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Quantum transport phenomena of Bose-Einstein condensates (BEC) ‘loaded’ into spa-
tially periodic optical lattices are an active area of current research. For a sinusoidal lat-
tice, the band structure of the energy spectrum is given by the eigenvalues of the Mathieu
equation. If a small static force is applied to a BEC in such a lattice (corresponds to
a tilted lattice and is called Wannier-Stark system), tunnelling of the BEC between the
energy bands of the Mathieu spectrum occurs. A fruitful approach to describe these tun-
nelling processes within a two band approximation is given by the Landau-Zener model.
Earlier research has shown that introducing noise into the Wannier-Stark system via a
second ‘noisy’ optical lattice can provide a tool to ‘engineer’ the tunnelling processes.
We therefore extend the simple Landau-Zener model to incorporate a second ‘noisy’ op-
tical lattice. Results obtained for the extended Landau-Zener model are compared to
simulations of the full system and successes and failures of the model are discussed. The
possibility to control the tunnelling processes by means of a second deterministically os-
cillating (in space) optical lattice is outlined.

Quantentransporteffekte von Bose-Einstein Kondensaten (BEK) in optische Gittern
bilden einen aufstrebenden Zweig der heutigen Forschung. Im Falle eines sinusförmigen
optischen Gitters ist die Bandstruktur des Energiespektrums durch die Eigenwerte der so-
genannten Mathieu-Gleichung gegeben. Wird eine schwache, statische Kraft an ein BEK
in einem solchen Gitter angelegt (äquivalent zu einem gekippten optischen Gitter, auch
Wannier-Stark System genannt), kommt es zu Tunnelprozessen des BEKs zwischen den
Energiebändern des Mathieu-Spektrums. Ein besonders erfolgreicher Ansatzpunkt zur
Beschreibung dieser Tunnelprozesse ist, im Rahmen einer zwei-Band Näherung, durch
das Landau-Zener Modell gegeben. In vorangegangenen Forschungsprojekten konnte
gezeigt werden, dass diese Tunnelprozesse im Wannier-Stark System durch hinzufügen
eines zweiten stochastischen, optischen Gitters gezielt beeinflusst werden können. Daher
erweitern wir das normale Landau-Zener Modell, so dass es auch ein zweites stochastis-
ches, optisches Gitter beschreiben kann. Ergebnisse für das erweiterte Landau-Zener
Modell werden im Folgenden mit Ergebnissen für das vollständige System verglichen.
Die Möglichkeit der gezielten Beeinflussung der Tunnelprozesse mit Hilfe eines zweiten,
deterministischen und räumlich oszillierenden, optischen Gitters wird aufgezeigt.
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Preface

Nowadays, research in physics is almost exclusively done in groups of a few or even many
individuals. As a result, it is often quite hard to tell what the exact contribution of
each individual is. In this section, I will try to make clear what my share of the work
presented in this thesis was, and also give a short outlook on what is going to follow.
Chapter one starts with a short motivation and non-technical introduction to the

problem studied in this thesis. Also, the main observable in this thesis is introduced;
namely the transition probabilities of Bose-Einstein condensates between the ground and
first excited band of the so-called Mathieu energy spectrum.
Chapter two introduces the most important models and concepts that this thesis builds

on. First, a brief and non-technical introduction to Bose-Einstein condensates in optical
lattices is given. Then the so-called Wannier-Stark system is introduced and the en-
ergy spectrum of the Mathieu equation (a special case of the Wannier-Stark system) is
discussed. The dynamics of a Bose-Einstein condensate in a Wannier-Stark system are ex-
plained via a semi-classical approach. It is further shown that the Wannier-Stark system
can be locally approximated by a Landau-Zener model. Subsequently, the Landau-Zener
model is explained. The chapter closes with the presentation of a special stochastic
process called harmonic noise. Everything that is presented in chapter two has been dis-
cussed in the literature and my only contribution is to (hopefully) give a self-consistent
introduction to the models mentioned.
Chapter three starts with an introduction of a modified Wannier-Stark system that

has been subject to earlier research in my group in Heidelberg. In the second half of
this chapter it is shown how this modified Wannier-Stark system can be mapped onto an
effective Landau-Zener model and important properties of the model are discussed. The
mapping onto the effective Landau-Zener model has been done jointly with my colleague
Stephan Burkhardt; the discussion of its properties is my own work.
In chapter four, a numerical study of the transition probabilities of Bose-Einstein

condensates in the Wannier-Stark system is given. Special emphasis is placed on a
comparison between results obtained from simulations of the full system and simulations
of the effective Landau-Zener model. This again, is joint work of Stephan Burkhardt and
myself. Stephan wrote the code to simulate the full modified Wannier-Stark system and
also provided the code to generate the harmonic noise. The code to simulate the effective
Landau-Zener model has been written by myself. The analysis and interpretation of the
results given in this chapter are my own work, although I am grateful for discussions
with my supervisor.
Chapter five presents an analytic approach to calculate the transition probability in

the effective Landau-Zener model. In the first part of this chapter a formal solution
to the problem is derived and in the second part this solution is used to calculate two

v



limiting cases of the model. The derivation of the formal solution closely follows an
approach given by Kayanuma [1], yet the derivation is presented in much more detail
than it can be found in Kayanuma’s original paper. In this sense my contribution is to
extend Kayanuma’s approach to the effective Landau-Zener model studied in this thesis
and to give a (hopefully) clear presentation of his approach. The calculation of the two
limiting cases has been done by myself.
Chapter six gives a summary of the main results obtained in this thesis and tries to

identify to what extent the project aims have been fulfilled. The chapter closes with an
outlook on possible future work.
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1 Introduction

Since the first experimental realisation of a Bose-Einstein condensate (BEC) in the mid-
nineties of the last century, physics with ultracold atoms has received ever growing at-
tention from both experimentalists and theorists. Especially the field of BECs in optical
lattices has experienced rapid growth and progress in the last decade. But what is hidden
behind the field’s fancy name and what is it good for?

Optical lattices are generated by two counter-propagating laser beams (of the same
wavelength) that interfere to form a standing wave of laser light. As the name of the field
suggests, it is possible to ‘load’ a BEC into such an optical lattice. In many ways BECs in
optical lattices strongly resemble solid-state crystals, with the optical lattice producing
a potential similar to the one generated by the lattice ions in a crystal and the atoms
of the BEC taking the role of the electrons in the crystal. Consequently, it is not very
surprising that many complex physical phenomena present in solid-state crystals, such
as superconductivity, Bloch oscillations or Mott insulation, find direct counterparts for
ultracold atoms in optical lattices. Yet the question remains, why bother going through
the complex process of producing a BEC if the system shows the same effects as a ‘normal’
crystal does?

The answer is surprisingly simple. High precision always being one of the strengths of
laser physics, it allows for almost perfect control of the system parameters by changing
the geometry of the optical lattice, thus making it possible to simulate different types of
crystals with the same system. Moreover, the high coherence of laser light ensures perfect
periodicity of the lattice with no distortions over thousands of lattice sites, producing a
‘cleaner’ lattice than in any real crystal. A direct consequence of this is that phenomena
such as Bloch oscillations are easily observed and studied with BECs in optical lattices,
but very hard to detect in real crystals due to the many impurities. Furthermore, the
BEC itself can be used to mimic different interaction strengths between the electrons in
a real crystal by varying the density of the BEC.

It should be clear now that (BECs in) optical lattices provide an excellent tool to
study solid-state phenomena in a controlled environment, but they are much more than
that. Recent proposals suggest that by placing only two atoms into one lattice site the
formation of molecules could be studied; having only one atom per lattice site allows to
use the system as a high precision atomic clock [2]. Of course, there are also suggestions
to use single, trapped atoms as ‘qubits’ which are crucial for the implementation of a
quantum computer [2]. In this sense ultracold atoms in optical lattices can be used as
a real quantum simulator in Feynman’s spirit [3], in which a controllable and ‘easily’
realisable system is used to simulate the behaviour of a more complex physical system.
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Figure 1.1: The survival probability of the BEC in the ground band at fixed time t0 = 6TB
versus the rescaled frequency ω0 of the stochastic phase. Data from [6],
courtesy of the corresponding authors c©APS. A detailed description can be
found in section 3.1

In this thesis, a variation of the so-called Wannier-Stark system (WSS) will be studied.
The standard WSS can be realised by trapping a BEC in a tilted optical lattice. The tilt
can be implemented by the application of a static force [4] (see figure 2.1 and Eq.(2.3)).
Solid-state physics teaches us that a periodic potential gives rise to a band structure
in the energy spectrum, consisting of allowed and forbidden energy regions. The same
holds true for a BEC in an optical lattice. Due to the applied static force, the atoms
constituting the BEC ‘scan through’ the energy spectrum and undergo so-called Bloch
oscillations. As the atoms ‘scan through’ the energy spectrum the band gap between the
energy bands varies and at the point where the energy gap is minimal (known as avoided
crossing) the atoms can tunnel into the upper energy band. For typical experimental
parameters [5], the dynamics of the BEC close to such an avoided crossing can be well
approximated by the so-called Landau-Zener (LZ) model, which accurately predicts the
probability to tunnel into the upper band.

Earlier research in Heidelberg has shown that the tunnelling probability can be actively
engineered by superimposing a second optical lattice, which fluctuates in time and space
due to a stochastic phase, over the first one [6]. Figure 1.1 shows the survival probabil-
ity of the BEC in the ground band versus the characteristic frequency of the stochastic
phase, as obtained by numerical simulations of the modified WSS (red squares, green
squares and blue circles are for different potential depths; the horizontal lines are of
no importance here). The functional dependence of the survival probability on the fre-
quency of the stochastic phase with its clear minima unambiguously demonstrates that
it is possible to control the tunnelling probability of the BEC by altering the frequency
of the phase. Due to the complexity of the system, an interpretation of the frequency
dependence of the tunnelling probability has proven difficult. Consequently, one of the
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major aims of this project is to gain a better understanding of the frequency dependence
of the tunnelling probability, by reducing the complexity of the system without ‘throwing
away’ too much of the physics contained in the full system. In this spirit, three questions
that this thesis tries to answer have been formulated:

Is it possible to approximate the dynamics of the BEC close to an avoided crossing in the
full modified WSS by an effective Landau-Zener model? If so, can the effective Landau-
Zener model reproduce the functional dependence of the tunnelling probability on the
frequency of the stochastic phase? And, is it possible to predict and explain the position
of the minimum shown in figure 1.1?

Lastly, it should be mentioned that all calculations given in this thesis are done within
the single particle approximation, i.e. the interactions between the atoms of the BEC are
neglected. In the case of a sufficiently dilute BEC, this approximation is expected to give
reasonable results [7]. Moreover, Stephan Burkhardt of our group has done numerical
simulations [8], in which the interactions have been taken account of via a mean-field
approach based on the Gross-Pitaevskii equation [9]. From those simulations he con-
cluded that the tunnelling probability (and decay rate) of the BEC into higher bands is
remarkably stable with respect to (moderate) interactions between the atoms (see figure
1.2). All three graphs in figure 1.2 are in very good agreement, indicating that interac-
tions are of little importance for the decay rate (and hence tunnelling probablity) in our
system when noise is present. Therefore, the next chapter will start with an introduction
of the single-particle and interaction free Schrödinger equation for the Wannier-Stark
Hamiltonian.
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Figure 1.2: The decay rate of the BEC from the ground band into higher bands versus
the rescaled frequency of the stochastic phase φ. The different graphs corre-
spond to different interaction strengths between the atoms. N=0 means no
interaction, higher N means stronger interaction. Data from [8], courtesy of
the corresponding author.
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2 Background

2.1 Bose-Einstein condensates in optical lattices

In 1924/25, following the work of Bose on the quantum statistics of photons [10] Ein-
stein predicted a new state of matter [11], nowadays known as Bose-Einstein condensate
(BEC). Einstein calculated that if the temperature of a bosonic gas drops below a crit-
ical temperature, a finite fraction of the bosons will occupy the energetic ground state
of the system. Furthermore, this fraction increases with decreasing temperature. The
bosons in the ground state constitute the so-called BEC. The critical temperature at
which this phase transition occurs can be estimated as the temperature at which the
deBroglie wavelength λdB = (2π~/MkBT )1/2 of the bosons becomes comparable to the
mean distance between them. Hereafter ~ is Planck’s constant, kB is Boltzmann’s con-
stant, M is the mass of the bosons and T is their temperature. Typically the critical
temperature is of the order of 10−7 − 10−5K (e.g. 1.7× 10−7 for 87Rb and 5× 10−5 for
1H) [12]. Such low temperatures can, for example, be realised via laser cooling followed
by a stage of magnetic evaporative cooling. Even so, it is not an easy task and this is
reflected in the fact that it took about 70 years until the first BECs have been realised in
the laboratory [13–15]. Today, 17 years after their first observation, BECs are routinely
created in laboratories around the world.
It is apparent that at temperatures as low as a few hundred nano Kelvin, any system

can only be described within the framework of quantum mechanics and its behaviour
should be governed by the corresponding Schrödinger equation. Treating the BEC as an
ideal non-interacting gas allows to write its wavefunction as the product of all constituent
single-particle wavefunctions. Hence, the BECs behaviour (in 1-D) is governed by the
single particle Schrödinger equation,

i~∂tψ(x, t) = − ~2

2M
∂2
xψ(x, t) + V (x, t)ψ(x, t) . (2.1)

Naturally, in any real BEC the bosons interact and the above equation does not hold.
Yet, if the BEC is sufficiently dilute those interactions can be taken account of via mean-
field theories, leading to modified (non-linear) Schrödinger equations. The best known
of those is the Gross-Pitaevskii equation [9]. Nevertheless, for the problem studied in
this thesis interactions can be negelected, as has been mentioned in the introduction.

In the following we will study the behaviour of BECs when they are ‘loaded’ into an
optical lattice and are subject to a static force (see figure 2.1. Optical lattices can be
generated by two counter propagating laser beams with the same wavelength λ. The two
laser beams will interfere and form a standing wave with a wavelength of λ

2 . Such an
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optical lattice can be used as a dipole trap for the BEC, provided that the laser frequency
is sufficiently detuned from atomic resonances within the BEC [16]. If this condition is
fulfilled the process of stimulated absorption and emission leads to a potential of the
form,

V (x) = V cos(2kLx) , (2.2)

where kL is the wavenumber of the laser beams defined by kL = 2π
λ and V is the potential

depth. The potential depth is proportional to the square of the Rabi frequency (and hence
laser intensity) and inversely proportional to the detuning from atomic resonance [16].
Strictly speaking this potential should not be conservative, because apart from stimulated
absorption and emission, also spontaneous emission is taking place. However, if the
detuning from atomic resonance is sufficiently large the spontaneous emission process
can be neglected and the above potential provides an excellent approximation to the real
one.
Furthermore it is possible to exert a static force on the atoms by accelerating the lattice.

Experimentally this can be done by introducing a small difference in the frequency of the
two laser beams. This will effectively add another term −Fx to the Hamiltonian and the
full Schrödinger equation of the system now reads,

i~∂tψ =

(
− ~2

2M
∂2
x + V cos(2kLx)− Fx

)
ψ . (2.3)

This system is commonly referred to as Wannier-Stark system (WSS) and can be imag-
ined as a cosine potential tilted in space.

n-2 n-1 n n+1 n+2 n+3

well index

F

λ/2

Figure 2.1: Schematic representation of a tilted optical lattice, the well separation is given
by half the laser wavelength. The red arrow gives the direction of the force.
The green gaussians in the wells represent the delocalised wavefunction of
the BEC in the lattice (real space). In typical experiments the wavefunction
extends over 50 . . . 100 lattice sites [5].

As an aside, an experiment relevant to the problem studied in this thesis has been
realised with a BEC of ca. 5 × 104 rubidium-87 atoms and an optical lattice with a
wavelength of 421nm, i.e. the laser beams had a wavelength of 842nm. The small
frequency offset to accelerate the lattice has been introduced via acousto-optic modulators
[5].
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2.2 Periodic lattices and the Wannier-Stark system (WSS)

In this section, basic properties of the Hamiltonian of Eq. (2.3) introduced in the previ-
ous section will be reviewed. A new set of dimensionless units will be introduced and it
will be shown how the application of a gauge transformation can be used to restore the
translational invariance of the WS-Hamiltonian. The energy spectrum of this reduced
Hamiltonian will be discussed and compared to the free particle case, i.e. the limit of a
vanishing potential.

The starting point for further investigations is the time-dependent Schrödinger equa-
tion given in Eq.(2.3),

i~∂tψ =

(
− ~2

2M
∂2
x + V cos(2kLx)− Fx

)
ψ. (2.4)

It is convenient to introduce a new set of dimensionless variables Erec =
~2k2

L
2M , t′ = t8Erec

~
and x′ = 2xkL. Erec is called the recoil energy and corresponds to the energy transferred
in a one photon exchange process between photons of wavenumber kL and an atom in
the BEC. As kL is also the wavenumber of the photons in the laser beam, Erec sets
the characteristic energy scale of the system (note, during an absorption followed by
re-emission the energy exchanged is actually 4Erec as the momentum transfer is 2~kL).
The differential operators in terms of the new variables t′ and x′ read,

∂t′ =
~

8Erec
∂t and ∂2

x′ =
1

4k2
L

∂2
x. (2.5)

Re-expressing the above Schrödinger equation in terms of the new variables yields,

i8Erec∂t′ψ =

(
−

4~2k2
L

2M
∂2
x′ + V cos(x′)− Fx′

2kL

)
ψ. (2.6)

Division by 8Erec brings the above equation into the concise form,

i∂t′ψ =

(
−1

2
∂2
x′ + V0 cos(x′)− F0x

′
)
ψ, (2.7)

with a rescaled potential depth V0 and force F0:

V0 =
V

8Erec
and F0 =

F

16EreckL
. (2.8)

For convenience the dashes in the above Schrödinger equation are dropped and, un-
less stated otherwise, the system of dimensionless units is used from now on. Typ-
ical experimental values of the potential V0 and the force F0 are, 0.0156 . . . 0.25 and
0.00597 . . . 0.0298, respectively [5, 17].
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Table 2.1: Summary of the new unit system
Energy Momentum

1 photon exchange Erec =
~2k2

L
2M prec = ~kL

2 photon exchanges 4Erec = 4
~2k2

L
2M 2prec = 2~kL

Old variable New variable
Energy E E′ = E

8Erec

Time t t′ = t8Erec
~

Space x x′ = 2xkL
Force F F0 = F

16EreckL

Potential V V0 = V
8Erec

2.2.1 The energy spectrum of the Mathieu equation

The determination of the energy spectrum of the Wannier-Stark Hamiltonian is by no
means a trivial task and there has been a long discussion about it in the literature [18–21].
A more recent and comprehensive review on the matter can be found in [22]. To gain an
understanding of the physics underlying the Wannier-Stark Hamiltonian we will therefore
start by considering a limiting case of the full Hamiltonian, namely the situation in which
the driving force F0 = 0. We will then use an analogy to solid-state physics to develop
some intuition for the system’s behaviour when the force is non-zero.
Formally one has to solve the time-independent Schrödinger equation (TISE) to find

the energy spectrum of the underlying Hamiltonian. In the case of F0 = 0 that means
one needs to solve,

Ĥψ = Eψ , i.e.,
(
−1

2
∂2
x + V0 cos(x)

)
ψ = Eψ . (2.9)

However, some of the features of the resulting solutions can be immediately inferred from
the translational invariance of the above Hamiltonian. It is known since the early days of
solid-state physics [23] that a spatially periodic potential leads to energy bands of allowed
and forbidden regions in the energy spectrum and that the most general solutions to an
equation as the one above, are of the form:

ψn,k(x) = un,k(x)eikx , (2.10)

where k represents the real valued wavenumber of the solution and runs over the first
Brillouin zone, i.e. in real units k ∈ [−kL, kL]. Those solutions have an associated energy
eigenvalue En(k). This is commonly known as Bloch’s theorem (in 1-dimension) and
ψn,k is called Bloch wave/state. An important property of these solutions is that un,k(x)

is periodic with the spatial periodicity of the potential, i.e.

un,k(x) = un,k(x+ n2π) with n ∈ Z0 . (2.11)

Moreover the energy eigenvalues En(k) are periodic with the periodicity of the recipro-
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cal lattice1 [24]. The standard condition (in 1-dimension and the dimensionless units
introduced above)

eiKR = 1 ⇔ KR = 2πm m ∈ Z0 , (2.12)

where R is the periodicity of the real lattice and K the periodicity of the reciprocal
lattice [24], immediately leads to K = 1l with l being an integer, as R = 2π. Hence for
the energy eigenvalues the relation

En(k) = En(k + 1l) with l ∈ Z0 (2.13)

holds.

Still, to obtain the actual energy spectrum of the Hamiltonian in Eq. (2.9), the TISE
has to be solved explicitly. This can be done by recasting it in the following form,

∂2
x̃ψ̃(x̃) + (a− 2q cos(2x̃)ψ̃(x̃) = 0 , (2.14)

where x̃ = x
2 , a = E

4 , ψ̃(x̃) = ψ(x2 ) and q = V0
2 . This equation is known as Mathieu’s

equation [25]. In the literature its solutions have also been discussed in the context of
optical lattices [26]. Unfortunately, there are no simple closed form expressions for the
functions (called Mathieu functions) solving the above equation, but they fulfil all condi-
tions that would be expected from Bloch’s theorem. As the actual form of the Mathieu
functions is of little importance for the rest of this thesis we will merely give a graphical
representation of the energy spectrum generated by their eigenvalues.
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Figure 2.2: Energy spectrum generated by the WS-Hamiltonian of Eq. (2.7) in the case
of F0 = 0. The vertical dashed line marks the end of the 1st Brillouin zone

The figure on the left shows the energy spectrum in the reduced zone scheme [24]. The
solid lines are the eigenenergies of the Mathieu equation and are commonly referred to

1As a reminder the reciprocal lattice/space is the Fourier transform of the real lattice/space, in this
thesis we may also refer to reciprocal space as momentum space.
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as the adiabatic states of the system. The dashed lines show the eigenenergies for a free
particle, usually referred to as diabatic states. At the edge of the 1st Brillouin zone the
diabatic states of the system cross, whereas the adiabatic ones do not. Such points are
called avoided crossings and they divide the energy spectrum in so-called energy bands
with band gaps at avoided crossings. In this thesis the focus lies on the BECs dynamics
close to avoided crossings.
The dynamics of the BEC when a static force is applied (i.e. of the full Wannier-Stark

system) can be understood by a applying a semiclassical approach and using the adiabatic
approximation. If a non-interacting Bose-Einstein condensate is loaded into the optical
lattice such that at t = 0, the condensate ‘sits’ at k = 0 in the centre of the 1st Brillouin
zone, its time evolution can be calculated by using wave packets [27]. Due to Heisenberg’s
uncertainty principle the trapped BEC cannot have a single momentum but rather has
a distribution of momenta gn(k, t = 0), where n gives the energy band. This means that
the full wavefunction at t = 0 must be a superposition of Bloch waves with momenta
k according to some initial momentum distribution. If it is further assumed that the
condensate occupies exclusively the lowest energy band, the wavefunction representing
the BEC can be written as:

Ψ(x, t = 0) =

∫ 1
2

− 1
2

g1(k, t = 0)ψ1,k(x)dk , (2.15)

where the integration runs over one Brillouin zone, the subscript ‘1’ indicates that the
condensate occupies the ground band only and ψ1,k(x) is defined via Eq.(2.10). Strictly
speaking, the treatment that follows is only valid in the adiabatic limit, i.e. the limit of
vanishing force and hence infinitely slow passage through momentum space. In this limit
it can be shown that if the wave packet is well localised in momentum space2 (see figure
2.3) and interaction with higher energy bands can be neglected, the expectation value of
the total momentum evolves according to Ehrenfest’s theorem [23, 27]:

〈p(t)〉 ≡ k(t) = k(t = 0) + F0t

= F0t , (2.16)

where k(t = 0) is the initial position of the wave packet’s centre in momentum space,
which is equal to zero as has been specified before.
Due to the periodic structure of the energy spectrum, the linear growth of k(t) leads

to oscillations of the wavepacket in momentum space. In the reduced zone scheme this
means, that if the wavepacket leaves the first Brillouin zone at k/(2kL) = 0.5 it reappears
at the other zone edge k/(2kL) = −0.5. The time period TB with which this happens can
be explicitly calculated from the periodicity of the energy spectrum En(k) = En(k+ 1l),

k(t+ TB) = k(t) + 1 (2.17)

F0(t+ TB) = F0t+ 1 =⇒ TB =
1

F0
, (2.18)

2Practically this means that the width of the wavefunction in momentum space should be much smaller
than a single Brillouin zone; this in turn leads to a wavefunction in real space that extents over at
least a few (in the experiments reported in [5] ca. 10 . . . 100) lattice sites.
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Figure 2.3: Schematic representation of the momentum distribution in the first Brillouin
zone. The green gaussian curve on the left shows an initial momentum dis-
tribution that is well localised, whereas on the right (red gaussian) the distri-
bution extents over the full Brillouin zone. The area under the two gaussians
is the same.

where TB is termed Bloch period. We can also define a corresponding angular frequency,
called Bloch frequency ωB = 2π

TB
= 2πF0. Again the adiabatic approximation was implic-

itly used in the last paragraph. The oscillations of the wavepacket in momentum space
lead to another interesting phenomena called Bloch oscillations [27].
Applying Ehrenfest’s theorem is, of course, only possible under the two conditions

stated above. Namely that the initial momentum distribution of the BEC is well localised
in momentum space and that the influence of higher bands can be neglected. Why this
is the case and what it means is best illustrated in a plot (see figure 2.3). The green
gaussian in the left figure shows an initial momentum distribution that is well localised,
in such a scenario the BEC can be imagined as a ‘point’ particle in momentum space. It
is thus expected that its evolution in momentum space is governed by Eq. (2.16) until
the second assumption breaks down. This second assumption is put to a serious test
around an avoided crossing and one might expect from experience that if the band gap
at the avoided crossing is small enough, a part of the BEC can tunnel into the upper
band. After the avoided crossing the motion of the BEC should be governed by Eq.
(2.16) again. In fact this is exactly what happens, as has been shown in experiments [5]
(see figure 2.4).
However, if the momentum distribution is spread out over the Brillouin zone as shown

by the red gaussian on the right of figure 2.3, the BEC clearly cannot be approximated
as a ‘point’ particle. Moreover, the influence of higher bands is always given as the BEC
is so spread out that a fraction of it is always close to an avoided crossing. Hence the
dynamics of the BEC cannot be separated into the two classes, ‘unperturbed evolution
in momentum space’ and ‘tunnelling into higher bands’. This time scale separation is
an absolutely crucial condition for the description of the tunnelling dynamics via the
Landau-Zener model that will be introduced in the next section. In experiments and
numerical simulations a gaussian momentum distribution of width δp = (0.1 − 0.2)prec

was sufficiently localised to ensure this separation, whereas a gaussian distribution of
width δp ≈ 0.6prec leads to a breakdown of the assumptions [5].
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Figure 2.4: Schematic representation of the tunnelling process at an avoided crossing
(left) and the time evolution of the survival probability in the ground band
(right), i.e. no tunnelling takes place. The black squares are experimental
data, the solid black line is obtained via numerical simulations of the full
WSS and the dashed line is an exponential fit based on the Landau-Zener
(LZ) model, see [5] for further details.

Figure 2.4a shows a schematic representation of the BEC’s dynamics. The splitting
in two arrows at an avoided crossing illustrates the fact that a part of the BEC can
tunnel into the upper band. Figure 2.4b shows the probability for the BEC to remain in
the ground band versus time. We observe that each time the BEC reaches an avoided
crossing (at t/TB=0.5 and 1.5) a part of the condensate tunnels into the upper energy
band; the tunnelling probability can be calculated with the LZ model. The steplike
structure of the data also reveals that between avoided crossings the probability to stay
in the ground band remains constant, indicating that Eq.(2.16) holds. Moreover, the
time between two avoided crossings equals one Bloch period, as predicted.
In case of an initial momentum distribution that is not well localised in momentum space,
the step structure in figure 2.4b is lost and the decay happens gradually [5].

2.2.2 Mapping the WSS onto the Landau-Zener (LZ) model

In this section, it is shown that the translational invariance of the Hamiltonian of Eq.(2.7)
can be recovered by applying a gauge transformation. Then this ‘new’ Hamiltonian is
rewritten in the momentum basis and its matrix representation is used to approximate
the system’s dynamics around an avoided crossing. This will lead to the Landau-Zener
model [17].

Recall that the full Schrödinger equation of the system reads,

i∂tψ =

(
−1

2
∂2
x + V0 cos(x)− F0x

)
ψ . (2.19)
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Application of the gauge transformation ψ = eiF0xtψ̃ leads to(
i∂tψ̃ − F0xψ̃

)
eiF0xt = −1

2

(
∂2
xψ̃ + 2iF0t∂xψ̃ − F 2

0 t
2ψ̃
)
eiF0xt (2.20)

+ (V0 cos(x)− F0x) ψ̃eiF0xt . (2.21)

Cancellation of like terms on both sides and division by eiF0xt then gives,

i∂tψ̃ =
1

2
(−i∂x + F0t)

2 ψ̃ + V0 cos(x)ψ̃ (2.22)

=
1

2
(p̂+ F0t)

2 ψ̃ + V0 cos(x)ψ̃ , (2.23)

where −i∂x has been identified as the momentum operator p̂. So the Hamiltonian of our
system is now given by,

Ĥ =
1

2
(p̂+ F0t)

2 + V0 cos(x) . (2.24)

Physically the above transformation corresponds to the change of the frame of reference
from the lab system into the accelerated reference frame of the lattice.
For further analysis it is advantageous to rewrite the above Hamiltonian in its momen-

tum basis. To do this, the momentum operator p̂ is expanded in terms of its eigenvalues
and eigenstates and the identity

∫
x dx|x〉〈x| = 1 is inserted. This leads to,

Ĥ =

∫
p
dp

1

2
(p+ F0t)

2 |p〉〈p|+
∫
x
dxV0 cos(x)|x〉〈x| , (2.25)

where the integrations run over all possible momentum and position eigenstates, respec-
tively. The first term of this equation is already in terms of the momentum eigenstates;
let us proceed by also writing the second term in the momentum basis:∫
x
dxV0 cos(x)|x〉〈x| = V0

4π

∫
x

∫
p

∫
p′
dxdpdp′

(
eix + e−ix

)
e−ipx|p〉〈p′|eip′x

=
V0

4π

∫
p

∫
p′
dpdp′|p〉〈p′|

∫
x
dx
(
e−ix(p−1−p′) + e−ix(1+p−p′)

)
e−ipxeip

′x

=
V0

2

∫
p

∫
p′
dpdp′|p〉〈p′|

(
δ(p− 1− p′) + δ(1 + p− p′)

)
=
V0

2

∫
p
dp (|p〉〈1 + p|+ |p〉〈1− p|)

=
V0

2

∫
p
dp (|p〉〈1 + p|+ |1 + p〉〈p|) . (2.26)

In the above calculation the definition of the delta-function
∫
x dx

eipx

2π = δ(p) and the fact
that momentum and position eigenstates are related via |x〉 =

∫
p dp

e−ipx√
2π
|p〉3 have been

used. The Hamiltonian of Eq. (2.24) is now of the following form,

Ĥ =

∫
p
dp

1

2

[
(p+ F0t)

2 |p〉〈p|+ V0 (|p〉〈1 + p|+ |1 + p〉〈p|)
]
. (2.27)

3The missing ‘~’ is due to the dimensionless units used here.
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In this representation it becomes clear that the Hamiltonian only allows transitions be-
tween states where ∆p = p − p′ ∈ Z0. Hence the momentum states can be written as
|p〉 = |n + k〉, where n ∈ Z0 and k ∈ [−0.5, 0.5) ⊂ R. Note that k runs over exactly
one Brillouin zone and is readily identified as the quasimomentum of the system, which
does not change over time. Because there are no transitions between states of different
k allowed, the Hamiltonian of the system can be decomposed such that Ĥ =

∫ 0.5
−0.5 dkĤk

with,

Ĥk =
∑
n∈Z

1

2

[
(k + n+ F0t)

2 |k + n〉〈k + n|+ V0 (|k + n〉〈1 + k + n|+ |1 + k + n〉〈k + n|)
]
.

(2.28)

Therefore if the system is initially in a state |p0〉 = |k0 + n〉 the full dynamics of the
system will be determined by the Hamiltonian of Eq. (2.28), with a fixed value k0 that
remains constant in time. In matrix form this leads to a NxN square matrix of tridiagonal
shape:

Ĥk0 =
1

2



. . . V0 0
(k0 − 1 + F0t)

2 V0

V0 (k0 + F0t)
2 V0

V0 (k0 + 1 + F0t)
2

0 V0
. . .

 (2.29)

Recalling that the BEC was initially placed into the ground band of the system, it
is possible to considerably reduce the complexity of this matrix by approximating the
full dynamics of the system, with the dynamics generated by the two lowest energy
states. Hence, the system has been reduced to an effective two state model given by the
highlighted part of the above matrix.

Ĥ ′ =
1

2

(
(k0 − 1 + F0t)

2 V0

V0 (k0 + F0t)
2

)
(2.30)

This part of the matrix has been selected because it represents the lowest two energy
states in the 1st Brillouin zone. Around an avoided crossing the system’s dynamics can
be further approximated by setting k0 = 0.5, i.e. the value at the avoided crossing. This
leads to

Ĥ ′ =
1

2

(
1
4 + (F0t)

2 − F0t V0

V0
1
4 + (F0t)

2 + F0t

)
. (2.31)

Furthermore it is allowed to subtract 1
4 +(F0t)

2 from the diagonal, as the absolute value of
the energy scale can be set arbitrarily. After this manipulation the Hamiltonian simplifies
to

ĤLZ =
1

2

(
−F0t V0

V0 F0t

)
, (2.32)

which is nothing but the standard Landau-Zener model as it has been discussed in the
1930s [28–31].
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2.3 The Landau-Zener model

The Landau-Zener (LZ) model is one of the archetypal models to study quantum trans-
port phenomena in a variety of fields, ranging from solid-state physics to ultracold atoms
in accelerated optical lattices or even electron transfer in chemical reactions. In fact,
ultracold atoms in accelerated optical lattices provide an excellent experimental setup to
test the theoretical predictions of the model [17]. The Landau-Zener theory itself has been
developed independently by Landau, Zener, Stückelberg and Majorana in 1932 [28–31].
In this section basic results about the Landau-Zener model are reviewed and its appli-

cability limits to the WSS are discussed.

2.3.1 Transition probabilities and important time scales

As has been pointed out in the previous section, the Hamiltonian of the Landau-Zener
model is given by Eq.(2.32). Hence, the system is governed by the the time-dependent
Schrödinger equation,

i∂t|ψ〉 =
1

2

(
−F0t V0

V0 F0t

)
|ψ〉 , (2.33)

from which it is evident that this is a two-state system. Henceforth, the ground state
of the system is denoted by |1〉 and the first excited state by |2〉. The most important
features of the Landau-Zener Hamiltonian are the linearity of the diagonal terms with
respect to time and the constant off-diagonal coupling terms. Due to the explicit time
dependence, the Hamiltonian does not possess proper energy eigenvalues and eigenvec-
tors; however, it is possible to write down the instantaneous eigenvalues/-vectors by
diagonalising it:

E1,2 = ∓1

2

√
(F0t)2 + V 2

0 (2.34)

with

|1〉a =

(
−Ft+

√
(F0t)2+V 2

0

V0

1

)
and |2〉a =

(
−Ft−

√
(F0t)2+V 2

0

V0

1

)
, (2.35)

where the ‘1’ and ‘2’ correspond to the lower and higher energy level. The subscript
‘a’ indicates that this is the adiabatic basis of the system. The states for the diabatic

basis |1〉d and |2〉d are trivially obtained from Eq.(2.32) with V0 = 0, as |1〉d =

(
1

0

)
and

|2〉d =

(
0

1

)
. Evidently, the non-zero off-diagonal terms lead to a splitting of the energy

levels at t = 0 and thus give rise to an avoided crossing with a band gap of ∆E = V0, at
t = 0.
In close analogy to the discussion in section 2.2.1, one can intuitively understand the

system’s dynamics by means of the adiabatic approximation. Assuming the system is
initially prepared in its ground state at t = −∞, the adiabatic approximation tells us
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that for an infinitely slow evolution (vanishing F0) the system will remain in its ground
state.
On the other hand, if F0 is finite, tunnelling between the bands is possible and their

is a finite probability to find the system in its first excited state after the evolution.
A large band gap at t = 0 (big V0) will, however, suppress the tunnelling probability.
Those considerations are reflected in the famous Landau-Zener formula for the survival
probability in the ground state [28]:

Psur(t =∞) = 1− e−
π
γ , (2.36)

where the adiabaticity parameter γ = 2F0

V 2
0

has been introduced and the evolution started
in |1〉d,a at t = −∞. The same equation is valid if one starts out in the first excited band.

The problem can also be solved for arbitrary times in terms of the parabolic cylinder
functions, however the formulas for the diabatic and adiabatic basis are not the same
for a finite evolution times [32]. Vitanov analysed the transition probability in both, the
adiabatic and diabatic basis [32,33].
In the following, numerical results obtained by Vitanov are reproduced and shown

in figures 2.5 and 2.6. To obtain the time evolution of the transition probabilities,
Eq.(2.33)has been integrated numerically over the time interval as shown in the figures.
Details on the numerical method are given in section 4.1.
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Figure 2.5: The figures show the time evolution of the transition probability (blue solid
line) in the diabatic basis (‘remain in ground band’) for different values of
the adiabaticity parameter γ. The red dashed lines show the regions where
the transitions occur. The widths of those regions are given by the jump
times. Their starting points are defined by the points where the tangents of
Ptra,d(t = 0) intersect with the x-axis; while its end points are defined by the
points where the tangents of Ptra,d(t = 0) reach the asymptotic value of the
transition probabilities.
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lines) in the adiabatic basis (‘tunnel to upper band’) for different values of
the adiabaticity parameter γ. The red dashed lines show the regions where
the transitions occur, they are centred around 0 and their widths correspond
to the jump times.

Note that the oscillations around the asymptotic value of the transition probabilities
in the diabatic basis (figure 2.6) are much less pronounced than in the diabatic basis
(see figure 2.5). Yet, their asymptotic values agree in the sense that Ptra,d(t = ∞) +

Ptra,a(t =∞) = 1 It is obvious from the above figures that Landau-Zener transitions are
not instantaneous processes but rather take place during a finite time interval around
t = 0. Defining this transition time, hereafter called jump time, in a meaningful way
is not an easy task, but Vitanov introduced a reasonable measure [33]. He defines the
diabatic/adiabatic jump time via the asymptotic value of the transition probability and
the derivative of the transition probability at t = 0 such that,

T jumpd/a =
Pd/a(∞)

P ′d/a(0)
. (2.37)

Using the parabolic cylinder functions Vitanov derived analytical expressions for the
jump times. The diabatic jump time can be approximated by T jump

d =
√

2π for γ � 1

and T jump
d = 2γ−1/2 for γ � 1, the adiabatic one can be estimated to be T jump

a = 2γ−1/2

for γ � 1 and T jump
a ∝ γ−1/6eπ/(γ6) for γ � 1.

Furthermore, there exists a second important time scale associated with LZ transitions;
namely the time after which the oscillations of the transtion probabilites die out. This
time is called the relaxation time T relax

d/a and Vitanov defines it as the time it takes
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Figure 2.7: Jump and relaxation times for the diabatic and adiabatic basis. The left
figure shows the jump time (red dashed line) and relaxation time (solid green
line) in the diabatic basis. The figure on the right shows those times in
the adiabatic basis, the blue dashed-dotted line represents the jump time for
γ � 1 and the red dashed line shows the jump time for γ � 1. The solid
green line gives the relaxation time in the adiabatic basis.

(starting from t = 0) for the oscillation amplitude to decay to εPd/a(∞) where ε � 1.
Vitanov calculated the times to be

T relax
d ≈ γ−1/2

√
1

ε2(eπ/γ − 1)
− 1 and T relax

a ≈ γ−1/2

√(
(eπ/γ − 1)γ2

4ε2

)1/3

− 1 .

(2.38)

It can be seen in figure 2.7 that the relaxation time in the diabatic basis quickly decays
to zero for large γ−1/2, whereas it increases exponentially in the adiabatic basis. Note
that the plots are in units of Vitanov’s rescaled time t

√
F0/2, to convert to the usual

time unit t/TB Vitanov’s time has to be multiplied by
√

2F0.

2.3.2 Applicability limits of the Landau-Zener model

In reality the applicability of the LZ formula is limited as any practical experiment can
only be observed over a finite time period. It is thus necessary to find out under which
conditions the transition time can be safely assumed to be infinite. For a specific system
this means one has to compare the time scales of the system, with the time scales (jump
and relaxation time) of the LZ model.

In the case of the WSS the time scale is set by the Bloch period TB, because every
Bloch period the BEC arrives at an avoided crossing. Hence if the jump time in the
LZ model exceeds one Bloch period we expect the LZ approximation to break down.
Therefore one can introduce the condition

Tjump < TBloch , (2.39)

as a first indicator of the applicability of the LZ model. Furthermore it was shown in
the previous section that the transition probabilities exhibit oscillations around their
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asymptotic value. To ensure convergence of the transition probabilities the relation
Trelax < TBloch should therefore hold as well. Fortunately, those conditions can be easily
satisfied in experiments [5, 17].

In addition to the issues addressed above, there is another phenomena arising in the
WSS that cannot be described separate by LZ transitions. It is, for example, possible
that at an avoided crossing a fraction of the BEC tunnels into the first excited band,
evolves in that band and then interferes at the next avoided crossing with the frac-
tion that remained in the ground band. The two fractions gather a phase difference of
φ =

∫ TB
0 i(E2(k(t)) − E1(k(t)))dt and depending on the value of φ, can interfere con-

structively or destructively, albeit changing the transition probabilities [34]. However, if
the depth of the optical lattice V0 is shallow enough such that the energy spectrum turns
into a continuum after the first two bands, the BEC will immediately tunnel from the
second to the third band etc. and escape the potential. In this case there should not be
any interference effects. This can be ensured by choosing the potential depth V0 � 1,
because band gaps between higher bands scale as V n

0 , where n > 1 [8].
There exists another phenomenon that can enhance the tunnelling probabilities called

resonantly enhanced tunnelling. In essence resonantly enhanced tunnelling occurs when
the energy difference between neighbouring lattice sites (remember figure 2.1) coincides
with the average4 band gap of the untilted system [34]. Unfortunately, a proper discussion
of this phenomenon and the so-called Wannier-Stark ladder states [22] goes beyond the
scope of this thesis and will not be considered here. Hereafter, unless stated otherwise,
it is assumed that the system is ‘off resonance’.

2.4 Harmonic Noise

The advent of the analysis of noise/stochastic processes in physical systems can be dated
back to Einstein’s famous work on Brownian motion [35]. Since then, there has been a
vast amount of work on the subject and stochastic processes are widely used throughout
different fields of physics. Not only can many phenomena such as Brownian motion only
be understood in terms of stochastic processes, but any experimentally realisable system
is subject to stochastic fluctuations too. Hence a thorough understanding of the system
requires in many cases the inclusion of stochastic processes in the analysis.
From an experimentalists point of view it seems natural to keep those stochastic fluc-

tuations to a minimum to obtain reliable data. However, it has been shown that it is
possible to use stochastic processes to control the system as well [36]. As mentioned
in the introduction, this influenced earlier research in the group by Tayebirad and co-
workers. In the following, the main features that characterise a stochastic process are
introduced and the specific process used by Tayebirad et. al. is discussed.

Consider a stochastic variable ξ(t), where t stands for time. The most important
features of the variable ξ(t) can be characterised by its first (〈ξ〉) and second moments

4Here average is understood as the average over the first Brillouin zone
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(〈ξ2〉), its autocorrelation (R(h)) and its power spectrum (S(ω)). One defines those
quantities as

〈ξ〉 = lim
T→∞

1

T

∫ T

0
ξ(t)dt and 〈ξ2〉 = lim

T→∞

1

T

∫ T

0
ξ(t)2dt , (2.40)

R(h) = 〈ξ(t)ξ(t+ h)〉 = lim
T→∞

1

T

∫ T

0
ξ(t)ξ(t+ h)dt and S(ω) =

1

2π

∫ ∞
−∞

e−iωhR(h)dh .

(2.41)

Note that the above definitions assume that the stochastic process is ergodic, which
means that the ensemble average over the static probability density distribution (P (ξ))

underlying ξ(t) can be replaced by the time average over the stochastic variable ξ(t) [37],
i.e.

〈ξ〉 =

∫
allξ

ξP (ξ)dξ = lim
T→∞

1

T

∫ T

0
ξ(t)dt . (2.42)

This relation holds for functions of ξ as well (given that the process is ergodic).

In this thesis, emphasis will be placed on a stochastic process called harmonic noise
(hereafter denoted by φ(t)). Harmonic noise can be thought of as the amplitude of a
damped harmonic oscillator driven by gaussian white noise and is defined via the two
coupled stochastic differential equations (SDEs) [38],

∂tφ = µ (2.43)

∂tµ = −2Γµ− ω2
0φ+

√
4ΓTξ(t) , (2.44)

where Γ corresponds to a damping coefficient in units of frequency and ω0 sets the
characteristic frequency of the noise process and T determines the noise strength and
is given in units of frequency squared. ξ(t) represents gaussian white noise and has the
following properties:

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t+ h)〉 = δ(h) , S(ω) =
2ΓT

π
. (2.45)

From the above properties it is evident that gaussian white noise is very unphysical
because its constant power spectrum implies an infinite amount of energy for finite T .
Nevertheless, it is the standard noise model to construct other types of noise such as har-
monic noise. In principle the two coupled SDEs can be solved by applying the formalism
of stochastic calculus5. Alternatively harmonic noise can be generated by an numerical
algorithm (see appendix section 7.1 and figure 2.8).

Harmonic noise has not been given much attention in the literature and might seem to
be a peculiar choice, but the reason for this choice becomes apparent after investigating

5The interested reader is referred to [39].
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its power spectrum. The static probability density distribution of the noise is known to
be a bivariate gaussian [36,38],

P (φ, µ) =
e−

φ2ω2
0

2T

(2πT/ω2
0)

e−
µ2

2T

(2πT )
. (2.46)

Starting from this distribution the first and second moments of the variables φ and µ

can be derived as [36,38],

〈φ〉 = 0 , 〈µ〉 = 0 , 〈φ2〉 =
T

ω2
0

and 〈µ2〉 = T . (2.47)

The autocorrelations and cross-correlation between φ and µ also follow,

〈φ(t)φ(t+ h)〉 = 〈φ2〉e−Γh

(
cos(ω1h) +

Γ

ω1
sin(ω1h)

)
,

〈µ(t)µ(t+ h)〉 = 〈µ2〉e−Γh

(
cos(ω1h) +

Γ

ω1
sin(ω1h)

)
,

〈µ(t)φ(t+ h)〉 =
T

ω1
e−Γh sin(ω1h) , (2.48)

with ω1 =
√
ω2

0 − 2Γ2. Finally, the power spectrum with respect to φ is given by,

Sφ(ω) =
2ΓT

π
(
4Γ2ω2 + (ω2 − ω2

0)2
) . (2.49)

The definition of ω1 indicates that the properties of the harmonic noise fall into three
classes, one in which ω0 <

√
2Γ, one where ω1 = 0 and one where ω0 >

√
2Γ [8,38]. In the

first regime the parameter ω1 is imaginary and the autocorrelations and cross-correlation
lose their oscillatory behaviour, as cos(iz)/(sin(iz)) = cosh(z)/(i sinh(z)) with z ∈ R and
neither cosh nor i sinh are periodic functions. The same holds true for the second regime
as sin(0) = 0 and cos(0) = 1, with the difference that the cross-correlation function
vanishes. Still, in the third regime ω1 is real and the correlation functions retain their
oscillatory behaviour. In the case of a harmonic oscillator those classes correspond to
the overdamped, critically damped and underdamped cases. The implications of this on
the power spectrum and specific noise realisation are best illustrated by plotting them
in figure 2.8.
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Figure 2.8: The figures at the top show typical harmonic noise amplitudes φ(t) (left)
and power spectra S(ω) (right) for the overdamped (Γ = 1.0/s, T = 1.0/s2,
ω0 = 1.0) case. The figures at the bottom show the same quantities for the
underdamped case (Γ = 1.0/s, T = 1.0/s2,ω0 = 5.0/s). The ‘s’ stands for
the SI-unit ‘second’. The critically damped case has been omitted as there
exists no qualitative difference to the overdamped one.

It is apparent from figure 2.8 that the power spectra in the over- and underdamped
case look very different and so do the noise amplitudes. In the overdamped case the noise
amplitude fluctuates ‘quite’ slowly and the power spectrum decays exponentially. On the
other hand in the underdamped case the noise amplitude fluctuates much more rapidly
and the power spectrum shows a clear peak (at ω1 = |

√
−24|). The peak in the spectrum

is a very general feature of the underdamped regime and always occurs at ω1 with an
approximate full width at half maximum of 2Γ for Γ

ω0
� 1. Furthermore, it is exactly

the peaked spectrum in the underdamped regime that makes harmonic noise worthwhile
studying. In classical systems it has been shown [36] that the peaked spectrum at a
characteristic frequency can lead to resonance phenomena. The thriving question for
Tayebirad et. al. was if such resonance phenomena will also appear in the quantum
mechanical system introduced in the next section.

As an aside, the evolution of the noise amplitude and the shape of the power spectrum
in the overdamped case is very similar to another important class of noise processes, called
exponentially correlated noise. This is also true for the critically damped regime. As the
name suggests the autocorrelation function and the power spectrum of exponentially
correlated decay exponentially.
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3 Introducing noise into the system

In the previous chapter the Wannier-Stark system has been introduced and a procedure
has been given that shows how one can map the BEC’s dynamics around an avoided
crossing onto a Landau-Zener model. All of the material presented has been studied in
depth in the literature [17]. This chapter will be used to introduce the modified Wannier-
Stark system (WSS) that will be analysed in this thesis. The Hamiltonian that governs
the system studied in this thesis is given and an effective Landau-Zener (LZ) model is
deduced from it.

3.1 Adding a second, stochastic optical lattice

Tayebirad et. al. modified the original Wannier-Stark system by adding a second cosinu-
soidal potential that has a different spatial periodicity than the first one and is influenced
by a stochastic, time-dependent phase shift. The Hamiltonian of this new system is given
by,

ĤTayebirad = −1

2
∂2
x + V0 cos(x) + V0 cos(αx+ φ(t))− F0x , (3.1)

where α is chosen such that the periodicities of the two potentials are incommensurable
and φ(t) represents a stochastic phase shift, given by the harmonic noise variable in-
troduced in the previous section. Hence, one obtains a potential that is intrinsically
aperiodic (due to the incommensurability) and subject to stochastic fluctuations in time
and space (due to the phase shift). Tayebirad et. al. analysed this system in the context
of BECs in optical lattices. As an observable she chose the time evolution of the survival
probability in the ground band as outlined in chapter 2 and analysed it for different noise
parameters.
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Figure 3.1: Fig.(a) shows the survival probability of the BEC in the ground band versus
time. The black solid line is the curve for the noiseless system (Hamiltonian
2.7) , the dashed/dotted coloured lines represent the ‘noisy’ system Eq.(3.1)
for different noise parameters. Note that the step structure (see figure 2.4b)
is destroyed by the noise process. Fig.(b) shows the survival probability in
the ground band at fixed time t0 = 6TB versus the rescaled noise frequency
ω0. 〈φ2〉 is the variance of the noise process, ωB the Bloch frequency and
(d′L/dL) represents α of Eq.(3.1). The curved lines showing the minimum are
numerical simulations of the full system for F0 = 0.029, Γ = 5/TB, 〈φ2〉 =

0.25 and changing V0. V0 ≈ 0.15625 (green open squares), V0 ≈ 0.15625×0.99

(red filled squares) and V0 ≈ 0.15625×0.85 (blue open circles). The horizontal
lines are calculations based on an effective model that will not be used in this
thesis. The ‘+’, ‘×’ and ‘*’ symbols are of no importance here. Data from [6],
courtesy of the corresponding authors c©APS.

The most striking feature of figure 3.1b is the universal behaviour of the different
curves in the sense that they all show a minimum at a rescaled angular noise frequency
of unity. This demonstrates that the inclusion of a second ‘noisy’ potential can indeed
be used to control the transition probabilities of a BEC by changing the noise parameters.

In order to gain a better understanding of the influence of the noise process, the
question arose if the dynamics of the system in Eq.(3.1) can still be locally approximated
by a LZ model and if it is possible to explain the minimum in the survival probability
observed figure 3.1b. This question will be addressed in the rest of this thesis and
represents, to the author’s best knowledge, a new contribution to the study of ‘noisy’
WSSs.

3.2 The modified Landau-Zener model

In the following, a modified LZ model for the Hamiltonian in Eq. (3.1) is presented. In
the analysis to come the parameter α is set to one and hence the intrinsic aperiodicity
of the potential stemming from α is removed. That this is possible without completely
changing the systems dynamics is not a priori clear, but numerical simulations have
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Figure 3.2: The figure shows the same quantities as figure 3.1b but with a ratio of d′L
dL

equal to one. Otherwise the same parameters as for the green open squares
in figure 3.1b have been used.

shown that the curves in figure 3.1b retain their shape (figure 3.2). Thus the important
feature of the system is the noise term and not the incommensurability of the two lattices
3.2. The Hamiltonian of the system for α = 1 simplifies to

ĤNoise = −1

2
∂2
x + V0 (cos(x) + cos(x+ φ(t)))− F0x . (3.2)

Moreover, the simplification, α = 1, is crucial to be able to locally approximate the
system by a two state model. If α deviates from unity the above Hamiltonian also
couples momentum states p such that ∆p = p− p′ /∈ Z0

1 and the matrix representation
of the Hamiltonian loses its tridiagonal shape. Thus, at least a 3-by-3 or 4-by-4 matrix
is needed to locally approximate the BEC’s dynamics around an avoided crossing.
Assuming α = 1 and following the procedure given in section 2.2.2, the BEC’s dynamics

around an avoided crossing can be approximated by a modified LZ model. The 2-by-2
Hamiltonian is then given by,

ĤLZ,N =
1

2

(
−F0t V0(1 + eiφ(t))

V0(1 + e−iφ(t)) F0t

)
. (3.3)

Note that the harmonic noise variable φ now appears as a complex phase factor, as one
would expect from standard Fourier theory (recall that in section 2.2.2, we re-expressed
the Hamiltonian in its momentum basis ). It is important to recognise that the appear-
ance of this phase means that the off-diagonal terms not only carry an explicit time
dependence, but also are stochastic variables! This makes the definition of an eigenbasis
of the Hamiltonian 3.3 even more difficult.
In analogy to section 2.2.2, the instantaneous eigenstates/-values have been obtained

by diagonalising the 2-by-2 matrix given above;

EN ;1,2 = ∓1

2

√
(F0t)2 + 2V 2

0 (cos(φ(t)) + 1) , (3.4)

1Compare to section 2.2.2
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with

|1〉N ;a =

(
−Ft+

√
(F0t)2+2V 2

0 (cos(φ(t))+1)

V0(1+e−iφ(t))

1

)
and |2〉N ;a =

(
−Ft−

√
(F0t)2+2V 2

0 (cos(φ(t))+1)

V0(1+e−iφ(t))

1

)
,

(3.5)

where the subscript N stands for the noisy system and all the others have their usual
meaning. Hence, at t = 0 the gap between the two energy levels is
∆E = V0

√
2(cos(φ(0)) + 1). Using the static probability distribution of Eq. (2.46)

an effective band gap can be introduced such that

∆Eeff = V0

[
〈
√

2(cos(φ(0)) + 1)〉 ± Std
(√

2(cos(φ(0)) + 1))
)]

. (3.6)

Here 〈f(φ)〉 denotes the average as introduced in Eq. (2.47) and ‘Std’ denotes the
standard deviation defined as

√
〈f(φ)2〉 − (〈f(φ)〉)2. The actual value of this effective

bandgap depends on the noise parameters T,Γ and ω0. Accordingly, an effective adia-
baticity parameter can be defined as γeff = 2F0

∆E2
eff

.
Furthermore it is crucial to note that the instantaneous eigenstates and -values are

now stochastic variables as well. This means that the adiabatic ‘basis’ does not exist
anymore as it would assume different values for each noise realisation! This is one of the
reasons why all of the numerical calculations in the next chapter of this thesis are carried
out in the diabatic basis of the system, which obviously (it is the free particle basis) is
the same as in the noiseless case.

There are two more things that should be mentioned in this chapter. First, almost all
of the derivations in chapter 2 were based on the fact that the potential was periodic
in space and one could thus use the Bloch ansatz to find the energy spectrum of the
system. Of course, this is in principal not possible for an aperiodic potential. Setting α
to one eases this problem. Unfortunately, the second potential still leads to aperiodicity
due to the stochastic phase, but if the noise process is not too strong, its influence
can be imagined as a small perturbation to the otherwise periodic potential. Secondly,
after setting α = 1, it is not clear why the second potential is still needed and why the
stochastic phase is not applied to the first potential term. The reason is that for high ω0

the phase term fluctuates on a much shorter time scale than the one of the system. In
such a scenario it is allowed to average the potential over the noise distribution to obtain
an effective potential [6]. The depth of this effective potential will be greatly reduced
and the BEC thus be able to escape from the trap. One therefore needs two potentials,
one that fluctuates due to the stochastic phase and another one as reference system that
ensures that the BEC does not simply escape the trap.
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4 Numerical investigation

This chapter deals with the numerical simulation of the ‘noisy’ Landau-Zener (LZ) model
given in Eq.(3.3). The main focus lies on the computation of the diabatic transition
probability and its dependence on the noise parameter ω0. In the first part of this
chapter the numerical methods to obtain these transition probabilities are explained.
In the second part, the main results of this thesis are presented. Numerical results for
the diabatic transition probabilities, as obtained from the ‘noisy’ LZ model are given.
Moreover, they are compared to those obtained from a simulation of the full ‘noisy’
Wannier-Stark system (WSS) (3.2). The chapter will end with an interpretation of the
results and a brief comparison to an effective model, in which the harmonic noise variable
φ is replaced by a deterministically oscillating phase [6].

4.1 Numerical methods

In principle, the calculation of the transition probability from the ground to the first
excited band, or vice versa, is quite simple. All that is needed is to specify an initial
state |ψ(t = t0)〉 and evolve it according to the corresponding Schrödinger equation. The
transition probability is then obtained by projecting the evolved state |ψ(t)〉 onto one of
the energy eigenstates of the system. Depending on the basis chosen, those can be the
diabatic energy eigenstates or the adiabatic instantaneous eigenstates. Numerically, the
calculation is not too hard for the LZ model, but becomes quite involved when simulating
the full system. The numerical simulation of the ‘noisy’ LZ model can be done as follows.
The Schrödinger equation corresponding to the ‘noisy’ LZ Hamiltonian (Eq.(3.3))

reads,

i∂t|ψ(t)〉 =
1

2

(
−F0t V0(1 + eiφ(t))

V0(1 + e−iφ(t)) F0t

)
|ψ(t)〉 , (4.1)

where |ψ(t)〉 = a1(t)|1〉+ a2(t)|2〉. Thus, the evolution of the two expansion coefficients
a1(t) and a2(t) is governed by two coupled differential equations,

i∂ta1(t) = −F0ta1(t) + V0(1 + eiφ(t))a2(t) (4.2)

i∂ta2(t) = V0(1 + e−iφ(t))a2(t) + F0ta2(t) . (4.3)

Those two equations can be integrated numerically by specifying an initial state, a1(t0)

and a2(t0). The probability of being in the ground state (first excited state) at time t is
then given by |a1(t)|2 (|a2(t)|2).
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In this thesis, the numerical integration has been carried out using a Cash-Karp Runge-
Kutta1 algorithm, as presented in [40]. In essence, all Runge-Kutta schemes advance the
solution to a differential equation from an initial point a1(t0) to the next point a1(t0+∆t)

by calculating the derivative of a1(t) at the initial point, one or more trial midpoints
between t and t+ ∆t and at the final point t+ ∆t. Then those derivatives are multiplied
by the step size ∆t and a weighted average of all the terms is taken. The final point
a1(t0 + ∆t) is obtained by adding the weighted average and the initial function value
a1(t0) (a detailed explanation of Runge-Kutta methods is omitted here, as it can be
found in any text book on numerical methods or in [40]). In the case presented here the
derivatives for all times t are given by Eq.(4.2) and Eq.(4.3).
Evidently, the derivatives in Eq.(4.2) and Eq.(4.3) depend explicitly on the harmonic

noise amplitude φ(t). Thus to calculate these derivatives for all times t, the time series of
φ(t) needs to be known. The algorithm and the code to generate a sample time series for
φ(t) have been supplied by Stephan Burkhardt [8]. A short derivation of the algorithm
can be found in the appendix, section 7.1.

In summary, the transition probabilities in this thesis have been calculated as follows:

• The initial state |ψ(t = t0)〉 has been chosen as the diabatic ground state of the
system |1〉d.

• The initial state has been advanced to t = t0 + ∆t and further, using a Cash-Karp
Runge-Kutta algorithm applied to the differential equations Eq.(4.2) and Eq.(4.3);
φ(t) has been calculated using the algorithm of section 7.1.

• At each time step, the new state |ψ(t)〉 has been projected onto the ground state
of the system |1〉d to obtain a1,d(t); the transition probability has been calculated
via Pd,tra(t) = 1− |a1,d(t)|2.

• The asymptotic value of the transition probability as given by the LZ formula has
been estimated by an average over Pd,tra(t) from a time t′ to the final integration
time tfinal. The time t′ has been chosen as t′ = tfinal − (0.05 . . . 0.1)tint with tint

given by the total integration time tfinal − tinitial.

The same procedure has been used to calculate the transition probabilities for the stan-
dard LZ model in chapter 2. To obtain the adiabatic transition probability for the
standard LZ model one just has to start out in the adiabatic ground state and project

1The reader familiar with numerical simulations might wonder why, after choosing the Cash-Karp
Runge Kutta algorithm, no adaptive step-size routine has been employed. The reason lies in the
harmonic noise variable φ(t). Because the sample path of φ(t) depends on the step size ∆t, changing
the step size each step also changes the noise properties in each step. This makes it hard to compare
results. Of course, this could be circumvented by defining the sample path of φ(t) on a very fine grid
(step size δt) and requiring that the Cash-Karp algorithm takes only steps that are integer multiples
of δt. Thus for each time step the same noise realisation could be used. However, this adaptive
method does not lead to a faster algorithm, because generating φ(t) is the most time consuming
operation in our algorithm and φ(t) would still have to be defined on a very fine grid with fixed step
size δt.
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Figure 4.1: Diabatic transition probabilities (left figures) and their underlying noise pro-
cesses (right figures) are shown for two sample realisations. The parameters
were in both cases, V0 = 0.015625, F0 = 0.00762,Γ = 0.00762, ω0/ωB = 8

and 〈φ2〉 = 0.5. The time window to the right of the vertical line (left figures)
is the one over which Pd,tra(t) is averaged to estimate the asymptotic value
of the transition probability.

onto the adiabatic basis after each time step (see Eq.(3.5)). Note that this cannot be
easily done in the ‘noisy’ LZ model, as the instantaneous energy eigenstates are stochastic
variables in this case (see section 3.2).
Figure 4.1 shows the diabatic transition probability for two different noise realisations

(but same system parameters), as obtained with the procedure described above. It is
noticeable that the transition probabilities show much stronger oscillations than in the
noiseless case (see section 2.3). Additionally, the results for the two noise realisations are
rather different, even though they were obtained for the same system parameters. To get
statistically meaningful results it is thus necessary to take an average over different noise
realisations. In the remainder of this thesis, emphasis will be placed on the asymptotic
value of the diabatic transition probability. Due to the gaussian nature of the harmonic
noise process, the average of the asymptotic value of the transition probability (denoted
Pd,tra from now on) can be estimated as,

Pd,tra =
1

N

N∑
i=1

P
(i)
d,tra . (4.4)

Here the sum runs over all noise realisations i. The standard deviation of this average
can be estimated as [41]

Std(Pd,tra) =

√∑N
i=1(P

(i)
d,tra − Pd,tra)2

N
. (4.5)
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A few checks have been made to ensure numerical stability of the results. First, the
normalisation of the state |ψ(t)〉 has been monitored throughout the simulation. The
deviation of its magnitude from unity has been of the order 10−13. Secondly, the results
have been checked for various step sizes δt. Figure 4.2 (left) shows the time evolution of
the transition probability for two step sizes ∆t = 0.0004 and ∆t = 0.0002 with the same
underlying noise process. As there is no deviation between the two visible, a step size
of ∆t = 0.0002 is probably smaller than needed2, yet all simulations that follow have
been done with ∆t = 0.0002. The results to come have all been checked on numerical
convergence by these two criteria.
In addition to the above, the total integration time has been varied. In this case, it

is actually not even expected to get the same results in the noiseless case, as the system
might not have enough time to complete a full LZ transition. But this is then a physical
property of the system and has nothing to do with numerics. However, even in the case
where the system has enough time to evolve, the transition probability suddenly increases
for high ω0/ωB. The point where this happens moves with increasing integration time
and the phenomenon strongly resembles the increase of the transition probability, as
observed in the full ‘noisy’ WSS (see figure 3.1b). A qualitative explanation of this effect
will be given in the conclusion, as emphasis is placed on the initial decrease and the
minimum of the transition probability ((see figure 3.1b again) in this chapter. Note that
all simulations in section 4.2.2 would show this increase if the graphs were displayed for
higher ω0/ωB.
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Figure 4.2: The left figure shows a typical time evolution of the transition probability with
step sizes ∆t = 0.0002 (red solid line) and ∆t = 0.0004 (blue crosses). The
figure on the right shows the asymptotic value of the transition probability
versus the noise parameter ω0/ωB, with a total integration time of 1TB (green
line) and 1.5TB (red line). The error bars give the standard deviation of the
average transition probability as defined in Eq.(4.5).

2In fact the step size could have been increased by an order of magnitude and the results would still
have been stable. Unfortunately, this was only realised quite late in the project, but computation
time was not a big issue anyway.
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In the next section, the transition probabilities obtained from the ‘noisy’ LZ model will
be compared with those obtained from a numerical simulation of the full ‘noisy’ WSS
system (Eq.(3.2)). The numerical simulation of the full system was not part of this thesis,
but has been done by my colleague Stephan Burkhardt. Details on how this is done can
be found in [8, 42]. Of course, to obtain comparable data, the transition probability in
the full system has to be calculated after one Bloch period to make sure that only one
LZ transition can have taken place (see figure 4.3). Likewise, the total integration time
in the ‘noisy’ LZ model has to be set to one Bloch period.
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(a) Experimental data from [5] (Courtesy
of the corresponding authors c©APS
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Figure 4.3: A description of figure 4.3a is given in section 2.2.1. Figure 4.3b shows the
diabatic transition probability as obtained from numerical simulations of the
noiseless WSS (red stars) after t/TB = 1. The numerical data is compared to
the LZ prediction (blue solid line). F0 = 0.00762 in both cases. With respect
to figure 4.3a, the transition probability shown in figure 4.3b is the one at
time t/TB = 1.

Figure 4.3a shows the familiar step structure of the transition probability versus time
as it is obtained from numerical simulations of the WSS (noiseless) and observed in ex-
periments. As discussed in section 2.2.1, each step is due to a Landau-Zener transition.
Figure 4.3b shows the transition probability after one LZ transition versus the coupling
strength V0 and compares it to the prediction obtained from the LZ formula in Eq.(2.36).
Note that in the noiseless case presented (F0 = 0.00762) here the LZ prediction and the
numerical simulation of the full WSS are in perfect agreement.

It needs to be clear that in the following, whenever reference is made to the transition
probability in the full system, it is understood as the transition probability after one LZ
transition, i.e. at t/TB = 1. Likewise, if reference is made to the transition probabil-
ity in the ‘noisy’ LZ model, it is understood as the asymptotic value of the transition
probability, as defined in Eq.(4.4). In principle, those two probabilities should coincide
if the ‘noisy’ LZ model perfectly captures all features of the full system during a single
transition; of course this is not expected. The LZ model can, for example, only account
for transitions close to an avoided crossing but not for all transitions across the whole
Brillouin zone. This is not a problem in the noiseless case as transitions far away from
the avoided crossing are rare (large energy gap between ground band and first excited
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band). Yet, in the ‘noisy’ model such transitions may occur more frequently because the
noise feeds additional energy into the system (see section 4.2.2).

4.2 Numerical results

The main results of this thesis are presented in this section. A numerical study of the
diabatic transition probability for the ‘noisy’ LZ model (Eq.(3.3)) is given, and emphasis
is placed on its dependence on the noise parameter ω0. The results of the ‘noisy’ LZ model
are compared to numerical simulations of the full system and successes and failures of
the LZ approximation are discussed. Furthermore, a numerical study is presented, in
which the harmonic noise variable φ is replaced by a deterministically oscillating phase.

4.2.1 LZ transitions in the presence of harmonic noise

In figure 4.1, the time evolution of the transition probability for the ‘noisy’ LZ model
(Eq.(3.3)) has been given. In the following, the asymptotic value of this transition
probability is analysed in dependence on the harmonic noise variable ω0 and the cou-
pling strength V0. Unless stated otherwise, the system parameters are F0 = 0.00762,
Γ = 0.00762 and 〈φ2〉 = 0.5 from now on. For those parameters, φ(t) shows oscillatory
behaviour with a peaked power spectrum if ω0/ωB ' 0.32 (see section 2.4).

Figure 4.4 shows the transition probability in the ‘noisy’ LZ model versus ω0/ωB for
different coupling strengths V0. The numerical data is shown together with an estimation
of the transition probability (Pest), as obtained from the standard LZ formula with an
effective band gap ∆Eeff (as defined in Eq.(3.6)),

Pest = 1− e−
π∆E2

eff
2F0 = 1− e−

π
γeff . (4.6)

In the case of small V0, figure 4.4a, nothing spectacular can be seen and the transition
probability just fluctuates around the estimated value obtained from the LZ formula.
This does not come as a great surprise, because for small V0 (γeff � 1) the behaviour of
the system is dominated by the diagonal terms ±F0t and thus the influence of the noise
is quite small.
Increasing the coupling strength such that γeff / 1 leads to an interplay between diag-

onal and off-diagonal terms and the noise strongly influences the transition probability
(figure 4.4b and figure 4.4c). In this regime, the modified LZ formula (Eq.(4.6)) still
gives a good estimate of the transition probability for very small ω0/ωB. Here, the noise
fluctuates so slowly that φ(t) can be regarded as constant throughout the transition and
thus averaging over φ at t = 0 to obtain an effective band gap works well. However,
when the time scales of the system and the noise become comparable there is a strong
decrease in the transition probability (region ω0/ωB = 2 . . . 5 in figures 4.4b and4.4c).
Increasing ω0/ωB even further leads to oscillations of the transition probability around
its saturation value (region ω0/ωB = 5 . . . 13 in figures 4.4b and 4.4c). A discussion of
this behaviour is deferred to the end of the next section.
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Figure 4.4: The diabatic transition probability in the ‘noisy’ LZ model is shown versus
noise frequency ω0/ωB. The blue solid lines give the transition probability
as obtained from numerical simulations. The error bars give the standard
deviation of the transition probability, as defined in Eq.(4.5); the number of
realisations is N=100. The red dashed lines give the transition probability as
obtained from the LZ formula with an effective bandgap ∆Eeff (see Eq.(3.6)).
The orange solid lines give the saturation value around which Pd,tra oscillates.
The parameters are V0 = 0.015625 (a), V0 = 0.0625 (b) and V0 = 0.125 (c).

4.2.2 Main results: ‘Noisy’ WSS vs ‘noisy’ LZ approximation

In the following, the transition probabilities as obtained from the ‘noisy’ LZ model and
the full ‘noisy’ WSS are compared. The system parameters are the same as in the previous
section.
Figures 4.5 to 4.8 give a sequence of the diabatic transition probability versus ω0/ωB,

for increasing coupling strength V0. A first look at the results already makes it clear that
the agreement between the ‘noisy’ WSS and the ‘noisy’ LZ model is not as good as in
the noiseless case (compare figure 4.3). Yet, a good qualitative agreement is still given
and the graphs reveal the following discrepancies and accordances:

• The ‘noisy’ LZ model overestimates the diabatic transition probability; this is the
worst for small V0 (figures 4.5 and 4.6).

• The initial decrease in the diabatic transition probability can also be seen in the
full system and is well described by the ‘noisy’ LZ approximation.

• The position (with respect to ω0/ωB) of the first minimum after the initial decrease
is approximately the same for both models; furthermore it increases with increasing
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V0.

• For V0 = 0.0625 (γeff = 1.116) to V0 = 0.15625 (γeff = 0.178) the transition
probability oscillates around its saturation value in the regime ω0/ωB ≈ 5 · · · 13;
period of oscillation and position of local maxima and minima are similar for the
full system and the ‘noisy’ LZ model, but do not agree perfectly.

• The amplitude of those oscillations decreases with increasing V0 and dies out for
V0 ' 0.15625 (γeff / 0.178) (in both models).

• For increasing V0 the saturation value of the diabatic transition probability con-
verges to ≈ 1/2 (in both models).
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Figure 4.5: Diabatic transition probabilities versus ω0/ωB. The green solid lines show
the numerical simulations for the full system. The blue solid lines show the
numerical simulations for the ‘noisy’ LZ model. The error bars give the
standard deviation of the transition probability as defined in Eq.(4.5), with
the number of realisations being N=20 for the full system and N=100 for the
‘noisy’ LZ model. The vertical dashed red lines indicate the position of the
first minimum. V0 = 0.03125 (left) and V0 = 0.0625 (right).
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Figure 4.6: Description see figure 4.5. V0 = 0.09375 (left) and V0 = 0.125 (right).
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Figure 4.7: Description see figure 4.5. V0 = 0.15625 (left) and V0 = 0.1875 (right).
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Figure 4.8: Description see figure 4.5. V0 = 0.21875 (left) and V0 = 0.25 (right). In the
left figure, the first minimum cannot be determined unambiguously anymore,
as the oscillations observed in figures 4.5 to 4.7 have completely vanished.
Therefore, the point where Pd,tra reaches its saturation value for the first
time has been taken as the position of the ‘first minimum’. In the right
figure, even this point cannot be determined unambiguously anymore.

On a side note, in section 2.3.2 two conditions were given that need to be fulfilled to be
able to approximate the WSS around an avoided crossing with the LZ model. Namely,
that jump and relaxation times in the LZ model are less than one Bloch period. Both
conditions are fulfilled for the parameters chosen above, with Td,jump ≈ 0.28 . . . 0.92TB
(for V0 = 0.03125 . . . 0.25) and Td,relax ≈ 0.47 . . . 0 (for V0 = 0.03125 . . . 0.25). The jump
and relaxation times have been obtained from the formulas given in section 2.3.1, with
an effective adiabaticity parameter γeff . Admittedly, it has not been proven that the
formulas for the jump and relaxation times of the noiseless model can be used in our
‘noisy’ model, so the above conditions should be considered anything but strict.

Figure 4.9 shows the position of the first minimum of the transition probability after
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Figure 4.9: Here, the position of the first minimum of the transition probability, as ob-
tained from the ‘noisy’ LZ model, is plotted versus V0. The blue solid line
shows numerical data (F0 = 0.00762). The green dashed-dotted line is a lin-
ear fit to the numerical data and the red dashed line shows the effective band
gap ∆Eeff as a function of V0 with a vertical offset of +0.07. Note that the
axes are in terms of the dimensionless units V0 and ω0. Energy and angular
frequency can thus be compared directly.

the rapid initial decrease, as it can be seen in figures 4.5 to 4.8. The numerical data
demonstrates that there exists a linear relationship between the position of the first
minimum and the coupling strength V0. A linear fit to the data (green dashed-dotted
line) determined the slope as 1.73 and the y-intercept as 0.07. The linear fit compares
well to the formula for the effective band gap, which is

∆Eeff = (1.88± 0.15)V0 , (4.7)

as can be calculated from Eq.(3.6) and Eq.(2.46) with 〈φ2〉 = 0.5. Thus, figure 4.9
indicates that the position of the first minimum is approximately determined by the
effective band gap ∆Eeff + a constant offset.
Ignoring the constant offset for now, this behaviour can be understood as follows.

Recall that the diabatic transition probability corresponds to the probability to remain in
the ground band, i.e. a minimum in the diabatic transition probability means a maximum
in the tunnelling rate. Furthermore, one of the effects of harmonic noise is to feed an
energy of ω1 =

√
ω2

0 − 2Γ2 ≈ ω0 into the system (see peaked spectrum section 2.4).
Hence, as soon as the characteristic frequency of the noise is large enough to overcome
the effective band gap, tunnelling into the upper band is enhanced. The oscillations
for even higher frequencies can then be understood as being on and off-resonance with
the effective band gap. This mechanism can also explain why the ‘noisy’ LZ model
overestimates the diabatic transition probability for small V0. For small V0, the band
gap between the ground band and the first excited band is comparatively small over the
whole Brillouin zone. Feeding only a small amount of energy into the system can thus
lead to tunnelling into the upper band throughout the whole Brillouin zone. However, the
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Figure 4.10: Schematic representation of the band structure of the full ‘noisy’ WSS
around an avoided crossing. The orange wiggly lines indicate tunnelling
from the ground to the first excited band (i.e. no diabatic transition). To
trigger a transition, the characteristic frequency ω0 needs to bridge the en-
ergy difference between the two bands, e.g. for the transition on the right
ω0 needs to be ≈ ω′. The blue shaded rectangle indicates the region in
which the ‘noisy’ LZ model gives a good approximation to the full system.
Transitions outside this region are not captured (well) by the ‘noisy’ LZ
model.

‘noisy’ LZ model approximates the full system only around an avoided crossing. This
means it cannot account for transitions far away from an avoided crossing and hence
overestimates (underestimates) the diabatic transition probability (tunnelling rate). For
higher V0 tunnelling far from an avoided crossing is strongly suppressed and the ‘noisy’
LZ model gives good estimates of the transition probabilities in the full system (as can
be seen in figures 4.7 and 4.8).

The interpretation given above is purely based on considerations about matching of
energy scales and completely ignores many important features of the system, such as
the driving force F0 or the noise parameters 〈φ2〉 and Γ. Consequently, it is not a great
surprise that the slope of the fit to the numerical data does not agree completely with
the formula for ∆Eeff . Additionally, the constant offset at V0 = 0 cannot be explained by
the above considerations and the following figures show that it is sensitive to the driving
force F0.
Figure 4.11 shows the same quantities as figure 4.9 but for F0 = 0.00597 (left) and

F0 = 0.00995 (right). Linear fits to the numerical data gave a slope of 1.87 (left) and 1.73
(right) and y-intercepts at 0.04 (left) and 0.06 (right). As previously, the position of the
first minimum approximately scales with the effective band gap (∆Eeff = (1.88±0.15)V0),
thereby strengthening the above interpretation. However, the value of the y-intercept
changed and seems to depend on F0; an exact relation between F0 and the value of the
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Figure 4.11: For a description see figure 4.9. The parameters are F0 = 0.00597 (left
figure) and F0 = 0.00995 (right figure). The other two noise parameters Γ

and 〈φ2〉 are the same as before.

y-intercept has not been found yet.

4.2.3 The influence of harmonic noise versus a deterministic phase

In the last section of this chapter the harmonic noise variable φ is approximated by a
deterministically oscillating phase and the data in the previous section is compared to
this toy model.
In the high frequency regime φ(t) shows oscillatory behaviour, therefore the following

ansatz has been proposed by Tayebirad and co-workers [6],

φ(t) = A sin(ω0t) , (4.8)

with a corresponding power spectrum of Sd(ω) = A2

4π [δ(ω − ω0) + δ(ω − ω0)]. Now the
amplitude A can be determined by requiring that the total energy fed into the system is
the same for the deterministic phase and the harmonic noise, i.e. the integrated power
spectrum must be the same. With the power spectrum for the harmonic noise given by
Eq.(2.49) this condition reads,∫ ∞

0
dω
A2

4π
[δ(ω − ω0) + δ(ω − ω0)] =

∫ ∞
0

dω
2ΓT

π
(
4Γ2ω2 + (ω2 − ω2

0)2
)

A2

4π
≈
∫ ω0+δ

ω0−δ
dω

T

2πΓω2
0

≈ T

2πΓω2
0

2Γ

A2 ≈ 4
T

ω2
0

= 4〈φ2〉

=⇒ A ≈ 2
√
〈φ2〉 . (4.9)

In the above derivation the fact has been used that the power spectrum has a sharp peak
at ω ≈ ω0. The integral over the power spectrum has been approximated as the value of
the spectrum at ω ≈ ω0 times the full width at half maximum (2Γ, see section 2.4).
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Figure 4.12: Diabatic transition probability versus ω0/ωB. The blue solid lines show
the numerical data for the ‘noisy’ LZ model. The red dashed lines show
numerical data for φ(t) = A sin(ω0t), with A =

√
2 (corresponding to 〈φ2〉 =

0.5). The system parameters are, V0 = 0.0625 for (a), V0 = 0.09375 for (b),
V0 = 0.125 for (c) and in all cases F0 = 0.00762,Γ = 0.00762 and 〈φ2〉 = 0.5.

Figure 4.12 compares the numerical data for the ‘noisy’ LZ model with the data for the
deterministically oscillating phase. The numerical simulation has been done as outlined
in section 4.1, but with φ(t) = A sin(ω0t) in the deterministic case. It is apparent that
the deterministic phase model captures the features of the ‘noisy’ LZ model with mixed
success, and the agreement is the worst for V0 = 0.125. Interestingly enough, the best
agreement in all three figures is achieved in the case of very low ω0 where the harmonic
noise does not show sinusoidal behaviour. Yet, this is easily explained. In the low ω0

regime the noise fluctuates so slowly that the functional form of φ(t) does not play an
important role. In this case, the noise just leads to a rescaled coupling term.
Moreover, in figures 4.12a and 4.12b the deterministic model accurately reproduces

the position of the minima and maxima of the ‘noisy’ LZ model. It can therefore be
concluded, that the oscillations and the initial decay in the transition probability stem
from the oscillatory nature of the harmonic noise. The effect of the damping Γ and the
varying amplitude of φ in the ‘noisy’ LZ model can then be identified as a broadening
and reduction of the peaks in figure 4.12.
But the most interesting feature in the above figures is not the position of the minima

and maxima, but the height of the peaks in the deterministic phase model. In figure
4.12b, the diabatic transition probability changes from 0.039 at ω0/ωB = 6.58 to 0.981

at ω0/ωB = 7.48, thus only a slight change in the frequency leads from practically no
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transition to a full transition. This behaviour is especially interesting from an experi-
mentalists point of view, because it provides an excellent means to control the transport
properties of a BEC in an optical lattice. It is not unlikely that changing the system
parameters even leads to stronger ‘jumps’ in the transition probability.
The reason for the strongly damped oscillations in the ‘noisy’ model lies in the fluc-

tuation of the amplitude φ(t). Even in the case of Γ = 0, i.e. when φ(t) describes a
sinusoidal curve, the amplitude of φ(t) is still not the same for different noise realisa-
tions, but distributed according to (Eq.(2.46)). Different amplitudes lead to variations
in the strength of the oscillations. Averaging over the amplitude according to (Eq.(2.46))
thus leads to a damping of the oscillations (see appendix, figure 7.1a). Another point is
of course that for Γ 6= 0 the power spectrum of φ(t) contains more than one frequency.
Even though the spectrum may be very narrowly peaked around ω0 it is still expected
that this reduces the height of the peaks in figure 4.12 and broadens them (see appendix,
figure 7.1b).
In the next chapter, an attempt is made to back up the results and interpretations

given here, with analytical calculations.
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5 Analytical investigation

Eugene Wigner once said “It is nice to know that the computer understands the problem.
But I would like to understand it too” [43]. This chapter is kept in the spirit of Wigner and
an analytical solution for the diabatic transition probabilities discussed in the previous
chapter, is derived. The first section is spent on deriving a formal solution to the problem
at hand, whereas in the second section it is applied to two limiting cases. Namely, the
‘small coupling’ and the ‘small coupling, small damping’ limits specified below.

5.1 Formal solution of the transition probabilities

In this section, a formal solution for the asymptotic transition probabilities for a LZ model
with stochastic off-diagonal terms is derived. The derivation closely follows the approach
taken by Kayanuma [1, 44], but extends it to complex off-diagonal terms. Without a
doubt, there exist other approaches to the problem based on the evolution of the density
matrix [45] that may be more elegant than the one introduced here, but, in the authors
opinion, they are less instructive.

5.1.1 Time evolution of states

Recall that the system under consideration is governed by the time-dependent Schrödinger
equation

i∂t|ψ(t)〉 =
1

2

(
−F0t V0(1 + eiφ(t))

V0(1 + e−iφ(t)) F0t

)
|ψ(t)〉 . (5.1)

Assuming that the system is initially in the ground state |1〉d at time t = −∞, its time
evolution is given by

|ψ(t)〉 = Û(t,−∞)|1〉d , (5.2)

where Û(t,−∞) is the time evolution operator defined as,

exp+

(
−i
∫ t

−∞
ĤLZ,N (τ)dτ

)
. (5.3)

Here, ĤLZ,N (τ) is the time dependent Hamiltonian of Eq.(3.3) and the exp+ denotes the
positively time ordered exponential given by a Dyson series [46] of the form

41



exp+

(
−i
∫ t

−∞
ĤLZ,N (τ)dτ

)
=

1 +
∞∑
n=1

(−i)n
∫ t

−∞
dτ1

∫ τ1

−∞
dτ2 . . .

∫ τn−1

−∞
dτnĤLZ,N (τ1)ĤLZ,N (τ2) . . . ĤLZ,N (τn) (5.4)

According to standard quantum theory, the diabatic transition probability from state
|1〉d to state |2〉d at any time t is given by Ptra(t) = d〈2|ψ(t)〉〈ψ(t)|2〉d, with |ψ(t)〉 of
Eq.(5.2). For simplicity it is assumed that the system starts at t = −∞ in |1〉d and
evolves until t = ∞. Furthermore the Hamiltonian in Eq.(3.3) contains stochastic off-
diagonal terms, so the transition probability has to be averaged over the noise process.
This yields a transition probability given by [1],

Ptra(∞) =

〈
d〈2| exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|1〉d〈1| exp−

(
i

∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|2〉d

〉
,

(5.5)

where 〈. . . 〉 denotes the average over the noise process and exp− is the negatively time
ordered exponential, defined in accordance to Eq.(5.4).
The above equation can be brought into a more amendable form by applying Feynman’s

disentanglement theorem [1, 47].

5.1.2 Feynman’s disentanglement theorem

The Hamiltonian ĤLZ,N (t) can be re-expressed as a sum of the two Hamiltonians Ĥ0(t)

and Ĥint(t) with,

Ĥ0 =
1

2
F0t[−|1〉d〈1|+ |2〉d〈2|]

Ĥint(t) =
1

2
[V (t)|1〉d〈2|+ V ∗(t)|2〉d〈1|] , (5.6)

where ‘ ∗ ’ denotes the complex conjugate and V (t) = V0(1 + eiφ(t)). Because of the time
ordering constraint it is not possible to simply split the Hamiltonian in the exponential
of Eq.(5.4) and expand the two terms separately. In the following, the off-diagonal part
of the Hamiltonian will be treated as a perturbation and a theorem is presented that
allows to drop the time ordering constraint on the diagonal part of the Hamiltonian.
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Feynman’s disentanglement theorem:

Let F [M(τ), N(τ), . . . ] be a functional that defines the order of operation of the oper-
ators M(τ), N(τ), . . . via the order parameter τ , and let further U(τ) be another op-
erator depending on τ . Then the two functional expressions F [M(τ), N(τ), . . . ] and
F [M ′(τ), N ′(τ), . . . ], with M ′(τ) = U−1(τ)M(τ)U(τ), N ′(τ) = U−1(τ)N(τ)U(τ), . . .

are related via:

exp(

∫ τ1

τ0

P (τ)dτ)F [M(τ), N(τ), . . . ] = U(τ1)F [M ′(τ), N ′(τ), . . . ]U−1(τ0) , (5.7)

with exp(
∫ τ1
τ0
P (τ)dτ) being ordered with respect to τ and P (τ) is defined via U(τ) =

exp
(∫ τ
c P (τ ′)dτ ′

)
, where the lower integration limit c can be set arbitrarily.

It is important to note that in the defining equation of P (τ), U(τ) = exp
(∫ τ
c P (τ ′)dτ ′

)
,

the variable τ ′ has nothing to do with the time ordering constraint and is thus just a
dummy variable. This means that U(τ) only acts at the time point τ . Therefore, whereas
on the left hand side of the theorem the two expressions are subject to the same time
ordering constraint, on the right hand side the operators U(τ1) and U−1(τ0) act at spe-
cific times τ1 and τ0 and are thus disentangled from the time ordering constraint on
F [M ′(τ), N ′(τ), . . . ]. The disentanglement of U(τ) from the time ordering constraint is
also the main difference to the more routinely used interaction picture [46].

In the case studied in this thesis,

exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
= exp+

(
−i
∫ ∞
−∞

Ĥ0(τ)dτ

)
exp+

(
−i
∫ ∞
−∞

Ĥint(τ)dτ

)
(5.8)

F [M(τ)] can be associated with exp+

(
−i
∫∞
−∞ Ĥint(τ)dτ

)
and P (τ) is given by −iH0(τ).

Furthermore, the start and end times are given by τ0 = −∞ and τ1 = ∞, respectively.
Hence, direct application of the above theorem yields,

exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
= U(∞) exp+

(
−i
∫ ∞
−∞

H̃int(τ)dτ

)
U−1(−∞) , (5.9)

where

U(τ) = exp

(
−i
∫ τ

c
Ĥ0(τ)dτ

)
and H̃int(τ) = U−1(τ)Ĥint(τ)U(τ) . (5.10)

Setting c = −∞ simplifies the above expression as it implies that U(−∞) = 1 and hence
U−1(−∞) = 1. As has been pointed out previously, the operators U(∞) and U(−∞)

now act at specific time points and are thus not subject to the time ordering anymore.
The new interaction part H̃int(τ) can be evaluated as

H̃int(τ) =
1

2
V (τ) exp(−iF0

∫ τ

−∞
τ ′dτ ′)|1〉d〈2|+

1

2
V ∗(τ) exp(+iF0

∫ τ

−∞
τ ′dτ ′)|2〉d〈1|

(5.11)
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by invoking the definitions of Eq.(5.6) and recalling that

exp

((
a 0

0 b

))
=

(
exp(a) 0

0 exp(b)

)
. (5.12)

Finally, the disentangled expression for the positively time ordered exponential is given
by,

exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
= exp

(
−i
∫ ∞
−∞

H0(τ)dτ

)
exp+

(
−i
∫ ∞
−∞

H̃int(τ)dτ

)
(5.13)

with H̃int(τ) defined in Eq.(5.11). In principal, the same procedure can be applied to the
negatively time ordered exponential. However, it is more convenient to calculate the ma-
trix element containing the positively time ordered exponential first. The negatively time
ordered matrix element is then obtained by invoking that it is the hermitian conjugate
of the positively time ordered one, but with negative time ordering.

5.1.3 A perturbation series solution

The positive time ordered exponential in Eq.(5.13) can be expanded using the Dyson
series defined in Eq.(5.4). By taking the two-one matrix element (〈2| . . . |1〉) of the series
and multiplying it by its hermitian conjugate, the transition probability is obtained as a
perturbation series in terms of the off-diagonal coupling strength V0 [1,44]. For the sake
of clarity, the details of this derivation are omitted here and only the final result is given
(the interested reader is referred to the appendix, section 7.3),

Ptra(∞) =

〈 ∞∑
n=1

(−1)2n

(
V 2

0

4

)n
L(n)

〉
, (5.14)

with

L(n) =

n∑
m=1

∫ ∞
−∞

dτ1

∫ ∞
τ1

dτ2 . . .

∫ ∞
τ2m−2

dτ2m−1

∫ ∞
−∞

dτ2m

∫ τ2m

−∞
dτ2m+1 . . .

∫ τ2n−1

−∞
dτ2n

×G(τ1)G∗(τ2) . . . G(τ2m−1)G∗(τ2m)G(τ2m+1) . . . G∗(τ2n)

× exp

(
i
F0

2

2n∑
k=1

(−1)kτ2
k

)
, (5.15)

where G(τ) = (1 + eiφ(τ)). The above perturbation series is analogous to the one derived
by Kayanuma [1,44], but extends it to complex off-diagonal coupling terms. In the case of
constant off-diagonal coupling terms, i.e. the standard LZ model, Kayanuma has shown
that the series can be summed up to give the LZ formula,

Psur(t =∞) = 1− e−
πV 2

0
2F0 ,

given in Eq.(2.36). It is evident that the applicability of this perturbation series will be
strongly dependent on the ability to evaluate the integrals of L(n). In particular, the
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exact form of G(τ) will play a crucial role and for the system studied in this thesis this
already proves tricky for the lowest order terms, as the number of terms that have to be
integrated to calculate L(n) grows as 4n. Nevertheless the formula can be used to obtain
a qualitative understanding of the dependence of the transition probability on the noise
parameters specifying φ(t). Kayanuma himself studied the influence of exponentially
correlated noise in the off-diagonal on the transition probability. He could show that in
the limit of very rapid fluctuations (correlation time → 0) and large average value of the
off-diagonal term (V0 →∞), the transition probability is Ptra(∞) = 1

2 .
A similar behaviour has been demonstrated in section 4.2.2 for large V0 and high

characteristic frequency ω0. One could therefore speculate that Kayanuma’s statement,
“... in the presence of the rapid fluctuations with large amplitude, the system forgets from
which branch [which initial state, d〈1| or |2〉d] it has come and is equally distributed to d〈1|
and |2〉d after the passage of the crossing region”, is a general feature of noise influenced
LZ transitions.

5.2 Application of the solution to limiting cases

In this section, the perturbation series in Eq.(5.14) will be used to calculate the tran-
sition probability from the diabatic ground state |1〉d to the diabatic first excited state
|2〉d. Unfortunately, the rather complex structure of the formal solution does not allow
us to give a closed form expression for the expansion coefficients L(n). Emphasis will
therefore be put on two limiting cases that shed light onto the numerical results obtained
in chapter 4. The first limiting case considered is the ‘small coupling’ limit, i.e. V 2

0
2F0
� 1

and the second one is the ‘small coupling, small damping’ limit, i.e. V 2
0

2F0
� 1 and Γ� 1

.

5.2.1 Small coupling limit

It is expected, that in the small coupling limit only the first few terms of the perturbation
series will contribute, as higher order terms scale with (V 2

0 )n. In the following the first
term of Eq.(5.14) is calculated explicity and an estimate of the second order correction
is given. Using that the average of a sum, is the sum of the averages, Eq.(5.14) and
Eq.(5.15) define the first order term as,

P
(1)
tra(∞) =

V 2
0

4

〈∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2(1 + eiφ(τ1))(1 + e−iφ(τ2)) exp

(
iF0

2
(τ2

2 − τ2
1 )

)〉
=

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2(1 + 〈eiφ(τ1)〉+ 〈e−iφ(τ2)〉+ 〈ei(φ(τ1)−φ(τ2))〉) exp

(
iF0

2
(τ2

2 − τ2
1 )

)
(5.16)

The first three terms of this integral are constant in τ1 and τ2, as Eq.(2.46) can be used
to evaluate the average of eiφ(τ) as,

〈eiφ(τ1)〉 = exp

(
−〈φ

2〉
2

)
= 〈e−iφ(τ2)〉 . (5.17)
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Furthermore, the term 〈ei(φ(τ1)−φ(τ2))〉 can be evaluated by invoking that the static prob-
ability density distribution of φ(τ) is of gaussian form and that for gaussian processes
the relation〈

exp

(
i

p∑
o=1

qpXp

)〉
= exp

−1

2

p∑
o,r=1

qpqr〈XqXr〉+ i

p∑
o=1

〈Xo〉qo

 , (5.18)

where Xo is a gaussian process, holds [39]. Hence, application of Eq.(5.18) and Eq.(2.48)
yields

〈ei(φ(τ1)−φ(τ2))〉 = exp

(
1

2
〈φ(τ1)φ(τ2)〉

)
= exp

(
〈φ2〉

2
e−Γ(τ2−τ1)

(
cos(ω1(τ2 − τ1)) +

Γ

ω1
sin(ω1(τ2 − τ1))

))
,

(5.19)

as 〈φ(τ)〉 = 0. Inspite of the seemingly complex functional dependence on τ1 and τ2 in
the above equation, the first order term of the perturbation series can still be calculated
explicitly. A change of variable to µ = (τ1 + τ2)/2 and σ = (τ2− τ1) [1] recasts Eq.(5.16)
in the following form,

P
(1)
tra(∞) =

V 2
0

4

∫ ∞
−∞

dµ

∫ ∞
−∞

dσ exp (iF0µσ)

[
((1 + 2 exp

(
−〈φ

2〉
2

)
+ exp

(
〈φ2〉

2
e−Γσ

(
cos(ω1σ) +

Γ

ω1
sin(ω1σ)

))]
. (5.20)

The integration over µ gives,

P
(1)
tra(∞) =

V 2
0 π

2

∫ ∞
−∞

dσδ (F0σ)

[
((1 + 2 exp

(
−〈φ

2〉
2

)
+ exp

(
〈φ2〉

2
e−Γσ

(
cos(ω1σ) +

Γ

ω1
sin(ω1σ)

))]
, (5.21)

as δ(x) = 1
2π

∫∞
−∞ dke

ikx, where δ(x) is the Dirac Delta function. And finally the inte-

gration over σ yields a closed from expression for P (1)
tra(∞),

P
(1)
tra(∞) =

V 2
0 π

2F0

(
1 + 2 exp

(
−〈φ

2〉
2

)
+ exp

(
〈φ2〉

2

))
. (5.22)

The first term of P (1)
tra gives the contribution stemming from the constant coupling term

in Eq.(5.1), modelling the first optical lattice. This is evident from the fact that a Taylor
expansion to first order of the LZ formula (Eq.(2.36)) gives exactly this first term. Term
two and three then provide a correction due to the second stochastic coupling terms in
Eq.(5.1), modelling the second stochastic optical lattice. It is immediately obvious that
P

(1)
tra can only give a reasonable approximation to Ptra(∞) for V 2

0
F � 1. Furthermore, the

expression for P (1)
tra is unbounded with respect to 〈φ2〉 and hence the condition 〈φ2〉 < 1
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Figure 5.1: Both figures show the diabatic transition probability versus the coupling
strength. The figure on the right shows the part highlighted by the rect-
angle in the left figure. The red dashed line is given by P (1)

d,tra (Eq.(5.22)).
The green solid line shows the transition probability given by the standard

LZ formula Pd,tra(∞) = 1−exp

(
−∆E2

effπ

2F0

)
, with an effective potential band

gap ∆Eeff = 1.878V0 as introduced in Eq.(3.6). The blue dashed-dotted line
shows the transition probability as obtained from a first order Taylor expan-
sion of the LZ formula defining the green solid line, i.e. Pd,tra(∞) =

∆EEffπ
2F0

.

has to be fulfilled as well.
Figure 5.1 shows the diabatic transition probability versus the coupling strength V0. As
expected the analytical solution P (1)

tra diverges quickly with increasing V0. On the other
hand, in the regime of very small V0, shown in the right figure, the analytical solution
and the LZ prediction for an effective band gap are in good agreement. Hence, it is
anticipated that in the regime of very small V0, the analytical solution should give a
good estimate of the ‘real’ diabatic transition probability.

Figure 5.2 shows the diabatic transition probability versus the rescaled noise frequency
ω0/ωB. As expected from figure 5.1, the analytical solution provides a good estimate of
the ‘average’1 value of the transition probability in the regime of very small V0 (figure on
the left). However, the discrepancies between the analytical solution and the numerical
solution become larger if V0 is increased (figure on the right). Moreover, the analytical
formula in Eq.(5.22) cannot account for any frequency dependence of the transition
probability. As a result, the practical use of the analytical solution derived in this section
is very limited, as all of the interesting physics lies in the ω0 dependence of the transition
probability.

1Here, ‘average’ is understood as the mean value of the transition probability around which the numer-
ical solution fluctuates for varying ω0.
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Figure 5.2: Both figures show the diabatic transition probability versus ω0/ωB. The
red solid line shows the transition probability as obtained from numerical
simulations of the ‘noisy’ LZ model (Eq. (3.3)). The blue dashed line shows
the transition probability as calculated from Eq.(5.22). The parameters are
F0 = 0.00762,Γ = 0.00762, 〈φ2〉 = 0.5 and V0 = 0.00625 (left figure) and
V0 = 0.015625 (right figure).

As an aside, preliminary calculations have shown that the 2nd order term P
(2)
tra leads

to a negative correction of the order of V
4
0 π

8F 2
0
, which will slow down the rapid divergence of

the solution in Eq.(5.22); it is also anticipated that the second order perturbation term
will carry a dependence on ω0.

5.2.2 Small coupling and small damping limit

It has been pointed out in section 2.4 that in the limit of small damping, i.e. Γ → 0,
the harmonic noise amplitude φ exhibits sinusoidal motion. In section 4.2.3 an effec-
tive model has been presented that approximates the harmonic noise variable φ(t) by a
deterministically oscillating phase [6, 42] such that,

φ(t) = A sin(ω0t) , with A ≈ 2
√
〈φ2〉 . (5.23)

This form of φ modifies the function G(τ) in Eq.(5.15) according to,
G(τ) = (1 + eiA sin(ω0τ)). Thus, the first term in the perturbation series of the tran-
sition probability of Eq.(5.14) is given by,

P
(1)
tra,ZD(∞) =

V 2
0

4

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2(1 + eiA sin(ω0τ1))(1 + e−iA sin(ω0τ2)) exp

(
iF0

2
(τ2

2 − τ2
1 )

)
=

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2(1 + eiA sin(ω0τ1) + e−iA sin(ω0τ2) + ei(A sin(ω0τ1)−A sin(ω0τ2)))

× exp

(
iF0

2
(τ2

2 − τ2
1 )

)
. (5.24)

Note that it is not necessary to take the average of the above expression as φ(t) is a
deterministic function of t, ω0. The first term in the integral can be evaluated in the

48



same way as has been done in section 5.2.1 and is obtained as,

V 2
0

4

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 exp

(
iF0

2
(τ2

2 − τ2
1 )

)
=
V 2

0 π

2F0
. (5.25)

The second term can be calculated by using the Jacobi-Anger expansion,

exp(iA sin(α)) =

∞∑
n=−∞

Jn(A) exp(inα) , (5.26)

where Jn denotes the n-th order Bessel function of the first kind. With this expansion
in place, the second term can be written as

V 2
0

4

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 exp

(
iF0

2
(τ2

2 − τ2
1 )

)
eiA sin(ω0τ1)

=
V 2

0

4

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 exp

(
iF0

2
(τ2

2 − τ2
1 )

) ∞∑
n=−∞

Jn(A) exp(inω0τ1)) . (5.27)

A change of variable to µ = (τ1 + τ2)/2 and σ = (τ2 − τ1) yields,

V 2
0

4

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 exp

(
iF0

2
(τ2

2 − τ2
1 )

) ∞∑
n=−∞

Jn(A) exp(inω0τ1))

=
V 2

0

4

∞∑
n=−∞

Jn(A)

∫ ∞
−∞

dµ

∫ ∞
−∞

dσ exp (iF0µσ + inω0(2µ− σ))

=
V 2

0

4

∞∑
n=−∞

Jn(A)

∫ ∞
−∞

dµ

∫ ∞
−∞

dσ exp (iµ(F0σ + 2nω0)) exp (−inω0σ))

=
V 2

0 π

2

∞∑
n=−∞

Jn(A)

∫ ∞
−∞

dσδ (F0σ + 2nω0)) exp (−inω0σ))

=
V 2

0 π

2F0

∞∑
n=−∞

Jn(A) exp

(
i2n2ω2

0

F0

)
(5.28)

The calculations for term three and four can be done in the same way, but are omitted here
for the sake of brevity. In the end, the first term in the perturbation series P (1)

tra,ZD(∞)

in the zero damping limit reads,

P
(1)
tra,ZD(∞) =

V 2
0 π

2F0

(
1+

∞∑
n=−∞

Jn(A) exp

(
i2n2ω2

0

F0

)
+

∞∑
m=−∞

Jm(−A) exp

(
−im2ω2

0

2F0

)

+

∞∑
k,l=−∞

Jk(A)Jl(−A) exp

(
iω2

0

2F0
(4k2 − l2)

))
. (5.29)

Evidently, this formula only gives reasonable results for V 2
0 π

2F0
< 1, as it has already been

the case in the ‘small coupling’ limit (Eq.(5.22)). Yet, there is a crucial difference between
the ‘small coupling’ limit and the ‘small coupling, zero damping’ limit, represented by
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Eq.(5.22) and Eq.(5.29), respectively. Namely, that the formula for P (1)
tra,ZD(∞) carries

an explicit dependence on ω0.
Unfortunately, the formula for P (1)

tra,ZD(∞) comes with two caveats, one more severe
than the other. Firstly, the infinite sums in the expression cannot be evaluated to a closed
form expression and one therefore can only calculate the P (1)

tra,ZD(∞) by truncating the
sums. This is not much of a problem, as higher order Bessel functions quickly decay for
A ≈ 1. Truncating the sums at n,m, k, l = 20 stabilised the resulting numerical value
for P (1)

tra,ZD up to order 10−3, for given V0, F0 and ω0. Secondly, the ω0 dependence of

P
(1)
tra,ZD leads to a small imaginary part in the transition probability, which by definition

it should not have. It is not clear to the author if this imaginary term is due to the fact
that only the first order term of the perturbation series is considered and if higher order
terms will cancel it or not. Nevertheless, it is so small (see figure 5.3), that it will be
neglected in the following and only the real part of P (1)

tra,ZD is plotted. Still, until this
issue is resolved the results to come shall be considered as preliminary.
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Figure 5.3: Analytical calculation for P (1)
tra,ZD vs ω0. The red solid lines show the mag-

nitude of P (1)
tra,ZD, the blue crosses show only the real part of P (1)

tra,ZD. The
parameters are F0 = 0.00762, A = 1.0 and V0 = 0.015625 (left figure) and
V0 = 0.03125 (right figure). The graphs have been obtained by evaluating the
sums (with Mathematica) in Eq.(5.29) up to n,m, k, l = 20. No appreciable
difference between the real part and the magnitude of P (1)

tra,ZD can be seen,
therefore the imaginary part will be neglected in the following.

In the following, the analytical prediction for the transition probability with a deter-
ministically oscillating phase, φ(t) = A sin(ω0t), is compared to numerical simulations.
Figure 5.4 shows a good qualitative agreement between the analytical prediction (red solid
line) and the numerical simulation (blue solid line with crosses). The analytical solution
accurately predicts the position of the maxima and minima in the range ω0/ωB = 0 . . . 8,
but shows some discrepancies for ω0/ωB > 8. Furthermore, the analytical solution sys-
tematically overestimates the transition probability. This is, however, expected as only
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Figure 5.4: The red solid line shows the real part of P (1)
tra,ZD. The blue solid line with

crosses shows the diabatic transition probability as obtained from numerical
simulations with a deterministically oscillating phase φ(t) = A sin(ω0t) (as
described in section 4.2.3). The system parameters are V0 = 0.015625, F0 =

0.00762 and A = 1.0 ≈ 2〈φ2〉 and the truncation points for the sums in
Eq.(5.29) are n,m, k, l = 20.

the first order term of the perturbation series has been taken into account and the second
order term gives a negative correction (see Eq.(5.14)). It is also noticeable, that some of
the finer features of the analytical solution cannot be seen in the numerical simulations;
it looks as if the numerical results provide an envelope for the analytical ones. This may
be due to a ‘smoothing’ of the finer features of the analytical solution when higher order
terms are considered. Numerical inaccuracies can be ruled out in this case, as the step
size in ω0/ωB should be small enough to resolve the fine structure of the solution.

A comparison to the numerical simulation with harmonic noise has been omitted, as
the noise destroys the oscillatory behaviour of Ptra versus ω0/ωB in this parameter regime
(compare to figure 4.2.2). Figure 5.5 unambiguously demonstrates the breakdown of the
analytical solution for large V0. Even though the general structure of the analytical solu-
tion (red curve) in figure 5.5 is the same as in figure 5.4, the magnitude of it is far larger
than unity. Moreover, there is no good qualitative agreement between the numerical
data and the analytical solution anymore. Figure 5.5 (right) shows the renormalised an-
alytical solution together with the numerical solution for the ‘noisy’ LZ-model as defined
in Eq.(3.3) and the numerical solution for the ‘noisy’ LZ model with a deterministically
oscillating phase φ(t) = A sin(ω0t), as defined in Eq.(4.8). It can be seen that the period
of oscillation and the position of the maxima and minima is approximately the same
for the two numerical simulations. However, the oscillations of the diabatic transition
probability strongly differ in amplitude (as in section 4.2.3). Nevertheless, the determin-
istically oscillating phase model still captures the essential features of the noise process
in this parameter regime. On the contrary, the analytical solution can neither predict
the position of the maxima and minima nor does it show the same period of oscillation.
Thus, for higher coupling strengths V0 the first order perturbation term is not sufficient
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Figure 5.5: The left figure shows the analytical solution as given in Eq.(5.29) (V0 =

0.0625, F0 = 0.00761954). The figure on the right also shows the analytical
solution (red solid line) but renormalised such that it approximately coincides
with the curves obtained by numerical simulations (blue line with crosses
and green line with circles) at ω/ωB = 0. The blue line shows the diabatic
transition probability for the ‘noisy’ LZ Hamiltonian as defined in Eq.(3.3),
with V0 = 0.0625, F0 = 0.00761954, Γ = 0.00761954, 〈φ2〉 = 0.5. The green
line shows the diabatic transition probability for a deterministically oscillation
phase φ(t) = A sin(ω0t) (as described in section 4.2.3), with V0 = 0.015625,
F0 = 0.00762 and A = 1.0.

to capture the important features of the influence of harmonic noise on the transition
probability.
The practical use of the analytical results presented in this section is rather limited.

Yet, especially the solution with a deterministic phase provides insight into the behaviour
of the diabatic transition probability. In Eq.(5.29), the initial decay and the oscillations
of the solution are due to the exp

(
i2n2ω2

0
F0

)
-like terms. Those terms arise solely due to

the sinusoidal nature of φ(t) (they were introduced via the Jacobi-Anger expansion).
Hence, even though the quantitative performance of the analytical solution is not very
good, it backs up the idea that the oscillations shown in figures 4.5 to 4.7 are due to
a (mis-)matching of energy scales/frequencies of the system and the noise process φ(t).
Moreover, the exp

(
i2n2ω2

0
F0

)
-like terms can account for the moving of the position of the

first minima with respect to varying F0 (see figures 4.9 and 4.11), because its position
is determined by the argument i2n2ω2

0
F0

. Unfortunately, the moving of the position of the
first minima with respect to V0 cannot be explained by the formula in Eq.(5.29). It
should also be mentioned that the analytical solutions presented here cannot account
for any ‘finite-time’ effects, as an infinitely long time evolution has been assumed in the
derivation.
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6 Conclusion

In the introduction, three questions were given that this thesis tried to answer. The first
question was, “Is it possible to approximate the dynamics of the BEC close to an avoided
crossing in the full modified WSS by an effective Landau-Zener model?” Out of the three
questions posed this is the only one with a clear answer. In section 3.2 it was shown that
it is indeed possible to locally approximate the full modified WSS by a ‘noisy’ two-level
LZ model, if and only if the original optical lattice and the stochastic optical lattice have
the same spatial periodicity. In such a case the effective LZ Hamiltonian is given by

ĤLZ,N =
1

2

(
−F0t V0(1 + eiφ(t))

V0(1 + e−iφ(t)) F0t

)
, (6.1)

where all the terms have the same meaning as previously.
The second question, “Can the effective Landau-Zener model reproduce the functional

dependence of the tunnelling probability on the frequency of the stochastic phase (as
observed in the full modified Wannier-Stark system)?” was much harder to answer.
In section 4.2.2 it was shown that there is a good qualitative agreement between the
transition probability as observed in the ‘noisy’ LZ model and the ‘noisy’ WSS (see
figure 6.1). It was further pointed out that the LZ model systematically overestimates
the diabatic transition probability (i.e. underestimates the tunnelling probability into
the first excited band). This behaviour is the worst for small coupling strengths V0

(γeff ' 1), but less significant for larger coupling (γeff < 1) (see figures 4.5 to 4.8). This
is because the ‘noisy’ LZ model cannot account for transitions far away from an avoided
crossing. Those transitions are strongly suppressed in the ‘noiseless’ WSS and for large
V0 in the ‘noisy’ WSS, but can happen for small V0 (γeff ' 1) in the ‘noisy’ WSS (see
section 4.2.2).
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Figure 6.1: Description see figure 4.6.
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Figure 6.2: For a description see figure 4.11.

Finally, question three, “Is it possible to predict and explain the position of the mini-
mum shown in figure 1.1?”, was answered by numerical simulations and also qualitatively
by analytical calculations. It was shown in section 4.2.2 that the position of the minimum
is determined by the effective band gap ∆Eeff of the ‘noisy’ LZ model, plus a constant
positive offset (see figure 6.2). Furthermore, this offset was shown to be sensitive to the
driving force F0, which was also backed up by analytical calculations for a determinis-
tic oscillating phase (see section 4.2.3). In addition to that, it was demonstrated (see
sections 4.2.3 and 5.2.2) that the initial decrease in the diabatic transition probability is
due to the sinusoidal nature of the harmonic noise process.

Coming back to question two again, it has to be admitted that it has only been
half answered in this thesis. The subsequent rise of the transition probability after the
minimum shown in figure 1.1 has not at all been discussed. In section 4.1 it was briefly
pointed out that the ‘noisy’ LZ model also, shows an increase in the diabatic transition
probability for high ω0. It was further mentioned that the point of increase depends on
the total integration time.

Analysing this sudden increase is subject to ongoing work, but qualitative explanations
can be given here. In the ‘noisy’ WSS this rise has already been explained by Tayebirad
and co-workers. They argued that in this regime the stochastic phase φ(t) fluctuates on a
much smaller time scale than the one of the system. In such a case, it is possible to average
over the stochastic potential term according to the distribution of φ(t) (Eq.(2.46)) and
one simply obtains a rescaled, but deterministic, potential. This new effective potential
describes the asymptotic value of the transition probability for high noise frequencies in
the full ‘noisy’ system well [6]. Unfortunately, in the ‘noisy’ LZ model averaging over the
harmonic noise variable to obtain an effective band gap ∆Eeff (Eq.(3.6)) does not work
very well for high noise frequencies (see figure 6.3). Moreover, it can be seen in figure 6.3
that the rise in the diabatic transition probability happens much earlier in the ‘noisy’ LZ
model than in the full ‘noisy’ WSS. Yet, there remains a general qualitative agreement
between the two models.
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Figure 6.3: Diabatic transition probabilities versus the dimensionless noise frequency
ω0/ωB. The green solid lines show the numerical simulations for the full
‘noisy’ system. The blue solid lines show the numerical simulations for the
‘noisy’ LZ model. The horizontal dashed lines give the diabatic transition
probability as obtained from the LZ formula with an effective band gap ∆Eeff .
The parameters are F0 = 0.00597, Γ = 0.00762, 〈φ2〉 = 0.5 and V0 = 0.03125

(left) and V0 = 0.0625 (right).

The sudden rise in the diabatic transition probability (decrease of tunnelling proba-
bility) can be intuitively explained within the LZ model. Figure 6.4 shows a schematic
representation of the energy levels in the ‘noisy’ LZ model. An atom of the BEC can
only tunnel (curly orange lines) from the ground to the first excited band at a specific
time t, if it has enough energy to bridge the energy gap between the two bands at time
t. If the driving force F0 is assumed to be small, this energy has to come from the har-
monic noise process. However, if the atom’s energy is too large, there is no state that
the atom can ‘jump’ to and hence no transition to the upper energy band can take place
either (indicated by the crossed out transition in figure 6.4). In the case of an infinitely
long time evolution of the system this does not pose a problem, because the energy gap
increases linearly for |t| � 1. So at some point in time even the most energetic atoms
can couple to the first excited band.
But if the time evolution is restricted to a finite interval (blue shaded area in figure

6.4), the band gap will never be large enough such that the ‘high’ energy atoms could
couple to the upper band. In figure 6.4 this means that the last atoms that can jump
into the upper energy band need to bridge an energy of ω′. Consequently, atoms with
higher energy than ω′ cannot jump into the upper band.
Of course, this argument is rather crude and neglects many important features of a

transition process such as the finite jump and relaxation times. Yet, it can explain at
least four important features connected to the rise in the diabatic transition probability
for high omega. First, it explains the rise itself. If the noise process feeds so much energy
into the system that the atoms of the BEC cannot couple to the upper band anymore,
tunnelling is suppressed and the diabatic transition probability rises. The frequency ω0

where this happens should be roughly determined by the maximal effective band gap in
the time interval. Secondly, it accounts for the moving of this frequency with respect to
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Figure 6.4: Schematic representation of the energy levels in the ‘noisy’ LZ model. The
curly orange lines indicate tunnelling (i.e. no diabatic transition) from the
ground to the first excited band. The blue shaded area represents the time
the system has to evolve, i.e. the total integration time. To compare the
‘noisy’ LZ model to the WSS this time has to be t/TB = 1 (definition of TB
see Eq.(2.18)).

the integration time; a longer integration time leads to a larger maximal effective band
gap and hence the critical frequency where the diabatic transition probability starts
to rise, increases. Thirdly, this also the reason why this ‘rise’ cannot be seen in the
analytical solution, as an infinitely long time evolution was assumed in this case. Lastly,
in the ‘noisy’ WSS high energy atoms can also couple to higher bands, thus allowing
more tunnelling events than in the ‘noisy’ LZ model and hence a later rise in the diabatic
transition probability.
As mentioned previously, this is ongoing work and it goes without saying that a more

thorough and quantitative analysis is needed here.

To summarise, the ‘noisy’ LZ model still captures many of the important features of
the ‘noisy’ WSS around an avoided crossing, but the agreement is worse than in the
‘noiseless’ case. One of the main shortcomings of the ‘noisy’ LZ model is the systematic
overestimation of the diabatic transition probability, which is due to transitions taking
place over the full Brillouin zone in the ‘noisy’ system. Moreover, in the ‘noisy’ WSS the
influence of higher bands cannot always be neglected (especially for high noise frequen-
cies), which poses a conceptual problem to a description by a LZ model.
‘ We conclude by giving an outlook on possible future work:

• The obvious continuation of the analysis of the BEC’s tunnelling dynamics for high
noise frequencies.

• The deterministic phase model given in section 4.2.3 represents an interesting possi-
bility to control the tunnelling dynamics of the BEC by tuning the phase frequency.
Hence, a more thorough analysis of the BEC’s behaviour in the full ‘noisy’ WSS
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with deterministic phase appears worthwhile.

• In reality, one is usually interested in the tunnelling probabilities of the BEC after
many avoided crossings. A natural extension of the work given here is thus to model
the ‘noisy’ WSS by subsequent LZ transitions; thereby keeping track of interference
effects between the part of the BEC that tunneled into the upper band and the
part that remained in the ground band [34] (see section 2.3). Again, studying the
influence of the noise on the interference effects might be interesting.

• Extend the ‘noisy’ LZ model to a three or four state model to capture the influence
of the next higher bands.

• Concerning a direct analysis of the full ‘noisy’ WSS, it may be a good idea to
analyse the energy spectrum of the Hamiltonian given in Eq.(3.1).
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7 Appendix

7.1 Numerical algorithm to generate harmonic noise

The algorithm to generate harmonic noise as defined in Eq.(2.44) is presented in this sec-
tion. The (numerical) integration of stochastic differential equations is not an easy task
and to do it rigorously, results from stochastic calculus are needed. Unfortunately, this
goes beyond the scope of this thesis and we will not give strict mathematical definitions
of the integrals used in the following derivation. Moreover, the algorithm presented in the
following has been provided by my co-workers/predecessors Stephan Burkhardt/Ghazal
Tayebirad, who themselve received it from Riccardo Mannella in Pisa. So neither the al-
gorithm, nor the way it is derived and presented here are my original works and analogues
derivations can also be found in [8, 42].
There are two key steps in the derivation of the algorithm. The first one is to write down

a formal solution to the two coupled stochastic differential equations defining harmonic
noise,

∂tφ = µ (7.1)

∂tµ = −2Γµ− ω2
0φ+

√
4TΓξ(t) . (7.2)

This will give φ(t) and µ(t) in terms of an integral over the stochastic variable ξ(t), which
itself will be a stochastic variable (α(t)) again. In the second step, the known properties
of φ(t) and µ(t), such as first and second moments and (cross-)correlation functions will
be used to determine the statistical properties of the new stochastic variable α(t). Once
the statistical properties of α(t) are known, it can be easily generated in terms of gaussian
random numbers.
The two coupled stochastic differential equations above can be written in matrix form

such that,

∂tx = A x +
√

4TΓ

(
0

ξ(t)

)
, (7.3)

with

x =

(
φ

µ

)
and A =

(
0 1

−ω2
0 −2Γ

)
. (7.4)

Formally, this equation can be integrated by means of an integrating factor and one
obtains,

x(t) = eAtx(0) +

∫ t

0

√
4TΓeA(t−t′)

(
0

ξ(t′)

)
dt′ . (7.5)
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The stochastic nature of ξ(t) does not allow to interpret the integral as a standard
Riemann integral. However, due to the gaussian nature of ξ(t) and because the function√

4TΓeA(t−t′) does not depend on ξ(t), the integral can be thought of as a sum over
gaussian variables [48]. Furthermore, this implies that the above integral will simply be
another gaussian variable with mean zero, as the sum over gaussian variables also is a
gaussian variable and 〈ξ(t)〉 = 0, as defined in Eq.(2.45). This new gaussian variable will
be called α(t) from now on. Moreover, the term exp(A) can be evaluated explicitly by
using the identity

exp(A) = U−1 exp(UAU−1)U , (7.6)

where U is the matrix composed of the eigenvectors of A. This yields M(t) = exp(A)

with,

M(t)1,1 =
1

λ− − λ+

(
−λ−etλ+ + λ+e

tλ−
)
, (7.7)

M(t)2,2 =
1

λ− − λ+

(
λ+e

tλ+ − λ−etλ−
)
, (7.8)

M(t)1,2 =
1

λ− − λ+

(
etλ+ − etλ−

)
, (7.9)

M(t)2,1 =
λ−λ+

λ− − λ+

(
−etλ+ + etλ−

)
(7.10)

and λ± = −Γ±
√

Γ2 − ω2
0. Here and in the following subscripts indicate matrix/vector

elements. Finally, Eq.(7.5) can be re-expressed as

x(t) = M(t)x(0) + α(t) . (7.11)

So far, nothing apart from a formal integration of Eq.(2.44) and algebraic manipulations
has happened. But the fact that the statistical properties of the variables φ(t) and µ(t)

are known (see Eq.(2.47)), will be used to determine those of the gaussian variable α(t).
This can be done by matching the first/second moment and the correlation function
〈φ(t)µ(t)〉 of the left hand side of Eq.(7.5) with those on the right hand side. I.e.

〈(
φ

µ

)〉
= 〈M(t)x(0) + α(t)〉 , (7.12)
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which gives,

〈φ(t)2〉 =
T

ω2
0

=

〈[(
M
(
φ(0)

µ(0)

))
1

+ α1

]2〉
= 〈φ(0)2〉M2

1,1 + 〈µ(0)2〉M2
1,2 + 〈α2

1〉

⇒ 〈α2
1〉 =

T

ω2
0

(
1−M2

1,1 − ω2
0M

2
1,2

)
,

(7.13)

〈µ(t)2〉 = T =

〈[(
M
(
φ(0)

µ(0)

))
2

+ α2

]2〉

⇒ 〈α2
2〉 = T

(
1−M2

2,2 −
M2

2,1

ω2
0

)
,

(7.14)

〈φ(t)µ(t)〉 = 0 =

〈[(
M
(
φ(0)

µ(0)

))
1

+ α1

][(
M
(
φ(0)

µ(0)

))
2

+ α2

]〉

⇒ 〈α2α1〉 = −T
(
M1,2M2,2 +

M2,1M1,1

ω2
0

)
,

(7.15)

where the definitions of Eq.(2.47) and Eq.(2.48), 〈φ(t)2〉 = T
ω2

0
, 〈µ(t)2〉 = T and

〈φ(t)µ(t)〉 = 0 have been used. Note that 〈α1〉 and 〈α2〉 are both zero, as 〈φ〉 = 0

and 〈µ〉 = 0. The statistical properties of α(t) have now been determined; however, to
actually produce a harmonic noise process it is necessary to generate α(t) such that it
fulfils the properties defined in Eq.(7.15). This can be done by first generating a vector z
composed of two gaussian random variables with zero mean and unit variance and then
multiplying it by a suitably chosen matrix [8], such that

α = Bz =

(
B11 0

B21 B22

)
z , (7.16)

where B is determined by the statistical properties of α. I.e.,

〈α2
1〉 = 〈(B11z1)2〉

= B2
11〈z2

1〉
= B2

11

(7.17)

〈α2
2〉 = B2

21 +B2
22 (7.18)

〈α1α2〉 = B21B11. (7.19)

solving this set of equations gives the components of B as,

B2
11 = 〈α2

1〉 B21 =
〈α1α2〉
B11

B2
22 = 〈α2

1〉 −B2
21, (7.20)

which finally leads to an explicit form of α,

α =

√〈α2
1〉 0

〈α1α2〉√
〈α2

1〉

√
〈α2

1〉 −
(〈α1α2〉)2

〈α2
2〉

 z . (7.21)
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Lastly, it is possible to write down an iteration formula for the harmonic noise process
by inserting the specific form α into Eq.(7.11),(

φ(t+ ∆t)

µ(t+ ∆t)

)
= M(∆t)

(
φ(t)

µ(t)

)
+ B(∆t)z . (7.22)

Note that the two matrices M and B both depend on the system parameters T,Γ and
ω0 via Eqs.(7.7)-(7.10) and Eqs.(7.13)-(7.15), and on the step size ∆t. Moreover, both
are completely deterministic, the stochasticity of Eq.(7.22) only enters via the vector z.
The algorithm in Eq.(7.22) can be used to generate the harmonic noise process de-

scribed in section 2.4. This is done in the following way. For each noise realisation

an initial vector
(
φ(t0)

µ(t0)

)
is chosen according to the probability density distribution in

Eq.(2.46). To calculate the new state
(
φ(t0 + ∆t)

µ(t0 + ∆t)

)
two gaussian random numbers with

zero mean and unit variance are generated (to give z). Then the two matrices M(∆t)

and B(∆t) are calculated according to Eqs.(7.7)-(7.10) and Eqs.(7.13)-(7.15). Once this

is done Eq.(7.22) is used to obtain the new state. In the next step
(
φ(t0 + ∆t)

µ(t0 + ∆t)

)
is used

as the new initial state and the procedure above is repeated to obtain
(
φ(t0 + 2∆t)

µ(t0 + 2∆t)

)
.

There are two important features of this algorithm that should be mentioned. First,
the algorithm is accurate for any step size ∆t. This somewhat surprising feature stems
from the fact that in the derivation of the specific form of α no approximations have been
made. Secondly, for each time step two gaussian random numbers have to be generated,
which leads to a considerable increase in computation time compared to algorithms that
only need one random number per step. To conclude, the algorithm presented is highly
accurate but rather slow for small step sizes.
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7.2 Some more numerical results

In this section, more numerical results are presented to back up qualitative explanations
given in the main text (there will be references to the figures presented here). The figures
given here have been omitted from the main text to keep it concise and stay focussed on
the main results.
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Figure 7.1: Both figures show the diabatic transition probability versus the rescaled noise
frequency in the ‘noisy’ LZ model (numerical simulations have been done as
described in section 4.1). In figure 7.1a the parameters are V0 = 0.0625,
F0 = 0.00762, Γ = 0.0 and 〈φ2〉 = 0.5 (blue solid line with errorbars); the
lines without errorbars have been obtained with a deterministically oscillating
phase (see section 4.2.3) with A = 1.5 (red solid line) and A = 0.5 (green
solid line). In figure 7.1b Γ has been varied. V0, F0 and 〈φ2〉 are the same
as in 7.1a, but Γ = 0.0762 (red solid line), Γ = 0.0152 (blue solid line) and
Γ = 0 (green solid line).

In figure 7.1a it can be seen that different amplitudes of the deterministically oscillating
phase lead to a change in the structure of the peaks. For example, the green line shows
much smaller peaks than the red one. Also the position of the peaks varies slightly.
Averaging over the amplitude A of the deterministic phase according to the equilibrium
distribution of the harmonic noise (Eq.(2.46)), leads to a broadening of the peaks and a
reduction of their height (blue solid line).
Figure 7.1b shows the diabatic transition probability in the ‘noisy’ LZ model for differ-

ent values of the damping Γ. It can be seen that there is hardly any difference between
Γ = 0 (green solid line) and Γ = 0.00762 (blue solid line), however for Γ = 0.0762 the
peak structure vanishes. For an interpretation of this effect see section 4.2.3.

The following figure (7.2) has not been referenced in the main body of the text and is
only given for completeness. This time, the variance of the noise process has been varied.
Evidently, increasing the variance of the noise process leads to a stronger influence of
the noise on the system and a quicker decay of the transition probability. This can be
easily understood in terms of the deterministically oscillating phase model, by recalling
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Figure 7.2: The diabatic transition probability versus the rescaled noise frequency in the
‘noisy’ LZ model is shown again. This time the variance of the noise process
has been varied. The parameters are V0 = 0.0625, F0 = 0.00762, Γ = 0.00762

and 〈φ2〉 = 10 (red solid line), 〈φ2〉 = 2 (brown solid line), 〈φ2〉 = 0.5 (blue
solid line) and 〈φ2〉 = 10 (green solid line).

that the amplitude A ∝
√
〈φ2〉. Thus if the variance is very small, the harmonic noise

amplitude φ(t) exhibits small oscillations around its mean value and only provides a
small perturbation to the noiseless system. However, if the variance is very large, φ(t)

has a large amplitude which leads to ‘wild’ oscillations of the second strochastic optical
lattice (see 3.1). Eventually, this destroys the band structure of the system and leads to
an incoherent superposition of the diabatic energy states (i.e. the transition probability
tends to 1/2 as can be seen in figure 7.2).

7.3 Derivation of the perturbation series for the transition
probabilities

In section 5.1.3 a perturbation series in terms of the off-diagonal coupling V0 has been
given for the diabatic transition probability in the ‘noisy’ LZ model. In this section the
perturbation series will be derived. It is expected that this treatment is analogues to
Kayanuma’s [1, 44], even though he does not give it explicitly in his papers.
Recall that the transition probability is given by,

Ptra(∞) =

〈
d〈2| exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|1〉d〈1| exp−

(
i

∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|2〉d

〉
.

(7.23)

We proceed by calculating the two matrix elements one at a time and only take the
average over the noise process afterwards. Using Eq.(5.13) the first matrix element can
be written as,
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d〈2| exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|1〉d = (7.24)

d〈2| exp

(
−i
∫ ∞
−∞

H0(τ)dτ

)
exp+

(
−i
∫ ∞
−∞

H̃int(τ)dτ

)
|1〉d (7.25)

Identity(5.12) can then be used to write

exp

(
−i
∫ ∞
−∞

H0(τ)dτ

)
= exp(

i

2

∫ ∞
−∞

F0τdτ)|1〉d〈1|+ exp(− i
2

∫ ∞
−∞

F0τdτ)|2〉d〈2|

(7.26)

≡ A∗|1〉d〈1|+A|2〉d〈2| , (7.27)

where exp(− i
2

∫∞
−∞ F0τdτ) has been abbreviated with A. Therefore, the matrix element

becomes,

d〈2| exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|1〉d = Ad〈2| exp+

(
−i
∫ ∞
−∞

H̃int(τ)dτ

)
|1〉d . (7.28)

Let us proceed by expanding the term exp+

(
−i
∫∞
−∞ H̃int(τ)dτ

)
in terms of the Dyson

series of Eq.(5.4).

exp+

(
−i
∫ ∞
−∞

H̃int(τ)dτ

)
=

1 +

∞∑
n=1

(−i)n
∫ t

−∞
dτ1

∫ τ1

−∞
dτ2 . . .

∫ τn−1

−∞
dτnH̃int(τ1)H̃int(τ2) . . . H̃int(τn) (7.29)

In the following the first few terms of this series are written out explicitly by using the
definition of H̃int(τ) in Eq.(5.11) and abbreviating exp(−iF0

∫ τ
−∞ τ

′dτ ′) with e−iα(τ).
Inserting it into the matrix element gives:
1st Term:

Ad〈2|1|1〉d = 0 (7.30)

Furthermore, it can be seen that all terms with even n are going to be zero, because an
anti-diagonal matrix (H̃int(τ)) raised to an even power gives a diagonal matrix, i.e. the
d〈2| . . . |1〉d matrix element is zero.

n=1 term:

(−i)Ad〈2|
(

1

2

∫ ∞
−∞

V (τ1)e−iα(τ1)dτ1|1〉d〈2|+
1

2

∫ ∞
−∞

V ∗(τ1)eiα(τ1)dτ1|2〉d〈1|
)
|1〉d
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= (−i)A1

2

∫ ∞
−∞

V ∗(τ1)eiα(τ1)dτ1 (7.31)

n=3 Term:

(−i)2Ad〈2|
(

1

2

∫ ∞
−∞

∫ τ1

−∞

∫ τ2

−∞
V (τ1)V ∗(τ2)V (τ3)e−iα(τ1)e+iα(τ2)e−iα(τ3)dτ1dτ2dτ3|1〉d〈2|

+
1

2

∫ ∞
−∞

∫ τ1

−∞

∫ τ2

−∞
V ∗(τ1)V (τ2)V ∗(τ3)e+iα(τ1)e−iα(τ2)e+iα(τ3)dτ1dτ2dτ3|2〉d〈1|

)
|1〉d

=
1

2
(−i)3A

∫ ∞
−∞

∫ τ1

−∞

∫ τ2

−∞
V ∗(τ1)V (τ2)V ∗(τ3)e+iα(τ1)e−iα(τ2)e+iα(τ3)dτ1dτ2dτ3 (7.32)

...

and so on. The positively time ordered matrix element is thus given by:

d〈2| exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|1〉d

=
1

2
(−i)A

∫ ∞
−∞

V ∗(τ1)e+iα(τ1)dτ1

+
1

8
(−i)3A

∫ ∞
−∞

∫ τ1

−∞

∫ τ2

−∞
V ∗(τ1)V (τ2)V ∗(τ3)e+i(α(τ1)−α(τ2)+α(τ3))dτ1dτ2dτ3

+
1

32
(−i)5A

∫ ∞
−∞

∫ τ1

−∞
. . .

∫ τ4

−∞
dτ1dτ2 . . . dτ5V

∗(τ1)V (τ2) . . . V ∗(τ5)

× e+i(α(τ1)−α(τ2)+α(τ3)−α(τ5)+α(τ5))

+ . . . (7.33)

Likewise, the negatively time-ordered matrix element can be calculated as,

d〈1| exp−

(
i

∫ ∞
−∞

ĤLZ,N (τ ′)dτ ′
)
|2〉d

=
1

2
iA∗

∫ ∞
−∞

V (τ ′1)e−iα(τ ′1)dτ ′1

+
1

8
i3A∗

∫ ∞
−∞

∫ ∞
τ ′1

∫ ∞
τ ′2

V (τ ′1)V ∗(τ ′2)V (τ ′3)e−i(α(τ ′1)−α(τ ′2)+α(τ ′3))dτ ′1dτ
′
2dτ
′
3

+
1

32
i5A∗

∫ ∞
−∞

∫ ∞
τ ′1

. . .

∫ ∞
τ ′4

dτ ′1dτ
′
2 . . . dτ

′
5V (τ ′1)V ∗(τ ′2) . . . V (τ ′5)

× e−i(α(τ ′1)−α(τ ′2)+α(τ ′3)−α(τ ′5)+α(τ ′5))

+ . . . (7.34)

Multiplying both terms together then gives,
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Term 1:
1

4
A∗A

∫ ∞
−∞

∫ ∞
−∞

V (τ ′1)V ∗(τ1)ei(α(τ1)−α(τ ′1))dτ1dτ
′
1

(7.35)

Term 2:

− 1

4
A∗A

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
τ ′1

∫ ∞
τ ′2

dτ1dτ
′
1dτ
′
2dτ
′
3V
∗(τ1)V (τ ′1)V ∗(τ ′2)V (τ ′3)

× e+i(α(τ1)−α(τ ′1)+α(τ ′2)−α(τ ′3))

− 1

4
A∗A

∫ ∞
−∞

∫ ∞
−∞

∫ τ1

−∞

∫ τ2

−∞
dτ ′1dτ1dτ2dτ3V (τ ′1)V ∗(τ1)V (τ2)V ∗(τ3)

× e−i(α(τ ′1)−α(τ1)+α(τ2)−α(τ3)) (7.36)

and so on. There are two more simplifications that can be made here, first A∗A = 1,
as A is just a phase (see Eq.(7.27)) and secondly the exponents in the integral can be
evaluated explicitly. In Eq.(7.35) we have in the exponent,

i(α(τ1)− α(τ ′1)) = iF0(

∫ τ1

−∞
τ ′dτ ′ −

∫ τ ′1

−∞
τ ′dτ ′)

= iF0

∫ τ1

τ ′1

τ ′dτ ′ = i
F0

2
(τ2

1 − τ
′2
1 ) . (7.37)

The exponents in higher order terms can be evaluated in the same way. Putting together
all the information gathered here and relabelling the variables τ ′1 . . . τ ′n and τ1 . . . τn as
τ1 . . . τ2n we arrive at a formula similar to the one given by Kayanuma [1,44].

d〈2| exp+

(
−i
∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|1〉d〈1| exp−

(
i

∫ ∞
−∞

ĤLZ,N (τ)dτ

)
|2〉d

=

∞∑
n=1

(−1)2n

(
V 2

0

4

)n
L(n) (7.38)

with

L(n) =
n∑

m=1

∫ ∞
−∞

dτ1

∫ ∞
τ1

dτ2 . . .

∫ ∞
τ2m−2

dτ2m−1

∫ ∞
−∞

dτ2m

∫ τ2m

−∞
dτ2m+1 . . .

∫ τ2n−1

−∞
dτ2n

×G(τ1)G∗(τ2) . . . G(τ2m−1)G∗(τ2m)G(τ2m+1) . . . G∗(τ2n)

× exp

(
i
F0

2

2n∑
k=1

(−1)kτ2
k

)
, (7.39)

where G(τ) = (1 + eiφ(τ)). Hence, the transition probability is given by:

Ptra(∞) =

〈 ∞∑
n=1

(−1)2n

(
V 2

0

4

)n
L(n)

〉
. (7.40)
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