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Durch Rauschen unterstützte Interband-Übergänge im Wannier-Stark Prob-
lem:

In dieser Arbeit untersuchen wir das Interband-Tunneln in gekippten bichro-
matischen optischen Gittern. Der Fokus der Arbeit liegt auf Systemen, in denen
eines der Gitter von einem farbigen Rausch-Prozess ausgelenkt wird. Allerd-
ings konnten wir auch interessante Effekte für ein System beobachten, in dem
die beiden Gitter sich mit einer konstanten Relativgeschwindigkeit bewegen.
In beiden Fällen analysieren wir die Systeme mit Hilfe eines vereinfachtes ana-
lytisches Modells, das wir anschließend mit den Ergebnissen von numerischen
Simulationen vergleichen.
Für das gekippte bichromatische Gitter mit konstanter Relativgeschwindigkeit
β beobachten wir, dass das Interband-Tunneln für gewisse Werte β extrem ver-
stärkt wird. Wir führen ein Modell ein, das es erlaubt, diese Resultate zu inter-
pretieren und sie qualitativ zu erklären.
Ähnliches Verhalten beobachten wir für das von Rauschen angetriebene Gitter.
Hier beobachten wir, dass die Tunnelrate von Rausch-Prozessen einer speziellen
Intensität maximiert wird. Obwohl das Modell, das wir für dieses System ein-
führen, nur für sehr langsame Rauschprozesse exakt ist, kann es qualitativ selbst
die numerischen Resultate für schnelles Rauschen erklären. Dieses Modell er-
laubt es uns außerdem, Ergebnisse, die von Tayebirad et al. in vorherigen Ar-
beiten gefunden wurden [38], zu erklären.

Noise-assisted Interband Transitions in the Wannier-Stark Problem:

In this work we study the interband transport properties of a tilted bichromatic
optical lattice. While our main interest is the behavior of this system when one of
the lattices is driven by colored noise, we also present interesting results for the
case where the two lattices are moving with a constant relative velocity. Simpli-
fied analytical models are employed, that draw a connection between those two
systems. The predictions made by these models are then compared to results of
extensive numerical simulations.
For the tilted bichromatic lattice with a constant relative velocity β between the
two lattices, we find that the interband tunneling is strongly enhanced for cer-
tain values of β. We furthermore propose a model that allows to interpret and
qualitatively explain these results.
A similar behavior is witnessed for tilted noise-driven bichromatic lattices. We
find that a noise process of a certain strength maximizes the tunneling rate.
While the model we propose for this noise-driven case is only accurate for sys-
tems driven by slow noise, we find that it qualitatively explains the numerical
results even for fast noise. Using this model we are moreover able to explain
effects previously found by Tayebirad et al. [38].
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1 Introduction

1.1 Background

The first realization of a Bose-Einstein condensate in 1995 paved the way for a
wide range of experiments that allow the direct observation of quantum mechan-
ical effects in highly controllable environments. Since then the control over the
condensate and the forces it is subject to has been improved to such an extend
that a wide range of quantum mechanical systems can today be realized and ob-
served.

This fine control over the system allows to easily analyze many quantum me-
chanical effects that were previously not directly measurable or only realizable in
systems that are hard to control and observe. These condensates can therefore be
used as a sort of quantum simulator.

One such example are Bloch oscillations, a quantum mechanical effect first pre-
dicted for electrons in solid states. Due to the complicated nature of these solid
state systems the effect was, however, not observable in these systems for a long
time. While first observations were already possible in semiconductor superlat-
tices in 1992 [23], using Bose-Einstein condensates in optical lattices allows today
to induce, control and observe such oscillations for up to several seconds, corre-
sponding to thousands of oscillation periods [18, 10].

In these and other experiments, optical lattices have proven an invaluable tool
to observe effects previously predicted for solid state systems. Created by a
standing laser light wave, these lattices form are a potential of sinusoidal shape
which therefore resembles the potential experienced by electrons in a solid.

This means that the transport properties of Bose-Einstein condensates in opti-
cal lattices have many relations to properties of solid state materials. For this rea-
son the transport of the condensate in a tilted optical lattice is a very worthwhile
problem. This so-called Wannier-Stark system shows a combination of tunneling
behavior, the previously mentioned Bloch oscillations and interesting phenom-
ena that occur due to the interplay between those two effects [35, 47].

Since most naturally occurring systems are characterized by a certain degree
of disorder, studying the effects of disordered potentials is necessary for a bet-
ter understanding of many real-world systems. One example of an interesting
effect that is caused by spatial disorder is Anderson localization, which inhibits
diffusion in disordered potentials [43].

All real world systems that are not at zero temperature are disturbed by ran-
domly fluctuating interactions with the outside world. For electrons in solid state
materials this is, amongst others, the coupling to the phonon bath. It is thus also
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interesting to study the transport properties of a system disturbed not by spatial
but by temporal disorder.

In this work we will study the transport properties of a Wannier-Stark system
which is disturbed by the presence of a second randomly fluctuating optical lat-
tice. The analysis of this system will be performed by numerical simulations but
also through the construction of a model that approximates the behavior of the
full system. This model will enable us to better understand the influence the
fluctuating lattice has on the Wannier-Stark system.

1.2 Overview

In this thesis we study a Wannier-Stark system under the influence of an addi-
tional, noise-driven lattice. We investigate the effect of this second lattice on the
tunneling of the wavefunction out of the ground band. We devise a simplified
model of the system which allows a better understanding of the influence of the
noise lattice. The predictions of this model are then compared to the results of
numerical simulations.
The following is a more detailed outline of this work:

Chapter 2: In this chapter we will introduce the system under consideration
and provide the means which we need in the later chapters for analyzing this
system.
In section 2.1 we describe Bose-Einstein tools and optical lattices, which are the
tools required for an experimental implementation of the Wannier-Stark system.
The Wannier-Stark system is then introduced in section 2.2. In this section we also
explain how the emerging band structure influences transport in such a system
and show how the system can be understood using the Landau-Zener approxi-
mation.
The stochastic differential equations needed for the definition of the noise process
are introduced in section 2.3. We start with a short explanation of the general the-
ory of stochastic differential equations and their properties. Thereafter the noise
processes used in this work are defined. While their properties will be explained
in this section, the algorithm used to generate these noise processes is found in
appendix A.
Lastly in section 2.4 we will introduce the results obtained by Tayebirad et al. who
already studied the system analyzed in this work. A more detailed discussion of
these results will follow in section 4.3.

Chapter 3: In order to understand the influence of the noise on the system un-
der consideration, we will first need to understand how the system behaves in the
absence of noise. This chapter will therefore analyze the Wannier-Stark system in
the presence of a second lattice that is not driven by noise but simply moves with
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a constant velocity β. Since we assume this second lattice to have a lattice con-
stant different from the one of the original Wannier-Stark problem, this will be
called the bichromatic tilted lattice system or the bichromatic Wannier-Stark system.
In the first section of this chapter we will explain why this system is relevant to
our understanding of the full noise-driven system that we want to study in this
thesis.
In section 3.2 we introduce the bichromatic Wannier-Stark system and give a qual-
itative estimate of its behavior. Based on a simplified model of the system, this
qualitative estimate is then refined into more quantitative predictions in section
3.3.
In section 3.4 we discuss the results obtained through numerical simulations of
the noise-less bichromatic Wannier-Stark system. These results are then com-
pared to the predictions made in section 3.2 and 3.3. While we find that the
quantitative predictions cannot accurately describe the systems behavior, there
is a good qualitative agreement with the model.

Chapter 4: In this chapter the main results of this thesis are presented. The
focus is a better understanding of the behavior of the noise-driven bichromatic
Wannier-Stark system.
In Section 4.1 we present an approach that uses the result from chapter 3 to model
the influence of slow noise on the bichromatic Wannier-Stark system. We discuss
the predictions derived through this approach and give a qualitative estimate on
how the effects of fast noise will differ from these predictions.
In order to understand the noise-driven bichromatic Wannier-Stark system ex-
tensive numerical simulations were performed. While the algorithm used for the
numerical simulations of the Schrödinger equation is presented in appendix B,
the details of the simulations are explained in section 4.2. To this end we show
how the initial state of the simulations is set up and define how the observable is
measured.
In section 4.3 we discuss the results of the numerical simulations and compare
them to the model introduced in section 4.1. We will observe that the model,
even though not accurate for very fast noise can explain the influence of slow
noise very well. We furthermore discuss how this model explains the effects pre-
viously observed by Tayebirad et al. (see section 2.4).

Chapter 5: In this chapter we will give a short recapitulation of the results
obtained in chapter 3 and 4. We will moreover discuss interesting directions for
further research and applications that could be based on the results of this thesis.
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2 Preliminaries

2.1 Bose-Einstein Condensates and Optical
Lattices

While the existence of Bose-Einstein condensates was already predicted at the
beginning of the 20th century [9, 33], it took seventy more years to finally observe
them in an experiment [3]. Named after the two physicists who first calculated
its properties, this new state of matter should form for any weakly interacting
Bosonic gas at low enough temperatures.

All particles that are part of such a condensate occupy the same quantum-
mechanical state of the system. This is caused by the fact that the number of
thermally available excited states diminishes rapidly for low temperatures. While
we would of course expect that in a system at temperature T = 0, all particles are
found in the ground state, we would naively assume that at a finite temperature
only a diminishing fraction of all particles are found in this state. One can how-
ever calculate that for a non-interacting Bose-gas there exists a finite temperature
Tcrit, at which the sum over the expected occupation values of all excited states
become too small to hold all particles. Below this temperature a finite fraction of
all particles is therefore found in the ground state of the system. These particles
thus all occupy the same state and form the Bose-Einstein condensate.

For a non-interacting Bose-gas, the temperature Tcrit at which this condensa-
tion happens can be calculated using only the density of states of the system and
the Bose-Einstein distribution. This calculation is found in many textbooks on
statistical physics, for example the book of Fließbach [12, Chapter 31]. At this
transition temperature, the de Broglie wavelength of a thermally excited particle
of a Bose-gas becomes comparable to the interparticle distance, giving another in-
tuitive meaning to the condensation process. For realistic experimental systems
with a particle density of 1013 − 1015 atoms

cm3 this corresponds to a critical tempera-
ture in the order of 10−7K [29].

Since all particles in the Bose-Einstein condensate occupy the same state, their
wavefunction is identical. It is therefore possible to describe the whole Bose-
Einstein condensate through this common wavefunction. The fact that a large
number of particles is described by a coherent wavefunction allows one to ob-
serve quantum mechanical effects on macroscopic scales.

If the particles in the condensate are not interacting with each other, their com-
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mon wavefunction is governed by the single-particle Schrödinger equation

i h∂tψ = −
1
2

 h2∇2

2M
ψ+ V(x)ψ. (2.1)

While it is possible to keep the interactions between cold Bosonic atoms mini-
mal through means of a Feshbach resonance [29], any experimental realization
of a Bose-Einstein condensate will show interactions between the atoms in the
condensate. In the low density limit, these interactions can be described using a
mean-field approach known as Gross–Pitaevskii equation [29]. In this approach,
the local potential is modified by the condensate density due to interactions be-
tween the atoms of the condensate, leading to the nonlinear Schrödinger equation

i h∂tψ = −
1
2

 h2∇2

2M
ψ+ V(x)ψ+ gN0|ψ|

2ψ, (2.2)

whereN0 is the total number of atoms in the condensate and the term g describes
the nature and strength of the interaction. For positive values of g, the interaction
is repulsive while for negative values of g it is attractive.

In experiments, the potential term V(x) in the linear (2.1) or nonlinear Schrö-
dinger equation (2.2) can be controlled by various means, for example magneto-
optical traps [7]. In this work we are however mainly interested in optical lattice
potentials. These potentials are created by superimposing two counter-propagating
but coherent laser light beams with a frequency close to an atomic resonance.
Due to interference this results in a standing wave with nodes where the light
interferes destructively and anti-nodes where the light interferes constructively.
Atoms that are located at the nodes of this standing wave do therefore not expe-
rience any effect. Away from those nodes the energy states of the neutral atoms
are, however, shifted due to an induced dipole moment. A detailed derivation
of the resulting potential can be found in an article of Fischer and Raizen [11,
Chapter 8]. We will skip the detailed treatment of this problem and only quote
the resulting Hamiltonian

H = −
 h2∇2

2M
+ V0 cos

(
2

2πx
λ

−φ(t)

)
. (2.3)

This expression is derived for two laser light beams with wavelength λ that prop-
agate in the x-direction. In order to simplify the expression we will define a
new wave number k = 4π/λ such that the potential term can be written as
V0 cos(kx − φ(t)). The amplitude V0 of the lattice potential depends on the in-
tensity of the laser light and on how far the laser frequency is detuned from the
atomic resonance [11, Chapter 8]. The phase shift φ(t) depends on the relative
phase of the two superimposed laser light beams.

For a realization of the Wannier-Stark discussed in section 2.2, we also like to
apply a static force F to the whole Bose-Einstein condensate, thereby tilting the

12



optical lattice. This static force can be easily introduced into the optical lattice by
making use of the time-dependent phase shift φ(t) in equation (2.3). Setting the
phase shift to φ(t) = kφ̃(t) − Fkt2

M and applying a unitary transform allows one to
write the Hamiltonian (2.3) in an accelerated frame of reference:

H = −
 h2∇2

2M
+ V0 cos

(
k(x− φ̃(t)

)
− Fx. (2.4)

This so-called Wannier-Stark Hamiltonian will be studied in the following chap-
ter.
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2.2 Wavefunctions in Tilted Periodic Potentials:
Avoided Crossings and Landau-Zener
Transitions

In this section, we will demonstrate how the presence of a periodic lattice po-
tential leads to the emergence of an energy band structure and how tunneling
between these bands can be described. Starting with the Schrödinger equation in
simplified units, we determine the effect of the lattice on the momentum eigen-
states. Using this knowledge the emerging bandstructure is discussed. To better
understand the influence of a static force on the transport properties of the sys-
tem, we will use a Landau Zener model to describe the system near the bandgaps.
Lastly the limitations of this Landau-Zener approximation are discussed.

1 2 3 4 5 6

well index

F

2π

Figure 2.1: The tilted periodic lattice, with lattice constant dl = 2π and Stark Force
F

Band Structure in the Presence of a sinusoidal Lattice

The Schrödinger equation introduced in the previous section accurately describe
the behavior of cold, non-interacting atoms in an optical lattice. In order to make
the following calculations , we will introduce a new set of units. Starting with the
full Schrödinger equation for the Wannier-Stark problem

i h∂tψ =

(
−

 h2

2M
∂2
x + V sin (2klx) − Fx

)
ψ (2.5)

and substituting x̃ = 2xkl results in

i h∂tψ =

(
−4
k2
l
 h2

2M
∂2
x̃ + V sin(x̃) −

F

2kl
x̃

)
ψ. (2.6)

In order to remove the prefactor of the kinetic term and all occurrences of  h, we

also renormalize the time scale by introducing t̃ = t 1
 h4

 h2k2
l

M . All the remaining
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factors can be absorbed by using rescaled values for V and F. The simplified
Schrödinger equation thus reads

i∂t̃ψ =

(
−

1
2
∂2
x̃ + V0 sin(x̃) − F0x̃

)
ψ, (2.7)

where

V0 = V
M

4 h2k2
l

=
V

8Erec
, x̃ = 2xkl, (2.8)

F0 = F
M

8 h2k3
l

=
Fλl

16πErec
, t̃ = t

1
 h

4
 h2k2

l

M
= t

8Erec
 h

.

The recoil energy Erec is defined as the kinetic energy an atom of the condensate
would gain from absorbing a photon from the laser beam:

Erec =
( hkl)

2

2M
=

 h2k2
l

2M
(2.9)

and the laser wavelength λl is defined as λl = 2π
kl

. Unless stated otherwise, this
new set of units will be used throughout this work and hence we drop the tilde
symbol over x and t.

Now that the Schrödinger equation has been brought into a neater form, we
would like to better understand the effect of the static force F0. Let us consider
a transformed wavefunction ψ̃ = eiF0txψ and examine how it is affected by the
Schrödinger equation. The transformation is equivalent to a momentum boost
p̃ = p+ Ft and it is thus not surprising that it results in

eiF0tx (i∂tψ− F0xψ) =e
−iF0tx

(
−

1
2
∂2
xψ− iF0t∂xψ+

1
2
F2

0t
2ψ

)
+

(V0 sin(x) − F0x) ψ̃

(2.10)

⇒ i∂tψ =
1
2
(−i∂x + F0t)

2ψ+ V0 sin(x)ψ, (2.11)

where we divided by eiF0tx to get the final result.
To understand how the dynamics of the system is influenced by the sinusoidal

lattice, it is instructive to rewrite the Hamiltonian in the momentum basis. As
the kinetic term is already written in terms of the momentum operator −i∂x, it is
only necessary to investigate the effect on the second term of the right hand side
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of (2.11):

V0 sin(x) =
∫
p,p ′

|p ′〉〈p ′| V0 sin(x) |p〉〈p| dpdp ′

=V0

∫
p,p ′

∫
x
|p ′〉e−ip

′xe
−ix − e+ix

2
eipx〈p| dxdpdp ′

=
V0

2

∫
p,p ′

∫
x
|p ′〉

(
ei(p+1−p ′)x − ei(p−1−p ′)x

)
〈p| dxdpdp ′

=
V0

2

∫
p,p ′

|p ′〉
(
δ(p+ 1 − p ′) − δ(p− 1 − p ′)

)
〈p| dpdp ′

=
V0

2

∫
p
(|p+ 1〉〈p| − |p〉〈p+ 1|) dp. (2.12)

This term does only couple momentum eigenstates with a difference in momen-
tum p of exactly one. As the kinetic term of the equation (2.11) does not couple
states with different momenta, states with a non-integer difference in momentum
are not coupled at all. Writing the momentum p as

p = z+ q
z ∈ Z

q ∈ [−0.5, 0.5) ⊂ R
(2.13)

allows one to write the Schrödinger equation in a form that shows this restriction
more clearly:

i∂tΨ(q, z) = (q+ z+ F0t)
2Ψ(q, z) +

V0

2
[Ψ(q, z+ 1) −Ψ(q, z− 1)] . (2.14)

In this notation, only states with the same q are coupled and no transitions be-
tween states with different q are therefore possible. If the system is prepared in
a state with a fixed value of q, it can thus only access a countable set {z} of states
with the same q.

Let us for now ignore the time-dependent term F0t and focus on the energy
levels of the system at a fixed time. We will call the states with q and z fixed
the diabatic states Ψ(q, z) of the system. Their energies are identical to those of
a free particle with momentum q + z and can be seen in figure 2.2a as dashed
lines. Each one of the states Ψ(q, z) can be seen as a parabola in q centered at
−z. The eigenstates of the system are called the adiabatic states1 and their energies
are shown as solid lines in figure 2.2a. As the states with different z are coupled
through the lattice term, the eigenstates are in general not identical to the diabatic
states. Unlike the diabatic states, whose energy levels cross for certain values of
q, the adiabatic states show avoided crossings. The adiabatic states can therefore
be divided into different bands which are seperated by bandgaps [1].

-
1In order to find the eigenstates, one has to solve the so-called Mathieu equation. While these

solutions are known, they cannot be easily expressed analytically.
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Avoided Crossings in the Landau-Zener Approximation

In the present work we will be mostly interested in the tunneling from the ground
band up to higher bands. To understand the behavior of the system close to the
bandgaps, consider the general case of two coupled quantum mechanical states
A and B whose energies change as a result of an external parameter. If the state
A is forced through an avoided crossing with state B through the change of the
external parameter, any wavefunction that is initially prepared in the state Awill
afterwards be in a superposition of the two states. The adiabatic theorem helps
us understand, what will happen in the limiting cases of very slowly or rapidly
changing momentum. If the external parameter changes very rapidly, the dynam-
ics of the system is too slow to effect any change of the wavefunction, meaning
that the system stays in the same diabatic state. If on the other hand the exter-
nal parameter changes very slowly, the system will remain in the same adiabatic
state. In our system the change in the parameter q is caused by the static force
F. A strong force means that the system will remain in the diabatic state Ψ(q, z)
it was initially prepared in, translating into complete tunneling into the higher
band at bandgaps. For a very weak force, the system does stay in its adiabatic
state, leaving it confined to the band it was prepared in.

Placed in the lowest band, a momentum eigenstate will continuously accelerate
until it hits a bandgap. There a part of it will be reflected and thus remain in
the ground band while a part of it will tunnel through the bandgap to the next
band. The probability to remain in the groundband remains nearly constant while
−0.5 < q < 0.5, but drops every time an avoided crossing is reached (see figure
2.3b). This happens once per Bloch period TBloch:

TBloch =
1
F0

νBloch =
1

TBloch
= F0. (2.15)

To better understand the behavior of the system close to the bandgaps, we look
at the Landau-Zener approximation of the system at the avoided crossings. Writ-
ing the Schrödinger equation (2.14) for a fixed q in matrix form reads

i∂tΨ(q, z) =
1
2


. . . V0 0 0 0
V0 (q− 1 + F0t)

2 V0 0 0
0 V0 (q+ F0t)

2 V0 0
0 0 V0 (q+ 1 + F0t)

2 V0

0 0 0 V0
. . .

Ψ(q, z).

(2.16)

The dynamics close to a bandgap can be approximated by only considering the
two states involved locally in the avoided crossing. For the gap between the two
lowest bands at q = 0.5, these would be the states Ψ(q, 0) and Ψ(q,−1). Let us
ignore all terms that couple these states to the rest of the system and restrict the
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Hamiltonian to the part highlighted in (2.16)

HLZ =
1
2

(
[(q+ F0t) − 1]2 V0

V0 [q+ F0t]
2

)

=
1
2

(
(q+ F0t)

2 + 1 − 2(q+ F0t) V0
V0 (q+ F0t)

2

)
.

Setting q = 0.5 and changing the energy scale by subtracting (q+ F0t)
2 + F0t from

the diagonal transforms this into

HLZ =
1
2

(
−F0t V0
V0 F0t

)
. (2.17)

This reduced Hamiltonian is the well-known Landau-Zener model. The energy
levels of the Landau-Zener model can be seen in figure 2.2b, where dashed lines
again denote the diabatic states whereas solid lines represent the adiabatic states.
The energies of the adiabatic states are

E±adiabatic = ±
1
2

√
F0t2 + V

2
0 , (2.18)

leading to a bandgap of width V0. An exact solution for the asymptotic tunneling
probabilities was published by Landau and Zener ([22, 46]): Assuming the system
is prepared in one of the diabatic states at t = −∞, this solution predicts that at
t = +∞, the probability that the system is still in the same diabatic state equals

PLZ = exp

(
−π

V2
0

2F0

)
. (2.19)

A more concise proof of this than given in the original papers can be found in
[45].

The presence of the bandgaps can be represented as barriers in momentum
space. An accelerated state hitting one of the barriers at p = 0.5 will only par-
tially tunnel through it with probability Ptunnel = PLZ. Another part of it will
be reflected with Preflection = 1 − PLZ. The reflected part of the wavefunction is
transported to the momentum p = −0.5 (visualized in figure 2.4). A part of the
wavefunction will therefore be trapped within the barriers. This corresponds to
the part of the wavefunction that remains in the ground band.

Limits of the Landau-Zener Approximation

It should be kept in mind that this approximation is only strictly true for the gap
between the first and the second gap. The higher bandgaps result from coupling
through an intermediate state and are therefore somewhat more complicated to
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deal with. However, as the width decreases between higher bands, the tunneling
through these gaps is exponentially enhanced when compared to the first gap. As
an example the width of the second bandgap scales as V2

0/2 for V0 � 1, meaning
that for small V0, the probability to tunnel from the second to the third band is
exponentially enhanced. Subsequent bandgaps scale with even higher powers
of V0 [28]. For small V0, all tunneling probabilities between higher bands can
therefore be approximated as P{n}LZ ≈ 1.

While the Landau-Zener formula (2.19) accurately predicts the tunneling prob-
abilities for the reduced Hamiltonian, it cannot account for all effects that occur in
the full system. In any real system the transition takes place during a finite time,
whereas the Landau-Zener formula is only correct for transition that are given
an infinite amount of time. To understand how a finite timescale influences the
transition process, it is instructive to look at the time-dependence of the adiabatic
tunneling probabilities (see figure 2.5). While there are oscillations up to larger
values of t, the probability changes most drastically in a small region around
t = 0. A more thorough analytical and numerical investigation by Vitanov ([41])
finds that there are indeed two relevant timescales of the transmission. There is
the jump time τjump, the time needed for Psurv to reaching its asymptotic value
for the first time. Furthermore there is the relaxation time τrelax which describes
the time needed for the oscillations of Psurv to be damped to a sufficiently small
value.

In the present work the more important timescale is the jump time. While it
cannot be ruled out that the oscillations around the asymptotic value influence
subsequent avoided crossings, the jump time gives a lower bound for the separa-
tion needed for two successive Landau-Zener transitions to be considered inde-
pendent. For the range of parameters studied in this work, Vitanov ([41]) finds
the jump time to be

τjump =
V0√
2F0

. (2.20)

The time between two avoided crossings in the full system (2.16) is the Bloch time
TBloch. The Landau-Zener formula is only applicable if the jump time is smaller
than TBloch:

τjump 6 TBloch ⇔ F0 6
2
V2

0
. (2.21)

Rigorously defining the two timescales in a meaningful way is not as straight-
forward as it seems and the results (2.21) should therefore be seen more as a
guideline than a strict condition [47].

Multiple Crossings: RET and Multilevel Landau-Zener

An effect not considered in the Landau-Zener picture is resonantly enhanced tun-
neling (RET). This effect is due to interference between the part of the wavefunc-
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tion that has escaped to the second, but not the third band and the part of the
wavefunction that remains in the first band. As there is a q-dependent energy
difference between the two bands, a phase difference of

Φ =

∫TBloch

0
i
[
E2(q(t)) − E1(q(t))

]
dt (2.22)

is accumulated up during each Bloch period. Depending on this phase difference,
tunneling can be either enhanced or suppressed [25].

During the last decade, there has also been a plethora of research on the multi-
state Landau-Zener problem. In this problem, a crossing of more than two energy
levels occurs within a short time such that avoided crossings overlap. In spite
of the complexity of the problem2, some interesting analytical results have been
found:

• The no-go-theorem states that certain transitions are completely forbidden.
These transitions are those that would also be forbidden in the approxima-
tion where the problem is treated as succession of separate Landau-Zener
events. This means for example that in figure 2.6 for a sweep from the left
to the right (q increases in time), no transition from the lowest level on the
left to the highest level on the right is possible [36].

• Certain elements of the transition matrix can be found by simply treating
the problem as a series of unconnected Landau-Zener events. Among these
is the probability to remain in the diabatic state with the highest slope [4].

In certain situations, the additional effects brought into play by multiple level
crossings are therefore negligible and the multilevel Landau-Zener problem can
be simply treated as a succession of individual Landau-Zener events between
different diabatic states.

2Due to the fact that a number of interference terms similar to the one noted in (2.22) appear,
even treating the problem as a succession of separate Landau-Zener events quickly gets very
complicated.
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2.3 Stochastic Differential Equations, Noise
Processes and Harmonic Noise

The history of stochastic differential equations in physics goes back to Einsteins
solution of the Brownian Motion problem [8]. Since then the formalism for treat-
ing these problems has evolved considerably and today it has found manifold
application in such different fields as biology, economics, chemistry and solid
state physics.

Stochastic differential equations are differential equations influenced by one or
more stochastic processes. As such their solutions themselves are necessarily also
a stochastic process.

Let us consider stochastic differential equation that follow the Langevin equa-
tion

ẏ(t) = f
(
y, t
)
+ g
(
y, t
)
ξ(t) (2.23)

with a noise term ξ(t). These differential equations can be seen as a map of the
original stochastic process ξ(t) onto a new stochastic process y(t). In this work,
we will always defined ξ(t) as a zero mean Gaussian white noise term with the
correlation function

〈ξ(t)ξ(t ′)〉 = δ(t− t ′). (2.24)

This correlation function tells us two things: there is no correlation between the
ξ(t) at two different times and ξ(t) has infinite variance. Since ξ(t) has infinite
variance, it cannot be understood as an ordinary noise variable. Its meaning in
the stochastic differential equation becomes clearer when observing the integral
W(t) over the white noise process:

W(t) =

∫ t
0
ξ(t ′)dt ′. (2.25)

W(t) has the variance

〈W(t)2〉 =
〈∫ t

0

∫ t
0
ξ(t1)ξ(t2)dt ′1dt ′2

〉
=

∫ t
0

dt ′1 = t. (2.26)

Calculating the higher momenta of the so-called Wiener process W(t) reveals
that it follows a Gaussian distribution with standard deviation σ =

√
t. It can

therefore be considered a diffusion process. An analogy to help understand this
is a random walk is interpreting the integral (2.25) as a random walk, that adds
up an infinite number of steps ξ(t).

Integrating the stochastic differential equation (2.23) through a Riemann or
Lebesgue integral is not possible because ξ(t) and hence the whole right side
of the equation does not assume a finite value. One therefore needs to come up
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with a definition that incorporates the noise term in a more sensible way. This is
done by putting the Wiener process W(t) at the core of the integration. The Ito
stochastic integral over a function f(t) using Wiener process W(t) is defined as a
kind of Stieltjes integral:∫ t

0
f(t ′)ξ(t ′)dt ′ =

∫ t
0
f(t ′)dW(t ′) (2.27)

= lim
N→∞

{
N∑
i=1

f(ti−1)[W(ti) −W(ti−1)]

}
. (2.28)

While this definition at first seems similar to the Riemann integral, its implica-
tions on the resulting calculus are not straightforward3. A reader interested in
more information about this topic is referred to the book of Gardiner [17].

In order to discuss the noise processes which will be used in this work let us
first some of their properties that we can use to characterize them. A noise pro-
cess initially prepared in a state y(0) will undergo a stochastic evolution. Its value
y(t) at a later time t > 0 will therefore obey a distribution P(y,y0)tdy. For many
noise processes, this distribution function P(y,y0)tdy approaches a static equilib-
rium distribution Pequ(y)dy for t → ∞. This means that in this limit, the distri-
bution does neither depend on t nor the initial state y0 anymore. For a noise
process prepared with initial states y0 according to this distribution, the proba-
bility density for y(t) will always be given by Pequ(y)dy. This static equilibrium
probability density therefore describes the distribution for y(t) of a noise process
for which no information about previous states is known.

While the equilibrium distribution of a noise process tells us about its static
properties, it does not convey any information about the dynamics of the process.
How the noise process influences other systems is however usually also deter-
mined by the way y(t) changes over time. An important property incorporating
this time-dependence is the two-time correlation function R(h) = 〈y(t0)y(t0 + h)〉
and the related power spectrum. For h = 0, the correlation function is equal to the
variance of the noise process R(0) = 〈y(t)2〉. For very long times h, the correlation
function R(h→∞) will converge to zero if the noise process

The power spectrum is defined as the Fourier transform of the correlation func-
tion

S(ω) =

∫+∞
−∞ 〈y(0)y(t ′)〉e−2iπωt ′dt ′. (2.29)

Through the Wiener-Khinchin theorem this spectrum is related to the absolute
square of the Fourier transform of the noise process. For a system only respond-
ing to a signal of certain frequencies, the power spectrum can thus tell us how

3One should also keep in mind that equation (2.28) is not the only definition one can use for
stochastic integrals. Using another definition like for example the Stratonovich integral will
change the properties of the noise process W(t) as well as the solutions of stochastic differen-
tial equations.
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strongly this system should be influenced by the noise process. While the power
spectrum of the white noise process is completely flat, the noise processes used in
this work feature spectra with maxima at specific frequencies as shown in figure
2.7b and 2.7d.

Using the definition of stochastic integrals, we can now proceed to define and
analyze the noise processes we will study in chapter 4 of this work: the harmonic
noise as well as the exponentially correlated noise.

Let us first consider the exponentially correlated noise. This noise, also known
as Ornstein-Uhlenbeck process is defined by the Langevin equation

φ̇(t) = −Γφ(t) +
√

2Tξ(t). (2.30)

This equation can be thought of as representing the velocity of a particle undergo-
ing Brownian motion in a one-dimensional system. A randomly fluctuating force√

2Tξ(t) accelerates the particle, but the motion is damped by a viscous drag term
Γφ(t). In figure 2.7a, a realization of this noise process is plotted.

The equilibrium distribution of this process is (see [17, chapter 4.4.4])

Pequ(φ)dφ =
1√
2πT

e−
φ2
2T . (2.31)

This defines a zero-mean Gaussian distribution with variance T . The two-time
correlation function is given by

〈φ(t0)φ(t0 + h)〉 = Te−Γ |h|. (2.32)

The correlation decays with a characteristic time of 1/Γ which is of course the
reason for the name of the noise process. The resulting power spectrum has the
form of a Lorentzian function

S(ω) =
2ΓT

ω2 + Γ2 . (2.33)

This spectrum is peaked at ω = 0 with a full width at half maximum of Γ (see
figure 2.7b). The exponentially correlated noise can thus be seen as a white noise
process subject to a low-pass filter.

The harmonic noise process follows the Langevin equation

φ̇ = ν

ν̇ = −2Γν−ω2
0φ+

√
4ΓTξ(t).

(2.34)

Similar to the exponentially correlated noise, it can be imagined as a particle un-
dergoing Brownian motion, but this time in the presence of an harmonic poten-
tial. If this harmonic potential is sufficiently relaxed, one would expect this pro-
cess to approach the free case described by the exponentially correlated noise
process. In the limit ω0 → 0, the equation (2.34) indeed turns into (2.30). We
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therefore expect the properties of ν to approach those of the exponentially corre-
lated noise in this limiting case.

In figure 2.7c we can see that the noise variables undergo an oscillatory mo-
tion. Due to the similarity to the harmonic oscillator, φ(t) and ν(t) have a phase
difference of π/4, but otherwise perform a similar motion. It should however be
noted that the signal φ(t) is much smoother than ν(t) or the exponentially corre-
lated noise visible in figure 2.7a. This is due to the fact that integrating turns the
discontinuous ν into a continuous process.

The equilibrium distribution of the harmonic noise process is a bivariate Gaus-
sian distribution (see [42])

P(φ,ν)dφdν =
ω0

2πT
e−

φ2
2T ω

2
0e−

ν2
2T . (2.35)

In this distribution, the two variables φ and ν of the noise process are completely
independent and their variances are

〈φ2〉 = T

ω0
(2.36)

〈ν2〉 = T . (2.37)

The equilibrium distribution thus only differs from the exponentially correlated
noise in the fact that it is two-dimensional, but it still follows a normal distribu-
tion. However when looking at the correlation function, the differences between
both noise processes become clear. The correlation functions for the harmonic
noise process are (see [42])〈

φ(t)φ(t+ h)
〉
=
T

ω2
0
e−Γh

(
cos(ω1h) +

Γ

ω1
sin(ω1h)

)
〈
ν(t)ν(t+ h)

〉
= Te−Γh

(
cos(ω1h) +

Γ

ω1
sin(ω1h)

)
(2.38)〈

ν(t)φ(t+ h)
〉
=
T

ω1
e−Γh sin(ω1h),

where the frequency ω1 is defined as ω1 =
√
ω2

0 − 2Γ2. The correlation function
thus undergoes a similar decay as the exponentially correlated noise but addition-
ally performs oscillations with the frequency ω1. This is exactly what one would
expect from the damped harmonic oscillator which shows exactly the same be-
havior.

For
√

2Γ > ω0, the frequency ω1 is an imaginary number. Correspondingly to
an overdamped harmonic oscillator, the oscillations in the correlations functions
2.38 vanish. This can be seen by writing an imaginaryω1 as iω ′ with realω ′ and
noting that sin(iω ′h) = i sinh(ω ′h) as well as cos(iω ′h) = cosh(ω ′h). Neither
sinh nor cosh show oscillatory behavior and all correlations thus decay without
oscillations. The same is true for the aperiodic case which is reached forω1 = 0.
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The power spectrum of the harmonic noise process is also of Lorentzian shape
and for φ(t) can be written as

Sφ(ω) =
2ΓT

π(4Γ2ω2 + (ω2 −ω2
0)

2))
. (2.39)

But unlike the exponentially correlated noise, it attains its maximum atω1 which
is in general not equal to zero (see figure 2.7d). The full-width half maximum of
the peak can be approximated as 2Γ for small values of Γ/ω0. The harmonic noise
can therefore be seen as band-pass filter that suppresses all frequencies except
those close toω1.

An interested reader can find the derivation of all these properties in [42] or [5].

25



2.4 A first Look at Noise-Influenced Tunneling in
Optical Lattices

Chapters 3 and 4, which constitute the main part of this thesis, will be dedi-
cated to analyzing a noise-influenced Wannier-Stark system previously studied
by Tayebirad et al. [39]. In this section we will give a short overview over the mo-
tivation for studying this system and show the findings already made by Tayebi-
rad et al. After having developed a framework for understanding this system in
chapters 3 and 4, we will come back to these results and analyze them in a more
detailed fashion.

The influence of noise on transitions in classical systems has received wide-
spread attention because of the occurrence of interesting phenomena and its po-
tential for applications in many different fields [24, 34, 37]. The phenomena of
stochastical resonance, for example, has been studied extensively due to its rele-
vance for the fields of biophysics and meteorology (see review article [16]).

While noise-influenced Landau-Zener transitions have also received attention
in the literature [20, 19, 31, 30], the influence of noise on the Wannier-Stark prob-
lem has only been investigated recently [32].

Tayebirad et al. [39] studied such a noise-driven Wannier-Stark system by
means of numeric calculations. They chose a Hamiltonian

H = −
1
2
∂2
x + γ

1
2
V0 sin(2kx) + γ

1
2
V0 sin

(
2k ′x+ 2φ(t)

)
+ Fx (2.40)

which incorporates the effect of two lattice potentials. The time-dependent phase
φ(t) of the second lattice is given by a the harmonic noise process introduced in
section 2.3. The effect of this can be imagined as the second lattice being “shaken
around” by the noise process. Both lattice potentials are rescaled by a parameter
γ which is explained in [38] and [39]. For the short analysis made in this section,
we will however ignore the effect of this parameter γ.

The influence of harmonic noise on quantum-mechanical problems has un-
til now not received much attention. In classical systems it has, however, been
shown that harmonic noise can enhance transition rates when compared to white
or exponentially correlated noise [34]. One would therefore expect that its effect
on the Wannier-Stark problem is a similar one.

As explained in section 2.2, the timescale of the Wannier-Stark problem is de-
fined by the Bloch time TBloch = 1/F and the associated Bloch frequency ωBloch =
2π/TBloch. One would therefore expect to find interesting behavior if the system is
driven by a noise process of a similar frequency. For V0 � 1, the dynamics in the
Wannier-Stark system are dominated by the Landau-Zener tunneling through the
first band gap. We are therefore interested in how the tunneling from the ground
band to the first band changes, when the system is driven by a noise process.

Using two lattice potentials at first glance seems to make the problem need-
lessly complex. The reason it is necessary however becomes clear once one con-
siders how the system is affected if the noise term φ(t) fluctuates very rapidly.
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In this limit, the second lattice term changes so rapidly that the system can only
react to a time-averaged potential. This averaged potential can be written as an
integral over all possible values for φ, weighted with their equilibrium probabil-
ity:

Vavg =

∫+∞
−∞ V(x,φ)P(φ)dφ (2.41)

=

∫+∞
−∞ sin(2k ′x+ 2φ)

1√
2πσ2

e
φ2

2σ2 dφ (2.42)

= exp(−2σ2) sin(2k ′x). (2.43)

For fast noise processes, the noise-driven lattice is therefore suppressed by a fac-
tor exp(−2σ2), where σ is the standard deviation of the noise processφ(t). If only
the noise-driven lattice was present in the system, this suppression of the lattice
potential would strongly change the dynamics of the system. The static lattice
provides a reference system even in this limit of very fast noise.

While the survival probability in the ground band shows a step-like structure
for the Wannier-Stark problem (see section 2.2), this property is lost in the pres-
ence of a second noise-driven lattice as can be seen in figure 2.8a. In order to
analyze the influence of the noise parameters, Tayebirad et al. compared the sur-
vival probability in the ground band at a fixed time t0 = 6TBloch for different noise
parameters. They found that the escape from the ground band was strongly in-
fluenced by the parameters of the harmonic noise process. Using a rescaled noise
frequency

ω ′ =
ω0

2ωBloch

√
〈φ2〉 k

k ′
, (2.44)

and fixing the variance 〈Φ2〉 of the noise process, the results of their investigation
can be seen in figure 2.8b. For the parameters covered in their investigation, the
escape from the ground band was maximized if this rescaled noise frequency
assumed values close to unity. For frequencies close to this maximum, the decay
rates of the system showed a universal behavior that did not depend on 〈Φ2〉
anymore.

A similar effect can be observed for a tilted bichromatic lattice system where the
amplitude of the second lattice potential is driven by a harmonic noise process.
The Hamiltonian of such a system can be written as

H = −
1
2
∂2
x +

1
2
V0 sin(2kx) +

1
2
φ(t) sin(2k ′x) + Fx. (2.45)

Numerical studies performed in the early phases of this diploma thesis show
that this system shows a similar response to the frequency of the harmonic noise
process as the one studied by Tayebirad et al. As shown in figure 2.9, we also
observe a maximal escape rate from the ground band if the rescaled frequency of

27



the noise process is equal to one. It should however be noted that the behavior
was less universal than the one observed by Tayebirad et al. and only visible for
certain parameters of the system.
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Figure 2.2: The coupling between the states leads to avoided crossings and the
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the free particle Hamiltonian. The solid line represents the eigenener-
gies of a system with a sinusiodal potential.
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Figure 2.4: The Landau-Zener approximation can be represented as barriers in
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barrier, which corresponds to a momentum change ∆p = −1.
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3 The influence of bichromatic Lattices on
the Wannier Stark problem

While chapter 2 was used to introduce the concepts necessary to motivate this
work to the reader, beginning with this chapter the new results attained in this
diploma thesis will be presented.

The aim of this diploma thesis is to better understand the transport properties
of noise-driven, bichromatic lattice systems like the one presented in section 2.4.
The analysis of this systems is made complicated by the fact that the observed
effects arise from an interplay between the bichromatic lattice and the driving by
the noise process. In this chapter we will therefore present the findings in regard
to bichromatic lattice systems in the absence of noise. The insight gained in this
chapter will then help to better understand the noise-driven in chapter 4.

In section 3.2 we will first give a qualitative overview over the new effects
occurring when a second lattice is introduced into the Wannier-Stark problem.
Building upon these findings, we will build a model that approximately describes
the transport properties in this bichromatic Wannier-Stark system in section 3.3.
After this we will look at data from numerical simulations in order to evaluate
the model from section 3.3 and the qualitative estimates from section 3.2. These
quantitative numerical results will then be used in chapter 4 to partially explain
the behavior of the noise-driven bichromatic system.
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3.1 Relevance of the Noise-less Bichromatic
Lattice System

The Hamiltonian of the noise-driven system we study can be written as

H = −
1
2
∂x + V0 sin(x) + V1 sin

(
α(x−φ(t))

)
− Fx, (3.1)

where the time-dependent phase shift of the second lattice is defined by a noise
process φ(t). If not stated otherwise, φ(t) represents a harmonic noise process as
described in section 2.3.

In order to understand how the Wannier-Stark system is influenced by this ad-
ditional, noise-driven lattice, we need to first understand the way the system is
influenced by a second lattice in the absence of noise. Building upon the un-
derstanding of this noiseless system, we will be better prepared to interpret the
results for the noise-driven system.

To this end we will first analyze the system defined by the Hamiltonian

H = −
1
2
∂2
x + V0 sin(x) + V1 sin

(
α(x−βt)

)
− Fx, (3.2)

where the noise term has φ(t) has been replaced by a term βt, which is linear
in time. Understanding the transport properties of this system will allow us to
separate the effects in the full system that are caused by the stochastic properties
of the noise from the ones that are due to the presence of a second moving lattice.
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3.2 Bichromatic Lattices without Noise

In this Section we will investigate the effect of adding a second periodic lattice
to the system. We start by considering a system subject to a static force and a
single periodic potential, similar to the one studied in section 2.2. Instead of a
static lattice with a period of 2π we will however investigate the dynamics of a
lattice with period α2πwhich is moving with velocity β. The Hamiltonian of this
system reads

H = −
1
2
∂2
x + V sin

(
α(x−βt)

)
+ Fx. (3.3)

For β = 0, an energy bandstructure with gaps at p = ±α/2 emerges1. The in-
fluence of the velocity β can be understood by using a set of coordinates boosted
with a velocity β2. This transforms the Schrödinger equation into

i∂tψ =

(
1
2
(p̂+β)2 + V sin(αx) + Fx

)
ψ. (3.4)

When compared to the original system, this means that the energy band struc-
ture as well as the band gaps are displaced by ∆p = β. Apart from this shift in
momentum space, the systems behavior remains otherwise unchanged.

As explained in section 2.2, we can visualize the first bandgap as a pair of bar-
riers in momentum space. The region between these barriers corresponds to the
lowest energy band of the lattice and the probability to cross the barriers equals
the probability to tunnel through the first bandgap. The part of a state that does
not cross the barrier stays in its adiabatic state and thus changes its momentum by
an amount ∆p = α corresponding to the lattice constant of the periodic potential
(see figure 2.4).

Let us now consider a system that combines a static lattice as detailed in section
2.2 with this moving lattice. The Hamiltonian of such a system can be written as

H = −
1
2
∂2
x + V0 sin(x) + V1 sin

(
α(x−βt)

)
− Fx. (3.5)

While the velocity β did not change the behavior of the system described by
equation (3.3), it plays an important role in this bichromatic lattice. Combining
the moving with the static lattice results in two pairs of barriers in momentum
space, one of which is shifted by ∆p = β. Whereas shifting the position of the
barriers did not introduce any new dynamics for the monochromatic lattice, the
interplay between the two sets of barriers leads to interesting new effects for this

1This can be easily verified by following the derivation for the position of the bandgaps in section
2.2, but keeping the additional factor α in the phase of the lattice term.

2The boosted coordinate system corresponds to the transformation x̃(t) = x + βt and ψ̃ =
ψ exp (−iβ2t/2).
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(b) The second lattice has velocity β

Figure 3.1: Combining a static and a moving lattice results in two pairs of barriers.

bichromatic lattice. The barriers corresponding to the static lattice include a re-
gion of unit length and are centered at p = 0. The set of barriers corresponding
to the moving lattice encompass an interval of length α and are centered at p = β
(see figure 3.1). These barriers represent the Landau-Zener transitions the states
go through at avoided crossings. The assumption that both sets of barriers act
independently upon the states should therefore be valid if both these transitions
happen independently and do not influence each other. This is true if the time be-
tween encountering the barriers is larger than the timescale of the Landau-Zener
tunneling.

The quantity we are interested in is the probability Pescape for a state to tunnel
out of the ground band into a higher band. Let us look at some qualitative ex-
pectations how the presence of a second set of barriers in momentum space can
influence this probability. A more quantitative analysis will be done in section 3.3
and 3.3, but just looking at figure 3.1, we can already get a good understanding
of the interplay between the two lattices. Depending on the value of β, the two
sets of barriers can be in three different configurations. In each of these configu-
rations, we expect Pescape to be influenced in a different way:

• For β = 0, both sets of barriers are centered at p = 0 as seen in figure 3.1a.
This means that two barriers have to be overcome for a state to escape to a
higher band. Compared to the monochromatic system with only the static
lattice, the escape to higher momenta is therefore made more difficult. We
thus expect a lowered escape probability Pescape.

• For α−1
2 < |β| < α+1

2 , the two sets of barriers are intertwined (see figure
3.1b). A state that is trapped between the two static barriers at −1

2 and
+1

2 can therefore be reflected on the barrier belonging to the moving lattice
at p = −α

2 − β. This reflection would then take it to a momentum p =
α
2 − β which lies outside of the ground band defined by the static set of
barriers. A reflection on the moving lattice can thus catapult a state out
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of the ground band of the static lattice. We therefore expect an increased
escape probability.

• Once |β| is larger than α+1
2 , both barriers belonging to the moving lattice are

located outside of the ground band. Its influence on the survival probability
should therefore disappear.

These qualitative predictions assume that only the bandgap between the first
and the second band plays a role. If the strength of either the moving or the static
lattice potential are too strong, higher bandgaps are no longer negligible. The n-th
bandgap would then be represented by additional sets of barriers in momentum
space. These would be located at ±nα/2 or ±n/2 for the n-th bandgap of the
moving or static lattice. As outlined in section 2.2, the influence of these higher
bandgaps is however negligible for V0,V1 � 1.

In order to view the Landau Zener transitions as independent barriers in mo-
mentum space we furthermore assume that the distance between them is large
enough. This is approximately fulfilled if the time between hitting two of the bar-
riers is larger than the jump time τjump defined in section 2.2 in equation (2.20).
This condition is satisfied if the distance ∆p in momentum space ∆p between two
barriers is larger than F0τjump:

τjump =
V√
2F0

<
∆p

F
⇔ F0 =

2∆p
V2 for V = V0,V1 (3.6)
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3.3 An Analytical Model for Noiseless Bichromatic
Lattices

Based on the results of section 3.2, it is possible to build a simplified model to
approximate the effects of bichromatic lattices on the escape probabilities from
the ground band.

We consider the Hamiltonian

H = −
1
2
∂2
x + V0 sin(x) + V1 sin

(
α(x−βt)

)
+ Fx (3.7)

and model it using Landau-Zener approximations for the individual avoided
crossings. Using the approximations explained in the previous section, the effect
of the lattice potential can be understood as two sets of barriers in momentum
space that trap the condensate between them.

When ignoring interference effects, the behavior of the condensate in momen-
tum space can be approximated using a master equation. In this semi-classical
approach, we only look at the probability density ρ(p, t) = |ψ(p, t)|2 in momen-
tum space, ignoring the phase of the wavefunction ψ(p, t). The master equation
governing the behavior of the wavefunction should have the following proper-
ties:

• In the region between or outside the barriers, the condensate is accelerated
by the static force F. In regions without a barrier, the probability density
in momentum space should therefore follow a flux-conservative equation
with drift F:

∂tρ(t,p) = −F∂pρ(t,p). (3.8)

• Close to the barriers that represent the avoided crossings, the tunneling and
reflection probability should enter the master equation. We assume that the
Landau-Zener transitions take place almost instantaneously and the barri-
ers therefore have zero width in momentum space. For a barrier placed at
momentum p̃, let us look at the probability density slightly “downstream”
of this barrier at p̃+ ε, where 0 < ε� 1. The change in probability density
there can either come from ρ(t, p̃− ε) tunneling through the barrier or from
ρ(t, p̃− ε±α) or ρ(t, p̃− ε± 1) being reflected at the barrier (see 2.4). In the
limit ε→ 0, the master equation at p̃ can be written as

∂tρ(t, p̃+ ε) = −F∂pρ(t, p̃− ε) · P− F∂pρ(t, p̃− ε±α) · (1 − P), (3.9)

where P is the probability to tunnel through the barrier, while (1 − P) is the
probability of being reflected at the barrier. The sign in the second term of
equation (3.9) depends on whether the left or right barrier in figure 2.4 is
considered.
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The solutions we are interested in are steady-state solutions that decay expo-
nentially in time. This exponential decay corresponds to losing a fixed fraction of
the probability density during each Bloch period. We therefore look for solutions
of the form

ρ(t,p) = e
−t
τ ρ0(p). (3.10)

In the barrier-free regions these solutions are governed by equation (3.8). Insert-
ing ρ from (3.10) results in

−ρp(p)
1
τ
= −F∂pρp(p)

⇔ ∂pρp(p) =
1
Fτ
≡ γ

⇒ ρ(t,p) = ρ0e
−γ(Ft−p) (3.11)

At the positions of the barriers, the probability density ρ(t,p) will in general
be discontinuous. We will therefore describe ρ(t,p) by piecewise exponentially
decaying solutions of the form (3.11) with discontinuities at the barriers.

The master equation for the bichromatic potential described in section 3.2 in-
corporates the following two sets of barriers:

• The barriers of the static lattice are situated at ±1/2 and tunneling through
them happens with probability P = exp(−πV2

0/F).

• The position of the barriers belonging to the second lattice is ±α/2 + β.
Tunneling through them happens with the Landau-Zener probability P ′ =
exp(−πV2

1/F) as explained in section 2.2.

The solutions we are looking for are monotonously decaying steady state solu-
tions that are piecewise defined as given in (3.11) with γ constant for the whole
solution3. Given such an exponentially decaying solution, the survival probabil-
ity after one Bloch period is given by the decay rate:

Psurvival(Tbloch) = e
−γFTbloch = e−γ. (3.12)

Once we find the parameter γ for a given position of barriers, we can therefore
directly calculate the survival probability.

When solving the master equation, we will distinguish the three different cases
laid out in section 3.2 and visualized in figure 3.2. In each of the three cases the
solution is defined on the three intervals A = [a0,a0 +∆a], B = [b0,b0 +∆b] and
C = [c0, c0 +∆c]. On each of these intervals, we will write the solution in the form

ρA(t,p) = A0e
γ(p−a0−Ft). (3.13)

3As we are looking for steady-state solutions, the decay rate has to be time-independent.
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For such solutions, equation (3.9) reduces to

ρ(t, p̃+ ε) = ρ(t, p̃− ε)P+ ρ(t, p̃+±α)(1 − P). (3.14)

We assume in all cases that the probability density left of a0 is equal to zero.
Let us now solve the described master equation for each of the scenarios de-

scribed in figure 3.2:

Separated barriers: Of the three different configurations shown in figure 3.2,
the one with the completely separated barriers shown in (c) is the most straight-
forward to solve. It occurs for β > (1 +α)/2 and writing down the equations for
the interval A, we get

ρ(t,a0) = ρ(t,a0 +∆a− ε)(1 − P)

⇔ A0 = A0e
∆aγ(1 − P)

⇔ γ = −
log(1 − P)

∆a
. (3.15)

Since this already gives us all the information we need, we do not have to con-
sider ρB and ρC. Since ∆a is equal to one, the survival probability after one
Bloch period is Psurvival = 1 − P. This is exactly the same survival probability
we would get in the absence of a second lattice and we can therefore conclude
that the second barrier does not have any influence on the survival probability if
β > (1 +α)/2.

-1/2 +1/2 p

A B C

+α/2-α/2

(a) Static lattices

-1/2 +1/2 p

A B C

+α/2+β-α/2+β

(b) Intertwined barriers

-1/2 +1/2 p

A B C

+α/2+β-α/2+β

(c) Separated barriers

Figure 3.2: The solution of the master equation depends on the relative position
of the barriers corresponding to the two lattices.
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Interleaved barriers For α−1
2 < β < α+1

2 the two sets of barriers are interleaved
(see figure 3.2b) and it is necessary to consider the full system:

A0 =B0e
γ∆b(1 − P)

B0 =A0e
γ∆aP ′ +C0e

γ∆c(1 − P ′)

C0 =B0e
γ∆bP.

(3.16)

Inserting the first and the last equation into the second one and dividing by B0
yields

1 =eγ(1 − P)P ′

+eγαP(1 − P ′),
(3.17)

where we have already used the fact that ∆a + ∆b = 1 and ∆b + ∆c = α (see
figure 3.2b). Finding a solution γ for this transcendental equation is however
only possible numerically. The decay rates will in most cases be higher than for
the original Wannier-Stark problem because the second set of barriers aids in the
transport of the probability density.

The case where α−1
2 < −β < α+1

2 is also described by equation (3.17). In
this case the two sets of barriers are exchanged, which leaves equation (3.17) un-
changed.

Static barriers Lastly we treat the case seen in figure 3.2a, where the first set
of barriers is located between the second set. Writing down the conditions for a
solution leads to

A0 =C0e
γ∆c(1 − P ′)

B0 =A0e
γ∆aP+B0e

γ∆b(1 − P)

C0 =B0e
γ∆bP+A0e

γ∆a(1 − P).

(3.18)

Reduced to a single equation and using ∆a+∆b+∆c = α and ∆b = 1 yields

1 =− eγα(1 − P ′)(1 − 2P)

+ eγ(α−1)(1 − P ′)(1 − P)

+ eγ(1 − P).

(3.19)

As equation (3.17), this equation can only be solved through numerical methods.
Nevertheless the resulting decay rates will for all parameters be lower than the
one in the original Wannier-Stark problem because the second set of barriers al-
ways impedes the escape from the ground band.

In this chapter we have built a model for the dynamics of a tilted bichromatic
lattice using the Landau-Zener approximation for individual avoided crossings
and ignoring all but the first bandgap. By solving the equations (3.19) and (3.17)
we can make predictions for the decay rate of the ground band in this tilted
bichromatic lattice. In the next section we will compare these predictions to the
results of numerical simulations.

42



3.4 Numerical Simulations for the Noiseless
Bichromatic Lattice

Solving the equations given in section 3.3 can give us an estimate for the decay
of the survival probability in the ground band. As the model makes many as-
sumptions that are not necessarily fulfilled, it will be interesting to see how well
it matches data generated by numerical simulations of the full system. These sim-
ulations will be run using the algorithm and parameters described in chapter 4.2
and the quantity we compare is the decay rate of the survival probability in the
ground band.

In figure 3.3, two curves for the survival probability in the ground band vs.
time are shown for different relative velocities β (as defined in equation (3.2)). As
the state is initially prepared with a narrow momentum distribution, we expect it
to go through a transition period first before settling into a steady-state solution.
This is clearly visible for the curve with β = 1.0, which only decays exponentially
after t ≈ 5Tbloch.
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Figure 3.3: The survival probability goes through a transition period for short
times but decays exponentially afterward.

Another quantity we can look at is the survival probability Psurv at a certain
time t0. This time can be chosen somewhat arbitrarily but should be neither to
large nor to small. Choosing t0 too large leads to numerical inaccuracies as the
absolute value of Psurv becomes very small and is thus susceptible to the influence
of artifacts of the numerical simulation. On the other hand, choosing t0 too small
will lead to inaccuracies due to a large influence of the initial state of the system
(see figure 3.3). The way we measure the survival probability in the ground band
is also prone to skew this quantity for small values of t0.

From the model devised in 3.3, we predict that, depending on the relative ve-
locity β, the behavior of the system can be classified into one of three cases. In
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figure 3.4, numerical data for the decay rate as a function of β is shown. The
predicted borders between different cases are shown as vertical black lines. As
seen in figure 3.4a, the position of these lines does indeed coincide with a drastic
change in the decay rate γ. Even though the decay rates change for different val-
ues of the static force F, the three distinct domains remain distinguishable (figure
3.4b). This shows that qualitatively the model does correctly describe the influ-
ence of the relative velocity β on the decay in a tilted bichromatic lattice.

A closer look at figure 3.4a reveals some interesting features. Especially in the
regime where the second lattice facilitates the transport, a pattern of many local
maxima and minima is visible. This pattern is most likely caused by interference
effects similar to resonantly enhanced tunneling (RET) explained at the end of
section 2.2.

Another interesting observation is that the figure is almost, but not completely
symmetric. The slight asymmetry is caused by the fact that the static force defines
a preferred direction in momentum space. For β < 0, the second lattice can
only transport the wavefunction “upstream” in momentum space, from where
it might again become trapped in the ground band.

For a more quantitative analysis of the model presented in section 3.3, we com-
pare the predictions to the numerical data for a varying static force F. We plot
the decay probability after one Bloch period calculated as Psurv = 1− exp(−γ) vs.
the inverse of the static force. This plot is often used in the literature because it
allows a very straightforward comparison of the data to the Landau-Zener pre-
diction, which shows as a straight line in the log-linear plot. We chose three fixed
values for β, one out of each visible domain in figure 3.4b. The result is shown
in figure 3.5. For β > (α+ 1)/2, the model predicts a decay probability identical
to the original Wannier-Stark problem given by equation (2.7). To show how well
this prediction matches, the decay probability for the Wannier-Stark problem is
plotted in figure 3.5b as well (labeled “monochromatic”).

The local extrema observable for all values of β cannot be accounted for in
the model and makes the comparison more difficult. They can be linked to the
variations in decay rate observed due to resonantly enhanced tunneling in the
Wannier-Stark problem [35] mentioned in section 2.2.

As the Landau-Zener approximation constitutes the basis of our model, it does
necessarily inherit all problems of this approach. This can be easily seen in fig-
ure 3.5a. The model predicts that for large β, the influence of the second lattice
will vanish and the system will behave just as the Wannier-Stark system. As
shown in the figure, this prediction is correct. However the predictions made by
the Landau-Zener approximations cannot account for the interference effects in
either the bichromatic or the Wannier-Stark-system. The predicted decay proba-
bilities are therefore not very accurate even though they give a baseline around
which the real data fluctuates.

The same problem can be witnessed in figure 3.5a, where the survival proba-
bilities for β = 0 are compared. The prediction is again only accurate up to an
order of magnitude but nevertheless describes a good log-linear fit for the data.
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As predicted, the decay probability for intertwined barriers is strongly en-
hanced when compared to both other cases. In figure 3.5c it can however be
seen that the model fails to describe the decay probabilities for small values of F.
While the magnitude of the relative error is comparable to both other cases, the
model consistently overestimates the decay probability in this case. Unlike the
fluctuations observed in all three plots, this overestimation of the survival proba-
bilities in figure (c) is most likely not caused by interference effects for which one
would also expect enhanced decay probabilities for certain values of 1/F.
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Figure 3.4: The decay rate γ if the survival probability in the ground band shows
a significant minimum for α−1

2 < β < α+1
2 (marked as black lines).

The parameters used for this simulation were: V0 = 5
16 , V1 = V0

2 and
α = 1.62.
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In the noise-driven system studied by Tayebirad et al. and described in chapter
2.4, the second lattice does not move with a constant velocity β. Instead β can be
viewed as a rapidly fluctuating variable. In order to understand how robust the
effects observed in this section are for a non-constant β, we generate numerical
data where β(t) varies as a function of time. We will use a protocol where β(t) is
a square wave of frequencyω:

β(t) = β0 · Sign
(

sin(ωt)
)
. (3.20)

The analysis in this case is made more difficult by the fact that the decay of the
survival probability in the ground band is not of the straightforward exponen-
tial form we see in figure 3.3. Instead there seem to be effects at many different
timescales that play a role. As a very robust observable we will therefore choose
the survival probability at t0 = 6Tbloch. In figure 3.6 it is clearly visible that the ef-
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Figure 3.5: Comparing the predicted decay probability Pdecay = exp (γ) to the
value from numerical calculations shows good agreement between
model and simulations. In figure (b) the decay rate in absence of a
second lattice is also shown (“monochromatic”). The parameters of
the system are V0 = 5/16 and V1 = V0/2.
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fect of this alternating β cannot be neglected. For high frequencies ω > 13ωbloch
the influence of the second lattice vanishes. For lower frequencies however it
changes the picture considerable. Especially for large values of β where the two
sets of barriers are completely separated, this alternating β enhances the decay
rate to the point where it becomes indistinguishable from the system with inter-
leaved barriers.
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Figure 3.6: A non-static β alternating with frequency ω changes the survival
probabilities in the ground band. The values of β have been chosen
to represent the three domains distinguished by the model. The pa-
rameters of the system are V0 = 5/16, V1 = V0/2 and F = 1.5.

For a fluctuating value of β which could for example be the result of a noise-
driven lattice, we therefore expect an enhanced decay rate for large values of β.
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4 Numerical Studies of Bose-Einstein
Condensates in Noise-driven
Bichromatic Lattices

4.1 A Simple Model for Noise-driven Bichromatic
Lattices

The model presented in chapter 3 has proven effective in describing the noise-
free bichromatic lattice. This analysis of the noise-free system will help us to
better understand the properties of the noise-driven system.

The full noise-driven system is described by the Hamiltonian

H = −
1
2
∂x + V0 sin(x) + V1 sin

(
α(x−φ(t))

)
− Fx, (4.1)

where φ(t) has its usual meaning as a harmonic noise process. As a first estimate
of the influence of the noise on the system we can approximate the harmonic
noise process as being linear in time through a first-order expansion:

φ(t) ≈ φ0 + φ̇t (4.2)

with φ0 and φ̇ = β constant. In this case the Hamiltonian in equation (4.1)
reduces to the Hamiltonian of the noise-free bichromatic system introduced in
chapter 3.

Considering the stochastic differential equation of the harmonic noise (see sec-
tion 2.3):

φ̇ = ν

ν̇ = −2Γν−ω2
0φ+

√
4TΓξ(t),

the approximation φ̇ = ν = const corresponds to the limit Γ ,ω0 → 0.
In section 2.3 we found that the noise variable ν follows a Gaussian distribution

with variance T . In the limit Γ ,ω0 → 0, the variable ν can hence be treated as a
constant following the Gaussian distribution

P
(
ν = β

)
=

1√
2πT

exp
(
β2

2T

)
. (4.3)

From chapter 3 we know how interband tunneling in the bichromatic lattice
system is influenced by the velocity β of the second lattice. Assuming that β = ν
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follows the distribution (4.3), the expectation value of the survival probability
〈Psurv(t0)〉 at a time t0 is given by

〈Psurv(t0)〉 =
∫+∞
−∞ P(ν = β)Psurv(t0,β)dβ, (4.4)

with Psurv(t0,β) given either by the numerical or predicted values given in chap-
ter 3.4. In the same vein the expected decay rate 〈γ〉 can be calculated as

〈γ〉 =
∫+∞
−∞ P(ν = β)γ(β)dβ. (4.5)

The result of this integral for different values of 〈ν2〉 = T is plotted in figure 4.1.
It can be seen that 〈γ〉 has a clear maximum for intermediate values of T . Going
back to figure 3.4b we can see the reason for this:

• For small values of T , the Gaussian distribution P(ν = β) is very narrow
and only the peak of γ(β) around zero contributes to the integral (4.5). The
expectation value 〈γ〉 should therefore be equal to the value γ(0) at the ori-
gin. This corresponds to a static lattice (as shown in figure 3.2a).

• Once T is large enough such that the distribution also covers values of β
that lie within the minimum between (α− 1)/2 < β < (α+ 1)/2, the value
of 〈γ〉 starts to decline. This corresponds to a lattice moving fast enough
such that at some times the barriers in momentum space are found in an
interleaved configuration (see figure 3.2b).

• When further increasing T , the distribution reaches a point where it is broad
enough that contributions from β > (α+ 1)/2 start to play a role. In this
regime, which corresponds to completely separated pairs of barriers, the
decay rate is similar again to the one at β = 0. The value of 〈γ〉 thus declines
once the contributions from this regime become dominant.

As shown in section 3.4, the values for Pdecay(β) and γ(β) predicted by the
model for bichromatic lattices are only accurate to a factor of ∼ 2 for the param-
eters chosen here. The predicted decay rates therefore differ by a similar factor.
It should however be noted that the overall shape of the curve remains the same.
This is due to the fact that while the model does not produce accurate values for
γ(β), it does correctly predict the existence and boundaries of the three regimes.
For all future comparisons we will nevertheless use the curve calculated with the
numerical data for γ(β) since it describes the actual effect of a moving lattice on
the system more accurately.

Overall the model predicts that the noise-driven lattice averages over the effects
already observed for the bichromatic lattice with a constant relative velocity β in
chapter 3. The effects occurring in this constantly moving lattice correspond to
the three regimes illustrated in figure 3.2. All that the harmonic noise process
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model discussed in section 3.3 or the numerical data presented in 3.4.

does in this picture is adding up the contributions of these three different effects
with a relative weight that depends on the noise parameter T .

This simplified model ignores most of the properties of the underlying noise
process and is only exact for ω, τ = 0. It will therefore not be able to describe the
data from the noise-driven tilted lattice system exactly. In the next paragraphs
we will therefore discuss what additional effects should occur in the full system
and how they can affect the tunneling rate.

To understand these effects it is again instructive to imagine the effect of the
noise lattice as a pair of barriers in momentum space. The model assumes that the
initial position of these barriers is randomly distributed but does not change with
time. However, when the lattice is driven by a real noise process, the position of
these barriers is not static. They instead move in momentum space with a velocity
ν̇ corresponding to the acceleration of the lattice. In the case Γ = 0, the barriers
perform sinusoidal oscillations in momentum space. Furthermore for Γ 6= 0 the
position of this barriers in momentum space is not even continuous in time since
ν is governed by the diffusion-like equation

ν̇ = −Γν−ω2
0φ+

√
4ΓTξ(t) (4.6)

with a white noise term ξ(t) (see section 2.3).
The non-static position of these barriers in momentum space will of course

have an influence on their effect on the system. The probability to tunnel through
a barrier is approximately given by the Landau-Zener probability given in section
2.2

PLZ = exp

(
−π
V2

0
|f|

)
, (4.7)

where f denotes the sweeping rate with which the states go through the transi-
tion. In the case of an accelerating lattice, this rate |f| corresponds to the relative
speed between the state and the barrier. The state is driven by the static force F
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and while the barrier is driven by the noise process. In this case the relative speed
is |f| = |F− ν̇|, which depending on the value of ν̇ can be larger or smaller than
|F|.

It should be mentioned that, strictly speaking, ν̇ is not a well-defined quantity
because the noise term in equation (4.6) has infinite variance. For finite times h
the value of ν̇ can however be approximated using finite differences of ν. Looking
at the variance of this finite time difference〈(

ν(t+ h) − ν(t)

h

)2
〉
≈Γ2〈ν2〉+ω4

0〈φ2〉 (4.8)

+

√
4TΓ
h2

〈∫ t+h
t

∫ t+h
t

ξ(t ′)ξ(t ′′)dt ′dt ′′
〉

=Γ2T +ω2
0T +

√
4TΓ
h

, (4.9)

we can see that for finite timescales h the term has a standard deviation of at least

√
Var(ν̇) >

√
T(ω2

0 + Γ
2). (4.10)

If this value is larger than F, the relative sweeping rate |f| = |F − ν̇| will in av-
erage be increased and tunneling through the corresponding barrier is therefore
strongly enhanced.

Additionally the noise term in equation (4.6) will also have an influence on
Landau-Zener transitions. Analysis of this problem shows that this noise term
would influence the diagonal terms of the Landau Zener Hamiltonian (2.17).
As known from the work of Kayanuma et al. [19, 20], strong diagonal noise in
Landau-Zener transitions leads to a mixing between both states. Independently
of its initial state, the system ends up in either of the states with equal probability
after the transition. This effect is more pronounced when the coupling between
both states is strong.

For fast noise with large Γ orω0, we therefore expect that the probability of re-
flection on the second lattice is strongly suppressed. In this regime, the influence
of the noise lattice should therefore vanish faster than predicted by the model.
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4.2 Algorithm and Implementation

The observable

In the last chapter, the main observable of the system was the decay rate γ of the
survival probability in the ground band. This observable was calculated by fitting
the survival probability Psurv(t) with an exponential function. The underlying as-
sumption behind this was that after a short transition period, Psurv(t) undergoes
an exponential decay at a constant rate γ.

If Psurv(t) is however influenced by a stochastic variable φ(t) that changes over
time, there is no inherent reason for this decay to stay constant. In section 3.4
we have already seen that exponential decay is only visible after the system had
enough time to settle into a steady-state. Under the influence of a stochastic pro-
cess, it is not guaranteed that the system ever reaches such a steady state. The
decay rate γ(t0,φ(t)) of the survival probability should hence not only depend
on the noise realizationφ(t), but also on the time t0. As a consequence, observing
the decay rate γ(t) is not as straightforward as it has been for the numerical simu-
lations presented in chapter 3.4, since we cannot simply fit the decaying survival
probability for one noise realization with an exponential function.

The quantity we are actually interested in is the expectation value of the decay
rate 〈γ〉noise averaged over the noise realizations. While γ does not necessarily
assume a constant value for a single noise realization φ(t), we can assume that
the average decay rate 〈γ〉noise reaches an equilibrium value due to the ergodic
property of the noise process.

Let us look at the way the survival probability in the ground band is influenced
by a non-constant decay rate γ [44]:

Ṗsurv(t0) = −γ(t0)Psurv(t0) (4.11)

⇒ Psurv(t0) = exp
(
−

∫ t0
0
γ(t ′)dt ′

)
. (4.12)

Averaging the logarithm of the survival probability over noise realizations thus
results in〈

log (Psurv(t0))
〉

noise = −

∫ t0
0
〈γ(t ′)〉noisedt ′. (4.13)

Assuming that 〈γ(t0)〉noise remains constant after an initial equilibration time tequ,
this quantity should fall off linearly:

〈
log (Psurv(t0))

〉
noise = −

∫ tequ

0
〈γ(t ′)〉dt ′ − 〈γequ〉(t− tequ). (4.14)

The value of 〈γequ〉 can thus be estimated by fitting a linear function to 〈logPsurv(t)〉.
For this it is necessary to average Psurv(t) over multiple noise process realizations.
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Numerical Simulations

The data presented in this work has been generated using numerical simulations
of the one-dimensional Schrödinger equation and the three-dimensional Grosz-
Pitaevskii equation. For the one-dimensional system, the following protocol was
employed to perform the simulations:

• A random phase φ0 ∈ [0 : 2π[ was chosen and a harmonic noise initialized
in a random state φ(0) according to its equilibrium distribution (see section
2.3). The initial Hamiltonian was set to

H = −
1
2
∂2
x + V0 sin(x) + V1 sin

(
α(x−φ0 −φ(0))

)
+ ω̃2x2, (4.15)

where ω̃ is the frequency of the harmonic trap.

• Using this initial Hamiltonian, the imaginary time algorithm presented in
appendix B was used to equilibrate the system. To this end the time step
∆twas decreased repeatedly to make sure the system had converged to the
ground state.

• The harmonic trap was disabled and instead the static force F was applied
resulting in the new Hamiltonian

H = −
1
2
∂2
x + V0 sin(x) + V1 sin

(
α(x−φ0 −φ(t))

)
− Fx, (4.16)

where the time-dependent phase φ(t) is defined by the harmonic noise pro-
cess.

• Governed by this time-dependent Hamiltonian, the system is evolved using
the Crank-Nicolson algorithm described in appendix B.

• In regular intervals we measure the survival probability in the ground band.
In order to obtain the wavefunction in momentum space for the numerical
data, a Fourier transform along the x-axis is applied to the wavefunction by
using the FFTW library [14]. How the survival probability was computed
from the wavefunction in momentum space is explained in the next para-
graph.

To generate the harmonic noise process, the algorithm described in appendix A
was used. The needed Gaussian random numbers were generated using a Box-
Muller algorithm fed by a Mersenne-Twister pseudo-random number generator,
both implemented in the GNU Scientific Library [15].

The observable we are interested in is the probability to remain in the ground
band of the Wannier-Stark system (2.7). Since the presence of a second lattice
significantly alters or even destroys the band structure, we cannot simply project
the wavefunction on the states associated with this ground band. We will instead
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measure the probability to find the system in a state with a momentum |p| < 2.5.
Equating this measure with the survival probability in the ground band of the
monochromatic system makes two assumptions:

• The states belonging to the ground band of the Wannier-Stark problem are
mainly located within the boundaries in momentum space. In figure , it can
be seen that for V0 = 5/16, the probability for a ground band state to be
found outside these barriers is less than 10−5.

• Any state that tunnels from the first into the second band will be accelerated
further out of these boundaries. This assertion was discussed in section 3.3
and is approximately true for systems where V � 1 (see also discussion in
[28]).
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Figure 4.2: Relative momentum probability density of two ground band states
for Hamiltonian (2.7) with V = 5/16. The lines at q = ±2.5 are the
boundaries used for measuring the survival probability. The state at
q = 0 is the ground state of the system.

This means that any part of the wavefunction that tunnels through the first band
gap will eventually go through these boundaries at ±2.5, even though this does
not happen immediately. If the second condition is fulfilled, any part of the wave-
function that has once left the ground band will experience a linear growth in
momentum. It will therefore cross the right barrier seen in figure 4.2 after a fixed
amount of time. Choosing larger values of p for the position of this barrier there-
fore only delays the decrease of Psurv by a fixed amount of time, but does not slow
down the exponential decay.

Due to the random nature of the noise, it is necessary to average the observable
over several realizations of the stochastic process. The number of realizations
needed depends on the desired accuracy. We are mostly interested in the expec-
tation value of the decay rate and the survival probability. The expectation value
of a quantity A can be estimated by calculating

Ā =
1
N

N∑
i=0

Ai, (4.17)
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where Ai is the quantity A measured using the i-th realization of the noise pro-
cess. As a sum over stochastic variables Ā is itself a stochastic variable with ex-
pectation value 〈Ā〉 = 〈A〉 and variance 〈Ā2〉 = 〈A2〉/N. The accuracy of this esti-
mate thus scales as StdDev(A)/

√
N. If not stated otherwise, the number of noise

realizations used for all data in this chapter is N = 20. This number proofed to
be sufficient to reduce the errors of the mean enough to describe the behavior of
the system and to allow a comparison with the predictions made by our model
[38]. In all following figures, the error bars of the data denote the statistical error
of the values estimated through:

StdDev(Ā) ≈

√∑N
i=0(Ai − Ā)

2

N
. (4.18)
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4.3 Numerical Results for Harmonic Phase Noise

In this section we will analyze the results of the numerical calculations and com-
pare them to the predictions made by the model constructed in section 4.1.

The model predicts that from the three noise parameters only T has a dis-
cernible influence. We will therefore first look at the decay rate γ as a function
of this quantity while keeping ω0 and Γ fixed. In figure 4.3, the decay rate of the
system is plotted against T for different values of ω0. The third noise parameter
Γ has been set to a fixed value of 5. The overall shape of all curves but one is
similar and has a maximum observed around T ≈ 0.5. The exception is the curve
with the highest frequency, for which the tunneling rate for small T seems to be
suppressed. With the exception of this curve, the influence of ω0 is negligible,
which is verified by the plot in figure 4.4a.
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Figure 4.3: Decay rates of the bichromatic noise system with noise paramter Γ =
5. The error bars denote the statistical error caused by using only a
finite number of noise realizations. The lattice parameters are V0 =
5/16, V1 = V0/2, F = 1.5/(16π) and α = 1.62 . . .

The overall shape of the curve is described well by the model, but when com-
paring the predictions with the numerical data, many differences are visible. The
most prominent is that even though the location of the maximum is predicted
correctly, the maximal decay rate is overestimated by the model. While this dif-
ference is most eye-catching at the maximum, it follows a general trend visible for
all values of T : the model gives a higher bound of the decay rate, but the actual
values are only accurate for very large T . This is also visible for T < 0.001, where
the predicted tunneling rate is about a factor of five higher than the actually ob-
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served rate.
These differences become understandable in the light of the approximations

made by the model. In section 4.1 when talking about the shortcomings of the
model we predicted that the influence of the moving lattice would be suppressed
if the noise-term was too fast. Since the model predicts that for large T the in-
fluence of the second lattice vanishes, it is no surprise that the predictions in this
region describe the data very well.
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(a) Damping parameter fixed to Γ = 5.0
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Figure 4.4: Influence of Γ andω0 on the decay rate for different values of T

But reducing ω0 does still not bring the data in accordance with our model.
While the tunneling rates do hardly change between ω0 = 1.0 and ω0 = 0.1,
both are still far from the tunneling rates predicted by the model. The reason for
this lies in the third noise parameter Γ . Looking at equation (4.10) we can see
that the sweep rate f through the Landau-Zener transition is also influence by
this term. Especially the white noise term

√
4ΓT scales with the square root of

this parameter. As mentioned in section 4.1, this should also lead to a reduced
influence of the noise-driven lattice.

While the model assumes that the second lattice is static, both the noise param-
etersω0 and Γ accelerate the second lattice and thus impede its ability to transport
the state out of the ground band.

To further investigate the influence of the noise parameter Γ , we recreate the
previous plot but set Γ = 0. As seen in figure 4.5 the results are similar to the ones
observed for Γ = 5.0. There are however important differences that clearly show
the influence of this noise parameter on the transport properties of the system.

A first observation is that the error bars of this data are much larger than the
ones where Γ 6= 0. This is despite the fact that averages were taken over four times
as many noise realization. The reason of these increased statistical fluctuations is
that with Γ set to zero the harmonic noise process reduces to an undamped har-
monic oscillation. The noise process is initialized with an initial state according to
its equilibrium distribution. The amplitudes of the harmonic oscillations for Γ = 0
are therefore initialized following a Gaussian distribution but do not change over
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Figure 4.5: Decay rate γ for a system with noise parameter Γ = 0. All other pa-
rameters are identical to the plot in figure 4.3.

time. While the equilibrium distribution of the noise process is independent of
Γ (see section 2.3, the ergodicity of the process is lost for Γ = 0. A strong damp-
ing constant ensures that even a single noise realization equilibrates over time,
reducing the variance of noise properties if they are averaged over a time longer
than 1/Γ . For Γ very low or equal to zero this equilibration does not take place
anymore, leading to an increased variance of measured noise properties.

Despite the large fluctuations for the numerical data, figure 4.3 shows that for
Γ = 0 and very low frequencies the model proposed in section 4.1 describes the
system accurately for all values of T . Whereas this leads to increased decay rates
for ω0 very small, for higher frequencies the influence of the noise lattice is actu-
ally reduced.

We also want to look at harmonic noise processes with a fixed variance 〈φ(t)2〉,
comparable to those used in previous work by Tayebirad et al. [38]. For these
noise processes,ω0 and T are coupled through the relation

ω0 =

√
T

〈φ2〉
. (4.19)

This means that increasing T also implies an increasedω0.
In the work of Tayebirad et al., the survival probability at a fixed time t0 was

observed as a function of a rescaled noise frequency

ω ′ = ω0 ·
√
〈φ2〉

=
√
T .

(4.20)
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The quantityω ′ only depends on the noise temperature T and the survival prob-
ability at a time t0 is approximately given by exp(−γt0) 1. We can therefore
continue using plots of γ(T) and still compare our results to the ones found by
Tayebirad et al.

The resulting decay rates are shown in figure 4.6. From the previous observa-
tions we know that the model only describes the data well for slow noise pro-
cesses.

Focusing on the comparison between the model and the data, it can be seen that
the difference between model and observed data grows for noise processes with
small variances. Due to relation (4.19) this corresponds to fast noise processes.

For the noise process with 〈φ2〉 = 0.1, the frequency of the noise grows so
rapidly that the shape of the curve is changed. While the model describes the
system accurately for low values of T , at T ≈ 0.1 the fast noise term starts to sup-
press the effect of the second lattice. This counteracts the increase in decay rate
we would otherwise observe around this value of T . Even for the noise process
with unit variance we observe a disagreement between data and model at T ≈ 10.

Using the model we can therefore explain the behavior of such systems with
a fixed variance noise process. Comparing with figure 4.3, the universal scaling

1This relation is only approximately true as a system prepared in a non-equilibrium state will
first go through a transition period before reaching a decaying steady state. For small values
of t0 the decay can therefore not be described by a single exponential function.
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observed by Tayebirad et al. can be seen to be the limiting behavior for ω0 → 0.
In this limit the decay rate γ(T) does not depend onω0 but only on the damping
constant Γ and the noise temperature T .
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Figure 4.7: Decay rate γ for different noise lattice amplitudes. The system param-
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The calculations by Tayebirad et al. were performed with a noise lattice of the
same amplitude as the static lattice: V1 = V0. In contrast, the data presented in
this section was created with a weaker noise lattice: V1 = 0.5V0. In order to make
sure that the observed effects do not depend on the ratio between V1 and V0, we
observe the system for different values V1 while keeping V0 fixed. We choose
fixed noise temperatures T representative of the three different regimes observed
in the previous plots. The result of this calculations can be seen in figure 4.7. We
would expect that an increased amplitude of the noise lattice would enhance ef-
fects visible in the system. Increasing V1 would therefore suppress tunneling for
low values of T , enhance it for T ≈ 0.5 and leave the tunneling rates for very large
T almost unchanged. Looking at the plot we can however see that these estimates
are only correct for small values of V1, while tunneling rates for V1 > V0 cannot be
adequately explained through our model. It can be argued that for a strong sec-
ond lattice with large V1, the system is effectively trapped by this second potential
and the influence of the first potential with the comparatively small strength V0
becomes negligible. In the model introduced in section 3.2 and 3.3, this would
mean that the state is trapped between two barriers that are themselves moving
in momentum space. It is clear that in this case the measurement of the survival
probability as shown in figure 4.2 can not accurately reflect the dynamics of the
system anymore.
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5 Conclusion and Outlook

5.1 Conclusion

In this diploma thesis we studied the interband transport properties of tilted
bichromatic optical lattices. Although we mainly focused on the case where one
of the lattices is driven by a noise process, we also found interesting results for
the case where one lattice is moving with a constant velocity.

In chapter 3 we analyzed the characteristics of a system where the second lat-
tice is moving with a constant velocity β relatively to the first one. Within the
investigated parameter range we found that the transport properties of this sys-
tem are strongly influenced by this relative velocity β. If both lattices are at rest,
the second lattice suppresses the transport of the wavefunction because it rep-
resents an additional barrier that must be overcome in order to escape from the
ground band. If the second lattice is moving very quickly, its effect on the system
disappears since the rapidly fluctuating potential averages out to zero. Between
these two limiting cases there is however a range of velocities where the inter-
band transport is assisted through reflections on the moving lattice.

A model that predicts the relative velocity β where this transition between as-
sistance and suppression of the tunneling process occurs was introduced and
compared to the results of numerical investigations. For the parameter range
covered in the numerical calculations, the model was able to qualitatively predict
the transition velocities.

Since even small changes in the relative velocity β lead to large jumps in the
interband tunneling rate (see figure 3.4), these kind of bichromatic systems could
be used for experiments where it is necessary to coherently control Bose-Einstein
condensates in optical lattices.

In chapter 4, we studied a system where the second lattice was driven by a har-
monic noise process. Using the results from chapter 3, we were able to formulate
a model for the influence of slow harmonic noise. According to this model, only
the noise temperature T has a significant influence on intraband tunneling. The
model predicts driving the second lattice through a noise-process leads to an av-
eraging between assisted and suppressed tunneling. The relative contribution of
those two effects is determined by the noise temperature T . For low values of T ,
the suppressive effect is dominant, while the contribution of assisted tunneling is
maximized if T ≈ 1 in the units used in this work. We compared these predictions
to the results of numerical simulations and found that, for the range of parameters
covered by the simulations, the model correctly described the system in the pres-
ence of slow harmonic noise. Leaving this slow noise regime and increasing the
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noise parameters Γ or ω0 lead to a suppressed influence of the noise-driven lat-
tice for all investigated parameters. However even out of the slow noise regime,
intraband tunneling was maximized for T ≈ 1.

Earlier work by Tayebirad et al. on the same system found indications for a
universal scaling behavior. Within the framework of the model presented in sec-
tion 3.3, this behavior can be understood as an effect of reaching the slow noise
limit.

When comparing the effects of the noise-driven bichromatic lattice to the one
with a constant relative velocity, we were not able to find any new effects that
were caused by the temporal disorder. Instead we found that the noise process
leads to an averaging over the effects already found in the bichromatic system
with a constant relative velocity.

5.2 Open Questions

The model we presented for bichromatic lattices with a constant relative velocity
correctly predicts the transition between assisted and suppressed transport, but
the predictions of the actual decay rates are quantitatively not very accurate. The
reasons for the large gap between simulated data and the predictions made by the
model are most likely due to interference effects which do not enter the model.
It is known that these interference effects have a large influence on interband
tunneling in the Wannier-Stark problem, where this influence is called resonantly
enhanced tunneling. We therefore expect a similar influence for the bichromatic
Wannier-Stark problem.

In order to include these interference effects into the model, it would be neces-
sary to know the exact energies of all involved states. Once these are known, a
complex amplitude version of the constant flux master-equation from section 3.3
could be formulated and solved. The solutions of this equation would take inter-
ference effects into account and should therefore be able to describe the bichro-
matic noiseless system much more accurately.

In the form presented in this work, the model for the effect of harmonic noise
on bichromatic lattices can only account for the influence of one of the three noise
parameters. While this parameter T was found to have a much stronger influence
on interband tunneling than the other parameters, their influence can neverthe-
less not be completely neglected. In section 4.1 we gave some estimates about the
influence of the two remaining parameters Γ and ω0, but did not derive quanti-
tative predictions. It should, however, be possible to account for the influence of
these parameters by using a Landau-Zener model influenced by diagonal noise
terms. Combining this with the results of Kayanuma [19, 20] would allow for
more quantitative predictions.

Besides these improvements of the models presented in this thesis, there are
also open questions left when it comes to the influence of noise on the Wannier-
Stark system:
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At the end of section 4.3, we presented the results of an increased amplitude of
the noise-driven lattice. While our model would predict a stronger influence of
the noise lattice, the picture looks more difficult as can be seen in figure 4.7.

In section 2.4 we briefly presented a bichromatic Wannier-Stark system where
the phase of both lattices is fixed, but the amplitude of one of the lattices is driven
by a noise process. This system showed interesting behavior (see figure 2.9) but
due to time-constraints we were not able to investigate its properties in detail.

In order to understand how stable the effects observed in chapter 4 are for real
Bose-Einstein condensates for which nonlinear effects cannot be neglected, we
also performed numerical simulations of the Gross–Pitaevskii equation. As can
be seen in figure condensate would have on the findings in chapter 4, the tunnel-
ing rates are surprisingly robust against the presence of a moderate nonlinearity.
This can be seen as a result of the relative stability of the Landau-Zener tunneling
probabilities against nonlinear effects. However, we only tested this for a nar-
row range of parameters and further simulations should be performed in order
to verify the result. It would furthermore be interesting to see the effects of the
nonlinearity on the noise-free system discussed in chapter 3. We would expect to
find a more discernible effect since interference effects, which seem to play an im-
portant role in this system, are strongly affected by the presence of a nonlinearity
[44].

Answering these questions would also open the way to applications of the re-
sults obtained in chapter 3 for controlling the behavior of Bose-Einstein conden-
sates experimental setups.
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A Generating Harmonic Noise: the Euler
Maruyama Method and an Improved
Algorithm

Numeric integration of stochastic differential equations is neither a straightfor-
ward nor easy task and even the best known algorithms perform very poorly
when compared to their deterministic counterparts. There is a growing interest
in stochastic differential equations, especially due to their use in finance leading
to a wide range of literature dealing with the subject. A reader interested in this
topic may have a look at [21] or [17, chapter 15] to gain a better understanding of
the problems one faces when dealing with these equations. In the present work,
we however only need to integrate two very specific stochastic differential equa-
tions. This allows us to implement a numeric integrator of very high quality.

Instead of directly introducing the algorithm used in this work, let us first look
at the most basic method for integrating stochastic differential equations: the Eu-
ler–Maruyama method [17]. The stochastic differential equations one is usually
interested in are Langevin equations of the form

ẋ = f(x, t) + u(x, t) · ξ(t), (A.1)

where f(x, t) and u(x, t) are known functions and ξ(t) is a random white noise
term with zero mean and unit variance. Here x is a vector and u(x, t) is a ma-
trix whose dimension depends on the number of independent white noise terms
needed for the differential equation. Integrating over time transforms (A.1) into

x(t+ h) − x(t) =

∫ t+h
t

f(x(t ′), t ′)dt ′ +
∫ t+h
t

u(x(t ′), t ′) · ξ(t ′)dt ′. (A.2)

Approximating the expressions inside the integrals to zeroth order through x(t ′) =
x(t) and u(x(t ′), t ′) = u(x(t), t) yields the Euler-Maruyama method:

x(t+ h) ≈x(t) + h f (x(t), t) + u(x(t), t) ·
∫ t+h
t

ξ(t ′)dt ′ (A.3)

=x(t) + h f (x(t), t) + u(x(t), t) ·
√
hYt, (A.4)

where Yt is a vector of Gaussian random numbers with unit Variance. The last
step is possible because we know that the integral over a white noise process is
akin to a random walk and therefore results in a Gaussian distribution with vari-
ance h. This method is known as Euler-Maruyama method and can be applied to
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every stochastic differential equation [17]. It does, however, have the drawback
that the approximation done in (A.3) and therefore the whole method is only ac-
curate up to first order in h.

The stochastic differential equations that are used for the numerical simulations
in this work are the two noise-processes described in chapter 2.3:

• The exponentially correlated noise given by the equation

φ̇ = −Γφ+
√

2DΓξ(t). (A.5)
(A.6)

This noise has zero mean and variance D.

• The harmonic noise defined by the two coupled equations

φ̇ = ν

ν̇ = −2Γν−ω2
0φ+

√
4TΓξ(t).

(A.7)

This noise process is also of zero mean and has a variance of T
ω2

0
(see section

2.3).

SettingD and T to zero reduces the stochastic differential equations to a homoge-
neous and deterministic form. These reduced equations are both easily solvable.
The know analytic solution for the homogeneous form will allow us to find a
better method for numerically integrating the stochastic equations.

We start by showing the approach for the exponential noise found in [13]. In-
tegrating equation (A.5) results in

φ(t) = e−tΓφ(0) +
√

2DΓ
∫ t

0
e−(t−t ′)Γξ(t ′)dt ′ (A.8)

= e−tΓφ0 + g(t, Γ ,D). (A.9)

The second term g(t, Γ ,D) of this equation looks complicated but can be de-
scribed by a Gaussian distribution with zero mean. This is due to the fact that
any integral over a Gaussian white noise term ξ(t) has to be of Gaussian nature
itself1. The variance of this term can be easily found by comparing the variance
of the left hand side of (A.9) with the known variance of the noise process. As we
know that g(t, Γ ,D) is independent of φ(0), this reduces to:

Var (Φ(t)) = e−tΓVar(Φ0) + Var (g(t, Γ ,D)) (A.10)

⇔ D = e−tΓD+ Var (g(t, Γ ,D)) (A.11)

⇒ Var (g(t, Γ ,D)) = D
(

1 − e−tΓ
)

. (A.12)

1An integral
∫
f(t)ξ(t)dt can be interpreted as a sum over Gaussian variables as long as f(t) is

independent of ξ(t) (one says that f(t) should be non-anticipating). A more detailed argument
can e.g. be found in [17, Chapter 4.3.5].
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The random variable g(t,γ,D) is completely described by the fact that it is Gaus-
sian with zero mean and has a variance given by (A.12). Any process that pro-
duces Gaussian random numbers with the desired properties can be used to pro-
duce g(t,γ,D). Given a set of Gaussian random numbers2 {Yi} with unit variance
and zero mean we can therefore use the method

φ(t+∆t) = e−tΓφ(t) +
√
D (1 − e−tΓ )Yi. (A.13)

to calculate φ(t+∆t) from φ(t).

The technique for generating the harmonic noise is analogous but slightly more
complicated due to the fact that we are dealing with two coupled equations. An
approach similar to the one described was first published in [34] and a more thor-
ough description can be found in [26]. It is possible to write the two equations
(A.7) as one vector equation:

ẋ = Ax+
√

4TΓ
(

0
ξ(t)

)
, (A.14)

where

x =

(
φ

ν

)
(A.15)

A =

(
0 1

−ω2
0 −2Γ

)
. (A.16)

This eqnuation can be integrated just as the one for the exponentially correlated
noise

x(t) = eAtx(0) +
√

4TΓ
∫ t

0
eA(t−t

′)

(
0

ξ(t ′)

)
dt ′. (A.17)

=M(t) · x(0) +α(t) (A.18)

The matrix M(t) = eAt can be calculated by diagonalizing A. This leads to an

2There are many ways to generate Gaussian random numbers numerically. The most widely
used is the Box-Muller transform [2], but there are also other methods such as the Ziggurat
algorithm [27].
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expression ofM in terms of the eigenvalues λ± of A:

λ± = −Γ ±
√
Γ2 −ω2

0, (A.19)

M(t)1,1 =
1

λ− − λ+

(
−λ−e

tλ+ + λ+e
tλ−
)

, (A.20)

M(t)2,2 =
1

λ− − λ+

(
λ+e

tλ+ − λ−e
tλ−
)

, (A.21)

M(t)1,2 =
1

λ− − λ+

(
etλ+ − etλ−

)
, (A.22)

M(t)2,1 =
λ−λ+

λ− − λ+

(
−etλ+ + etλ−

)
. (A.23)

(A.24)

The expression for the term α(t) of equation (A.17) can be determined in the same
fashion as for g(t) in (A.12). As any integral over a noise process, we know that
it must be a Gaussian random variable with zero mean. All that is left to do is
to find the covariance matrix. From the correlation functions given in section 2.3,
we know that3 〈x2

1〉 = T/ω2
0, 〈x2

2〉 = T and 〈x1x2〉 = 0.

〈x1(t)
2〉 = T

ω2
0
=
〈
[M · x(0) +α]21

〉
= 〈x1(0)2〉M2

1,1 + 〈x2(0)2〉M2
1,2 + 〈α2

1〉

⇒ 〈α2
1〉 =

T

ω2
0

(
1 −M2

1,1 −ω
2
0M

2
1,2

)
,

(A.25)

〈x2(t)
2〉 = T =

〈
[M · x(0) +α]22

〉
⇒ 〈α2

2〉 = T

(
1 −M2

2,2 −
M2

2,1

ω2
0

)
,

(A.26)

〈x1(t)x2(t)〉 = 0 = 〈[M · x(0) +α]1 [M · x(0) +α]2〉

⇒ 〈α2α1〉 = −T

(
M1,2M2,2 +

M2,1M1,1

ω2
0

)
,

(A.27)

where for better readability, the dependence on t was omitted for M and α. The
desired bivariate distribution can be created by multiplying a vector Z of two
independent Gaussian random numbers with zero mean and unit variance with
an appropriately chosen matrix B:

α = B ·Z =

(
B11 0
B21 B22

)
·Z. (A.28)

3We can calculate the desired quantities by using the correlation functions (2.38) and setting
h = 0.
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The covariance in terms of B is then

〈α2
1〉 = 〈(B11Z1)

2〉
= B2

11〈Z2
1〉

= B2
11

(A.29)

〈α2
2〉 = B2

21 +B
2
22 (A.30)

〈α1α2〉 = B21B11. (A.31)

Solving these equations for B results in

B2
11 = 〈α2

1〉 B21 =
〈α1α2〉
B11

B2
22 = 〈α2

1〉−B21, (A.32)

which results in

α =


√
〈α2

1〉 0

〈α1α2〉√
〈α2

1〉

√
〈α2

1〉−
(〈α1α2〉)2

〈α2
2〉

 ·Z. (A.33)

Given a set of vectors of Gaussian random numbers {Zi} where each component
has zero mean and variance one, the method

x(t+∆t) =M(∆t) · x(t) +B(∆t) ·Zi (A.34)

can therefore be used to numerically generate a realization of the harmonic noise
process.

The advantage of the methods presented here for the exponential and the har-
monic noise is that they are accurate for any step size ∆t. This is due to the fact
that we solved the deterministic part of the equations exactly and were able to
completely describe the stochastic part of the time evolution through Gaussian
distributions. The Euler-Maruyama method, though simpler has an error of the
order O(∆t) and can therefore only be used for very small time steps.

It is clear that hand-crafting a method for a specific set of differential equations
will usually yield a more efficient algorithm than a general purpose method can.
It should, however, be noted that there are also some disadvantages to the meth-
ods presented here, especially to the one for generating harmonic noise. One
disadvantage is that (A.34) requires two Gaussian random numbers per step,
whereas the Euler-Maruyama method described in (A.3) only requires one. As
generating random numbers is usually the most time-consuming part of the al-
gorithm, this slows down the algorithm considerably. Especially for small ∆t,
the term B1,1 in the matrix (A.33) vanishes, leading to a negligible influence of
the second random number. If one is forced to generate the noise process with a
small ∆t, for which the accuracy of the Euler-Maruyama method is adequate, one
might therefore want to choose the simpler algorithm4.

4It is also possible to amend the Euler Maruyama method for the given differential equations by
using the exact expression eA∆t to express the deterministic part of the propagation.
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Another, more subtle disadvantage of method (A.34) is that the direct connec-
tion between the elementary noise process ξ(t) and the harmonic noise is lost.
As explained in chapter 2.3, integrating a stochastic differential equation actually
means mapping a realization of the noise process ξ(t) to a trajectory x(t). This
mapping is visible in the Euler-Maruyama method described by (A.3) where the
term

√
hYt represents an integral over the noise process. But in (A.34), it is not

clear anymore how the vector Zi of Gaussian random numbers is connected to
the elementary noise process. In the case where one is however simply interested
in a robust algorithm to generate harmonic or exponentially correlated noise for
any step size, the algorithms described in this chapter are far superior to the more
general Euler-Maruyama method. All noise processes in this work have therefore
been generated using these algorithms.
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B The Crank-Nicolson Algorithm in 2D
Cylindrical Coordinates

All numerical simulations in this work were performed using the Crank-Nicolson
algorithm. Even though this algorithm is well-known and can be found in most
textbooks on the subject (e.g. [40]), the details of its application to the problem at
hand are usually not covered and shall therefore be described here. An in-depth
explanation of the details can be also found in [38, Chapter 4], from where the
algorithm was adapted.

This chapter will start by briefly deriving the Crank-Nicolson method, followed
by a short explanation about its advantages over similar methods. It will then
discuss how the method can be efficiently applied to higher dimensional problems
and especially to problems with cylindrical symmetry. After demonstrating how
imaginary time propagation can be used to find the ground state of a problem, the
chapter ends with a short description of how to deal with the nonlinear Schrödinger
equation.

The Crank-Nicolson method for one-dimensional systems

As all other finite difference methods, the Crank-Nicolson method operates by
using a discrete approximation of the original differential equation. Whereas the
full 1D-Schrödinger equation

i
∂

∂t
ψ(x, t) = Hψ(x, t) (B.1)

Hψ(x, t) = −
1
2
∂2

∂x2ψ(x, t) + V(x)ψ(x, t) (B.2)

applies to a wavefunction ψ(x, t) that is defined on every point (x, t) ∈ (Rn ×R)
in time and space, finite difference methods work by using discrete coordinates
in time and space as shown in figure B.1. The wavefunctionψ(x, t) is represented
by its values on a set of evenly spaced points (usually called the numerical grid):

xj = x0 + j ·∆x j ∈ {0, 1, · · · , J}
tk = t0 + k ·∆h k ∈ {0, 1, · · · ,K}
ψj(tk) ≡ ψ(xj, tk).

(B.3)

Here ∆x denotes the distance between grid points in space and ∆t the distance
in time. What we want our algorithm to do is to transport the wavefunction
forward in time such that for a given ψ(t0) and a set of boundary conditions, we
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can calculate the wavefunction at any time tk > t0. We therefore need to bring the
Schrödinger equation into a form that allows us to calculate ψ(tk) from ψ(tk−1),
as displayed in figure B.1. In order to approximate the differential equation on
this grid, we need to approximate the derivatives in equation (B.2) using only the
values ψj(tk) at the grid points.

The second derivative on the left hand side of (B.2) can be easily approximated
by using

∂2

∂x2ψ(x, t)|xj,tk ≈
ψj−1,k +ψj+1,k − 2ψj,k

∆x2 , (B.4)

but the time derivative in (B.2) should be handled with more care. Simply replac-
ing it in a similar fashion

∂

∂t
ψ(x, t)|xj,tk ≈

ψj,k+1 −ψj,k
∆t

(B.5)

would result in the so-called Forward Time Central Space (FTCS) method shown
in figure B.2(a), which is not well-suited for solving the Schrödinger equation. In
order to understand the reason for this, let us look at the connection to the time
evolution operator T(t, t+ h), which for H independent of h is defined as

ψ(t+ h) = T(t, t+ h)ψ(t) (B.6)
T(t, t+ h) = exp (−ihH) . (B.7)

Equation (B.5) is actually equivalent to using a first order expansion for T(t, t+h):

ψ(t+ h) = (1 − ihH)ψ(t) + O(h2) (B.8)

⇒ i
ψ(t+ h) −ψ(t)

h
= Hψ(t) + O(h). (B.9)

t

x0 x1 x3 xJ

t3

t1

t0

...

...

x

... ... ... ... ...

Figure B.1: Finite difference methods approximate the wavefunction using a fi-
nite number of grid points in space and time. The black circles repre-
sent the initial state at t0, the gray ones the boundary conditions.
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t

x

(a) The FTCS scheme (b) The Crank-Nicolson scheme

Figure B.2: Visualization of the Forward Time Center Space (FTCS) and the
Crank-Nicolson scheme. The gray circles are grid points at the current
time t, the white circles grid points at the future time t+h. Dotted cir-
cles represent intermediate values used during the calculation.

Given a suitable expression for H, this would allow us to approximate the wave-
function ψ(t+ h) from the wavefunction ψ(t) at a previous time. However, this
would not only mean introducing an error of the order O(h), but also destroy any
normalization. The reason for this is that the time evolution operator in (B.8) is
non-unitary and therefore does not conserve normalization. A better scheme is
approximating the time evolution operator in the following way (see [40, chapter
19.2]):

ψ(t+ h) =
1 − ih2H

1 + ih2H
ψ(t) + O(h3). (B.10)

⇒
(

1 + i
h

2
H

)
ψ(t+ h) =

(
1 − i

h

2
H

)
ψ(t) + O(h3). (B.11)

The accuracy of this method can be checked by Taylor-expanding the first term
in (B.10) in h and comparing the result with the expansion of the time evolution
operator in (B.7). This approximation together with the one given in equation
(B.4) defines the Crank-Nicolson method which is visualized in figure B.2b. Not
only is the accuracy of this method better when compared to the method given by
(B.8) but it also conserves the unitarity of the time evolution operator. It can fur-
thermore be proven that the method is unconditionally stable for the Schrödinger
equation [40, Chapter 19.2]. The method is visualized in figure B.2b.

The method described in equation (B.11) could be described as going forward
half a step from ψ(t), going back half a step from ψ(t + h) and matching both
results at t+ h

2 (see figure B.2b). Unlike the explicit method to calculate ψ(t+ h)
given in equation (B.8), this method makes it necessary to invert the operator(
1 + ih2H

)
. For the discrete wavefunction, this is equivalent to inverting the ma-

trix representation of this operator. Using the wavefunction defined in (B.3) and
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the approximation for its second derivative in space given in (B.4), the operator(
1 + ih2H

)
can be written in the following way:[(

1 + i
h

2
H

)
ψ

]
j

=

(
1 + i

h

2
V(xj) + i

1
2h∆x2

)
ψj − i

h

4∆x2ψj−1 − i
h

4∆x2ψj+1

(B.12)

=


. . .
α 1 +βi−1 α

α 1 +βi α

α 1 +βi α
. . .

ψ (B.13)

with βj,α defined here as

βj = i
h

2
V(xj) + i

h

2∆x2

α = −i
h

4∆x2 .
(B.14)

The expression on the right hand side of equation (B.11) can similarly be written
in matrix form:

(
1 − i

h

2
H

)
ψ =


. . .
−α 1 −βi−1 −α

−α 1 −βi −α
−α 1 −βi −α

. . .

ψ. (B.15)

(B.16)

Equation (B.11) therefore consists of one matrix-vector multiplication and one
matrix inversion. For general matrices these operations require a lot of computa-
tion (complexity O(L2) and O(L3)), but the tridiagonal nature of the matrix allows
both operations to be computed in O(L) time using the Gauss algorithm [40].

The matrix representation of the Hamiltonian in equation (B.13) possesses an
ambiguity at the boundary that we have not yet discussed. As ψ−1 and ψL+1
do not exist on the grid, it is not possible to calculate the second derivative at
the boundary using the approximation (B.4) used for the other grid points. We
therefore chose to fix ψ−1(t) = ψL+1 = 0 in our simulations, resulting in a matrix
such as the one seen in equation (B.17). The consequence is that the boundaries
are reflective, which is highly artificial but necessary to be able to solve equations
(B.17) and (B.18).
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One step of the full Crank-Nicolson algorithm uses the wavefunction ψ(t) at
time t to generate an approximation for the wavefunction ψ(t+ h) at time t+ h.
Recapitulating the last paragraphs, it is performed in the following way:

• Multiply the wavefunction ψ(t) by
(
1 − ih2H

)
to get the intermediate result

ψ(t+ h
2 ):

ψ(t+
h

2
) =


1 −β0 −α
−α 1 −β1 −α

. . .
−α 1 −βL−1 −α

−α 1 −βL

ψ(t). (B.17)

• Solve the expression
(
1 + ih2H

)
ψ(t+ h) = ψ(t+ h

2 ) for ψ(t+ h):

ψ(t+
h

2
) =


1 +β0 α

α 1β1 α
. . .
α 1 +βL−1 α

α 1 +βL

ψ(t+ h). (B.18)

Operator splitting: The Crank-Nicolson method for higher
dimensions

Even though many interesting quantum-mechanical phenomena can be described
by one-dimensional systems, there are phenomena that can only be aptly de-
scribed using higher dimensional systems. A specific example relevant for this
work is the behavior of a self-interacting Bose-Einstein condensate described by
the Gross–Pitaevskii equation (see chapter 2.1). Solving the Schrödinger equation
in two or more dimensions requires not only a grid in more spatial dimensions,
but also some adjustments to the Crank-Nicolson method. Let us first look at
applying the algorithm to a two-dimensional problem. Considering the Hamilto-
nian of the two dimensional Schrödinger equation

H = −
1
2
∂2

∂x2 −
1
2
∂2

∂y2 + V(x,y), (B.19)

it is clear that applying the previously explained Crank-Nicolson method would
couple not only three but five grid points together. This is visualized in figure
B.3a. As a consequence of this, the matrix representation of the Hamiltonian
would no longer have the tridiagonal shape shown in equation (B.17) and (B.18).
The performance of the algorithm does however rely on the tridiagonality of the
matrix because it is exactly this property that allows us to quickly and easily in-
vert the expression (1 + ihH/2).
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y

(a) Unmodified Crank-Nicolson scheme

t

x

y

(b) Crank-Nicolson using operator splitting

Figure B.3: Using the unmodified Crank-Nicolson method shown in (a) for more
than one dimension leads to a non-tridiagonal matrix. The operator
splitting approach shown in (b) avoids this by splitting the time evo-
lution operator in two tridiagonal parts.

In order to apply the Crank-Nicolson algorithm to higher dimensions, we will
therefore use an approach known as operator splitting (also called time splitting or
method of fractional steps). A general description of this approach can be found in
[40]. The idea is to split the Hamiltonian into a number of summands, each of
which can be written as a tridiagonal matrix. This can be accomplished by using

H = Hx +Hy, where

Hx =
1
2
∂2

∂x2 + Vx(x,y),

Hy =
1
2
∂2

∂y2 + Vy(x,y),

V(x,y) = Vx(x,y) + Vy(x,y).

(B.20)

The choice of Vx and Vy is arbitrary as long as the last condition holds. In some
experimental setups1, V can however be split into parts that only depend on one
variable each, which allows the choice V(x,y) = Vx(x) + Vy(y). Hence the time
evolution operator for the split Hamiltonian can be expressed as

T(t, t+ h) = e−ihH = e−ihHx−ihHy

=
1

1 + ih2Hx

(
1 − i

h

2
Hy

)
1

1 + ih2Hy

(
1 − i

h

2
Hx

)
+ O(h3). (B.21)

1This condition is fulfilled in many experimental setups of optical lattices. Since the containment
of the Bose Einstein condensate is achieved through harmonic traps in each of the spatial
directions. For an example see [35] and [47].
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The ordering of the terms in equation (B.21) makes sure that even if Hx and
Hy do not commute, the error remains of order O(h3). This means that using
this split Hamiltonian introduces no additional error when compared to the one-
dimensional Crank-Nicolson method. Each term of equation (B.21) can be writ-
ten as either multiplication with or inversion of a tridiagonal matrix. Splitting the
Hamiltonian therefore allows us to apply the Crank-Nicolson algorithm to higher
dimensional problems without losing either the advantage of the tridiagonal ma-
trices or precision. In figure B.3b, each one of these factors is represented by a
dotted arrow. Each of these arrows connects an intermediate point with only
three other grid points, showing the tridiagonal nature of the operations.

y

x0 x1 x3 xJ

yK

y3

y1

y0

...
...

x

Figure B.4: Using the time-splitting method, each operator only acts on either the
rows or columns of the two-dimensional grid. The grey circles repre-
sent the boundary conditions.

Let us have a more detailed look at the split operators. We define the two-
dimensional numerical grid analogously to the one-dimensional one described
in (B.3) as

xj = x0 + j ·∆x j ∈ {0, 1, · · · , J}
yk = y0 + k ·∆y k ∈ {0, 1, · · · ,K}
tm = t0 +m ·∆h k ∈ {0, 1, · · · ,M}

ψj,k(tm) ≡ ψ(xj,yk, tm).

(B.22)

Using this grid, the operator (1 − ihHx/2) can be written as[(
1 − i

h

2
Hx

)
ψ

]
j,k

=

(
1 − i

h

2
V(xj,yk) − i

1
2h∆x2

)
ψj,k

+i
h

4∆x2ψj−1,k + i
h

4∆x2ψj+1,k.

(B.23)
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This operator only couples grid pointsψj,k with the same index k. It can therefore
be applied to each row of the grid independently, as seen in figure B.4. Apart
from Vj,k = V(xj,yk) which might depend on k, applying the operator to each
row-vector of the grid is done using exactly the same matrix (B.17) as in the one-
dimensional case. Similarly the operator (1+ ihHx/2)−1 is applied independently
to each row-vector. The operators (1 − ihHy/2) and (1 + ihHy/2)−1 on the other
hand are applied to the column-vectors of the grid, but nevertheless have the
same form as described in (B.17).

While retaining the tridiagonal shape of the matrices means that the method
should not be slower than the one used for one-dimensional systems, this comes
with a caveat. Any computation on a two-dimensional system will of course be
slower in the sense that the computations needed for one time step scale with the
number of grid points. As the grid now has to cover an additional dimensions,
the number of grid points needed will usually be much higher than for a one-
dimensional systems. For most problems one will end up with O(N2) grid points
where for one dimensionNwere sufficient. In addition, the operator splitting re-
sults in four instead of two applied operators per time step. This implies another
slowdown by a factor of two.

In summary, operator splitting allows the Crank-Nicolson algorithm to be ap-
plied to two-dimensional problems without loss of accuracy and only a small
loss in speed. It consists of four steps, where each step corresponds to one of the
operators in equation (B.21):

• Apply the operator
(
1 − ih2Hx

)
to each row-vector of the grid. The matrix-

representation of this operator is the same as in equation (B.17), but the
value of V(xj,yk) might be different for every row of the grid;

• Apply the operator
(
1 + ih2Hy

)−1
to each column-vector of the grid. This

is done by solving the same matrix-inversion problem as in equation (B.18),
but with∆x replaced by∆y and the appropriate values for V(xj,yk) instead;

• Applying the operator
(
1 − ih2Hy

)
is done using the matrix given in equa-

tion (B.17) to the column-vector, but using the substitutions outlined in the
previous step;

• The last step, involves solving the inverse matrix problem described in
equation (B.18), but this time for the row-vectors.

Generalizing to higher dimensions is done in the same way, as long as one makes
sure that the ordering of the split operators does not introduce additional errors.
In a three dimensional Cartesian coordinate system, the ordering would be the

78



following:

ψ(x,y, z, t+ h) =
(

1 − i
h

2
Hz

)−1(
1 − i

h

2
Hy

)
(

1 − i
h

2
Hx

)−1(
1 − i

h

2
Hx

)
(

1 − i
h

2
Hy

)−1(
1 − i

h

2
Hz

)
ψ(x,y, z, t).

(B.24)

Cylindrical coordinates for cylindrically symmetric problems

In this work, we are especially interested in applying the Crank-Nicolson method
to cylindrically symmetric problems. These kind of problems lend themselves to
cylindrical coordinate systems where the x-coordinate remains unchanged, but y
and z are represented using ρ and φ:

x = x

y = ρ sin(φ)
z = ρ cos(φ)

(B.25)

This coordinate system poses new problems:

• The Schrödinger equation does change its form due to the non-Cartesian
nature of the coordinate system;

• At the coordinate ρ = 0, the coordinate system has a singularity that has to
be dealt with.

Nevertheless, this coordinate system provides huge advantages for cylindrically
symmetric problems. Assuming that the wavefunction ψ(x, ρ,φ) is independent
ofφ allows one to reduce the three-dimensional problem to two dimensions. This
reduces the time and memory needed for the calculations by a large factor be-
cause the wavefunction only needs to be defined on a two-dimensional grid:

xj = x0 + j ·∆x j ∈ {0, 1, · · · , J}
ρk = k ·∆ρ k ∈ {0, 1, · · · ,R}
ψj,k ≡ ψ(xj, ρk).

(B.26)

The assumption of a cylindrically symmetric wavefunction also allows us to iden-
tify ψ(x,−ρ) with ψ(x,+ρ). This reduces the needed storage space and the size
of the matrix representations of the Hamiltonian by a factor of one half.

The Hamiltonian in cylindrical coordinates reads

H = −
1
2

(
∂2

∂x2 +
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
+ V(x, ρ,φ). (B.27)
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In the case of a cylindrically symmetric wavefunction we can assume the deriva-
tive with respect to φ to vanish. The remaining Hamiltonian can then be split
into

Hρ = −
1
2

(
∂2

∂ρ2 +
∂

ρ∂ρ

)
+ Vρ(x, ρ) and (B.28)

Hx = −
1
2
∂2

∂x2 + Vx(x, ρ). (B.29)

The first derivative with respect to ρ in equation (B.28) can be approximated
through

∂

∂ρ
ψ(x, ρ)|x,ρ =

ψ(x, ρ+∆ρ) −ψ(x, ρ−∆ρ)
2∆ρ

. (B.30)

This additional term in the radial part of the Hamiltonian does not destroy the
tridiagonal form, as it only depends on the two neighboring grid points in the
ρ-direction.

At ρ = 0, evaluating (B.28) becomes problematic as the term ∂
ρ∂ρ is not well-

defined. Luckily the restriction to cylindrically symmetric wavefunctions can
help us circumvent this problem. Due to the symmetry of the wavefunction we
know that φ(x, ρ) = φ(x,−ρ). Therefore the first derivative with respect to ρ at
ρ = 0 has to vanish. Using L’Hôsptial’s rule we can thus rewrite the expression
as

lim
ρ→0

∂
∂ρ

ρ
= lim
ρ→0

∂
∂ρ

∂
∂ρ

∂
∂ρρ

= lim
ρ→0

∂2

∂ρ2 , (B.31)

which allows us to write the Hamiltonian in a well-defined way at ρ = 0.
Using equation (B.31) and (B.30) and the fact that φ(x,−ρ) = φ(x, ρ), we can

write the radial part of the Hamiltonian in the following form:

Hψj,0 = −
2ψj,1 − 2ψj,0

∆ρ2 + Vj,0 k = 0

Hψj,k = −
1
2
ψj,k+1 +ψj,k−1 − 2ψj,k

∆ρ2

−
1

2k∆ρ
ψj,k+1 −ψj,k−1

2∆ρ
+ Vj,0 k 6= 0

(B.32)

The matrix form of (1± ihHρ/2) thus is

1± ih
2
Hρ =


1± γ ±η
±α1 1±β1 ±δ1

. . .
±αR−1 1±βR−1 ±δR−1

±αR 1±βR

 , (B.33)
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where

γ =
ih

∆ρ2 +
ih

2
Vρ(0),

βk =
ih

2∆ρ2 +
ih

2
Vρ(k∆ρ),

η = −
ih

∆ρ2 ,

αk = −
ih

4∆ρ2 +
1

8k∆ρ2 ,

δk = −
ih

4∆ρ2 −
1

8k∆ρ2 .

(B.34)

We can see that for ρ → ∞, the secondary diagonal terms αi and δi converge
against the term α for Cartesian coordinate systems found in (B.14). This is in
line with the expectation that at large ρ the cylindrical coordinates are locally
similar to Cartesian coordinates.

Apart from the different matrix (1 ± ihHρ/2), applying the Crank-Nicolson
method in cylindrical coordinates is done in the same way as described on page
78 for Cartesian coordinates. One simply has to replace the matrix (1± ihHy/2)
by (1± ihHρ/2).

Finding the ground state of a system with imaginary time
propagation

In experimental setups like the one introduced in section 2.4, the Bose-Einstein
condensate is usually assumed to be in the ground state of the system at the start
of the experiment. Yet, for most potentials and nonlinearities no analytic expres-
sion for the ground state is known, making it necessary to compute it numerically.
It is possible to employ the Crank-Nicolson method for this by using a technique
known as imaginary time propagation. The way this technique works can be
easily understood by comparing it with the Schrödinger equation. Assuming a
complete set of energy eigenstates {Ei,Φi}, consider the effect of the following
differential equations on an arbitrary state ψ =

∑
i αiΦi:

i
∂

∂t
ψ =Hψ

⇒ α̇(t) = −iEiα(0)
(B.35)

and the similar equation

−
∂

∂t
ψ =Hψ

⇒ α̇(t) = −Eiα(0)
(B.36)
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Equation (B.35) is just the Schrödinger equation and the coefficients αi(t) of its
solution rotate around the origin of the complex plane with a frequency propor-
tional to the energy Ei of their respective energy eigenstate. Equation (B.36) on
the other hand results from replacing the time t in the Schrödinger equation by
the term −it. The coefficients αi of its solution behave in a much simpler way:
they simply grow or shrink exponentially, depending on the energy eigenvalue
Ei of Φi.

t

α(t)

Figure B.5: Illustration of the imaginary time algorithm: While the Schrödinger
equation rotates the state around the imaginary axis (red), the imagi-
nary time equation leads to an exponential decay (green).

It is clear that the coefficient α0 of the lowest energy eigenstate Φ0 will grow
exponentially in time, when compared to the coefficients of all other eigenstates.
This means taking any state ψ with α0 6= 0, subjecting it to the time evolution
under equation (B.36) for a time t and finally renormalizing it such that

∑
i |αi|

2 =
1 will result in a state ψ ′ very close to the ground stateΦ0. The time t needed for
calculating the ground state with a given accuracy is inversely proportional to
the energy difference E1 − E0 between the ground state and the first excited state:

α1(t)

α0(t)
=
α1(0)
α0(0)

e−(E1−E0)t. (B.37)

This method allows us to easily find the ground state for general potentials in
arbitrary spatial dimensions. In order to assure that the result has converged on
the ground state,it is possible to wait until the changes of the wavefunction over
time fall below a certain threshold.

A simple predictor corrector method for the nonlinear
Schrödinger equation

In this work, the Crank-Nicolson algorithm in cylindrical coordinates will be
mainly used to integrate the Gross–Pitaevskii equation, which is a nonlinear ver-
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sion of the Schrödinger equation:

i
∂

∂t
ψ(x, t) = −

1
2
∂2

∂x2ψ(x, t) +
(
V(x, t) +U |ψ(x, t)|2

)
ψ(x, ρ, t). (B.38)

The reason we did not account for the nonlinear term U |ψ(x, t)|2 yet is that it can
be absorbed into the potential V(x, t) without needing to change the algorithm.
We can therefore use the algorithm developed in this chapter by simple replacing
V(x, ρ, t) by a modified potential Ṽ :

V ′(x, ρ, t) = V(x, ρ, t) +U|ψ(x, ρ, t)|2. (B.39)

The wavefunction and therefore the nonlinear term does however not remain
constant during a step of the Crank-Nicolson algorithm. Incorporating this into
the method is not straightforward.

The easiest way would be to evaluate the term |ψ(x, ρ)|2 at the beginning of each
step and let the potential V ′ remain constant until the beginning of the next step.
This would be equivalent to the Euler method for ordinary differential equations,
which only uses information from the beginning of each time step. The estimate
that the nonlinear term |ψ(x, ρ, t)|2 remains constant will, however, have acquired
some error at the time t+∆t.

In order to gain accuracy and stability, we will therefore use a predictor-corrector
scheme similar to the two-step Runge Kutta method:

• Set V ′(x, ρ, t) = V(x, ρ, t)+U|ψ(x, ρ, t)|2 and use the Crank-Nicolson method
to compute a predicted value ψ ′(x, ρ, t+∆t).

• Use an updated term Ṽ that averages between the original and the predicted
value of the nonlinear term:

Ṽ = V(x, ρ, t) +
U

2

(
|ψ(x, ρ, t)|2 +ψ ′(x, ρ, t+∆t)|2

)
. (B.40)

Repeat the previous step with this term Ṽ instead of V ′ to calculate the final
value ψ(x, ρ, t+∆t).

Just as the two-step Runge-Kutta method performs by an order of O(∆t) better
than the Euler method, we would estimate that this predictor-corrector method
improves the accuracy by a similar magnitude. The disadvantage of this method
is that every time step has to be performed twice, halving the overall speed of the
algorithm. Additionally the amount of memory needed is increased by the need
to keep two copies of the wavefunction in memory.

It is possible to generalize this method to more than one predictor step with-
out problems. This results however in a further slowdown as more intermediate
copies of the wavefunction have to be computed and held in memory. For most
purposes using one intermediate step should be enough, but it is of course nec-
essary to check that the method has converged. This can be done by comparing
the results of the calculations when using different time steps ∆t.
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There are many other methods that allow applying the Crank-Nicolson method
to the nonlinear Schrödinger equation. Another method very similar to the one
explained here, but without the loss in speed can be found in [6].
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