmonics, which is only to be expected
for a quantum system (just remember the harmonic oscillator itself, with its spectrum
of equidistant frequencies).

Semiclassical approximation for resonant rotors

As we have just seen, the resonant δ-kicked rotors are very well described by the har-
monic oscillator approximation. Therefore, we shall start our attempt to comprehend
their behaviour by using the semiclassic propagator as derived from the ε-classical pic-
ture.
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Figure 4.3: Fidelity (upper panel) and its Fourier Transform (lower panel) for a coherent initial
state on the principal resonance island shown in Fig. 4.2, with parameter values k1 = 3.9,
k2 = 3.0, β = 0.5, and ε = 0.0001. We observe revivals after a time T = 2π

ω , where ω

corresponds to two times the beating frequency ω = 2
√
ε(
√
k1−

√
k2) = 0.005 (see arrow in the

lower panel) of the harmonic oscillator, thus illustrating the validity of the harmonic oscillator
approximation.

We may again scale our action by η =
√
kε as follows (see Eq. (4.20)):

S(θ, θ′, t, k) = ηS(θ, θ′, tη, 1). (4.37)

The rescaled harmonic oscillator is then described by the Lagrangian

L =
1
2
θ̇2 − 1

2
θ2, (4.38)

and the solution to its equation of motion is also well known:

θ(t) = θ0 cos(t) + I0 sin(t), (4.39)

where I0 = θ̇ denotes the initial momentum (using the ε-classical notation), which will
later be set to zero (according to our initial condition).
The spatial coordinate θ is already restricted to one phase space cell, as expected from
ε-classics. The periodicity in θ is also implied by the image of the pendulum and the
harmonic oscillator themselves. We do not put any constraints on the momentum.
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Our action is thus

S =
∫ η

0
ds

[
1
2
θ̇2(s)− 1

2
θ2(s)

]
, (4.40)

and we can make the following semiclassical ansatz for the fidelity:

F =

∣∣∣∣∣∣ 1
4π2iε

∫∫∫
dθ0dθ0

′dθ

√
∂2S(θ0, θ, tη1, 1)

∂θ0∂θ

√
∂2S(θ0θ,′ , tη2, 1)

∂θ∂θ0′

· e
i
ε
η1S(θ0,θ,tη1,1)e−

i
ε
η2S(θ0θ,′,tη2,1)

∣∣∣2 . (4.41)

In order to use the stationary phase approximation to eliminate θ0, we need to determine
the extremum for which

∂S

∂θ0
= 0, (4.42)

which is essentially the same as setting I0 to zero. This results in the action

S =
∫ ηt

0
ds

[
1
2
θ̇2(s)− 1

2
θ2(s)

]
=

1
2

∫ ηt

0
ds

[
θ2
0 sin2(s)− θ2

0 cos2(s)
]

= −1
2

∫ ηt

0
ds θ2

0 cos(2s)

= −1
4
θ2
0 sin(2ηt)

= −1
2
θ2 tan(ηt). (4.43)

Using this and the fact that

∂2S

∂θ2
0

= −∂p0

∂θ0
= −η ∂

∂θ0

(
θ − θ0 cos(t)

sin(t)

)
= +η

1
tan(t)

, (4.44)

∂2S

∂θ0∂θ
= −∂p0

∂θ
= −η ∂

∂θ

(
θ − θ0 cos(t)

sin(t)

)
= −η 1

sin(t)
(4.45)

(the factor of η comes from the scaled action, which we are considering here) in the
stationary phase approximation over θ0 and performing a second stationary phase ap-
proximation, this time with respect to θ0′, leads to

F =

∣∣∣∣∣ 1
2π

√
cos(η1t) cos(η2t)

∫
dθe

i
2
√

ε
θ2[

√
k1 tan(η1t)−

√
k2 tan(η2t)]

∣∣∣∣∣
2

. (4.46)

Since we already know that this “imaginary Gaussian” is centred in our primary ε-
classical phase space cell, we are able to resize the integral from minus to plus infinity
without changing the result. Thus, we are able to use the formula∫ ∞

−∞
dx e−ix2

=
√
π

2
(1− i), (4.47)
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which can be found in [83, 84] and obtain (after a simple coordinate transformation
x2 = 1

2
√

ε
θ2

[√
k2 tan(η2t)−

√
k1 tan(η1t)

]
) as our final result

F =
∣∣∣∣ √

ε

2π cos(η1t) cos(η2t)

∣∣∣∣ ∣∣∣∣ 1√
k1 tan(η1t)−

√
k2 tan(η2t)

∣∣∣∣
=

∣∣∣∣ √
ε

2π
√
k1 sin(η1t) cos(η2t)−

√
k2 sin(η2t) cos(η1t)

∣∣∣∣ . (4.48)

Comparing this formula with our numerical results from section 3.1.3, we find a sur-
prisingly accurate agreement (see Fig. 4.4), considering that the approximation we used
was rather rough.

Figure 4.4: Upper panels: The numerical simulations exhibit characteristic features: A time of
onset where the t−1-decay of the resonant rotor breaks down (left), and revivals with two times
the beating frequency of the harmonic oscillator (ω = 2

√
ε(
√
k1 −

√
k2)) (right). Lower panels:

Those features are also observed in the plots of the analytical expression of Eq. (4.48). The
figures were plotted for kicking strengths k1 = 0.8π and k2 = 0.6π and a deviation ε = 0.001
from quantum resonance in the kicking period.

Please note that our analytical result is not the envelope of the numeric curve, but
rather gives a qualitative description of the curve’s global behaviour. For small times,
we observe the expected t−1-decay, whereas for long times revivals with the period of
the beating frequency prevail.
Let us now take a look at the revivals, which are clearly visible in the plots for the
analytical expression for the fidelity (Fig. 4.4, lower panels). Since the resolution is
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restricted by the number of numerical values of the analytical expression for the fidelity,
they only approximate the singularities of Eq. (4.48). Those singularities originate in
the denominator, which we can further simplify by making use of the addition theorem
for cosines:√

k1 sin(η1t) cos(η2t)−
√
k2 sin(η2t) cos(η1t)

=
1
2

[(√
k1 +

√
k2

)
sin(η1t− η2t) +

(√
k1 −

√
k2

)
sin(η1t+ η2t)

]
. (4.49)

We shall call the relevant part of the denominator A in the following:

A ≡
(√

k1 +
√
k2

)
sin(η1t− η2t) +

(√
k1 −

√
k2

)
sin(η1t+ η2t). (4.50)

Plotting A versus t in Fig. 4.5 yields the singularities of Eq. (4.48): The zeros of
A coincide with the singularities of the fidelity. We can therefore graphically solve
the problem of finding the singularities for the analytical expression of fidelity. Using
Fourier transformation, we find the frequencies with which A oscillates – and those are
nothing but half the frequencies of the revivals, since the zeros of A equal the revivals
here. Since Eq. (4.50) is comparatively simple, it is also possible to calculate the Fourier
Transform by hand (or by using symbolic computation software like Mathematica),
using the convention of a positive exponential and a prefactor of 1√

2π
for the Fourier

Transform. The result is:

FT (ω) =i
√
π

2ε
[η+δ(−η− + ω)− η+δ(η− + ω)

+η−δ(−η+ + ω)− η−δ(η+ + ω)] ,
(4.51)

with η− = ωbf = η1 − η2 and η+ = η1 + η2. As expected, we obtain δ-functions for the
frequency dependence. In Fig. 4.5, we plot the power spectrum (created by squaring
the Fourier Transform). We observe two frequencies: The doubled beating frequency
2η− = 2η1 − 2η2 and the doubled summed frequency 2η+ = 2η1 + 2η2. The beating
frequency is clearly dominant, since its amplitude is much bigger.
Comparing the power spectra of the numerical simulation for the fidelity and the rele-
vant part of the denominator of its analytic expression (Fig. 4.5), we can retrace both
frequencies, although 2η+ is almost invisible due to higher harmonics of 2η− (which is
a special feature of the harmonic oscillator), whose amplitude hides away the smaller
2η+-contribution. This also explains the higher frequency component that we have
observed in the Husimi function (Fig. 4.3). It corresponds to 2η+ and is barely visible
in the Fourier Transform due to its small amplitude.
However, the fact why we observe higher harmonics at all in the numerical quantum
calculations is not yet explained. We will elaborate on this open question in the con-
clusion.

Let us have a look at tonset now. In the last chapter, it was defined as the time where
the breakdown of the characteristic t−1-decay of the resonant rotor at exact quantum
resonance is first visible. However, this definition turns out to be problematic for
our analytical expression, since it only describes the behaviour of the upper envelope,
whereas the stationary phase approximation entails an averaging over the oscillations
– what we find is thus not a pure envelope. The definition of tonset is also questionable
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Figure 4.5: Upper left panel: Numerical observation of the fidelity revivals with a period T = π
ωbf

for a kicked rotor with ε = 0.001, k1 = 0.8π and k2 = 0.6π. Upper right panel: Fourier Transform
of the numerical result. Lower left panel: The denominator A produces the revival frequency
by the frequency of its zeroes (marked by small circles). Lower right panel: Only the two
frequencies 2η− and 2η+ occur in the power spectrum of A. They are indicated in the upper
panel by arrows.

because the deviation from the results in exact resonance starts much earlier, at least
for the lower envelope. If there was any hint towards something similar to tonset in
the analytical expression, it would have to be in the same interval as for the numerical
calculation in Fig. 4.6 – but we cannot find any extrema or anything else that could
possibly correspond to the onset of the breakdown.
We have to accept that our analytical expression, given by Eq. (4.48), is not able to
retrieve tonset. Otherwise, however, it is an adequate description of the behaviour of the
fidelity of the resonant rotor in the vicinity to quantum resonance – it even reproduces
the revivals at longer interaction times!

Our semiclassical ansatz was successful for the resonant rotor. But what about the
nonresonant rotors, is there any way to perform similar calculations for them? The
main problem here is that we could not find any expression for the form of the tori of
the nonresonant rotors, which is crucial in their case. So unfortunately, the behaviour
of the non-resonant rotors remains yet unsolved. It will take a more complicated theory
to describe the behaviour of fidelity in the case of nonresonant values for β.
What we can do, however, is to expand our analytical expression to an ensemble of
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Figure 4.6: Fidelity decay with parameters ε = 0.001, k1 = 0.8π and k2 = 0.6π. In the nu-
merical curve (black), the breakdown of the t−1-decay (see green line) is visible. Unfortunately,
the analytical expression Eq. (4.48) (red) does not reproduce this breakdown of the algebraic
decay. In this plot, the red curve of the analytical expression was multiplied by a factor 10 for
better visibility.

near-resonant rotors in the immediate vicinity of the resonant value of β. We shall
calculate this in the next section.

Semiclassical approximation for near-resonant rotors

The harmonic oscillator approximation works well in and close to the quantum reso-
nance with τ = 2π+ ε and β = 1

2 , i.e., for resonant values of quasimomentum. Since we
have observed a doubling of the beating frequency for the exact resonant value, how-
ever, we now investigate small integrals around the resonant β, and hope to find where
the transition to the single beating frequency comes from. For wide enough integrals,
we expect to retrieve the beating frequency.

Again we start out from the ε-classical map (see section 2.4) and apply the harmonic
oscillator approximation. This time, however, we explicitly keep the term depending
on τβ to arrive at the Hamiltonian

H =
1
2
(I + β̃)2 +

1
2
θ2, (4.52)

where β̃ is a small deviation from the fixed point (we assume that p0 = 0, which is
confirmed by the first stationary phase approximation). In the convention of ε-classics,
β̃ is a small deflection from the center of the resonance island. This means that for
resonance conditions with β = 0.5, β̃ = τ(β − 1

2) = (2π + ε)(β − 1
2) is the deflection.

For resonance conditions where β = 0, β̃ = τβ = (2π + ε)β applies.
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The equations of motion read:

İ = −θ, θ̇ = I + β̃ ≡ Ĩ . (4.53)

We now plug the Lagrangian,

L = Iθ̇ −H =
1
2
θ̇2 − 1

2
θ2 − β̃θ̇, (4.54)

into our action, resulting in

S(θ, θ′, ηt, 1) =
1
2

∫ ηt

0

[
θ̇2(s)− θ2(s)

]
ds− β̃(θ − θ0), (4.55)

with starting point θ0 = θ(0) and end point θ = θ(ηt). We have used once more the
scaled action, see Eq. (4.20).
As before, we define η =

√
kε. Analogous to the case of the resonant rotors, we use

the expression for the fidelity in the semiclassical ansatz and we perform a stationary
phase approximation with respect to θ0:

∂S

∂θ0
= 0 → I0 = 0 → Ĩ0 = θ̇0 = β̃. (4.56)

Now, the solution to the equations of motion differs slightly from Eq. (4.39):

θ(t) = θ0 cos(t) + β̃ sin(t),

θ̇(t) = −θ0 sin(t) + β̃ cos(t). (4.57)

Plugging this into the action, Eq. (4.55), we obtain:

S(θ, θ0, ηt, 1) =
1
4
(β̃2 − θ2

0) sin(2ηt)− β̃θ0 sin2(ηt)− β̃(θ − θ0),

= β̃θ

(
1− cos(ηt)

cos(ηt)

)
− 1

2
(β̃2 + θ2) tan(ηt), (4.58)

since θ0 = θ−β̃ sin(ηt)
cos(ηt) . The Van Vleck determinants and the second derivatives are the

same as for the case of the resonant rotor, see Eq. (4.44) and Eq. (4.45).
Another stationary phase approximation, this time with respect to θ0

′ (completely
analogous to the one we have performed with respect to θ0), yields for the fidelity of a
small ensemble of nearly resonant β-rotors (in the interval [−β̃, β̃]):

Fβ̃(t) =

∣∣∣∣∣ 1
2π

√
cos(η1t) cos(η2t)

∫ β̃

−β̃
dβ′e

i√
ε

“
a− b2

4a

”
β′2

∫ 2π

0
dθe

i√
ε

“√
aθ+ b

2
√

a
β′

”2
∣∣∣∣∣
2

, (4.59)

using the abbreviations

a = a(t) ≡ 1
2
(
√
k2 tan(η2t)−

√
k1 tan(η1t)),

b = b(t) ≡
√
k1

(
1− cos(η1t)

cos η1t

)
−

√
k2

(
1− cos(η2t)

cos η2t

)
.
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Assuming the Gaussian of the integral over θ to be centred in our primary ε-classical
phase space cell, we may once more use Eq. (4.47) for the infinite integral. After a

coordinate transformation with x2 = −1√
ε

[√
aθ + b

2
√

a
β
]2

, we obtain our final result:

Fβ̃(t) =

∣∣∣∣∣ 4
√
ε

2
√
πa cos(η1t) cos(η2t)

∫ β̃

−β̃
dβ′e

i√
ε

“
a− b2

4a

”
β′2

∣∣∣∣∣
2

=
∣∣∣∣ √

ε

2π cos(η1t) cos(η2t)
· 1
(
√
k2 tan(η2t)−

√
k1 tan(η1t))

∣∣∣∣
·

∣∣∣∣∣
∫ β̃

−β̃
dβ′e

i√
ε

“
a− b2

4a

”
β′2

∣∣∣∣∣
2

. (4.60)

For β̃ very close to zero, we get the expected expression for the fidelity of resonant
rotors, Eq. (4.48), which we shall call Fresonant from now on:

Fresonant(t) =
∣∣∣∣ √

ε

2π cos(η1t) cos(η2t)
· 1
(
√
k2 tan(η2t)−

√
k1 tan(η1t))

∣∣∣∣ .
The interesting part is now the integral over the complex Gaussian. Let us denote

Z(β̃) ≡

∣∣∣∣∣
∫ β̃

−β̃
dβ′e

i√
ε

“
a− b2

4a

”
β′2

∣∣∣∣∣
2

. (4.61)

.
Unfortunately, it is not possible to find a solution for finite boundaries. However,
assuming that Z(β̃) has significant values only close enough around 0, we can expand
the boundaries to ±∞. Z(β̃) converges towards Z(∞) for all times, as illustrated in
Fig. 4.7 for t = 100.

Let us look at the result for the fidelity which we get for the case Z(∞) (again making
use of Eq. (4.47)):

Ffullbeta(t) =
∣∣∣∣ ε

2 cos(η1t) cos(η2t)
· 1
(
√
k2 tan(η2t)−

√
k1 tan(η1t))

∣∣∣∣ ·
∣∣∣∣∣ 1
a− b2

4a

∣∣∣∣∣ . (4.62)

Plotting both cases (see Fig. 4.8), we find that Fresonant displays the doubled beating
frequency. Ffullbeta on the other hand, for which we expanded the boundaries to infinity,
shows revivals with just the beating frequency. An additional interesting feature is the
double peak at the beginning of the revivals in Ffullbeta.
Fig. 4.8 indicates that the transition from doubled to ordinary beating frequency is
due to the finite boundaries of the complex Gaussian integral. We would expect the
doubled frequency to disappear as soon as β̃ is larger than some critical value β̃crit. We
can calculate an estimate based on the prefactor a−b2/4a√

ε
= 4aε−1/2

4a2−b2
. Interpreting

σ ≡
√√

ε

2

√
4a

4a2 − b2
(4.63)

as the half width of the Gaussian integral of Eq. (4.61) in the complex plane gives a
scaling for the critical value β̃crit. Measuring the values of β̃ for which the transition
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Figure 4.7: Plot of the modulus square of the integral (in blue) over the complex Gaussian for
different boundaries [−β̃, β̃] and of modulus square of the complement of this integral (yellow)
for a fixed time t (here after 100 kicks). The time only has an effect on the absolute height of the
curve. As β̃ increases, the blue curve oscillates more and more closely about the curve for the
exact analytical expression for the integral with boundary conditions [−∞,∞] (in red), while
the complement oscillates around zero. We used kicking strengths k1 = 0.8π and k2 = 0.6π,
and a perturbation ε = 0.001 in this plot.

occurs (see Table 4.1), we numerically confirm this β̃ (defined as its value where the
intermediate peaks disappear in results as shown in Fig. 4.8):

β̃crit ∝ σ ∝ ε1/4. (4.64)

This is a bit of a handwaving argument, however, since both a and b are time-dependent.
Even though the ε-dependence is nicely reproduced, the rest term has singularities
reproducing the revivals.

Since the value of Z is determined by how large we choose β̃, this means that for our
corresponding quantum calculations, we have to remember the scaling and thus con-
sider β = β̃

τ + 1
2 in our case. The presence of τ in the scaling is particularly useful

in experiments. For τ = 2πl + ε (l ∈ N), l → ∞, the interval around the resonant
value of quasimomentum (in our notation β = 1

2) will become infinitely small which
will aggravate observing the doubling of the beating frequency in experiments. On
the other hand, for the case τ → 0, corresponding again to resonant driving [26], the
interval around β = 1

2 becomes arbitrarily large – heavenly conditions for experimen-
talists. Varying the kicking period τ thus might even make it possible to observe the
phenomenon with cold atoms without needing to resort to ultracold atoms. This makes
the effect of the frequency doubling near resonant values of quasimomentum even more
attractive.
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Figure 4.8: Comparison of the fidelity for a single resonant rotor (upper panel) and the fidelity for
small ensembles around the resonant value of β (lower panel) with kicking strengths k1 = 0.8π
and k2 = 0.6π, and perturbation ε = 0.01. Including the values near the resonant value of β, we
find the beating frequency of the harmonic oscillator. The doubling of the beating frequency
only occurs for exactly resonant β.

ε transition value of β̃
0.00001 0.03
0.0001 0.05
0.001 0.1
0.01 0.2
0.1 0.3

Table 4.1: The β̃ for which one first sees a disappearing of the frequency doubling observed for
resonant values of β̃ is measured for different values of ε. Fitting the values in a curve, we find
that the best fit is found for the fourth root of ε, which agrees well with our estimate (4.64).



Chapter 5

Conclusion

5.1 Summary

Theoretical investigations into the fidelity of quantum systems like the δ-kicked rotor
have always been enriched by fruitful collaborations with experimental realisations of
the system. This is no different in our case, which is why one of the main foci of
this summary will be on the inspirations for the experiment that our research might
provide. To this end, we shall shortly review how the experiments to measure fidelity
are implemented. As explained in the introduction, there are basically two types of
realisations of the δ-kicked rotor model: cold and ultracold atoms. Cold atoms fill
larger intervals of quasimomentum, whereas ultracold atoms (BEC) are able to reduce
the width in quasimomentum to very small intervals of β [56]. With ultracold atoms
(BEC), the width in quasimomentum can be restricted up to 1% of the Brillouin zone
([0, 1) in our dimensionless units), i.e., it is possible to restrict β to intervals of a
width of 0.01. This choice in experimental realisations also divides our results into two
categories, as we will shortly see.

In this thesis, we investigate the behaviour of fidelity in the close vicinity of the funda-
mental quantum resonance of δ-kicked atoms. After comprehensive numerical studies
on different parameter ranges in the kicking strengths k1 and k2, deviations ε from
quantum resonance, and quasimomentum β, we focus on several special points of in-
terest. According to the most interesting numerical results, the near-resonant rotors
around β = 1

2 produce periodic revivals with the beating frequency of two harmonic
oscillators, which survive even for the full ensemble in β. This is attractive for exper-
iments because the revivals actually occur on relatively short time scales. Fidelity for
the full ensemble can already be measured experimentally with cold atoms, since the
quasimomentum may fill the whole Brillouin zone. Such measurements could, e.g., be
performed with the current experimental setup of the Prentiss group at Harvard [35].
That the origin of the revivals lies in the resonant rotors can be illustrated by restricting
the quasimomentum to small intervals around the resonant value of β. This, however,
would experimentally necessitate the use of ultracold atoms. The β-intervals which
have been obtained with cold atoms are simply too wide for this purpose.
In our numerical simulations, we find that the further we restrict the intervals around
β = 1

2 , the higher and better resolved are the observed revivals. When looking at
the fidelity of single resonant rotors themselves, however, we are in for a surprise: At
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exactly resonant values of quasimomentum, we observe a doubling of the beating fre-
quency. This unexpected and puzzling phenomenon has its origin in its pseudo-classical
counterpart, namely the ε-classical phase space. We are able to explain the doubling
in frequency by a symmetry breaking in the initial state. Apart from this, the calcu-
lations of classical fidelity performed on the basis of our pseudo-classical phase space
yield results which agree very well with our quantum calculations. This demonstrates
once more the applicability and usefulness of ε-classics.

The numerics form the first part of the research done in the framework of this thesis.
The second part is an analytical description of the main numerical observations. We use
a semiclassical ansatz to find an analytical expression for the fidelity of single resonant
rotors. Conveniently, ε-classical phase space can be approximated by the pendulum
phase space close to the fixed point. The following small angle approximation of the
pendulum by the harmonic oscillator is also a wellknown technique to simplify the
calculations. After our system has thus been simplified, the calculation of quantum
fidelity for resonant and near-resonant values of quasimomentum within this approach
is successful. Not only do we find the analytical expression of fidelity we were looking
for, but we are also able to explain the doubling in frequency for the exactly resonant
quasimomentum from the point of view of semiclassics. It is thus possible to draw
parallels between the numerical and the analytical research chapters, combining both
with excellent agreement.

Altogether, this work goes a long way towards a complete and comprehensive under-
standing of the near-resonant behaviour of the fidelity for the δ-kicked rotor. We now
understand where the revivals in the fidelity of the full ensemble come from, and we can
even derive the behaviour of the revivals analytically by our semiclassical expression
for the resonant and near-resonant rotors. However, there is always something left to
do. Therefore, we will shortly sum up open questions and possible starting points for
further investigations in the following section.

5.2 Outlook – ideas and perspectives

One of the next logical steps to take is, as already mentioned, to find a similar analytical
expression for the nonresonant rotors as we did for the resonant ones. This is difficult
because we do not know the exact form of the tori outside the resonance island where
the pendulum and harmonic oscillator approximation is applicable. However, the form
of their tori is essential in order to calculate the propagators in a semiclassical ansatz.
The harmonic oscillator approximation will obviously not work outside of the resonance
island. However, it might be promising to find an appropriate expression by using the
pendulum approximation.
An experiment with ultracold atoms as we proposed to measure the fidelity for en-
sembles of near-resonant rotors could also measure the fidelity of small β-intervals of
nonresonant rotors. But even for the realisations with cold atoms that have been used
so far [23, 35], finding an analytical expression for the nonresonant rotors would make it
possible to derive an expression predicting the overall form of the fidelity decay (which
cannot be fitted to some simple exponential or power-law function). The slope of the
decay could then be directly compared to the results of the experiment (either with
cold or ultracold atoms).
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Another open question concerns the Fourier spectrum of the fidelity for the full ensemble
(see Fig. 3.1). The beating times and its higher harmonics are very well visible in the
Fourier spectrum, but there is an abrupt truncation after a number of higher harmonics.
It would be of interest to find an explanation why the higher harmonics disappear
so suddenly for frequencies larger than the truncation frequency. An idea here is to
calculate the size of the island (one is sufficient, since the difference in kicking strengths
k1 and k2 is typically small) and estimate how many quantized states of the size ~ = 2πε
fit on the island. Doing this for various parameter ranges, we find that, while the order
of magnitude is the same, there are notable differences in the accuracy of the match.
For some values, our argument of quantized states sitting on the island fits very well,
while for others, it is a rough fit at best.

While there are still a number of things to investigate numerically and analytically
(as illustrated above) to fully understand the behaviour of quantum fidelity with the
underlying phase space of ε-classics, the solutions and explanations we have found could
already be stimulating for the experiments going on at Harvard [35] and other places,
based on cold atoms which essentially populate all β-values uniformly [28].

As already mentioned, there is the possibility to explore new experimental realisations
using the resources which ultracold atoms offer. This creates new options in implement-
ing fidelity experiments that are able to retrace the revivals back to their origin, namely
to the near-resonant rotors. Intervals around the resonant value of quasimomentum can
be reduced step by step to illustrate the influence of the resonant rotors.
Another point of interest to the experiment is the scaling of β̃ investigated in section 4.2.
The dependence of β̃ on the kicking period τ opens a load of experimental possibilites.
Choosing the kicking period as an arbitrarily high multiple of 2π (to conserve resonance
conditions), the boundaries inside which the effect of frequency doubling is visible are
infinitely small – only the beating frequency will be detected. If the kicking period goes
to zero on the other hand (which essentially introduces a dynamical evolution like at
quantum resonance, see [26]), the boundaries go to infinity and the effect will become
observable even for large β-ensembles. This allows to realise an experiment with cold
instead of ultracold atoms to observe this interesting phenomenon.

We are looking forward to obtain experimental verification of the predictions made in
this thesis during the next few years. Hopefully, our research will prove as fruitful and
inspiring to the experiment as we hope and have portrayed in this outlook.





Appendix A

Formulae

The mathematical formulae and approximations used in this thesis were taken from [83]
and [84]. They are listed in an overview below:

1
2π

∫ 2π+α

α
dθeiz cos(θ)e−inθ = inJn(z) (A.1)

|z| → ∞ : J0(z) →
√

2
πz

cos(z − π

4
) (A.2)

∫ π

−π
dxJ2n(2z sin(x)) = 2πJ2

n(z) (A.3)

∫ ∞

−∞
dxeax2+bx =

√
π

−a
e−b2/4a (A.4)

∫ ∞

−∞
dxe−iax2

=
√
π

ia
(A.5)
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Appendix B

Derivation of the propagator for
the harmonic oscillator

In order to derive the harmonic oscillator propagator from scratch, we use the defini-
tion of the Van Vleck propagator, a semiclassical expression for the propagator taken
from [81]:

G(θ, θ′, t) =
1

(2πi~)d/2

∑
j

| Vj(θ, θ′, t) |1/2 e
1
2
Sj(θ,θ′,t)−i π

2
νj(θ,θ′,t). (B.1)

Vj are the Van Vleck determinants, d the dimension of our system (in our case, therefore,
1) and νj the Maslov index, which we already know can be neglected. The sum is over
all trajectories (labelled by the index j).
For the harmonic oscillator, there is only a single trajectory in the sum. First, we
calculate the action of the harmonic oscillator. The Lagrangian

L =
1
2
(θ̇2 + ω2θ2) (B.2)

leads to the equation of motion
θ̈ + ω2θ = 0, (B.3)

with the general solution

θ(t) = A sin(ωt) +B cos(ωt). (B.4)

For the propagation, we want to move from point a to point b. We define the time
at point a as ta and the time when we reach point b as tb. The difference is then
T ≡ tb − ta. The ansatz

θa(t) = A sin(ωta) +B cos(ωta), θb(t) = A sin(ωtb) +B cos(ωtb) (B.5)

allows us to calculate the prefactors A and B, resulting in

A =
θb cos(ωta)− θa cos(ωtb)

sin(ωT )
,

B =
θa sin(ωtb)− θb sin(ωta)

sin(ωT )
. (B.6)
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Now, we insert A and B into Eq. (B.4), and then the new expression for θ(t) into the
Lagrangian. After some computations, we obtain

L =
ω2

2
[
(A2 −B2) cos(2ωt)− 2AB sin(2ωt)

]
. (B.7)

Integrating L from ta to tb yields the action. After simple, but lengthy calculations we
obtain

S =
ω

2 sin(ωT
)
[
(θ2

a + θ2
b ) cos(ωT )− 2θaθb

]
. (B.8)

For the Van Vleck determinant, we calculate

V =
∣∣∣∣ ∂2S

∂θ∂θ′

∣∣∣∣ =
ω

sin(ωT )
, (B.9)

and thus obtain the well known propagator for the harmonic oscillator:

G(θ, θt) =
(

ω

2πi~ sin(ωT )

)1/2

exp(
iω

2~ sin(ωT )
[
(θ2

a + θ2
b ) cos(ωT )− 2θaθb

]
). (B.10)
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[9] R. Schäfer, H.-J. Stöckmann, T. Gorin, and T. H. Seligman, Experimental verifi-
cation of fidelity decay: From perturbative to fermi golden rule regime, Phys. Rev.
Lett. 95 (2005), 184102.

[10] R. Höhmann, U. Kuhl, and H.-J. Stöckmann, Algebraic fidelity decay for local
perturbations, Phys. Rev. Lett. 100 (2008), 124101.

[11] T. Gorin, T. Prosen, T. H. Seligman, and M. Z̆nidaric, Dynamics of Loschmidt
echoes and fidelity decay, Phys. Rep. 435 (2006), 33 – 156.

[12] P. Jacquod and C. Petitjean, Dynamics of decoherence, entanglement and quantum
irreversibility, preprint (2008), arXiv:0806.0987v1.

[13] J. C. Robinson, C. Bharucha, F. L. Moore, R. Jahnke, G. A. Georgakis, Q. Niu,
M. G. Raizen, and B. Sundaram, Study of quantum dynamics in the transition
from classical stability to chaos, Phys. Rev. Lett. 74 (1995), 3963–3966.

69



70 BIBLIOGRAPHY

[14] B.V.Chirikov, J.Ford, and F. Izrailev, Stochastic behavior of a quantum pendu-
lum under a periodic perturbation, Stochastic Behavior in Classical and Quantum
Hamiltonian Systems (G. Casati and J. Ford, eds.), Lecture Notes in Physics,
vol. 93, Springer Verlag, Berlin, 1979, pp. 334 – 351.
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[37] H.-J. Stöckmann, Quantum chaos, an introduction, Cambridge University Press,
New York, 1999.

[38] F. M. Izrailev, Simple models of quantum chaos: Spectrum and eigenfunctions,
Phys. Rep. 196 (1990), 299 – 392.

[39] A. Buchleitner, D. Delande, and J. Zakrzewski, Non-dispersive wave packets in
periodically driven quantum systems, Phys. Rep. 368 (2002), 409 – 547.

[40] G. Casati, B. V. Chirikov, D. L. Shepelyansky, and I. Guarneri, Relevance of
classical chaos in quantum mechanics: The hydrogen atom in a monochromatic
field, Phys. Rep. 154 (1987), 77 – 123.

[41] P. M. Koch and K. A. H. van Leeuwen, The importance of resonances in microwave
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angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 27. Februar 2009




