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Abstract
Quantum walks differ from their classical analogue in the fact that the state of the walker is
in a superposition of positions. In our case, the walkers are atoms of a spinor Bose-Einstein
condensate kicked by a periodic optical lattice. Such a configuration up can be described by
the quantum kicked rotor model. We break the spatial-temporal symmetry by using a directed
ratchet motion. The direction of the movement is determined by the sign of the kicking poten-
tial, which directly depends from the sign of the detuning. The standing-wave laser is tuned
between two hyperfine levels of the ground state to create a difference in sign. Additionally,
we consider the conditions for quantum resonance to be fulfilled, so that the free evolution of
the atoms vanishes, and we only have changes in the momentum at discrete moments in time.
Themixing of the internal states, ergo the coin toss, is in practice performed with microwaves.
We investigate how the analytic theory of the temporal evolution of the quantum kicked rotor
at quantum resonance can be transferred to two internal spin states that aremixed at each step.

Quantenirrfahrten unterscheiden sich von ihremklassischenAnalogon dadurch, dass der Läufer
sich in einer Überlagerung aller Positionen befindet. In unserem Fall sind die Läufer Atome
eines Spinor-Bose-Einstein Kondensates, welches periodisch von einem optischen Gitter ge-
kickt wird. Für diese Konfiguration können wir das Modell des gekickten Rotors benutzen.
Wir brechen die Symmetrie in Ort und Zeit durch Benutzung einer gerichteten Ratschen-
Bewegung. Die Richtung der Bewegung ist durch das Vorzeichen der Kickpotenziales gegeben,
welches direkt von der Verstimmung abhängt. Der Stehwellenlaser ist zwischen die bei-
den Hyperfeinzustände des Grundzustandes gestimmt, sodass die Vorzeichen für beide un-
terschiedlich sind. Zusätzlich nehmen wir an, dass die Voraussetzungen fürQuantenresonanz
erfüllt sind, sodass die freie Entwicklung der Atome verschwindet und wir nur zu diskreten
Zeitpunkten Änderungen im Impuls haben. Das Mischen der internen Zustände, also der
Münzwurf, wird in der Praxis mit Mikrowellen durchgeführt. Wir untersuchen wie die ana-
lytische Theorie der Zeitentwicklung des gekickten Rotors in Quantenresonanz auf zwei in-
terne Spinzustände, die jeden Schritt gemischt werden, übertragen werden kann.
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Introduction

Motivation
In the 1970s a paradigm shift announced itself, no longer were quantum mechanics ’merely’
used to describe quantum systems encountered in nature but humanity started to design quan-
tum systems to accomplish specific tasks. Today the resulting field of quantum information
theory is blooming [1] with the more and more quantum technologies finding their way into
concrete applications like quantum computation, quantum communication, quantum simula-
tors and quantum cryptography.

Quantum walks (initially also referred to as quantum random walks) were conceived in 1993
by Aharonov, Davidovich and Zagury [2] are one of these new engineered quantum systems.
As they are in short the quantum mechanical analogue to a classical random walk they are
especially interesting for the field of quantum computation. The reason is that in classical
computer science a lot of algorithms are based on random walks, everywhere were they are
used there is the hope that a quantum walk could lead to speed ups in the computation time.
An example for such problems are satisfiability problems and search of data banks which are
solved by random walks over the graphs representing the problem. How fast the problem is
solved depends on the hitting time, the time that it takes on average for the random walks
to hit a certain subspace of the graph. It was shown that quantum walks have occasionally
an exponentially shorter hitting time [3]. But quantum walks may be an even more powerful
tool as recently it was shown by Childs that they are a primitive for universal quantum com-
putation [4].

Since the discovery of quantum walks concrete realization were discussed for years. Recently
the first actual implementations were achieved. Quantum walks were implemented with pho-
tons using a time-multiplexing technique [5] or with cold atoms in optical lattices [6] for
example. In this thesis we want to investigate a new quantum walk scheme using the atom
optics kicked rotor that was proposed by Summy and Wimberger [7] in which the walk in
contrast to the earlier schemes with cold atoms did not take place in real space but rather in
the reciprocal space. One of the main motivations for this new scheme is the fact that the
atom optics kicked rotor is a well-studied and easy to implement system. and the two degrees
of freedom needed for the walk are well separated.
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The proposition is based on the δ-kicked rotor, a model that describes a particle that is pe-
riodically hit by δ-like pulses. The use of this system is also the reason why the walk takes
place in momentum space as the natural description of the kicked rotor takes place in mo-
mentum space. Historically the kicked rotor was a paradigm of quantum chaos, the study of
quantum system which classical analogue show chaotic dynamics. The classical kicked rotor
is characterized by the chaotic Chirikov-Taylor or Standard map [8]. The quantum counter-
part, the quantum kicked rotor knows two regimes that are vastly different from the classical
dynamics: quantum resonance [9], where energy grows ballistically and dynamical localiza-
tion [9], where its growth is stopped after a certain time called quantum break time. The first
one is especially interesting for this thesis as it allows the implementation of directed matter
wave currents, so-called quantum resonance ratchets.

As for all other quantum mechanical systems that are studied in experimental set ups this
system does not constitute a closed system, lacking perfect isolation of the experiment will
cause a coupling with the environment. The system is then said to be open. The system will
develop decoherence, the loss of coherence, and the associated classical appearance. In our
case spontaneous emission, the random relaxation of an excited atom is such an effect. Spon-
taneous emission causes the atom to change from the excited state to the ground state and to
eject the corresponding energy as a photon in a random direction, thus leading to a counter-
balancing and random change of the atomic momentum.

Outline
Chapter 1 gives a general introduction to the underlying theoretical and experimental prelim-
inaries of this thesis. We review the concept of the atom optics kicked rotor and the needed
derivatives of quantum resonance and quantum ratchets. And finally after having briefly given
an overview of the field of quantum walks we present the new scheme for discrete-time quan-
tum walks in momentum space of [7].

In Chapter 2 we present the numerical concepts that were used to implement the simula-
tions of the system.

In Chapter 3 we start from the proposed experimental implementation of the quantum walk
scheme and try to get to the theoretical result. We give the quantum optical description of the
system and derived the effective kick dynamics.

In Chapter 4 investigate the theoretical model of the quantum walk. We derive the final mo-
mentum distribution and observe its dependence on its two parameters the kick strength and
the kick number.
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In Chapter 5 we regard the system to be open and interact with an environment of radia-
tion modes leading to the appearance of spontaneous emission. We set up a master equation
for the system and study how decoherence affects the walk.
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1. Preliminaries

In this chapter we will introduce the background concepts that are required in this thesis.
We start by introducing the experimental implementation and theoretical description of the
atom optics kicked rotor. Furthermore we give a brief introduction to quantum walks and
describe how those concepts are combined for the realization of discrete-time quantum walks
in momentum space.

1.1. Atom Optics Kicked Rotor

1.1.1. Experimental Implementation
The δ-kicked rotor model has the advantage of not just being a toy model but being accessible
to experimentally. The first one to realize it with cold atoms was the Raizen group in Austin,
Texas [10]. Modern experiments use Bose-Einstein condensates [11, 12]. Here a short sum-
mary of the experimental implementation of the atom optics kicked rotor:

The basis for the atom optics kicked rotor is a set of alkali atoms, which are cooled by vari-
ous sophisticated quantum optical techniques below the critical temperature of Bose-Einstein
condensate formation. It is assumed that the set is diluted enough that interaction between
the atoms can be neglected. After having been sufficiently cooled the atoms are released from
the trap. The standing wave is created by shining a laser on a mirror so that the outgoing
counter-propagating beam aligns with the incoming. The periodic pulsing is induced with an
acousto-optic modulator with which one can control the intensity of the passing beam. After
the kick sequence is finished the atoms are imaged via time-of-flight imaging. For this the
atoms are allowed to expand freely for a short time in the order of milliseconds and are then
targeted with near resonant light. The resulting fluorescence of the atoms is captured with a
charge-coupled device.

Of course in the real world it is impossible to implement δ-like kicks but experimentalists
have reported that with 100ns− 1µs pulse lengths the approximation is quite good [13].
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1.1.2. Theoretical Description
The experimental set up described in the previous section leads to an effective Hamiltonian of
the following sort [10]:

Hexp =
p2

2M
− V0 cos(2kLx)

∑
j∈Z

δ(t− jτ) (1.1)

where p is the momentum, x the position,M the mass of the atom, kL the wave vector of the
standing-wave laser, τ the period of the kick pulses and V0 the potential depth.

Generally the Hamiltonian is manipulated in ’natural units’ rather than laboratory units due
to the fact that it facilitates the notation in analytics and simulations. The units are rescaled
in the following manner:

E → E

8
ℏ2k2L
2M

p→ p

2ℏkL
x→ 2kLx

τ → 2π
τ

T 1
2

(1.2)

where T 1
2
is the half Talbot-time

T 1
2
=

2πM

ℏG2
. (1.3)

G is the grating
G = 2kL. (1.4)

We end up with the following rescaled Hamiltonian:

H(t) =
p̂2

2
+ k cos x̂

∑
j∈Z

δ(t− jτ) (1.5)

where k is the kick strength
k =

V0τp
ℏ

(1.6)

and τp the duration of the kick pulse.

The time evolution operator describing the dynamics of the kicked atom, after a kick until
the next one, is established by the unitary one-cycle Floquet operator [14]

Û = e−i
∫ t+τ
t H(t′)dt′ = e−ik cos x̂e−

i
2
τ p̂2 , (1.7)
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where we additionally put ℏ = 1. The two parts of our Floquet operator, the kick part and
the free evolution part factorize. The idea here is that while the kick happens, because of the
δ-function, the action of the free evolution is vanishingly small compared to the kick so that
it can be ignored.

As mentioned earlier the atom optics kicked rotor was thought of as an experimental imple-
mentation of the quantum kicked rotor. While the quantum kicked rotor describes particles
moving on a circle the atoms in the atom optics kicked rotor move on a line. One can be
mapped onto the other by exploiting the periodicity of the potential and introducing the con-
cept of β-rotors.

This Hamiltonian (1.5) is 2π-periodic so we impose the spatial boundary conditions

θ = x mod (2π) (1.8)

so that θ̂ becomes our new angle operator.

Since we have a periodic potential, the Bloch theorem states that there is a basis of solutions
to the stationary Schrödinger equation with the following form:

ψ(x) = eiβxψβ(x) (1.9)

where ψβ(x) is 2π-periodic
ψβ(x+ 2π) = ψβ(x). (1.10)

The periodic boundary conditions make it so that there only transitions between integer multi-
ples n of momentum. Thus we separate the momentum into an integer part n and a conserved
non-integer part β ∈ [0; 1), that is called quasimomentum.

p̂ = n̂+ β (1.11)

β is conserved because transitions between states that are not different by an integer in mo-
mentum are forbidden. The n are the eigenvalues of the angular momentum operator

n̂ = −i ∂
∂θ

(1.12)

The general solution of the Schrödinger equation ψ(x) can be written as a superposition of
Bloch waves eiβxψβ(x)

ψ(x) =

1∫
0

dβρβe
iβxψβ(x). (1.13)
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Here ρβ is the distribution of quasimomenta.

If the initial state of the atom is given by a plane wave with a discrete momentum

p0 = n0 + β0 (1.14)

the Bloch wave describing the system is:

ψβ(θ) = ⟨θ|ψβ⟩ =
1√
2π
ein0θ (1.15)

ρβ = δ(β − β0) (1.16)

The time evolution of a β-rotor is described by the this new Floquet operator where we sub-
stituted the old variables by the new ones

Ûβ = e−ik cos θ̂e−
i
2
τ(n̂+β)2 . (1.17)

1.1.3. Quantum Resonance
Quantum resonance [9] is an effect specific to the quantum regime and cannot be observed in
the classical regime. For the main resonances the first part of the Floquet operator, the one
associated to the free evolution, is equal to unity, so that we get a phase revival of the wave
function in momentum space. The term ’main’ is there to discern from so-called higher quan-
tum resonances where powers of the free evolution term are equal to unity. The consequence
of this is that the atoms directly after a kick and just before the next are in the same state. In
this case there is no difference between T kicks of strength k and a kick of strength Tk.

Ûβ = e−i τ
2
(n̂2+2n̂β+β2) = 1 (1.18)

Here the last part can be ignored as it has no n-dependency and will just produce a constant
global phase that will cancel out when calculating expectation values. Hence we only have to
satisfy

e−i τ
2
(n̂2+2n̂β) = 1 (1.19)

which is the case for the following specific τ -β couples:

τ = 2πl, l ∈ N (1.20)

β =
1

2
+
i

l
mod (1), i = 0, 1, ..., l − 1 (1.21)

In this thesis we will consider τ = 4π and β = 0, which corresponds to a kick period that
equals the Talbot time.
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In quantum resonance the absorption of energy by the δ-kicked atoms from the kicking field
is maximal. In this regime energy grows quadratically in time. This is in contrast to the linear
energy growth for the classical kicked rotor.

E(T ) = ⟨ψ(T )|−1

2

∂2

∂θ2
|ψ(T )⟩ (1.22)

= − 1

4π

∫ 2π

0

ein0θeiTk cos θ̂ ∂
2

∂θ2
e−iTk cos θ̂e−in0θ (1.23)

=
n2
0

2
+
k2T 2

4
(1.24)

The quadratic growth can be traced back to the linear spread of the wave function in momen-
tum space as can be seen in figure.

Figure 1.1.: Momentum distributions of the quantum kicked rotor with kick strength k = 2,
an initial momentum of n0 = 0 and kick numbers T = 20 (blue), T = 30 (green)
and T = 40 (red).

A peculiarity of quantum resonance is that we can express the momentum distribution P
analytically [18]

P (n;n0, k, T ) = J2
n−n0

(kT ), (1.25)

where J is a Bessel functions of the first kind. A short summary of the most important aspects
of Bessel functions of the first kind can be found in appendix A.

1.1.4. Quantum Ratchets
The name ratchet is derived from the Brownian or Feynman-Smoluchowski ratchet [19], a
thought experiment conceived by Smoluchowski about a perpetuummobile that at first glance
due to its asymmetric structure seems to create a directed motion from an equilibrium posi-
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tion, therefore violating the second law of thermodynamics.

Although this seeming contradiction could be resolved its interesting concept sparked the
development of Brownian motors [20] and other systems that could gather useful work, for
example a directed motion, from non-equilibrium.

A prime example for this kind of behaviour is the sawtooth ratchet [21]. In this system initially
a wave function is localized in a well of an asymmetric sawtooth potential. The potential is
hereinafter repeatedly switched on and off. When the potential is turned off the wave func-
tion diffuses. Ordinarily one will deal with stochastic forces or even opposing forces so the
wave function might additionally shifted in a direction. After a while the potential is turned
on again and now parts of the wave functions are trapped in different parts of the potential
landscape. The form of the potential makes it more viable for the state to be in trapped on
right side thus showing a net transport to the right.

When we are speaking about quantum ratchets we mean a ratchet effect in a quantum sys-
tem. Cold atom ratchet are ultra-cold atoms whose initial momentum state is in a superpo-
sition state of multiple momentum classes. For an comprehensive review see [14]. Experi-
mentally those systems are produced by coherently splitting a Bose-Einstein condensate with
a momentum conserving Bragg pulse. The phase between the initial momentum classes can
be customized by adding a free evolution after the Bragg pulse. Subsequently the system is
kicked like the standard atom optics kicked rotor.

The most basic example for such a quantum ratchet state would be a superposition of two
initial momentum classes :

|ψ2(ϕ)⟩ =
1√
2

(
|n = 0⟩+ eiϕ|n = 1⟩

)
(1.26)

Realize that unlike the just mentioned conventional sawtooth ratchet, here the ratchet is em-
bodied by the quantum state and not the potential. We have a symmetric potential (1.5) and
the symmetry is broken by the state itself.

Unlike the case of a momentum state without a superposition the ratchet system does not dif-
fuse symmetrically around their initial momentum but rather the mean momentum increase
linearly over time. The direction and speed of this change depends on the kick strength and
the phase between initial momentum classes. The average momentum change per kicks for a
state like (1.26) is

⟨p⟩T+1 − ⟨p⟩T = −k
2
sinϕ (1.27)
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The dependence of the initial state in momentum space in atomic diffraction in a standing
wave was studied in [22, 23].

Figure 1.2.: Momentum distribution of the quantum ratchet state in (1.26) with a relative phase
ϕ = −π

2
after a kick sequence of strength k = 2 and length T = 20.

Of course one can also create more complex ratchet states with more momentum classes like

|ψ3(ϕ)⟩ =
1√
3

(
e−iϕ|n = −1⟩+ |n = 0⟩+ eiϕ|n = 1⟩

)
. (1.28)

Figure 1.3.: Temporal evolution of a quantum ratchet with three initial momentum classes
as described in (1.28) with exemplar influencing of the propagation direction by
choice of the relative phase [7].

Although the average momentum change is directed in one direction still a not negligible
amount of the momentum distribution diffuses in the other direction as can be perceived in.
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Ratchets with more initial momentum classes have shown to be more resistant to this kind of
dispersion [24]. This is especially true if the momentum classes are consecutive ones.

This behaviour can be explained qualitatively with the help of the following picture [25]. The
effective force that the atom feels from the standing wave depends on the gradient of the
standing wave.

Feff =

∣∣∣∣∫ π

−π

|ψ(x)|2dV (x)

dx
dx

∣∣∣∣ (1.29)

The wave function is centred around the flank of the standing wave assuring a maximum
of force. Now the gradient will vary over the area that the wave function extends therefore
leading to varying effective force felt by the atoms. The more initial momentum classes the
ratchet state has the narrower the wave function becomes, and ergo the larger the applied
force becomes.
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Figure 1.4.: Visualization of the functioning quantum ratchet mechanism. G = 2kL is the
grating vector of the standing wave.
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1.2. Quantum Walks

1.2.1. Basics
First of all there are two kinds of quantum walks: discrete-time and continuous ones. We will
only be dealing with the former one. For a more thorough review of the concept of quantum
walks we refer to [26].

Quantum walks are the quantum-mechanical analogue of classical random walks. Classically
the walker at each step of the walk flips a coin and proceeds to take a step to the right or to
the left depending on the outcome of the throw. After a certain number of steps the walker
has a final position which distribution trends towards a Gaussian distribution if this procedure
is repeated a great number of times. Now for a quantum walk next to the external degree of
freedom corresponding to the position of the walker, the walker also possesses an internal
one for example a spin. The walk consists of the application of two operators: a translation
operator and a coin operator. The translation operator is spin-sensitive and will depend on
the orientation in its internal degree of freedom move the walker one step to the left or to the
right

T =
∑
i

|↓⟩⟨↓ |⊗|i− 1⟩⟨i|+|↑⟩⟨↑ |⊗|i+ 1⟩⟨i|. (1.30)

It is clear that if the walker is in a state of superposition in its internal degree of freedom this
superposition is transferred to its external degree of freedom. The coin operator as the name
suggests, replaces the classical coin and effectively represents a rotation of the internal degree
of freedom to recreate the superposition in it. The Hadamard gate would be a prominent
example for such a balanced coin:

C =
1√
2

(
1 1

1 −1

)
(1.31)

The final result of repeatedly applying those two is that the walker is in a superposition of all
possible positions.

Classical Random Walk Quantum Walk

Figure 1.5.: Comparison of single trajectory of a classical random walk and a quantum walk
using the example of a one-dimensional Galton board with resulting probability
distributions.
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The quantum-mechanical nature of the system will provoke interference effects between the
correlated positions. The appearance of interference fringes makes the probability distribu-
tion of the final positions drastically different from the one of classical random walks. The
consequences of the interference strongly depends on the choice of the coin operator and also
on the initial internal state but generally one will find destructive interference near the origin
of the distribution and constructive one towards the edges. Another major difference between
the classical random walk and the quantum walk is how their standard deviation scales with
the number of steps taken in the walk. Classically it scales with

√
N and in the quantum case

with N .

Quantum walks are also interesting to field of quantum-to-classical transitions. If one in-
troduces decoherence in a quantum walk, the destruction of the coherence, the walk becomes
classical again. Hence such a quantum walk might be used as a decoherence sensor. Small
amounts of decoherence may also be used to tune certain characteristics (spreading for exam-
ple) of the walk, that lead better than pure quantum dynamics in certain algorithms [27].

1.2.2. Quantum Walks in Momentum Space
The experiment consists of ultra-cold Rubidium 87 atoms in a Bose-Einstein condensate. The
two degrees of freedom of this quantum walks scheme are the external centre-of-mass mo-
mentum of the atoms and the internal hyperfine state. The Rubidium atom is a three-levels
system of one excited state 5 2P 3

2
, F = 3 and two ground states 5 2S 1

2
, F = 1 and 5 2S 1

2
, F = 2.

The two ground states will be our internal degree of freedom. For the remainder of this thesis
we shall rename the hyperfine levels for reasons of brevity:

|5 2S 1
2
, F = 1⟩ → |2⟩ (1.32)

|5 2S 1
2
, F = 2⟩ → |1⟩ (1.33)

|5 2P 3
2
, F = 3⟩ → |e⟩ (1.34)

The internal degree states are addressed by the two-parameter unitary rotation matrix which
in the experiment is done by microwaves

M(α, χ) =

(
cos α

2
e−iχ sin α

2

−eiχ sin α
2

cos α
2

)
. (1.35)

Initially we prepare a quantum ratchet state in one of the two possible internal levels, for
example |1⟩ and in a ratchet fashion in reciprocal space. In this thesis we will only consider
initial momentum states of the form of (1.26). Additionally the relative phase is fixed to ϕ =

20



−π
2
so that for kick strengths k ≈ 2 the average momentum change per kick is near to unity.

|ψ2(−
π

2
)⟩ = 1√

2
(|n = 0⟩ − i|n = 1⟩) (1.36)

Note that, for such an asymmetric state, the mean momentum is not zero and therefore the
resulting quantum walk will not be centred around zero but, here in this case, at one half
momentum units. This initial state is then brought into a superposition in its internal degree
of freedom with the Hadamard gate:

M(α =
π

2
, χ = 0)|2⟩ ⊗ |ψ2(−

π

2
)⟩ = 1√

2
(|1⟩+ |2⟩)⊗ |ψ2(−

π

2
)⟩ (1.37)

Each step of the quantum walks starts with a pulse of the optical lattice kicking the atoms
to induce the momentum change. In contrast to previous normal atom optics kicked rotor
set-ups the standing wave laser is tuned between the two ground state levels so that one is
negatively and one positively detuned. The sign of the detuning directly translates into the
sign of the kick strength [24] via

k =
Ω2τp
8∆

(1.38)

where Ω is the Rabi frequency, τp the pulse length of the kick and ∆ the detuning. The
standing-wave laser in the experiment is aligned in a 53◦ angle to the vertical, this changes
the grating on the horizontal to

2kL → 2kL · 2 sin(53◦). (1.39)

And since the direction of the average momentum change depends on the sign of the kick
strength we have achieved a conditional displacement. The following one-step operator Ûkick

that kicks carries this out depending on the total angular momentum.

Ukick =

(
e−ik cos θ̂ 0

0 eik cos θ̂

)
(1.40)

From this symmetric translation operation one can easily get to an asymmetric one by tuning
the standing-wave laser closer to one level than the other:

Ukick =

(
e−ik1 cos θ̂ 0

0 eik2 cos θ̂

)
(1.41)

After each of these kicks mix the spin up and spin down states by applying the 50:50 beam-
splitter coin toss

M(α =
π

2
, χ = −π

2
) =

1√
2

(
1 i

i 1

)
. (1.42)
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Whether the walk will be symmetric or asymmetric only depends on the preparation and
propagation of the internal degree of freedomwhich are determined by the choice of the initial
state and the coin toss. In our case the initial state is symmetric in spin space. The coin
behaves also in a symmetrical manner, the part of the created superposition in spin space
that in the next kick will be send towards the edges of the distribution is multiplied with 1,
therefore leading to constructive interference, while the part that will be kicked towards the
centre is multiplied with i, which will after some iterations lead to cancellations, destructive
interference. For that reason our walk will be symmetric.

Figure 1.6.: Schematic of the proposed experiment for the realization of a quantum walk in
momentum space. The optical lattice is pulsed periodically to implement the mo-
mentum shifts at quantum resonance. The internal states F = 1 and F = 2 of the
atoms in the rubidium-87 condensate are controlled by microwaves. Taken from
[7].

Experimentally one has access to the internal-state resolvedmomentum distribution. The total
momentum distribution is computed from the sum of the momentum distribution of the two
ground states.

P (n;T ) = P1(n;T ) + P2(n;T ) (1.43)
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2. Numerical Implementation

2.1. Quantum Map
The averaged momentum distribution is computed via numerical simulations more precisely
a Monte Carlo simulation that we will shortly describe in the following section [28].

We have a finite basis of position and momentum classes of length N where N is chosen
to be a power of two so that we may use the fast Fourier Transform ”four1” from Numerical
Recipes [29] without further complications. This creates the following grid of position classes

θi =
2π

N
i (2.1)

and momentum classes
n = −N

2
,−N

2
+ 1, ...,

N

2
− 1. (2.2)

Instead of simulating a single two component wave function, each of our ground levels has
its own wave function. Because of the complex nature of wave function we allocate an array
of twice the base size for them and store the real part in the even and the complex part in the
odd spaces.

An initial state in a quantum ratchet fashion as described in (1.36) would be given by:

ψ1(N) =
1√
2

ψ1(N + 3) = − 1√
2

ψ2(N) =
1√
2

ψ2(N + 3) = − 1√
2

(2.3)

The kick-to-kick time evolution operator is composed of two parts: a kick part

K = e−ik cos θ (2.4)

and a free evolution part
F = e−

i
2
τn2

. (2.5)
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This peculiar form of makes it difficult to compute both parts in one space. Both parts are
easily computed in position and momentum space respectively. Therefore during a single
step of a kick sequence, after having applied the free evolution, the wave function is Fourier
transformed into position space and the kick is performed. Afterwards we transform back
to momentum space. This is iteratively done T times, the amount of kicks performed on the
system. Note that one wave function is kicked with k and the other with −k.

For our purposes we have to reorder by switching the order of the halves of the resulting
array (FFT-shift) after the transformation from (angular) momentum space to (angular) posi-
tion space and when transforming back because our momenta n are centred around 0 and our
angles θ around π.

We get the momentum distribution P of one realisation by computing:

P (n;T ) =
1

2

[
|ψ1(n;T )|2+|ψ2(n;T )|2

]
(2.6)

Note that we have to divide by two here because we work with two wave functions that are
both normalized and not two components of one wave function.

If we additionally to these dynamics, consider the influence of stochastic decoherence effects
(see the next three sections), we have to compute the quantum trajectory and the resulting
momentum distribution for each atom. In a final step we form a classical average P̄ over a
given number of realizations R in a Monte Carlo method fashion.

P̄ =
1

R

R∑
r=1

Pr (2.7)

2.2. Monte Carlo Wave Function Technique
The Monte Carlo wave function method, also known as Quantum jump method, is a tech-
nique developed by Mølmer, Castin and Dalibard in the 90s to simulate Master equations [30].
The main idea behind it is to reduce the computation resources by computing solely the wave
function instead of the density matrix, thus the needed resources only scale with O(N), if N
is the dimensionality of the system, rather than with O(N2).

As above we work in dimensionless units (in particular ℏ = 1). Let us assume that we have a
system that is described by the Master equation

ρ = i [ρ,H]− 1

2

∑
i

(
L†
iLiρ+ ρL†

iLi

)
+
∑
i

L†
iρLi (2.8)
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start at an instant t in time with a wave function |ψ(t)⟩.

Hjump = H − i

2

∑
m

L†
mLm (2.9)

The quantum state evolves in time according to:

|ψ(t+ δt)⟩ = e−iHjumpδt|ψ(t)⟩ (2.10)

because H might be a big full matrix the computation of its matrix exponential can become
difficult. This is why we will Taylor expand it to first order.

|ψ(t+ δt)⟩ =
(
1− iHjumpδt

)
|ψ(t)⟩ (2.11)

This is only valid ifHjumpt is small, which is not the case for the time evolution during the kick
as the exponent of e−ik cos θ̂ can be quite big. This problem can be solved by using the following
fundamental property of the matrix exponential:

e−iHjumpt =
[
e−iHjumpt/s

]s
(2.12)

and splitting the duration of the kick pulse into a large number of steps s for which each then
the exponent is small enough to approximate the matrix exponential linearly.

The norm of the wave function decreases while evolving with the Hamiltonian because of
its non-Hermiticity, the norm is equal to

⟨ψ(t+ δt)|ψ(t+ δt)⟩ = ⟨ψ(t)|
(
1 + iH†

jumpδt
) (

1− iHjumpδt
)
|ψ(t)⟩

= ⟨ψ(t)|1− i
(
Hjump −H†

jump

)
δt+H†

jumpHjumpδt
2|ψ(t)⟩

= 1− δp+O(δt2)

(2.13)

where
δp = iδt⟨ψ(t)|

(
Hjump −H†

jump

)
|ψ(t)⟩ =

∑
m

δpm (2.14)

can be written as a sum of
δpm = δt⟨ψ(t)|L†

mLm|ψ(t)⟩. (2.15)

Now we have to decide whether a quantum jump happened. For this a random number η
is drawn from an uniform distribution between 0 and 1. If this number is bigger than δp no
quantum jump occurswe simply take thewave function after evolutionwith the time evolution
operator and normalize it:

|ψ(t+ δt)⟩ = 1√
1− δp

(
1− iHjumpt

)
|ψ(t)⟩ (2.16)

25



If on the other hand this number is smaller than δp then a quantum jump through one of the
decoherence channels happens:

|ψ(t+ δt)⟩ =

√
δt

δpm
Lm|ψ(t)⟩ (2.17)

with a probability δpm
δp

.

2.3. Taking into account the Recoil
As mentioned earlier absorbing or emitting a photon induces a translation of the atomic mo-
mentum. The velocity change corresponds to the energy difference from the excited state to
one of the ground states depending on the decay channel. Since we are only interested in a
one-dimensional walk we have to project onto the walk axis. More on the atomic recoil can
be found in section 5.2 and subsection 5.3.4.

Normally we have a difference in the ranges of possible momentum changes as we have the
different energy differences. Since the detuning is very small in comparison to the transition
frequency and we also have the projection as a diminishing factor we ignore this difference
in the following and assume that both decay channels happen on with a recoil of ℏkL, this
corresponds to a half of our momentum units.

The two-fold nature of the momentum in the atom optics kicked rotor forces us to deal the
integer and fractional part of the momentum separately. Let ξ be the projection on the walk
axis of the spontaneous emission recoil, then the wave function in momentum space is shifted
by the integer part of the sum of ξ and the quasimomentum before the spontaneous emission
β. It can change at most by one momentum class

n′ =


1 β + ξ ≥ 1

0 1 > β + ξ ≥ 0

−1 β + ξ < 0

. (2.18)

The old quasimomentum is just replaced by the remaining fractional part

β′ =


β + ξ − 1 β + ξ ≥ 1

β + ξ 1 > β + ξ ≥ 0

β + ξ + 1 β + ξ < 0

. (2.19)
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2.4. Taking into account the Quasimomentum
The atoms of the Bose-Einstein condensate after their initial preparation due to experimental
limitations do not all have the same momentum but rather follow a normal distribution. The
width of this Gaussian is fairly small so that effectively all atoms still belong to the n = 0mo-
mentum class. The distribution is just a distribution of the quasimomenta β with a full width
at half maximum ∆β .

Since we already do quantum trajectories because of the spontaneous emission we can simply
take into account the finite width in quasimomentum by drawing for each atom, so at the start
of each realization, a random β.

See section 3.3 where this is applied to simulate the experimental data.
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3. Theoretical treatment of the system

3.1. Overview
The experiment described in the subsection 1.2.2 can, in few-level approximation, be reduced
to an atomic three-level system inΛ-constellation, with an upper level |e⟩ and two lower levels
|1⟩ and |2⟩. See figure (3.1) for a schematic representation of the reviewed system.

|2⟩

|e⟩

|1⟩

ωL

δ

∆

Figure 3.1.: Schematic representation of the system at hand as an atom in Λ-configuration.

The free atom Hamiltonian is composed of two parts, one describing the internal dynamics

H0 = ℏω1|1⟩⟨1|+ℏω2|2⟩⟨2|+ℏωe|e⟩⟨e| (3.1)

plus one centre-of-mass motion part

Hc.m =
p̂2

2M
, (3.2)

where the ωi are the atomic frequencies of the different levels and p̂ is the momentum of the
atom of massM .

The standing wave laser which kicks atoms can be written as the sum of two waves travelling
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against each other [17]

E⃗(x̂, t) = ẑE0 [cos(kLx̂− ωLt) + cos(kLx̂+ ωLt)] (3.3)

= ẑE0 cos(kLx̂)
(
eiωLt + e−iωLt

)
. (3.4)

HereE0 designates the amplitude of bothwaves, ẑ is the polarization unit vector in z-direction.
kL and ωL are the wave vector and the frequency of the laser. We will refrain from explicitly
adding the δ-like periodicity of the field and future resulting interaction terms to relieve the
notation.

The standing wave laser is tuned between the two ground levels such that the following rela-
tionships connecting the detuning and atomic frequencies holds:

ωe − ω1 = ωL − δ (3.5)

ωe − ω2 = ωL +∆ (3.6)

Thewave length of the standing-wave laser is minimally detuned from the transitions between
the excited and the ground states. This results, for a typical experiment with a Rubidium 87
Bose-Einstein condensate [17, 24], in a wave length in the optical regime

λ = 780nm. (3.7)

Hence the electrical field varies little over the space occupied by the atom and we can use the
dipole approximation. In this approximation the atom-field Hamiltonian is given by:

H1 = −d⃗E⃗ (3.8)

=
ℏΩ1

2
cos(kLx̂)

(
|1⟩⟨e|eiωLt + |e⟩⟨1|e−iωLt

)
+

ℏΩ2

2
cos(kLx̂)

(
|2⟩⟨e|eiωLt + |e⟩⟨2|e−iωLt

)
,

(3.9)

where we identified Ω1 and Ω2 as the Rabi frequencies

Ω1 = −2⟨e|dz|1⟩E0

ℏ
(3.10)

and
Ω2 = −2⟨e|dz|2⟩E0

ℏ
(3.11)

which both are assumed to be real.

To get to (3.9) we first eliminated all symmetric terms for parity reasons as the dipole op-
erators is uneven. In the next step we used the rotating wave approximation to eliminate
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rapidly oscillating terms, which consists in removing terms which oscillate rapidly.

This is only possible if the laser is not too far detuned from resonance. Indeed this is the case,
the detuning ∆ and δ of the laser are also in the GHz-regime [7, 24] and therefore minuscule
to the THz of the atomic transition frequencies.

∆ = δ ≈ 2π · 6.8GHz ≪ ω0 ≈ 2π · 384.23THz (3.12)

For the derivation of the effective Hamiltonian we need the interaction Hamiltonian in the
interaction picture.

Hint = e
i
ℏH0tĤ1e

− i
ℏH0t (3.13)

=
ℏΩ1

2
cos(kLx̂)

(
|1⟩⟨e|ei(ωL+ω1−ωe)t + |e⟩⟨1|e−i(ωL+ω1−ωe)t

)
+

ℏΩ2

2
cos(kLx̂)

(
|2⟩⟨e|ei(ωL+ω2−ωe)t + |e⟩⟨2|e−i(ωL+ω2−ωe)t

) (3.14)

=
ℏΩ1

2
cos(kLx̂)

(
|1⟩⟨e|eiδt + |e⟩⟨1|e−iδt

)
+

ℏΩ2

2
cos(kLx̂)

(
|2⟩⟨e|e−i∆t + |e⟩⟨2|ei∆t

) (3.15)

where we made use of equation (3.5) in the last step. Note that the free evolution is not in-
cluded in the unperturbed Hamiltonian because the kicks and the free evolution are assumed
to happen at different times, see subsection 1.1.2.

3.2. Derivation of the Effective Hamiltonian
The interaction Hamiltonian (3.15) we got in the previous section is governed by terms that
rapidly change in time. The theoretical framework of effective Hamiltonian theory deals with
the question whether such Hamiltonians can be reduced to an simpler effective Hamiltonian
without fast time oscillations. James et al. developed a simple compact formula in [34] which
we will use in the following. See appendix C for a small summary of the derivation of this
formula. Before its application we need to check whether the prerequisites for effective Hamil-
tonian theory are met:

First of all the atom-field interaction strength between field and atom has to be weak since
this allows us to cut the expansion of the time evolution operator after the first order. In this
case our small parameter are the Rabi frequencies which are for the usual kick strengths of
around two in the order of magnitude of one GHz which is sufficiently lower than the atomic
transition frequencies.

Secondly, the rapidly oscillating terms have to be able to be ignored. This is possible in rotating
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wave approximation if the frequency of the laser field is near to the atomic transition frequen-
cies which we already accounted for earlier, see previous section around equation (3.12).

And finally the atom-field interaction has to take place over a long period of time. This is
a somewhat problematic since the length of the individual kick pulses is fairly short with ap-
proximately 100ns-1µs [24]. But the length of the whole kick sequence exceeds the lifetime of
the transitions which are about 26ns [35] by a factor of at least 50, which should suffice.

Our interaction Hamiltonian (3.15) has an harmonic time dependence and can be written in
the following form:

Hint =
2∑

n=1

(
hne

−iνnt + h†ne
iνnt
)
, (3.16)

with

h1 =
ℏΩ1

2
cos(kLx̂)|e⟩⟨1|

h2 =
ℏΩ2

2
cos(kLx̂)|2⟩⟨e|

ν1 = δ

ν2 = ∆.

(3.17)

For Hamiltonians of this form, according to [34], the effective Hamiltonian can simply be
computed by

Heff =
2∑

m,n=1

1

ℏν̄mn

[
h†m, hn

]
e(i(νm−νn)t)

=
ℏΩ2

1

4δ
cos2(kLx̂) (|1⟩⟨1|−|e⟩⟨e|) + ℏΩ2

2

4∆
cos2(kLx̂) (|e⟩⟨e|−|2⟩⟨2|) .

(3.18)

Let us now compare our effective Hamiltonian with the results derived in [33, 34] for similar
systems. Note that the sign difference in the second part of our effective Hamiltonian comes
from the fact that one of our detuning is negative. An important difference of our result from
[33, 34] is the fact that transitions between the two lower levels |1⟩ and |2⟩ vanishes in our
case. Since those transitions are dipole-forbidden this is in accord with what we expected. But
it is possible to have an effective coupling via the excited state, leading to coherent oscillations
between their populations like in [34]. Again our negative detuning is the reason because of
which we do not get these terms. If we impose one detuning to be negative in [33] the pref-
actor to those transitions would go as Ω1Ω2

δ−∆
δ∆

and clearly disappear for two detunings close
in amplitude. Analogously in [34] one negative detuning changes their time dependence from
e±i(∆−δ)t to e±i(∆+δ)t, so that the terms cancel by the time averaging procedure. So our result
is in consensus with the other works of the field.
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Because the excited state |e⟩ is on average not populated as the lifetime of |e⟩ is very short
with 26 ns we can throw those out of the last equation to arrive at

Heff =
ℏΩ2

1

4δ
cos2(kLx̂)|1⟩⟨1|−

ℏΩ2
2

4∆
cos2(kLx̂)|2⟩⟨2|. (3.19)

3.3. Relative Phases
The Hamiltonian that we have gotten in equation (3.19) has not yet the desired form shown in
(1.40). In the ’classical’ atom optics kicked rotor formalism one uses the fact that the squared
cosine may be rewritten using the trigonometrical relation

cos2(α) =
1

2
(cos(2α) + 1) . (3.20)

If we do this we get

Heff =
Ω2

1
1
2
[cos(2kLx̂) + 1]

4δ
|1⟩⟨1|−

Ω2
2
1
2
[cos(2kLx̂) + 1]

4∆
|2⟩⟨2| (3.21)

=

(
Ω2

1 cos(2kLx̂)

8δ
+

Ω2
1

8δ

)
|1⟩⟨1|−

(
Ω2

2 cos(2kLx̂)

8∆
+

Ω2
2

8∆

)
|2⟩⟨2|. (3.22)

The constant part of (3.20) leads to offset terms. In the normal kicked rotor such terms also ap-
pear. But here the typical kicked rotor is a two-level system of an excited and a ground state
that after adiabatic elimination of the first becomes effectively a one-level system in which
these terms can be disposed of by shifting the energy by a constant offset without changing
the dynamics.

In our model we have a three-level system that after adiabatic elimination becomes a two-level
one. The additional terms are different in sign because of their dependence on the detuning.
Therefore we can no longer simply offset them and their existence will lead to a relative phases
between the two internal levels in the time evolution:

U = e−iHeffτp =

e−i(
Ω2
1 cos(2kLx̂)

8δ
+

Ω2
1

8δ
) 0

0 ei(
Ω2
2 cos(2kLx̂)

8∆
+

Ω2
2

8∆
)

 (3.23)

This is not compatible with the ideal walk because of the drifting phase between the two
internal-coin states! To make the difference between this kick operator to the one from the
initial proposition clear we rewrite equation (3.23) in natural units and by identifying the kick
strength from equation (1.38). Also the additional phases in both levels are consolidated to the
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second level by a global multiplication with the additional phase in the first level:

U =

(
e−ik1 cos θ̂ 0

0 eik2 cos θ̂eiΦkick

)
(3.24)

with a relative light shift phase that corresponds to the sum of kick strengths

Φkick = k1 + k2 (3.25)

=
∆=δ

2k. (3.26)

Of course this is not the only relative phase between those levels. The energy difference be-
tween both creates also a dynamical phase shift

Φdyn = (ω1 − ω2)τ (3.27)

=
∆=δ

2∆τ. (3.28)

The total phase
Φ = Φkick + Φdyn (3.29)

can be be compensated by a phase-shift gate acting on the internal states of the atom

M(π, 0)M(π,
Φ

2
) =

(
0 −1

1 0

)(
0 e−iΦ

2

−eiΦ2 0

)
(3.30)

=

(
ei

Φ
2 0

0 e−iΦ
2

)
. (3.31)

We absorb this phase correction into the coin operator, leading to a new phase corrected coin

C =M(
π

2
,−π

2
)M(π, 0)M(π,

Φ

2
) (3.32)

=

(
1 i

i 1

)(
ei

Φ
2 0

0 e−iΦ
2

)
(3.33)

=

(
ei

Φ
2 ie−iΦ

2

iei
Φ
2 e−iΦ

2

)
. (3.34)
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(a) Without phase compensation (b) With phase compensation

Figure 3.2.: Simulation of the effect of the phase for a quantum walk with k = 1.4 and ∆β =
0.025.

The numerics takes ∆β , finite width of the quasimomenta, into account. The theoretical data
shows that the additional phase leads to a broadening and an accumulation of weight in the
centre of the momentum distribution. The dominant wings in (b) are no longer the maxima in
(a), where they are in the centre.

(a) Without phase compensation (b) With phase compensation

Figure 3.3.: Preliminary experimental data to the effect of the relative phase [38].

The preliminary experimental evidence is in qualitative agreement with the theoretical sim-
ulations. Small divergences can be explained by the fact that the exact value of the width in
quasimomenta is unknown and we used an estimate ∆β = 0.025 for the numerics. The esti-
mate is probably a little too low as the case without phase compensation is not as localized in
the centre as in the experiment. Another hint at this is that the wings are more suppressed in
(a) in the simulation.

But we also expect further decoherence effects to play a role here, such as spontaneous emis-
sion that will be treated in the upcoming chapter 5.
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4. Investigation of the ideal case

In the previous chapter we have seen that the experiment, after correction of a relative phase,
corresponds to the theoretical model described in subsection 1.2.2. Our first goal shall be to
find an analytical solution for the momentum distribution of the quantum walk. Afterwards
we will take a look how k and T influence the walk.

4.1. Analytical theory
We proceed by constructing the quantum walk with the time evolution operators that make
it up in position space, and then in a final step Fourier transform to momentum space to get
the momentum distribution.

A single step of the quantum walk consists in kicking the atoms and then mixing the internal
states so the total time evolution operator is just the product of (1.42) and (1.40):

Ûtot = M̂(α =
π

2
, χ = −π

2
)Ûkick (4.1)

=
1√
2

(
e−ik cos θ̂ ieik cos θ̂

ie−ik cos θ̂ eik cos θ̂

)
(4.2)

Let the walk be composed of T of such steps, then the whole walk can be simply described by
the single-step evolution operator to the power T .

ÛT
tot =

(
1√
2

)T
(
A

(T−1)
1 (k) A

(T−1)
2 (k)

A
(T−1)
3 (k) A

(T−1)
4 (k)

)
(4.3)

whereA(N)
1 (k), A(N)

2 (k), A(N)
3 (k)A

(N)
4 (k) designate the matrix entries for Utot forN +1 steps

of the quantum walk and kick strength k. The index

N = T − 1 (4.4)

of the A(N)
i (k) corresponds to the order of the recursive polynomials that they will depend

on. The order of the polynomials is always one lower than the power of the time evolution
operator, hence the shift.

From those four matrix entries we really only have to derive A1 and A2, as one can easily
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see by taking a glance at the step-by-step change rule (howA2 is constructed fromA1 andA2)
that A1 and A2 are the same as A4 and A3 except for a sign change in k.

A
(N)
1 (−k) = A

(N)
4 (k) (4.5)

A
(N)
2 (−k) = A

(N)
3 (k) (4.6)

From explicitlywriting down the first fewmatrix entries we found that they can be represented
by recursive polynomials. A list of the first few matrix entries and a proof of the validity of
this representation can be found in appendix B.

A
(N)
1 (z) = e−ik cos θ̂p

(N)
1 (z)

A
(N)
2 (z) = ieik cos θ̂p

(N)
2 (z)

(4.7)

where the p(N)
1 (z) and p(N)

2 (z) are polynomials in the variable

z = e−ik cos θ̂ + eik cos θ̂ (4.8)

that are following the same recursion formula

p(N)(z) = zp(N−1)(z)− 2p(N−2)(z) (4.9)

but with different starting points:

p
(0)
1 (z) = p

(0)
2 (z) = 1 (4.10)

p
(1)
1 (z) = z̃ (4.11)

p
(1)
2 (z) = z (4.12)

where
z̃ = e−ik cos θ̂ − eik cos θ̂. (4.13)

The uniqueness of this definition is guaranteed by the recursion theorem. To solve this homo-
geneous linear recurrence relationwith constant coefficients we substitute an ansatz p(N)(z) =

xN(z) in the recurrence relation (4.9) and solve the resulting quadratic equation.

xN = zxN−1 − 2xN−2 (4.14)

x2 = zx− 2 (4.15)

x1/2 =
z ±

√
z2 − 8

2
(4.16)

Because of the linearity of the recurrence the general solution is

p
(N)
1/2 (z) = c1x

N
1 + c2x

N
2 , (4.17)
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where c1 and c2 have to be chosen so that the starting conditions are fulfilled:

p
(N)
1 (z) =

1

2

(
1 +

2z̃ − z√
z2 − 8

)(
z +

√
z2 − 8

2

)N

(4.18)

+
1

2

(
1− 2z̃ − z√

z2 − 8

)(
z −

√
z2 − 8

2

)N

(4.19)

p
(N)
2 (z) =

1

2

(
1 +

z√
z2 − 8

)(
z +

√
z2 − 8

2

)N

(4.20)

+
1

2

(
1− z√

z2 − 8

)(
z −

√
z2 − 8

2

)N

(4.21)

As all this is still in position space and in the end we are interested in being in momentum
space we need to perform a Fourier transform back to it. We rewrite (4.18) and (4.20) in a
form which is can be more easily transformed, for example as a sum of kick operators which
translates into Bessel functions in reciprocal space:

p(z) ≈
N∑
j=0

eijk cos θ̂ (4.22)

The calculations for this rewriting being long and tedious have been moved to appendix B.The
results of this procedure are:

p
(N)
1 (z) =

1

2N

 N
2∑

j=0

j∑
m=0

N−2m∑
l=0

((
N

2j

)
−
(

N

2j + 1

))(
j

m

)(
N − 2m

l

)
eik cos θ̂(N−2m−2l)(−8)m


− 1

2N
2

 N
2∑

j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
eik cos θ̂(N−2m−2l)(−8)m


+

1

2N
2

 N
2∑

j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
eik cos θ̂(N−2m−2l−2)(−8)m


=

N∑
l=0

al,A1e
ik cos θ̂(N−2l)

p
(N)
2 (z) =

1

2N

 N
2∑

j=0

j∑
m=0

N−2m∑
l=0

(
N + 1

2j + 1

)(
j

m

)(
N − 2m

l

)
eik cos θ̂(N−2m−2l)(−8)m


=

N∑
l=0

al,A2e
ik cos θ̂(N−2l)
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where

al,1 =
1

2N

N
2∑

j=0

((
N

2j

)
−
(

N

2j + 1

)) l∑
m=0

(−8)m
(
j

m

)(
N − 2m

l −m

)

− 1

2N
2

N
2∑

j=0

(
N

2j + 1

) l∑
m=0

(−8)m
(
j

m

)(
N − 2m− 1

l −m

)

+
1

2N
2

N
2∑

j=0

(
N

2j + 1

) l−1∑
m=0

(−8)m
(
j

m

)(
N − 2m− 1

l −m− 1

)

al,2 =
1

2N

N
2∑

j=0

(
N + 1

2j + 1

) l∑
m=0

(−8)m
(
j

m

)(
N − 2m

l −m

)

Consecutively for the matrix entries we have are:

A
(N)
1 (k) =

N∑
l=0

al,1e
ik cos θ̂(N−2l−1) (4.23)

A
(N)
2 (k) = i

N∑
l=0

al,2e
ik cos θ̂(N−2l+1) (4.24)

At this point we have everything to carry out the calculation of the momentum distribution.

4.1.1. Derivation of the Momentum distribution
The details of the calculation can be found again in appendix B. The final result is:

P (n;T ) =
[
|⟨n, 1|ψβ(T )⟩|2 + |⟨n, 2|ψβ(T )⟩|2

]
=

1

2T+2

[(
N∑
l=0

al,1 [Jn((N − 2l − 1)k)− Jn−1((N − 2l − 1)k)]

)2

+

(
N∑
l=0

al,2 [Jn((N − 2l + 1)k)− Jn−1((N − 2l + 1)k)]

)2

+

(
N∑
l=0

al,1 [Jn(−(N − 2l − 1)k)− Jn−1(−(N − 2l − 1)k)]

)2

+

(
N∑
l=0

al,2 [Jn(−(N − 2l + 1)k)− Jn−1(−(N − 2l + 1)k)]

)2 ]

Similar to how in a classical random walk for an even/uneven number of steps the walker will
only be in a even/uneven position, the entry of the Bessel functions will only be an even/un-
even multiple of k depending on the kick number.
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4.1.2. Extension to more complex Ratchet States
The form of the ratchet is translated into the index of the Bessel functions, this formula can
easily expanded to more complex ratchet states as long neighbouring momentum classes have
relative phases of π

2
or −π

2
.

1√
I

I∑
i=0

(−1)i|n = ni⟩ →
1

2T+1I

[(
N∑
l=0

al,1

[
I∑

i=0

(−1)iJn−ni
((N − 2l + 1)k)

])2

(4.25)

+

(
N∑
l=0

al,2

[
I∑

i=0

(−1)iJn−ni
((N − 2l + 1)k)

])2

(4.26)

+

(
N∑
l=0

al,1

[
I∑

i=0

(−1)iJn−ni
(−(N − 2l + 1)k)

])2

(4.27)

+

(
N∑
l=0

al,2

[
I∑

i=0

(−1)iJn−ni
(−(N − 2l + 1)k)

])2 ]
(4.28)

4.2. Simulation of the ideal case
First of all we want to check whether the analytical formula that we derived is in accordance
with the numerical simulation via the quantum map that we have presented in section 3.1.

Figure 4.1.: Comparative plot of the numerically (blue dots) and analytically (green line) ob-
tained momentum distribution for a quantum random walk with kick strength
k = 2 and T = 20 steps.

As we can see there is compliance between our two ways of computing the momentum dis-
tributions.

We notice that in contrary to the simple quantum kicked rotor or even quantum ratchet the
momentum distribution does no longer just depend on a single parameter kT , the product of
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kick strength and number. The introduction of the coin to the system leads to the problem
different sets of kick strengths and number of kicks with the same product result in disparate
momentum distributions.

Figure 4.2.: Comparative plot of different quantum walks with same value for kT .

In the following we want to analyse how these two parameters (k, T ) impact the momentum
distribution.

4.2.1. Ballistic Expansion of the Walk
Let us now take a closer look at how the momentum distribution of the quantum walks be-
haves for different number of kicks. Similar to the simple quantum kicked rotor we observe
two major peaks that linearly increase in time, ergo we have ballistic motion.

The width of the quantum walk (the distance of the maximum of the momentum distribu-
tion from its average) increases linearly with the kick number T . Also there is no limit to how
many steps the walk can make without disappearing in contrast to the kick strength which is
restricted to a small window as we will see later. The following measurements were created
with k = 2 and increasing T .
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Figure 4.3.: Momentum distributions for walks for k = 2 with T = 10 (blue), T = 20 (green),
T = 50 (red) and T = 100 (light blue).

We see that the number of kicks stretches the width of the walk, other than that it almost
entirely conserves the structure of the walk. So the difference in the shape we observed earlier
must come first and foremost from the kicks strength.

Standard deviation of the momentum distribu-
tion against the kick nuberT for a quantumwalk
with k = 2.

The right maximum of the momentum distribu-
tion against the kick nuberT for a quantumwalk
with k = 2.

The peaks show ballistic motion and the standard deviation growl linearly in time as expected
for quantum walks, see preliminaries.

4.2.2. A Window for the Kick Strength
The following plots show the evolution in shape of the momentum distribution when varying
the kick strength k. The number of steps is held constant at T = 20.
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k = 0.5 k = 2

k = 2.75 k = 3

k = 6 k = 100

Figure 4.5.: Momentum distributions for walks for T = 20 for varying k.

The variation of the kick strength k shows that choosing a value far from the proposed value
of k = 2 leads to momentum distribution without the ’typical shape’ of a quantum walk. The
typical walk being the one with the maxima being at the edges of the momentum distributions
as shown in figure (4.5).

We observe that between k = 2.75 and k = 3.0 a peak emerges from the origin of the mo-
mentum distribution. This peak subsequently splits into two and then slowly diffuse towards
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the edge of the distribution until near k = 6 the next peak emerges. The diffusion of the peak
leads to a walk that loses its two clearly defined peaks at the edges and resembles more and
more just noise.

We can observe that for too weak or powerful kicks the momentum distribution has its peaks
in the centre. What happens is the following: If the kick strength is too weak, the overlap
between neighbouring momentum classes is vanishing and the peak around the initial mo-
mentum classes simply does not diffuse. If k is too strong more distant momentum classes
couple to one another by J∆n(k).

Our next goal will be to find a criterion, that allows us to say when a momentum distribution
qualifies for being a ’good’ quantum walk and when not. As an ad-hoc-solution we define a
visibility in analogy to the interferometric visibility

v =
Pmax − Pmid

Pmax + Pmid

, (4.29)

where Pmax and Pmid denote the amplitude of the momentum distribution in the maximum
and in the middle.

Concretely those two values are estimated by averaging the momentum distribution over a
small segment of eight momentum classes around the momentum class with highest probabil-
ity and the average momentum class respectively. The segments were chosen to be of equal
length so that, when maximum and mean would coincide like for big kick strengths, Pmax and
Pmid are also equal and the visibility vanishes. We had to opt for a small number of momentum
classes for the segments, as the local minima around the global maximum of the momentum
distribution lie lower than the local minima in the centre of the distribution, thus leading to
Pmax ≪ Pmid which is not in the sense of our definition.

1
2

50

100

0

0.5

1

k
T

v

Figure 4.6.: Map of the visibility in dependence of the kick strength k and the number of kicks
T .
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From this graph we can extract that there is not really a limit to how many steps can make,
although a certain minimum is advisable. Also we can see that the visibility increases with
increasing number of kicks. The visibility falls of rapidly around k = 0.75 and k = 2.75. For
kick strengths beyond k = 3 our definition fails since the maxima diffuse towards the edges of
the walk but this is not that problematic since it suffices to find a first cutoff. For the ongoing
investigation we shall restrict the kick strengths to a window of k ∈ [0.75; 2.75].
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5. Decoherence through Spontaneous
Emission

The introduction of spontaneous emission to the system initiates the transition from a so far
closed system to an open system. Open system may no longer be described by a unitary time
evolution due to its dissipative nature. The usual course of action is to attack the problem by
setting up an equation of motion for the density matrix called the master equation.

5.1. Setting up the Master equation
Until now we have ignored the environment and the coupling therewith. We consider our
atomic system to be coupled to a vacuum environment. The coupling between the atoms
and the quantized vacuum modes can be represented by the following Hamiltonian in the
interaction picture

Vvac(t) =
∑
k⃗

gk⃗

(
|e⟩⟨1|ak⃗e

−i(ν
k⃗
−(ωe−ω1))t + |1⟩⟨e|a†

k⃗
ei(νk⃗−(ωe−ω1))t

)
+
∑
k⃗

gk⃗

(
|e⟩⟨2|ak⃗e

−i(ν
k⃗
−(ωe−ω2))t + |2⟩⟨e|a†

k⃗
ei(νk⃗−(ωe−ω2))t

)
.

(5.1)

The full unitary and coherent evolution of the density matrix through time is given by the
Liouville-von Neumann equation

i
∂ρ(t)

∂t
= [Vvac(t), ρ(t)] . (5.2)

We integrate formally

ρ(t) = ρ(t0)− i

∫ t

t0

[Vvac(t
′), ρ(t′)] dt′ (5.3)

and then we insert (5.3) into (5.2):

∂ρ(t)

∂t
= −i [Vvac(t), ρ(t0)]−

∫ t

t0

[Vvac(t) [Vvac(t
′), ρ(t′)]] dt′ (5.4)

On the way to the Master equation two important approximations are made: The first one
is the Born approximation, a weak coupling condition. In its limit the total density matrix
basically factorizes into an environment and an atomic part plus an additional assumed small
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correction term ρc of order O(V 2)

ρ = ρA ⊗ ρvac + ρc. (5.5)

Neglecting ρc we get
Trvac(ρ) = ρA. (5.6)

By tracing out the environment, incoherent and irreversible dynamics arise.

∂ρA(t)

∂t
= −iT rvac [Vvac(t), ρ(t0)]−

∫ t

t0

Trvac [Vvac(t) [Vvac(t), ρ(t
′)]] dt′ (5.7)

The second is the Markov approximation which assumes that the environment when brought
out of equilibrium goes back to it over very short time scales without being influenced from
its coupling with the system so the environment stays constant and the history of the system
does not influence the evolution. Quantitatively this requires that the decay rate, that gives
the time scale of the coupling is way bigger than the time scale of the dynamics of the system
given by the inverse optical frequency of the laser. This is easily satisfied in quantum-optical
set ups [39]:

γ−1 ≫ ω−1
L (5.8)

This way we obtain the typical quantum-optical Master equation in Lindblad form [39]

dρ

dt
= −i [H, ρ] +D[ρ] (5.9)

with the dissipator superoperator:

D[ρ] = −1

2

(
L†
1L1ρA(t) + ρA(t)L

†
1L1 − 2L1ρA(t)L

†
1

)
(5.10)

− 1

2

(
L†
2L2ρA(t) + ρA(t)L

†
2L2 − 2L2ρA(t)L

†
2

)
(5.11)

with the Lindblad operators, also called Lindbladians:

L1 =
√
γ1|1⟩⟨e|

L2 =
√
γ2|2⟩⟨e|

(5.12)

The Lindblad operators describe the decay from the excited towards one of the two ground
states |1⟩ and |2⟩ with the spontaneous emission rate γ1 or γ2.
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The spontaneous emission rates [40] can be computed from

γ1 =
k1

τpτSEδ

γ2 =
k2

τpτSE∆

(5.13)

where τp is the pulse duration and τSE the life time of the transition [35].

5.2. Including the recoil motion of the atom
Up to now we have only have set up an Master equation that describes the evolution of the
populations of the different internal states and neglected the atomic motional state. If we do a
quantum walk it is of major importance. We add the missing centre-of-mass motion imitating
the reasoning presented in [41].

From the Master equation in Lindblad form (5.10) we can derive via sandwiching equations
for the populations and coherences:

∂

∂t
ρ11 = γ1ρee (5.14)

∂

∂t
ρ22 = γ2ρee (5.15)

∂

∂t
ρee = −γ1ρee − γ2ρee (5.16)

∂

∂t
ρe2 = −γ2

2
ρe2 (5.17)

∂

∂t
ρe1 = −γ1

2
ρe1 (5.18)

∂

∂t
ρ12 = 0 (5.19)

All these equations have no influence on the motional state of the atom. For the last four of
them, the time decay of the excited state and the three coherences, this is correct. The reason
for this is that the decay from the excited state is independent from its motional state and
the decay does not have influence on the motional state of the excited state but rather on the
ground state. Exactly this change of momentum in the ground state is missing in the decay
from the excited state to the ground states, described in the first two equations.

An atom in the excited state |e⟩ and momentum pwill eventually decay into one of the ground
states, while shifting its momentum by ℏk due to the recoil created when emitting a photon
with momentum ℏk. This momentum shift of the atom is described by the momentum-shift
operator:

e−iκ⃗·x⃗ =

∫
d3p|p⃗⟩⟨p⃗+ ℏκ⃗| (5.20)
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The emitted photons will because of the way our experiment is set up to tune the laser between
both levels have wave vectors κ1 and κ2 of different length.

κ1 =
ωL − δ

c
(5.21)

κ2 =
ωL +∆

c
(5.22)

We also have to account for the fact that the direction in which the photon is emitted via
spontaneous emission is isotropically distributed.

∂

∂t
ρ11 =

∫
dγ1(n⃗1)e

−iκ⃗1x⃗ρeee
iκ⃗1x⃗ (5.23)

∂

∂t
ρ22 =

∫
dγ2(n⃗2)e

−iκ⃗2x⃗ρeee
iκ⃗2x⃗ (5.24)

where the dγi(n⃗i) are the differential rate of spontaneous emission given as a function of the
unit vectors n⃗i of the emitted photon.

dγ1(n⃗1) = γ1Φ(n⃗1)d
2n⃗1 (5.25)

dγ2(n⃗2) = γ2Φ(n⃗2)d
2n⃗2 (5.26)

with the angular distribution density [41]

Φ(n⃗) =
3

8π

[
1− (e⃗p · n⃗)2

]
. (5.27)

where e⃗p is the unit vector of the atomic dipole transition moment.

The motion of atoms can have a non-negligible impact on the angular photon distribution
emitted by spontaneous emission. In this formula (5.27) we have omitted two velocity de-
pending contributions like Doppler shifts and the one that comes from adding the Röntgen
term to the dipole approximation

HR = − 1

2M

[
p⃗ ·
(
B⃗ × d⃗

)
+
(
B⃗ × d⃗

)
· p⃗
]

(5.28)

to account for the atomic motion [42].

The reason we could ignore these terms is that they scale with v
c
and the velocities of the

atoms are very far from being relativistic. For comparison sake the velocity corresponding to
a momentum unit is in the order of a couple millimetres per second.

The electric field of the standing wave laser points in the z-direction and forces the dipole
element to align itself in the same direction. Therefore the atomic dipole transition moment
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must show in the same direction. In the spherical coordinates the z- direction is just giving
by a cosine.

Φ(ϕ, θ) =
3

8π

[
1− cos2 θ

]
, θ ∈ [0, π], ϕ ∈ [0, 2π] (5.29)

Since the walk takes place on the x-axis, only the x-component u of the recoil is going to
matter. The distribution of u = cos(ϕ) sin(θ) can be gotten from computing the distributions
fv(v) and fw(w) of v = cos(ϕ), w = sin(θ) and the distribution of their product [43] via

Φ(u) =

∫ 1

−1

fv(
u

w
)fw(w)

1

|w|
dw, (5.30)

which leads to
Φ(u) =

3

8

[
1 + u2

]
, u ∈ [−1, 1]. (5.31)

Our Master equation taking also in consideration the momentum shifts changes to

∂ρA(t)

∂t
= −1

2

(
L†
1L1ρA(t) + ρA(t)L

†
1L1 − 2

∫ 1

−1

duΦ(u)L1e
−iuκ1x̂ρA(t)e

iuκ1x̂L†
1

)
(5.32)

− 1

2

(
L†

2L2ρA(t) + ρA(t)L
†
2L2 − 2

∫ 1

−1

duΦ(u)L2e
−iuκ2x̂ρA(t)e

iuκ2x̂L†
2

)
. (5.33)

In the end the establishment of the Master equation with consideration of the recoil comes
down to adding a recoil term to each Lindblad operator

L1 → L1e
−iuκ1x̂

L2 → L2e
−iuκ2x̂

(5.34)

and integrating over the z-component of the recoil momentum. Because the detuning is small
in comparison to the frequency of the standing wave ωL we may approximate

κ1 = κ2 = kL (5.35)

to simplify the simulations.

This addition of the recoil motion in equation (5.34) can be done at any moment, which is
why for now we will go back to the original Lindblad operators (5.12) to simplify the formulas
in the next step of our derivation, the adiabatic elimination.

5.3. Adiabatic Elimination of the Excited State
Let us now come back to the Master equation given in (5.10). The excited state has a very
short life time, this means that atoms in this state will relax so frequently that we assume that
this level is on average unpopulated. This is called adiabatic elimination. We shall derive now
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from (5.10) the corresponding Master equation where the excited state has been eliminated
using the effective Lindblad operator method introduced by Reiter and Sørensen [44]. The
next three sections describe how this technique works.

For this part of the computation it is helpful to change to the Hamiltonian to a time indepen-
dent frame to get rid of the time dependence of the interaction part and the excited subspace
from the free evolution of the internal degree of freedom. We transform our Hamiltonian into
the time-independent frame using the transformation

U = e−iHT t (5.36)

with
HT = (ωe − ωL) |1⟩⟨1|+(ωe − ωL) |2⟩⟨2|+ωe|e⟩⟨e|. (5.37)

This results in

H = U † (H −HT )U (5.38)

= δ|1⟩⟨1|−∆|2⟩⟨2|+Ω1

2
cos(kLx̂) (|1⟩⟨e|+|e⟩⟨1|) (5.39)

+
Ω2

2
cos(kLx̂) (|2⟩⟨e|+|e⟩⟨2|) . (5.40)

5.3.1. Projection-Operator Method
Our Hamiltonian can be split into four parts describing the excited and ground subspaces

H = Hg +He + V+ + V−︸ ︷︷ ︸
V

(5.41)

where

Hg = PgHPg = δ|1⟩⟨1|−∆|2⟩⟨2| (5.42)

He = PeHPe = 0 (5.43)

V+ = PeHPg =
Ω1

2
cos(kLx̂)|e⟩⟨1|+

Ω2

2
cos(kLx̂)|e⟩⟨2| (5.44)

V− = PgHPe =
Ω1

2
cos(kLx̂)|1⟩⟨e|+

Ω2

2
cos(kLx̂)|2⟩⟨e|. (5.45)

Pg and Pe are the projection operators

Pg = |1⟩⟨1|+|2⟩⟨2| (5.46)

Pe = |e⟩⟨e|. (5.47)
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We will unite the unitary and dissipative dynamics of our system in a single non-Hermitian
Hamiltonian HNH in analogy to the one from the quantum jump picture [30]. In this case
however only the dynamics from the excited subspace are included:

HNH = He −
i

2

∑
k

L†
kLk (5.48)

= −iγ
2
|e⟩⟨e| (5.49)

where γ is the total decay rate
γ = γ1 + γ2. (5.50)

The Master equation can be rewritten in a reduced form by integrating parts of the dissipator
together with the unitary dynamics in a non-hermitian Hamiltonian:

ρ̇(t) = −i
[
(HNH +Hg + V ) ρ− ρ

(
H†

NH +Hg + V
)]

+
∑
k

LkρL
†
k (5.51)

this new Hamiltonian
HNH +Hg + V (5.52)

is sometimes referred to as effective Hamiltonian in the literature [41].

5.3.2. Transforming into a non-hermitian Interaction picture
In the next step we want to perform perturbation theory, for this we change to the interaction
picture with the transformation

O(t) = e−iHgtPg + e−iHNH tPe. (5.53)

The non-hermiticity of the operator makes it so that the adjunct and the inverse do not match
each other:

O†(t) ̸= O−1(t) (5.54)

In this case the transformation rules for density operators, operators that are observables and
those which are not differ from each other [45].

The transformation of a quantum state is:

|ψ̃⟩ = O−1(t)|ψ⟩ (5.55)
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From the transformation of the quantum state we can directly deduct the transformation of
the density matrix:

ρ̃(t) = |ψ̃⟩⟨ψ̃| (5.56)

= O−1(t)|ψ⟩
(
O−1(t)|ψ⟩

)† (5.57)

= O−1(t)ρ
(
O−1(t)

)† (5.58)

For operators that are not density operators there are two possible ways to be transformed
depending on whether it is an observable, a hermitian operator, or not.

In the case of an observable A, we can use the fact that the physics should not change by
changing picture so the expectation value of an observable should stay the same:

⟨ψ̃(t)|Ã|ψ̃(t)⟩ !
= ⟨ψ|A|ψ⟩ (5.59)

= ⟨ψ̃(t)|O†(t)AO(t)|ψ̃(t)⟩ (5.60)

which means that
Ã = O†(t)AO(t). (5.61)

The new equation of motion for the transformed state vector is:

Ṽ (t)|ψ̃⟩ = i
d

dt
|ψ̃⟩ (5.62)

= i
d

dt

(
O−1(t)|ψ⟩

)
(5.63)

= i
d

dt
O−1(t)|ψ⟩+O−1(t)i

d

dt
|ψ⟩ (5.64)

= −O−1(t)(Hg +HNH)|ψ⟩+O−1(t)(Hg +HNH + V )|ψ⟩ (5.65)

= −O−1(t)(Hg +HNH)O(t)|ψ̃⟩+O−1(t)(Hg +HNH + V )O(t)|ψ̃⟩ (5.66)

= O−1(t)VO(t)|ψ̃⟩ (5.67)

So non-hermitian operators O transform as

Õ = O−1(t)OO(t). (5.68)

Hence the for us relevant entities are transformed as follows:

ρ̃(t) = O−1(t)ρ
(
O−1(t)

)† (5.69)

Ṽ (t) = O−1(t)VO(t) (5.70)

L̃i(t) = O−1(t)LiO(t) (5.71)
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5.3.3. Perturbation Theory
We expand the density operator perturbatively in order of the atom-field interactions, our
small parameter.

ρ̃(t) = ρ̃(0)(t) + ρ̃(1)(t) + ρ̃(2)(t) +O(Ṽ 3) (5.72)

˙̃ρ(n)(t) = −i
(
Ṽ (t)ρ̃(n−1)(t)− ρ̃(n−1)(t)Ṽ †(t)

)
+
∑
k

L̃k(t)ρ̃
(n)(t)L̃†

k(t) (5.73)

The adiabatic elimination takes place in two steps. First we assume that in the beginning there
are no excited atoms, so that ρ̃(n)(t) for n ≤ 1 contains no excited part ρ̃(n)ee (t). This assumption
is safe since the atoms are only getting excited by the standing-wave laser during the kick and
decay rapidly so that earlier excitations should have relaxed.

˙̃ρ(0)(t) = 0 (5.74)
˙̃ρ(1)(t) = −i

(
Ṽ (t)ρ̃(0)(t)− ρ̃(0)(t)Ṽ †(t)

)
(5.75)

˙̃ρ(2)(t) = −i
(
Ṽ (t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ †(t)

)
+
∑
k

L̃k(t)ρ̃
(2)(t)L̃†

k(t) (5.76)

The evolution of the excited and the ground states is separated by means of projection opera-
tors.

Pg
˙̃ρ(0)(t)Pg = Pg

˙̃ρ(1)(t)Pg = 0 (5.77)

Pg
˙̃ρ(2)(t)Pg = −iPg

(
Ṽ (t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ †(t)

)
Pg +

∑
k

L̃k(t)ρ̃
(2)(t)L̃†

k(t) (5.78)

Pe
˙̃ρ(0)(t)Pe = Pe

˙̃ρ(1)(t)Pe = 0 (5.79)

Pe
˙̃ρ(2)(t)Pe = −iPe

(
Ṽ (t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ †(t)

)
Pe (5.80)

In the second step of the adiabatic elimination we say that the change in population of the
excited state that solely depends on (5.80) is infinitesimal

Pe
˙̃ρ(2)(t)Pe = 0. (5.81)

Then the evolution of our system is then described only by the time evolution in the subspace
of ground states:

Pg
˙̃ρ(2)(t)Pg = −iPg

(
Ṽ (t)ρ̃(1)(t)− ρ̃(1)(t)Ṽ †(t)

)
Pg +

∑
k

L̃k(t)ρ̃
(2)(t)L̃†

k(t) (5.82)

No initial excitation comes down to removing terms of the following form:

PgṼ (t)ρ̃(0)Ṽ (t)Pg = PgṼ
†(t)ρ̃(0)Ṽ †(t)Pg = Peρ̃

(0)Pe = 0 (5.83)
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It remains:

Pg
˙̃ρ(2)(t)Pg = −PgṼ (t)

∫ t

0

dt′Ṽ (t′)ρ̃(0)(t′)Pg︸ ︷︷ ︸
I1

−Pg

∫ t

0

dt′ρ̃(0)(t′)Ṽ †(t′)Ṽ †(t)Pg (5.84)

+ Pg

∑
k

L̃k(t)Pe

∫ t

0

dt′
∫ t′

0

dt′′Ṽ (t′)ρ̃(0)(t′′)Ṽ †(t′′)Pe︸ ︷︷ ︸
I2

L̃†
k(t)Pg (5.85)

+ Pg

∑
k

L̃k(t)Pe

∫ t

0

dt′
∫ t′

0

dt′′Ṽ (t′′)ρ̃(0)(t′′)Ṽ †(t′)PeL̃
†
k(t)Pg (5.86)

The terms after I1 and I2 just correspond to their hermitian conjugate.

We transform back to the Schrödinger picture using the transformation equations (5.69). The
O(t) cancel each other out in pairwise fashion:

O(t)Pg
˙̃ρ(2)(t)PgO†(t) = Pgρ̇

(2)(t)Pg (5.87)

O(t)I1O†(t) = iPgV−
∑
l

(HNH − El)
−1 V

(l)
+ ρ(0) (5.88)

O(t)Pg

∑
k

L̃k(t)I2L̃
†
k(t)PgO†(t) =

∑
k

Lk

∑
l

1

HNH − El

V
(l)
+ ρ(0) (5.89)

·
∑
l′

V
(l′)
−

1

H†
NH − El′

L†
k (5.90)

We have then after transforming back to the Schrödinger picture the following equivalences:

V−
∑
l

1

HNH − El

V
(l)
+ ρ(0) = −i

(
Heff −

i

2

∑
l

L†
eff,lLeff,l

)
ρ(0) (5.91)

and ∑
l

Ll
1

HNH − El

V+ρ
(0)V−

1

H†
NH − El

L†
l =

∑
l

Leff,lρ
(0)L†

eff,l (5.92)

In our case:

1

HNH − E1

=
1

HNH − δ
(5.93)

1

HNH − E2

=
1

HNH +∆
(5.94)
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5.3.4. Result
Now we can compute the effective Hamiltonian and the effective Lindblad operators.

Heff = −1

2

[
V−
∑
l

1

HNH − El

V
(l)
+ + V+

∑
l

1

H†
NH − El

V
(l)
−

]
+Hg (5.95)

=

(
δ +

δΩ2
2 cos

2(kLX̂)

4δ2 + γ2

)
|1⟩⟨1|+

(
−∆− ∆Ω2

1 cos
2(kLX̂)

4∆2 + γ2

)
|2⟩⟨2| (5.96)

+
(∆− δ)Ω1Ω2 cos

2(kLX̂)

8(∆− iγ
2
)(−δ − iγ

2
)

|2⟩⟨1|+(∆− δ)Ω1Ω2 cos
2(kLX̂)

8(∆ + iγ
2
)(−δ + iγ

2
)

|1⟩⟨2| (5.97)

The first thing to remark is that in the limit of vanishing spontaneous emission γ → 0 we
recover the Hamiltonian (3.19) derived with help of the effective Hamiltonian theory. Here
we also get an effective coupling between the two ground state but its vanishingly small as it
scales with the difference of the detuning and in the main case of equal detuning it disappears
completely.

Heff =

(
δ +

δΩ2
2 cos

2(kLx̂)

4δ2 + γ2

)
|1⟩⟨1|+

(
−∆− ∆Ω2

1 cos
2(kLx̂)

4∆2 + γ2

)
|2⟩⟨2| (5.98)

Note that in the effective Hamiltonian theory in section 3.2 only the atom-field interaction part
of the Hamiltonian is treated which is why we do not have the level structure of the internal
levels as we have here.

Our new effective Lindblad operators

Leff,1 = L1

(
1

HNH − E1

V
(1)
+ +

1

HNH − E2

V
(2)
+

)
(5.99)

=
√
γ1 cos(kLx̂)

[
Ω1

2(−δ − iγ
2
)
|1⟩⟨1|+ Ω2

2(∆− iγ
2
)
|1⟩⟨2|

]
(5.100)

Leff,2 = L2

(
1

HNH − E1

V
(1)
+ +

1

HNH − E2

V
(2)
+

)
(5.101)

=
√
γ2 cos(kLx̂)

[
Ω1

2(−δ − iγ
2
)
|2⟩⟨1|+ Ω2

2(∆− iγ
2
)
|2⟩⟨2|

]
(5.102)

are now bipartite. Since the excited level was adiabatically eliminated they no longer describe
just a decay from the excited state to one of the ground levels but also the excitation process,
the absorption of a photon from the standing-wave laser, that just precedes the spontaneous
emission. In [46] the cosinusoidal position dependence of the Lindblad operators is interpreted
as the fact that spontaneous emission is the most abundant where the standing wave is the
strongest because the stronger the standing wave at a point the more atoms are excited. We
shall construe it as the recoil that comes from absorbing a photon and has to be evaluated
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as a coherent momentum shift by plus and minus half a momentum unit for the two photon
directions in the standing wave.

cos(kLx̂) =
eikLx̂ + e−ikLx̂

2
. (5.103)

After its application the quasimomentum has to be adjusted as described in section 2.3.

Let us now reintroduce the recoil motion that we derived prior to that and separate the dy-
namics of the external and the internal degree of freedom in the Lindbladians:

Leff,i =
√
γiLeff,i,extLeff,i,int

Leff,1,ext = cos(kLx̂)e
iukLx̂

Leff,1,int =

[
Ω1

2(−δ − iγ
2
)
|1⟩⟨1|+ Ω2

2(∆− iγ
2
)
|1⟩⟨2|

]
Leff,2,ext = cos(kLx̂)e

iukLx̂

Leff,2,int =

[
Ω1

2(−δ − iγ
2
)
|2⟩⟨1|+ Ω2

2(∆− iγ
2
)
|2⟩⟨2|

]
(5.104)

Then the final result for the Master equation in natural units

ρ̇A(t) = −i [Heff, ρA(t)]

− γ1
2

(
L†

eff,1,intLeff,1,int cos
2

(
θ

2

)
ρA(t) + ρA(t) cos

2

(
θ

2

)
L†
eff,1,intLeff,1,int

− 2

∫ 1

−1

duΦ(u)Leff,1,inte
−iu θ

2 cos

(
θ

2

)
ρA(t) cos

(
θ

2

)
eiu

θ
2L†

eff,1,int

)

− γ2
2

(
L†

eff,2,intLeff,2,int cos
2

(
θ

2

)
ρA(t) + ρA(t) cos

2

(
θ

2

)
L†
eff,2,intLeff,2,int

− 2

∫ 1

−1

duΦ(u)Leff,2,inte
−iu θ

2 cos

(
θ

2

)
ρA(t) cos

(
θ

2

)
eiu

θ
2L†

eff,2,int

)
(5.105)

is similar to the results derived for a simple kicked rotor model [46, 47]. The major difference
being that here there is one more dissipator and the Lindblad operator are more complicated
which can easily be explained by the additional ground state. The other difference is that we
also account for the finite width of the pulse duration, which is why we do not have a discrete
summation like in [46]. This also allows for multiple decay processes during one kick.
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5.4. Effective Kick Strength
The new effective Hamiltonian in equation (5.95) has now a γ-dependence in its denominator
that will transmit to the kick strength and the light shift phase. Let us perform the same
calculation as we performed with the effective Hamiltonian without spontaneous emission in
section 3.2:

Heff =
δΩ2

2 cos
2(kLx̂)

4δ2 + γ2
|1⟩⟨1|−∆Ω2

1 cos
2(kLx̂)

4∆2 + γ2
|2⟩⟨2| (5.106)

=
4δ2

4δ2 + γ2
Ω2

2 cos
2(kLx̂)

4δ
|1⟩⟨1|− 4∆2

4∆2 + γ2
Ω2

1 cos
2(kLx̂)

4∆
|2⟩⟨2| (5.107)

=
1

1 + γ2

4δ2

(
Ω2

1 cos(2kLx̂)

8δ
+

Ω2
1

8δ

)
|1⟩⟨1| (5.108)

− 1

1 + γ2

4∆2

(
Ω2

2 cos(2kLx̂)

8∆
+

Ω2
2

8∆

)
|2⟩⟨2| (5.109)

which leads to a rescaled kick strength

keff = k
1

1 + γ2

4∆2

. (5.110)

For typical spontaneous emission rates we have γ ≪ ∆ and the rescaling factor is near unity
and we can safely just take

keff ≈ k. (5.111)

5.5. Numerical Results
To complete this chapter, let us finish by showing some preliminary numerical results of the
spontaneous emission. The spontaneous emission rate γ here is given as a decay probability
per kick for better readability.
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T = 10 and γ = 0.05 T = 20 and γ = 0.05

T = 10 and γ = 0.1 T = 20 and γ = 0.1

Figure 5.1.: Momentum distribution with kick strength k = 2, 10000 quantum trajectories,
kick number T and spontaneous emission rates γ. Ideal walks (blue) and decoher-
ent walks (green).

In the limit of large times, the quantum feature interference disappears completely as can be
seen in the next plot. The momentum distribution does not seem to trend towards a Gaussian
but rather localize.
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Figure 5.2.: Momentum distribution with kick strength k = 2, 1000 quantum trajectories, kick
number T and spontaneous emission rates γ = 0.05. Ideal walk (blue), decoher-
ent walk (green), Gaussian approximation (red) and exponential approximation
(black). And just the decoherent walk with exponential fit in semi-logarithmic
plot.

To reduce the computation time we can also approximate the cosine by its standard deviation

cos(kLx̂) ≈
1√
2
, (5.112)

which leads to results that are in line with the coherent momentum shift.

Figure 5.3.: Comparative plot of the momentum distributions of quantum walk with kick
strength k = 2, kick numbers T = 20, spontaneous emission probability per kick
ofγ = 0.1 and 10000 quantum trajectories. In one case (green) the cosine has been
approximated in the second (blue) not.
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Conclusion

Summary
In the end this thesis represents a preliminary investigation of the proposed quantum walk
scheme. Let us briefly summarize our findings:

We could analytically solve the time evolution of the walk procedure proposed in the pa-
per. Furthermore we inspected the dependence of the walk on its two main parameters the
kick strength and the kick number. We observed that the first one had the same effect on
the walk as it has on normal quantum walk in position space, it spreads the distribution and
makes the standard deviation grow linearly. The kick strength on the other hand showed
disruptive influence on the walk especially for too great amplitudes. In consequence we had
to restrict it to a small segment around the ideal value of k = 2 to have a ’good’ quantumwalk.

We treated the system from a quantum optical point of view and derived with help of the
effective Hamiltonian theory the time averaged dynamics of the atom during the kick. Here
we could show that the proposed experimental implementation did not exactly correspond to
the walk described in the paper. The effective two-level nature of the system introduces a rel-
ative phase between the two ground states that had to be compensated to obtain the proposed
quantum walk.

Finally we completed the description of the dynamics of the atom during the kick by cre-
ating a full description, taking into account the internal and external dynamics, by adding
spontaneous emission as a decoherence effect.

Outlook
To finish of we shall mentions some aspect that we have not treated yet but that might be
interesting to pave the avenue for future investigations.

In the theoretical preliminaries we presented how more complex quantum ratchets could lead
to less dispersion or a more directed motion. The big difference from our walk to typical ones
is that we do not do a discrete step of one momentum step to the right or the left but rather
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have this change of the average momentum. The analytical solution for the momentum distri-
bution can actually be very easily expanded to more complex ratchets as long as the relative
phase between momentum classes that differ by ∆n = 1 is either π

2
or −π

2
.

The kick strength has until now always be assumed constant along a kick sequence. But exper-
imentally though the intensity of the laser on which it depends tends to drift if one measures
over a long period. Additionally atoms feel different intensities depending on whether there
are in the centre or the edge of the laser beam because of its non-uniform profile. Different
kick strengths would also mean different relative phases between the two internal levels which
would make the compensation more difficult, as discussed in section 3.3. A thorough analysis
would give us the opportunity to connect this work with previous investigations concerning
the steering of classical random walks by way of varying the kick strength [48].

As for the steering of random walks with kicked ultra cold atoms another experimental un-
certainty is the kick period, one needs to check what happens to the quantum walk for small
detunings from quantum resonance

One should also consider a noise in the coin, small random phases in the mixing, although
experimentally this seems to be the best controlled factor so it is unlikely that it plays a big
role in the sum of all decoherence effects.

One should further investigate why the walk does not trend towards a normal distribution.
Localization has been observed in quantumwalks where the coin was position dependent [49].
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Appendix
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A. Bessel Functions of the first kind

Bessel functions [50] will make a recurring appearance when one is working the quantum
kicked rotor model. This appendix aims to briefly introduce their concept and present the
important formulas that we will use through our calculations. Bessel functions of the first
kind are solutions to the Bessel differential equation:

z2
d2f

dz2
+ z

df

dz
+ (z2 − n2)f = 0 (A.1)

and are defined as

Jn(z) =
∞∑
r=0

(−1)r( z
2
)2r+n

Γ(n+ r + 1)r!
(A.2)

whereΓ(x) represents the Gamma function. For integer-valued indexes of the Bessel functions
the following relationships holds:

J−n(z) = (−1)nJn(z) = Jn(−z) (A.3)

The reason for the aforementioned recurrence of the Bessel function is the so-called Jacobi-
Anger expansion in which one can write what in our work is the kick part of the Floquet
operator as an expansion of Bessel function.

eiz cos θ =
∞∑

m=−∞

imJm(z)e
imθ (A.4)

From here we can execute the θ-integration and get an integral representation of the Bessel
function. This will be used to derive the momentum distribution.∫ 2π

0

einθeiz cos θdθ = 2πinJn(z) (A.5)
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B. Calculations concerning the
momentum distribution

Proof that the matrix entries are recursive polynomials
Before we embark on the actual proof of the recursion we will advance two small calculations
that we show to be useful in the during the proof.

z2 − z̃2 = e−2ik cos θ̂ + 2 + e2ik cos θ̂ − (e−2ik cos θ̂ − 2 + e2ik cos θ̂)

= 4

(zz̃ + z2 − 8)(z − z̃) =
(
(e−ik cos θ̂ + eik cos θ̂)(e−ik cos θ̂ − eik cos θ̂)

+ (e−ik cos θ̂ + eik cos θ̂)2 − 8
)

·
(
(e−ik cos θ̂ + eik cos θ̂)− (e−ik cos θ̂ − eik cos θ̂)

)
= (e−2ik cos θ̂ − e2ik cos θ̂ + e−2ik cos θ̂ + 2 + e2ik cos θ̂ − 8)2eik cos θ̂

= 4(e−ik cos θ̂ − 3eik cos θ̂)

= 4
(
2(e−ik cos θ̂ − eik cos θ̂)− (e−ik cos θ̂ + eik cos θ̂)

)
= 4(2z̃ − z)

The hypothesis, that the matrix entries follow the polynomial form as said in equation (4.7)
is shown via mathematical induction. The base case is trivially true and now we show the
inductive step, that if theN -th matrix entriesA(N)

1 andA(N)
2 have the polynomial form so will

A
(N+1)
1 and A(N+1)

2 :
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A
(N+1)
1 = e−ik cos θ̂

(
A

(N)
1 + iA

(N)
2

)
= e−ik cos θ̂

(
e−ik cos θ̂p

(N)
1 − eik cos θ̂p

(N)
2

)
= e−ik cos θ̂

(
z + z̃

2
p
(N)
1 − z − z̃

2
p
(N)
2

)
= e−ik cos θ̂

(
zp

(N)
1 − z − z̃

2
(p

(N)
1 + p

(N)
2 )

)
= e−ik cos θ̂

[
zp

(N)
1 − z − z̃

2

(
1

2
(1 +

2z̃ − z√
z2 − 8

)(
z +

√
z2 − 8

2
)N +

1

2
(1− 2z̃ − z√

z2 − 8
)(
z −

√
z2 − 8

2
)N

+
1

2
(1 +

z√
z2 − 8

)(
z +

√
z2 − 8

2
)N +

1

2
(1− z√

z2 − 8
)(
z −

√
z2 − 8

2
)N
)]

= e−ik cos θ̂

[
zp

(N)
1 − z − z̃

2

(
1

2
(2 +

2z̃√
z2 − 8

)(
z +

√
z2 − 8

2
)N

+
1

2
(2− 2z̃√

z2 − 8
)(
z −

√
z2 − 8

2
)N
)]

= e−ik cos θ̂

[
zp

(N)
1 −

(
(
z − z̃

2
+

z̃(z − z̃)

2
√
z2 − 8

)(
z +

√
z2 − 8

2
)N

+ (
z − z̃

2
− z̃(z − z̃)

2
√
z2 − 8

)(
z −

√
z2 − 8

2
)N
)]

= e−ik cos θ̂

[
zp

(N)
1 −

(
(
(z − z̃)z

4
+
zz̃(z − z̃)

4
√
z2 − 8

+

√
z2 − 8(z − z̃)

4
+
z̃(z − z̃)

4
)(
z +

√
z2 − 8

2
)N−1

+ (
(z − z̃)z

4
− zz̃(z − z̃)

4
√
z2 − 8

−
√
z2 − 8(z − z̃)

4
+
z̃(z − z̃)

4
)(
z −

√
z2 − 8

2
)N−1

)]

= e−ik cos θ̂

[
zp

(N)
1 −

(
(
z2 − z̃2

4
+

(zz̃ + z2 − 8)(z − z̃)

4
√
z2 − 8

)(
z +

√
z2 − 8

2
)N−1

+ (
z2 − z̃2

4
− (zz̃ + z2 − 8)(z − z̃)

4
√
z2 − 8

)(
z −

√
z2 − 8

2
)N−1

)]

= e−ik cos θ̂

[
zp

(N)
1 −

(
(1 +

2z̃ − z√
z2 − 8

)(
z +

√
z2 − 8

2
)N−1 + (1− 2z̃ − z√

z2 − 8
)(
z −

√
z2 − 8

2
)N−1

)]
= e−ik cos θ̂(zp

(N)
1 − 2p

(N−1)
1 )

= e−ik cos θ̂p
(N+1)
1
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And likewise for the second matrix entry:

A
(N+1)
2 = eik cos θ̂

(
iA

(N)
1 + A

(N)
2

)
= eik cos θ̂

(
ie−ik cos θ̂p

(N)
1 + ieik cos θ̂p

(N)
2

)
= ieik cos θ̂

(
z + z̃

2
p
(N)
1 +

z − z̃

2
p
(N)
2

)
= ieik cos θ̂

(
zp

(N)
2 − z + z̃

2
(−p(N)

1 + p
(N)
2 )

)
= ieik cos θ̂

[
zp

(N)
2 − z + z̃

2

(
− 1

2
(1 +

2z̃ − z√
z2 − 8

)(
z +

√
z2 − 8

2
)N

− 1

2
(1− 2z̃ − z√

z2 − 8
)(
z −

√
z2 − 8

2
)N

+
1

2
(1 +

z√
z2 − 8

)(
z +

√
z2 − 8

2
)N +

1

2
(1− z√

z2 − 8
)(
z −

√
z2 − 8

2
)N
)]

= ieik cos θ̂

[
zp

(N)
2 − z + z̃

2

(
1

2
(
2(−z̃ + z)√
z2 − 8

)(
z +

√
z2 − 8

2
)N +

1

2
(
2(z̃ − z)√
z2 − 8

)(
z −

√
z2 − 8

2
)N
)]

= ieik cos θ̂

[
zp

(N)
2 −

(
z2 − z̃2

2
√
z2 − 8

(
z +

√
z2 − 8

2
)N +

z̃2 − z2

2
√
z2 − 8

(
z −

√
z2 − 8

2
)N
)]

= ieik cos θ̂

[
zp

(N)
2 −

(
(
z(z2 − z̃2)

4
√
z2 − 8

+
z2 − z̃2

4
)(
z +

√
z2 − 8

2
)N−1

+ (
z(−z2 + z̃2)

4
√
z2 − 8

− −z2 + z̃2

4
)(
z −

√
z2 − 8

2
)N−1

)]

= ieik cos θ̂

[
zp

(N)
2 −

(
(1 +

z√
z2 − 8

)(
z +

√
z2 − 8

2
)N−1 + (1− z√

z2 − 8
)(
z −

√
z2 − 8

2
)N−1

)]
= ieik cos θ̂(zp

(N)
2 − 2p

(N−1)
2 )

= ieik cos θ̂p
(N+1)
2
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Rewriting of the polynomials into a more accessible form

p
(N)
1 (z) =

1

2
(1 +

2z̃ − z√
z2 − 8

)(
z +

√
z2 − 8

2
)N +

1

2
(1− 2z̃ − z√

z2 − 8
)(
z −

√
z2 − 8

2
)N

=
1

2N+1

[
(1 +

2z̃ − z√
z2 − 8

)(z +
√
z2 − 8)N + (1− 2z̃ − z√

z2 − 8
)(z −

√
z2 − 8)N

]
=

1

2N+1

[
(z +

√
z2 − 8)N + (z −

√
z2 − 8)N +

2z̃ − z√
z2 − 8

(
(z +

√
z2 − 8)N − (z −

√
z2 − 8)N

)]
=

1

2N+1

[ N∑
j=0

(
N

j

)
zN−j(

√
z2 − 8)j +

N∑
j=0

(
N

j

)
zN−j(−

√
z2 − 8)j

+
2z̃ − z√
z2 − 8

(
N∑
j=0

(
N

j

)
zN−j(

√
z2 − 8)j −

N∑
j=0

(
N

j

)
zN−j(−

√
z2 − 8)j

)]

=
1

2N

 N
2∑

j=0

(
N

2j

)
zN−2j(z2 − 8)j +

2z̃ − z√
z2 − 8

N
2∑

j=0

(
N

2j + 1

)
zN−2j−1(

√
z2 − 8)2j+1


=

1

2N

 N
2∑

j=0

((
N

2j

)
−
(

N

2j + 1

))
zN−2j(z2 − 8)j + 2

N
2∑

j=0

(
N

2j + 1

)
z̃zN−2j−1(z2 − 8)j


=

1

2N

 N
2∑

j=0

j∑
m=0

N−2m∑
l=0

((
N

2j

)
−
(

N

2j + 1

))(
j

m

)(
N − 2m

l

)
eik cos θ̂(N−2m−2l)(−8)m


+

1

2N
2

 N
2∑

j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
eik cos θ̂(N−2m−2l−2)(−8)m


− 1

2N
2

[
N∑
j=0

j∑
m=0

N−2m−1∑
l=0

(
N

2j + 1

)(
j

m

)(
N − 2m− 1

l

)
eik cos θ̂(N−2m−2l)(−8)m

]

=
N∑
l=0

al,A1e
ik cos θ̂(N−2l)

In the last step l is replaced by the variable l → l +m.
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p
(N)
2 (z) =

1

2
(1 +

z√
z2 − 8

)(
z +

√
z2 − 8

2
)N +

1

2
(1− z√

z2 − 8
)(
z −

√
z2 − 8

2
)N

=
1

2N+1

[
(1 +

z√
z2 − 8

)(z +
√
z2 − 8)N + (1− z√

z2 − 8
)(z −

√
z2 − 8)N

]
=

1

2N+1

[
(z +

√
z2 − 8)N + (z −

√
z2 − 8)N +

z√
z2 − 8

(
(z +

√
z2 − 8)N − (z −

√
z2 − 8)N

)]
=

1

2N+1

[ N∑
j=0

(
N

j

)
zN−j(

√
z2 − 8)j +

N∑
j=0

(
N

j

)
zN−j(−

√
z2 − 8)j

+
z√

z2 − 8

(
N∑
j=0

(
N

j

)
zN−j(

√
z2 − 8)j −

N∑
j=0

(
N

j

)
zN−j(−

√
z2 − 8)j

)]

=
1

2N

 N
2∑

j=0

(
N

2j

)
zN−2j(z2 − 8)j +

z√
z2 − 8

N
2∑

j=0

(
N

2j + 1

)
zN−2j−1(

√
z2 − 8)2j+1


=

1

2N

 N
2∑

j=0

(
N

2j

)
zN−2j(z2 − 8)j +

N
2∑

j=0

(
N

2j + 1

)
zN−2j(z2 − 8)j


=

1

2N

 N
2∑

j=0

(
N + 1

2j + 1

)
zN−2j(z2 − 8)j


=

1

2N

 N
2∑

j=0

j∑
m=0

(
N + 1

2j + 1

)(
j

m

)
zN−2m(−8)m


=

1

2N

 N
2∑

j=0

j∑
m=0

N−2m∑
l=0

(
N + 1

2j + 1

)(
j

m

)(
N − 2m

l

)
eik cos θ̂(N−2m−2l)(−8)m


=

N∑
l=0

al,A2e
ik cos θ̂(N−2l)
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Derivation of the momentum distribution

P (n;T ) =
[
|⟨n, 1|ψβ(T )⟩|2 + |⟨n, 2|ψβ(T )⟩|2

]
=

[∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ⟨θ, 1|ψ(T )⟩dθ
∣∣∣∣2 + ∣∣∣∣ 1√

2π

∫ 2π

0

e−inθ⟨θ, 2|ψ(T )⟩dθ
∣∣∣∣2
]

=

[∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ⟨θ, 1|UT
tot|ψ(0)⟩dθ

∣∣∣∣2 + ∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ⟨θ, 2|UT
tot|ψ(0)⟩dθ

∣∣∣∣2
]

=

[∣∣∣ 1√
2π

∫ 2π

0

e−inθ

(
1√
2

)T

⟨θ, 1|

(
A

(T−1)
1 A

(T−1)
2

A
(T−1)
3 A

(T−1)
4

)
· 1√

2
(|1⟩+ |2⟩)⊗ 1√

2
(|n = 0⟩ − i|n = 1⟩) dθ

∣∣∣2
+
∣∣∣ 1√

2π

∫ 2π

0

e−inθ

(
1√
2

)T

⟨θ, 2|

(
A

(T−1)
1 A

(T−1)
2

A
(T−1)
3 A

(T−1)
4

)

· 1√
2
(|1⟩+ |2⟩)⊗ 1√

2
(|n = 0⟩ − i|n = 1⟩) dθ

∣∣∣2]

=

[ ∣∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ

(
1√
2

)T+2 (
A

(T−1)
1 + A

(T−1)
2

)
(⟨θ|n = 0⟩ − i⟨θ|n = 1⟩) dθ

∣∣∣∣∣
2

+

∣∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ

(
1√
2

)T+2 (
A

(T−1)
3 + A

(T−1)
4

)
(⟨θ|n = 0⟩ − i⟨θ|n = 1⟩) dθ

∣∣∣∣∣
2 ]

=
1

2T+2

[ ∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ
(
A

(T−1)
1 + A

(T−1)
2

) 1√
2π

(
1− ieiθ

)
dθ

∣∣∣∣2
+

∣∣∣∣ 1√
2π

∫ 2π

0

e−inθ
(
A

(T−1)
3 + A

(T−1)
4

) 1√
2π

(
1− ieiθ

)
dθ

∣∣∣∣2
]

=
1

2T+2

[∣∣∣ 1
2π

∫ 2π

0

(
e−inθ − ie−i(n−1)θ

)
·

(
N∑
l=0

al,1e
ik cos θ̂(N−2l−1) + i

N∑
l=0

al,2e
ik cos θ̂(N−2l+1)

)
dθ
∣∣∣2]

+
∣∣∣ 1
2π

∫ 2π

0

(
e−inθ − ie−i(n−1)θ

)
·

(
N∑
l=0

al,1e
−ik cos θ̂(N−2l−1) + i

N∑
l=0

al,2e
−ik cos θ̂(N−2l+1)

)
dθ
∣∣∣2]
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=
1

2T+2

[∣∣∣∣∣
N∑
l=0

al,1
[
i−nJ−n((N − 2l − 1)k)− i−n+2J−n+1((N − 2l − 1)k)

]
+

N∑
l=0

al,2
[
i−n+1J−n((N − 2l + 1)k)− i−n+3J−n+1((N − 2l + 1)k)

] ∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
l=0

al,1
[
i−nJ−n(−(N − 2l − 1)k)− i−n+2J−n+1(−(N − 2l − 1)k)

]
+

N∑
l=0

al,2
[
i−n+1J−n(−(N − 2l + 1)k)− i−n+3J−n+1(−(N − 2l + 1)k)

] ∣∣∣∣∣
2]

=
1

2T+2

[∣∣∣∣∣
N∑
l=0

al,1
[
(−1)nJn((N − 2l − 1)k)− i2(−1)n−1Jn−1((N − 2l − 1)k)

]
+

N∑
l=0

al,2
[
i(−1)nJn((N − 2l + 1)k)− i3(−1)n−1Jn−1((N − 2l + 1)k)

] ∣∣∣∣∣
2

+

∣∣∣∣∣
N∑
l=0

al,1
[
(−1)nJn(−(N − 2l − 1)k)− i2(−1)n−1Jn−1(−(N − 2l − 1)k)

]
+

N∑
l=0

al,2
[
i(−1)nJn(−(N − 2l + 1)k)− i3(−1)n−1Jn−1(−(N − 2l + 1)k)

] ∣∣∣∣∣
2]

=
1

2T+2

[(
N∑
l=0

al,1 [Jn((N − 2l − 1)k)− Jn−1((N − 2l − 1)k)]

)2

+

(
N∑
l=0

al,2 [Jn((N − 2l + 1)k)− Jn−1((N − 2l + 1)k)]

)2

+

(
N∑
l=0

al,1 [Jn(−(N − 2l − 1)k)− Jn−1(−(N − 2l − 1)k)]

)2

+

(
N∑
l=0

al,2 [Jn(−(N − 2l + 1)k)− Jn−1(−(N − 2l + 1)k)]

)2 ]
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C. Effective Hamiltonian Theory for
Harmonic Time Dependence

Often in quantum mechanics we are confronted with Hamiltonian that possess terms whose
change is very fast. We define the effective Hamiltonian as the Hamiltonian describing the
time averaged time evolution. In this appendix we draft the derivation of a formula to derive
the effective Hamiltonian presented in [34].

The time evolution of a quantum mechanical state, in the interaction picture, is given by

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩, (C.1)

where U(t, t0) is the unitary time evolution operator,

iℏ
∂

∂t
U(t, t0) = Hint(t)U(t, t0), (C.2)

for the interaction Hamiltonian Hint(t).

Heff(t) is the effective Hamiltonian, defined in analogy to (C.2) as the Hamiltonian describ-
ing the time averaged time evolution. We use that the average of the time derivative is the
time derivative of the average.

iℏ
∂

∂t
U(t, t0) = iℏ

∂

∂t
U(t, t0) = Heff(t)U(t, t0) (C.3)

By inserting (C.2) into (C.3) we get

Heff(t)U(t, t0) = Hint(t)U(t, t0), (C.4)

subsequently entailing in

Heff(t) = Hint(t)U(t, t0)
(
U(t, t0)

)−1

. (C.5)

Because the time averaging does not preserve the unitarity, Heff is not hermitian. One is
however only interested in the Hermitian part Ĥeff(t) which is the part describing the unitary
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part of the time evolution.

Heff(t) =
1

2

(
Heff(t) +H†

eff(t)
)
. (C.6)

Heff(t) can be computed by using the expansion of the time-ordered time evolution operator:

U(t, t0) = Te
− i

ℏ
∫ t
t0

Hint(t′)dt′ (C.7)

= 1 +
1

iℏ

∫ t

t0

Hint(t
′)dt′︸ ︷︷ ︸

U1(t)

+O(H2
int) (C.8)

Here we suppose that the strength of the interaction is weak so that we can stop the expansion
before the second order. Inserting (C.8) into (C.5) we get:

Heff(t) = Hint(t) +Hint(t)U1(t)−Hint(t) U1(t) (C.9)

which immediately leads to

Heff(t) = Hint(t) +
1

2

(
[Hint(t), U1(t)]−

[
Hint(t), U1(t)

])
(C.10)

For Hamiltonian with the ensuing harmonic time dependence,

Hint(t) =
N∑

n=1

(
hne

−iωnt + h†ne
iωnt
)
, (C.11)

we can easily compute the first order term of U .

U1(t) = V (t)− V (t0), (C.12)

with

V (t) =
N∑

n=1

1

ℏωn

(
hne

−iωnt − h†ne
iωnt
)
. (C.13)

Heff(t) = Hint(t) +
1

2

(
[Hint(t), V (t)]−

[
Hint(t), V (t)

])
(C.14)

where our time averaging procedure is a low pass filter, so that rapidly oscillating terms dis-
appear similar to the rotating wave approximation.

e±iωnt = 0 (C.15)

e±i(ωn+ωm)t = 0 (C.16)

e±i(ωn−ωm)t = e±i(ωn−ωm)t (C.17)
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From this we get immediately that the following terms vanish:

Hint(t) = 0 (C.18)

V (t) = 0 (C.19)

The final result is:

Heff(t) =
1

2

[
Hint(t), V̂ (t)

]
(C.20)

=
1

2

N∑
m,n=1

1

ℏωn

[
hme−iωmt + h†meiωmt, hne−iωnt − h†neiωnt

]
(C.21)

=
1

2

N∑
m,n=1

1

ℏωn

[hm, hn] e−i(ωn+ωm)t −
[
hm, h

†
n

]
ei(ωn−ωm)t (C.22)

+
[
h†m, hn

]
ei(ωm−ωn)t −

[
h†m, h

†
n

]
ei(ωn+ωm)t (C.23)

=
1

2

N∑
m,n=1

1

ℏωn

(
−
[
hm, h

†
n

]
ei(ωn−ωm)t +

[
h†m, hn

]
ei(ωm−ωn)t

)
(C.24)

=
1

2

N∑
m,n=1

(
1

ℏωm

[
h†m, hn

]
ei(ωm−ωn)t +

1

ℏωn

[
h†m, hn

]
ei(ωm−ωn)t

)
(C.25)

=
N∑

m,n=1

1

ℏω̄mn

[
h†m, hn

]
ei(ωm−ωn)t (C.26)

where ω̄mn is
ω̄mn =

2(
1

ωm
+ 1

ωn

) , (C.27)

the harmonic average between ωm and ωn.
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D. More figures on the influence of the
kick strength

k = 0.5 k = 0.75

k = 1 k = 1.25

k = 1.5 k = 1.75
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k = 2 k = 2.25

k = 2.5 k = 2.75

k = 3 k = 3.25

k = 3.5 k = 3.7576



k = 4 k = 4.25

k = 4.5 k = 4.75

k = 5 k = 5.25

k = 5.5 k = 5.75
77



k = 6 k = 6.25
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ries, kick number T and spontaneous emission rates γ = 0.05. Ideal walk
(blue), decoherent walk (green), Gaussian approximation (red) and exponen-
tial approximation (black). And just the decoherent walk with exponential fit
in semi-logarithmic plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Comparative plot of the momentum distributions of quantum walk with kick
strength k = 2, kick numbers T = 20, spontaneous emission probability per
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