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Zusammenfassung

Quantum Dark Matter (oder Fuzzy Dark Matter, FDM) besteht aus Teilchen mit
einer Masse von m ⇡ 10�22 eV. Diese bilden ein Bose-Einstein-Kondensat (BEC)
auf kosmologischen Skalen mit de Broglie Wellenlängen l ⇡ 1 kpc, daher der Be-
griff "fuzzy". Verschmiert durch die Heisenbergsche Unschärferelation, vermindert
FDM Dichte-Peaks im Kern galaktischer dunkler Materie halos, die in Simulationen
klassischer dunkler Materie (CDM) beobachtet werden, aber deren experimentelle
Evidenz fehlt. In dieser Thesis, wird die Schrödinger-Poisson-Gleichung auf eindi-
mensionale Modelle reduziert. Einige Aspekte des vollwertigen, dreidimension-
alen Modells finden sich wieder, z.B. quasistationäre Zustände, sogenannte "soli-
tary waves". Besonders Augenmerk wird auf die Genauigkeit der resultierenden
Zustände gelegt. Unsere numerische Methode wird gegen ein unabhängig entwick-
eltes Verfahren im Rahmen einer Kollaboration getestet und die Präzision weiter
verbessert.

Abstract

Quantum Dark Matter (or Fuzzy Dark Matter, FDM) consists of particles with a mass
m ⇡ 10�22 eV. They form a Bose-Einstein condensate (BEC) on cosmic scales with de
Broglie wavelenghts l ⇡ 1 kpc, therefore the term "fuzzy". Blurred by the uncertainty
principle, FDM alleviates cusp cores of galactic Dark Matter halos, which are found
in classical Cold Dark Matter (CDM) simulations, but lack experimental evidence. In
this thesis, one-dimensional reduction models of the Schrödinger-Poisson equation
are considered and some three-dimensional phenomena, like solitary waves, are re-
covered. Special attention is paid to the accuracy of resulting states. Our numerical
scheme is tested to the independently developed method of our collaborators and its
precision is increased further.
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1 Introduction

Let us start with a bit of history about Dark Matter and present some evidence for it
following Goetz [2015]. Dark Matter was first considered in the first half of the 20th
century, when the velocity of galaxies belonging to the Coma cluster were measured.
The gravitational pull exerted by the luminous matter was just too small to explain the
rapidly moving galaxies, which should have long detached and slung out into space.
That was when Dark Matter was introduced. Matter, which is invisible, because it
only interacts gravitationally.

Since then, several studies supported the existence of Dark Matter. The current
amount of large scale structure can not be explained by the baryonic matter only: The
gravitational collapse would have taken much longer. By far the most vivid evidence
is gravitational lensing (Bartelmann [2010]). Clusters of galaxies bend light rays and
appear as giant lenses. Conclusions on the total (visible + invisible) mass can then be
made based on the strength of this effect. Another well-observed fact are flat rotation
curves of disc galaxies. From the visible mass a strong decline of the rotation velocity
with the distance from the galactic center is expected. Instead, the rotation speed is
approximately constant with radius. The widely accepted solution to this problem is
that the entire galaxy is embedded in a Dark Matter halo (Amendola [2022]), which
reinforces the gravitational pull far from the galactic center.

Until now we do not know if the source of the observed effects of localized, addi-
tional curvature in space-time. Therefore multiple interpretations are possible. One
claims that our theory of gravitation is, at least on large scales, incorrect. The most
popular modification is Modified Newtonian Dynamics (MOND). While this model
can be considered an add-on (de Almeida et al. [2018]), it has been mostly ruled out
as the sole explanation to the discrepancies. Peaks in the angular powerspectrum of
CMB anisotropies go against that. The theory, which agrees best with observations,
assumes General Relativity is correct. Additional curvature effects are then justified
by either anomalous geometric effects of the universe itself, which are hard to prove,
or by some kind of Dark Matter.

The most promising theory postulates a Dark Matter particle within the framework of
the LCDM standard cosmology (Turner [2021]). In LCDM visible matter makes up
only 5% of the total energy density. All matter, the CDM in LCDM, including Cold
Dark Matter amount to 30% and is supposed to move at non-relativistic speeds, there-
fore the term "cold", which leaves 70% to the L, which is referred to as the cosmological
constant, whose origin also is yet unknown.

The postulation of a Dark Matter particle has an interesting effect. It brings the largest
scales together with the smallest scales–cosmology and particle physics. Many candi-
dates for the Dark Matter particle have been put forward. Some of the heavier ones ex-
ert the so called cusp-core problem. Motivated by numerical simulation, these heavy
particles are destined to form spiky densities in the center of halos, which disagree
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with the observed smooth cores. An ultralight particle on the other hand does not
have this problem, because its de Broglie wavelength is on the cosmic scale. Roughly
speaking, the uncertainty principle forbids infinite clumping and counteracts with the
so called "quantum pressure". Motivated by string theory a particle comes into play
with a rest mass of m = 10�22 eV – the discussion about its mass is not settled yet
(Roussy et al. [2021], Rogers and Peiris [2021]) and there are contradicting findings –
its wavelength is in the kiloparsec range, the typical size of halo cores.

Numerically there are many options for the implementation of Dark Matter simula-
tions. Compared to direct N-body simulations, that update the position and velocity
of each particle per time step and is of O(N

2
) complexity, methods based on the mean-

field approach where a single function contains all information about the time devel-
opment are of O(NlogN) and therefore much more efficient. The latter have gained
attention lately. Partly because they inherently do not have the problem of cusp cores
(Niemeyer [2020], Del Popolo and Le Delliou [2021]). They are known under a few
different names, which include "Scalar Field Dark Matter (yDM)", "Bose-Einstein Con-
densate (BEC) Dark Matter", "Ultralight Axion Dark Matter", or "Fuzzy Dark Matter"
(FDM), as they will be mainly called in this work.

This work carries on the bachelor thesis and master thesis of Zimmermann [2019],
who did not only do much of the theoretical modeling, but also develop a code to
simulate FDM in one dimension. He published two papers, Zimmermann et al. [2019,
2021], with a focus on the possibilities of the code with respect to physically relevant
phenomena. The author joined the group in 2020 and was able to be part of the latter
publication, where the growth of structures and asymptotic dynamics are discussed.
A part of that paper found its way into this work. The rather laissez-faire handling
of numerical precision in the cosmology department caused us to follow the mindset
of the condensed matter division, where physical quantities are usually measured up
to high precision. Some of the new findings presented here are obtained in coopera-
tion with Prof. Dr. Javier Madroñero and Victor Loiza from the University of Valle in
Columbia and include an independent test of the numerical scheme. Other results are
based on a numerical upgrade following Auzinger et al. [2016a]. The cpu efficiency
is considerably increased, allowing future work to step into higher-dimensional terri-
tory.
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2 Theoretical background

In this chapter we aim to compress the theoretical part of Zimmermann [2019] into a
concise version, only keeping information that is necessary for the understanding of
this work. In particular, we skip the derivation of the Schrödinger-Poisson equation
from the Einstein-Klein-Gordon equation. Salehian et al. [2021] covers that topic. Due
to the problem’s complexity, that reduction is only possible to some degree. Firstly,
we review the (3 + 1)-dimensional Schrödinger-Poisson equation and adapt it to the
finite box and periodic boundary conditions. Secondly, two distinct reduction models
into one spatial dimension are outlined. Lastly, we restate the equations ready to be
solved in the following chapters.

2.1 (3 + 1)D Schrödinger-Poisson Equation

To keep the number of equations at a minimum, we start with the Schrödinger-Poisson
equation in three dimensions:

ih̄∂ty +
3
2

ih̄Hy =

 
� h̄

2

2ma2 4+ mF

!
y

4F = 4pGa
2
(|y|2 � rm(t)), (2.1)

where y is the complex scalar field of interest, h̄ is the reduced Planck constant, H is
the Hubble constant, m is the boson mass, a is the cosmic scale factor, F is the (self-)
interaction potential, G is Newton’s constant and rm(t) is the mean dark matter den-
sity

rm(t) =
1
|W|

Z

W
d3

x|y(x, t)|2 (2.2)

inside the domain W = W1 ⇥W2 ⇥W3 ⇢ R3 with side lengths Wi ⇢ [0, Li]. The Hubble
expansion dilutes the total energy Ĥ(t)y =

⇣
� h̄

2

2ma2 4+ mF
⌘

y in Eq. (2.1) due to its
imaginary prefactor. Moving from the proper coordinate system to a comoving one,
y �! a

�3/2y, eliminates this term. The mean density becomes time independent and
a hermitian, energy conserving, Hamiltonian is left:

ih̄∂ty =

 
� h̄

2

2ma2 4+ mF

!
y

4F = 4pGa
2
(|y|2 � rm). (2.3)

It is apparent that only deviations from the mean density, which will be called
d(x, t) := |y(x, t)|2 � rm, contribute to the potential.
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SP Schrödinger-Poisson
H Hubble constant
H0 Present-day Hubble constant
Ĥ Hamilton operator

ĤK Kinetic sub-Hamiltonian
ĤV Potential sub-Hamiltonian

r = |y|2 Dark matter/BEC density
d = r � 1 Density fluctuations

L Box size
W = [0, L) Domain

a Cosmic scale factor
z Cosmic redshift

WL = 0.7 Density parameter of the cosmological constant
Wm Matter density parameter

Wm,0 = 0.3 Present-day matter density parameter

Table 2.1: Variables and abbreviations

2.2 Ineqivalence between the Quantum-Mechanical
and the Hydrodynamic Picture

Many codes to solve Eq. (2.3) are based on hydrodynamic- or fluid-solvers. They
work great on large scales, but lack interference patterns on scales of the de Broglie
wavelength and the expected behaviour of Fuzzy dark matter in solitonic cores is
not captured. The following reveals the formal inequivalence between the quantum-
mechanical and the hydrodynamic picture (Wallstrom [1994]).

2.2.1 SP �! Hydro

Let us begin with the direction from the Schrödinger equation to the hydrodynamic
equations. In natural units m = h̄ = 1, the wave function y can be written in the
Madelung- or hydrodynamic representation

y =
p

r exp (iS), (2.4)

with the density r and a phase S, which defines the velocity v

v = rS. (2.5)

Now insert Eq. (2.4) into Eq. 2.11 and divide the remaining prefactor, namely y. When
real and imaginary parts are separated, one arrives at two coupled nonlinear differen-
tial equations, which are valid wherever y 6= 0. The imaginary part is known as the
continuity equation

∂tr +r · (rv) = 0 (2.6)

and derivation of the real part leads to the Euler equation

∂tv + (v ·r)v = �r(Q + V), (2.7)
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where the so called quantum pressure Q is

Q = �
4p

r

2pr
, (2.8)

which is intrinsic to quantum mechanics, but has do be added by hand in hydrody-
namics.

2.2.2 Hydro �! SP

In the opposite direction, from hydrodynamics to Schrödinger-Poisson, we firstly
require the velocity to be a gradient of a globally defined, single-valued function
v = rS. We have to make sure that S is single valued by a quantization condition

I

L

vdl = 2p j, (2.9)

where L is any closed loop and j is an integer. Phase jumps of multiples of 2p on nodes
are thereby eliminated. Now, to obtain the Schrödiner-Poisson equation substitute v =

rS and integrate Eq. (2.7). Set the integration constant to zero, and add the remaining
equation to i times the gradient of Eq. (2.6). Multiply by the Madelung ansatz for y
and identify ry with (rr + irS)y. The result is the Schrödinger equation.

2.3 Dimensionless units
Not only for the numerical part it is comfortable to have an equation in dimensionless
units, but also to keep the notation compact in the dimension reduction (Sec. 2.5). We
follow previous research for the space and time domain, Schive et al. [2014], Sousbie
and Colombi [2016], Taruya and Colombi [2017], normalize y and make the potential
dimensionless:

x
0
=

⇣
m

h̄

⌘ 1
2


3
2
H2

0Wm

� 1
4

x

dt =
1
a2


3
2
H2

0Wm

� 1
2

dt

y0
(x

0, t
0
) =

y(x0, t
0
)

p
rm

V(x
0, t

0
) = a

m

h̄


3
2

H
2
0Wm

�� 1
2

F, (2.10)

with the present-day Hubble constant H0 = 68 Mpc km�1 s�1 and the matter-density
parameter Wm = 0.3. We drop the primes and denote Dimension-full quantities ex-
plicitly by the accompanying units. That brings the Schrödinger-Poisson equation into
a form, where the role of the scale factor is obvious:

ih̄∂ty =

✓
�1

2
4+ a(t)V

◆
y

4F = |y|2 � 1. (2.11)
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a acts as a time-dependent coupling constant of the non-linear potential to the
Schrödinger equation.

2.4 Boundary Conditions

On both, y and V, periodic boundaries of the 0th and 1st derivative, j 2 {0, 1}, are
imposed in all three dimensions i 2 {1, 2, 3}:

(∂xi
)

jy(xi = 0) = (∂xi
)

jy(xi = Li)

(∂xi
)

j
V(xi = 0) = (∂xi

)
j
V(xi = Li). (2.12)

To make further progress from Eq. (2.11), we need to specify the potential. Pois-
son’s equation is equivalent to a convolution of its source term with Green’s function
G(x, x

0
), which is interpreted as the potential of a point mass 4G(x, x0) = d(x, x0). In

contrast to free space, where the well known 1/r-potential is valid Hunt [2002]:

G
f ree

43
(x, x

0
) = � 1

4p|x � x0| , (2.13)

the situation is different in our compact and periodic domain. The potential can be
expanded in a Fourier series:

V(x) =
1

L1L2L3
Â
n

Vne
ikx with Vn

Z

W
d3

x
0
V(x

0
)e

�ikx
0
, (2.14)

where n 2 Z3, k 2 R3 and ki =
2p
Li
(n)i. Inserting Eq. (2.14) as well as the series of

|y|2 � 1 into Eq. (2.11) yields the expansion coefficients Vn:

Vn =

(
0 ||n|| = 0
� 1

k2 otherwise.
(2.15)

As already stated, the 0-mode does not play a role in V, since only the density fluctu-
ations source the potential. In particular that means for the periodic Green’s kernel in
Fourier space G

p
43

(k = 0) = 0, which allows us to convolve the total density instead
of the fluctuations only:

V(x) =

Z

W
d3

x
0
G

p
43

(x, x
0
)|y(x0)|2 with

G
p
43

(x, x
0
) =

1
L1L2L3

Â
||n||>0

�1
k2 e

ik(x�x
0
). (2.16)

We recognize Eq. (2.16) as a convolution-type integral, where the non-local charac-
ter of the Poisson equation shines through. Eq. (2.11) recast into a single nonlinear
Schrödinger equation reads:

ih̄∂ty =

✓
�1

2
4+ a(t)(G

p
43

⇤ |y|2)
◆

y (2.17)
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2.5 Dimension reduction

The three dimensional SP equation is rather complicated to solve mainly with respect
to its implementation. By the reduction to one dimension the problem’s complexity
and parameter spaces stay untouched, but the reduced computational cost allows for
parameter studies to fully understand the governing dynamics.

A fact, that is a little harder to grasp, is what the convolution-type potential implies.
By its nonlocal and nonlinear character, the dimensions are coupled, such that they can
not be solved independently and reassembled via the superposition principle. That is
also true for the setup of the potential itself. How matter is arranged in the remaining
directions dictates the interaction in the dimension of interest. Two models of matter
arrangement are discussed below.

2.5.1 Homogeneous Matter Sheets – (1 + 1)-SP

The naive, but also most common approach, to study structure formation employing
Fuzzy Dark Matter in a low-dimensional context, is just by neglecting one or two di-
mensions. That is equivalent to demanding a uniform distribution of matter in those
dimensions. To arrive at the evolution equation, set L3 = L2 = 1 and (n)2i,3i

= 0 in
Eq. (2.16), which conserves the Poisson equation, but the point source potential, i.e. its
Green’s function changes to

G
p
41

(x, x
0
) =

1
L

Â
n>0

�1
k2

n

e
ikn(x�x0) (2.18)

The (1 + 1)-dimensional Schrödinger-Poisson equation and its alternative form of the
nonlinear Schrödinger equation then read

ih̄∂ty =

✓
�1

2
41 + a(t)V

◆
y with 41V = |y|2 � 1

⌘ ih̄∂ty =

✓
�1

2
41 + a(t)(G

p
41

⇤ |y|2)
◆

y (2.19)

2.5.2 Strong Confinement – PLAM

A more involved reduction, developed by Zimmermann [2019] is the Periodic Line
Adiabatic Model (PLAM), for which the general procedure is described here. Let us
define x? = (x1, x2)

T 2 R2 and introduce the harmonic confining potential V and its
ground state c0:

V(x?) =
1
2

x
2
?, c0 =

1p
p

e
� x

2
?
2 . (2.20)

Notice that we do not impose periodic boundary conditions in the x?-plane. We can
therefore not take the same Green’s function G

p
41

as before. We start from the three-
dimensional periodic kernel G

p
43

, that Marshall [2000] derived recursively via G
p
42

and
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G
p
41

:

G
p
41

=
1
2
|x1 � x

0
1|�

1
2

"
(x1 � x

0
1)

2

L1
+

L1
6

#
,

G
p
42

=
1
L2

G
p
41

+ (2.21)

1
4p Â

m2Z

log

 
1 � 2e

2 2p
L2

L1

����m+
x1�x

0
1

L1

���� cos


2p

L2
(x2 � x

0
2)

�
+ e

� 4p
L2

L1

����m+
x1�x

0
1

L1

����
!

,

G
p
43

=
1
L3

G
p
42

� 1
pL3

•

Â
m=1

(
cos

✓
2pm

L3
(x3 � x

0
3)

◆
⇥

Â
n,l2Z

K0

 
2pm

L3

q
L

2
1


n +

x1 � x
0
1

L1

�2

+ L
2
2


l +

x2 � x
0
2

L2

�2
!)

. (2.22)

Take the limit b ⌘ |xi�x
0
i
|

Li
�! 0, i 2 {1, 2} of an infinitely large box in the x? directions,

where the n = l = 0 terms dominate:

G
mixed
43

= lim
b!0

G
p
43

=
1

2pL3
log |x? � x

0
?|�

1
pL3

•

Â
m=1

cos
✓

2pm

L3
(x3 � x

0
3)

◆
K0

✓
2pm

L3
|x? � x

0
?|
◆

(2.23)

Since the wave function factorizes into y(x) = y1(x3)ce
0(x?), the external potential V

and the mixed-condition Green’s function G
mixed
43

feed into the Hamilton operator as
follows:

Ĥ = Ĥx3 + Ĥ
e
? with

Ĥx3 = �1
2

∂2
x3
+ a(t)

⇣
G

mixed
43

⇤ |y|2
⌘

,

Ĥ
e
? =

1
e2


�1

2
4?̃ + V(x?̃)

�
=

1
e2 Ĥ?̃, (2.24)

with x?̃ = x?/e. We can insert the factorized wave function into Eq. (2.17):

i∂ty3(x3) =


�1

2
∂x + a(t)

Z

W3
dx3U

p
LAM(x3, x

0
3)|y3(x

0
3)|2

�
y3, (2.25)

where the new interaction kernel U
p
LAM(x3, x

0
3) is found by using the ground state ce

0,
though which the confinement in x? enters into x3. Integrate over the x?-plane:

U
p
LAM(x3, x

0
3) =

Z

R2
d2

x?

Z

R2
d2

x
0
?G

mixed
43

|ce
0(x?)|2|ce

0(x
0
?)|2. (2.26)

Gradshteyn and Rhyzhik [2007] brought this integral into the more appealing form:

U
p
LAM(x3, x

0
3) =

1
L3

Â
|m|>0

✓
� 1

4p

◆
e

1
2 k

2
me2

E1

✓
1
2

k
2
me2
◆

e
ikm(x3�x

0
3)

=
1
L3

Â
|m|>0

✓
� 1

4p

◆
U(1, 1,

1
2
(k3)

2
me2

)e
ikm(x3�x

0
3). (2.27)
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E1(x) =
R •

1 dt
e
�tx

t
denotes the exponential integral and is best evaluated jointly with

the exponential function. U constitutes the "confluent hypergeometric function of the
second kind" for which special algorithms exist. The conjunction U

p
LAM is an even

function with vanishing DC mode. We are not aware of any differential operator with
such a Green’s function. Consequently, we can not invert the series in Eq. (2.27) to a
closed-form, real-space representation and PLAM can only be represented as a NLSE:

ih̄∂ty =

✓
�1

2
∂2

x + a(t)(U
p
LAM ⇤ |y|2)

◆
y. (2.28)

2.6 Comparison of Interaction Kernels

How each reduction method affects the one-dimensional interaction kernel, which cor-
responds to the potential of a test particle at x = 0, is depicted in Fig. 2.1. All potentials
are shown for a periodic box of L = 100.

�40 �20

uniform

�1
4⇡|x3�x0

3|

0.05 0.10

x3

�8

�4

0

4

Up confined

✏ = 0.03

✏ = 0.02

✏ = 0.01

Figure 2.1: Interaction kernels of the two dimension-reduced models. Blue: (1+ 1)-SP;
shades of red: PLAM. Mind the different scaling of the x-axis between left and right.
As a reference, the same three dimensional kernel is shown in the black, dashed line on
both, the left and right side. Figure taken from Zimmermann et al. [2021]; copyright:
APS

On the left, a uniform matter distribution in x ? is assumed, the (1+ 1)-SP interaction
kernel. For reference, the three-dimensional one (V µ 1/r) is plotted as the black,
dashed line. On the right, the PLAM model is shown for three confinement parameters
e. Mind the different scaling of the x-axis on the left and right. Due to the vanishing
DC-mode, the potential is partially positive.

A key difference lies in the effective interaction range R, which we define as the range,
where the gravitational pull is down to a certain percentage a of the maximal value at
x = 0:

∂rU
p
(R) ⌘ a max|∂rU

p| with 0 < a ⌧ 1 . (2.29)

While the gravitational potential under confinement is rather localized with R ⇠ e
and quickly approaches the desired Newtonian potential (black, dashed line) at large
distances r = |x � x

0|, the effective interaction range for G
p
41

scales with the box size
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and evaluates to

a =

∂rG
p
41

���
r=R

∂rG
p
41

���
r=0

=
1/2 � R/L

1/2

, R =
L

2
(1 � a). (2.30)

That has consequences on the dynamics and more specifically which states are reached
in the asymptotic limit t �! • as discussed in Sec. 6.3.

2.7 Governing Equations

The equation to solve is the one-dimensional Schrödinger-Poisson equation in dimen-
sionless form:

i∂ty(x, t) = Ĥ(t)y(x, t) (2.31)
= [ĤK + ĤV(t)]y(x, t)

= [∂2
x + a(t)V(|y(x, t)|2)]y(x, t)

∂2
xV(|y(x, t)|2) = |y(x, t)|2 � 1 (2.32)

x 2 [0, L)

Z
L

0
|y(x, 0)|2 dx = L, (2.33)

where Eq. (2.33) is a relevant constraint, because of the problem’s nonlinearity. Chang-
ing the normalization does affect the time evolution. V is the non-local, non-linear
potential given by the convolution of the density d(x) = |y(x)|2 with one of the inter-
action kernels:

G(x, x
0
) =

1
L

Â
n>0

�1
k2 e

ik(x�x0)

U
p
LAM(x, x

0; e) =
1
L

Â
|m|>0

✓
� 1

4p

◆
e

1
2 k

2
me2

E1

✓
1
2

k
2
me2
◆

e
ikm(x�x

0
) (2.34)

Smooth boundary conditions y(0, t) = y(L, t), ∂xy(0, t) = ∂xy(L, t) are imposed and
naturally fulfilled by the following Fourier basis approach. The scale factor is given by
the Friedmann equation in a flat and radiation-free universe, see (Eq. 6.23) in Ryden
[2003], ✓

ȧ

a

◆2
= H2

0(Wma
�3

+ WL), (2.35)

with the present-day Hubble constant H0 = 68 km s�1 Mpc�1, the present-day matter
density parameter Wm,0 = 0.3, which dilutes with the volume of the cosmic expansion
and only coincides with Wm, because we set a(t = today) = 1, and the density pa-
rameter of the cosmological constant WL,0 = WL = 0.7, staying constant in time. The
background cosmology a(t) will be computed in the next chapter.
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(3+ 1)-SP has been brought into a comoving form, which follows the expansion of the
universe and dimensionless units were introduced to simplify further progress. We
saw that the hydronamical and the quantum-mechanical picture differ on nodes of y
and are not equivalent. The two distinct reduction models into (1 + 1)-SP and PLAM
from Zimmermann [2019] were restated and their point-source interactions compared.
The governing equations of are ready to be studied. That concludes the theoretical part
about FDM.
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3 Cosmology

The background cosmology enters the governing Eq. (2.32) in two ways: Firstly,
through the scale factor a, which obeys a linear differential equation, and secondly,
through the initial state y(x, astart), which will be described by statistical variables.
Both are separable from the governing equations and therefore discussed here.

3.1 Scale Factor

The basic relation between the redshift z and the scale factor a is:

a =
1

1 + z
. (3.1)

Let us restate the calculation of the cosmic scale factor a(t) as described in the preced-
ing work Zimmermann et al. [2019]. We substitute the Friedmann equation into the
dimensionless units and obtain the equation to solve:

dt =
1

ȧa2


3
2

H
2
0Wm,0

� 1
2

da

Eq. 2.35
=


3Wm,0

2(Wm,0a�3 + WL
)

� 1
2

da. (3.2)

Since there is no closed-form solution for all values of Wm,0, we perform the integration
numerically. First, divide the interval [aini, a f in] into K equidistant parts Da =

a f in�aini

K

and apply the midpoint method:

t(ak) = t(ak�1) +
dt

da

����
ak�1+

Da

2

· Da, t(aini) = 0. (3.3)

We store the values t(ak) in a look-up table and interpolate linearly, if the scale fac-
tor at intermediate times is needed. Computationally this amounts to a O(1) opera-
tion. Although we choose K = 105, which guarantees convergence of the end-result
of O(10�8

) high precision is not necessary at this point. When sensitive data is com-
pared, e.g. wave functions in Sec. 7.1, we make sure to use the same exact look-up
table. In Fig. 3.1 the development of the scale factor with dimensionless time is given.
In the flat universe we consider, we have Wm,0 + WL = 1. WL = 1 means no matter
is abundant and the evolution is a µ H0t. By adding matter content to the universe,
the expansion until today (a = 1) is slower. In accordance with the standard LCDM

model, we choose Wm,0 = 0.3 and accordingly WL = 0.7 for the our cosmological
simulations.

17



Figure 3.1: Scale factor a as a function of the dimensionless time t obtained from
numerical integration. Small matter density parameters Wm,0 result in slower growing
universes.

3.2 Initial State
At early times the density fluctuations are small and the wave function can be ex-
pressed in the Madelung form y(x) =

p
1 + d(x)e

iS(x). How the density fluctuations
and the phase are constructed is depicted schematically in Eq. (3.4) and explained in
more detail thereafter.

CAMB��! P
3D
CDM, lin(k, a = 1)

D(astart)����! P
3D
CDM, lin(k, astart)

TFDM���! P
3D
FDM, lin(k, astart)

s1D !
=s3D

�����! P
1D
FDM, lin(k, astart)

Periodicity������!
Rayleigh

s2
(k, astart)

Rayleigh����! |dk(astart)|, jk(astart)

Eq. (3.13)�����! Sk(astart)
F�1, Madelung��������! y(x, astart) (3.4)

3.2.1 Density Contrast d

Similar to Zhang et al. [2019], the first step towards a cosmological Gaussian random
field (GRF) is by assuming a homogeneous and isotropic background density r = 1,
which is then superposed with fluctuations. The "Code for Anisotropies in the Mi-
crowave Background" (CAMB) takes care of all physics before matter domination and
returns the linear, present-day matter power spectrum P

3D
CDM, lin(k, a = 1). Next, project

the spectrum to z = 100 via the normalized, linear growth function D(1, astart), where
this approximation based on the linear perturbation theory holds. The linear growth
function D(a, astart) is derived in Sec. 5.2. Apply the empirical transfer function

TFDM =
cos(x

3
)

1 + x8 with x = 1.61
✓

m

1 ⇥ 10�22 eV

◆ 1
18
✓

k

kJeans

◆
(3.5)
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from Zhang et al. [2019], to account for the suppression of high modes of FDM com-
pared to CDM. Demand the same variance of the fluctuations in one and three dimen-
sions:

⇣
s1D

⌘2 !
=

⇣
s3D

⌘2

, 1
2p

Z

R
dkP

1D
(k) =

4p

(2p)3

Z •

0
dkP

3D
(k)k

2

, P
1D
(k) =

k
2

2p
P

3D
(k). (3.6)

The last equation holds, because the 1D power spectrum is an even function. By trun-
cation of the domain to a finite size L an additional factor of L

�2 is introduced, because
the integrals in Eq. (3.6) become sums:

1
2p

Z

R
dkP(k)

Periodicity�����! 1
L2 Â

k

P(k). (3.7)

Identify the power spectrum with the ensemble-average density fluctuation in k-space,
P(k) =

1
L
h|dk|2i, and arrive at:

h|dk|2i = L
k

2

2p
D

2
(1, astart)T

2
FDMP

3D
CDM, lin (3.8)

dk is a complex function, whose real- and imaginary part are statistically independent.
Apply the Madelung transform dk = |dk|eijk . The probability distribution of the length
|dk| of the two-dimensional (real- and imaginary part) vector dk is a Rayleigh distribu-
tion and the phase jk is uniform.

p(|dk|, jk)d|dk|djk =
|dk|

s(k)2 exp
✓
� |dk|2

2s(k)2

◆
d|dk|d

jk

2p
(3.9)

A relation between h|dk|2i and sk is established by calculation of the variance of
Eq. 3.9: h|dk|2i = 2s(k)2 In total, the variance of the density fluctuations of the one-
dimensional FDM matter power spectrum at a = astart is:

s(k)2
=

L

2
k

2

2p
D

2
(astart)T

2
FDMP

3D
CDM, lin (3.10)

3.2.2 Phase S

To establish a relation between the fluctuation’s phase S and amplitude |d(x)|, we
make use of the linear growth

d(x, a) = D(a)d(x, astart), (3.11)

differentiate with respect to time, combine it with the linearized, one-dimensional con-
tinuity equation

∂tr +
1
a

∂xv = 0 (3.12)

and express the velocity in terms of v =
1

ma
∂xS to find

∂2
xS(x, astart) = �ma

2
startH(astart)d(x, astart) (3.13)

That concludes the discussion about the statistics of GRFs. Left over is the construction
of a single realization.
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3.2.3 Single Realization

To achieve moduli |d(k)| from a Rayleigh distribution

f (|d(k)|; s) =
|d(k)|

s2 e
� |d(k)|2

2s2 , (3.14)

make use of the "inverse transform sampling" or sometimes called "exact inversion".
Firstly, draw random numbers u from a uniform distribution U ⇠ Unif(0, 1). Solve
F(F

�1
(u)) = u for F

�1
(u), where F is the cumulative distribution function (cdf):

F(u; s) =
Z

u

0
f (u

0; s)du
0

= 1 � e
� u

2
2s2 (3.15)

and arrive at the Rayleigh distributed moduli

|dk| = F
�1

(u) = s
q
�2 ln(1 � u). (3.16)

Lastly, replace 1 � u by u, which leads to the same distribution. The construction of
random phases j is rather simple in comparison. Make sure to use a second, statisti-
cally independent uniform distribution u:

j = 2pu. (3.17)

Assemble both by the Madelung representation to get dk and apply an inverse Fourier
transform for the result of the real, discrete coefficient vector d(x). For the phase S,
solve the Poisson equation, Eq. (3.13), preferably in k-space:

S(x, astart) = F�1

� 1

k2

�
FCd(x, astart) with C = �mastartH(astart) (3.18)

Assemble y(x, astart) again, via the Madelung representation.

3.2.4 Examplary Initial States

In Fig. 3.2 some exemplary states are shown. In small boxes the state is mostly a
single period sine function and their amplitude grows with L. That is no surprise,
but rather what we expect, having a correlation length s inside a box with periodic
boundary conditions. Density fluctuations saturate at d ⇡ 0.15 for a box L ⇡ 1000.
Beyond that size, states only become more oscillatory. Although the amplitude of
density fluctuations is bounded, the computational demand rises with the box size, as
the total mass accumulates, see Ch. 5
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Figure 3.2: Exemplary, rescaled cosmological initial states scaled with the box size L

for a better comparison. Dimensionless box sizes L 2 {48, ..., 4877} correspond to real
distances of L 2 {1 Mpc, ..., 100 Mpc}. The finite correlation length s together with
the periodic box suppresses the structure in small boxes. Density fluctuations grow in
amplitude and in their number of oscillations as the box size increases. They saturate
at d ⇡ 0.15.

The the background cosmology is now fixed and stored in a look-up table. Based on
statistical quantities, modifications to the three-dimensional power spectrum obtained
from CAMB can be applied to set up initial states. What hinders us from propagating
y(x, astart) in time, is a solution to Eq. (2.32). By now, it might be obvious, that no
analytical solution exists to that problem, which is why we turn to a numerical imple-
mentation, see the next Ch. 4.
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4 Numerics

Before introducing the numerical method, its temporal and spatial discretization, we
review the field of preexisting codes and explain, why it is necessary to have yet an-
other one.

4.1 Overview of Existing Codes
There are many existing codes out there to simulate Dark Matter. A recent review
is provided by Zhang et al. [2019], which is extended in Tab. 4.1. They fit in one
of the two categories: 1) Lagrangian-based solvers develop the density field via the
Madelung representation from fluid dynamics. The quantum-mechanical effect of
wave interference is absent in this formulation, which disqualifies the entire category
for our purposes. 2) Eulerian-based methods solve directly for the wave function in
the Schrödinger-Poisson system. Interference patterns inside halo cores are reported,
but any of the codes is at least two dimensional–whether they are publicly available is
a different story. For our one-dimensional cosmological "toy model", we consequently
need a new code.

Cite Method (Code base) Dimension Box size [Mpc] Resolution Refinement Time Step Open source
Schive et al. [2018a] GAMER-2 3 14.26 10, 2403 geometrically similar optimized adaptive, spatially non-uniform yes

Li et al. [2019] SPoS 3 10 10243 - min( 1
V

, a
2Dx

2

6 ) no
Mina et al. [2020] SCALAR(RAMSES) 3 1 643

(2563
) cell-by-cell min( 2p

5|Vmax| ,
p

3Dx
2

10 ) not uploaded yet
Teyssier [2002] RAMSES 3 100 2563

(81923
) geometrically similar CFL, Free-fall, ȧ < c yes

Springel et al. [2021] GADGET-4 3 25 2563

Bryan et al. [2014a] ENZO 1,2,3 64 1283 rectangular yes

Table 4.1: Existing codes to simulate Dark Matter adapted from Zhang et al. [2019].
More recent developments were added. Quantitative features stem from the respec-
tive publications. The first half are Schödinger-Poisson solvers, the second half hydro-
dynamic solvers.

4.2 Time discretization
We realize that the sub-Hamiltonians ĤK and ĤV are exactly solved and efficiently
approximated, respectively, and follow the path of operator splitting methods. The
splitting method used in our previous work Zimmermann et al. [2021] and partially
this work, is the three-stage Strang splitting. It approximates the time evolution of
Eq. (2.32) in the following standard symmetrized manner:

ÛK+V(t0, Dt) = ÛK(
Dt

2
) � ÛV(t0 +

Dt

2
, Dt) � ÛK(

Dt

2
) +O(Dt

3
) (4.1)

ÛK and ÛV are the time evolution operators to the kinetic and potential sub-problem.
To see that the Strang splitting is equivalent to the exponential of the Hamiltonian up
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to second order, we apply the Baker-Campbell-Hausdorff (BCH) formula to the right
hand side of Eq. (4.1). Let us define for convenience the exponents of the evolution
operators as

X := �iaV(|y|2)Dt (4.2)

Y := �i∂2
x

Dt

2
, (4.3)

apply the BCH formular twice

exp (Y) exp (X) exp (Y) := exp (Y) exp (Z(X, Y)) := exp (Ĥ
0
(Y, Z(X, Y))) (4.4)

and solve for the operator Ĥ
0, that the Strang splitting represents:

Ĥ
0
= Y + Z(X, Y) +

1
2
[Y, Z(X, Y)]

= Y + X + Y +
1
2
[X, Z(X, Y)] +

1
2
[Y, X + Y +

1
2
[X, Y]] + ...

= Y + X + Y +
1
2
(XY � YX) +

1
2
(YX + Y

2 � XY � Y
2
) +O(Dt

3
)

= X + 2Y +O(Dt
3
)

= Ĥ(t) +O(Dt
3
). (4.5)

Terms of O(Dt
2
) cancel and H

0 is indeed second order accurate. In comparison to
the first order accurate Lie-Trotter splitting, no additional computation steps are nec-
essary, because consecutive kinetic operators with a time step Dt

2 can be combined to
a single operator with a time step Dt. The only difference is that ÛV is evaluated at
intermediate times t0 +

Dt

2 .

4.3 Spatial discretization
We outline two methods: One uses a pseudospectral decomposition and the other is
based on B-Splines. Although we show results for both, only the pseudospectral ap-
proach is house-intern. The B-Spline method was developed by the group of Javier
Madroñero from the University of Valle in Columbia, which is why we can only state
the basic framework and show some end-results. Our cooperation results in an up-
coming paper

4.3.1 Fourier basis

We choose an equidistant grid of size N in x-space xn = nDx and the orthogonal k-
space kn =

2p
nDx

, n 2 N. In contrast to a spectral method, where y is decomposed into
eigenfunctions, we simply use plain waves. The sub-problems are solved separately
and F/F�1 stands for the Fourier transform and its inverse. In Fourier space the
kinetic sub-problem is solved exactly:

i∂ty(xn, t) = ∂2
xy(xn, t) = F�1diag


k

2
n

2

�
Fy(xn, t)

ÛK(Dt) = F�1diag


exp
⇢
�i

k
2
n

2
Dt

��
F
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The isolated potential sub-problem

i∂ty(xn, t) = a(t)V(|y(xn, t)|2)y(xn, t) (4.6)

conserves the norm of y component-wise due to the real nature of V, |y(xn, t)|2 =

|y(xn, t0)|2, such that only a(t) depends on time explicitly. We approximate it by the
mid-point method and with the notation of Eq. (4.1) arrive at

ÛV(t0, Dt) = diag
h
exp

n
�ia(t0)V(|y(xn, t0)|2Dt

oi
. (4.7)

t0 is only propagated through stages ÛK and the potential is calculated at the time after
those stages. Left over is the computation of the potential V. For that we condense the
interaction kernels of both reduction models into a single diagonal kernel coefficient
matrix Û:

diag(Û) =

8
><

>:

0 n = 0
� 1

k2 n 6= 0 (1 + 1)-SP
� 1

4p U(1, 1, 1
2(k3)

2
ne2

) n 6= 0 PLAM
(4.8)

and apply the convolution theorem

V(|y(xn, t)|2) = F�1
ÛF|y(xn, t)|2. (4.9)

In practice, it is not only inefficient, but also impossible to solve the above equations
in k-space only, because of two non-linearity related restrictions. 1) To calculate the
potential V, we need the point-wise norm |y(xn, t)|2 in x-space. 2) V is highly non-
local in x-space and it is more efficient to apply ÛV in k-space.

This method has been developed by Zimmermann [2019] and partially by Klos [2018].
Based on that code, the initial physical and numerical tests are conducted. Later in
this work, the author extends the scheme with an adaptive time integration, outlined
in Sec. 7.2.

4.3.2 B-Spline basis

In atomic and molecular physics the use of B-Spline basis functions Bachau et al. [2001]
has proven to be useful. Prof. Dr. Javier Madroẽro from the University of Valle in
Columbia and his working group use these functions as the FDM basis. The B-Spline’s
more localized nature makes fine tuning possible, which allows for smaller basis sizes.
The field of B-Splines is extensive and we only aim to give an idea on how this method
differs from the Fourier based approach. For a concise overview see Ratnani and Son-
nenndrücker [2016], Milovanović and Udovičić [2010].

B-Splines are polynomial functions with compact support and cardinal B-Splines are
defined on an equidistant grid. A cardinal B-Spline of zero degree is the characteristic
function

f0(x) :=

(
1 t 2 [0, 1)
0 otherwise.

(4.10)
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A cardinal B-Spline of degree p, p 2 N is defined recursively by the convolution

fp(x) :=
�
fp�1 ⇤ f0

�
(x) :=

Z

R
fp�1(x � x

0
)f0(x

0
) dx

0. (4.11)

Cardinal B-Splines are translation invariant and are easily rescaled to an equidistant
grid xn = nDx, Dx =

L

N
, n 2 {0, ..., N} to form a complete basis:

fn,Dx,p(x) = f
⇣

x

Dx
� n

⌘
, (4.12)

with support supp(fn,Dx,p) = [n, n + p + 1]Dx. These basis functions are not orthog-
onal and we denote the overlap matrix Bmn := hBm|Bni = hfm,Dx,p|fn,Dx,pi 6= dmn.
Therefore, the matrix representation Alm of an operator Â, one has to apply in the ba-
sis {|Bli}, differs from its representation Alm in an orthogonal basis in the following
way:

Alm := hBm|Â|Bli = AlnBmn. (4.13)

It is the overlap matrix, which causes off-diagonal elements in A. A consists of a
p + 1-wide band around the diagonal and triangular parts of size p in the lower left
and upper right part. Application of a matrix-vector product is much more involved
compared to a diagonal matrix in the orthogonal basis.

In this chapter, we have given an overview of existing codes for the simulation of Dark
Matter and why none of them meets our requirements. Our temporal and spatial
discretization technique has been described. In the next Ch. 5 an inventory of that
technique is performed. B-Splines, whose framework has been touched, will be tested
against our method in Sec. 7.1.
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5 Convergence

We start with an inventory of the numerical scheme based on the second order Fourier
approach described in Sec. 4.3.1. The chosen box sizes L 2 {100, 500, 1000}, which are
in dimension-full units L ⇡ {2 Mpc, 10 Mpc, 20 Mpc}, represent cosmologically rele-
vant sizes - the typical distance between galaxies is of O(1 Mpc). We first look for
the convergence plateau in (N = L/Dx, Dt). Secondly, small modes of the power
spectrum are compared to the linear evolution expected from classical cold dark mat-
ter. Thirdly, we check the computational performance with respect to cpu time and
memory consumption.

5.1 Convergence Plateau

To find the convergence plateau in (N, Dt), a fine-grained solution serves as the refer-
ence, relative to which errors are calculated. Figure 5.1 shows the error De, which is
computed by taking the relative euklidean norm

De(a) =

⇣R
L

0 |Y(a)� Yre f (a)|2 dx

⌘ 1
2

⇣R
L

0 |Yre f (a)|2 dx

⌘ 1
2

(5.1)

to the black-square reference. The parameter space spans three orders of magnitude in
the space domain N and in the time domain Dt. a is the natural choice to indicate the
time evolution, since it couples the non-linear potential to the Schrödinger-equation
and therefore provides the best physical insight. Three box sizes are plotted row-wise.

26



Figure 5.1: Convergence behavior with respect to different parameters in (1+1)-SP.
Each cell colour-maps the errors De with respect to the black-square reference. Three
box sizes L 2 100, 500, 1000 are plotted row-wise. The time development is given
column-wise in terms of the scale factor a. The N-grid is in powers of 2, due to the FFT
algorithm. To make it easier to read, N and Dt have ticks at powers of 10. Errors in-
duced by constraints in Dx show in a sharp edge in N-direction, which moves toward
higher N as the non-linearity increases. Issues in the time domain on the contrary cre-
ate a smooth saturation with decreasing Dt, that does not move with time.
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Figure 5.2: Convergence behavior with respect to different parameters under strong
confinement (s = 0.01). All remaining parameters are as in Fig. 5.1. In comparison
to (1+1)-SP errors stay three order of magnitude smaller. With respect to the space
constraints, the confinement model is a lot less demanding and even N ⇡ 1000 basis
functions are sufficient to resolve all features. In the time domain we see the same
smooth saturation toward decreasing Dt.

Errors arising from the space grid and time grid are clearly distinguishable. On one
hand, an insufficient Fourier basis manifests in a sharp edge of De in N-direction. As
the problem’s non-linearity grows, either when going to a larger box size or with the
increasing scale factor during integration, the potential wells become deeper, and this
edge moves towards greater N. The minimum requirement Nmin is such that all modes
in the power spectrum are resolved. That is the case where the natural roll-off dives
into the noise floor of numerical precision. For a comparison see Fig. 7.2. On the
other hand, De approaches the convergence plateau in Dt in a smooth manner. Even
though the absolute value of the errors change, the shape of temporal convergence
stays approximately constant. We deem Dt = 8 ⇥ 10�5 the first grid point inside the
convergence plateau.

In relation to (1+1)-SP, the confinement model (Fig. 5.2) has a low demand in computa-
tional resources. Errors De are three orders of magnitude smaller and results converge
even for smallest basis N ⇡ 1000. The reason is its more localized interaction, as de-
scribed in Sec. (2.6).

One has to consider that if the box size is changed also the underlying physics change.
As the box size increases, potential wells become deeper, which is a prerequisite for
any dynamics. At the same time, this adds to the computational cost, because more
Fourier basis functions are needed to resolve the appearing peculiar velocities. Not
only is the potential varied through the box size, but so is the cosmological initial
state. How these initial states are generated can be found in Zimmermann [2019]. For
small L, the state is mostly a single period sine function. The amplitude of those sine
states firstly rises until L ⇡ 100. ⇠ 0.15 is the amplitude where the density fluctu-
ations saturate. Beyond that, the number of periods grows to make the state highly
oscillating.
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5.2 Linear Theory

As a physically motivated test, we compare the power spectrum to the linear theory
expected from (particle-) CDM. To get this linearized theory, one starts from the Euler-
Poisson equation, sets the density to the mean density rm modulo fluctuations d(x, t),
r(x, t) = rm(1� d(x, t)), and with some linear algebra arrives at an evolution equation
of the density fluctuations d̂(k, t) in k-space:

¨̂d(k, t) + 2H(t)
˙̂d(k, t) +

 
h̄

2
k

4

4m2a4 � 4pGrm

a3

!
d̂(k, t) = 0 (5.2)

This is the damped harmonic oscillator, where modes evolve independently. In the
classical limit h̄ ! 0, the so called ’quantum pressure’ vanishes and modes evolve
identically. The separation ansatz d̂(k, a) = D(a)d̂(k, aini) can be applied. For a flat
FLRW cosmology as in Eq. (2.35) this equation has the exact growing solution (Dodel-
son [2003])
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where Bx is the incomplete Beta function. It is clear that this linearized theory is only
valid on large scales, where the quantum effects are negligible. Also, the density fluc-
tuations must not be too high in order for the linearization to hold. One expects espe-
cially the small modes k at early times to be well approximated. That is exactly what
can be seen in Fig 5.3. Garny et al. [2020] reported the same behaviour, although in
two dimensions. One difference to their discovery is that in our case modes do not
necessarily stop growing after they decouple, as for example the k = 3 mode. Another
difference is in our one-dimensional setup already the k = 10 mode is not related to
the linear growth anymore, while in 2D larger modes still should agree and only start
to decouple early.
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Figure 5.3: Evolution of small modes kn of the power spectrum normalized with the
linear theory, Eq. (5.3). 20 runs with varied initial states are averaged. The smallest
modes show good agreement at early times until they decouple at late times.
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5.3 Performance

Figure 5.4: Total cpu time and memory requirements as a function of the basis size.
The expected scaling functions are fitted. A time step Dt = 10�2 was used, which
allows computing large basis sizes within reasonable time. For smaller Dt these plots
have to be rescaled with a constant factor. Small basis simulations are more efficient,
as long as important vectors fit into the processors cache (SRAM). Runs with middle
sized N scale worse, because the limiting factor is memory access. At large N Fourier
transforms take the most time and the scaling is as expected µ NlogN

With the cosmological background in mind, the above discussed simulations represent
reasonable box sizes of a few Mpc - the typical distance between galaxies - to a few
tens of Mpc. All Fourier based simulations were executed on the bwUniCluster with
Intel Xeon Gold 6230 processors with 1.25 MB of L1 cache, that supports basis sizes
up to ⇡ 214 without additional RAM. Fourier transforms are sped up with the fast
Fourier transform package FFTW and parallelized with OpenMP on 16 cores. The
computational resources needed for those simulations are shown in Fig. 5.4. With a
time step D t = 10�2, much larger than appropriate from the convergence study, even
basis sizes of O(108

) are feasible. The cpu time can be linearly rescaled if smaller time
steps are used, while the memory consumption is unaffected by a change of Dt.

As for FFTs expected, the cpu time approaches a scaling µ O(NlogN)) and the
memory (RAM) a linear scaling (µ N) at large basis sizes. At medium basis sizes
(N = 105, 106) reading and writing vectors from and to the memory plays a signifi-
cant role in timing, which adds to the cpu time. Small basis sizes fit inside the cpu
cache (SRAM), where no additional RAM is needed and which has a much higher
access rate lowering the cpu time. Especially when moving to a higher number of di-
mensions both factors become limiting, as the number of grid points obviously scales
with the third power in an exhaustive 3D simulation. That is why many Fourier based
approaches only handle resolutions up to N = 10243, see Tab. 4.1.

A self-consistent test of the numerics around the Fourier basis and the second order

31



Strang splitting has been performed and the linear theory has been confirmed. We
can now predict numerical challenges qualitatively and estimate them to some degree
quantitatively. The next Ch. 6 uses the gained knowledge about the method’s con-
vergence and focusses on physically interesting differences between (1 + 1)-SP and
PLAM. As expected for FFTs, a linear scaling of memory and one µ NlogN has been
found and absolute restrictions have been illuminated. The more challenging reduc-
tion model (1+ 1)-SP will be used to optimize the numerical scheme, see Ch. 7, which
ultimately will make higher-dimensional simulations feasible.
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6 Asymptotic Dynamics

Now that the dimension reduction into the periodic line adiabatic model and the (1+1)-
SP model has been completed, the numerics has been set up and the convergence has
been investigated in the previous Sec. 5.1, we can now compare the two reduction
models against each other, focussing on their physical intricacies. In the following, we
introduce what a ground state is based on its properties and outline a method on how
to ground states. Reduction to a non-cosmological space-time, where a = 1, eliminates
the time dependency. Without that simplification, a stationary ground states could
not be found. Next, to observe the interaction between ground states, we let two
different mass ones collide. This chapter is concluded with an answer to the question
"Do ground states act as dynamical attractors?".

6.1 Construction of ground states

The ground state is defined as the wave function jGS, that minimizes the total energy,
while obeying the normalization condition, Eq. (2.33). Choquard et al. [2008] prove the
existence of a ground state, but only under free-space condition, i.e. not in the case of
the periodic interaction G

p
41

. Lacking the analytical tools and considering the limited
scope, we just pretend that a unique, real, symmetric and positive minimizer existed.

jGS = argmin[E(j)] = argmin[T(j) + V(j)]

= argmin{1
2

Z

W
dx|∂x j|2 + a

2

Z

W
dx(U

p ⇤ |y|2)|y|2} (6.1)

The common procedure to find a ground state is by imaginary time propagation, see
Bao et al. [2006]. We set t = �it to arrive at an evolution operator Û = exp (�tH).
If a ground state exists, it will be approached asymptotically when t �! •, because
higher-energy excitations are suppressed exponentially. We refer to Pang [2006], Wim-
berger et al. [2005] for the numerical implementation.

An exemplary imaginary-time propagation is plotted in Fig. 6.1(A). The Gaussian state
at t = 0 narrows down in x-space until it converges to a localized structure at t = 1.
Panel (B) depicts the constituents kinetic energy hTi and potential energy hVi of the
total energy hEi, as well as the quantum virial theorem 2hTi � hx∂xVi.
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Figure 6.1: Densities at various stages of the minimization procedure with a = 1 and
ground state mass M = 100. (A): The (1 + 1)-SP ground state is reached quickly.
(B): In PLAM (e = 10�2) the imaginary time propagation takes longer. Note how the
confinement manifests in the size of the ground state.

6.2 Inelastic Collisions

The long-term dynamics of FDM has been studied in Zimmermann [2019], Zimmer-
mann et al. [2021]. To restrict the complexity of the analysis two simplifications were
introduced. Firstly, artificial, i.e. non-cosmologically motivated, initial conditions
were employed. That avoids mergers of multiple overdense regions at late times and
speed up the time until the first collapse. Secondly, to assure swift relaxation times the
scale factor, which acts as a coupling constant to the nonlinear interaction, was fixed
to a = 1.

It is a priori not clear what dynamical mechanisms drive (1 + 1)-FDM into its asymp-
totic equilibrium configuration let alone whether both reduction models obey the same
relaxation processes — recall the discrepancies in the interactions of (1+ 1)-SP and the
confinement scenario.

Given the approximative CDM interpretation of FDM, classical, non-collisional relax-
ation mechanisms may be a viable option, in particular a combination of phase mixing
and violent relaxation, see Lynden-Bell [1967], Binney [2004]. These processes induce a
filamentation of the phase space dynamics alongside a redistribution of energy inside
the self-gravitating structure due to its fluctuating gravitational potential.

On the other hand, (3 + 1)-FDM-typical mechanisms like gravitational cooling, Seidel
and Suen [1994], may be recovered even in one dimension, allowing collapsing matter
structures to relax into an equilibrated state by radiating away excess energy in form
of small scale matter waves.
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Above stated calculations were performed before the author joined the research group.
They will consequently not be reviewed in full detail, but rather quickly skimmed
since they motivate the following discussion on the collision of ground states. (1+ 1)-
Schrödinger-Poisson and the confinement model are two different pairs of shoes when
it comes to their phenomenology, and we treat them accordingly.

(1+ 1) Schrödinger-Poisson The time evolution of the initially Gaussian wave func-
tion is characterized by recurring shell-crossing events in the center of the domain,
which do not occur in a strictly sequential manner but are increasingly superposed
and thus induce a characteristic spiralization of the phase space distribution. The
structure of the early phase space distributions is qualitatively in good accordance
with the evolution of one dimensional collisionless N-body systems and furthermore
show the natural signature of phase mixing and (less pronounced) violent relaxation.
While phase mixing manifests itself in the ever tighter spiralization of Husimi’s dis-
tribution, violent relaxation induces a small yet observable increase in the occupied
phase space volume. Indicated by a saturation of the energy and the entropy, an
asymptotic state is achieved after only 3 � 4 shell-crossing events. Furthermore, all
the dynamics take place within the domain, without crossing the boundaries, as the
long interaction range of G

p
41

does not allow ejected matter clumps to propagate till
the domain boundaries.

PLAM Opposed to (1 + 1)-SP, the relaxation time is far extended. During relaxation
the system exhibits a short phase of matter emission in response to the violent collapse
of the initial conditions. There, multiple, stable density excitations of various masses
depart from the position of first collapse, propagate outward, overcome the central
gravitational potential at the domain center and proceed to travel towards the domain
boundaries as unbound excitations. Closer inspection reveals the non-diffusive, form
invariant nature of these excitations — solitary waves. The remaining part of the relax-
ation phase may then be summarized as a series of inelastic solitary wave encounters.
Once the kinetic energy of a low mass stationary excitation is insufficient to escape the
gravitational well of a high mass solitary wave, a merger takes place. The matter of
both waves then reorganizes into a single gravitationally bound structure while ex-
pelling excess energy in form of small scale background fluctuations — the signature
of gravitational cooling, Seidel and Suen [1994]. These become visible as completely
delocalized background in which all solitary waves are embedded.

We are now interested if the observed solitary waves are solitonic as well. A "soliton",
as defined in Drazin [1989], is as a solitary wave that is invariant under interactions
with other solitons, despite the nonlinear evolution. That means each wave packet
conserves its energy and mass during an interaction. If that is the case and the ob-
served solitary waves are true solitons is discussed below.

To simplify the multiple merger scenario, we investigate the collision of only two
PLAM ground states. (1 + 1)-SP was assessed in the same manner, but the unsta-
ble ground states immediately turn into a single oscillatory mess when they collide.
That is because in contrast to the cosmological intial states, the density contrast d(x)

is much higher. Nothing can be learned from these encounters, so let us again turn to
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PLAM. Figure 6.2 shows the behavior of an asymmetric configuration of two confined
ground states with initial mass M1 = 50 and M2 = 100 and e = 10�2, boosted onto a
collision course with:

y0(x) = yGS,1 (x + x0) e
ivx

+ yGS,2 (x � x0) e
�ivx . (6.2)

Figure 6.2(A) depicts the matter density in a pre-collision time window, an instance
during the ground state interaction (t ⇡ 17.4) as well as a post-collision time window
around t = 32. By the shape of the density around the interaction, it is evident that the
superposition principle is not satisfied.

Post collision, both solitary waves are moving outwards with a new feature. Due to
the perturbation, dispersive and contracting are no longer perfectly balanced and yGS

shows a persisting, periodic oscillation. In (3+ 1)-SP the same effect has been reported
Guzmán and Ureña-López [2004].
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Figure 6.2: Inelastic interaction of an asymmetric high-mass, low-mass ground state
configuration under strong, transversal confinement (e = 10�2) and a = 1. The evo-
lution starts from (6.2). Panel (A): Density evolution. Initially, both densities travel
as solitary waves (red), pass through each other (black, inset) and continue to prop-
agate in a quasi-solitary movement after the interaction (orange). By this we mean
a state for which neither linear dispersive nor nonlinear focusing effects induce a
permanent deformation of the density. Instead, one observes an oscillation around
a solitary wave. Similar oscillatory behavior was found for (3 + 1)-SP, Guzmán and
Ureña-López [2004], once the ground state density is perturbed. Panel (B): Time evo-
lution of the mass deviation of both ground states relative to their initial masses cf.
Eq. (6.3). Post-interaction, it is the high-mass ground state gaining additional matter
at the expense of the lighter ground state. Panel (C): Time evolution of the total en-
ergy deviation of both ground states relative to their respective initial total energies.
As for the mass, the interaction induces an energy transfer from the low to high mass
ground state. Notice, how the quasi-solitary behavior of the post-interaction densities
is also seen in an oscillation of the energy deviation. Since the association of mass and
energy contained in the positive and negative box half to a particular solitary wave is
ambiguous during the interaction, we deem data in the gray shaded interval of panel
(B) and (C) as not reliable. Figure taken from Zimmermann et al. [2021]; copyright
APS

To quantify the above statement that energy is exchanged during a collision of two
solitary waves, we analyze the deviation in mass DM (Fig. 6.2(B)) and total energy DE

(Fig. 6.2(C)) from their initial values. The states are generated separately and "glued"
together afterwards, resulting in masses of exactly M1 = 50 and M2 = 100. In order
to track the time development, the box is divided into two parts, with the cut made
right where the collision takes place, xcoll. Doing so will let us identify the pre-collision
mass of the light ground state with the total mass inside the left part of the box and
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post-collision with the total mass inside the right part of the box. For the heavy ground
state, left and right are swapped. That statement put into equations is

DMi(t) =

8
<

:

R
xcoll

�L/2 dx|y(x, t)|2 � Mi(t = 0), (i = 0 and t < tcoll)or(i = 1 and t > tcoll)

R �L/2
xcoll

dx|y(x, t)|2 � Mi(t = 0), (i = 0 and t > tcoll)or(i = 1 and t < tcoll)

(6.3)

One finds, a symmetric mass and energy gap after the interaction: Both mass and en-
ergy were transferred from the low to high mass solitary wave. We note although the
reported energy and mass differences are small, they are not a numerical artefact, but
rather stay untouched upon variation of the space or time resolution of the integra-
tor. Therefore, PLAM ground states are not solitons in the strict sense of the word,
but interact inelastically by exchanging mass and energy during encounters, typically
reshuffling them from the low-mass to the high-mass solitary wave. Furthermore we
find that the peculiar velocity of solitary waves plays a role in their interaction. After
each collision states have a smaller relative velocities and interact over a longer period
of time, which seems to favor mass and energy transfer. If the low-mass ground state
is trapped inside the gravitational well of the high-mass ground state, the interaction
time is the longest and the two states merge.

6.3 Dynamical Attractors

We saw the distinct relaxation behavior of (1+ 1)-SP and the strongly confined model.
Let us now focus on the transition from one to the other model and see if the solitonic
solution acts as a dynamical attractor also in a weak-confinement scenario.

To make contact with the literature Picozzi and Garnier [2011], we need to define the
ground state extent s(M). In (1+ 1)-SP, the Madelung picture is applicable, since y 6=
0. The hydrostatic equilibrium gives then the condition for a ground state and we infer
from dimensional analysis s µ M

� 1
3 . We have no analytic solution for PLAM at hand.

Instead, numerous ground states are constructed via imaginary-time propagation and
their extension s is defined by the range in which most mass is contained:

0.99M ⌘
Z s

�s
dx3|yGS|2 . (6.4)

Figure 6.3 shows the asymptotic state obtained under strong, weak, and no confine-
ment in the upper panels and gives an explanation on why yGS acts as a dynamical
attractor solely under strong confinement in the lower panels. There, the respective
interaction range R(L), Eq. (2.29), and ground state extent s(M), Eq. (6.4), are com-
pared. The grey shaded area is not permissible, because it breaks the periodicity – the
periodic box sets the limit s < L/2.
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Figure 6.3: Overview of asymptotic states as a function of the confinement param-
eter e. From left to right, we have (A)-(B) analyzing the strong confinement limit
(e = 10�2), (C)-(D) assessing the weak confinement regime (e = 5) and (E)-(F) evalu-
ating the uniform reduction scenario in the limit e ! •, i.e. (1 + 1)-SP. Upper panels:
Snapshot of the attained quasi-stationary states. Lower panels: Comparison of the in-
teraction range R(L3), (2.29), and the soliton size s(M), Eq. (6.4). Crosses denote soli-
ton sizes directly inferred from the gradient descent of various mass solitons. Solitons
with sizes inside the gray shaded area do not exist as they violate periodic boundary
conditions. For e > 1, we find a transition away from turbulent soliton dynamics to-
ward a "incoherent soliton" configuration, i.e. a highly fluctuating state comprised of
many density maxima beating against each other in real space. As argued in Picozzi
and Garnier [2011], this regime is entered once the interaction range R(L3) is signifi-
cantly larger than the soliton size s(M). Even in the best case scenario for (D) and (F),
i.e. when a soliton of maximal size could form, one still finds smax/R(L3 ⇡ 127) < 0.1
— far outside the soliton regime. By contrast, the strong confinement scenario of (A)
realizes s(M = 48)/R(L3 ⇡ 127) > 1 and is therefore well inside the soliton regime.
Figure taken from Zimmermann et al. [2021]; copyright APS

We find confinement parameters larger than unity to quickly approach quasi-
stationary states comprising many oscillating density peaks, rather than a single, sta-
ble one. These configurations are qualitatively identical to the (1 + 1)-SP case.

Picozzi and Garnier [2011] found a correlation between the appearance of stable soli-
tonic states and the ratio s/R: If the interaction range is smaller than the ground
state, s/R > 1, stable configurations are possible and the ground state is an attractor.
However, it is not given that a ground state of mass M is attained. In Fig. 6.3(A) for ex-
ample, the initial state of a L ⇡ 127 box contracts into a M = 48 solitary wave with the
remaining mass distributed in background fluctuations over the entire domain. Com-
paring both length scales, we have s/R > 1, consistent with the "soliton turbulence
regime". Quite often the terminology is not clear in the literature. What is actually
meant by "soliton" is again, a solitary wave. On the other hand, an interaction range is
bigger than the ground state, s/R < 1 implies "incoherent soliton" and the dynamics
is governed by a non-static, turbulent accumulation of mass in the center of the box.

We studied the dynamics of ground states in a static spacetime. The overused term
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"soliton" does not apply, because upon closer inspection these states exchange mass
and momentum during a collision. Calling them "solitary waves" is appropriate in
that context. The transition between (1 + 1)-SP and PLAM revealed where solitary
waves can be found. The interaction range of a point-source potential has to be the
same size or smaller than the size of the ground state. Extension to a dynamic space-
time will mostly slow the dynamics down, i.e. lower the exchange of mass during a
collision, but we do not expect new qualitative features. The next step towards an un-
derstanding of the full-fledged model is therefore to move to higher dimensions, e.g.
(2 + 1)-SP or (3 + 1)-SP.
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7 Code optimization

With the aim of high computational performance in mind, two aspects qualify for
further improvement of the integrator. The space grid and the time grid. Both are
analyzed below.

7.1 Improve spatial discretization with B-Splines
In this section we consider refining the space discretization. A priori it is not clear
which function basis fits the problem, but in atomic physics B-Splines have been used
successfully to solve the Schrödinger equation (see Bachau et al. [2001] for an intro-
duction).

The B-Spline method presented here has been implemented independently by the
group around Prof. Dr. Javier Madroñero from the faculty of natural sciences in
Valle, Columbia. Therefore we will not give any technical details beyond what has
been stated in Sec. 4.3.2, but rather compare their endresults with ours. The follow-
ing serves as a sanity check and validation for both, the Fourier code as well as the
B-Spline code. We test the B-Splines against the Fourier basis, firstly by a direct com-
parison of their densities r = |y|2 in x-space and in k-space and secondly by their
conservation of mass and momentum.

7.1.1 Direct Comparison in x-space

As a first measure we compare the wave function with the Fourier base, yFb, to the
wave function with the B-Spline base, yBS, via

D(x, t) = |yFb(x, t)� yBS(x, t)|2. (7.1)

In Fig. 7.1 both wave functions are shown, as well as their difference at various stages
of the integration, given in terms of the scale factor a. In the first one at simulation start,
z = 100 (a ⇡ 0.01), numerical errors of O(10�23

) appear, which are within numerical
precision. At a = 0.1, the overdense region begins to collapse. And as expected in the
areas of depletion and accumulation of mass, the difference between the codes begin
to show, whereas average-density regions r = |Y|2 = 1 continue to coincide. The
solutions are close and the difference grows to O(10�5

) at the end of the simulation.
Since the two independently developed methods give comparable results, we deem
both implemented properly. In the second one, D grows to O(10%), but the solutions
are still correlated and peaks in D occur where |y|2 is large. That is no longer the case
in the largest box. The zoom-in is at a = 0.6, where D is already above 100%. Past that
the methods differ strongly and D is no longer correlated to |y|2. The reason why the
methods drift apart is discussed in the following.
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Figure 7.1: (A): Wave function in a small box (L=100) of the B-spline as well as the
Fourier method and their difference D at various stages of the integration given in
terms of the scale factor a. Differences between the solutions are limited by numerical
precision in the beginning of the simulation and grow to O(10�5

) at the simulation
end. (B): Zoom into the black box at a = 1. Differences in the two methods are approx-
imately proportional to the density itself.

7.1.2 Power Spectra

All power spectra, see for example Fig. 7.2, are symmetric, because |Y|2 is real, so
that there are kmax =

N

2 modes in Fourier space. The Fourier basis approach (thick
blue lines) underlies the B-spline method (thin grey lines). a serves again as the time
parameter. The number of B-spline basis functions NSpline 2 {40000, 90000, 125000}
was set in such a way, that a Fourier basis of that size can resolve the entire spectrum.

In the lower part of the spectrum k <
NSpline

2 , the power spectra of both methods follow
each other closely. But there is more spectral content available when the B-Splines are
sampled above. We detect peaks in the spectra at k = nNspline, n 2 N, which exist
early on and grow in time not only in amplitude, but also in extent. They originate in
an inherent lack of resolution of the B-Spline basis at those scales. The natural roll-off
and peaks are distant in Fig. A.3 and peaks remain confined. In Fig. A.4 the natural
roll-off and B-Spline peaks are closer, which favors the growth of the latter. The two
even overlap in Fig. 7.2. Rather unfortunate for the precision of the simulation , the
power of the resulting peaks has a comparable amplitude to the small modes and they
extend over a large range in k-space. At this point it is only clear that resolution issues
in the B-Spline method are more severe in larger boxes, wether they are caused by the
higher amount of dynamics or because the natural roll-off is closer, has to be studied
further. It is obvious on the contrary that the size of a Fourier basis can be limited to
the roll-off, which makes it more suitable to solve the Schrödinger-Poisson equation
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than the B-spline basis.

Figure 7.2: (A): Evolution of the power spectra in the large box (L = 1000) in terms
of the scale factor a. The Fourier basis method (blue) underlies the B-splines in grey
color. Modes k < NSpline/2 coincide in their spectra. (B): Zoom-in of the ’oversampled’
B-Splines. Peaks show up at multiples of the grid size at k = nNspline, n 2 N (black
dashed lines). They exist early on and expand during integration.

The expected advantage of B-splines was that it demanded a smaller basis size to re-
solve the structures in y - an assumption that is now proven wrong. The Fourier
basis does indeed work better in the context of the Schrödinger-Poisson eqation. If we
still were to enhance the spatial discretization, there are several possibilities: The B-
Splines’ degree can be raised to resolve highly oscillatory wave functions at the cost of
a greater function support and increased complexity due to wider bands in the opera-
tor matrices. Moving from the cardinal B-Splines to a non-uniform grid is conceivable,
but this only makes sense if the grid points adjust according to the wave function’s de-
velopment - a highly complex endeavor.

That brings us to the most common technique, the adaptive mesh refinement as in
Schive et al. [2018b], Veltmaat et al. [2018], Bryan et al. [2014b], where certain grid el-
ements are subdivided, sometimes on multiple levels and eventually integrated with
a different time step. Also the boundary conditions for this sub-grid are now of fixed
Dirichlet type and the Fourier method from Sec. 4.3.1 can not be applied. A finite dif-
ferencing scheme is needed. The Problem is that one has to track the development of
y with different integrators and possibly on varied time steps. Storing these informa-
tions increases the complexity.

For the beginning it is reasonable to look into non-uniform discrete Fourier transforms
that work non-equispaced grids, e.g. the NFFT package, but attention has to be paid.
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For nonuniform FFTs the adjoint NFFT is not necessary the same as the inverse as
with uniform FFTs. Basis sizes N = 109 are the memory limit of the "thin" nodes on
the bwUniCluster. If one of those revisions is necessary, depends on how our code
scales in higher dimensions. On the physics side the interaction potential becomes
more localized in 2D and 3D and need in theory smaller basis sizes, which would play
into our hands.

Thanks to our colleagues from Columbia, we were able to sanity-check our numerical
implementation. Because the current B-Spline code has issues on some scales, it is less
efficient. If these problems were fixed, results could look promising, especially when
conserved quantities are of interest, see Sec. 7.3. In the following, we will stick to our
Fourier method and deal with the second improvement, the time stepping.
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7.2 Enhance time stepping
The second improvement of our numerical procedure is in the temporal discretization.
We compare the 4th order integrator of the newly implemented embedded splitting
scheme "Emb 4/3 BM PRK/A" from Auzinger et al. [2016a] to the standard Strang
splitting, Eq. (4.1), used for all results above. Furthermore, we estimate the error at
each time step using the combined 4th / 3rd order method, which we use to adaptively
set the time step size Dt.

7.2.1 4th-order integrator

A generalized splitting scheme of order p has the following form:

UK+V = bsUK � as�1UV � ... � a1UV � b1UK +O(Dt
p+1

), (7.2)

where ai and bi are the splitting coefficients. In comparison, in Eq. (4.1) they are
a1 = 1, b1 = b2 =

1
2 . s ist the number of stages, which only coincides with the accu-

racy p at certain low-order schemes. A plethora of higher-order integrators has been
deduced, which is a non-trivial task. Auzinger et al. [2016a] gives some insight on the
construction of these schemes and we refer to Auzinger [2021] for a collection of split-
ting coefficients. We choose a fourth-order method, since it offers a significant upgrade
in performance while also being compatible with an adaptive time-step selection ex-
plained in the following. The splitting scheme "Emb 4/3 BM PRK/A" from Auzinger
et al. [2016a] is an embedded scheme, meaning it has two co-working integrators. One
is third-order accurate (4 stages) and acts as the controller, the other is fourth-order
accurate (7 stages) acting as the worker. They share the three first splitting coefficients,
which reduces the effective number of stages needed per time step.

Figure 7.3: Convergence of the fourth order integrator relative to the same reference as
in Fig. 5.1. The space domain behaves exactly as before. On contrast, the convergence
is much faster with regards to the time step, such that the plateau is reached at Dt ⇡
5 ⇥ 10�3.

To get a feeling for higher order splitting scheme, let us first consider the worker on its
own with a constant time step. Figure 7.3 reveals its convergence behaviour relative

45



to the black-square references of Fig. 5.1. As a confirmation of the previous interpre-
tation of the convergence plateau, we observe the exact same behaviour in the spatial
domain: There is a sharp edge in De in N-direction, because of the minimum require-
ment to resolve all modes below the natural cut-off of the power spectrum. In the
time domain, the situation is different. Convergence is is much faster in Dt, which is
expected and the only reason for this more involved scheme.

We can make an estimation of the speed up factor by comparison of the minimum
time-step requirements of solutions with the same accuracy. For the Strang split-
ting that is the Dt = 8 ⇥ 10�5 one and for the fourth order one the plateau begins
at Dt ⇡ 5 ⇥ 10�3. It is important to include the number of FFTs per time step into the
estimation, which is 12 and 2, respectively – FSAL properties included. All in all that
results in a speed up factor of ⇠ 25.

7.2.2 Adaptive Step Size

An adaptive time-step selection is then implemented by comparison of the 4th- and
3rd-order integrator. The advantage of such an inherent error estimation is that the
Courant-Friedrichs-Levi (CFL) criterion based on finite differencing schemes, as used
in Schive et al. [2018b], Mina et al. [2020], Li et al. [2019], is not needed. The selection
of the next Dtnew based on the current one Dt is then

Dtnew = min

(
amax, max

"
amin,

✓
a · tol

De

◆ 1
order+1

#)
Dt. (7.3)

The same De as in Eq. (5.1), but applied to the wavefunction calculated by the 3rd and
4th order method, acts as a local (in time) error measure and the parameters are amax =

4, amin = 0.25 and a = 0.9. Auzinger et al. [2016b] stated that their exact value is not
important, but it is imperative to have them included in the metric to avoid oscillatory
behavior, which we can confirm. The time step is mostly self organizing well within
the limits of these parameters. Only occasionally when y becomes quasi-stationary,
Dt tends to jump up and is then slowed down by amax, or when two density peaks
merge, jumps of Dt downwards are limited by amin. tol then sets the desired accuracy
and order accounts for the order of the chosen splitting scheme. The initial time step
can be chosen relatively large, but time step self-organization takes a few steps, during
which errors can accumulate. Dtini = 10�3 is sufficient for most purposes.
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Figure 7.4: Left: Deviation from the reference solution as a function of the scale factor
(time) in the L = 500 box. Five adaptive, 4th order solutions with different tol param-
eters are shown and one converged second order solution with a constant time step
Dt. Right: Evolution of the time step Dt during integration. Here, time step selection
works well for tol  10�2.

We investigate the behavior of the adaptive integrator in the following manner: A box
size L = 500 is chosen. For L 2 {100, 1000} cf. Fig. A.6,A.7. To guarantee convergence
in the space domain, we set N = 220 ⇡ 106. The initial time step is Dtini = 10�3. A
sweep of tolerance parameters tol 2 {10�1, 10�2, 10�3, 10�4, 10�5} controls the time
step size. With that, the relative euklidean norm De of the the reference solution
(Strang splitting, Dt = const. = 10�5, N = 220) and the adaptive solution is calculated
and plotted over the scale factor. A second order solution with Dt = 8 ⇥ 10�5 serves
as a guide. Figure 7.4 shows how this guiding solution is approached by the adaptive
ones, when tol is sufficiently small. The maximal accuracy of any solution is limited
by the fidelity of the reference itself, which is estimated by De of a nearby solution
within the convergence plateau (Fig. 5.1), e.g. our guiding solution. Consequently, the
reference is O(10�5

) accurate at the simulation end.

In the right half of Fig. 7.4 one can see how the time step evolves with time. All lines
depart from Dt(aini) = 10�3. If the tolerance allows for it, The time step grows until
a ⇡ 0.02 for large tol. If Dt � 1, calculation of the step size becomes unstable and De
fails to serve as a local error estimate. For which tol this is the case depends on the box
size L. If Dt  1, the time step is reduced monotonically - with minor fluctuations on
top - as the non-linearity increases (with increasing scale factor).

Total cpu time and speed up factor are shown in Fig. 7.5. We derive the tolerance from
the previous figures, such that the time step is still self-controlling (from L = 100 to
L = 1000: tol 2 {10�3, 10�2, 10�1}). The cpu times of the three boxes align and the
speed up factors are of O(50). Albeit not the most precise solutions, they only differ
by De = {10�6, 10�5, 10�5} from the reference at the simulation end. For a similar plot
to Fig. 7.5, but with tol = 10�3 for all boxes, see Fig. A.5.
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Figure 7.5: Cpu usage and speed up factor of the three boxes sizes L 2 {100, 500, 1000}.
Tolerance parameters are chosen as tol 2 {10�3, 10�2, 10�1} - within the stability re-
gion, where Dt  1. Remarkable speed up factors around 50 are possible.

Now we know how to handle the time-step selection and which tolerance parameter
to choose for a given desired accuracy. This numerical method we have at hand is
10 ⇠ 50 times faster than the Strang splitting (Eq. (4.1)), which allows for large scale
simulations and even large scans of parameter spaces in reasonable time. Higher-
dimensional simulations will profit greatly of this improvement. Since the new inte-
grator is not symplectic, meaning its phase space volume is not necessarily conserved,
conservation of mass and momentum are assessed in the upcoming section.
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7.3 Conserved Quantities

The new integrator based on a fourth order operator splitting is in contrast to the stan-
dard Strang splitting not symplectic and the phase space volume is not conserved.
Of special interest is consequently, how the two constituents behave: The spatial con-
straint Eq. (2.33) is equivalent to the conservation of mass, while the second bound is
the conservation of momentum.

7.3.1 Conservation of Mass

A physical way to assess the accuracy of the integrator is by checking how well mass
is conserved.

|DM(a)| =
����
Z

W
|y(x, a)|2 � |y(x, astart)|2 dx

���� (7.4)

We can expect mass conservation, since the time evolution operator is unitary by de-
sign. Figure 7.6 shows how the mass evolves with time, beginning at |DM| = 0. Be-
sides the Fourier method and the B-Spline method the new adaptive method is given.
The Fourier method shows a strong increase of |DM| right at the simulation begin, but
saturates soon, such that overall the mass is well conserved – |DM| < 10�6 in all cases.
Small boxes are handled exceptionally well by the B-spline method, where the spatial
resolution is high enough. Large box sizes need a much higher resolution, which was
not foreseeable. Consequently B-Splines can not keep up and |DM| rises to O(10�3

).
The new adaptive method combines the advantage of both. |DM| starts low, compa-
rable to B-Splines, and does not grow too strongly, comparable to the Fourier method.
At simulation end we have |DM| = O(10�9

).

Differences between the Fourier and adaptive method originate solely from the time
discretization. We can conclude that mass conservation is fulfilled better if the time-
step size is larger and less Fourier transform are executed. Fig. 7.8 substantiates this
claim. The slope of #FFTs is very reminiscent of the one observed in |DM(a)| for the
adaptive method. In relation to the standard splitting, the new adaptive scheme needs
O(103

) times less Fourier transforms. That number is already corrected for the number
of FFTs for each time step – 2 and 17, respectively.
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Figure 7.6: Conservation of mass of Fourier, B-Spline and the new adaptive method for
three box sizes. The Fourier method conserves the total mass below the 10�6 range,
whereas the B-spline method is in advantage for smaller L, but struggles with the
larger boxes, where |DM| grows to O(10�3

). The adaptive method is the most ad-
vanced solution. It starts at |DM| = O(10�12

) and stays bounded by |DM| = O(10�9
).

7.3.2 Conservation of Momentum

Linear momentum, despite being a derived quantity, is conserved in an expanding
space, see Zimmermann [2019].

P = �Im
✓Z

W
∂x(y(x, a)

⇤
)y(x, a) dx

◆

|DP(a)| = |P(a)� P(astart)| (7.5)

How the spatial derivative ∂x is implemented, influences the resulting momentum to
a high degree (Fig. A.8). For Fig. 7.7 we calculated the momentum, or more precisely
the partial derivative, in k-space directly, since it is the most accurate. To some degree
the behaviour is as in Fig. 7.6 before. |DP| of the Fourier basis method grows gradually
until O(10�7

). The B-Spline method initially stays below that, but in the more complex
territory, where more basis functions are necessary, we have |DP| = O(1). This effect
is more pronounced than for the conservation of mass, because the conservation of
momentum is more involved. Besides y also its derivative ∂xy has to be represented
accurately.
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Figure 7.7: Momentum conservation of the Fourier, B-Spline and the new adaptive
method for the three box sizes. The momentum is calculated in k-space directly by
application of the momentum operator. The situation is qualitatively similar to Fig. 7.6,
but problems in the B-Spline method arise earlier than in the conservation of mass,
because the momentum is a derived quantity.

Figure 7.8: Number of FFTs for the standard Strang splitting and the adaptive method,
which has O(103

) less FFTs. Also, #FFTs grows significantly, even at late times, in the
case of time adaptivity.

Mass conservation surprisingly is best guaranteed in the B-Spline method, at least
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in small boxes where its problems show only mildly. Close to that comes the adap-
tive method, which is also somewhat unexpected, have we just noted the lack of its
symplecticness. Mass is about three orders of magnitude better conserved than in the
Strang method. The reason was found in the substantially reduced number of Fourier
transforms.

Of all integrators, the time-adaptive, 4th-order scheme performs the best. It is 10 � 50
times faster than the standard Strang splitting, or alternatively more accurate when us-
ing the same resources. Mass and momentum are by a factor ⇠ 103 better conserved.
In comparison to the B-Spline method, the power spectrum is clean without any peaks
above the natural roll-off. How many basis functions are required for a certain prob-
lem can be roughly estimated and the tolerance parameter takes care of the time step
selection.
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8 Conclusion and Outlook

The assessment of the Schrödinger-Poisson equation is by no means exhausted and
there is still terrain left to be explored. We are now at a point, where the one-
dimensional models are understood well enough to extend the domain into two di-
mensions. In the following, a recap of this work is given, followed by first considera-
tions towards (2 + 1)-SP.

8.1 Summary

In this thesis, two reduction models of the three dimensional Schödinger-Poisson
equation were studied. Both resemble Fuzzy Dark Matter in one dimension, but differ
in their phenomenology. PLAM, where two dimensions are confined by a harmonic
potential, was further investigated. As a follow-up to the relaxation mechanisms and
long-term dynamics of gaussian initial states in Zimmermann et al. [2019], we demon-
strated how two stable, solitary solutions interact with each other and thereby ex-
change mass and momentum. Also, in accordance to Picozzi and Garnier [2011], the
criterium for the stability of a solitary solution was confirmed. If the relation of ground
state size and interaction range is larger than one, stable solitary waves are found, but
if the relation is smaller than one, which preferably happens with weak transversal
confinement, the system transitions to ’incoherent soliton dynamics’. y is no longer a
single peak structure, but rather many oscillating peaks, that beat against each other
in the center. Although the PLAM model has features also found in (3+ 1)-SP, e.g. the
stable solitary states, and helps understanding the physical phenomena, it remains a
toy model, that can not replace (3 + 1)-SP in quantitative aspects.

In order to clear the way for higher-dimensional simulations the numerical method
was improved with respect to two points. The first is the spatial discretization. In
collaboration with a Columbian working group, we tested a B-Spline basis method
against our Fourier basis method. At high resolution and weak nonlinearities, the B-
Spline method conserves mass and linear momentum to a higher degree. However,
when moving into the strongly nonlinear regime, the Fourier method takes the lead.
Besides a better conservation of the physical quantities, also the computational effi-
ciency is higher and less basis functions are needed. The issue of arising peaks in the
matter power spectrum of the B-Spline method is still up to debate. If that can be fixed,
a reassassment would be necessary. The second criterium is the time integration. A
4th-order embedded scheme from Auzinger et al. [2016a] was implemented, which
constitutes an adaptive time-step selection. Computation times are greatly reduced
by a factor of up to O(50) relative to the standard Strang splitting. A positive side
effect of the larger time steps is that mass and linear momentum are better conserved,
because y undergoes O(103

) less Fourier transforms.
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8.2 Future Extension
What to do next? The logical consequence and what motivated us to improve the nu-
merical method is the higher-dimensional model, (2 + 1)-SP. That goal is now within
reach, but it is yet unclear how the dynamics change from one to two dimensions,
especially considering the computational boundaries. We stated that the memory con-
strains simulations to ⇠ 109 basis functions or ⇠ 104 in each dimension. Consequently,
if memory consumption becomes a problem, there is no way around the improvement
of the basis representation, either by modifying the B-Splines, or an adaptive mesh
refinement. What might play into our hands is that in two dimensions the interaction
potential is more confined. Due to that, seeing (3 + 1)-SP as an upscaled version of
(1 + 1)-SP can overestimate the numerical demand.

How does our numerical scheme change in higher dimensions? Let us consider the
two-dimensional case. Moving to 2D means an extended spatial domain with side
lengths L1 and L2:

x 2 W = [0, L1)⇥ [0, L2) (8.1)

in general. Wave function y, potential V and interaction kernel Û are currently all
vectors of size N, or behave as such. In 2D, vectors become matrices of size N1 ⇥ N2,
which might be represented by lengthened vectors:

y(x) = y(xn) = [y(x0,0), y(x0,1), ..., y(x0,N1�1), y(x1,0), ..., y(xN1,N2)]
T. (8.2)

Falling back to such a vector-like notation suggests, that all operators can be applied
as before. That is not the case. Even the evolution operator of the linear kinetic sub-
Hamiltonian, ÛK, contains now the matrix exponential of the full matrix kn:

ÛK = F�1 exp{� i

2
k

2
nDt}F . (8.3)

It is a constant coefficient matrix, which can be computed once. Generally, the expo-
nential of a matrix A is given by the infinite series:

exp(A) =

•

Â
m=0

A
m

m!
= 1 + A +

A
2

2
+ ..., (8.4)

which calls for a quadratic matrix A and therefore N1 = N2 = N and it makes sense
to set L1 = L2 = L to achieve a uniform spatial resolution. Note, that this series is not
due to the time stepping, which is outsourced to the same exact operator splitting as
before.

The potential evolution operator includes a matrix exponential as well, but due to the
time dependence has to be computed every time step:

ÛV = exp{�iaV(|y(xn|)2}. (8.5)

A question that arises is to which accuracy the matrix exponentials of Eq. (8.3) and (8.5)
have to be calculated. We can not expect either of V(|y|2) or kn to be nilpotent: A

m
=

0 8 m > m0 would truncate Eq. (8.4) to a finite series. More effective is diagonalizing
those matrices with a change-of-basis matrix S, such that the eigenvalues are on the
diagonal:

exp{A} = S diag[el1 , ..., e
lN ] S

�1. (8.6)

54



What has been omitted so far, is the calculation of the potential. Also the kernel coeffi-
cient matrix is not diagonal as before, Eq. (4.8), and Eq. (4.9) turns into a matrix-matrix
multiplication:

V(|y(xn)|2) = F�1
ÛF|y(xn)|2 with Û =


� 1

k2
n

�
. (8.7)

Performing a discrete Fourier transform needs one summation more than before, but
the general procedure stays the same:

y(kn) = Â
n>0

y(xn)e
�iknxn

= Â
n2>0

Â
n1>0

e
�ikn2 x2e

�ikn1 x1y(xn). (8.8)
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Figure A.1: (A): Wave function in a large box (L=1000) of the B-spline as well as the
Fourier method and their difference D at various stages of the integration given in
terms of the scale factor a. Differences between the solutions are limited by numerical
precision in the beginning of the simulation and grow to O(1) already before the sim-
ulation end. (B): Zoom into the black box at a = 0.6. Differences in the two methods
are still approximately proportional to the density itself.
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Figure A.2: (A): Wave function in a medium sized box (L=500) of the B-spline as well
as the Fourier method and their difference D at various stages of the integration given
in terms of the scale factor a. Differences between the solutions are limited by numeri-
cal precision in the beginning of the simulation and grow to O(10%) at the simulation
end. (B): Zoom into the black box at a = 1. Differences in the two methods are approx-
imately proportional to the density itself.
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Figure A.3: (A): Evolution of the power spectra in the small box (L = 100) in terms
of the scale factor a. The Fourier basis method (blue) underlies the B-splines in grey
color. Modes k < NSpline/2 coincide in their spectra. (B): Zoom-in of the ’oversampled’
B-Splines. Peaks show up at multiples of the grid size at k = nNspline, n 2 N (black
dashed lines). They exist early on and expand during integration.
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Figure A.4: (A): Evolution of the power spectra in the medium sized box (L = 500)
in terms of the scale factor a. The Fourier basis method (blue) underlies the B-splines
in grey color. Modes k < NSpline/2 coincide in their spectra. (B): Zoom-in of the
’oversampled’ B-Splines. Peaks show up at multiples of the grid size at k = nNspline,
n 2 N (black dashed lines). They exist early on and expand during integration.

Figure A.5: Cpu usage and speed up factor of the three boxes sizes L 2
{100, 500, 1000}. Tolerance parameters are chosen identical (tol = 10�3

), which leads to high accuracy solutions for larger boxes. Speed up factors are O(10).
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Figure A.6: Left: Deviation from the reference solution as a function of the scale factor
(time) in the L = 100 box. Five adaptive, 4th order solutions with different tol pa-
rameters are shown. One converged, second order solution with a constant time step
Dt = 8 ⇥ 10�5 marks the fidelity limit of the reference solution. Right: Evolution of
the time step Dt during integration. With tol  10�3 the time step Dt stays below 1
and errors are small. Dt grows beyond 1, where the adaptive time step selection does
no longer work. Errors consequently grow rapidly.

Figure A.7: Left: Deviation from the reference solution as a function of the scale factor
(time)in the L = 1000 box. Five adaptive, 4th order solutions with different tol param-
eters are shown and one converged second order solution with a constant time step
Dt. Right: Evolution of the time step Dt during integration. Here, time step selection
works well for tol  10�1.
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Figure A.8: Momentum conservation of the Fourier and B-Spline method for the tree
box sizes. The momentum is calculated in two ways - the finite differencing 5-point
stencil and a direct application of the momentum operator in k-space.
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2.1 Interaction kernels of the two dimension-reduced models. Blue: (1+ 1)-
SP; shades of red: PLAM. Mind the different scaling of the x-axis be-
tween left and right. As a reference, the same three dimensional kernel
is shown in the black, dashed line on both, the left and right side. Figure
taken from Zimmermann et al. [2021]; copyright: APS . . . . . . . . . . . 14

3.1 Scale factor a as a function of the dimensionless time t obtained from
numerical integration. Small matter density parameters Wm,0 result in
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3.2 Exemplary, rescaled cosmological initial states scaled with the box size L

for a better comparison. Dimensionless box sizes L 2 {48, ..., 4877} cor-
respond to real distances of L 2 {1 Mpc, ..., 100 Mpc}. The finite correla-
tion length s together with the periodic box suppresses the structure in
small boxes. Density fluctuations grow in amplitude and in their num-
ber of oscillations as the box size increases. They saturate at d ⇡ 0.15.
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5.1 Convergence behavior with respect to different parameters in (1+1)-SP.
Each cell colour-maps the errors De with respect to the black-square ref-
erence. Three box sizes L 2 100, 500, 1000 are plotted row-wise. The
time development is given column-wise in terms of the scale factor a.
The N-grid is in powers of 2, due to the FFT algorithm. To make it eas-
ier to read, N and Dt have ticks at powers of 10. Errors induced by
constraints in Dx show in a sharp edge in N-direction, which moves
toward higher N as the non-linearity increases. Issues in the time do-
main on the contrary create a smooth saturation with decreasing Dt,
that does not move with time. . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Convergence behavior with respect to different parameters under
strong confinement (s = 0.01). All remaining parameters are as in
Fig. 5.1. In comparison to (1+1)-SP errors stay three order of magnitude
smaller. With respect to the space constraints, the confinement model
is a lot less demanding and even N ⇡ 1000 basis functions are suffi-
cient to resolve all features. In the time domain we see the same smooth
saturation toward decreasing Dt. . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Evolution of small modes kn of the power spectrum normalized with
the linear theory, Eq. (5.3). 20 runs with varied initial states are aver-
aged. The smallest modes show good agreement at early times until
they decouple at late times. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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5.4 Total cpu time and memory requirements as a function of the basis size.
The expected scaling functions are fitted. A time step Dt = 10�2 was
used, which allows computing large basis sizes within reasonable time.
For smaller Dt these plots have to be rescaled with a constant factor.
Small basis simulations are more efficient, as long as important vectors
fit into the processors cache (SRAM). Runs with middle sized N scale
worse, because the limiting factor is memory access. At large N Fourier
transforms take the most time and the scaling is as expected µ NlogN . 31

6.1 Densities at various stages of the minimization procedure with a = 1
and ground state mass M = 100. (A): The (1 + 1)-SP ground state is
reached quickly. (B): In PLAM (e = 10�2) the imaginary time propaga-
tion takes longer. Note how the confinement manifests in the size of the
ground state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Inelastic interaction of an asymmetric high-mass, low-mass ground
state configuration under strong, transversal confinement (e = 10�2)
and a = 1. The evolution starts from (6.2). Panel (A): Density evolu-
tion. Initially, both densities travel as solitary waves (red), pass through
each other (black, inset) and continue to propagate in a quasi-solitary
movement after the interaction (orange). By this we mean a state for
which neither linear dispersive nor nonlinear focusing effects induce a
permanent deformation of the density. Instead, one observes an oscil-
lation around a solitary wave. Similar oscillatory behavior was found
for (3 + 1)-SP, Guzmán and Ureña-López [2004], once the ground state
density is perturbed. Panel (B): Time evolution of the mass deviation
of both ground states relative to their initial masses cf. Eq. (6.3). Post-
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6.3 Overview of asymptotic states as a function of the confinement param-
eter e. From left to right, we have (A)-(B) analyzing the strong confine-
ment limit (e = 10�2), (C)-(D) assessing the weak confinement regime
(e = 5) and (E)-(F) evaluating the uniform reduction scenario in the
limit e ! •, i.e. (1 + 1)-SP. Upper panels: Snapshot of the attained
quasi-stationary states. Lower panels: Comparison of the interaction
range R(L3), (2.29), and the soliton size s(M), Eq. (6.4). Crosses de-
note soliton sizes directly inferred from the gradient descent of various
mass solitons. Solitons with sizes inside the gray shaded area do not
exist as they violate periodic boundary conditions. For e > 1, we find a
transition away from turbulent soliton dynamics toward a "incoherent
soliton" configuration, i.e. a highly fluctuating state comprised of many
density maxima beating against each other in real space. As argued in
Picozzi and Garnier [2011], this regime is entered once the interaction
range R(L3) is significantly larger than the soliton size s(M). Even in
the best case scenario for (D) and (F), i.e. when a soliton of maximal
size could form, one still finds smax/R(L3 ⇡ 127) < 0.1 — far outside
the soliton regime. By contrast, the strong confinement scenario of (A)
realizes s(M = 48)/R(L3 ⇡ 127) > 1 and is therefore well inside the
soliton regime. Figure taken from Zimmermann et al. [2021]; copyright
APS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 (A): Wave function in a small box (L=100) of the B-spline as well as
the Fourier method and their difference D at various stages of the in-
tegration given in terms of the scale factor a. Differences between the
solutions are limited by numerical precision in the beginning of the sim-
ulation and grow to O(10�5

) at the simulation end. (B): Zoom into the
black box at a = 1. Differences in the two methods are approximately
proportional to the density itself. . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 (A): Evolution of the power spectra in the large box (L = 1000) in terms
of the scale factor a. The Fourier basis method (blue) underlies the B-
splines in grey color. Modes k < NSpline/2 coincide in their spectra. (B):
Zoom-in of the ’oversampled’ B-Splines. Peaks show up at multiples
of the grid size at k = nNspline, n 2 N (black dashed lines). They exist
early on and expand during integration. . . . . . . . . . . . . . . . . . . . 43
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tor (time) in the L = 500 box. Five adaptive, 4th order solutions with
different tol parameters are shown and one converged second order so-
lution with a constant time step Dt. Right: Evolution of the time step Dt
during integration. Here, time step selection works well for tol  10�2. . 47
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7.6 Conservation of mass of Fourier, B-Spline and the new adaptive method
for three box sizes. The Fourier method conserves the total mass below
the 10�6 range, whereas the B-spline method is in advantage for smaller
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).
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factor (time) in the L = 100 box. Five adaptive, 4th order solutions
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solution with a constant time step Dt = 8⇥ 10�5 marks the fidelity limit
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