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(A study of open quantum systems):
In the system we are studying in the first part of this thesis a Bose-Einstein condensate is
loaded into the ground state of a one dimensional optical lattice. Acceleration of the lat-
tice causes Landau-Zener like tunneling to higher energy bands at avoided crossings. This
tunneling is the process we want to study. After the first Bloch period the condensate also
populates higher bands and can tunnel back to the ground state, causing a difference be-
tween the short time and long time decay rate. We establish a Floquet theory based model
to describe and manipulate this difference for various parameters of the lattice acceleration
and the potential depth.
A system of three spin-1

2 -atoms allows the construction of a qubit - in the subspace of total
angular momentum j = 1

2 - that is not affected by any magnetic field activity on the mag-
netic moments of the atoms, provided that all three atoms experience the same magnetic
field. If, however, there are stray fields of different direction or strength at the sites of the
atoms, the qubit will slowly decohere. It is the objective of the second part of this thesis to
examine the decoherence process and to establish the conditions, under which the lifetime
of the qubit is sufficiently long for practical uses.

(Eine Untersuchung offener Quantensysteme):
Im ersten Teil dieser Arbeit untersuchen wir ein Bose-Einstein-Kondensat, das in den Grund-
zustand eines eindimensionalen optischen Gitters gebracht wird. Wenn man das Gitter be-
schleunigt kann das Kondensat am Rand der Brillouin Zone in höhere Energiebänder tun-
neln. Diesen Prozess wollen wir untersuchen und mit dem Landau-Zener Modell vergleichen.
Nach der ersten Blochperiode bevölkert das Kondensat bereits höhere Bänder und kann wie-
der zurück in den Grundzustand tunneln, wodurch eine Differenz zwischen der Kurz- und
Langzeitzerfallsrate entstehen kann. Wir schlagen ein Modell auf Grundlage der Floquet
Theorie vor, um diese Differenz für verschiedene Einstellungen der Gitterbeschleunigung
und Potentialtiefe zu beschreiben.
In einem System aus drei Spin-1

2 -Atomen kann man ein qubit im Unterraum mit Drehmo-
ment j = 1

2 konstruieren, das von der Wirkung eines äußeren Magnetfelds auf die magne-
tischen Momente der Atome nicht beeinflusst wird, wenn die Feldstärke bei allen Atomen
den gleichen Wert hat. Wenn es aber Streufelder verschiedener Richtung oder Stärke am
Ort der Atome gibt, zerfällt das qubit langsam mit der Zeit. Im zweiten Teil dieser Arbeit
wird der Dekohärenzprozess dieses Systems untersucht um herauszufinden, unter welchen
Bedingungen die Lebensdauer des qubits lange genug für praktische Anwendungen ist.
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1. Introduction

The experimental control of atoms in optical lattices has improved in recent years, which
makes it possible to manipulate and study atomic quantum systems at an increasingly high
level of precision [1, 2]. In this Diplom thesis we investigate two such open systems, in which
the fidelity (survival probability) of the respective initial state decays due to a coupling to
an external perturbation.
In the first part of the thesis, which was conducted in cooperation of Sandro Wimberger’s
group in Heidelberg with the experimental group of Ennio Arimondo in Pisa, we study the
time evolution of a Bose-Einstein condensate (BEC) loaded into a one-dimensional optical
lattice. Such systems are studied for their own purpose and are also used to simulate solid
state systems that are not yet within the same level of experimental control. In the Pisa
experiment [2, 3] it is possible to tune down the atom-atom interaction in the BEC to realize
an effective one particle model. In addition, the experimentalists can achieve a very narrow
probability distribution in momentum space, much smaller than the size of a Brillouin-zone.
The BEC is initially distributed tightly around the center of the lowest energy band. In
analogy to the behavior of electrons in a solid, adiabatic acceleration of the lattice causes
Bloch oscillations [4, 5] of the condensate. A fast acceleration increases the diabatic coupling
to higher bands, causing a decay of the ground state amplitude [2]. This is the decay process
we want to study.
A similar experiment with a broad quasi-momentum distribution of a few Brillouin zones
has been conducted with cold atoms [6, 7]. In the Pisa BEC experiment with its very narrow
quasi-momentum distribution even the tunneling process occurring when the condensate is
at the edge of the Brillouin zone can be resolved in time. That is one of the reasons why the
earlier theory developed in [7] cannot be used for this setup, see section 2.7. We propose a
different theoretical description in this thesis.
Denoting the potential height and wavenumber of the laser with V and kL, the lattice
acceleration with a and the atomic mass with m, the Hamiltonian of the system is

H =
∫ ∞
−∞

dp 1
2m (p+mat)2 |p〉 〈p|+

∫ ∞
−∞

dxV cos (2kLx) |x〉 〈x| . (1.1)

Within a reasonable range of parameters with not too large values of V and a one can
use the Landau-Zener model [8, 9] to approximate this Hamiltonian. In [10] this model is
reviewed and analyzed with a focus on the predicted tunneling time between the two adia-
batic states of the Landau-Zener model, see section 2.6. The adiabaticity of a system can be
characterized within Landau-Zener theory by the parameter V 2

a , which is then proportional

11



1. Introduction

to the logarithm of the probability

Pa = e−
π
2
V 2
a (1.2)

of remaining in the ground state after each Bloch oscillation, see for example [11]. We
will do the calculation with a very close numerical approximation of the Hamiltonian and
derive that once the second band is populated, which happens after one Bloch period,
phase dependent tunneling from the second band back to the lowest band causes deviations
from the Landau-Zener tunneling probability. In a reasonable parameter range, this process
accounts for resonances in two parameters that characterize the decay of the system, the
long time decay rate γ (previously observed in [12]) and the adiabatic fidelity intercept Z,
see section 3.4.1 for the detailed definitions and section 3.4 for the physical explanation of
the resonances. Comparison with available experimental data (e.g. Figure 3.5) suggests that
the physical setup is well described by our calculation and we can expect to see also the
predicted Z resonances (Figure 3.10) in future experiments.
The second part of this thesis was conducted in Berge Englert’s group in Singapore and
studies the decay of quantum information protected by a decoherence free subspace (DFS)
[13]. Such DFS schemes use the symmetries of a system to shield quantum information
against a particular decay channel.
In our case the rotational symmetry of a special set of spin states is exploited [14]. The
spin state of three spin-1

2 -atoms trapped in a triangular optical lattice decays because of
exposure to random magnetic fields. The particular states we study can be used to encode a
qubit that is invariant under rotation of all 3 atoms around the same angle. Such a rotation
is the effect of a homogeneous field on the atoms. Thus only the inhomogeneous part of
the B-field causes decoherence. While in the BEC system of part one the decay is due to
a deterministic acceleration, we now have to solve a stochastic differential equation. The
typical noise sources we have in mind are for example a current in the wires of a lab or
a bypassing truck. The frequency of such noise is low and we can assume the fields to be
classical. Another cause of decoherence is the internal interaction between the atoms. In
total the Hamiltonian for our model is

H = H0 +H1 +Hi (1.3)

consisting of the term
H0 = µBge

2~
~B ·
∑
j

~σj (1.4)

from an external constant field ~B we apply for stabilization,

H1(t) =
∑
j

µBge
2~

~bj(t) · ~σj (1.5)

caused by random fluctuation fields ~bj(t) at each atom site j and a term

Hi = µ0
4πr3

[
~µA · ~µB − 3(~µA · ~̂r)(~̂r · ~µB)

]
(1.6)

12



due to the atom-atom interaction. This study only cares about the effect of the Hamiltonian
(1.3) on the system and is a first step for a realistic description of the experiment. In a real
experiment there will in addition be other causes for decoherence, such as the center of mass
motion, which have to be considered for a more detailed description.
In our study we derive a white noise limit master equation for the system in section 5.1
and develop a numerical scheme in section 5.5 to verify the analytical result. We analyze
different methods to stabilize the setup, calculate the fidelity decay rates and compare the
3-atom case to similar setups with a different number of atoms.
In the first part of the thesis we studied an effective one particle problem. In the second part
we have more particles and in our system the initial state is entangled. We got interested
in the question which master equations can generate entanglement and which ones can not.
We answer this question for two examples in chapter 6. The first example studies master
equations with operators of the structure

H1 ⊗H2. (1.7)

In the second example we start with an arbitrary master equation, which could in principle
generate entanglement, and show that adding enough noise to the equation can completely
suppress the creation of entanglement.
In the next chapter we start with the first part of the thesis. We introduce the experimental
setup, sum up some preliminaries we need for our theory and give a review of two previous
papers.
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Landau-Zener tunneling in an optical
lattice
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2. Preliminaries

In this chapter we give an abstract in 2.1, introduce the Arimondo group’s experimental
setup in section 2.2, rephrase some well known theoretical facts in sections 2.3-2.5 and give
a review of two papers ([10, 7] describing similar physical situations in section 2.6 and 2.7.

2.1. Abstract

In the system we are studying a Bose-Einstein condensate is loaded into the ground state
of a one dimensional optical lattice. Acceleration of the lattice causes Landau-Zener like
tunneling to higher energy bands at avoided crossings. This tunneling is the process we
want to study. After the first Bloch period the condensate also populates higher bands and
can tunnel back to the ground state, causing a difference between the short time and long
time decay rate. We establish a Floquet theory based model to describe and manipulate
this difference for various parameters of the lattice acceleration and the potential depth.

2.2. Experimental setup

Before we develop the theoretical description, let us introduce the physical setup we want
to study. For this information we quote and sum up the data given in the previous paper of
Zenesini et al. [2].
In the experiment built by the group of Ennio Arimondo in Pisa a Bose-Einstein condensate
of 5×104 rubidium-87 atoms is loaded into an optical dipole trap with a mean trap frequency
of about 80 Hz along the longitudinal direction, creating a narrow momentum distribution of
the condensate. In the next step a one dimensional optical lattice is switched on adiabatically
within 100ms. The condensate should have enough time to adiabatically relax to the energy
ground state. The lattice is created using two counter propagating lasers with wavelength
λ = 842nm, leading to a sinusoidal potential with lattice constant dL = λ

2=421nm. A small
tunable frequency difference between the lasers is used to control the acceleration of the
lattice. This corresponds to an effective acceleration of the condensate in the rest frame of
the lattice [3].
The experiment aims to measure the survival probability of the condensate to remain in a
given state. This state can be defined either in a diabatic or in an adiabatic basis. In the
diabatic basis the survival probability is defined as the probability of the condensate to stay
in the momentum eigenstates of the first Brillouin zone in the lab system, normalized by the
total number of atoms. The adiabatic survival probability is the probability to stay in the
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2. Preliminaries

lowest energy band of the reference frame that moves with the lattice. If this probability is
high, the condensate performs Bloch oscillations. More elaborate definitions and the details
of the measuring protocol will be described in section 3.2, as we first need to introduce some
notation to explain the protocol. There are some subtleties involving the measurement in
adiabatic basis which are discussed in section 3.2.6.
So let us now start to rephrase some basic definitions from physics literature.

2.3. The quasi free particle model for periodic lattices

As we are interested in the behavior of a dilute BEC we can neglect atom-atom interaction
by using a one particle model for our description. The quasi free particle model can be found
in all books on solid state physics, for example [15, 16]. In case of a constantly accelerated
one dimensional lattice with fixed wavelength and lattice depth, the Hamiltonian H in the
reference frame of the lattice is

H =
∫ ∞
−∞

dp 1
2m (p+mat)2 |p〉 〈p|+

∫ ∞
−∞

dxV0 cos (2kLx) |x〉 〈x| . (2.1)

Here p is momentum, m is the atomic mass, a is the lattice acceleration, V0 is the lattice
depth and kL is the wavenumber of the laser. Setting

~ = m = 2kL = 1 (2.2)

we can do the calculations in the dimensionless units of the system, the Schrödinger equation
now reads

i∂t = H =
∫
p

dp1
2 (p+ at)2 |p〉 〈p|+

∫
x

dxV0 cos (x) |x〉 〈x| . (2.3)

Using Fourier transform to rewrite the second term of H in the momentum basis we get

H =
∫
p

dp
(1

2 (p+ at)2 · |p〉 〈p|+ l

2V0 (|p〉 〈p+ 1|+ |p+ 1〉 〈p|)
)
. (2.4)

After setting the lattice length l = 1 this simplifies to

H =
∫
p

dp
(1

2 (p+ at)2 · |p〉 〈p|+ V0
2 (|p〉 〈p+ 1|+ |p+ 1〉 〈p|)

)
. (2.5)

Note: While |p〉 denotes the momentum eigenstate in the lab system, the prefactor p+ at is
the momentum in the lattice system. One observes that there are only transitions between
states with ∆p = p − p′ ∈ Z. This allows to decompose the Hamiltonian: We rename the
eigenstates and put them into groups with label κ ∈

[
−1

2 ,
1
2

)
⊂ R and index z ∈ Z within

each group:
p←→ z + κ. (2.6)

Now we arrive at the decomposition

H =
∫ 0.5

−0.5
dκHκ (2.7)
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2.4. Comparison to 2× 2 matrix model

with

Hκ =
∑
z∈Z

(1
2 (κ+ z + at)2 · |κ+ z〉 〈κ+ z|+ V0

2 (|κ+ z〉 〈κ+ z + 1|+ |κ+ z + 1〉 〈κ+ z|)
)
.

(2.8)
To calculate the time evolution of any momentum eigenstates |p0〉 = |z0 + κ0〉 we only need
the corresponding Hκ0 as there are no transitions between states with different κ, i.e. our
Hilbert space H can be written as

H = ⊕κHκ (2.9)

with independent time evolution for each Hκ, which can be represented by a time dependent
N× N matrix. The Hamiltonian for a given κ0 then reads

Hκ = 1
2



. V0 0 0 0 0 0 0
V0 . V0 0 0 0 0 0
0 V0 (κ0 − 1 + at)2 V0 0 0 0 0
0 0 V0 (κ0 + at)2 V0 0 0 0
0 0 0 V0 (κ0 + 1 + at)2 V0 0 0
0 0 0 0 V0 . V0 0
0 0 0 0 0 V0 . V0


(2.10)

in the momentum eigenbasis of the lab. The matrix (2.10) is the basis for our further study.
The eigenvalues and eigenvectors of the corresponding time independent matrix are referred
to as energy bands in literature. In this study we will sloppily refer also to the energy
eigenstates of the time dependent Hamiltonian (2.10) as energy bands, but we have to keep
in mind that now there is coupling between those bands.

2.4. Comparison to 2× 2 matrix model

To calculate the time evolution of a state which is in the lowest energy band one can
approximate the Hilbert space with the two states with lowest kinetic energy and use the
Hamiltonian (2.10) for those states only. This approximation is good, as long as the potential
energy is small, i.e. V0 � Erec and one only simulates one Bloch period. During this time
one only needs the two states with lowest kinetic energy to represent the two states with
lowest overall energy. The 2 × 2 Landau-Zener matrix with initial condition in the lowest
band then corresponds to the Hamiltonian

HLZ = 1
2

(
(κ0 − 1 + at)2 V

V (κ0 + at)2

)
(2.11)

which is equivalent to

HLZ = 1
2

(
(κ0 − 1)2 − 2at V

V κ2
0

)
(2.12)
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2. Preliminaries

because the time evolution of the system only depends on the difference ∆E of the diagonal
terms of HLZ(t) and not on their absolute value. This is a 2 × 2 matrix with ∆E ∝ t and
constant V , i.e. the well known Landau Zener model [8, 9] with finite initial time.1
This finite initial time is one of the reasons why the transition probabilities in the Wan-
nier Stark system may differ from the asymptotic2 Landau-Zener probabilities, which only
depended on V 2

F . Another reason is the existence of more than two bands in reality, which
becomes important for large values of V . A detailed discussion of these differences can be
found in section 3.
Let us briefly explain the choice of entries for the 2× 2 matrix: One might wonder why the
state with kinetic energy (κ0 + 1 + at)2 is not included in this model, as it has the same
kinetic energy as (κ0 − 1 + at)2 at t = 0. But while (κ0 + 1 + at)2 and (κ0 + at)2 become
degenerate at t = 0.5 and the (κ0 + 1 + at)2-state is the lowest kinetic energy state after
one period the energy of (κ0 + 1 + at)2 grows even further and has little contribution to the
state with lowest overall energy during the whole time considered. So we only need those
states to describe the dynamics in our regime. The validity of this statement will become
clearer in section 3.

2.5. Floquet’s Theorem

As we will later use the monodromy operator (sometimes also referred to as öne-cycle Flo-
quet operator") U from Floquet’s Theorem for the analysis of the solution of our differential
equation in the adiabatic basis, we briefly quote it here:

Floquet’s Theorem Let t ∈ R, E a Banach space over C, A(t) ∈ L(E,E) a continuous
function of time with period T . For the linear differential equation

ẋ = A(t)x (2.13)

there exist T -periodic functions Q ∈ C1(R, GL(E,E)) and B ∈ L(E,E) such that the
time evolution operator U(t) which is a solution to the linear equation for initial condition
x(0) = I can be represented as

U(t) = Q(t)etB. (2.14)

There exists also B̃ ∈ L(E,E) so that the monodromy operator U(T ) can be expressed as

U(T ) = eTB̃. (2.15)

For details see for example [17].

1see 2.6 for details of the Landau-Zener model.
2time evolution from t→ −∞ to t→∞.
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2.6. Vitanov’s paper

Vitanov [10] analyzes some properties of the Landau-Zener model, which corresponds to
our 2 × 2 model introduced in 2.4. Vitanov’s paper gives some results on the applicability
of the Landau-Zener model in various situations, for example a series of multiple avoided
crossings, which we want to study. He studies the limits of the LZ model which are due to
the finite tunneling times in real systems. Another limitation for its use is the assumption
of a two-level system, which we discuss in section 3. Raizen uses the Landau-Zener 2 × 2-
model for the description of a Wannier-Stark-system in a regime (2.32) with limited V . Also
equation (2.30) is an interesting result, which would be interesting to check experimentally.
That is why we give a short summary of the paper:
Putting the quasimomentum at t = 0 to κ0 = 1

2 , which is at the boundary of the Brillouin
zone we translate Vitanov’s results to our notation from section 2.4. This adjustment is
needed to have the maximal adiabatic coupling occur at t = 0 in both notations. In the
diabatic basis the Hamiltonian can be written as

Hd = 1
2

(
−at V

V at

)
. (2.16)

Vitanov also defines the scaled time τ and scaled coupling ω,

τ =
√
a

2 t, ω = V√
a
2

(2.17)

for his analysis. (Vitanov uses the notation β =
√

a
2 and Ω = V , but to make this work

consistent we stick with the notation introduced earlier.) The eigenvectors of Hd are

|1〉a = cos θ |1〉d − sin θ |2〉d (2.18)

and
|2〉a = sin θ |1〉d + sin θ |2〉d (2.19)

with
tan 2θ = ω

τ
. (2.20)

The adiabatic Hamiltonian then has the form

Ha =
(
−
√
τ2 + ω2 − ω

2(τ2+ω2)
− ω

2(τ2+ω2)
√
τ2 + ω2

)
. (2.21)

The analytical solution of the diabatic and adiabatic survival probability, obtained by Land-
au and Zener [8, 9] are

Pd(τ) = ω2

2 exp
(
−πω2/4

) ∣∣∣D−1+iω2/2
(
τ
√

2 exp (3iπ/4)
)∣∣∣2 (2.22)
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and

Pa(τ) = exp
(
−πω2/4

) ∣∣∣Diω2/2
(
τ
√

2 exp (3iπ/4)
)

cos (θ(τ))

−
(
ω/
√

2
)

exp (−iπ/4)D−1+iω2/2
(
τ
√

2 exp (3iπ/4)
)

sin (θ(τ))
∣∣∣2 . (2.23)

From (2.21) we can see that the the coupling in the adiabatic basis is a Lorentzian Function
of time and the unitless coupling time τc, which is the time at which the probabilities of
|1〉a and |2〉a change the most, is proportional to ω,

τc ∝ ω. (2.24)

On a side note, which is not in Vitanov’s paper but interesting for our further study, we
also calculate also the behavior of the coupling time in units of TBloch: As t ∝

√
1
aτ and

TBloch ∝ 1
a we get for the coupling time tc in units of TBloch

tc
TBloch

∝
√

1
a
ωa ∝ V. (2.25)

Looking at the adiabatic survival probability

Pa = exp(−πω2) (2.26)

we see that ω can also be interpreted as the adiabaticity parameter and Pa is only a function
of ω. Now I will state the new important results of Vitanov that we are interested in.
He defines the adiabatic jump time for ω � 1 as

τ jump
a = Pa(−∞)− Pa(∞)

P ′a(0) (2.27)

which has the simple geometric interpretation of the fidelity gap divided by the slope at
t = 0. As the time evolution of Pa is a monotonic function of time in this regime, the
definition can be applied and the jump time is just like the coupling time proportional to
ω. The result

τ jump
a = 2ω exp(−πω2/2) ≈ 2ω (2.28)

is in good agreement with what one would expect. For large values of ω however the time
evolution of Pa does not look like a jump, but there is a peak at t = 0 and after the peak
Pa decreases again. (2.27) clearly does not make sense in this regime, as P ′a(0) cannot be
interpreted as the jump speed anymore, as can be seen in Figure 3 of his paper. Vitanov
introduces the new definition

τ jump
a = τ jump,f

a − τ jump,i
a (2.29)

with τ jump,i
a defined as the initial time of the jump, where Pa crosses εPa(∞) for the first

time, where ε is to be chosen small. The final time τ jump,f
a of the jump is defined in an

analogous way. For ω � 1 this results in an ω2-exponentially growing jump time,

τ jump
a ≈

(4
ε

) 1
6
ω

1
3 exp(πω2/6), (2.30)
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which one would not expect on the first look at the Lorentzian coupling (2.21). Note ho-
wever, that the time of coupling of course still scales as ω, because the change of adiabatic
probabilities is still only related to the Lorentzian function. As the jump time is defined
relative to the jump probability, its exponential increase is only due to the exponential
decrease of the jump probability with increasing ω.

2.7. Niu and Raizen’s paper

2.7.1. Introduction

This section analyzes the steps of Niu and Raizen’s theory [7] for Landau-Zener tunneling.
The starting point is the same Hamiltonian

H =
∫
p

dp
(1

2 (p+ at)2 · |p〉 〈p|+ V0
2 (|p〉 〈p+ 1|+ |p+ 1〉 〈p|)

)
, (2.31)

in natural units as (2.5). Raizen’s initial condition is a uniform full occupation of the lowest
energy band. He assumes that transitions from the first to the second band are älmost
adiabaticï.e. the survival probability in the adiabatic basis after one Bloch period is high,
while the transition probability from the second to the third band and the probabilities of
all higher transitions are nearly 1 after each Bloch period. According to [18] this corresponds
to the condition

a′c < a < ac (2.32)

for the acceleration a. In the same units as above ac = πV 2
0 /2 is the critical acceleration for

the first gap and a′c = πV 4
0 /4 for the second gap.

A second condition for the validity of this theory is

V0 < 1 (2.33)

as otherwise one would have to consider more than two momentum eigenstates just to
reproduce the lowest band. This result can be obtained by first order perturbation theory
for the eigenstates. Both conditions can be graphically represented by Figure 1 in [7]. While
it is clear that V should be small for the 2 band model to be approximately valid, choosing
the boundary at V = 1 is the author’s choice.

2.7.2. Basic calculation

We do the derivation of Raizen’s theory in a slightly different order than in the original
paper, as this will make clearer the connection to the theory introduced in section 3. Let
us first realize that the 2 × 2 matrix theory is quite good in the regime V0 < 1. Thus it
can already be used for the simulation of one Bloch period (see 3.3.1). Let us denote the
eigenstates of the 2× 2 matrix as |0〉 (t) and |1〉 (t) with energies E0 < E1.
For t < TBloch we only need 2 states if we are within the regime of validity for V (see
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(2.33)) and a good approximation of the time evolution of a state in the lowest band with
quasimomentum κ is the expansion

|ψκ(t)〉 =
1∑

n=0
bκn(t) exp

−i
t∫

0

dt′Eκn(t′)

 |nκ〉 (t) (2.34)

with initial condition
bκ0 = 1
bκ1 = 0.

(2.35)

For better readability we drop the κ and t dependencies for now. Applying Schrödinger’s
equation to this expansion in energy eigenstates

i∂t
1∑

n=0
bn exp

−i
t∫

0

dt′En

 |n〉 =
1∑

n=0
Enbn exp

−i
t∫

0

dt′En

 |n〉 (2.36)

we get the time evolution of b0 and b1 at time t.

1∑
n=0

ḃn exp

−i
t∫

0

dt′En

 |n〉 = −
1∑

n=0
bn exp

−i
t∫

0

dt′En

 ˙|n〉 (2.37)

Projection on 〈0| yields

ḃ0 exp

−i
t∫

0

dt′E0

 = −b1 exp

−i
t∫

0

dt′E1

 〈0|1̇〉+ 0︸︷︷︸
∝〈0|0̇〉

. (2.38)

We used 〈0|0̇〉 = 0 which is due to 〈0|0〉 ≡ 1. Solving for ḃ0 we get

ḃ0 = −b1 exp

−i
t∫

0

dt′ (E0 − E1)

 〈0|1̇〉 (2.39)

and the analogous result

ḃ1 = −b0 exp

−i
t∫

0

dt′ (E1 − E0)

 〈1|0̇〉 (2.40)

for ḃ1. Next we integrate (2.40) with initial condition b1(0) = 0

b1 = 0−
t∫

0

dt′b0(t′) exp

−i
t′∫

0

dt′′ (E1 − E0)

 〈1|0̇〉 (2.41)

and using 〈1|0̇〉 = −〈0|1̇〉 we plug it into (2.39) and integrate again to get

ḃ0(t) = −
t∫

0

dt′ exp

i
t∫

t′

dt′′ (E0 − E1)

 〈1|0̇〉t′ 〈0|1̇〉t b0(t′) (2.42)
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2.7.3. First approximation

Now Raizen uses the slowly varying amplitude approximation b0(t) ≈ b0(t′), which is app-
licable as long as b0 does not change too much.

ḃ0(t) = −
t∫

0

dt′ exp

i
t∫

t′

dt′′ (E0 − E1)

 〈1|0̇〉t′ 〈0|1̇〉t︸ ︷︷ ︸
:=W̃κ(t,t′)

b0(t). (2.43)

For each κ we now have a kernel W̃ κ for the amplitude bκ that can be used to solve the
approximate differential equation for one Bloch period for initial condition bκ0(0) = 1 with

bκ0(t) = exp

− t∫
0

dt′
t′∫

0

dt′′W̃ κ (t′, t′′)
 . (2.44)

We can write the squared amplitude as

(bκ0(t))2 = exp

− t∫
0

dt′
t′∫

0

dt′′(2<(W̃ κ) + 2=(W̃ κ))
(
t′, t′′

)
= exp

− t∫
0

dt′
t′∫

0

dt′′2<(W̃ κ)
(
t′, t′′

) exp

− t∫
0

dt′
t′∫

0

dt′′2=(W̃ κ)
(
t′, t′′

)
(2.45)

and because the second factor in this expression is only a phase we get

Pκ = |bκ0(t)|2 = exp

− t∫
0

dt′
t′∫

0

dt′′W κ (t′, t′′)
 (2.46)

with kernel W κ = 2<(W̃ κ) for the survival probability Pκ. To find the survival probability
for a uniformly populated lowest band at t = 0 we integrate κ over its full range [−0.5, 0.5):

Ptot =
0.5∫
−0.5

dκPκ =
0.5∫
−0.5

dκ exp

− t∫
0

dt′
t′∫

0

dt′′W κ (t′, t′′)
 . (2.47)

Taking the time derivative we see that Ptot is the solution of the differential equation

Ṗtot = −
0.5∫
−0.5

dκ

 t∫
0

dt′W κ (t, t′)
Pκ. (2.48)
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2.7.4. Second approximation

To simplify the further calculation another approximation is used and the κ integral is drawn
into the exponent:

P = exp

− 0.5∫
−0.5

dκ
t∫

0

dt′
t′∫

0

dt′′W κ (t′, t′′)
 . (2.49)

Taking again the time derivative we see that the approximation solves the different diffe-
rential equation

Ṗ = −

 0.5∫
−0.5

dκ
t∫

0

dt′W κ (t, t′)
P. (2.50)

This second approximation can be summed up as replacing a differential equation of the
form

Ṗ = −
0.5∫
−0.5

dκ bκ(t, t′)Pκ (2.51)

by

Ṗ = −
0.5∫
−0.5

dκ
0.5∫
−0.5

dκ′ bκ(t, t′)Pκ′ (2.52)

i.e., averaging aκ over all possible quasimomenta. That is why in Raizen’s approximation
the steplike substructure on the time scale of Bloch oscillations, which is superposed on the
long term exponential decay is not present. Thus Raizen’s theory is only valid on a longer
timescale, the discreteness of steps in the tunneling processes [12, 2] cannot be seen.
Equation (2.49) can only describe one Bloch oscillation, as there is only one avoided crossing
in this 2× 2 matrix approximation. To get the equation

P = exp

− 0.5∫
−∞

dκ
t∫

0

dt′
t′∫

0

dt′′W κ (t′, t′′)
 (2.53)

for tunneling also after one period we have to extend the κ-integration to −∞. To get an
equation that is mathematically better to handle we also extend the integral to +∞, which
does not modify the tunneling rate too much, as long as V is small, but introduces a nice
temporal symmetry for the expression

P = exp

− t∫
0

dt′
t′∫

0

dt′′
∞∫
−∞

dκW κ (t′, t′′)
 (2.54)

which we want to use in the next section at (2.61).
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2.7.5. Simplification of the integral

We now show that the expression

W (t′, t′′) =
∞∫
−∞

dκW κ (t′, t′′) (2.55)

in

P = exp

− t∫
0

dt′
t′∫

0

dt′′W (t′, t′′)

 (2.56)

can be written as a one dimensional function of the time difference t̃ = |t′ − t′′| only. This
enables us to simplify the two dimensional integration in (2.56) to a one dimensional one.
For this purpose, let us write down W̃ κ(t′, t′′) very explicitly as

W̃ κ(t′, t′′) = exp

i
t′∫
t′′

dt′′′
(
E0
(
κ+ at′′′

)
− E1

(
κ+ at′′′

)) 〈1|0̇〉κ+at′′ 〈0|1̇〉κ+at′ . (2.57)

In the next step we use
a
d

dκ
= d

dt (2.58)

and rewrite the time integration as a κ integration in the exponent. The derivative of a
function f with respect to κ will be denoted as f ′ and write

W̃ κ(t′, t′′) = exp

i
κ+at′∫
κ+at′′

dκ′
E0 (κ′)− E1 (κ′)

a

 a2 〈1|0′〉κ+at′′ 〈0|1
′〉κ+at′ . (2.59)

Now we introduce the new variable t̃ = t′ − t′′ and use it to replace all dependencies of t′.

W̃ κ(t′, t′′) = exp

i
κ+at′′+at̃∫
κ+at′′

dκ′
E0 (κ′)− E1 (κ′)

a

 a2 〈1|0′〉κ+at′′ 〈0|1′〉κ+at′′+at̃ . (2.60)

As we will finally integrate κ from −∞ to ∞ anyway, see (2.55), we can just as well shift
the integration in κ, rename

κ+ at′′ + a
t̃

2 → κ (2.61)

and get rid of all t′′ to arrive at

W̃ κ(t̃) = exp

i
κ+a t̃2∫
κ−a t̃2

dκ′
E0 (κ′)− E1 (κ′)

a

 a2 〈1|0′〉
κ−a t̃2

〈0|1′〉
κ+a t̃2

. (2.62)

For the survival probability we need to take twice the real part of this expression to obtain
W κ = 2<(W̃ κ). The real part of the exponential is a cosine and the real part of

〈1|0′〉
κ−a t̃2

〈0|1′〉
κ+a t̃2

(2.63)
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can be calculated by diagonalizing the Hamiltonian (2.12), which is now of the form

H =
(
z V0

2
V0
2 0

)
(2.64)

with z set to either z1 = κ − a t̃2 or z2 = κ + a t̃2 respectively. We calculate the normalized
eigenvectors |0〉 and |1〉 for all values of κ. Taking derivatives and plugging everything in we
get

〈1|0′〉
κ−a t̃2

〈0|1′〉
κ+a t̃2

= z′1z
′
2V

2
0

4 (E10(z1)E10(z2))2 (2.65)

after a long but straight forward calculation. Here we used the notation E10 := E1 − E0.
We now have

W κ(t̃) = cos

i
κ+a t̃2∫
κ−a t̃2

dκ′
E0 (κ′)− E1 (κ′)

a

 z′1z
′
2V

2
0 a

2

2 (E10(z1)E10(z2))2 (2.66)

which corresponds to equation (6) in Raizen’s paper [7]. Using z′ ≡ 1 and E2
10 = V 2

0 + z2

we can now write W κ explicitly as

W κ(t̃) = cos

i
κ+a t̃2∫
κ−a t̃2

dκ′
E0 (κ′)− E1 (κ′)

a

 V 2
0 a

2

2
((
V 2

0 + z2
1
) (
V 2

0 + z2
2)
))2 . (2.67)

Measure transformation: Having shown that W = W (t̃) we now prove that

P = exp

− t∫
0

dt′
t′∫

0

dt′′W (t′, t′′)

 = exp

− t∫
0

dt̃ (t− t̃)W
(
t̃
) . (2.68)

For this purpose we introduce new time variables(
t̃
˜̃t

)
= ϕ

(
t′

t′′

)
(2.69)

with
ϕ =

(
1 −1
0
√

2
2

)
(2.70)

and
det(ϕ) =

√
2

2 . (2.71)

This yields

P = exp

− t∫
0

dt̃

√
2(t−t̃)∫
0

d˜̃tW (t̃) det(ϕ)

 = exp

− t∫
0

dt̃(t− t̃)W (t̃)

 . (2.72)
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2.7.6. Summary: Results obtained

Let us sum up the predictions from Raizen’s theory for its regime of validity: On a long time
scale the decay rate is proportional to the Landau-Zener tunneling probability multiplied
by an ünimportant prefactor of (π3 )2". So the tunneling rate must be adjusted and it cannot
resolve resonances as reported by [12]. Because of the replacement of (2.51) with (2.52)
the time evolution is always averaged over one Bloch period, as there are no probability
amplitudes for each κ but only one for each band. Thus the steplike structure of the fidelity
in each Bloch period, as observed for example in [2], is not resolved.
On a short time scale there is not a purely exponential decay of P . Let us explain this
within Niu’s theory: The overall time derivative is taken as the integral over the coupling
from all possible values of κ within the Landau-Zener model (2.54). Most of the coupling in
the adiabatic basis takes place in the region of the avoided crossing (2.21). While at t = 0
the probability amplitude at the crossing is still equal to 1, for later times the coupling at
the crossing converges to a smaller, constant value and the decay rate becomes perfectly
exponential. The time scale on which this transition of the amplitude of the crossing takes
place is just the Landau-Zener coupling time, which is proportional to V

a , as can be obtained
for example in Vitanov’s paper, see (2.6). This result is visualized in Figure 4 of Raizen’s
paper. The Landau-Zener model is the basis of Raizen’s paper and the correspondence of
the time scales within his theory directly follows from it.
While in Raizen’s paper the change in decay rate is a finite time effect of the Landau-Zener
theory, it is indeed due to the population of the second band, which can beat back to the
first band, if the adiabaticity parameter V 2/a is not too small and so the tunneling rate
from second to third band is not 100% per Bloch period. This tunneling process from the
second to the first band is also responsible for resonances in the long time decay rate, as we
will see in the following chapter.

29





3. Methods, results and comparison to
experiment

This chapter is a summary of the results we obtained in our study of the Wannier-Stark
system. We introduce a convenient notation in section 3.1 to describe the time evolution of
the experiment in section 3.2 and properly define the different measurement bases. In section
3.3 the details of the numerical calculation are documented. Section 3.4 develops a method
to describe the resonances in the parameters γ and Z, which will be defined to characterize
the behavior of the system. We propose a method to manipulate those resonances in future
experiments.

3.1. Notation

In this section we build up on the notation introduced in section 2.3. In order to properly
define what is often referred to as ädiabatic"basis in literature we also introduce the energy
eigenbasis for a given potential V0 in both the lab system and in the lattice system. For each
Hamiltonian H(κ, V0, t) we can write the time dependent eigenbasis as

{
|κ, ñ〉V0

(t)
}
with

κ ∈
[
−1

2 ,
1
2

)
as the quasimomentum index in the lab frame and ñ ∈ N as the index for the

energy level in the lattice frame, i.e.

E0 < E1 < E2 < E3 < ... (3.1)

The index V0 indicates the dependence of the eigenbasis on the potential strength. These
eigenstates correspond to the band structure of the quasi-free particle model in the lat-
tice reference frame, see Figure 3.1 and Figure 3.2 for the band structure from different
perspectives.
If V0 = 0 it is simply the momentum eigenbasis in the lattice frame which can be seen in
the V → 0 limit with parabolic energy levels as seen in Figure 3.1. With growing V the
eigenstates get more and more localized and the band structure becomes equidistant for
the states with V � Ekin. This limit can be seen from the perspective of Figure 3.2. The
tilde was used for the ñ to indicate that these energies refer to the lattice frame and not
the lab frame. From now on we will always use tilde to indicate that a variable refers to
the lattice frame, while variables without tilde refer to the lab frame. For example we used
κ without tilde in the energy eigenbasis above, because this quasimomentum still refers to
the lab frame! Note that transformation between those frames can be done quite easily, for
example p̃ = p+ at is the momentum in the lattice frame.
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Abbildung 3.1.: Band structure of the system as a function of the potential V , seen from
the perspective of small V . We see that for small V already the lowest band
is close to a parabola for higher bands the band structure converges to the
parabola form of the free particle model.

In the experiment the energy eigenbasis in the lattice frame with quasimomentum index from
the lab system,

{
|κ, ñ〉V0

(t)
}
, is referred to as the ädiabatic basis". The time independent

momentum eigenbasis in the lab system, {|κ, n〉V=0}, is referred to as the diabatic basis.
The survival probability is defined as the probability for the state to stay in the state with
ñ = 0 in the adiabatic case and n = 0 for the diabatic case. For our calculation the label κ̃
are usually not needed and we stick to κ.

3.2. Comparison to the Pisa experiment

Let us now use the notation from (3.1) to predict the survival probability for the experiment
[2]. We will look at what happens in the experiment described in section 2.2 step by step:
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Abbildung 3.2.: Band structure of the system as a function of the potential V , seen from the
perspective of large V . We see that for large V the lowest bands are almost
flat, and for higher bands the structure is getting closer to a parabola.

3.2.1. Lattice off

At first the lattice is not yet turned on (V = 0, a = 0) and the BEC is prepared in a state

|ψ1〉 =
∫ ∞
−∞

dpf(p) |p〉V=0 (3.2)

where f is a density function representing the initial momentum distribution of the BEC,
i.e. ∫ ∞

−∞
dpf(p) = 1. (3.3)

3.2.2. Switching on the lattice

As a second step the lattice is slowly turned on, while the acceleration a remains 0. Thus
the initial state has enough time to relax adiabatically (compare to the adiabatic theorem
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3. Methods, results and comparison to experiment

[19]) and each state |p〉V=0 relaxes to |p〉V=V0
. We now have1

|ψ2〉 =
∫ ∞
−∞

dpf(p) |p〉V=V0
. (3.4)

3.2.3. Switching on the acceleration

Now acceleration is switched on for some time t0. The state evolves according to Schrödinger
equation and we get the solution

|ψ(t0)〉 = |ψ3〉 = lim
N→∞

N∏
n=1

exp
(
−iH

(
t0
N
n

)
t0
N

)
|ψ2〉 . (3.5)

To do the time integration numerically we just use a large enough N instead of the limit
N →∞.

3.2.4. Diabatic basis

Finally the survival probability is measured in either the diababtic basis or the adiababtic
basis: The survival probability Pd in what was defined as the diabatic basis in the experiment
is the probability of the condensate to stay in the momentum eigenstates (V = 0 basis) of
the first Brillouin zone in the lab(!) system normalized by the total number of atoms:

Pd(t0) =

0.5∫
−0.5

dp |〈ψ3|p〉V=0|
2

〈ψ1|ψ1〉
. (3.6)

Note that this definition implies that with growing V the fidelity at t = 0 decreases and is
not equal to 1 anymore, as the lowest overall energy eigenstate deviates more and more from
the lowest kinetic energy eigenstate. Figure 3.3 is a comparison of our numerical method to
a calculation done by Ghazal Tayebirad using the position basis and published in [2]. The
agreement is very good not only in this picture but for all parameters tested we could not
see any deviation.
Figure 3.4 compares an experimental data set from the Pisa group with our numerical
result. As there are systematic uncertainties in various parameters (V , F0,...) at the Pisa
experiment [2], one might have to try using a different parameter set to get better agreement.

3.2.5. Adiabatic basis

For the adiabatic basis the survival probability pa is defined as the probability for |ψ3〉 to
be in the energy eigenstate of H of the first Brillouin zone, i.e. the state with lowest energy
Eñ for given κ again normalized by the number of atoms.

Pa(t0) =

0.5∫
−0.5

dκ
∣∣∣〈ψ3|κ, ñ = 0〉V=V0

(t0)
∣∣∣2

〈ψ1|ψ1〉
(3.7)

1However there is a remark by Riccardo Mannella in [3] stating that the initial state might be some mixture
between the adiabatic and diabatic initial state. This issue is still to be clarified with the experimentalists.
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Abbildung 3.3.: Comparison to Ghazal’s numerical result (in diababtic basis): The results
of this study for the time evolution in the diabatic basis are plotted as
a straight line and compared to the result obtained by Ghazal, who does
the calculation in the position basis. Her result is plotted as red diamonds.
The agreement is almost perfect. In [2, 3] this data is used to predict the
experiment. The initial distribution is a Gaussian with variance ∆κ = 0.02
and mean at κ = 0.

Note that |κ, ñ = 0〉V=V0
(t) is time dependent because of the accelerating lattice. As indi-

cated by the tilde of ñ, this adiabatic survival probability refers to the reference frame of
the lattice.

In Figure 3.5 is a plot of a calculation for the adiabatic basis compared to the experimental
data. As in the diabatic case also here there are systematic uncertainties in the experimental
parameters [2]. These calculations were used for [3] to improve the predictions made by a
cut-off method, which is also presented in the paper. There is some ambiguity about what
probability is measured in the adiabatic case. See the following section 3.2.6 on this issue.
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Abbildung 3.4.: Comparison to Pisa experiment (diababtic basis): The result of this stu-
dy for the diabatic basis is compared to a set of experimental data (red
diamonds). The straight line is our prediction. The initial distribution is a
Gaussian with variance ∆κ = 0.02 and mean at κ = 0.

3.2.6. Comparability to experiment

While there is a direct correspondence of the experimental measurement in the diabatic
basis to our definition (3.6), the adiabatic probability (3.7) is not necessarily what is actually
measured in [2]. In [2] the state |ψ3〉 is further manipulated using a lattice strength Vsep.
To make a correct prediction we would have to know more about the time dependence of a
and V . What we know from [2] is:
"The acceleration is then suddenly reduced and the lattice depth increased so as to ’freeze’
the instantaneous populations in the lowest two bands; finally, further acceleration is used
to separate these populations in momentum space."

Assuming a very fast switch from V0 to Vsep and assuming a perfect separation of this lowest
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Abbildung 3.5.: Comparison to Pisa experiment (adiabatic basis): The result of this study
(straight line) for the adiabatic basis is compared to a set of experimental
data (red diamonds). The initial distribution is a Gaussian with variance
∆κ = 0.2 and mean at κ = 0.

energy state from the rest, one would have to project on the Vsep eigenstates,

Pa =

0.5∫
−0.5

dp
∣∣∣〈ψ3|κ, ñ = 0〉V=Vsep

(t0)
∣∣∣2

0.5∫
−0.5

dp
∣∣∣〈ψ1|κ, ñ = 0〉V=Vsep

(t0)
∣∣∣2 , (3.8)

instead of the V0 eigenstates of (3.7). If the potential switch takes long enough for |ψ3〉 to
relax adiabatically but fast enough so that there is no tunneling during the switch process,
(3.7) would be valid. The paper states that the switch time tramp is much smaller than
TBloch, so the second requirement is probably fulfilled, about the first one I am not sure.
For a final analysis I would need to know the details of the potential switching process.
An alternative idea to falsify the theory is to use |ψ3〉 for a prediction of the momentum
distribution. But as the phase between contributions of different momenta gets lost for |ψ3〉
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3. Methods, results and comparison to experiment

during measurement, one cannot exactly reconstruct the original state from this measure-
ment.

3.3. Numerical Calculation and Implementation in MATLAB

Hκ is an N×N-matrix but we can only use finite dimensional Hilbert spaces for the computer
implementation. The basis of the full Hilbert space is the set {|κ, z〉} with κ ∈M1, z ∈M2,
whereM1 = [−0.5, 0.5) andM2 = Z. For a numerical implementation we have to make both
sets M1, M2 finite, so we discretize M1 by a grid and cut off M2 by using only values with
|z| < |zmax|. The Hamiltonian we use for this restricted system is

HNum =
∑
κ∈M1

dκHκ,Num (3.9)

with
Hκ,Num =

∑
z∈M2

(1
2 (κ+ z + at)2 · |κ+ z〉 〈κ+ z|

)

+
∑
z∈M2

(
V0
2 (|κ+ z〉 〈κ+ z + 1|+ |κ+ z + 1〉 〈κ+ z|)

)
.

(3.10)

This finite dimensional approximative Hamiltonian has the same structure as the full Hamil-
tonian (2.7) with countable infinite basis. Of course we can also represent HNum by a block
diagonal matrix with Hκ,Num on the diagonal. The definitions of adiabatic and diabatic basis
for the finite dimensional approximation are also in full analogy to (2.7).

3.3.1. How to choose M1 and M2

The requirements for the choice of M1 depend on the width of the initial momentum dis-
tribution in the lowest band. For ∆p(t = 0) → 0 we can even use M1 = {κ0}. If the whole
first Brillouin zone is populated we need a larger set. Using |M1| = 100 already gives quali-
tatively good results for most purposes.
The requirements for M2 depend on two parameters:

• The number of bands populated during the calculation: As we have to represent each
band with one state, |M2| must be bigger than the number of bands occupied during
the time evolution which is:
(number of bands at t = 0) + tfinal

tBloch

• The V -∆E-ratio: With growing V the contributions to each band from different mo-
mentum eigenstates will grow. States with higher and higher momentum contribute a
considerable amount to the energy ground state. The limiting cases are:

– V = 0: |κ, ñ〉V = |κ, ñ〉0
In this case the energy eigenstates correspond to the momentum eigenstates.
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3.4. Resonances of γ and Z

– V � p2
max
2m : |κ, m̃〉V ≈

N∑̃
n=1

exp
(
i ñN 2π

)
|κ, ñ〉0

In this case the energy eigenstates approximately correspond to location eigen-
states |x〉, so we need more and more momentum eigenstates to represent them.
As for our calculation we use the momentum basis we will need a large |M2|.

As long as the experiment only populates the center of the first Brillouin zone and V is
much smaller than the energy of the third band we can use |M2| = 2 to simulate the
temporal evolution over one Bloch period. For bigger V one needs more basis states. A
good approximation is still achieved, as long as the M2 is chosen large enough such that
at any given time all momentum eigenstates with Ekin ≤ δV are included. Here δ is a
parameter indicating the precision of the calculation and can be chosen as for example 10,
to be on the save side.

Side note: 2 × 2 matrix model revisited The 2 × 2 Landau-Zener matrix with initial
condition in the lowest band corresponds to the two dimensional form of this model for initial
states in the lowest band only and can be realized by setting M1 = {κ0} and M2 = {−1, 0}.
This is the minimal realization of the model. κ0 ∈ [−0.5, 0.5) is the condition for the model
to be physically correct. Now our Hamiltonian is just (see 2.4)

HLZ = 1
2

(
(κ0 − 1)2 − 2at V

V κ2
0

)
. (3.11)

The splitting between the energy levels of the lowest two bands predicted by this model,
see (2.21), is correct for small V . As can be seen in Figure 3.6 the model is unsuitable
for larger V . Using the coupling coefficients in adiabatic basis (3.20) which we develop in
the next section, we also plot the coupling between the lowest two bands in Figure 3.7.
For small values of V and near the crossing it is shaped like the Lorentzian predicted by
the Landau-Zener model with only slight relative deviations far away from the crossing,
which are due to the avoided crossing located in the neighboring Brillouin zone. For large
V however the Landau Zener model coupling is too weak (see the difference between the
predicted couplings normalized by the correct coupling strength in Figure 3.8), which is due
to the influence of eigenstates with higher kinetic energy.
Another interesting thing to look at is the behavior of the system for F0 → ∞ as both γ
and Z converge to a finite value, deviating from the Landau-Zener formula. The reason is
explained in the following section.

3.4. Resonances of γ and Z

3.4.1. Definition and Calculation of γ and Z

Let us introduce two parameters, γ and Z, which characterize the behavior of our system. On
a long time scale the adiabatic survival probability Pa decays approximately exponentially,
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Abbildung 3.6.: Difference of energy gaps: This graph is a plot of the difference ∆ELZ −
∆ENum where ∆ENum is the energy difference of the lowest two bands as
predicted by Landau-Zener theory and ∆ENum is the result from our nume-
rical calculation. For V → 0 both models agree, for larger V the deviation
increases. It is interesting that with growing V the difference drops below
0 before it converges to +∞.

and we get the approximate equation

Pa(t) ≈ Z exp
(
−γ t

TBloch

)
(3.12)

that serves as our definition for γ and Z.
On a short timescale PA might not decay exponentially. The deviation from the long term
exponential decay can be characterized by the parameter Z of (3.12). This parameter was
already introduced in [20] to analyze the system with respect to Zeno effect and inverse
Zeno effect. They showed for a general system that Z < 1 is a sufficient condition for the
possibility of generating an inverse Zeno effect with the right frequency of measurement.
For Z > 1 a measurement frequency that generates an inverse Zeno effect may or may not
exist.
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Abbildung 3.7.: Adiabatic coupling between lowest bands: The coupling between the lowest
two bands in the energy basis (the first off-diagonal entry of the Hamiltonian
in adiabatic basis, i.e. Hκ

12), as calculated with our numerical method. For
small values of V the coupling approaches the Landau-Zener prediction
(2.21) and becomes a Lorentzian with width proportional to V . Thus the
time of coupling can be approximated as proportional to V in this limit.

For our system even the long time behavior is not purely exponential, but there is a steplike
substructure on top of the exponential decay. Thus for our system the definition of Z is a
little arbitrary and one must be careful with its interpretation. To get rid of this arbitrariness
one could define Z by extrapolation of Pa after every full Bloch periods. If the measurements
are are also done after full Bloch periods, we will see that Z < 1 corresponds to Zeno effect
and Z > 1 corresponds to inverse Zeno effect. The parameters γ and Z can easily be
obtained from our calculation based on definition (3.7) as follows: We fit the adiabatic
survival probability at full Bloch times using the least square method with a function of the
form

P fit
a = Z exp

(
−γ t

TBloch

)
, (3.13)
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3. Methods, results and comparison to experiment

Abbildung 3.8.: Difference in coupling: (c12 − cLZ12 )/c12: This picture shows the deviation of
the Landau-Zener coupling cLZ12 from equation (2.21) between the lowest two
bands and the numerical result c12 of Figure 3.7. As the coupling rapidly
decreases with growing V , we plot the normalized difference (c12−cLZ12 )/c12

where γ and Z are the fit parameters. To get reliable results one has to use roughly 10
Bloch periods for the fit. An example picture for such a fit is plotted in Figure 3.9. For
small V there is a long plateau with a constant value for the fidelity after each jump and
the fitting process is less arbitrary and Z is indeed well defined as the value of the fidelity
at the plateau.
We scan the parameters V and F0 for resonances in γ and Z. The result of this scanning
process can be used to verify the resonances in the Pisa experiment. A prediction for the
coming experiment is shown in Figure 3.10. As will be discussed in the following we explain
the origin of those resonances and propose a procedure that can manipulate both γ and Z.
In Raizen’s theory from section 2.7 the parameters γ and Z only depend on V 2

a , thus the
resonances cannot correctly be resolved and no prediction for Zeno effect is possible.
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Abbildung 3.9.: Fitting process of Z for different values of V and a: In each row of this
picture the ratio V 2

a is constant for better comparability. We see that for
smaller V there exists a long plateau of the fidelity Pa(t) of the lowest band
and the value of Z becomes independent of the exact location of the fitting
procedure, compare Figure 3.7 and equation 2.25 for the time of coupling
which is proportional to V if time is measured in Bloch units. In the plots
above the initial quasi-momentum is κ = 1

4 .

3.4.2. Explanation for the behavior of γ and Z

We can use the calculation from section 3.3 to get some information on the time evolution
in the adiabatic basis by calculating a matrix representation of the time evolution for one
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Abbildung 3.10.: Scan of Z and γ for κ0 = 0.25.

Bloch period. We calculate the matrix

Uκ := lim
N→∞

N∏
n=1

exp
(
−iHκ

adiabatic

(
TBloch
N

n

)
TBloch
N

)
(3.14)

which we can approximate numerically by using a finite N instead of the limit. Uκ represents
the time evolution in the adiabatic basis for one Bloch period for a given value of κ. As the
adiabatic Hamiltonian (3.19) is a periodic function of time (see the derivation below), Uκ is
time independent(!) in the sense

∀n ∈ N : Uκ(n · TBloch → (n+ 1) · TBloch) ≡ Uκ. (3.15)

Let us now derive Hadiabatic(t), the Hamiltonian in the adiabatic basis: We expand the state
in subspace κ in time dependent energy eigenstates of the lattice frame as introduced in
(3.1)

|ψκ(t)〉 =
∞∑
ñ=0

aκñ(t) |κ, ñ〉V0
(t) (3.16)
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3.4. Resonances of γ and Z

and apply Schrödinger’s equation

i ddt |ψ
κ(t)〉 = i

∞∑
ñ=0

(
ȧκñ(t) |κ, ñ〉V0

(t) + aκñ(t) ddt |κ, ñ〉V0
(t)
)

=
∞∑
ñ=0

Eκñ(t)aκñ(t) |κ, ñ〉V0
(t).

(3.17)
Projecting on 〈κ, ñ|V0

we arrive at

ȧκñ = −iEκñaκñ −
∞∑
m̃=0
〈κ, m̃| ddt |κ, ñ〉V0

aκm̃. (3.18)

Thus the Hamiltonian in adiabatic basis is

Hκ
adiabatic =

∞∑
ñ=0

Eκñ |κ, ñ〉 〈κ, ñ| − i
∞∑

m̃,ñ=0
〈κ, m̃| ddt |κ, ñ〉 |κ, ñ〉 〈κ, m̃| . (3.19)

This is a periodic function of time with period TBloch, thus Floquet’s theorem (2.5) can be
applied.
Note that if we measure time in units of Bloch time TBloch the coupling coefficients

〈κ, m̃| ddt |κ, ñ〉V0
(3.20)

are only a function of V . The energies Eκñ are a function of V and scale linearly with
increasing TBloch = 1

a , if we use units with TBloch = 1. So in case of a very fast acceleration,
these diagonal matrix elements can be neglected on the TBloch timescale and the tunneling
probability converges to a finite value. This deviation from the Landau-Zener tunneling
probability is due to the finite time of a Bloch period.

Side note on Numerical Calculation of Uκ

If you are not interested in numerical details you can skip this short side note. Calculating
Uκ using Hκ

adiababtic is hard to do numerically, as in the limit of a free particle, which
occurs for p2/2mV → ∞ the time interval ∆t in which the coupling is nonzero converges
to 0. This is very hard to resolve for the coupling between higher bands, so we use the
diabatic Hamiltonian Hκ

diababtic to do the calculation as follows: Let Λκ(t) denote the basis
transformation matrix between the diabatic and the adiabatic basis, i.e. the matrix with
the eigenvectors of Hκ

diababtic(t) as column vectors. Then we can also calculate Uκ as

Uκ = Λ−1
κ (TBloch) lim

N→∞

N∏
n=1

exp
(
−iHκ

diabatic

(
TBloch
N

n

)
TBloch
N

)
Λκ(0) (3.21)

and achieve higher precision for the numerical calculation.

2× 2-Matrix model

Let us analyze the matrix Uκ in a regime where there is non-negligible coupling only between
neighboring bands and the tunneling probability per Bloch period from third to fourth band
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3. Methods, results and comparison to experiment

is much larger than the tunneling probability between the lower bands. If in addition the
jump time is small on the scale of a Bloch period and our initial κ is far from an avoided
crossing, 2 we can also assume that after one Bloch period the first two tunneling processes
at avoided crossings are complete. These assumptions are for example approximately valid
for V ≈ 1 and F0 ≈ 1 in units used by the experimentalists in the Arimondo group. in
Figure 3.9 we see that for small V there is a long plateau after the jump. Thus the jump
time is indeed small compared to a Bloch period. From Vitanov’s paper [10] we know that
for small V 2

a the time of coupling is proportional to V , which is also approximately true for
our system, compare Figure 3.7.
Under these assumptions we neglect all amplitudes with ñ > 2 and approximate Uκ by the
2× 2-Matrix

U red
κ =

(
a11 a12
a21 a22

)
, (3.22)

consisting of the first entries of Uκ. This is a good approximation because states with ñ > 2
in this case are already as good as free and transfer to even higher bands. They return to
the lowest two bands only with negligible probability, i.e.

∀ñ > 2 : a1n ≈ 0 ∧ a2n ≈ 0. (3.23)

The simple matrix U red
κ can explain both the behavior of γ and Z:

The survival probability after the first Bloch period is exactly |a11|2. After the second
period however there will be a return of the amplitude which had tunneled to the second
band in the first time step. Also at later times the same return mechanism is active. The
phase φ of the returning amplitude is a function of the energy gap ∆E between the lowest
bands and the time interval ∆t between two crossings, roughly φ ≈ ∆t∆E, with ∆E =∫ 0.5
−0.5 dκ∆E(κ). This φ is responsible3 for the resonances of Z and γ we described in section
(3.4.1). The returning amplitude can be either constructive or destructive and thus change
the survival probability. While the survival probability in the first Bloch period is unaffected
by any returning amplitude from the second band, this mechanism changes the long time
tunneling probability. This change of tunneling probability after the first Bloch period is
the direct cause for the change of the intercept Z: If the returning amplitude is constructive
(destructive), the survival probability tends to increase (decrease) after the first Bloch period
and thus Z < 1 (Z > 1). In Figure 3.11 this connection is verified and we see that both
resonances occur at the same value of V and a.

Eigenvalues of U red

The matrix U red
κ is not anymore unitary because of our reduction! So the norm of the

eigenvalues e1 > e2 is smaller than 1 and their absolute squares |e1|2 and |e2|2 correspond
2The area with maximal amplitude of avoided crossing transitions is located at κ = 0 if the band with
lower energy is odd numbered and at κ = 0.5 if it is even numbered, if we start counting at ñ = 1. Thus
κ0 = 1

4 is a good choice for an initial state.
3The maxima of γ and Z occur roughly at 1

a
∆E ≈ n2π with n ∈ N. This corresponds to the RET condition

of [21].
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Abbildung 3.11.: Z − 1 is compared to the difference of the fitted long time decay rate γ
and the decay rate γ1 after the first Bloch period only (1−Pa(1) = e−γ1).
We see that for small F0 both curves cross 0 at approximately the same
value of F0. Thus, as long as the jump time is not too long, which is true
for small V , Z indeed is smaller (larger) than 1 if the the long time decay
rate γ is smaller (larger) than the short time decay rate γ1, measured after
only one Bloch oscillation.

to the long time decay rate in 3.26 and its modification on a shorter timescale. At t = 0 we
start in a superposition |ψ0〉 = b1 |e1〉+ b2 |e2〉 of both eigenvectors. After applying t times
U red
κ on the initial state, we arrive at

|ψ〉 (t) =
(
U red
κ

)t
|ψ0〉 = b1e

t
1 |e1〉+ b2e

t
2 |e2〉 (3.24)
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3. Methods, results and comparison to experiment

and
〈ψ0|ψ〉 (t) =

(
|b1|2 + b1b

∗
2 〈e2|e1〉

)
et1 +

(
|b2|2 + b2b

∗
1 〈e1|e2〉

)
et2

=: c1e
t
1 + c2e

t
2

(3.25)

where t ∈ N is an integer and counts the Bloch periods, c1 and c2 are defined as the terms
in brackets. As the second term c2e

t
2 can be neglected for large enough t, we obtain in this

model
γ = − log(|e1|2) (3.26)

and
Z = |c1|2 . (3.27)

Figure 3.12 and 3.13 compare this prediction to the result we obtain by the method that
calculates the whole time evolution, as described in section 3.4.1. We see that the simple

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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γU

Abbildung 3.12.: The prediction for γ from the 2×2 matrix model, γU from equation (3.26),
is in good agreement for this range of parameters with γfit, which is the
the result obtained by fitting Pa from the numerical simulation of the full
time evolution.

2× 2 matrix describes both γ and Z very well for small V and a.
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Abbildung 3.13.: The prediction for Z from the 2×2 matrix model, ZU from equation (3.26),
is in good agreement for this range of parameters with Zfit, which is the
the result obtained by fitting Pa from the numerical simulation of the full
time evolution.

3.4.3. Manipulation of the resonances

By abruptly switching off the acceleration after each period and switching it on again
abruptly after some time tphase, one could imprint a phase φ = ∆E · tphase on the second
band and manipulate the phase of the returning amplitude. It could be changed between
destructive and constructive, resulting also in a different value for Z and γ. To calculate the
correct value of tphase for this manipulation within this model, we define the matrix

Um
κ = U red

κ

(
1 0
0 eiφ

)
, (3.28)

which is the Floquet operator for the manipulated time evolution. The rigorous way to
determine tphase is to optimize the eigenvalues of Um

κ as a function of φ.
For a less exact but more demonstrative way to optimize φ one would only calculate the
first band’s amplitude after two Bloch periods. Calculating the entry with index (1, 1) of
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Um
κ U

red
κ we obtain

a2
11 + eiφa21a12. (3.29)

For constructive interference one would choose

φ = angle
(
a2

11

)
− angle (a21a12) (3.30)

and add another phase of π for destructive interference.

Relation to Zeno effect

A nondestructive measurement of the band population can be seen as equivalent to destroy-
ing/randomizing the phase relation between the bands, as the respective density matrices
are the same: Let us assume that initially the system S is in a superposition

|ψ(φ)〉S = a1 |1〉S + a2e
iφ |2〉S (3.31)

of the lowest two bands with a well defined phase relation, e.g. φ = 0. Then we can write
the density matrix as

ρS =
(
|a1|2 a1a

∗
2

a2a
∗
1 |a2|2

)
(3.32)

After a measurement in this basis with an apparatus A we would get the state

|ψ〉SA = a1 |1〉S |1〉A + a2 |2〉S |2〉A (3.33)

and after tracing out the apparatus only the diagonal entries of the density matrix after a
measurement,

ρM
S =

(
|a1|2 0

0 |a2|2

)
, (3.34)

survive. The phase randomized density matrix is

ρR
S = 1

2π

∫ 2π

0
dφ |ψ(φ)〉S 〈ψ(φ)|S =

(
|a1|2 0

0 |a2|2

)
(3.35)

Thus if a random phase φ is imprinted on the state by halting the acceleration for a long and
random time, ρR

S = ρM
S and one gets the same measurement probabilities for the system as

after a non-destructive measurement. In the first case the relative phase between the bands
is lost by a randomization process, in the second case it is lost by effectively irreversible
entanglement to the apparatus.
Depending on whether the returning amplitude was originally constructive or destructive,
one could then observe an equivalent to Zeno effect [22, 20] or Anti-Zeno effect. Similar
experiments have been conducted by the Raizen group [23] with a broader distribution in
κ. Using the optimal value of tphase as derived above instead of a randomized time, the
tunneling rate can be changed even more. It would be very interesting to conduct such an
experiment. Another interesting thing to do could be to start with an initial state different
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3.4. Resonances of γ and Z

from the ground state to enhance or decrease Zeno effect. For example if the initial state is
an eigenstate of Uκ we must see Z = 1 and the long time and short time decay rate would
be the same.
In the next chapter we start with the decoherence study of a spin-qubit that is exposed
to random magnetic fields. Also in this setup there is a difference between the short time
and long time decay rate, because, as we describe in 4.5.1, the time evolution is equivalent
to a random walk on a sphere. While in this first part we study Zeno effect only out of
curiosity, in the second part it could be used to achieve our aim and slow down the decay
of information.
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4. Introduction and Preliminaries

4.1. Abstract

A system of three spin-1
2 -atoms allows the construction of a qubit - in the subspace of total

angular momentum j = 1
2 - that is not affected by any magnetic field activity on the magnetic

moments of the atoms, provided that all three atoms experience the same magnetic field.
If, however, there are stray fields of different direction or strength at the sites of the atoms,
the qubit will slowly decohere. It is the objective of this study to examine the decoherence
process and to establish the conditions, under which the lifetime of the qubit is sufficiently
long for practical uses.

4.2. Motivation

A decoherence-free subspace (DFS) can be used to protect quantum information against
a particular kind of noise from the environment, which causes the information to decay
non-unitarily. Such a DFS can never cancel all kinds of noise, as there must always exist
an interaction to write and read the information into the qubits. The DFS method can be
combined with other methods such as error correction codes or dynamical decoupling to
achieve a long coherence time, so that the qubits can be used for information processing.
The system we have in mind is the spin state of three individual trapped atoms in a triangu-
lar optical lattice, the noise we expect is caused for example by the B-field of current wires
in the lab or bypassing cars. We use the previously constructed [14] rotational-frame free
qubit (rff qubit) to cancel the noise due to the homogeneous part of this random B-field.
The inhomogeneity of the field on the scale of the three atoms is the remaining part of the
noise, which we want to study.
In the following section we rephrase the construction of the qubit, introduce the Hamiltonian
of our system and two methods which could be used to further stabilize the setup.

4.3. Construction of the decoherence-free qubit

The construction of a rotationally invariant qubit has been described by Jun Suzuki et al.
[14] in detail. Here we give a short summary for the case of three spin-1

2 -atoms and introduce
the notation we want to use.
To construct the reference-frame-free qubit (from now on referred to as "rff qubit") one uses
the ladder operator

J− = Jx − iJy (4.1)
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4. Introduction and Preliminaries

for the whole three-atom system and defines its two orthogonal lowering partner operators

Ω−(λ) = 1√
3

3∑
l=1

ωλlσ−(l) (4.2)

where ω = e
2πi

3 , σ−(l) refers to the lowering operator for only the atom at site l and λ = 1, 2
labels the state of the rff qubit. For our calculations we will use the following basis in the
subspace of total angular momentum j = 1

2 :

| j = 1
2 ,m, λ〉 = Ω−(λ) J

1
2−m
− | j = 3

2 ,m = 3
2〉, (4.3)

where m is the value of the z-component of the spin. For the j = 3
2 subspace we use the

ordinary | j,m〉-basis.

number j m λ

1 3
2

3
2 -

2 3
2 −3

2 -
3 3

2
1
2 -

4 1
2

1
2 1

5 1
2

1
2 2

6 3
2 −1

2 -
7 1

2 −1
2 1

8 1
2 −1

2 2

basis used to describe the rff-qubit

A very similar construction can be done with four atoms, where a qutrit is formed in the
subspace of j = 1 and a qubit with no degeneracy is formed in the subspace of j = 0. In
section 5.4.1 we briefly compare the stability of this construction to the setup with three
atoms.

4.4. Time evolution of the setup

We are interested in the stability of the rff-qubit. For this study we model the environment
by a strong bias field B along the z-axis acting on all 3 atoms with Hamiltonian

H0 = µBge
2~

~B ·
∑
j

~σj (4.4)

as well as a homogeneous stray field b̃(t) acting on all three atoms and inhomogeneous stray
fields bj(t) acting only on the individual atom with index j ∈ {1, 2, 3}. The time evolution
due to stray fields is described by Hamiltonian

H1 =
∑
j

µBge
2~

~bj(t) · ~σj +
∑
j

µBge
2~

~̃b(t) · ~σj . (4.5)
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4.4. Time evolution of the setup

In addition there is internal spin-spin-interaction between the atoms of the form:

Hi = µ0
4πr3

[
~µA · ~µB − 3(~µA · ~̂r)(~̂r · ~µB)

]
. (4.6)

The total Hamiltonian is given by

H = H0 +H1 +Hi. (4.7)

The bias field, which is applied by the experimentalist, is a possibility to stabilize the setup.
In the rff-subspace all density matrices commute with H0 and the homogeneous part of the
noise, as they are rotationally invariant states.
For the numerical analysis of the time evolution we will use

~B := µBge
2~

~B (4.8)

and
~bj := µBge

2~
~bj (4.9)

for easier calculations.
Consider the Hamiltonian for atom l with Bz and b in units of energy:

H0(t) +H1(t) = Bzσlz + b(σlxξlx(t) + σlyξly(t) + σlzξlz(t)) (4.10)

The random variables ξ, which represent the noise, are correlated in space and time. In our
setup the atoms will be trapped close together by a laser so we can suppose that the field
varies spatially only in first order. The spatial correlation is a result from this first order
expansion and restrictions due to Maxwell equations.

We will also use the notation

h0 :=
3∑
l=1

σlz, h1 :=
3∑
l=1

(σlxξlx(t) + σlyξly(t) + σlzξlz(t)) (4.11)

and
H = Bzh0 + bh1. (4.12)

In our model the noise is of the form

∀t, t′ :
Cov(ξI(t), ξJ(t′)) = ΣIJ · e−γ|t−t

′|

ξI(t) = 0.
(4.13)

In this notation the index I labels both the atom number l and the direction of the field
(x, y, z). The time correlation is given by the exponential decay, the spatial correlation is
taken care of by the Covariance matrix Σ. Note that time correlation and space correlation
are independent.
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As Σ is a Covariance matrix, it is symmetric and positive semi-definite and can be written
as

Σ = CTC (4.14)

with a real matrix C and
Σ = UTDDU (4.15)

with an orthogonal matrix U and positive diagonal matrix D. Combining (4.14) and (4.15)
we get:

C = DU. (4.16)

Now ~ξ can be written as
~ξ = C ~ζ (4.17)

where ~ζ ∼ N(~0, 1).

4.5. Methods for stabilization

4.5.1. Zeno effect

As long as we are only concerned with the effects of the random Hamiltonian H1 the
equations are equivalent to a random walk on a sphere with speed b and correlation time
1
γ . The variation of position x for a random walk in one dimension obeys the equation:

σ2
x(t) =

(∫ t

0
b exp(−γt)dt

)2

= 2
(
b

γ

)2 (
2 exp(− γt√

2
)− 2 +

√
2γ t

)
.

(4.18)

In the limit γt→∞ the dominant term in the bracket is
√

2γt:

σ2
x → 2

(
b

γ

)2 (√
2γ t

)
. (4.19)

Thus
σ2
x ∝

b2

γ
t (4.20)

is valid in this case. On the other hand, if γt→ 0 we get

σ2
x → b2t2 (4.21)

by expanding the exponential function to second order. In analogy to this result our quantum
state’s decay will be of second order in t as long as γt → 0 is true. As soon as γt � 1 the
state decoheres in first order of t. This implies that if we want to slow down the decay of
the setup using Zeno effect [22], we have to do this before γt becomes too large. So the
frequency of measurements f must fulfill f � γ.
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4.6. Summary

4.5.2. Stabilization by overall B-field

Time-constant stray fields As a first approach consider all fields to be constant in time.
The effect on the rff qubit by a stray field in the x-y-plane can get suppressed by a large
overall field Bz � bx, by along the z-axis. However, if the stray field is along z-direction, the
overall field Bz has no stabilizing effect at all, as in this situation H0 and H1 commute.
To analyze the Hamiltonian one can compare the induced time evolution of it to the time
evolution for arbitrary two dimensional quantum systems of the form:

H = E1 | 1〉〈1 | +E2 | 2〉〈2 | +λ | 1〉〈2 | +λ∗ | 2〉〈1 |, (4.22)

which is given by Rabi’s formula [24]

|c2(t)|2 =
|λ2|
~2

|λ2|
~2 + ω2/4

sin2

( |λ2|
~2 + ω2/4

) 1
2

t

 (4.23)

where ω = E1−E2
~ and c2 is the probability to be in state 2 after time t when starting in state

1. For a large energy gap ω � λ the factor before the sin2 goes to zero and the transition
is suppressed for times t� 1

ω .
In our case we can achieve a suppression of transitions between states with different quantum
number mz by a very strong Bz which can split the energy levels of states with different mz,
as can be seen at the diagonal elements of the Hamiltonian. Those are the transitions caused
by inhomogeneities of the x- and y-component of the field. The transition rates between
those states are proportional to ∑i,j cijbij with some constants cij ∈ C, i ∈ {1, 2, 3} and
j ∈ x, y only. In the language of Rabi’s model ω ∝ Bz and λ ∝∑i,j cijbij .
Transitions between states with same m are caused by B-field inhomogeneities of the z-
component and can not be suppressed by a field in z-direction as it does not cause an
energy gap between those states.

Fluctuating stray fields Expanding (4.23) in a Taylor series one can see that the stabilizing
effect of the overall field is of fourth order in t. For very short correlation times τ of the
noise only second order effects are important for the time evolution and the fourth order
can be neglected. That is why only if Bτ � 1 a stabilizing effect can be observed. Thus not
only B � b but also B � γ is required to stabilize the setup with a homogeneous B-field!
If γ > B the decay may still be slow, as the decay speed scales with 1

γ but the bias field
would have no significant stabilizing effect.

4.6. Summary

The purpose of this section was to construct the rotational invariant qubits and discuss
the physical implementation with spin states of trapped atoms. The notation we will use
in the following sections for the time evolution of our setup was introduced. Two ideas for
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stabilization of the stored information were presented: Application of a bias magnetic field
and frequent measurements of the total angular momentum.
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5. Methods, results and possible experiment

In the first sections of this chapter (until section 5.6) the internal interaction of the atoms
will be neglected and so the Hamiltonian has the form

H = H0 +H1. (5.1)

H0 is the part of the Hamiltonian which is constant in time and H1 is the fluctuating part
following a Gaussian distribution. We use two methods for this analysis and compare the
results: A master equation for the case of γ � b is derived and solved for various situations
and compared to the results of a numerical simulation.
The decay resulting from interaction between the atoms will be discussed in section 5.6. In
the following section 5.1 we derive our master equation.

5.1. Master equation method

From [25] we know the limiting case Γ→∞ of the equation

dx
dt = Ax+

N∑
i=1

Bix · αi(t) (5.2)

with linear operators A, Bi and Gaussian noise α of the form

∀t, i : αi(t) = 0
∀t > 0, ∀i, j ∈ {1, ..., N} : αi(t)αj(0) = Γ · δij e−Γt.

(5.3)

Using the notation from section 4.4, the corresponding equation we want to study can be
written as

dρ
dt = −iB0[h0, ρ]− ib

∑
i=1,2,3

∑
j=x,y,z

[σij , ρ]ξij(t)

= −iB0[h0, ρ]− ib
∑

i=1,2,3

∑
j=x,y,z

9∑
k=1

[σij , ρ]C(ij),k ζk(t).
(5.4)

In its general form, (5.2) has the Itō equation [25]

dx = (Axdt+
∑
i

B2
i x · dt+

∑
i

Bix · dWi) (5.5)

as the limit case Γ→∞. Here Wi is a Brownian motion.
Let us translate this result to our equation: We use dimensionless units with b = 1 so that
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Abbildung 5.1.: For γ →∞ the numerical result (crosses) converges to the white noise limit
analytical result. (solid line) in this figure γ = 50 and a large deviation can
still be seen. The same result for γ = 500 is plotted in figure 5.2 and shows
a very small deviation from the γ →∞ case on the relevant timescale.

γ = Γ, then adjust the time units according to t ∝ γ
b2 and take the limit Γ → ∞, which is
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5.1. Master equation method

graphically visualized in Figure 5.1 to obtain:

dρ =− iB0[h0, ρ]dt

− b2

γ

∑
i,j,m,n,k

C(ij),kC(mn),k[σij , [σmn, ρ]]dt

− ib
∑
i,j,k

[σij , ρ]C(ij),k dWk

(5.6)

Equation (5.6) still describes a unitary time evolution of a pure state subject to a particular
realization of the noise. Averaging over all possible noise realizations of the ensemble we will
get the time evolution of the density matrix on average, which is what we are interested in.
The last term of the sum vanishes when this average is taken, as its mean value is zero:∑

i,j,k

[σij , ρ]C(ij),k dWk = 0. (5.7)

We use the notation Σ = CTC and I = ij from section 4.4 to finally write our master
equation as

dρ =− iB0[h0, ρ]dt− b2

γ

∑
i,j,m,n,k

C(ij),kC(mn),k[σij , [σmn, ρ]]dt

=− iB0[h0, ρ]dt− b2

γ

∑
I,J

ΣIJ [σI , [σJ , ρ]]dt.
(5.8)

For example in the special case of a spatially uncorrelated inhomogeneous noise and another
spatially constant part this is simply:

dρ = −iB0[h0, ρ]dt− b2

γ

∑
i,j

[σij , [σij , ρ]]dt− b̃2

γ̃

∑
i,j,k,l

[σij , [σkl, ρ]]dt. (5.9)

Here b2

γ describes the inhomogeneous noise, b̃2

γ̃ describes the homogeneous part of the noise.
An alternative way to write the noise term of equation (5.8) is:∑

i,j,m,n,k

C(ij),kC(mn),k[σij , [σmn, ρ]]

=
∑

i,j,m,n,k,l

C(ij),kC(mn),l[σij , [σmn, ρ]]δkl

=
∑

i,j,m,n,k,l

C(ij),kC(mn),l[σij , [σmn, ρ]]ζkζl

=
∑

i,j,m,n,k,l

[C(ij),kσijζk, [C(mn),lσmnζl, ρ]]

≡[h1, [h1, ρ]],

(5.10)

and this should define h1 = H1
b . Now our master equation can also be written in the

convenient form

ρ(t+ dt) = ρ(t)− i[H0, ρ]dt+ 2 b2

γ
(h1ρh1 −

1
2h

2
1ρ−

1
2ρh

2
1)dt (5.11)
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which is equivalent to

ρ(t+ dt) = ρ(t)− i[H0, ρ]dt+ 2 1
γ

(H1ρH1 −
1
2H

2
1ρ−

1
2ρH

2
1 )dt. (5.12)

The bars indicate averaging over the probability distribution.
In the following sections we will apply these results to different kinds of noise environments.
For example in the limit of white noise it is assumed that

γ � b, Bz, f. (5.13)

Given this inequality we know from equation (5.8) that we cannot expect the bias field or
the Zeno measurements to have any stabilizing effect in the white noise limit. If

Bz � b, γ, (5.14)

the B-field does have a stabilizing effect. The same is true for a large value of the measure-
ment frequency f of the total angular momentum.
Equation (5.11) is a Lindblad form master equation and can be solved analytically using
the corresponding Lindblad superoperator [25] L:

ρ(t) = eLtρ(0). (5.15)

5.2. Spatially uncorrelated noise

In this section we solve the master equation for spatially uncorrelated noise, which would
be a good model, if the atoms were far apart from each other.

5.2.1. Unstabilized setup

If H0 = 0, the resulting operator L has only real Eigenvalues and all of them are smaller
than or equal to zero. The kernel of L is spanned only by the totally mixed state. We are
especially interested in the time evolution of states that are used for encoding the rff-qubit.
To solve the master equation L must be expanded as eLt. This can be done by diaganolizing

L = ADA−1 (5.16)

with a diagonal matrix D and solving for

eLt = AeDtA−1. (5.17)

Starting in an arbitrary state in the rff-subspace at time 0 the state will have the following
time development in the spin 1

2 subspace:

ρ(t) = 1
2
(
sI(t)Irff + sx(t)σrff

x + sy(t)σrff
y + sz(t)σrff

z

)
⊗ IIdler (5.18)
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5.2. Spatially uncorrelated noise

with coefficients si(t) as functions of their initial value and t:

sI(t) = 1
2 + 1

2 · e
−λ0t, sx(t) = sx(0) · e−λxt

sy(t) = sy(0) · e−λyt, sz(t) = sz(0) · e−λzt
(5.19)

with
λ0 = λx = λy = 16b

2

γ
, λz = 24b

2

γ
. (5.20)

So the calculations predict that the z-component of the rff state is the most unstable one
compared to x- and y-components.
The fraction 2

3 between the decay constants is plausible when looking at the explicit forms of
the rff-operators given in equation (12) in [14] : While σrff

x and σrff
y consist of scalar products

of 2 physical qubit operators, σrff
z is the triple product of all 3 physical qubits. Each physical

qubit has a decay rate of λatom = 8 b2

γ independent of direction. As in this model the decay
is independent for each atom also, we get the decay rates

λx = 2 · λatom, λy = 2 · λatom, λz = 3 · λatom. (5.21)

5.2.2. Zeno effect

By constantly measuring the quantum number j one can suppress transitions between states
with different j-value, if the measuring frequency f is much bigger than the inverse correla-
tion time of the noise: f � γ. This is possible because the state only decays in second order
for times t � 1

γ . However we do not know how such a continuous measurement of j could
be implemented in a real experiment.
To take care of the Zeno effect in our master equation formalism we use equation (5.11)
with a modification. For this purpose we define

hkj = PjhkPj (5.22)

where k ∈ {0, 1} and j ∈
{

1
2 ,

3
2

}
. Pj is the Projector on the subspace with total angular

momentum j. The master equation with Zeno measurements then reads:

ρ(t+ dt) = ρ(t) +
∑
j= 3

2 ,
1
2

(
−i[H0j , ρ]dt+ 2 b2

γ
(h1jρh1j −

1
2h

2
1jρ−

1
2ρh

2
1j)dt

)
(5.23)

Now we get a slowed down decay when starting in the rff-subspace: The coefficients of
equation (5.18) evolve according to

sI(t) ≡ 1, sx(t) = sx(0) · e−λxt

sy(t) = sy(0) · e−λyt, sz(t) = sz(0) · e−λzt
(5.24)

with
λx = λy = 8b

2

γ
, λz = 16b

2

γ
. (5.25)

Note that sI ≡ 1 because nothing can leak out of the spin-1
2 -sector.
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5.2.3. Bias magnetic field

We use a similar modification of the master equation when a strong bias-field in z-direction
stabilizes the setup by suppressing m-transitions. We apply the field in z-direction because
we also want to suppress the internal (see section 5.6) interaction. This modification is valid
in the regime B � b, b̃, γ. Using the same procedure as in section 5.2.2 we obtain the master
equation:

dρ = −iB0[h0, ρ]dt− b2

γ

∑
i

[σiz, [σiz, ρ]]dt− b̃2

γ̃

∑
i,k

[σiz, [σkz, ρ]]dt. (5.26)

For the time evolution of the coefficients we get:

sI(t) = 2
3 + 1

3 · e
−λIt, sx(t) = sx(0) · (1

3 + 2
3 · e

−λxt)

sy(t) = sy(0) · (1
3 + 2

3 · e
−λyt), sz(t) = sz(0) · e−λzt

(5.27)

with
λ = λx = λy = λz = λI = 8b

2

γ
. (5.28)

It is remarkable that in this limit the steady state is not totally mixed. Some of the σx and
σy phase information remains. When projected onto the j = 1

2 subspace we even get

σx →
1
2σx (5.29)

and
σy →

1
2σy (5.30)

for t→∞. Another interesting property is the emergence of coherences with the |6〉-state in
the notation introduced in section 4.3. The full time evolution starting in an rff-state with
m = −1

2 in the notation of (4.3) is:

ρ(t) = sx

(
(1
3 + 2

3e
−λt) · (|7〉 〈8|+ |8〉 〈7|) + (1

3 −
1
3e
−λt) · (− |6〉 〈8| − |8〉 〈6|+ |7〉 〈6|+ |6〉 〈7|)

)
+ isy

(
(1
3 + 2

3e
−λt) · (|7〉 〈8| − |8〉 〈7|) + (1

3 −
1
3e
−λt) · (|6〉 〈8| − |8〉 〈6| − |7〉 〈6|+ |6〉 〈7|)

)
+ sze

−λt · (|7〉 〈7| − |8〉 〈8|)

+ 1
3

(
(1− e−λt) · |6〉 〈6|+ (1 + 1

2e
−λt) · (|7〉 〈7|+ |8〉 〈8|)

)
.

(5.31)
Possibly the coherences in the density matrix that occur with |6〉 for σrff

x and σrff
y could be

useful for error correction.
If however B < b̃ we would have to add a term

− b̃
2

γ̃

∑
i,k

[σix, [σkx, ρ]]dt− b̃2

γ̃

∑
i,k

[σiy, [σky, ρ]]dt (5.32)
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5.3. Spatially correlated noise

in the equation which would again result in a totally mixed state as the steady state. In the
B < b case we even have to use the noise model without stabilization from section 5.2.1.
Finally if both Zeno effect and a strong bias-field are applied we get the equation:

sI(t) ≡ 1, sx(t) = sx(0) · e−λxt

sy(t) = sy(0) · e−λyt, sz(t) = sz(0) · e−λzt
(5.33)

with
λx = λy = 22

3
b2

γ
, λz = 51

3
b2

γ
. (5.34)

So if we want to avoid a totally mixed state as steady state the Zeno measurement cannot
be applied.

5.2.4. Conclusion

Applying a B-field that is much stronger than both the homogeneous and the inhomogeneous
part of the noise helps to stabilize the setup by making the decay constants smaller and even
restore some coherence in the t→∞ limit. Finally the state decays with a speed depending
on the b

B ratio, this happens on a much longer timescale which is irrelevant for our purpose.
If we also continuously monitor the value of the total angular momentum, we get somewhat
smaller decay rates but lose all coherence for the steady state. In a real experiment it is
much easier to implement only a B-field, so it is the method to be favored.

5.3. Spatially correlated noise

So far the spacial correlations of the inhomogeneous noise part have been neglected. If the
atoms are close together a linear approximation of the field is reasonable. In this section we
derive the solution of the master equation for this case.

5.3.1. The gradient

In our study of the effect of spatial correlations we assume that the three atoms form an
equilateral triangle in the x-y-plane and that the strong bias field is perpendicular to that
plane. As the atoms are very close together we assume that the field only changes in first
order of ~x:

~Bapprox(~x) = ~B(~x0) + ∂ ~B

∂~x
[~x0] · (~x− ~x0). (5.35)

Using this ansatz we also demand that Maxwell equations have to be fulfilled:

∇ · ~B = 0, ∇× ~B = 0. (5.36)

So G := ∂ ~B
∂~x must be traceless and symmetric. Together with the demand for rotational

invariance the form of the correlation matrix Σ of section 4.4 is uniquely determined:
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5. Methods, results and possible experiment

The variance of diagonal elements of G must be independent of the specific vector a. This
yields a normalization condition with normalization constant g2:

aTG(t)aaTG(t′)a = g2 |a|4 e−γ|t−t′|. (5.37)

A general entry of G must be linear in each vector and can only consist of scalars. Thus we
use the ansatz

aTG(t)bcTG(t′)d = λ1a
T bcTd+ λ2a

T cbTd+ λ3a
TdbT c. (5.38)

To determine the individual λi we use the symmetry condition to obtain λ2 = λ3. The
traceless condition yields λ1 = −2

3λ2. Inserting the chosen normalization condition (5.37)
we arrive at:

aTG(t)bcTG(t′)d = 1
4
(
−2aT bcTd+ 3aT cbTd+ 3aTdbT c

)
g2e−γ|t−t

′|. (5.39)

In any orthonormal basis {x1, x2, x3} we get the covariances:

xTi G(t)xjxTi G(t′)xj =
(3

4 + δij
1
4

)
g2e−γ|t−t

′|

xTi G(t)xjxTj G(t′)xi =
(3

4 + δij
1
4

)
g2e−γ|t−t

′|

xTi G(t)xixTj G(t′)xj = −1
2g

2e−γ|t−t
′|, ∀i 6= j

(5.40)

and
xTi G(t)xjxTkG(t′)xl = 0 (5.41)

for all other combinations. The time independent spatial covariance matrix Σ∇ for the
random variables

{
∂Bx
∂x ,

∂By
∂y ,

∂Bz
∂z ,

∂Bx
∂y ,

∂By
∂x ,

∂By
∂z ,

∂Bz
∂y ,

∂Bz
∂x ,

∂Bx
∂z

}
can thus be written as:

Σ∇ = g2



1 −1
2 −1

2 0 0 0 0 0 0
−1

2 1 −1
2 0 0 0 0 0 0

−1
2 −1

2 1 0 0 0 0 0 0
0 0 0 3

4
3
4 0 0 0 0

0 0 0 3
4

3
4 0 0 0 0

0 0 0 0 0 3
4

3
4 0 0

0 0 0 0 0 3
4

3
4 0 0

0 0 0 0 0 0 0 3
4

3
4

0 0 0 0 0 0 0 3
4

3
4


. (5.42)

As we expect possible noise sources to change only with a low frequency noise, the situation
can be described as quasistatic and we do not need to use the time dependent Maxwell
equations. Also the magnetic fields which are due to the laser trapping can be neglected.
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5.3. Spatially correlated noise

5.3.2. Limitations of the linear model

To derive the covariance matrix for the B-field at different places we would like to assume
the gradient to be constant in space and the noise to be completely isotropic.
However in this section we show, that it is not possible to fulfill both conditions, i.e. a linear
model that fulfills Maxwell’s equations cannot be isotropic. Thus there is no natural choice
for a model to be used. Let us restate the conditions in a more elaborate way that leads to
a set of equations, which we then show to be not simultaneously fulfillable.

1. The distance between the atoms is small enough to consider the gradient as constant
in space:

∂ ~B

∂~x
[~x0] ≡ ∂ ~B

∂~x
(5.43)

2. The noise is completely isotropic.
a) Thus the covariance matrix for the fields {Bx, By, Bz} at any individual spot j

must be proportional to identity with the same coefficient B2:

Σj = B2

1 0 0
0 1 0
0 0 1

 . (5.44)

b) Let Bij denote the field at point i pointing from point i to point j. Then
Cov(Bij , Bji) is independent of i and j, because the distance between each pair
is the same.

∀i 6= j, k 6= l : Cov(Bij , Bji) = Cov(Bkl, Blk). (5.45)

c) Let Bij⊥ denote a field at point i perpendicular to the vector pointing from point
i to point j. Then

Cov(Bij⊥, Bji) = 0 (5.46)

must hold due to isotropy.

Let N denote the number of atoms. We observe that the random variables

~dj := ~Bj − ~Bj+1, j ∈ 1, ..., N − 1 (5.47)

are independent of the overall field. Thus, using assumption 1, their covariance matrix
Σdiff = Σ(~d1, ~d2, ~d3) can be derived from the gradient (5.42) and

~dN := ~BN − ~B1 = −
N−1∑
j=1

~dj (5.48)

is a linear combination of the remaining field differences. We write Σdiff in the order
{d1x, d1y, d1z, d2x, ..., d3z} and define a (not to be confused with the arbitrary vector va-
riable on the previous page) as the spacing between the individual atoms:
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Σdiff = g2a2



13
16 −

√
3

256 0 −1
2

√
27
64 0 − 5

16 −
√

75
256 0

−
√

3
256

15
16 0 −

√
3
16 −3

8 0
√

75
256 − 9

16 0
0 0 3

4 0 0 −3
8 0 0 −3

8
−1

2 −
√

3
16 0 1 0 0 −1

2

√
3
16 0√

27
64 −3

8 0 0 3
4 0 −

√
27
64 −3

8 0
0 0 −3

8 0 0 3
4 0 0 −3

8
− 5

16

√
75
256 0 −1

2 −
√

27
64 0 13

16

√
3

256 0
−
√

75
256 − 9

16 0
√

3
16 −3

8 0
√

3
256

15
16 0

0 0 −3
8 0 0 −3

8 0 0 3
4



(5.49)

As we want to determine the fields and not only their differences we introduce the random
variable ~B1 and relate it to ~d1 and ~d2. As ~d3 can be reconstructed from the latter two, we
replace it by ~B1 and get a covariance matrix

Σ(~d1, ~d2, ~B1) = g2a2



13
16 −

√
3

256 0 −1
2

√
27
64 0 c17 c18 c19

−
√

3
256

15
16 0 −

√
3
16 −3

8 0 c27 c28 c29

0 0 3
4 0 0 −3

8 c37 c38 c39

−1
2 −

√
3
16 0 1 0 0 c47 c48 c49√

27
64 −3

8 0 0 3
4 0 c57 c58 c59

0 0 −3
8 0 0 3

4 c67 c68 c69
c17 c27 c37 c47 c57 c67 c c78 c79
c18 c28 c38 c48 c85 c68 c78 c c89
c19 c29 c39 c49 c59 c69 c79 c89 c



(5.50)

with some coefficients cij that we will now determine. First we transform to the basis of the
individual fields to obtain

Σ( ~B1, ~B2, ~B3) = T TΣ(~d1, ~d2, ~B1)T, (5.51)

where the matrix T corresponds to the inverse of the mapping

~B1 → ~B1 − ~B2

~B2 → ~B2 − ~B3

~B3 → ~B1.

(5.52)

In this basis we can read of the equations imposed by 2.a). For example we find:

c89 = c78 = c79 = 0. (5.53)
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5.3. Spatially correlated noise

Similarly we can transform Σ to suitable basis to read of conditions 2.b) and 2.c). Finally
we obtain the result:

c69 = c67 = c68 = c49 = c59 = c37 = c38 = c19 = c29 = c58 = 0

c39 = 3
8 , c17 = 13

32 , c28 = 15
32 , c57 = 3

√
3

8 , c48 = −
√

3
4 , c27 = −11

√
3

32 ,

c18 = 9
√

3
32 .

(5.54)

All of the conditions 2.a-c) are necessary for isotropy. However there are even more conditions
to be fulfilled for isotropy: For example if we use the resulting coefficients to calculate the
covariance matrix

Σ( ~B2 − ~B3, ~B2 + ~B3) = g2a2



1 0 0 0 5
24
√

3 0
0 3

4 0 − 5
24
√

3 0 0
0 0 3

4 0 0 0
0 − 5

24
√

3 0 −1 + 4c 0 0
5
24
√

3 0 0 0 −3
4 + 4c 0

0 0 0 0 0 −3
4 + 4c


, (5.55)

we find that it has non-zero off-diagonal elements, which should not be the case! We conclude
that in order to make an approximation with a spatially constant, isotropic gradient, we
can never fulfill all consistency conditions. Although we just showed that no model can be
completely consistent , we can still try some reasonable methods to do the calculation and
compare their result.

5.3.3. Expansion point method

Assuming the magnetic field B(x) to be an analytical function of space, we can write it at
the individual sites at a given time in a Taylor series around some expansion point x0 (for
better readability we omit the vector sign):

B(x) = B(x0) + ∂B

∂x
[x0](x− x0) + 1

2
∂2B

∂x2 [x0](x− x0, x− x0) + ... (5.56)

In leading order the Euclidean error of a linear approximation of the B-field is thus:

‖Bapprox(x)−B(x)‖ ≈ ε ‖x− x0‖2 (5.57)

with some constant ε > 0. This error estimate is justified for small errors which we have
already assumed to justify the approximation in the first place. The sum of errors at the
individual sites in ‖·‖-norm is∑

j

‖Bapprox(xj)−B(xj)‖ ≈ ε
∑
j

‖xj − x0‖2 (5.58)

and is minimized by the mean position

x0 =
N∑
j=1

xj
N
, (5.59)
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which is therefore a natural choice for the expansion point. The B-fields at the individual
sites don’t have an isotropic distribution with this method of expansion, see equation (5.56).
For example the variance of the field pointing towards the expansion point is bigger than
the variance in other directions. In section 5.3.2 we showed that all linear models have some
problem like this.

5.3.4. 2-point-correlation model

If we look at two atoms only, it is possible to use a linear and isotropic model with the help of
the gradient from section 5.3.1. The best model for one atom is always a covariance matrix
proportional to identity and for any two atoms it is natural to assume that gradient and
average field are independent of each other. In this way one would get covariance matrices
Σ( ~B1, ~B2), Σ( ~B2, ~B3) and Σ( ~B3, ~B1). With the notation α = g2a2 and α′ = cα we use the
entries from these matrices directly as a definition for:

Σ( ~B1, ~B2, ~B3) =

α′ 0 0 α′ − 13
32α

1
32α
√

3 0 α′ − 13
32α

1
32α
√

3 0
0 α′ 0 1

32α
√

3 α′ − 15
32α 0 − 1

32α
√

3 α′ − 15
32α 0

0 0 α′ 0 0 α′ − 3
8α 0 0 α′ − 3

8α

α′ − 13
32α

1
32α
√

3 0 α′ 0 0 α′ − 1
2α 0 0

1
32α
√

3 α′ − 15
32α 0 0 α′ 0 0 α′ − 3

8α 0
0 0 α′ − 3

8α 0 0 α′ 0 0 α′ − 3
8α

α′ − 13
32α − 1

32α
√

3 0 α′ − 1
2α 0 0 α′ 0 0

− 1
32α
√

3 α′ − 15
32 0 0 α′ − 3

8α 0 0 α′ 0
0 0 α′ − 3

8α 0 0 α′ − 3
8α 0 0 α′


.

(5.60)
The advantage of this method is that by construction the covariance matrix for any 2 atoms
is not affected by the total number of atoms one wants to model. However it is not in full
agreement with the starting point of the derivation, the assumption of a spatially constant,
isotropic gradient. We transform Σ( ~B1, ~B2, ~B3) to Σ

(
∂ ~B
∂x ,

∂ ~B
∂y

)
and obtain

Σ
(
∂ ~B

∂x
,
∂ ~B

∂y

)
= 1
a2



α 0 0 0 α
8 0

0 3
4α 0 α

8 0 0
0 0 3

4α 0 0 0
0 α

8 0 3
4α 0 0

α
8 0 0 0 α 0
0 0 0 0 0 3

4α


, (5.61)

which is unequal to our starting point, the gradient matrix (5.42).

5.3.5. Unstabilized setup

As we just derived there is no linear model that fulfills all the conditions we would like to be
fulfilled. However in practice this seems irrelevant for the decay rates of the rff-qubit, as all
three of the models above give the same decay rates for large values of the constant c, which
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5.4. Different number of atoms

is the ratio of homogeneous noise to inhomogeneous noise. As the atoms are close together
this is always fulfilled and we can use the resulting decay rates as very good approximations.
For a convenient notation we define β2 = g2a2. The resulting solution of the master equation
with any of the above models is:

sI(t) = 1
2 + 1

2 · e
−λIt, sx(t) = sx(0) · e−λxt

sy(t) = sy(0) · e−λyt, sz(t) = sz(0) · e−λzt
(5.62)

with
λI = λx = λy = 20

3
β2

γ
, λz = 10β

2

γ
. (5.63)

5.3.6. Bias magnetic field

We do the same calculation for the setup with an applied bias field perpendicular to the
plane in which the atoms form an equilateral triangle. This is the most important case as
the experiment is planned to be conducted in this way.
We assume that the bias field is strong enough so that only field components along the
z-axis need to be considered. All of the models above have the exact same Σ-matrix in this
case, so there is even less need for discussing which is the right method than in the last
section. The time evolution of the rff-operators is now:

sI(t) = 2
3 + 1

3 · e
−λIt, sx(t) = sx(0) · (1

3 + 2
3 · e

−λxt)

sy(t) = sy(0) · (1
3 + 2

3 · e
−λyt), sz(t) = sz(0) · e−λzt

(5.64)

with
λ = λx = λy = λz = λI = 3β

2

γ
. (5.65)

So the decay has exactly the same structure as for spatially uncorrelated noise, but the
decay rate is now given in units of β2 instead of b2 because we have introduced a distance
a. This model is the best one we have for the final physical setup. If we use β2 to calculate
the mean fluctuation b2, we find that the correlated noise setup decays slightly faster than
the uncorrelated noise setup in these units.
With a rough estimate for β ≈ 10−13T from experimentalists and γ ≈ 50Hz, the frequency
of an ordinary current in the lab, we get a decay rate of λ ≈ 5 × 10−6Hz, which is by far
enough to perform an experiment. This is just a rough estimate and the real decay rate can
only be determined experimentally. Still we are confident that λ will be small enough to get
a reasonable coherence time to perform operations on the qubit.

5.4. Different number of atoms

5.4.1. Four atoms

An rff-qubit can also be constructed in the subspace with j = 0 of a setup of four atoms
[14]. In this section this setup is compared to the 3 atom case. The 4-atom setup can also
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be stabilized by a bias B-field, the steady state is then not totally mixed. With the same
approximations as before we do the calculation for this setup first for the case of no spatial
correlations and then give the results with included spatial correlations.
The setup with no stabilization and no spatial correlation is solved by:

sI(t) = 1
8 + 1

4 · e
−λ1t + 5

8 · e
−λ3t, sx(t) = sx(0) ·

(1
2 · e

−λ1t + 1
2 · e

−λ3t
)

sy(t) = sy(0) ·
(1

2 · e
−λ1t + 1

2 · e
−λ3t

)
, sz(t) = sz(0) · e−λ2t

(5.66)

with
λ1 = 16b

2

γ
, λ2 = 24b

2

γ
, λ3 = 32b

2

γ
. (5.67)

So the decay is slightly faster than in the corresponding 3-atom case.
In the case of spatially correlated noise we again use the same methods (expansion point,
2-point-correlation) to solve the 4-atoms master equation as we did for 3 atoms. Again all
methods give the same result, so it doesn’t matter which one we use. The resulting solution
of the master equation without a stabilizing B-field is:

sI(t) = 1
8 + 4

9 · e
−λ1t + 25

72 · e
−λ2t + 1

12 · e
−λ3t

sx(t) = sx(0) ·
(3

8 · e
−λ4t + 5

90 · e
−λ2t + 35

72 · e
−λ1t + 1

12 · e
−λ3t

)
sy(t) = sy(0) ·

(1
8 · e

−λ4t + 1
6 · e

−λ2t + 1
4 · e

−λ3t + 11
24 · e

−λ1t
)

sz(t) = sz(0) · e−λ3t

(5.68)

with
λ1 = 62

3
b2

γ
, λ2 = 262

3
b2

γ
, λ3 = 131

3
b2

γ
, λ4 = 20b

2

γ
. (5.69)

If a stabilizing field is applied in z-direction we obtain:

sI(t) = 4
9 + 2

9 · e
−λ1t + 1

9 · e
−λ2t + 2

9 · e
−λ3t

sx(t) = sx(0) ·
( 7

36 + 5
9 · e

−λ1t + 1
9 · e

−λ2t + 5
36 · e

−λ3t
)

sy(t) = sy(0) ·
(1

4 + 1
3 · e

−λ1t + 1
3 · e

−λ2t + 1
12 · e

−λ3t
)

sz(t) = sz(0) ·
(2

3e
−λ1t + 1

3e
−λ2t

)
(5.70)

with
λ1 = 3β

2

γ
, λ2 = 6β

2

γ
, λ3 = 12β

2

γ
. (5.71)

The decay is a little bit faster than in the 3-atoms case, if we assume the edge length to
be the same in both cases. In the four atom case σx and σy have different time evolutions.
The probability to stay in the rff-state for t → ∞ is smaller, but the average fidelity of
the operators containing the information divided by the j = 0 survival probability is still

7
36 + 1

4
4
9

= 1
2 , just as in the 3 atom case.
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5.4.2. Two atoms

If a bias B-field is applied in z-direction, which makes the effect of field-inhomogeneities in
x- and y-direction negligible, one can also store a decoherence free qubit in the states

|0〉 := |↑↓〉 , |1〉 := |↓↑〉 (5.72)

as has been implemented by the Wineland group. With the noise model that takes into
account the fluctuation in first order only we get the following fidelities for these states:

sx(t) = sx(0) · e−λt, sy(t) = sy(0) · e−λt

sz(t) = sz(0), sI(t) = sI(0)
(5.73)

with
λ = 3β

2

γ
. (5.74)

So this setup decays a little bit faster than the 3-atom setup.

5.5. Numerical analysis

For small γ compared to B0, b, b̃ the white noise model is no longer valid. To evaluate the
small γ case we use a numerical method. This numerical analysis is also compared to the
analytical results for the white noise limit to check its validity and we see that both methods
are in good agreement.
The numerical method generates time correlated noise and evolves our initial state unitarily
with many different realizations of an ensemble of this noise. Then the average over many
runs is taken. It is described in more detail below and error estimation is derived.

5.5.1. Method

We use the numerical scheme

∀n ∈ N
ζNum(t = 0)˜N(0, 1)

ζNum(n · dt+ dt) = e−γ·dt · ζNum(n · dt) +
√

1− e−γ·2dt · c(n · dt)
(5.75)

to simulate the noise. All c(t) are independently Gauss distributed

c(t)˜N(0, 1), < c(t), c(t′) >= 0. (5.76)

Here the index Num of ζNum stands for numerical. The scheme creates a series with the
property

∀t = n · dt, t′ = n′ · dt′ :
Cov(ζNum,ij(t), ζNum,kl(t′)) = δikδjl · e−γ|t−t

′|

ζNum,ij(t) = 0.
(5.77)
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5. Methods, results and possible experiment

To get the values for ~ξNum we use

~ξNum = C~ζNum (5.78)

with the matrix C from 4.4. The vector ~ξ(t) fulfills equation (4.13) for a series of discrete
times. The time evolution of the quantum state can then be done using the exact unitary

transformation
ψ(t+ dt) = exp(−i(Bh0 + bh1)dt)ψ(t) (5.79)

and ξ(n ·dt) as an approximation for ξ(n ·dt+h) if h < dt at each time step. Thus the error
in this calculation occurs mostly because of the noise simulation.

5.5.2. Error estimation

Let us estimate the error of this scheme for spatially uncorrelated noise to simplify the
notation. For spatially correlated noise the resulting choice of time step size is the same.
ξ(t) will denote the true value, ξNum(t) is its approximation. At each instance t = n · dt for
n ∈ N , when t is equal to one of the times for which the noise value was calculated with
equation (5.75), there is no error on ξ(t) at all, because ξNum(n · dt) ≡ ξ(n · dt).
We can approximate values of ξ(n · dt+ h) with

ξ(n · dt+ h) ≈ ξ(n · dt) ≡ ξNum(n · dt). (5.80)

If the time step dt is much smaller than the correlation time of the noise dt � τ = 1
γ and

0 < h < dt this approximation is good, as will be shown below. At each instance of time for

0 < h < dt the error is
|ξNum(t)− ξ(t+ h)|, (5.81)

as h < dt
|ξNum(t)− ξ(t+ h)| ≤ |ξNum(t)− ξ(t+ dt)| (5.82)

on average. Thus we use |ξNum(t)− ξ(t+ dt)| as an upper bound for the average error:

|ξNum(t)− ξ(t+ h)| ≤ |ξNum(t)− ξNum(t+ dt)|

= |(1− e−γ·dt) · ξNum(t) +
√

1− e−γ·2dt · c(t)|
(5.83)

Expanding the exponential functions in first order, which is valid for
√

2γdt� 1 one obtains:

|ξNum(t)− ξ(t+ h)| ≤ |γdtξNum(t) +
√

2γdt · c(t)|. (5.84)

As ξNum and c(t) are independently standard normally distributed we get on average:

|ξNum(t)− ξ(t+ h)| ≤
√
|γdt|2 + 2γdt γdt→0−→

√
2γdt. (5.85)

Thus the simulation gives reasonable results if the time step dt� 1
γ . The error on the noise

scales with
√

2γdt. The error on the exponent in the unitary time evolution of equation
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(5.79) scales with b
√

2γdt. Taking only the first order error in the exponential the total
error of a run for time T can be estimated by

error ≈ bT
√

2γdt. (5.86)

For γ = 0 this method is numerically exact, errors are only do to statistics and the half time
of the decoherence-free z-component state is about:

T1/2 ≈ 0.25 ~
µBb

. (5.87)

The approximate equal sign only refers to the numerical prefactor, the scaling with ~
µBb

is
exact. Compared to the white noise limit the half time depends on b only linearly in the
small γ case. Combining both formulas to a rough estimation we obtain:

T1/2 ≈
~
µBb

· (0.25 + 0.03γ ~
µBb

). (5.88)

We want to do the calculation for a time period that is as long as the half life. So we plug
our half-life estimation into equation (5.86) and get the condition

√
2γdtb ~

µBb
· (0.25 + 0.03γ ~

µBb
)� errortolerance� 1 (5.89)

for dt, to obtain good results with this method. Note, that equation (5.88) is also an in-
teresting result for a rough half-life estimation on its own without the context of error
estimation.

5.5.3. Comparison to analytical equation

To check if the numerical method is consistent with the analytical model, both results are
plotted in figures 5.2-5.5 for a big value of γ (white noise limit) and for different setup: no
stabilization, stabilization with Zeno effect, bias field and finally with both methods. The
notation for sx, sy, sz, I is the same as in equation (5.18). The good agreement with the
analytical result shows that the method is valid for big values of γ. As the error of the
numerical method scales with γ we can be even more convinced that it gives reasonable
results when γ is small.
The comparison of the effective analytical equations from section 5.2.2 and the numerical
results requires fZeno � b, γ and/or Bz � b, γ. Here fZeno denotes the frequency at which
the quantum number j is measured in order to use the Zeno effect. If these conditions are
not fulfilled, the stabilization attempt does not work. These plots which include different
stabilization scenarios can be seen in the figures 5.3, 5.4 and 5.5.
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Abbildung 5.2.: Time evolution without any stabilization methods.

5.5.4. Strongly time correlated noise

For very small values of γ the master equation ansatz from (5.11) is not valid anymore. As
the numerical scheme agrees with the analytical result for big values of γ we can trust it
even more in the small γ case. Figure 5.6 is a plot for the extreme case γ = 0.
It can be seen that the decay is in second order of t now. With increasing γ it will trans-
form more and more into a decay in first order and the analytical equation will be a good
approximation.
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Abbildung 5.3.: Time evolution with stabilization by Zeno effect.

5.6. Internal interaction

In the above models spin-spin interaction between the atoms was ignored. Now we will
analyze this part of the Hamiltonian under the assumption that the atoms are trapped by
a very strong potential and we can neglect their center of mass motion. In the basis given
in section 4.3 the Hamiltonian has the form:

Hinternal = µ0
4πr3

[
~µA · ~µB − 3(~µA · ~̂r)(~̂r · ~µB)

]
. (5.90)
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Abbildung 5.4.: Time evolution with stabilization by strong B-field.

and caused by the B-field created by a magnetic dipole:

~B(x, y, z) = µ0
4π

3~r(~µ · ~r)− ~µr2

r5 . (5.91)

Here A and B refer to different atoms, r is the distance between them and ~̂r is the unit
vector pointing from one atom to the other. For µ = µB

2 ge and a setup of the three atoms
sitting in a clockwise numbering in an equilateral triangle of distance r in the xy-plane we
get the result for Hinternal:
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Abbildung 5.5.: Time evolution with stabilization by both methods.

Hinternal = µ0µ
2
Bg

2
e

16πr3



3 0 0 0 0 0 0 3
√

3
0 3 0 −3

√
3 0 0 0 0

0 0 −3 0 0 0 0 0
0 −3

√
3 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 −3 0 0
0 0 0 0 0 0 0 0

3
√

3 0 0 0 0 0 0 0


. (5.92)
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Abbildung 5.6.: Decay with γ = 0

Inserting the numerical values we get a prefactor

Einternal = µ0µ
2
Bg

2
e

16πr3 = 8.6 · 10−54Jm3 · 1
r3 . (5.93)

A realistic value of r is about an optical wavelength. 1

The matrix is written down in the basis numbered as in section 4.3. In this basis all states in
the spin-1

2 -subspace, which encodes the qubit, have the same energy and there is no transi-
tion between them. Four states of the matrix are eigenstates already and the remaining four

1E.g. if r = 100nm we get Einternal/~ = 86Hz.
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5.6. Internal interaction

by four matrix can be decomposed into two two-dimensional subspaces with no transitions
between them. The time evolution for arbitrary two dimensional quantum systems of this
form was already given above in Rabi’s equation (4.23).
As there are only transitions between states of different m this can again be suppressed by a
strong overall field in z-direction, in analogy to section 4.5.2. In the internal interaction case
the decay can even be completely suppressed. Without an external field the transition is
strong as the off-diagonal elements are big compared to the diagonal elements. The maximal
value of |c2|2 is 27

27.75 ≈ 1 for both transitions in that case. This result shows that we need a
bias field to suppress the decay resulting from internal interaction, which would otherwise
even be faster than the noise induced decay.
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6. Entanglement in 2-qubit master equations

6.1. Motivation

While analyzing the master equation for the rff-qubit, we wondered whether it is possible
to see from the structure of a 2-qubit Lindblad form master equation if it can entangle
two initially separable qubits or not. As any mixed state is composed of pure states and
entanglement monotones are subadditive [26], we may consider only pure states as initial
states: If a given master equation cannot entangle any pure initial state, it can’t entangle
initial mixed states either.
We have not found a general classification of Lindblad equations, but some interesting
examples. Let us first remind ourselves of the general form of 2-qubit master equation in
Lindblad form:

ρ̇ = − i
~

[H, ρ]−
N2−1∑
n,m=1

hnm
(
ρL†mLn + L†mLnρ− 2LnρL†m), (6.1)

where H is a Hamiltonian, {Lm} is some orthonormal operator basis excluding the identity
1, and hnm is a positive matrix. This equation is always trace preserving and completely
positive [27]. The equation has a unitary part represented by H and a non-unitary part
represented by the Lindblad operator L, in short we can write:

ρ̇ = − i
~

[H, ρ]− Lρ. (6.2)

6.2. White noise limit of unitary evolution...

6.2.1. ...cannot entangle if:

If L = 0 it is well known [28], that all product states remain product states during an
interaction if and only if the full Hamiltonian can be factorised as

H(t) = H1(t)⊗ 1 + 1⊗H2(t). (6.3)

So Hamiltonians of the general form

H = H1 ⊗H2 (6.4)

with H1 6= 1 and H2 6= 1 are able to produce entanglement for seperable initial states
suitable with respect to the given Hamiltonian1 H. But what happens if a Hamiltonian

1For example the initial state |ψ〉1 ⊗ |ψ〉2 should not be such that one of the |ψ〉j is an eigenstate of Hj .
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6. Entanglement in 2-qubit master equations

H = H1 ⊗ H2 of this form comes with a prefactor that is statistically distributed? From
(5.12) we already know that if we have a unitary time evolution with Hamiltonian H̃(t)

H̃(t) = α(t)H, (6.5)

with a random variable α that has the properties

∀t, i : αi(t) = 0
∀t > 0, ∀i, j ∈ {1, ..., N} : αi(t)αj(0) = Γ · δij e−Γt (6.6)

and if Γ is sufficiently large, this unitary time evolution can be approximated by the non-
unitary Lindblad term

Lρ = 2
(
HρH − 1

2H
2ρ− 1

2ρH
2
)

dt. (6.7)

If now H has the property
H2 ∝ 1 (6.8)

and is of the form (6.4), which is both fulfilled for example by

H = ~b1 · ~σ ⊗~b2 · ~σ, (6.9)

we can solve the master equation equation explicitly. For arbitrary initially separable states
ρ0 we define

ρ1 = Hρ0H

tr(Hρ0H) (6.10)

and get the equation of motion:

ρ(t) = 1
2
(
1 + e−κt

)
ρ0 + 1

2
(
1− e−κt

)
ρ1. (6.11)

By definition ρ0 is separable and thus ρ1 ∝ Hρ0H must also be separable because H =
H1 ⊗H2. We see that ρ(t) is always a mixture of separable states and thus separable itself.
To get more understanding for this result we solve the equation again with a different
method, which only refers to α and does not involve any approximations. Let

A(t) =
∫ t

0
dtα(t) (6.12)

denote the integrated α-distribution and P denote the probability measure. As A(t) is sym-
metric, i.e.

∀t : P(A = x) = P(A = −x), (6.13)

the solution of the master equation can be written as

ρ(t) =
∫ ∞
−∞

dPeiA(t)Hρ(0)e−iA(t)H

=
∫ ∞

0
dP
(
eiA(t)Hρ(0)e−iA(t)H + e−iA(t)Hρ(0)eiA(t)H

)
.

(6.14)
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6.2. White noise limit of unitary evolution...

With the notation ρj = |j〉 〈j| we use H2 ∝ 1 to conclude

∀x ∈ R : e−ixHρ0e
ixH = (cos (x ‖H‖) |0〉 − i sin(x ‖H‖) |1〉) (...)† (6.15)

and so the relative phases between |0〉 and |1〉 in the integrand of (6.14) cancel,

e−ixHρ0e
ixH + eixHρ0e

−ixH = cos2 (x ‖H‖) ρ0 + sin2 (x ‖H‖) ρ1, (6.16)

and so ρ(t) is the integral over separable states and thus separable.

6.2.2. ...does entangle:

As equation (6.9) is already a quite general class of Hamiltonians one might want to gene-
ralize this result to all 2-qubit-Hamiltonians of the form of equation (6.4). However this is
not possible as the following counter example shows:
Consider the Hamiltonian

H = (1 + σx)⊗ (1 + σx) (6.17)

with initial state
ψ0 = |↑↓〉 . (6.18)

Now a Lindblad time evolution of the form (6.7) does create entanglement. We define τ :=
A(t), the vectors

|a〉 := (|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉)/4
|b〉 := (− |↑↑〉+ 3 |↑↓〉 − |↓↑〉 − |↓↓〉)/4
|ψ(τ)〉 := eiτ |a〉+ |b〉 ,

(6.19)

the density matrix ϑτ := |ψ(τ)〉 〈ψ(τ)| and the density function f(t, τ) resulting from the
distribution of α. The solution of the master equation can be derived with the same method
as before to obtain:

ρ(t) =
∫ ∞
−∞

dτf(t, τ)ϑτ . (6.20)

As f(τ) mod 2π converges to a uniform distribution for t → ∞, the phase factor eiτ in
(6.19) becomes random and the steady state is entangled:

ρ(∞) = |a〉 〈a|+ |b〉 〈b| . (6.21)

Let us compare this result to section 6.2.1:
In both cases entanglement builds up, (for τ mod π 6= 0) if there is enough information on
the phase τ = A(t), for example via some ρ-independent measurement on τ . (A more simple
case of such knowledge is τ = t, representing ordinary unitary time evolution.) In contrast to
section 6.2.1, such knowledge is not crucial for entanglement in our counterexample, where
τ(∞) is uniformly distributed in [0, 2π].
Note that H = (1 + σx) ⊗ (1 + σx) differs from H = σx ⊗ σx only by the sum of local (!)
Hamiltonians (1 + σ1x + σ2x). With this modification entanglement is possible even if τ is
unknown.
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6.3. Inhibition of entanglement by noise

Let us look at a different setup: The rotational invariant Hamiltonian

H = ω
∑

j=x,y,z
σ1j ⊗ σ2j (6.22)

can be written in the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} as a matrix:

H = ω


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 . (6.23)

Thus a unitary time evolution would leave initial states in the {|↑↑〉 , |↓↓〉}-sector unentangled
and entangle states that have a nonzero amplitude in the {|↑↓〉 , |↓↑〉}-sector. If however noise
is added to the time evolution in form of the Lindblad term L with

Lρ = −γ(ρ+ 1/4) (6.24)

the formation of entanglement can be completely inhibited if the ratio γ
ω is sufficiently large.

Note that this Lindblad term is also rotationally invariant and we could also write it in a
more elaborate way to fit the form of (6.1),

Lρ = −γ
∑
j

(
A2
jρ+ ρA2

j − 2AjρAj
)
, (6.25)

with
Aj ∈ {σik, σ1k ⊗ σ2l} , i ∈ {1, 2, 3} , l, k ∈ {x, y, z} . (6.26)

As the resulting master equation is rotationally invariant we can restrict our study to initial
states

ρ0 = (a |↑↑〉+ b |↑↓〉) (a 〈↑↑|+ b 〈↑↓|) (6.27)

with a, b ∈ R. As the effect of H on |↑↑〉 is only a relative phase, we can further set a = 0
and b = 1 for the initial state that reaches the maximum amount of entanglement possible
for any ω and γ. The solution of the master equation with this initial state is:

ρ(t) = e−γt


0 0 0 0
0 cos2 (2ωt) −i sin (2ωt) cos (2ωt) 0
0 i sin (2ωt) cos (2ωt) sin2 (2ωt) 0
0 0 0 0

 +1
4
(
1− e−γt

)
. (6.28)

To fulfill the Peres-Horodecki criterion [29, 30] the partial transpose of ρ(t) must have at
least one non-zero eigenvalue. As we can read of from ρ(t) it is fulfilled if and only if

1
4
(
1− e−γt

)
< e−γt sin (2ωt) cos (2ωt) . (6.29)
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Thus entanglement will temporarily arise if and only if

ω >
γ

8 , (6.30)

while in the limit t→∞ the state is totally mixed (and separable) for any γ > 0.
This result can be generalized:
For any uniformly bounded master equation operator M0(t) with

ρ̇(t) = M0(t)ρ(t)
∃m∀t : ‖M0(t)‖ ≤ m

(6.31)

there exists a γ0 > 0 such that for all γ > γ0 the master equation operator

M = M0 + L (6.32)

with
Lρ = −γ

(
ρ+ 1

tr(1)

)
(6.33)

never entangles initially separable states for all times t.
Proof:
Let M0 denote the operator of the original master equation and for a given initial state
ρ0 the solution of (6.31) is denoted as ρ0(t). Now M0 is a bounded operator and ρ0(t) is
a positive, finite dimensional operators with tr(ρ) = 1 for any time t and thus uniformly
bounded by a constant r:

∃r ∀t : ‖ρ0(t)‖ ≤ r. (6.34)

Consequently, using Cauchy-Schwarz inequality, also the derivative ρ̇0(t) is uniformly boun-
ded,

∃m, r ∀t : ‖ρ̇0(t)‖ ≤ ‖M0(t)‖ ‖ρ0(t)‖ ≤ mr, (6.35)

and we find a time dependent upper bound for ε(t) = ρ0(t)− ρ0(0):

∃m, r ∀t : ‖ε(t)‖ =
∥∥∥∥∫ t

0
ρ̇0(t)dt

∥∥∥∥ ≤ mrt. (6.36)

Using triangle inequality we also find a time independent bound:

∃r ∀t : ‖ε(t)‖ ≤‖ρ0(t)‖+ ‖ρ0(0)‖ ≤ 2r. (6.37)

The solution of the full master equation with operator M is

ρ(t) = e−γtρ0(t) +
(
1− e−γt

) 1
tr(1)

= e−γtρ0(0) + e−γtε(t) +
(
1− e−γt

) 1
tr(1) .

(6.38)

The first term in the sum is separable by definition. The second two terms of the sum can
be written as (

1− e−γt
)( 1

tr(1) + fγ(t)ε(t)
)
≡
(
1− e−γt

)( 1
tr(1) + ρ1(t)

)
(6.39)
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with
fγ(t) = e−γt

(1− e−γt) . (6.40)

We now show that
∀δ > 0∃γ0∀γ > γ0∀t : ‖ρ1(t)‖ < δ, (6.41)

and so after choosing γ big enough, 1
tr(1) + ρ1(t) is within the separable neighborhood of

1
tr(1) , which was established in [31].
For a given t0 we use two upper bounds for fγ :
As fγ

γ→∞→ 0 uniformly with respect to t > t0 we can derive an estimate for large values of
t:

∃γ0∀t > t0, γ > γ0 : fγ(t) < t0. (6.42)

Using the convexity of e−γt we also get an estimate for small times:

∀γ > 2
t0
∀t < t0 : fγ(t) < t0

t
. (6.43)

Combining equation (6.36) with equation (6.43) and equation (6.37) with equation (6.42)
we get

∀t0∃γ0∀γ > γ0∀t : ‖ρ1(t)‖ < max(2rt0,mrt0). (6.44)
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In the first part of the thesis we first reviewed the articles on the Landau-Zener jump time
by Vitanov [10] in section 2.6 and compared it to the time evolution of the Wannier-Stark
system as a function of the parameters a and V in section 3.3. For small values of V and a
the Landau-Zener model describes our system very well. However to resolve the resonances
in the long time decay rate γ and the Zeno parameter Z we need to consider at least 3
energy bands.
As Niu’s paper [7], reviewed in section 2.7, uses a 2 state description, we realized that we
cannot use it to describe γ and Z. In addition due to the approximation used in section
2.7.4 we cannot use it to resolve the steplike substructure on the exponential decay.
That is why we decided to start with the full Hamiltonian in section 3.1, adjust it to the
Pisa experiment in section 3.2, approximate it with a large but finite number of states for
the numerical implementation in section 3.3, and only in the final step, after calculating the
Floquet operator Uκ(TBloch), approximate this operator with a 2× 2 matrix U red

κ (TBloch) in
section 3.4 within a reasonable set of parameters.
The results obtained in sections 3.1-3.3 were then used to calculate the time evolution,
especially in the adiabatic basis, for the Pisa experiment in Tayebirad et al. [3]. However as
mentioned in section 3.2.6 a definite statement can only be made as soon as we know the
details of the experimental measurement procedure. The matrix U red

κ explains the resonances
in γ and Z and can be used to manipulate the resonances with an altered time evolution
as described in section 3.4.3. Possibly a further experiment making use of this modification
could be done in Pisa. The relation of the resonances to Zeno effect is explained in section
3.4.3.
An idea that could be interesting to study in the future is to modify the time evolution not
only by pausing the acceleration in the way we proposed, but to optimize a(t) or V (t) as
a function of time to achieve a desired final state |ψf 〉. For example Krotov algorithm [32]
could be used to calculate the optimal a(t) and V (t) for a given |ψf 〉.
While in this first part of the thesis the Hamiltonian H(t) was under our control and we
wanted to induce a decay of the ground state fidelity on purpose, in the second part H(t)
is a random function of time, as our system was coupled to an uncontrollable environment.
Thus instead of a wave function |ψ〉 we describe the system with a density matrix ρ and
the time evolution of the system is described by an effective master equation instead of the
Schrödinger equation.
For the decoherence study of the rotation frame free qubit (rff-qubit) we derived this master
equation for the white noise limit in section 5.1 and introduced a numerical scheme with
error estimation in section 5.5 to simulate the fidelity decay due to random magnetic fields
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in various physical setups of the rff-construction. In the white noise regime the results of
both methods are in good agreement and also agree with the perturbation theory based
calculations done by Han Rui. The numerical scheme also allows the calculation of strongly
time correlated noise. In section 5.3 we checked that the results don’t depend the details of
incorporating the spatial correlations.
We found that the setup can be stabilized by a bias magnetic field with B � γ, b and
to some extend by monitoring the value of j with a measuring frequency f � γ, b. This
stabilization is also needed to suppress the internal interaction of the atoms. The time scale
of the decay using estimated noise parameters is sufficient for a physical implementation.
Those timescales are also compared to similar setups with 2 or 4 atoms in section 5.4. In
a real experiment other noise sources such as the center of mass motion of the atoms also
lead to decoherence. Thus further stabilization methods like error correction codes have to
be applied to achieve a long coherence time.
The next step in the study of the rff-setup is to come up with a way to encode an rff-state and
identify further noise sources. Possibly we could use Rydberg blockade [33] or interaction
with single photons to entangle the atoms and thereby produce an rff-state.
In the last part of the thesis we looked at some examples of master equations that can
or can not generate entanglement. In section 6.2 we found that the randomization of a
crucial phase can prevent the occurrence of entanglement.1 We show that nonunitary terms
in master equation of the form H = H1 ⊗H2 that seem to generate entanglement on first
look, do not entangle if H2 = 1. In section 6.3 we start with an arbitrary master equation
and show that adding enough noise will completely inhibit the generation of entanglement.
The conditions for this entanglement inhibition can still be slightly generalized. It would be
very interesting to find out whether simple criteria exist that can be used to tell whether a
given master equation can generate entanglement or not.
We have studied two systems which were out of reach of experimental control only a few
years ago. In the future even narrower distributions in momentum space could be achieved
for the BEC system and also even better control and shielding of single atoms will be
possible, so that the predictions of this thesis can be tested with higher precision.

1This is a similar mechanism as the phase randomization in section 3.4.3 that simulates a Zeno measurement.

92



Literaturverzeichnis

[1] I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,”
Reviews of Modern Physics, vol. 80, no. 3, pp. 885–964, 2008.

[2] A. Zenesini, “1. Time-resolved measurement of Landau-Zener tunneling in periodic
potentials A. Zenesini, H. Lignier, G. Tayebirad, J. Radogostowicz, D. Ciampini, R.
Manella, S. Wimberger, O. Morsch, E. Arimondo Phys. Rev. Lett. 103, 090403 (2009)
2. Trap modulation spectroscopy of the Mott-insulator transition in optical lattices, H.
Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, S. Montangero, G. Pupillo,
R. Fazio,” Phys. Rev. Lett, vol. 103, p. 090403, 2009.

[3] G. Tayebirad, A. Zenesini, D. Ciampini, R. Mannella, O. Morsch, E. Arimondo,
N. Lörch, and S. Wimberger, “Time-resolved measurement of landau-zener tunneling
in different bases,” Phys. Rev. A, vol. 82, p. 013633, Jul 2010.

[4] J. Feldmann, K. Leo, J. Shah, D. Miller, J. Cunningham, T. Meier, G. Von Plessen,
A. Schulze, P. Thomas, and S. Schmitt-Rink, “Optical investigation of Bloch oscillations
in a semiconductor superlattice,” Physical Review B, vol. 46, no. 11, pp. 7252–7255,
1992.

[5] K. Leo, P. Bolivar, F. Brüggemann, and R. Schwedler Klaus, “Observation of Bloch os-
cillations in a semiconductor superlattice,” Solid State Communications, vol. 84, no. 10,
pp. 943–946, 1992.

[6] S. Wilkinson, C. Bharucha, M. Fischer, K. Madison, Q. Niu, B. Sundaram, and M. Rai-
zen, “Experimental evidence for non-exponential decay in quantum tunnelling,” Nature,
vol. 387, pp. 575–577, 1997.

[7] Q. Niu and M. Raizen, “How Landau-Zener tunneling takes time,” Physical review
letters, vol. 80, no. 16, pp. 3491–3494, 1998.

[8] L. Landau, “Zur Theorie der Energieübertragung. II,” Phys. Z. Sowjetunion, vol. 2,
p. 46, 1932.

[9] C. Zener, “Non-adiabatic crossing of energy levels,” Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character,
vol. 137, no. 833, pp. 696–702, 1932.

[10] N. Vitanov, “Transition times in the Landau-Zener model,” Physical Review A, vol. 59,
no. 2, pp. 988–994, 1999.

93



Literaturverzeichnis

[11] M. Holthaus, “Bloch oscillations and Zener breakdown in an optical lattice,” Journal
of Optics B: Quantum and Semiclassical Optics, vol. 2, p. 589, 2000.

[12] C. Sias, A. Zenesini, H. Lignier, S. Wimberger, D. Ciampini, O. Morsch, and E. Ari-
mondo, “Resonantly enhanced tunneling of Bose-Einstein condensates in periodic po-
tentials,” Physical review letters, vol. 98, no. 12, p. 120403, 2007.

[13] D. Lidar and K. Birgitta Whaley, “Decoherence-free subspaces and subsystems,” Irre-
versible Quantum Dynamics, pp. 83–120, 2003.

[14] J. Suzuki, G. Tabia, and B. Englert, “Symmetric construction of reference-frame-free
qudits,” Physical Review A, vol. 78, no. 5, p. 52328, 2008.

[15] M. Marder, “Condensed matter physics,” Cambridge Monographs on Physics, 2000.

[16] H. Ibach and H. Lüth, Festkörperphysik: Einführung in die Grundlagen. Springer, 2008.

[17] H. Amann, Gewöhnliche Differentialgleichungen. Walter de Gruyter, 1995.

[18] Q. Niu, X. Zhao, G. Georgakis, and M. Raizen, “Atomic Landau-Zener tunneling and
Wannier-Stark ladders in optical potentials,” Physical review letters, vol. 76, no. 24,
pp. 4504–4507, 1996.

[19] D. Griffiths, Introduction to Quantum Mechanics. Englewood Cliffs, NJ: Prentice Hall,
1995.

[20] P. Facchi and S. Pascazio, “Unstable systems and quantum Zeno phenomena in quan-
tum field theory,” in Fundamental aspects of quantum physics: proceedings of the Japan-
Italy Joint Workshop on Quantum Open Systems, Quantum Chaos and Quantum Mea-
surement: Waseda University, Tokyo, Japan, 27-29 September 2001, p. 222, World
Scientific Pub Co Inc, 2003.

[21] A. Zenesini, C. Sias, H. Lignier, Y. Singh, D. Ciampini, O. Morsch, R. Mannella,
E. Arimondo, A. Tomadin, and S. Wimberger, “Resonant tunneling of Bose–Einstein
condensates in optical lattices,” New Journal of Physics, vol. 10, p. 053038, 2008.

[22] B. Misra and E. Sudarshan, “The Zeno paradox in quantum theory,” Journal of Ma-
thematical Physics, vol. 18, no. 4, p. 756, 1977.

[23] M. Fischer, B. Gutiérrez-Medina, and M. Raizen, “Observation of the quantum Zeno
and anti-Zeno effects in an unstable system,” Physical Review Letters, vol. 87, no. 4,
p. 40402, 2001.

[24] J. Sakurai and S. Tuan, Modern quantum mechanics. Addison-Wesley Reading (Mass.),
1994.

[25] C. Gardiner, “Handbook of stochastic methods: for physics, chemistry & the natural
sciences,(Series in synergetics, Vol. 13),” 2004.

94



Literaturverzeichnis

[26] G. Vidal and J. Mod, “Opt. 47, 355 (2000),” Arxiv preprint quant-ph/9807077.

[27] R. Alicki and K. Lendi, “Quantum dynamical semigroups and applications,” in Quan-
tum Dynamical Semigroups and Applications, vol. 286, 1987.

[28] T. Durt, “Quantum entanglement, interaction, and the classical limit,” Arxiv preprint
quant-ph/0401121, 2004.

[29] A. Peres, “Separability criterion for density matrices,” Physical Review Letters, vol. 77,
no. 8, pp. 1413–1415, 1996.

[30] M. Horodecki, P. Horodecki, and R. Horodecki, “Separability of mixed states: necessary
and sufficient conditions,” Physics Letters A, vol. 223, no. 1-2, pp. 1–8, 1996.

[31] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of
separable states,” Physical Review A, vol. 58, no. 2, pp. 883–892, 1998.

[32] V. Krotov, Global methods in optimal control theory. Marcel Dekker Inc, 1996.

[33] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. Büchler, “A Rydberg quantum
simulator,” Nature Physics, 2010.

95



Erklärung:

Ich versichere, daß ich diese Arbeit selbständig verfaßt und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 30.08.2010
.......................................

(Unterschrift)


