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The Pendulum Approximation for Fidelity in Quantum Kicked Rotor
Systems

The kicked rotor (KR) is one of the prime examples for chaos in nonlinear dynam-
ics. When treating the quantum kicked rotor (QKR) the de�nition of chaos and
instability is more di�cult. Peres introduced the �delity, the overlap of the same
initial state evolved in time with two slightly di�erent Hamiltonians, as a measure
of stability. For the chaotic case one expects universal properties of the �delity.
The description of integrable systems or systems showing dynamical localization
as the QKR is more di�cult. We treated the QKR in the chaotic regime near
to a quantum resonance in order to apply a pseudo-classical approximation that
maps the system to a regular one. This regular system is approximated by the
pendulum. In order to describe the rotational trajectories in the pseudo-classical
phase space we used the WKB method. This way we could give an analytical
expression for the �delity for single rotors and an approximative expression for
ensembles of rotors. The validity of the approximations was tested numerically.
We could identify regimes in which the approximations are good. In general, the
�delity of the QKR evolution shows, however, a di�erent behaviour than the one
of the pendulum due to crucial di�erences of the pendulum phase space with
respect to the pseudo-classical phase space of the QKR.

Die Pendelnäherung zur Berechnung der Fidelity in gekickten Quan-
tenrotorsystemen

Der gekickte Rotor ist eines der Standardsysteme der nichtlinearen Dynamik, das
chaotische Verhalten zeigt. Bei der quantenmechanischen Behandlung des ge-
kickten Rotors ist die De�nition chaotischen Verhaltens weniger eindeutig. Peres
de�nierte die Fidelity, den Überlap zweier anfänglich identischer Zustände, deren
Zeitevolution leicht unterschiedlich ist, als Stabilitätsmaÿ eines Quantenzustand.
Im Falle chaotischer Dynamik erwartet man universales Verhalten. Im Falle dy-
namischer Lokalisation wie beim gekickten Quantenrotor oder eines integrabelen
Systems ist die Beschreibung schwerer. Um eine pseudoklassische Methode zu ver-
wenden, betrachten wir das System nahe einer Quantenresonanz und näherten
das System dort mit dem Pendel an. Um die rotationsartigen Trajektorien zu
beschreiben, verwenden wir die WKB Näherung. Auf diese Weise konnten wir
einen analytischen Ausdruck für die Fidelity eines Rotors und eine Näherung für
Ensembles aus gekickten Quantenrotoren herleiten. Die Gültigkeit dieses Aus-
drucks wurde numerisch überprüft. Wir konnten Parameterbereiche �nden, in
denen die Näherungen gut sind. Im Allgemeinen zeigen der gekickte Quantenro-
tor und das Pendel jedoch verschiedenes Verhalten aufgrund der wesentlichen Un-
terschiede zwischen dem pseudoklassischen Phasenraum des Quantenrotors und
dem Phasenraum des Pendels.
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Chapter 1

Introduction

Many seemingly simple physical systems exhibit complicated dynamics. There
are only a few systems that can be solved easily in closed form as for example
the harmonic oscillator or the Kepler problem [Gol06]. Some other ones can still
be solved by reducing the solution to well de�ned integrals as for example the
pendulum [Ald80]. There are only a few examples not described in the standard
textbooks on theoretical mechanics that can also be solved exactly.

A famous example for a simple system exhibiting complex behaviour is the
Henon-Heiles problem, which deals with the motion of a particle in a plane sub-
jected to a non rotationally symmetric potential. Although being Hamiltonian
this system shows chaotic behaviour [Tab89]. And even the systems that can be
solved may show complex behaviour as soon as one introduces some perturbation.
A very famous example introduces a temporal perturbation: the kicked rotor is
a free rotor being kicked periodically. If the system is perturbed strongly enough
it exhibits chaotic behaviour. This system is of special interest as other systems
can locally be approximated by the Kicked Rotor (KR) [Lic92].

Not only is the KR interesting as it is canonical in the context of canonical
perturbation theory but it is also a nice example for a lot of phenomena common
to nonlinear dynamics. In the KR the occurrence of higher order resonances and
the self similar structure in them [Lic85] can be studied. One is also able to study
the route to chaos via the Poincaré-Birkho� theorem and the stochastic layers
[Lic92]. The motion in the stochastic layer can be described by a di�usive process
[Rec80] within the layer. As long as the stochastic layers are separated no global
transport and therefore no global stochasticity is possible. The calculation of the
breakdown of the last separating KAM torus as a criterion for global stochasticity
is one of the practical examples of the KAM theorem [Gre79].

Problems arise as soon as one tries to treat the system quantum mechanically.
One of the most obvious problems is that the language in which we described the
chaotic behaviour was formulated using points in phase space. Chaos is mostly
characterised by the exponential spreading of initially near phase space points
[Lic92]. In quantum mechanics this is not a concept we are able to use. Even
if we try to compare the systems by means of classical correspondence we �nd
several fundamental di�erences. Two examples of purely quantal e�ects without
a classical analogue occurring in the quantum kicked rotor (QKR) are quantum
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2 CHAPTER 1. INTRODUCTION

resonances and dynamical localisation. In the �rst case the phase of the quantum
evolution stabilises the system and leads to ballistic energy growth in contrast to
the linear growth that would be expected due to the classical di�usive process
[Izr80]. In the second case the resonance condition is broken in order to establish
the classical correspondence to observe the di�usive energy growth. Nevertheless,
one �nds a break down of the di�usive growth after some time [Izr90]. This
phenomenon is called dynamical localisation and it can be described in several
ways. On the one hand Grempel et al. were able to map the problem to the
Anderson model from solid state physics [Gre84], on the other hand one can also
study this phenomenon by analysing the spectrum of the Floquet operator [Izr90].
In contrast to classical chaos not the classical phase space is used to describe the
behaviour but rather the statistics of the Floquet operator or the correlations of
on-site energies.

It is di�cult to understand how chaotic phase space structures in�uence the
behaviour of a quantum mechanical system. In the beginning of quantum chaos
the focus was on describing quantum mechanical phenomena by considering the
corresponding classical phase space in the classical limit. The method to do this
is the semi-classical approximation. This way one is able to understand how
classical structures in�uence the quantum dynamics. In the case of microwave
ionisation of Rydberg atoms the phase space structures can give some insight into
the quantum dynamics [Cas88] and in the QKR classical di�usion coe�cients give
insight into localisation behaviour [Izr90].

In contrast to the classical de�nition of chaos, where one uses the dynamics of
the system as a de�nition, the quantum mechanical description of chaos relies on
static properties as for example level spacing statistics or energy eigenfunctions.
One of the most successful theories is random matrix theory which is based on
the statistics and symmetries of the matrix ensembles. One of the modern criteria
for a chaotic quantum system is the coincidence of the statistical properties of
the spectrum with those of a random matrix ensemble [Haa10]. One of the most
important formulas, the Gutzwiller trace formula, gives information on the energy
level density by evaluating periodic orbits [Gut90] and therefore also describes
a static object. Also the considerations in [Izr90] use properties of spacings to
describe dynamical localisation. None of these approaches tries to characterise
the system by some temporal evolution as is done in the case of classical chaos.

The question of reversibility of temporal evolution is an important concept
in classical chaos and thermodynamics. In the case of classical chaos it helps to
understand the sensitivity on initial conditions and it plays an important role
in thermodynamics to elucidate the relaxation to equilibrium. In thermodynam-
ics an important cornerstone in this context is the H-theorem by Boltzmann. He
showed how to obtain an evolution towards an equilibrium state despite reversible
microscopic dynamics. As a reply Loschmidt introduced the reversibility para-
dox, which asks why an equilibrium state may not return to the non-equilibrium
state. Boltzmann emphasised the role of initial conditions and the probabilistic
interpretation of the second law of thermodynamics in his reply. This behaviour
is nowadays known as ergodic behaviour or mixing and course graining [Sch04].
This sensitivity for initial conditions and the phenomenon of �mixing� is what
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connects chaos and thermodynamics. Classical chaos is also characterised by the
exponential growth of initially small distances in phase space. This strong depen-
dence on initial conditions makes it very di�cult to reverse the time evolution
classically whereas the quantum time evolution seems to be more stable [She83].

In 1984 Peres adopted the idea by Loschmidt and introduced it to quantum
mechanics [Per84]. The naive picture in which the distance of slightly perturbed
initial states spreads exponentially is not applicable in quantum mechanics. The
distance in Hilbert space is de�ned via the overlap of the two states. As the
time evolution is unitary this overlap is constant in time and therefore does not
give a measure of instability. Peres suggested to focus on a family of perturbed
Hamilton operators instead of initial states and to build Loschmidt echo using
an unperturbed Hamiltonian for the forward and a perturbed Hamiltonian for
the backward evolution and build the overlap of the initial and �nal state. He
suggested that this quantity should di�er for chaotic and classical systems. The
absolute square of this echo is called the �delity of an initial state.

Since the time when Peres introduced this concept of stability a more detailed
view of the �eld has been developed. It showed that he chose a rather untypical
case for classifying regular motion and therefore his classi�cation of regular and
stochastic motion breaks down in general1. It turned out that the choice of
initial states is very crucial, especially in integrable systems. Unlike the chaotic
case the integrable case shows some structure in the phase space that in�uences
the behaviour of �delity. This makes it very di�cult to de�ne characteristic
or universal properties that allow us to distinguish between chaotic and regular
behaviour in contrast to the initial idea of Peres [Gor06].

For chaotic systems several regimes for the �delity decay can be de�ned. in
the case of weak perturbations quantum mechanical perturbation theory can be
applied. One of the important conditions is that the eigenenergies and vectors
are Gaussian distributed and uncorrelated. The perturbation leads to a Gaussian
decay. The regime of Gaussian decay is therefore called the perturbative regime.
If the perturbation is increased the perturbative treatment breaks down and one
needs to focus at semi-classical considerations. In this regime Fermi's golden rule
leads to a Lorentzian level density and, as the �delity can also be regarded as
the Fourier transform of the level density, we obtain an exponential decay. This
regime is called Fermi's Golden Rule regime. The �nite dimension of the Hilbert
space leads to �delity saturation. The visibility of these regimes depends on their
onset. The perturbative regime, for example, is visible as soon as the �niteness of
the Hilbert space dominates the time averaged correlation function. Jalabert and
Pastawski even showed a semi-classical mechanism for an exponential decay in
which the time scale is de�ned by the classical Lyapunov exponent and therefore
is independent of the perturbation [Jal01]. However, it is complicated to observe
a crossover between golden rule and Lyapunov decay [Jac01]. These di�erent
regimes just discussed are described in the context of correlation functions in
[Gor06].

In integrable systems universal properties cannot be expected as they do not

1There are even cases in which regular motion leads to a faster �delity decay in regular systems
[Gor06].
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show a universal phase space. To show the universal properties one needs to know
that the system shows some strong mixing behaviour in order to be independent
of the initial state. The loss of this property can also show up in systems that
are expected to be chaotic. Dynamical localisation for example can be a problem
in order to de�ne this universal properties [Gor06]. As already mentioned the
kicked rotor model is an example where such a behaviour appears.

One of the examples of physical systems that can be mapped onto the QKR
is the motion of atoms in a periodic potential. The periodicity can be reduced
to the motion on a circle via the Bloch theorem [Nol05]. This system is called
the atom optic kicked rotor (AOKR). Due to the description via Bloch waves
this model has an additional parameter. This parameter is the quasimomentum
which is a conserved quantity. Measurements on this system by Oberthaler et

al. demonstrated the existence of quantum accelerator modes [Obe99]. They
observed that a part of the atoms was accelerated. The e�ect turned out to
be pure quantum and is related to gravity. Fishman et al. were able to give
a theoretical explanation for this surprising phenomenon [Fis03, Fis02]. They
rescaled the system near to resonance and de�ned a pseudo-classical limit. The
phase space de�ned in this pseudo-classical limit showed some islands that were
large enough to carry quantum states, and therefore to explain this accelerated
behaviour. In general this pseudo-classical limit maps the dynamics onto a phase
space having regular structure although the system was far from the classical
limit and completely chaotic. The standard semi-classical limit was not able to
explain this accelerator modes but the pseudo-classical limit could explain the
behaviour. This example shows how in systems that seem chaotic some regular
structures may arise.

In the last years quite some work has been done on the �delity of the QKR.
Sankaranarayanan and Lakshminarayan calculated the �delity of a rotor near a
classical nonlinear resonance island [San03]. They assumed a completely regu-
lar classical phase space. They predicted revivals for motion on the island. For
motion along rotational orbits they also tested their theory. Weinstein and Hell-
berg used the kicked top and the QKR for numerical studies [Wei05]. In both
publications they used localised wave packets and the system was in the regular
regime. They observed the di�erent decay regimes we discussed earlier. However
their results are not supported by any analytical expectation.

Our focus is somehow di�erent as we are interested in the chaotic regime.
To describe the system in the chaotic regime we assume near resonant kicking,
which allows us to use the pseudo-classical technique developed in [Fis03]. This
technique maps the AOKR system to a kicked rotor system with reduced kicking
strength. Therefore we can describe the system near to a resonance by regular
structures although it is completely chaotic. An example of the phase space we
can use is given in �g. 3.3. The phase space is characterised by a resonance island
and rotator like KAM tori.

It is very hard to translate between the pseudo-classical picture and the par-
ticle description in the original Schrödinger equation. A coherent state in the
pseudo-classical picture will have a very complicated structure when represented
in the original variables. The bridge to experiment therefore will be to express the
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wave function in Bloch states which correspond to angular momentum eigenstates
and to describe the dynamics by describing the dynamics of the Bloch states. In
order to describe the dynamics of a cloud of atoms we need to average over the
phase space cell. In this thesis we focused at the calculation of the dynamics of
such a Bloch state. Unfortunately in the mentioned literature mostly coherent
states were used and we cannot compare our results directly with their treatment.

Abb et al. were able to describe analytically the rapid decay and the re-
vivals for states corresponding to the principal nonlinear resonance island in the
pseudo-classical phase space [Abb09]. They used a van Vleck propagator and
the harmonic oscillator approximation for the island. Building the average over
the complete phase space cell they numerically observed a slow decay. This slow
decay is attributed to the rotator like rotors and therefore is not described by a
theory for island states. This thesis is the continuation of their work. We try to
develop a theory for the rotational orbits in order to describe the slow decay. To
describe the QKR we use the pendulum approximation of the pseudo-classical
model and quantise it using the WKB method.

Outline of the thesis

We will start the thesis with the introduction of the theoretical preliminaries in
chapter 2. We will introduce the KR model and show its properties. The QKR
will be introduced and we will discuss its di�erences with respect to the classical
model. In order to introduce the pseudo-classical approximation we review the
semi-classical approximation. The discussion of the pendulum approximation
will start in chapter 3, where will introduce the approximation and give some
properties of the model. We will present some pseudo-classical comparison of the
pendulum approximation with the QKR. After we have introduced the pendulum
approximation we will continue with the description of the pendulum in WKB
approximation in chapter 4. The major result of this chapter will be formulas for
the �delity of a single rotor and also for ensembles of rotors in pendulum approx-
imation. The validity of the several approximations will be tested numerically in
chapter 5. We will conclude in chapter 6.





Chapter 2

Theoretical Preliminaries

In this chapter we will give the theoretical preliminaries for this thesis. We
will start by introducing the classical model of the kicked rotor (KR) which can
be described by the standard map. This map is one of the most important
example systems in the theory of nonlinear dynamics because a lot of interesting
behaviour can be explained based on this model [Lic92]. We will explain the
properties of this mapping and show that increasing the kicking strength leads
to chaotic regions in the phase space. After we introduce the classical model,
we will introduce the quantum version in the context of the atom optic kicked
rotor (AOKR) which introduces an additional parameter into the model. This
quantum analogon shows unexpected phenomena. We will show how ballistic
energy growth arises in quantum resonances and how dynamical localisation can
be understood by considering spectral properties.

If we treat the quantum kicked rotor (QKR) near to a quantum resonance we
can introduce a rescaling that allows us to de�ne the problem in a pseudo-classical
limit. For a better understanding of this technique we introduce a more formal
version of semi-classics starting from path integrals. Using the semi-classical
approximation as a formal approximation we can de�ne the pseudo-classical limit
near to a resonance which is called ε-classical limit. This pseudo-classical limit
allows us to to map the chaotic KR onto a nearly integrable KR.

After the introduction of the QKR dynamics we will introduce the concept
of �delity. Fidelity was de�ned by Peres in 1984 as a measure of stability of the
time evolution of a quantum state [Per84]. The state of a cloud of cold atoms
can be described by an incoherent sum of plane waves. In order to describe them
we will introduce the �delity for an incoherent ensemble of plane waves. We will
review two examples of theories describing the �delity of the QKR in di�erent
regimes. We will �rst review the results by Wimberger et al. [Wim06] for the
resonant kicked rotor and then the result by Abb et al. [Abb09] for near resonant
kicked rotors. The later authors used the ε-classical technique which will also be
used in this thesis in a di�erent regime and a di�erent representation.

7



8 CHAPTER 2. THEORETICAL PRELIMINARIES

2.1 Classical Kicked Rotor

We will �rst give a formal introduction of the KR model, discuss its important
properties and give some physical implementations later.

2.1.1 The Kicked Rotor Model (KR)

The model of the kicked rotor describes a classical particle moving on a circle
being kicked by δ-like kicks in a �xed direction as illustrated in �g. 2.1. Using
the angular momentum I and the angle θ we can give the Hamiltonian

H(I, θ, t) =
I2

2
+ k cos θ

∞∑
n=−∞

δ(t− nτ), (2.1)

where τ is the kicking period and k is the kicking strength. Inserting this into
Hamilton's equations we obtain

θ̇ = I (2.2a)

İ = k sin θ
∞∑

n=−∞

δ(t− nτ). (2.2b)

By integrating these equations over one period we �nd the standard map

It+1 = It + k sin θt (2.3a)

θt+1 = θt + τIt. (2.3b)

By rescaling J ≡ Iτ we obtain a more common version

Jt+1 = Jt +K sin θt (2.4a)

θt+1 = θt + Jt, (2.4b)

where we de�ned the stochasticity parameter to be K ≡ τk. For the discussion
of the classical dynamics we will use this iterative mapping. By means of an ex-
tended phase space we can interpret this map as the Poincaré map when de�ning
the Poincaré section by the periodic time coordinate.

This map is one of the cornerstones of chaos in nonlinear systems. A rich vari-
ety of phenomena can be studied in this system including higher order resonances
and self similarity [Lic85]. The above mapping also shows a transition to global
chaos [Gre79] and di�usion in the chaotic phase space [Lic92]. A comprehensive
description can be found in [Lic92]. We will now state some of its important
properties.

The phase space of the particle moving on a circle is a cylinder. A closer look
on the eqs. (2.4) shows that the equations are invariant under the transformation
J → J + 2πm. The periodic structure of the phase space can be respected by
de�ning J modulo 2π. Doing this we can reduce the phase space of the kicked
rotor from the cylinder to a torus. The standard map as a formal map is therefore
de�ned on a torus in the literature. Nevertheless, the phase space of the particle
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kick

cos θ

θ

Figure 2.1: In the model of the kicked rotor we assume a particle moving on the circle being
kicked from the side.

moving on a circle remains the cylinder. This di�erence between the formal
description on the torus and the physical description on a cylinder is important
as leaving the phase space cell on the upper border means entering the next phase
space cell from the bottom. From the view of the torus we enter the structure
from the bottom but we are in the next cell and have a larger momentum. Moving
through the cells therefore can result in energy growth.

This behaviour can be understood by the stroboscopic property of the Poincaré
map. The stroboscopic map maps (Jt, ϑt) → (Jt+1, ϑt+1) but does not say any-
thing about the behaviour between t and t + 1. In the free evolution part of
the dynamics the trajectory might rotate several times. The momentum which
corresponds to this rotations is the amount of momentum that is cancelled by the
modulo operation in the de�nition of J . Later we will mention that the motion
in the chaotic part can be described by a di�usive process. The transition to
global stochasticity can be understood as the breakdown of the last barrier in J
direction.

To give an idea why K is called the stochasticity parameter we give some
Poincaré plots for di�erent K. In �g. 2.2 we show phase spaces for di�erent
K. With growing K the island grows and higher order resonances appear. In
the separatrix a stochastic layer develops which builds up a stochastic net. In
�g. 2.2(c) we show a phase space slightly below the limit to global stochasticity
calculated in [Gre79]. The portion of the phase space which is separated from the
stochastic net by the last KAM tori is marked with red arrows. If the stochasticity
parameter is large enough the phase space is completely chaotic. Nevertheless
there is no strict prove to that and small local structures cannot be excluded
[Lic92].

In [Lic92] it is shown that the trajectories in the stochastic layer can be de-
scribed by a di�usion process. This shows up in linear energy growth on average.
In the case of the QKR this di�usive growth will break down.
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(a) (b)

(c) (d)

Figure 2.2: In this �gure we show the phase space of the standard map. In (a) we show K = 0.1,
in (b) we show K = 0.5, in (c) we show K = 0.97 and , in (d) we show K = 10. For all plots
we used the same 80 starting values. in (a) to (c) we iterated them 10000 times and in (d)
100 times. We can see that with growing K the main resonance grows and the stochastic layer
develops. Higher order nonlinear resonances develop and build a net of stochastic layers. The
last remaining KAM tori are indicated in (c) by red arrows. They can be recognised as they
separate the neighbouring stochastic layers.
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2.1.2 Physical Example � Particle in a Periodic Kicking Potential

Let us now discuss di�erent physical realisations of the KR model. It was origi-
nally introduced to describe the dynamics of plasmas and the particles in accel-
erator beams. These days the kicked rotor model can be implemented using cold
atoms.

We discuss the motion of a particle in a periodic potential in detail. In ac-
cordance to the atom optics kicked rotor we assume a cosine potential that is
switched on periodically to implement a kick. The corresponding Hamiltonian is

H(p, q, t) =
p2

2m
+ V0 cos

(
2π
q

a

) ∞∑
n=−∞

δ(t− nτ̃), (2.5)

where a is the grid size, V0 is the potential depth and τ̃ is the kicking period and
m is the mass of the particle. In order to obtain the kicked rotor Hamiltonian
eq. (2.1) we need to rescale the spatial variable by kr = π/a. To be in accordance
with eq. (2.1) we need to introduce a shift in x. Momentum and time can be
scaled to characteristic values. We will present a rescaling that already re�ects
the quantum nature of the moment. We will use the recoil energy Er = k2

r~2/2m
and the Talbot time T . Using this scales we introduce

k =
V0T

~
, θ = 2krx mod 2π, P =

p

2kr~
, τ =

8ErT

~
τ̃ (2.6)

and obtain the kicked rotor Hamiltonian as HKR(t) ≡ H(t)/8Er. A similar
rescaling has been used by Fishman et al. in [Fis03].

In physical systems there is not such a thing as a real δ-kick. Therefore we
need to consider the characteristics of a δ-kick. This consideration is important
when focusing on experimental realisations. In experiments with cold atoms the
interaction potential in eq. (2.5) is an e�ective potential which by de�nition is
just valid for a �nite pulse duration. In order to qualify for a δ-pulse the pulse
needs to be short compared to the changes of the spatial coordinate. This can
be seen when considering eq. (2.2). There the kick takes place in the equation
for the momentum but not in the spatial variable. This means that the spatial
coordinate is constant during the kick.

2.2 Quantum Kicked Rotor (QKR)

When talking about QKR we will mean mostly the atom optics kicked rotor
(AOKR). In contrast to the QKR model the AOKR describes atoms moving in
a linear potential rather than a circular motion. Therefore the AOKR contains
an additional parameter in contrast to the QKR model discussed for example in
[She83, Izr90]. We will �rst introduce the model starting from the Hamiltonian
presented in the last section. Introducing the Bloch states we can replace the
linear operator x̂ by the periodic angular operator θ̂. This way we obtain an
additional parameter β.
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Nevertheless, we begin with the rescaled model Hamiltonian

Ĥ =
p̂2

2
+ k cos x̂

∞∑
n=−∞

δ(t− n). (2.7)

We will now treat the problem by introducing θ ≡ x mod (2π). When describing
the particle in the circle the momentum operator directly becomes the angular
momentum operator. It is important to remind that we treat the QKR and not
directly the AOKR. The transition to the AOKR will be done by introducing
β-rotors and the associated rede�nition of the momentum operator. Integrating
the corresponding Schrödinger equation we obtain the operator that maps the
state after one kick to the one after the next kick. This operator is called the
Floquet operator. For the kicked rotor we obtain the following Floquet operator

Û = e−
ı
~

(
k cos θ̂+τ p̂

2

2

)
. (2.8)

This operator has two independent parameters. The dynamics are not any more
de�ned by the stochasticity parameter alone. We rede�ne our variables in order
to get rid of the Planck constant

p′ =
p

~
k′ =

k

~
τ ′ = ~τ. (2.9)

Writing the Floquet operator in this variables we obtain

Û = e−k
′ı cos θ̂e−ıτ

p̂′2
2 . (2.10)

In this rescaling we see that the limit ~→ 0 corresponds to k′ →∞, τ → 0 and
K = const. . For now we will stay with the quantum case and therefore will drop
the primes.

As the Hamiltonian is invariant under translations by the spatial period of
the potential (in our scaling equal to one) we can apply the Bloch theorem. This
theorem states that the eigenfunctions of the stationary Schrödinger equation
with a periodic potential can be expressed by a plane wave and some periodic
function. This means we can write eigenfunctions as

ψ(x) = eıβxψβ(x) (2.11)

where ψβ(x) = ψβ(x + 2π) and β can be chosen to be in [0, 1]. In this scaling
β represents the fractional momentum and is conserved and is therefore called
quasimomentum. Such a state ψβ(x) that is extended to the line by multiplication
of eıβx is called a β-rotor. We will see later how a β-rotor is connected to a state
on a line.

The angular momentum operator is de�ned by N̂ ≡ −ı∂θ and is therefore the
direct analogon of the momentum operator p̂. The angular momentum eigenfunc-
tions are given as

〈θ|n〉 =
1√
2π

eınθ, (2.12)
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where n is the angular momentum quantum number.
To determine the Bloch functions that correspond to a state |ψ〉 we can build

〈θ|Ψβ〉 ≡
1√
2π

∑
n

〈n+ β|ψ〉eınθ. (2.13)

This angular representation corresponds to the ψβ(x) introduced above. The
di�erence is that the β-rotor |Ψβ〉 is a more abstract object. The it is a state on
the circle that is connected to a state in the periodic potential |ψ〉. The state in
the periodic potential is not periodic by de�nition and might be a wave packet.
This state is constructed by β-rotors via

〈x|ψ〉 =
1√
2π

∫ 1

0

dβeıβx〈x mod 2π|Ψβ〉. (2.14)

We can decompose the momentum into a fractional and an integer part by p =
n + β where n ∈ N and β ∈ [0, 1). Using this we can give the momentum
representation as

〈p|ψ〉 =
1√
2π

∫ 2π

0

dθ〈θ|Ψβ〉e−ınβ. (2.15)

In this picture a β-rotor corresponds to an β component of the wave function.
This concept is known in solid state physics as the band model. The integer
momentum n corresponds to the band number and β corresponds to the wave
number k. The correspondence gets clearer when we take a plain wave state |p0〉
and give the corresponding representation in β-rotors. This β-rotor is given by

Ψβ(θ) =
1√
2π
δ(β − β0)eın0θ, (2.16)

where n0 ∈ N is the integer part of the momentum and β ∈ [0, 1) is the quasi-
momentum such that p0 = n0 + β0. The β-rotors are always connected to a
state in physical space. This is the same problem as expressing a wave packet
using the Bloch states. Nevertheless we just need to formulate our model for
β-rotors. Later we will give an example how to describe the physical behaviour
by representing it in β-rotors.

To deal with movement in a periodical structure we now rewrite the Floquet
operator in the language of β-rotors. This means that we replace the momentum
operator p̂ by the decomposition into integer and fractional momentum. This
means we replace p̂→ N̂ + β. The Floquet operator reads

Ûβ = e−ık cos θ̂e−ı
τ
2

(N̂+β)2

(2.17)

and can be written by means of the β-rotors using the Anger-expansion eq. (A.6).
The resulting matrix elements are

〈n|Ûβ|l〉 = (−ı)n−lJn−l(k)e−ı
τ
2

(β+l)2

. (2.18)

In order to determine the dynamics of the system we could calculate the eigen-
values of this equation and use it to represent the initial state by eigenfunctions.
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Their evolution is simple. The eigenvalues are connected to quasienergies φn
which are de�ned by [Haa10]

Û |un〉 = eıφn|un〉, (2.19)

where |un〉 is an eigenstate of the Floquet operator. These quasienergies are de-
�ned modulo 2π. If we have a time independent Hamiltonian the quasienergies
coincide with the energies of the system modulo 2π. This consideration is impor-
tant as we will later compare our time dependent problem to a time independent
approximation. Due to the folding we cannot unfold the quasienergy spectrum.
As we have an in�nite number of levels the quasienergies are dense in the interval
[0, 2π). A eigenstate of the Floquet operator however can be localised and there-
fore pick out some quasienergies that seem to be discrete. Considerations of that
kind are important to understand dynamical localisation.

We will use the Floquet operator to implement our numerics later in subsec-
tion 2.2.3. A nice introduction of the QKR Hamiltonian and into the system of
the QKR1 is given in [Izr90]. A derivation of this operator for a particle in a
periodic potential is given in [Fis02], where they analyse the kicked rotor in a
gravitational �eld but also discuss the case without gravity as it is their starting
point for the modelling of quantum accelerator modes. The quasienergy statistics
are analysed in [Izr86]. This is also the foundation of the understanding of the
phenomenon of dynamical localisation discussed in subsection 2.2.2.

2.2.1 Quantum Resonance

We will now have a closer look at the free evolution part of the Floquet operator.
This part has still two parameters we can �x by the experiment: the kicking
period τ and the quasimomentum β. Carrying out the square in the exponent
we can drop the β2 term as it only contributes a common phase independent of k
and n which means that it will cancel in building the �delity that will be de�ned
later. Using this we can write the free evolution as

eı
(
N̂ 2 τ

2
+τN̂β

)
. (2.20)

A quantum resonance means that this term is 1. A higher quantum resonance
means that some power of this operator ful�ls this condition. In order to include
the case of higher resonances we will chose τ = 4πp/q where p, q ∈ N and q is
called the order of the resonance. For a resonance of order q the qth power of the
free evolution is unity. This leads to the resonance condition

e−ı2π
p
q
n2

e−ı4πnβ
p
q = eı2π

m
q . (2.21)

by taking the qth power and using the identity2 exp(ı2πqn2) = exp(ı2πqn) we
can reduce this condition to

pn+ 2pnβ = m. (2.22)
1It is important to mention that this is not the AOKR. In the QKR there is no β which comes just

by introducing the Bloch theorem to the periodic potential.
2The only interesting question is whether the integer factor in the exponent is even or odd. If n is

even so is also n2 and the same for odd.
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Figure 2.3: In this �gure we show the spreading in momentum space for a resonant rotor
with τ = 2π, β = 0.5 and k = 0.8π. The data shows the momentum distribution for t =
1, 10, 25, 50, 75, 100 from black to brown. We can see that the edge of the momentum distribution
spreads linearly and therefore the energy grows ballistic.

So we need to chose β in order to ful�l this relation. The complete resonance
condition reads

τ = 4π
p

q
p, q ∈ N β =

l

2p
0 ≤ l < 2p l ∈ N. (2.23)

We will focus on the primary resonance with q = 2, p = 1 and β = 1/2 in
this thesis. In the course of this section we will now discuss some of the special
features of this resonance. For the higher orders one needs to focus on higher
powers. In [Izr80] also these cases are discussed.

For the resonant case the energy grows ballistically. This can be seen by calcu-
lating the energy expectation value for an initial state whose angular momentum
is n0

E(t) = 〈ψ(t)|N̂
2

2
|ψ(t)〉 (2.24a)

= 〈ψ(0)|Û t† p̂
2

2
Û t|ψ(0)〉 (2.24b)

= − 1

8π2

∫ 2π

0

dθein0θeıtk cos θ ∂
2

∂θ2
e−in0θe−ıtk cos θ (2.24c)

=
k2t2

4
+
n2

0

2
, (2.24d)

which is the mentioned ballistic energy growth. This is in strong contrast to the
classical rotor where we had linear growth of energy. This resonance is of pure
quantum nature. It shows how the phase as a property of the wave function is
able to stabilise the quantum evolution. Later we will detune the kicking period
τ slightly in order to destroy this stabilisation. Therefore we will be able to
de�ne a pseudo-classical limit which allows us to apply semi-classical methods in
a totally chaotic regime and to understand why there are regular structures in
the pseudo-classical phase space despite the chaotic regime.
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(a) (b)

Figure 2.4: In this �gure we show the energy expectation value of a plane wave state with n = 0
evolved in time. In black we show the case of the resonant kicked rotor with k = 0.8π, β = 0.5
and τ = 2π. In red we show a rotor slightly detuned by τ − 2π = 0.001. In green we show
the expectation eq. (2.24). In (a) we show the data in logarithmic scaling to show the ballistic
growth and the saturation of the non resonant rotor. In the linear scaling (b) the process of
saturation is presented in detail.

The energy growth comes from a spreading of the wave function in momentum
space. The spread in the momentum distribution is demonstrated in �g. 2.3. The
momentum spreads linearly in time in momentum space.

2.2.2 Dynamical Localisation

For non-resonant rotors one observes localisation of the wave function [Gia91].
This can be seen by looking at the energy evolution in �g. 2.4. We can see that
the energy of the non resonant rotor saturates after some time. This can be
understood in several ways.

One way is to consider the quasienergy levels contributing to the evolution.
The discrepancy between the quantum resonant and the slightly detuned motion
is an indication that the quasienergies which are involved in the evolution have a
�nite spacing and therefore cannot describe an evolution which grows in�nitely.
After some time which is related to the quasienergy density the growth therefore
has to stop. One way to understand this behaviour is to express the initial state
by eigenfunctions of the Floquet operator. It turns out that this representation
only contains a limited amount of quasienergies. Therefore the time evolution of
this state has to show periodic or pseudo periodic behaviour after some time as
a limited number of pseudo energies show a �nite level spacing. The localisation
length can be related to the di�usion constant and the kicking strength [Izr90,
Gia91].

Another approach is to use the transfer matrix formulation from solid state
physics. In [Gre84] the non resonant kicked rotor is mapped onto a tight binding
model with hopping. It can be shown that this coe�cients are not random but
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pseudo-random [Bre92]. Nevertheless they seem to be random enough to lead to
Anderson localisation.

In the regime we are interested in we eventualy have dynamical localisation.
This localisation is important in our numerics because it limits the size of the
vector needed to describe long time evolutions in contrast to the resonant case.

2.2.3 Numerical Implementation

To deal with the problem numerically we have two possibilities. On the one hand
we can use the matrix representation of the Floquet operator to calculate the
wave functions successively. On the other hand we can evaluate the kick in the
angular representation and the free evolution in the momentum representation.
The later procedure has the advantage that the single iteration steps are phase
shifts in the corresponding representation.

By expanding the Floquet operator in angular momentum eigenstates we can
obtain a matrix. This matrix has to be unitary in order to conserve probability.
This unitarity is violated when truncating the matrix. On the other hand the
nonunitarity can be used to estimate the truncation error. For the time evolution
we need to carry out one matrix multiplication for each time step which scales
with N2 where N is the size of the state vector.

Using di�erent bases for the kick and the free evolution leads to simple calcu-
lation of the single steps but instead we have the problem of changing the basis.
This basis change is by de�nition a Fourier transform. We can evaluate this
transformation very e�ciently with the fast Fourier transformation (FFT). Using
the FFT this method scales with N lnN . A disadvantage is that this method
is by de�nition unitary as the discrete Fourier transform has this property and
therefore truncation errors cannot be estimated by testing the trace. For this
method one needs to check the convergence by changing the vector size.

In our implementations we used the method in which we change the basis. It
is more e�cient and due to the dynamic localisation in our regime we do not need
very large vectors. Due to the localisation our wave function also does not tend
to reach the boundaries where the truncation or the boundary conditions would
gain importance.

2.3 Semi-classical Approximation from the Path Integral

Semi-classics can be introduced in several ways into quantum mechanics. Most
textbooks separate the phase and the amplitude of the wave function and do
some approximations3 which is not straight forward. To understand better to
which extend the semi-classical approximation is an approximation to quantum
mechanics, we would like to review the semi-classical approximation in the context
of path integrals shortly. In this way the semi-classical approximation is de�ned

3Mostly the argument is that the wave function does not change on the scale of the de Broglie
length and that the curvature is small. To see why this corresponds to the terms that are dropped is
not trivial. In [Sak09] an illustration of these approximations is given. Nevertheless, the approximations
are justi�ed afterwards there.
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as the stationary phase approximation (SPA) to the path integral formulation of
quantum mechanics. The advantage of this approach is that we can see where
the approximation takes place. In our special case it is important to mention
that this approximation is a formal approximation to a Hamiltonian in a special
shape. Interpreting semi-classics as an approximation to special operators allows
us to understand the ε-classics we will introduce later.

The path integral representation of the propagator is given as [Sch96]

G(x, t; y) =

∫ (x,t)

(y,0)

dx(τ)exp

(
ıS[x(τ)]

~

)
, (2.25)

where the integration is over all paths going from (y, 0)→ (x, t), τ is the internal
time of the path and S[x(τ)] is the classical action corresponding to the path. The
problem is now to calculate this integral. The integral is de�ned as the continuity
limit of the sum over discrete time di�erences.

One technique to approximate an integral over a fast oscillating function is
the stationary phase integration. It deals with integrals of the type

F (λ) =

∫ ∞
−∞

dt eıλf(t) (2.26)

by expanding f(t) around an extremal point with f ′(t0) = 0. This leads us to

F (λ) =

∫
dt exp

[
ıλf(t0) +

1

2
ıλt20f

′′(t0) + · · ·
]
. (2.27)

Truncating this expansion after the second order term we can evaluate the integral
by means of Fresnel integrals and obtain

F (λ) =

√
2πı

λf ′′(t0)
eıλf(t0). (2.28)

For a better understanding of this approximation we will have a short look at
integrals of the type

K(λ) =

∫ ∞
−∞

dt eıλt
2

eıaλt
3

eıbλt
4

. (2.29)

Here we can expand the last two exponentials and obtain this way

K(λ) =

∫ ∞
−∞

dteıλt
2 [

1+ıλat3+ıλbt4−1

2
λ2a2t6+· · ·

]
=

√
ıπ

λ

[
1− ı3b

4λ
+
ı15a2

16λ
+· · ·

]
.

(2.30)
By writing K this way we see that the SPA result is the leading term of an ex-
pansion in 1/λ. In this sense the SPA is the dominating term of the expansion
as it scales with 1/

√
λ in contrast to the other terms that scale with 1/λn. We

introduced the SPA in the context of complex exponential functions whose ex-
ponent is de�ned by a function f . In order to apply this technique to the path
integral we have to extend this to functionals.
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Finding the trajectory leading to stationary action and therefore stationary
phase leads to the Hamilton-Jacobi equations. The WKB propagator is then
obtained by expanding the action S around this extremal solution in a functional
way and using the SPA. The expansion of the action in functional variations is not
as simple as the procedure presented above. One needs to go to the discretised
form of the integral and write the action in discretised form. The second variation
can be expressed using a tridiagonal matrix. The eigenvalues and eigenvector can
be given and this way one is able to evaluate the Gaussian integral. In the
continuity limit the pre factor is de�ned by a di�erential equation which can be
identi�ed by the continuity equation for trajectories of the classical mechanics.
This is a very short sketch of the procedure given in [Sch96]. In the end it leads
to the WKB propagator

GWKB(x, t; y, 0) =
∑
α

√
det

(
ı

2π~
∂2Sα
∂x∂y

)
e
ı
~Sα , (2.31)

where the sum is over classical trajectories, which are indexed by α, and Sα is
the action for a trajectory connecting x and y in time t. This form of the WKB
propagator is also called van Vleck propagator. In section 4.1 we will continue
this review by transforming this propagator from time to energy. This is also the
way the WKB propagator is given in most textbooks.

In the end we have to remember that the semi-classical approximation is a
SPA approximation of the full propagator. For the quality of the approximation
in eq. (2.28) it is important to have a large λ. In the semi-classical expansion
presented above this quantity is 1/~. This prefactor de�nes how strong the non-
extremal paths contribute. In the next chapter we will rescale the Floquet oper-
ator in a way that this prefactor is the reciprocal of the detuning from quantum
resonance. This allows us to use this approximation in a regime where the ~→ 0
limit is not valid.

2.4 Dynamics near Quantum Resonance

We will now go back and consider our system near to the resonance4 with τ = 2πl,
where l is an integer, and de�ne the detuning of the kicking period ε by

τ = 2πl + ε. (2.32)

Now we introduce a new angular momentum operator Î = |ε|N̂ . We will return
to the Floquet operator now. Introducing eq. (2.32) into eq. (2.17) we obtain

Û = eık cos θ̂eıπlN̂
2+ ε

2
N̂ 2+τN̂β = eık cos θ̂eıπlN̂+ ε

2
N̂ 2+τN̂β, (2.33)

where we already dropped the β2 term as it will just be a common phase and we
used exp(ı2πqn2) = exp(ı2πqn). Introducing the rescaled momentum operator
we obtain

Û = e−
ı
ε

(
k̃ cos θ̂+sign(ε) Î

2

2
+Î(τβ+πl)

)
, (2.34)

4We change here the convention for the resonance slightly. We �xed q = 2 and give therefore τ as
a multiple of 2π. To emphasise this we switch from p to l.
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where we de�ned k̃ = εk. This operator is similar to the original Floquet operator
with the di�erence that, instead5 of ~, now a factor ε appears.

In section 2.3 we introduced the semi-classical approximation as an approxi-
mation to the propagator in path integral formulation in the case of small ~. We
have now the same type of operator but a factor of 1/|ε| instead of 1/~ control-
ling the deviation from the trajectory of extremal action. Motivated by the last
section we will now use the same approximations we used there for ~ here for |ε|.
The limit ε→ 0 will be called ε-classical limit.

This considerations allow us to give the QKR Hamiltonian near to the reso-
nance as the formal quantisation of another system in the ε-classical limit. The
rescaled operator is again a combination of free evolution and a kick. This corre-
sponds to an ε-classical mapping of a KR with di�erent kicking strength k̃ = εk

It+1 = It + k̃ cos θt (2.35a)

θt+1 = θt ± It + (τβ + lπ), (2.35b)

where the sign is �xed by the sign of ε. By a simple transformation we can reduce
this mapping to the standard mapping. We introduce Jt = It ± (τβ + lπ) and
ϑt = θt + π/2± Jt,which leads to the well-known standard map

Jt+1 = Jt + k̃ sinϑt (2.36a)

ϑt+1 = ϑt + Jt. (2.36b)

The properties of this mapping have already been discussed in subsection 2.1.1.
Going near to a quantum resonance allows us to describe the dynamics of

the system by the same system with a reduced kicking strength. The ε-classical
system and the corresponding classical system are both kicked rotors but with a
di�erent kicking strength. If k is chosen to be in the deep chaotic regime we can
reduce its e�ect by going near to a quantum resonance as εk gets smaller and
may even be in the near integrable regime.

This technique was developed in [Fis03] to describe the dynamics of quantum
accelerator modes. In the system of the kicked rotor in the gravitational �eld
the gravity breaks the periodicity of the potential. By going into an accelerated
frame one is able to restore this periodicity. The additional terms nevertheless
makes the phase space structure much richer. The observed quantum accelerator
modes can be understood as states trapped on islands in this phase space [Fis03].

2.5 Fidelity

It is di�cult to recognise chaotic behaviour in quantum mechanics. One reason
is that the idea to characterise chaos by the behaviour of nearby points in phase
space is not valid any more. Stability against variation of the initial state is mean-
ingless because of the unitarity of the time evolution. In 1984 Peres introduced

5We set ~ to 1 so this limit cannot be seen in our case. We had to revert the rescaling in eq. (2.9)
in order to introduce ~ at the right positions.



2.5. FIDELITY 21

the idea not to perturb the initial state but to perturb the time evolution [Per84].
This means one uses two slightly di�erent time evolutions of an initial state |ψ0〉
and compares the overlap. We assume that δ is the parameter characterising the
perturbation of the Hamiltonian. The �delity amplitude is de�ned as

fδ(t) ≡ 〈ψ0|Û †0(t)Ûδ(t)|ψ0〉, (2.37)

where Ûδ(t) is the time evolution operator as a function of the perturbation
parameter δ. The �delity is de�ned as its modulus

F (t) ≡ |fδ(t)|2. (2.38)

We introduced the �delity as the comparison between a state evolved with two
slightly di�erent time evolutions. Another picture can be given by de�ning the
echo operator

M̂δ(t) ≡ Û0(−t)Ûδ(t) = Û †0(t)Ûδ(t). (2.39)

This operator resembles the idea by Loschmidt to characterise the reversibility by
evolving a state for t and then reverse the evolution with a di�erent Hamiltonian.
This is known in classical statistical physics as the Loschmidt echo [Gor06]. The
�delity can be interpreted as the quantum analogue of this classical concept.
This was also Peres initial idea to characterise the chaotic behaviour in quantum
systems by comparing this theoretical concept with the classical limit.

To compare to the classical limit we need to introduce the �delity for an
ensemble. Fidelity is an expectation value of the echo operator for an initial
state. We de�ne the �delity for an initial ensemble with statistical operator ρ̂0 as

F (t) = |tr(ρ̂0M̂δ)|2. (2.40)

This de�nition is consistent with the de�nition above when inserting the statis-
tical operator of a pure state ρ̂0 = |ψ0〉〈ψ0| as the initial state.

In this thesis we aim to calculate the �delity for a special system and a special
ensemble. Our focus is less on comparison to universal properties of �delity.
Nevertheless, we will give the connection of �delity to correlation functions. We
introduce the perturbation potential V by

H(t) = H0(t) + δV (t). (2.41)

By switching to the interaction picture we can express the echo operator by means
of the perturbation potential

Mδ(t) = T̂ exp

(
− ı
~
δ

∫ t

0

dt′ VI(t
′)

)
, (2.42)

where T̂ is the time ordering operator and VI ≡ Û †0(t)V̂ (t)Û0(t) is the perturbation
potential in the interaction picture. Expanding the exponential function in a
power series, truncating after the second order and taking the expectation value
we obtained

fδ(t) = 1− ıδ

~

∫ t

0

dt′ 〈VI(t′)〉 −
δ2

~2

∫ t

0

dt′
∫ t

t′
dt′′ 〈VI(t′)VI(t′′)〉, (2.43)
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where the brackets mean building the expectation value for the initial state 〈Â〉 ≡
tr(ρ̂0M̂δ). Taking the modulus square

F (t) = 1− δ2

~2

∫ t

0

dt′
∫ t

0

dt′′ C(t′, t′′), (2.44)

where C(t′, t′′) ≡ 〈VI(t′)VI(t′′)〉 − 〈VI(t′)〉〈VI(t′′)〉 is the two point correlation
function of the perturbation. This allows the reduction on considerations of
correlation functions. In this linear response formulation fast decay of correlations
in the perturbation implies slow decay of �delity.

Using some universal properties for the correlation one is able to de�ne several
universal regimes of �delity decay. In order to obtain this universal behaviour it
is important to be independent of the choice of the initial state. The other impor-
tant question is whether the system distributes the wave function fast over the
Hilbert space in order to obtain universal behaviour. When building a theory for
universal properties one has to assume either quantum mixing, which means fast
spreading, or random initial states, or averaging over the Hilbert space. Chaotic
systems that provide quantum mixing are systems in which universal behaviour
is possible. Systems that supply dynamical localisation or are governed by reg-
ular states complications arise as they suppress quantum mixing. A possibility
is to obtain universal properties in these systems by averaging over the Hilbert
space or choosing a random initial state, which somehow replaces the spreading
over the phase space. As we did not focus on comparisons to such approaches
we would like to refer to the review of the topic by Gorin et al. [Gor06] and the
references therein.

2.5.1 Fidelity in QKR

The de�nition of �delity we gave is consistent to the literature on �delity in
general. For the system of the QKR it is more handy to write the �delity slightly
di�erently. In the context of the QKR we will de�ne the �delity as

F (t) = |〈Û−tk1
Û tk2
〉|2, (2.45)

where due to the discrete time the evolution can be given as a power of the
Floquet operator and the unperturbed time evolution is regarded to be the one
with kicking strength k1 and the perturbed one the one with kicking strength k2.
The perturbation parameter therefore is δk = k2 − k1.

In experiments the atoms are placed as a cloud in the kicking potential. It
was shown that it is possible to describe this cloud by an incoherent ensemble of
plane waves [Wim04, Bha99]. The density operator of an incoherent ensemble of
plane waves is de�ned by

ρ̂0 =

∫
dpf(p)|p〉〈p|, (2.46)

where f(p) is the probability density for the momentum p. This density operator
needs to be expressed by means of β-rotors. As each plain wave has a de�ned
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quasimomentum using an ensemble of β-rotors is equivalent to using plane waves.
The statistical operator of a β-rotor corresponding to f(p) is given as

ρ̂β = (P (β))−1
∑
n

f(n+ β)|n〉〈n|, (2.47)

where the probability of �nding a β-rotor is P (β) ≡
∑

n f(n+β). The statistical
operator can therefore be written as

ρ̂0 =

∫ 1

0

dβ P (β)|Ψβ〉〈Ψβ|. (2.48)

Inserting this into eq. (2.40) we obtain by carrying out the trace

F (t) =

∣∣∣∣∫ 1

0

dβ P (β)〈Ψβ|Û tk2
Û t†k1
|Ψβ〉

∣∣∣∣2 . (2.49)

The ensemble average therefore takes into account the phase of the overlaps.
It is important to mention that this average is nevertheless an average over an
incoherent ensemble although we account for the phase of the overlap. We de�ned
the �delity as the expectation value of the echo operator which itself is de�ned
as an overlap between wave functions and therefore carries a phase. If we would
average over a coherent ensemble of rotors we would have o�-diagonal terms in
the density operator and therefore also overlaps between two rotors with di�erent
β.

For a Gaussian ensemble P (β) is a sum over shifted Gaussian distributions
which is the de�nition of the Theta-function [Abr64]. Using Poisson's summation
formula we can give an approximation [Wim04, Wim03]

P (β) = 1 + 2e−2π2σ2

cos(2πβ) +O(e−8π2σ2

). (2.50)

If the distribution f(p) is su�ciently broad (σ > 1) we can assume a constant
density of quasimomenta.

For the quantum kicked rotor there are already two cases where a theory exists.
On the one hand Wimberger et al. developed a theory for a full ensemble using
resonant kicking [Wim06]. On the other hand Abb et al. developed a theory for
ensembles corresponding to the oscillatory trajectories in pseudo-classical phase
space near to quantum resonance [Abb09]. We will give a short review on their
�ndings.

2.5.2 Fidelity in QKR � Resonant Rotors

In the case of the resonant rotor the kick just contributes a constant phase. This
is only that simple in the case of resonant β. If just τ is resonant and β is non
resonant we get a similar Floquet operator

Ûβ = e−ık cos θ̂e−ıξN̂ , (2.51)
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where ξ ≡ πl(2β ± 1)mod(2π) is the additional phase due to the non resonant β.
Iterating this mapping we obtain

Û tβψβ(θ) = e−ık
∑t−1
s=0 cos(θ−sξ)ψβ(θ − tξ) = e−ık|Wt| cos(θ+arg(Wt))ψβ(θ − tξ), (2.52)

where we summed up the cosines. We used the geometric sum and obtain

t−1∑
s=0

cos(θ − sξ) = cos
(
θ − t− 1

2
ξ
)sin ξ

2
t

sin ξ
2

, (2.53)

and de�ned

arg(Wt) = −t+ 1

2
ξ + φt (2.54)

|Wt| =

∣∣∣∣∣sin ξ
2
t

sin ξ
2

∣∣∣∣∣ , (2.55)

where φt restores the sign which was lost due to taking the absolute value in the
de�nition in |Wt|. Transforming the wave function to momentum representation
we obtain

〈n|Û tβψβ〉 = e−ın arg(Wt)

∫ 2π

0

dθ√
2π

e−ınθ−ık|Wt| cos θψβ(θ − tξ − arg(Wt)). (2.56)

For plane waves the ψβ are also plane waves �ltering the right β. This means the
β-rotor for a plane wave with p0 = n0 + β0, where n0 ∈ N and β0 ∈ [0, 1), reads
as

ψβ(θ) =
1√
2π
δ(β − β0)eın0θ. (2.57)

Using this representation we can give our momentum coe�cients as

〈n|Û tβψβ〉 = e−ın arg(Wt)Jn−n0(k|Wt|), (2.58)

where Jn(x) is the Bessel function of �rst kind. Using the angular representation
we can calculate the �delity of such a rotor as

F (t) =
∣∣∣〈Û tk1,β

ψβ|Û tk2,β
ψβ〉
∣∣∣2 =

∣∣∣∣∫ 2π

0

dθ〈Û tk1,β
ψβ|θ〉〈θ|Û tk2,β

ψβ〉
∣∣∣∣2 (2.59)

=

∣∣∣∣∫ 2π

0

dθeıδk|Wt| cos(θ)

∣∣∣∣2 = J2
0 (|Wt|δk), (2.60)

where δk = k2 − k1 is the di�erence in kicking strength. An interesting case is
the case of ξ = 0 which corresponds to resonant β. From the de�nition we �nd
|Wt|(ξ = 0) = t. Therefore the resonant �delity decays like the Bessel function.

In order to describe the evolution of a wave packet we now use this result to
calculate the �delity for the density operator. As we showed in the last section
for su�ciently wide f(p) this corresponds to a uniform distribution. Therefore
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we have to evaluate the average over β ∈ [0, 1) which corresponds to the average
over ξ ∈ [−π, π]. So we �nd, using the periodicity of the trigonometric functions∫ 1

0

dβJ0(|Wt|δk) =

∫ π

−π

dx
2π
J0(δk sin(tx) csc(x)) (2.61)

=

∫ π

−π

dx
4π2

t−1∑
r=0

2π

t
J0(δk sin(x) csc(xt−1 + 2πrt−1), (2.62)

where we introduced x ≡ ξ/2. It is important to mention that we need that we
integrated over a complete period of the sine, because we had problems doing
the transformation x → x/t in such a simple way. Using the periodicity of the
sine makes it also impossible to repeat this derivation for partial ensembles. For
large times the sum over r approximates an integral over the continuous variable
α ≡ 2πr/t. This allows us to write the sum as an integration:∫ 1

0

dβJ0(|Wt|δk) =
1

(2π)2

∫ π

−π
dx
∫ 2π

0

dαJ0

(
δk sin(x) csc(α)

)
. (2.63)

Using (11.4.7) from [Abr64] we can give the �delity in the long time limit as

Ft→∞(δk) =
1

(2π)2

(∫ 2π

0

dαJ2
0 (δk csc(α)/2)

)2

. (2.64)

The integral can be evaluated numerically and is presented in �g. 2.5. The result
is quite surprising as this states that there is a �delity saturation although the
kicked system can be completely chaotic. Such a saturation is untypical even for
integrable systems.

This prediction was tested by Wu et al. [Wu09]. They used an atom inter-
ferometer to implement the �delity. As perturbation they used di�erent kicking
strengths in the two arms of the interferometer. The interference signal at the
output corresponds to the square root of the �delity. The experimental result
and the theoretical prediction is shown in �g. 2.5.

2.5.3 Fidelity in QKR � Near Resonant Rotors

We will give a short sketch of the method used in [Abb09] and the results therein.
In the end we will show a plot of the initial angles θ′ ending in θ after a certain
time t that illustrates why we did not follow this approach further.

For near resonant rotors we can apply the ε-classical technique. This means
we use the ε-classical system and apply semi-classical methods to describe the
quantum mechanical time evolution operator. The van Vleck propagator is used
in ε-classical representation

Û tβ,k ∝
1√
2π

∑
s

∣∣∣∣ ∂θ∂θ′
∣∣∣∣−1/2

eı/εΦs(θ,t)−ı(π/2)νs , (2.65)

where s are the classical trajectories connecting θ′ and θ in the time t, and Φ is
the corresponding action and νs are Maslov indices. As they are near to resonance
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(a)

(b)

Figure 2.5: In this �gure we show the results for ensembles of resonant kicked rotors with
β ∈ [0, 1]. In (a) we present a �gure from [Wim06] showing the theoretical expectation for the
saturation value of the �delity. In the inset the temporal evolution for δk = 0.6283 (crosses)
and δk = 1.885 (diamonds) are shown. For the case of δk = 0.6283 also the result for a detuning
of ε = 0.025 (dashed) and ε = 0.1 (dot-dashed) are shown. In (b) we show a �gure from [Wu09]
presenting their experimental results with f =

√
F . In the left plot the interferometer output

against kick number is plotted and in the right plot the saturation value against the kicking
strength (for exact de�nitions we refer to the paper).Reprinted �gure (b) with permission from
Wu et al. , Phys. Rev. Lett., 103, 034101 (2009). Compyright by the American Physical
Society. Reprinted �gure (a) with permission IOP Publishing and the author from Wimberger
et al., Journal of Physics B, 39, (2006) L145.
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they can use the pendulum approximation which we will de�ne in chapter 3. As
they just take states on the island into account they use the harmonic oscillator
approximation for the pendulum. This way they can give the trajectories and
the action analytically

θ′(θ, t) = sec[θ − β̄ sin(ωt)] (2.66)

Φ(θ, t) = β̄θ[sec(ωt)− 1]− (ω−1β̄2 + ωθ2) tan(ωt)/2, (2.67)

where ω =
√
k̃. The intrinsic momentum β̄ ≡ −π + τβ will be discussed in

chapter 3. Abb et al. assume a delocalised initial state. This variables are
inserted into the van Vleck propagator and it is used to calculate the �delity.
The average over a small interval near to the resonant β is taken. In the limit of
ε→ 0 and t

√
ε =constant the average over a small stripe can be approximated by

an integral from −∞ to∞, which can be evaluated by means of Fresnel integrals.
This way they obtain the following expression for the �delity of an ensemble near
to resonance

F (k1, k2, t) =
ε2ω1ω2

8π2b24ω1ω2 − ω2
+ cos(ω−t)− ω2

− cos(ω+t)|
, (2.68)

where ω1/2 =
√
k̃1/2, ω± = ω1±ω2 and b is de�ned as the two times the width of

the ensemble which means β ∈ [0.5− b, 0.5 + b]. Evaluating the �delity without
averaging over β one �nds

Fres(k1, l2, t) =
ε

2π

1

|ω2 cos(ω1t) cos(ω2t)− ω1 cos(ω2t) sin(ω1t)|
. (2.69)

We can see that the periodicity of the �rst �delity is at T12 ≡ 2π/|ω−| and in the
second �delity for T12/2. This is illustrated in �g. 2.6. There we can see that
every second revival vanishes as more of the nonlinear island (corresponding to
new resonant values of β) is populated.

The initial idea was to use this type of theory for pendulum orbits that are
rotator like. We also derived a perturbation method in order to obtain θ′(θ, t).
The result described the pendulum good in the beginning. But already at around
900 kicks we had problems with multiple trajectories6. Using this trajectories to
calculate the �delity lead to a Bessel like decay. This means that the approxima-
tion breaks down too fast. Using a method not relying on trajectories leads to
much better results as we will see in chapter 4.

2.6 Context of the Thesis

This thesis is meant to be the continuation of the works by Wimberger et al.

[Wim03, Wim06] and Abb et al. [Abb09] using the technique developed by Fish-
man et al. [Fis02, Fis03]. Our aim is a better understanding of how the quantum

6When using the van Vleck propagator one needs to sum over all classical trajectories. As the
number of trajectories contributing changes aking them in account is di�cult especially as our theory
did not cover the bending leading to multiple trajectories.
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Figure 2.6: In this �gure we show �gure 1 and 2 from [Abb09]. In (a) an ensemble of 5000
rotors with ∆β = 0.05, ε = 0.01, k1 = 0.6π, k2 = 0.8π and τ − ε = 2π is shown. The solid
lines are the theoretical result for a narrow ensemble and the dashed line for a single resonant
β-rotor. The numerical data is shown in green. For comparison we show the corresponding
resonant rotor in the right �gure. The analytical �delities are smoothed in order to control the
singularities. The non smoothed data is shown in the inset. In (b) the ensemble with ∆β = 1
is presented. Reprinted �gure with permission from Abb et al. , Phys. Rev. E, 80, 035206(R)
(2009). Compyright by the American Physical Society.

resonance in�uences the behaviour of the QKR in the chaotic regime. In this the-
sis we always use kicking strengths of about k ≈ 0.7π and kicking period τ ≈ 2π
which means that we are in the classical limit in the completely chaotic regime
of the standard classical analogue.

Nevertheless the phenomenon of quantum resonance is completely indepen-
dent of the classical regime. In [Wim03] the QKR is treated quantum mechani-
cally without respecting the structure in the classical limit. The �delity can be
evaluated in this framework and shows saturating behaviour [Wim06]. This is a
behaviour that is unexpected as the system is chaotic in the classical limit. So
one would expect a decay of �delity. The expected decay, however, is motivated
by semi-classical methods that are not relevant in our case as the system is also
in the deep quantum regime. In this regime general expectations are not easy to
de�ne as most of the tools used are not valid.

Quantum resonance is a very special condition and the question is what hap-
pens if the resonance condition is slightly violated. This question leads to the
de�nition of the ε-classical limit in [Fis03]. In [Wim06] also the �delity of near
resonant ensembles was evaluated and a decay of the former saturated �delity
was observed. Intuitively this can be understood as the perfect match of the
phases is destroyed which stabilised the �delity. A �rst approach to describe this
decay by the phase space obtained in the ε-classical limit was done by Abb et

al. [Abb09]. The ε-classical phase space showed regular structures and therefore
semi-classical methods could be applied. The phase space contains two di�erent
regimes. Abb et al. focused onto the island like states and could developed an
analytical theory describing the revivals of the �delity and the behaviour of this
revivals when averaging over several island states.

These island states are, however, cover only a small amount of the pseudo-
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(a) (b)

(c)

Figure 2.7: In this �gure we show the di�erence of pendulum trajectories to the trajectory of
the free rotor. We show the initial angle θ′(θ, t) which ends in θ after the time t. The angle
calculated by the pendulum is θ̃ the initial angle is θ and the angle a free rotor would have is
β̃t. In contrast to the de�nition in chapter 3 β̄ is called β̃ here. Therefore we plot the deviation
from the free rotor by plotting θ̃ − β̃ − θ. We show the system with ε = 0.001, k = 0.6π
and β = 0.135. In red we show the numerical data and in green an approximative result we
obtained. In (a) we show the initial behaviour. In (b) we show an intermediate regime and
a later regime in (c). We can see that the problem of multiple orbits arises quite early. This
bending is not modelled by the analytical result.
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classical phase space cell. In the resonant limit the island even vanishes so that
the revivals can not be observed in the resonant case. On the other hand a
vanishing island also means that the approach of Abb et al. cannot describe the
decay of the saturation that is illustrated by the green solid line in �g. 2.6(b).
The saturation and the decay of the saturation therefore is a property of the
rotator like states which are excluded in the theory by Abb et al.. In order to
describe the decay one needs to focus at the rotator like orbits. We will also
use the pendulum approximation but treat the rotating orbits. We will focus on
the question whether the pendulum approximation can describe the rotator like
rotors.



Chapter 3

Pendulum Approximation

On the classical level, the kicked rotor (KR) can be described by a stroboscopic
map called the standard map. This map maps the state after a kick to the
state after the next kick. It looks very simple but can have very complex be-
haviour. The KR is a time-dependent problem which cannot be solved in closed
form. It is easier to deal with time-independent Hamiltonian description for
which we have more methods to treat. Especially the semiclassical quantisation
procedures are mostly for the time-independent case. One possibility to obtain
a time-independent approximation for the kicked rotor is to truncate the Fourier
expansion of the kick in order to take only the slow and constant terms into
account. The result of this crude approximation is the pendulum approximation.

In this chapter we will derive this approximation. We will give a procedure
to implement it numerically. After that we will discuss the spectral properties.
To compare the pendulum approximation to the QKR we will give the Husimi
function and compare the two quantum mechanical evolutions.

3.1 Pendulum Approximation for the KR

We will shortly review the derivation of the pendulum approximation as presented
in [Lic92]. This review is for the classical system and therefore is formulated
using canonical variables. To apply it to our problem we need to introduce the
ε-classical variables in the next step which is done in the section 3.1.1.

The KR is a time-dependent problem that is formulated in discrete time. For
many applications it is useful to have some formulation in continuous time as the
formalism of Hamiltonian mechanics is formulated in this way and we can use
its methods only if we have the right formulation. The Hamilton-Jacobi theory
for example is formulated for trajectories in continuous time and so is the action
we obtain. In order to apply the tool kit of Hamiltonian mechanics we need a
formulation in continuous time. We expand the periodic δ function in a Fourier
series in eq. (2.1) and obtain

H =
I2

2
+K cos θ

∞∑
m=−∞

eı2πmt. (3.1)

31
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If we now assume that θ is a slow variable it is reasonable to consider only the
lowest frequencies m = 0,±1. This leads us to

H =
I2

2
+K cos θ + 2K cos θ cos 2πt. (3.2)

If we now assume that the third term averages to zero we arrive at the pendulum
approximation for the standard map.

H0 =
I2

2
+K cos θ. (3.3)

To avoid confusion we note that the approximation as we presented it here is not
in the variables we used in chapter 2, but are supposed to be general canonical
variables. If we want to apply this well known approximation to the problem of
the QKR near resonance we have to introduce the ε-classical variables and k̃ now.
This is done in the next subsection.

3.1.1 Application of the Pendulum Approximation to the ε-classical
QKR

In section 2.4 we introduced a detuning which allowed us to map the full problem
to a system which is much more regular. This system was again a KR system.
By introducing new variables J and ϑ we could reduce it to the standard map.
These variables are the variables which also need to be inserted into the pendulum
approximation. We obtain

H(J, ϑ) =
J2

2
+ k̃ cosϑ. (3.4)

Although we used J in the pendulum Hamiltonian the physical momentum is I
and it has to be reintroduced to the Hamiltonian.

As the phase space of pendulum and KR have di�erent topologies we have
to take a closer look at the transformation and the role of β in this context.
The momentum J is de�ned modulo 2π which introduces a certain arbitrariness
into the choice of the phase space cell. The transformation (see eq. (2.35-2.36))
therefore reads

J + 2πm = I + τβ + lπ, (3.5)

assuming ε > 0. The periodicity re�ects the fact that the KR phase space is
periodic in J . Unfortunately the pendulum phase space in not. This is illustrated
in �g: 3.1. We can see that the pendulum describes the KR only in one phase
space cell. Therefore we have to choose m to correspond to the right phase space
cell.

In the pendulum approximation the resonance is at J = 0 which �xes the re-
lation between β and I up to 2πm. We will assume that the particle is placed in
the phase space cell at rest which means in an state with angular momentum zero
whose wave function constant in spatial representation. In this interpretation the
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τβ term covers the interval [0, τ + ε] which is equal to [0, τ ] in �rst order approxi-
mation1. For the pendulum approximation to be valid we need to choose m such
that the β value of interest maps near to J ≈ 0 or at least J ∈ [−π, π]. As soon
as l 6= 0 we have multiple resonant β and therefore also multiple combinations of
m and β mapping to a case in which the pendulum approximation is valid.

As we do not discuss higher resonances in this thesis we will focus on the
l = 1 case with only one resonant β. In this case the τβ term scans an interval
[0, 2π] in �rst approximation. To map this into a range in which the pendulum
approximation is valid we need to choosem = 1 so that our special transformation
reads2

J = I + τβ − π = I + β̄ (3.6)

where we de�ned β̄ ≡ −π + τβ.
We will use β and β̄ equivalently. As we will always assume the I = 0, β

and β̄ can be interpreted as a momentum o�set or an intrinsic momentum of the
particle. Each β value has an unique corresponding β̄. We will use the notation
of an over bar for this correspondence and switch between the di�erent quantities
without further notice. Which quantity is used should be clear from the context.
As β̄ is de�ned in the transformation, in every ε-classical expression will be β̄ and
never β. We will however never give β̄ values but just use β values in order to
easy comparison to be the original QKR. This means we will also give β values
even if the data is calculated in some semiclassical expression.

After having done the transformation we can give the ε-classical Hamiltonian
for the pendulum approximation

H(I, ϑ) =
1

2
(I + β̄)2 + k̃ cosϑ. (3.7)

We can see that the transformation leads to a intrinsic shift in the momentum
in contrast to the simple pendulum. Before we discuss the implications for the
spectrum of this shift we give the numerical method we use to calculate the
pendulum data.

3.1.2 Numerical Implementation

In order to implement the pendulum numerically we use some matrix represen-
tation. We use the representation in angular momentum eigenstates. In this
representation the matrix reads

〈n|H|m〉 = 〈n|1
2

(Î2 + β̄)2 + k̃ cos θ̂|m〉 (3.8)

=
1

2
(nε+ β̄)2δn,m +

k̃

2
〈n|
(
eıθ̂ + e−ıθ̂

)
|m〉 (3.9)

=
1

2
(nε+ β̄)2δn,m +

k̃

2
(δn,m+1 + δn,m−1), (3.10)

1This also results in a shift of the island which can be seen when comparing states that correspond
to the symmetry J ↔ −J which is not exactly equal to β̄ ↔ −β̄. In our case we do not not make use
of this symmetry and therefore we can neglect this e�ect.

2It is important to keep in mind that we decided to take ε > 0.
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(a) (b)

Figure 3.1: In this plot we show the phase space of the pendulum and the kicked rotor. We
show data for K = 0.1. The pendulum phase space is shown in (a) and the kicked rotor phase
space is shown in (b). We can see that the pendulum approximation describes the phase space
only near the island and lacks the periodic structure completely.
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where we used

〈n|eıkθ̂|m〉 =

∫ 2π

0

dθ
∫ 2π

0

dθ′〈n|θ〉〈θ|eıkθ̂|θ′〉〈θ′|m〉 (3.11)

=
1

2π

∫ 2π

0

dθ
∫ 2π

0

dθ′e−ınθeıkθδ(θ − θ′)eımθ′ (3.12)

=
1

2π

∫ 2π

0

dθeı(m−n+k)θ = δn,m+k. (3.13)

To get the spectrum and the temporal evolution we need to diagonalise this
matrix. Doing this we obtain the eigenvalues Ek

i and the transformation matrix
to the eigenbasis Qk. Using them we can write

Dk ≡ Diag(Ek
i ; i ∈ N) = QkH

kQ†k. (3.14)

In order to obtain the temporal evolution of a initial state |Ψ0〉 we have to expand
it in momentum energy eigenstates as the temporal evolution is trivial in this
representation. De�ning cm = k〈m|Ψ0〉, where |m〉k is an energy eigenstate and
|l〉 is an angular momentum eigenstate we can give the temporal evolution as

|Ψ(t)〉 =
∑
n

e−ı
t
ε
Ekncn|n〉k =

∑
n,l

e−ı
t
ε
Ekncn|l〉〈l|n〉k. (3.15)

The 〈l|m〉k are the entries of Qk. We compute the cm initially, apply the phase ro-
tation which corresponds to the exponential and transform it back to the angular
momentum representation using Qk.

For the evaluation of �delity we need to compare di�erent k so we need
k1〈m|n〉k2 which can be obtained by multiplying Qk1 and Q†k2

. The procedure
of obtaining the �delity from energy eigenstates is described in section 4.2.

To implement this procedure we need to calculate the eigenvector and eigen-
values of the matrix eq. (3.10). This matrix is tridiagonal which allows us to use
specialised routines. We used the LAPACK implementation of the Intel math
kernel library (MKL). For the diagonalisation we used the subroutine DSTEV
which uses the QR or LR method for the diagonalisation [And99]. This rou-
tine also gives the transformation matrix which we called Qk and the eigenvalues
sorted by their value.

For the estimation of the truncation error it is important to notice the struc-
ture of the matrix. Its diagonal dominates except for the entries where β̄ ≈ nε.
In the parts where the matrix is diagonally dominant the diagonal elements are
very near to the actual eigenvalue [Sch05a]. If the diagonal is not dominant its
values are no good estimates. Then the eigenvalues may be dominated by the
hopping entries. This means truncating in the o�diagonally dominant regime
leads to wrong behaviour. The e�ect of truncation is less severe as long as the
truncation is in the regime of dominating diagonal.

3.1.3 Implications of β for the Spectrum

The spectrum of the pendulum is well known [Ald80]. Unfortunately the spectrum
is just discussed without the intrinsic momentum o�set β, which changes the
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(a) (b)

Figure 3.2: In this �gure we show the spectrum of a pendulum with ε = 0.05 and k = 0.8π. In
(a) we show an overview. In (b) we show the low levels from (a) in detail and demonstrate the
transition of island like states to rotor like states.

spectrum. This in�uence will now be discussed.

The spectrum can be understood qualitatively in a semiclassical view. There-
fore we need to have a look at �g. 3.2. There we show the spectrum of a pendulum
as a function of β. We can see that there is a �xed amount of levels which are
nearly independent of β. On the other hand there are levels who have a quadratic
dependency with β; some falling, some rising, resulting in a mesh like structure.
The independent levels can be understood as some harmonic oscillator like states
which have an equal spacing. They correspond to the harmonic oscillator approx-
imation. In the picture of quantised action in the phase space [Gut90] we see that
the area in phase space surrounded by harmonic oscillator orbits is the same even
if the centre of the island is shifted in phase space. In the case of rotating orbits
the surrounded area in phase space is the area between the trajectory and the
J = 0 axis. This area is very sensitive to a shift in phase space. The existing of
falling and rising levels to left and right rotating states. This behaviour can also
nicely be seen in �g. 4.2. The step in the momentum corresponds to the island
and the values showing linear behaviour are the rotor like states.

This behaviour can be understood in the context of solid state theory. There
one introduces the Bloch states for the free electron and calculates the band
gap by taking the leading order Fourier coe�cient of the potential into account
[Ash06]. This corresponds to a cosine potential which is also the case for the
pendulum. The structure of the spectrum therefore can be understood as a band
structure of a deep lattice. The island states correspond to a regime with a very
large band gap. The band gap decreases quickly after some threshold. This
argument motivates the existence of avoided crossings which unfortunately be
understood in a semiclassical way.
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3.2 Phase Space Observations

We already discussed the similarity of the phase spaces of kicked rotor and pen-
dulum. In this discussion we focused only at the classical phase space. Now we
will discuss how much of this similarity also occurs in the quantum picture. We
will introduce a phase space function which allows us to understand in which part
of the phase space the wave function lives in order to understand which aspects
of the dynamics of the QKR is described by the pendulum approximation.

3.2.1 The Husimi Function

In semiclassics one works with some spatial or momentum representation to de-
�ne a wave function. For a better understanding of the in�uence of phase space
structures to the wave function it would be desirable to have a phase space den-
sity function to describe the quantum mechanical state. There are in�nitely
many functions to achieve this and the problem is to �nd a physical one [Bal06].
Therefore we have to state additional requirements.

The Wigner function at least satis�es the mixture property. This means that
the phase space function is just dependent on the state operator and not on the
pure states it is represented in. However the Wigner function is not positive and
can therefore not be interpreted as a phase space density. The negative values in
the Wigner functions are often interpreted as the occurrence of purely quantum
phenomena [Sch01, Ken04].

Another function satisfying the positivity but not the mixture property is the
Husimi function. It is strictly positive but one is unable to calculate the right
momentum or local probability distribution. The basic idea is to project the state
of the system onto the state that is nearest to the point in phase space which
is the coherent state. The coherent states |p, q〉 form an over complete system
which means [Sch96, Bal06]∫

dpdq |p, q〉〈p, q| = 2π~1. (3.16)

The Husimi function is de�ned by means of these coherent states as

ρH(p, q) = (2π~)−1〈p, q|ρ|p, q〉. (3.17)

For a pure state ρ = |Ψ〉〈Ψ| this means

ρH(p, q) = (2π~)−1|〈p, q|Ψ〉|2. (3.18)

One way of motivating the Husimi function is the projection onto coherent states.
But it is also possible to show that the Husimi function is the Wigner function
convoluted with the coherent state [Bal06].

Coherent State on the Circle

In most textbooks coherent states are de�ned as the ground state of the harmonic
oscillator [Fri06]. However this construction only works for the particle moving
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on the line. For the particle moving on the circle some considerations need to be
done.

In [Gaz09] the procedure of de�ning coherent states is discussed in a general
context. Although the focus is more on coherent state quantisation a general
concept for constructing coherent states is given. For the motion on the circle
the coherent state is

|J, α〉 =
1√
N(J)

(
σ

π

)1/4∑
n∈Z

e−
σ
2

(J−n)2

e−ınα|en〉, (3.19)

where σ is a regularisation parameter, J and α parametrise the classical phase
space, |en〉 is a basis of the Hilbert space and N(J) is a normalisation factor
which is connected to the elliptic theta function. The Gaussian distribution of
momenta comes from the particular choice of weight motivated by experimental
accessibility.

For the construction of the coherent state we choose the angular momentum
basis. The regularisation is chosen such that the coherent state is equal to the
harmonic oscillator approximation on the island. In order to evaluate the Husimi
function we need to calculate the overlap of a coherent state at (I0, θ0) with the
state whose Husimi function we want to calculate at several points in the phase
space.

To �x the regularisation parameter σ we use the harmonic oscillator approx-
imation for the pendulum. As σ is related to the width of the Gaussian we can
relate it to the harmonic oscillator by taking the ground state in momentum
representation and compare the exponents. The result is

σ =

√
ε

k
=

ε√
k̃
. (3.20)

Taking this together a coherent state in our picture is

〈n|I0, θ0〉 =
1

Ñ(I0)
e
− (I0−εn)2

ε
√
k̃ eınθ0 , (3.21)

where Ñ is a normalisation and we switched to Î = εN̂ as momentum.

3.2.2 Numerical Realisation of the Husimi Function

To implement the evaluation of the Husimi function in an e�cient way we reduce
it to a Fourier transform. How this is done can be seen most easily by writing
the Husimi function with the coherent state inserted

ρH(I0, θ0) = (2πε)−1
∑
n

1

Ñ(I0)
e
− (I0−εn)2

ε
√
k̃ eınθ0Ψn = (2πεÑ(I0))−1

∑
n

Fn(I0)eınθ0 ,

(3.22)
where we separated a factor only dependent on n and I0 from the exponential
carrying the θ0 dependence. The Fn(I0) are de�ned as

Fn(I0) ≡ e
− (I0−εn)2

ε
√
k̃ Ψn. (3.23)
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Figure 3.3: In this �gure we show the ε-classical phase space of the QKR for k = 25, ε = 0.01
and τ = 2π + ε. In green we show the part of the phase space corresponding to the state with
β = 0.7 and n red the state corresponding to β = 0.5.

Rewriting the Husimi function this way, we can interpret eq. (3.22) as a Fourier
transformation of Fn(I0). If we choose the vector size as a power of 2 we can use
the Fast Fourier Transformation (FFT) for the numerical implementation. This
way we obtain the values for all θ0 corresponding to I0 in one step.

3.3 Comparison of the Phase Spaces

Until now we gave the pendulum approximation to the kicked rotor and intro-
duced the numerical procedure of the Husimi function on cylindrical phase space.
We will now use the Husimi function to compare the quantum dynamics of pen-
dulum and kicked rotor as it allows us to look at a phase space function. This way
we can see whether the time evolution follows the expectations of the ε-classical
phase space. This is important as the pendulum approximation uses this phase
space.

value of our approximation we choose one rotor corresponding to the rotat-
ing regime and one for a state near to the resonance, which corresponds to the
island. This is shown in �g. 3.3. There we show the region of phase space which
corresponds to a β-rotor. We placed 100 phase space points on a horizontal line
with J = −π + τβ and evolved them for 100 kicks and recorded all positions.

We can now compare this to the quantum evolution by having a look at the
Husimi function. They are obtained by evolving a β-rotor in time and calculating
the Husimi function. Some snapshots for QKR and pendulum are shown in �g. 3.4
and �g. 3.5. In �g. 3.4 we show Husimi plots for a β = 0.5 rotor corresponding to
the red regime in �g. 3.3. We can see that the initial state corresponds to a delo-
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calised state which starts to rotate on the island. It sticks near to the separatrix
and rotates in the middle. This corresponds to the ε-classical expectations. In
�g. 3.5 we show a rotor with β = 0.7 which corresponds to the green regime in
�g. 3.3. We can see that the state rotates and gets folded after some time. This is
also the reason why an approach using an van Fleck propagator gets problematic
as we observe multiple orbits quite early as was demonstrated in �g. 2.7. Nev-
ertheless, the pendulum reproduced the qualitative behaviour quite well in both
cases.

3.4 Summary

We have now compared the phase space of the pendulum and the QKR in a
ε-classical and quantum picture. Therefore we had to choose the right phase
space cell in the transformation I → J . We introduced the Husimi function
for a state on a circle and used it to visualise the evolution of a initial β-rotor
in the ε-classical picture. We used the pendulum and the QKR time evolution
and compared it. We found that they coincide very well in the Husimi function.
We could also convince us that the ε-classical interpretation of rotational and
oscillatory type orbit holds.

In the next chapter we will use the WKB approximation to calculate the
spectrum and the energy eigenfunctions of the pendulum. This will allow us to
obtain a better understanding of the spectrum of the pendulum. The WKB will
formalise the heuristic argument we gave earlier for the behaviour of the levels in
�g. 3.2 at least for the rotating type levels.

The most important result of this chapter is the correspondence of pendulum
and QKR in the Husimi picture. The pendulum as a time-independent system is
much easier to treat as the time-dependent QKR. Instead of dealing with the more
abstract concept of Floquet operators we can deal with the Hamilton operator and
its eigenvalues which can be translated to quasienergies of the QKR easily. The
picture of the pendulum as a perturbed free rotor that was shortly mentioned
in the discussion of the band model is also of importance. This concept will
arise several times in the next chapters. In this chapter the QKR was reduced
to the pendulum. Thus solving the pendulum in WKB approximation gives
deeper insight to the QKR. Nevertheless we still have to check the quality of the
pendulum approximation. We will do this numerically in chapter 5.



3.4. SUMMARY 41

Figure 3.4: In this �gure we show Husimi plots for the pendulum and QKR with ε = 0.01,
k = 25 and β = 0.5. In the left column we show pendulum states and on the right side we show
Pendulum data. From top to bottom we show t = 0, 10, 30. We can see that the correspondence
is quite good.
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Figure 3.5: In this �gure we show Husimi plots for the pendulum and QKR with ε = 0.01,
k = 25 and β = 0.7. In the left column we show pendulum states and on the right side we show
QKR data. From top to bottom we show t = 2, 7, 12. The initial state is the same as in �g. 3.4
in the �rst row. In between the snapshots the state rotates once through the phase space from
left to right. We can see that the correspondence is quite good.



Chapter 4

WKB Theory for the Pendulum

As shown in chapter 2 an approach using trajectories and the van Vleck propaga-
tor is problematic as the orbits are very complicated and the problem of multiple
orbits arises quite early. This means taking an approach which is based on �nding
trajectories connecting two angles in a speci�c time is problematic. One solution
is to switch to a method that is dealing with trajectories with a certain energy
and not �xing the time. The WKB method is one of these methods. It enables
us to get the classical Greens function and with it the eigenenergies. Using the
Greens function we can construct the eigenstates needed to compute the �delity.

In this chapter we will �rst show how the WKB method is related to the
van Vleck propagator. The phase space of the pendulum is a cylinder where
the angle is the periodic coordinate. Therefore we have to have a closer look at
the derivation of the WKB method in order to understand how and why we can
apply the WKB approximation. We will specialise the equations to our problem.
After that we will show how we can obtain the �delity by expanding in energy
eigenstates and eigenenergies. In section 4.3 we will calculate the energies and
the angle representation of the energy eigenstates and calculate the �delity of a
pendulum in WKB approximation. In order to get a �rst impression of the value
of the approximation we will compare the �delity using WKB to numerical data
for the pendulum. In the end we give an analytical formula for ensembles.

4.1 Review of the WKB Approximation

In most quantum mechanics textbooks (e.g. [Sch05b, Sak09]) the WKB approx-
imation is introduced by separating phase and amplitude of the wave function.
After introducing this ansatz into the Schrödinger equation one assumes that
the potential is constant on scales of the de Broglie wavelength and drops all
terms containing ~. This way one obtains the Hamilton-Jacobi equation for the
phase and an expression for the WKB wave function. We would like to present
a di�erent approach as it is not clear what happens on connected phase spaces
in the usual WKB approach following the procedure presented in the textbooks
mentioned.

We will present the procedure introduced in [Sch96]. There the propagator in
WKB approximation is derived by applying the stationary phase approximation

43
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(SPA) to the path integral representation of the quantum mechanical propagator.
The result is the van Vleck propagator in d dimensions

GWKB(x, t; y, 0) =
∑
α

(
ı

2π~

)d/2√∣∣∣∣ det
∂2Sα
∂x∂y

∣∣∣∣eı(Sα/~ − µαπ/2) (4.1)

where α labels the classical paths connecting x and y in the time t and Sα is
the corresponding classical action and µα is the number of negative eigenvalues
of the matrix ∂2Sα/∂x∂y which corresponds to the number of focal points along
the trajectory. As the propagator describes how the wave function at position y
at time 0 in�uences the wave function at position x at time t it is a function of
x, y and t and therefore we have to calculate the action also as the action of a
classical path connecting two points within a certain time t. Therefore we need
the action Sα(x, y, t). In some problems it is easier to express this action as a
function of initial position x, �nal position y and energy E. Therefore we de�ne
the Fourier transform of this propagator

G̃(x, y;E) =

∫ ∞
0

dt e
ıEt
~ G(x, t; y, 0). (4.2)

Inserting eq. (4.1) into (4.2) and applying the SPA which again corresponds to
~→ 0 one obtains

∂

∂t

(
Et+ Sα(x, y; t)

)
= 0⇔ E = −∂Sα(x, y; tασ)

∂t
, (4.3)

where σ indices the di�erent solutions of this equation. We can see that by
applying the SPA we get a Legendre transformation also known from classical
mechanics or thermodynamics. It allows us to exchange a variable by the deriva-
tive by the same variable [Jel89]. In order to perform a Legendre transformation
we need to invert eq. (4.3) to get E(t) or t(E). This is explained in more detail
in appendix B. The transformation de�nes a new action

W (x, y;E) = S + Et. (4.4)

From now one W will always denote the action as a function of energy E and S
the action as a function of time t. One of the most important properties derives
from the fact that Sα satis�es the Hamilton-Jacobi equation which is build in
order to ful�l

E = H

(
∂W

∂x
, x

)
. (4.5)

This allows us to calculate W for the path easily. This will be very important
when applying the method to a speci�c problem. Now we will introduce all quan-
tities into eq. (4.1) and perform the Fourier transform. Using Sασ ≡ S(x, y, tασ)
we obtain

G̃WKB(x, y;E) =

(
ı

2π~

)d/2∑
α,σ

√∣∣∣∣ det
∂2Sασ
∂x∂y

∣∣∣∣
× exp

(
− ıµασπ

2
+
ıSασ
~

+
ıEtασ
~

)∫ ∞
0

dt eı(∂
2Sασ/∂t2)(t−tασ)2/2~, (4.6)
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where the Maslov index, energy and time have two indices. The �rst index is for
the classical path (α) and the second index for the di�erent stationary points in
the time1 (β). In order to obtain this equation we expanded S in t and truncated
after the second order which is the standard procedure in SPA. The Legendre
transformation and the corresponding choice of E and t ensures that the linear
term vanishes. In this equation the determinant is still expressed by means of
S. This is the wrong action and we have to express it by W . Therefore we have
to go into the details of the transformation as we have to respect the boundary
condition of the variation of the action in order to do this transformation. This
is carried out in appendix B. There the general case is derived. We will already
assume that the action W will not contain products containing x and E, which
will be the case for Hamiltonians of type H(p, q) = T (p) + V (q) where p are
momenta and q are spatial coordinates. Introducing this into eq. (B.13) we get

− det(∂2S/∂x∂y)

∂2S/∂t2
≡ D̃ =

∂2W

∂x∂E

∂2W

∂y∂E
, (4.7)

where the left side of this equation is the de�nition of D̃ and the right side
is the evaluation for the case mentioned above. The determinant D̃ represents
the density of paths connecting x and y. This can be seen by having a look
at the variational approach to classical mechanics. There it can be shown that
this determinant is proportional to the inverse of the determinant of the Jacobi
�eld which gives the sensitivity of the classical path to a variation of the initial
momentum. If the path is stable to variations the determinant of Jacobi �elds is
small or zero and thus many di�erent paths in a surrounding contribute; so D̃ is
large. A more formal derivation of this interpretation is given in [Sch96, Haa10].
The integral in eq. (4.6) is a Fresnel integral. When evaluating this integral we
have to be careful with singular points of ∂2S/∂t2 which arise in turning points
of the classical path. Similar to the Maslov indices for focal points in the time
dependent theory a classical turning point contributes a phase of π/2 in the energy
dependent theory. Evaluating this and introducing D̃ we arrive at

G̃WKB(x, y;E) =

(
ı

2π~

)d/2−1/2∑
α,σ

√
|D̃ασ|exp

(
− ıµασπ

2
+
ıWασ

~

)
, (4.8)

where α denotes the classical paths and σ the di�erent times. At this point the
two indices have lost their intuitive interpretation but still have to be respected as
they are de�ned by eq. (4.3). The sum over α and σ denotes the sum over all paths
connecting x and y with energy E. This summation can now be carried out by
having a look at the types of trajectories. Following the standard representation
we would introduce a particle moving in some trapping potential. Therefore one
has to care about turning points for di�erent types of trajectories with none, one
or two turning points and some general treatment of this trajectories. In contrast
to the particle in a trapping potential we are interested in a regime where the

1Here it is important that stationary does not mean stationary in time. It just means that some
quantity does not change as a parameter is changed. In our case this means we have paths with �xed
energy for which the time to get from x to y does not change when slightly varying the energy.
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orbits are rotating orbits on a cylindrical phase space which is a non trapped
movement. This means we do not have turning points and have to sum over
paths connecting x and y and the same path plus full rotations. This means we
�rst calculate the action of a path connecting x and y with energy E using

E =
1

2m

(
∂W

∂x

)2

+ V (x) (4.9)

⇒ W (x, y, E) =

∫ y

x

√
2m(E − V (u)du. (4.10)

In order to add full rotations to this path we de�ne J(E) ≡ W (0, 2π,E) and
obtain in this way the Greens function in the known form

G̃WKB(x, y;E) =

√
m/2√

E − V (x)
√
E − V (y)

∞∑
k=0

exp

(
ıW (x, y, E)

~
+
ıkJ

~

)
(4.11)

by using ∂2W/∂u∂E = 2m/
√
E − V (u) and by introducing the rotation number

k and dropping a common phase. The summation over l can be done by means
of geometric summation. This will lead to a factor which has poles at

J(E) = 2πn~ (4.12)

which is the quantisation condition. In order to get the energy eigenfunction we
take just the W (x, y, E) part into account. This is the part of the propagator
giving the explicit x→ y transformation.

If we have the eigenenergies we obtain the energy eigenfunctions by �xing
the value of the energy function at some arbitrary position. The value at all
other points can be obtained by using the propagator. In the end the wave
function needs to be normalised which �xes the value we chose initially. As we
now want to give the equations we will use to derive our result we will now switch
from (x, y) 7→ (θ, θ′) and from ε 7→ ~. In the beginning we need to determine
the relevant momentum I from the action W . Afterwards we can calculate all
relevant quantities from this action and the momentum. The equations that need
to be evaluated to obtain the energies En and the energy eigenstates |un〉 are

I ≡ ∂W

∂θ
(4.13a)∫ 2π

0

dθ′I(En, θ) = 2πnε (4.13b)

−det(∂2S/∂θ ∂θ′)

∂2S/∂t
=

∂2W

∂θ∂E

∂2W

∂θ′∂E
(4.13c)

〈θ|un〉 = N

√
det(∂2S/∂θ ∂θ′)

∂2S/∂t
e
ı
ε

∫ θ
dθ′I(En,θ). (4.13d)

Here we would like to emphasise that we need to chose En and W such that the
wave function eq. (4.13d) ful�ls the periodic boundary conditions2. In the end

2This will be important later when we calculate the wave function by approximating the action as
it will block us from using a more terms in the approximation.
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we adjust N such that the energy eigenfunction is normalised. Some caution is
needed in our treatment of the angles. In eqs. (4.13) we did not write the starting
angle θ′. As mentioned it is supposed to be �xed and we refer all quantities to
this �xed value. As shown in appendix B for our type of Hamiltonian we can
write our W as an integral and therefore we can refer to some arbitrary point
without loss of generality. Nevertheless we have to be careful with derivatives by
θ′. They cannot be neglected as they make a di�erence even if θ′ is �xed.

In this section we reviewed the WKB approximation starting from the van
Vleck propagator. This way we could show how the topology of the rotating
orbits simpli�es the equations of the WKB approximation. We intended to give
some closer insight which allows us to see what happens if we switch from an
euclidean phase space to a cylindrical phase space. We showed that we can apply
the WKB method to the pendulum by not caring about turning points and just
closing the integral of the action via the periodic variable. The non existence
of turning points in particular stabilises the WKB approximation by avoiding
singular points.

4.2 Fidelity Using Energy Eigenstates

In section 4.1 we reviewed the WKB method and gave a formula for the Greens
function and also a procedure to obtain energy eigenvalues and the corresponding
energy eigenstates. Now we will show how we can calculate �delity using these
two ingredients. This is nothing special for WKB and just relies on the existence
of eigenenergies and their eigenstates. In order to obtain numerical data for the
pendulum we calculate the eigenstates and eigenenergies numerically by diago-
nalising eq. (3.10) and calculate the �delity as described in this section. Later in
this chapter we will use the eigenenergies and states obtained by WKB to obtain
an analytical expression for the �delity.

In chapter 2 we de�ned the �delity of the state |Ψk1/2,β,ε(t)〉 as the overlap of
the initial state, evolved with slightly di�erent kicking strengths, with itself. The
�delity therefore reads

F (β, k1, k2, ε, t) = |〈Ψk2,β,ε(t)|Ψk1,β,ε(t)〉|
2 . (4.14)

The initial state |Ψ0
β〉 ≡ |Ψk1/2,β,ε(0)〉 is by de�nition of �delity independent of

k1/2.
We will now use that the energy eigenstates build a complete set of states and

can be used to express the identity as the time evolution for the single energy
eigenstates is trivial. Because this eigenstates depend on the kicking strength
k we introduce a new notation. An energy eigenstate of a system with kicking
strength k is |n〉k where n is the quantum number. We have to be careful as an
angular momentum state will be denoted by |m〉 where m denotes the angular
momentum. This notation has to be handled very carefully as only a subscript
distinguishes two completely di�erent quantities. Using this notation we can give
the time evolution of a state easily

|Ψk1/2,β,ε(t)〉 =
∑
n

|n〉k k〈n|Ψ0
β,ε〉e−ı

t
ε
Ekn , (4.15)
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where Ek
n are the eigenenergies. Introducing this notation to eq. (4.14) we obtain

F (β, k1, k2, ε, t) =

∣∣∣∣∣∑
n,m

〈Ψ0
β,ε|n〉k2 k2〈n|m〉k1 k1〈m|Ψ0

β,ε〉 eı
t
ε
(E

k2
n −E

k1
m )

∣∣∣∣∣
2

. (4.16)

This formulas can be interpreted in several ways. We can interpret |n〉k2 k2〈n|m〉k1

k1〈m| as a transition from an eigenbasis to the system with kicking strength k1

to one with k2. In this representation the �delity is a special scalar product
with respect to a basis transformation. In another interpretation we can regard
〈Ψ0

ε,β|n〉k2 k2〈n|m〉k1 k1〈m|Ψ0
β,ε〉 as a coe�cient in a Fourier like series. As it has

two indices we might interpret these coe�cients as a coe�cient matrix which again
allows us to interpret the �delity as a scalar product of two oscillating vectors
with respect to the coe�cient matrix. The later interpretation will turn out to
be the more fruitful one. The reason is that it separates the time dependency
completely from the time independent parts.

4.3 Application to the Pendulum

In the last section we showed how one can obtain �delity if one has the energy
eigenstates for k1 and k2 and the corresponding eigenenergies. In this section we
will calculate this quantities in WKB approximation. we will �rst calculate the
action W . It will turn out that this is given by means of elliptic integrals. To
calculate the energy eigenfunctions we need to �nd approximations which allow
us to calculate W and En consistent in order to respect the periodic boundary
conditions. To get a more detailed expression for the spectrum we can drop this
restriction which allows us to give a better approximation for the spectrum. In
section 4.4 we will use the simple energy eigenfunctions and the detailed energies
to obtain the �delity using eq. (4.16).

As already mentioned we are interested in the rotating regime which corre-
sponds to E > k̃. To calculate the action W (θ, E) we evaluate eq. (4.5) for the
pendulum Hamiltonian eq. (3.4). This leads to

E = H

(
∂W

∂θ
, θ

)
=

1

2

(
∂W

∂θ
+ β̄

)2

+ k̃ cos θ (4.17)

⇒ W (θ, E) =

∫ θ

0

{√
2(E − k̃ cos θ′)− β̄

}
dθ′. (4.18)

The second equation is an elliptic integral [Abr64]. In order to get the eigenen-
ergies we need to �nd an En that ful�ls

W (2π,En) = 2πnε. (4.19)

The energy will appear in the argument and modulus of the elliptic integral
[Ald80] or the Jacobi elliptic function which is the inverse function to the elliptic
integral. The energy is given as a root of eq. (4.19) but cannot be given as a
closed expression as argument and modulus of the elliptic integral have an En
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dependence. In the rotating regime we have E > k̃. Therefore we expand the
integrand in a Taylor series in k̃/E. This results in

W (θ, E) =

∫ θ
(

(
√

2E − β̄)− εk√
2E

cos θ′ +
ε2k2

2(2E)3/2
cos2 θ′ +O(ε3)

)
dθ′

(4.20)

= (
√

2E − β̄)θ − εk√
2E

sin θ +
ε2k2

2(2E)3/2

(
θ

2
+

1

4
sin 2θ

)
+O(ε3).

(4.21)

Now we can insert this action into the quantisation condition eq. (4.13b) which
leads to

2πnε = (
√

2E − β̄)2π − ε2k2

2(2E)3/2
π +O(ε3). (4.22)

Multiplication with (2E)3/2 reduces this expression to

0 = 2π(2E)2 − 2π(2E)3/2(β̄ + nε)− ε2k2

2
π +O(ε3). (4.23)

Neglecting the order ε3 terms would leave us with a polynomial of fourth order.
The solutions can still be given in closed form but are very complicated. Our
approximation also produced three additional solutions which are non-physical
as they are very di�erent to the exact energy. In subsection 4.3.2 we will give an
approximation which allows us to calculate the energies quite accurate. Never-
theless this energies are not the exact energies. This means that W (En, θ) is not
ful�lling the periodic boundary conditions. Therefore we have to �nd an approx-
imation which can be solved exactly in such a way that the eigenfunctions ful�l
the boundary conditions. This will be carried out in subsection 4.3.1. To get a
detailed spectrum we will include more terms and give a more precise result in
subsection 4.3.2.

4.3.1 Energy Eigenfunctions

Taking too many terms into account in eq. (4.21) leads to problems �nding exact
solutions of the quantisation condition eq. (4.19) which is important to ful�l the
periodic boundary conditions. In order to obtain the wave function we therefore
have to truncate eq. (4.21) after the linear ε term. This leads to

W (E, θ) = (
√

2E − β̄)θ − εk√
2E

sin θ (4.24)

⇒
∫ 2π

0

∂W

∂θ
dθ′ = (

√
2E − β̄)2π = 2πε. (4.25)

Including the next order leads to an equation that cannot be solved exactly which
is necessary to ful�l the boundary condition of the wave function mentioned above.
In this subsection we will therefore use the energies En = 1

2
(nε + β)2. How to



50 CHAPTER 4. WKB THEORY FOR THE PENDULUM

obtain the energy wave function using Greens function was shown in section 4.1.
The result, eq. (4.13d), reads

〈θ|n〉k = N(ε, n, β̄, k)

√
∂2W

∂θ∂E

∂2W

∂θ′∂E
exp

(
ı

ε
W (En, θ)

)
, (4.26)

where N is a normalisation constant that needs to be �xed in the end. We still
need to calculate the square root. This can be done by using eq. (4.24):

∂W

∂θ
=
√

2E − β̄ − εk√
2E

cos θ (4.27)

∂2W

∂θ∂E
=

1√
2E

+
εk

(2E)3/2
cos θ. (4.28)

Also using
√

1 + εA ≈ 1 + ε/2 A we �nd√
∂2W

∂θ∂E
≈ 1

4
√

2E

(
1 +

εk

4E
cos θ

)
. (4.29)

Here we will do a very crucial approximation. We will neglect the angular de-
pendency in this equation. As we will see later the result is not too bad. To see
this we would like to make some remarks on this approximation. Keeping the
cosine term we would end up with a contribution of order ε2 to the normalisation
as the linear term contains only trigonometric functions whereas the quadratic
term carries the square of the cosine. The correction to the wave function would
be of order ε. Later we will give the angular momentum representation of the
energy eigenfunction. In eq. (4.41) we will show that these are proportional to the
Bessel functions of �rst kind of order n−m where n is the angular momentum and
m is the energy quantum number. Including the cosine term would add Bessel
functions of order n − m ± 1 to the linear ε term of the energy eigenfunction.
This means that the contribution is additionally suppressed. Later we will use a
more sophisticated method for obtaining the energies. In contrast to the energy
eigenfunctions small deviations will be ampli�ed as the energies are multiplied by
time. For the wave function the deviations are not ampli�ed.

Neglecting the angular dependency only the action eq. (4.24) and the normal-
isation �x the energy eigenfunction in angular representation. The result is

〈θ|n〉k =
1√
2π
eınθe−ı

k
nε+β

sin θ. (4.30)

In this expression several basic ideas of our approximation appear. The energy
eigenfunction is basically a free rotator state whose phase has a sine modulation.
On the one hand this respects the modulation of the phase due to the energy
variation, on the other hand we neglected the θ dependence of D̃ which results in
the missing variation of amplitude, which would denote a change of velocity. As
already mentioned, the correction would be of order ε and so we do not expect a
large error.



4.3. APPLICATION TO THE PENDULUM 51

4.3.2 Eigenenergies

In subsection 4.3.1 we truncated the expansion eq. (4.21) after the linear term
in order to obtain a solution which satis�es the boundary conditions. In the
calculation of the energies we are not restricted by this. Therefore we can tolerate
approximative solutions to eq. (4.21). For calculating the eigenenergies we start
at eq. (4.31) and neglect the higher orders

0 = 2π(2E)2 − 2π(2E)3/2(β̄ + nε)− ε2k2

2
π. (4.31)

As already mentioned this is a polynomial of fourth order in
√

2E and can in
principal be solved in closed form. This solutions are very complicated and we are
only interested in the solution that is near to the solution of eq. (4.19). Another
disadvantage of the closed solution is that it has to fail as soon as we want to
include additional terms as there is no closed solution for a polynomial of �fth
order. Because of that we need to �nd a di�erent possibility to get eigenenergies.

In order to �x the problem of �nding the physical solution we will have a look
at the ε→ 0 case. In this case eq. (4.31) has an unique solution. We will expand√

2E in orders of ε and solve the result order by order. Therefore we de�ne
√

2E = ξ0 + ξ1ε+ ξ2ε
2 + . . . , (4.32)

where the ξi = ξi(β̄, k̃) depend on β̄ and k̃. In order to insert this result into
eq. (4.31) we have to use the multinomial expansion in a version which is ordered
by powers in ε. Using eq. (C.8) we obtain

√
2E

3
= ξ3

0 + 3εξ2
0ξ1 + ε2(3ξ2

0ξ2 + 3ξ0ξ1) + ε3(ξ3
1 + 6ξ0ξ1ξ2 + 3ξ2

0ξ3) +O(ε4)
(4.33)

√
2E

4
= ξ4

0 + 4εξ3
0ξ1 + ε2(4ξ3

0ξ2 + 6ξ2
0ξ

2
1) + ε3(4ξ0ξ

3
1 + 12ξ2

0ξ1ξ2 + 4ξ3
0ξ3) +O(ε4).

(4.34)

Inserting this into eq. (4.31) we obtain after ordering by powers of ε

0 =ξ4
0 − β̄ξ3

0

+ ε
(

4ξ3
0ξ1 − 3β̄ξ2

0ξ1 + nξ3
0

)
+ ε2

(
4ξ3

0ξ2 + 6ξ2
0ξ

2
1 + 3nξ2

0ξ1 − 3β̄(ξ2
0ξ2 + ξ0ξ

2
1)− k2

2
π
)

+ ε3
(

4ξ3
0ξ2 + 6ξ2

0ξ
2
1 + 3n(ξ2

0ξ2 + ξ0ξ
2
1)− β̄(ξ3

1 + 6ξ0ξ1ξ2) + 12ξ2
0ξ1ξ2

)
+O(ε4).

(4.35)

Now we can calculate the coe�cients ξi successively. This is due to the fact that
the order εi term only contains ξ0, . . . , ξi, where ξi will appear linearly3, and thus

3If we have a look at the derivation of eq. (C.8) we need to distribute the i epsilons onto the
coe�cients. ξi can only appear in the εi term if it absorbs all epsilons, so it cannot appear multiple
times.
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can be solved for ξi as long as ξ0, . . . , ξi−1 are known. As ξ0 can be found easily
we can solve all orders successively. In this way we �nd

ξ0 = β̄ (4.36a)

ξ1 = n (4.36b)

ξ2 =
k2

4β̄3
(4.36c)

ξ3 = −3k2n

4β̄4
. (4.36d)

Now using eq. (C.8) again we obtain

√
2E

2
= ξ2

0 + ε 2ξ0ξ1 + ε2(2ξ0ξ2 + ξ2
1) + ε3(2ξ1ξ2 + 2ξ0ξ3) +O(ε4) (4.37)

Inserting the coe�cients from eq. (4.36) we get the �nal expansion for the energy

E =
β̄2

2
+ nβ̄ε+

(
k2

4β̄2
+
n2

2

)
ε2 −

(
nk2

2β̄3

)
ε3 +O(ε4). (4.38)

As already indicated we can interpret this result as an extension of the free rotor
which has the energy (nε+ β̄)2/2 in our system. This re�ects that we are treating
the pendulum as a perturbed rotor.

4.4 Fidelity of the Pendulum using WKB

To calculate the �delity we will use eq. (4.16) and focus on angular momentum
states. These are the states referred to when speaking of β-rotors. Due to com-
parison to the experiment we will use the |0〉 state as initial state. But at �rst
we have to compute the angular momentum representation of the energy eigen-
states using the angular representation of the energy eigenstates. The angular
momentum states are de�ned as

〈θ|n〉 = 1/
√

2π eınθ. (4.39)

Using 1 =
∫ 2π

0
|θ〉〈θ| we can calculate the projection on the angular momentum

state using the angular representation of the angular momentum state and the
energy eigenstate

〈m|n〉k =

∫ 2π

0

dθ〈m|θ〉〈θ|n〉k (4.40)

=
1

2π

∫ 2π

0

dθ e−ımθeınθeı
k

nε+β̄
sin θ (4.41)

= Jm−n

(
k

nε+ β̄

)
, (4.42)
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where Jn(x) is the Bessel function of �rst kind and we used the Anger expansion
given in appendix A. We can use the same procedure to obtain the transition
matrix

k2〈n|m〉k1 =

∫ 2π

0

dθ k2〈n|θ〉〈θ|m〉k1 (4.43)

=
1

2π

∫ 2π

0

dθe−ınθeı
k2
nε+β̄

sin θeımθe−ı
k1

mε+β̄
sin θ (4.44)

=
1

2π

∫ 2π

0

dθeı(m−n)θe
ı

(
k2
nε+β̄

− k1
mε+β̄

)
sin θ

(4.45)

= Jn−m

(
k2

nε+ β̄
− k1

mε+ β̄

)
. (4.46)

We will put all this together in order to get the �delity. As already discussed
in the last section we use the more accurate energies for the time evolution. We
will therefore keep Ek1,2

n and insert our energies from eq. (4.38) later. Inserting
the WKB results into eq. (4.16) we get

F (β, k1, k2, ε, t) =∣∣∣∣∣
∞∑

n,m=−∞

Jn

(
k2

nε+ β̄

)
Jm

(
k1

mε+ β̄

)
Jm−n

(
k2

nε+ β̄
− k1

mε+ β̄

)
eı
t
ε
(E

k2
n −E

k1
m )

∣∣∣∣∣
2

(4.47)

This is the �nal formula for the �delity of a single pendulum using the WKB
method, whose properties we will discuss. We will see that the crude approxima-
tions in the representation of the energy eigenfunction and therefore also in the
transition matrix are very god, and that the crucial dynamics lies in the spectral
structure.

4.5 Properties of WKB Fidelity - Single Rotors

In this section we will discuss the properties of single rotors using the WKB
approximation. In order to estimate the value of the solution we will do some
benchmarks. The �rst benchmark is the ε→ 0 limit. For this case an analytical
theory exists [Abb09, Wim06]. After that we will compare the result using the
WKB approximation to the numerical result for the pendulum. Basically the
pendulum is exactly solvable by means of Mathieu functions, but we decided
to stick to the numerical approximation of the pendulum instead of numerical
estimation of the Mathieu functions. There are several reasons. One of the main
reasons is that having a set of Mathieu functions for some k we might be able to
get a representation of the initial state by means of Fourier series of the Mathieu
function but if we want to compare two di�erent k we have to calculate the
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overlap of two Mathieu functions with di�erent Mathieu parameters4. This is
complicated and most probably just possible approximately. Another reason is
the dependence on the fractional momentum β as already shown in chapter 3.
This momentum implies an interesting structure of the spectrum which will also
lead to more complicated dependencies in the Mathieu functions.

4.5.1 The ε→ 0 Case

One of the most important benchmarks in this system is the ε → 0 case. In
the case of the quantum kicked rotor there is a good theoretical understanding
[Wim04]. In [Abb09] the pendulum approximation is used to develop a theory
for near resonant rotors using the pendulum approximation. They also check the
ε→ 0 case. Their result for the �delity of a resonantly kicked rotor in pendulum
approximation is

F (k1, k2, t) = J0

(
2δk

β̄
sin

β̄t

2

)2

. (4.48)

We will now show that the WKB solution also reproduces this behaviour. There-
fore we take the transformation matrix and the state vector in their integral
representation eqs. (4.45) and (4.41). For small ε we can neglect the ε in the
denominator of the exponent. As the energy di�erence in the exponent is divided
by ε, only the term linear in ε in eq. (4.38) contributes to the di�erence of the
energies in the phase factor of eq. (4.47). So we get (Ek2

n − Ek1
m )/ε = β(n −m).

Putting all together we get

F (k1, k2, t) =

∣∣∣∣∣∑
n,m

∫ 2π

0

dθ
∫ 2π

0

dθ′
∫ 2π

0

dθ′′eı
t
ε
(E

k2
n −E

k1
m )

× 〈Ψε,β(0)|θ〉〈θ|n〉k2 k2〈n|θ′〉〈θ′|m〉k1 k1〈m|θ′′〉〈θ′′|Ψβ,ε(0)〉

∣∣∣∣∣
2

. (4.49)

This expression is equivalent to eq. (4.47) in the case of small ε. We decided to
switch to the integral representation as we are able to use the sum in combination
with the exponentials to obtain Dirac δ functions. There might also be an identity
which makes it possible to start directly with eq. (4.47) but the way we proceed
is much more intuitive. We insert the integral representations and rearrange the
exponents:

=

∣∣∣∣∣∑
n,m

∫∫∫
dθdθ′dθ′′

(2π)3
eıtβ̄(n−m)eınθe−ı

k2
β̄

sin θe−ınθ
′
eı
k2
β̄

sin θ′eımθ
′
e−ı

k1
β̄

sin θ′e−ımθ
′′
eı
k1
β̄

sin θ′′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
n,m

∫∫∫
dθdθ′dθ′′

(2π)3
eın(θ−θ′+β̄t)e−ı

k2
β̄

sin θeı
k2
β̄

sin θ′eım(θ′′−θ′−β̄t)e−ı
k1
β̄

sin θ′eı
k1
β̄

sin θ′′

∣∣∣∣∣
2

4The procedure does not give much hope to get a simple closed formula as we obtained using the
WKB method. We decided therefore going the simple self made way instead of going the sophisticated
one.
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Now we do the summation and use
∑

n e
ıθn = 2πδ(θ) to arrive at

F (k1, k2, t) =

∣∣∣∣∣
∫∫∫

dθdθ′dθ′′

2π

× δ(θ − θ′ + β̄t)e−ı
k2
β̄

sin θeı
k2
β̄

sin θ′
δ(θ′′ − θ′ − β̄t)eı

k1
β̄

sin θ′e−ı
k1
β̄

sin θ′′

∣∣∣∣∣
2

. (4.50)

Due to the δ-functions the θ′ and θ′′ integrations lead to

θ′ = θ − β̄t (4.51)

θ′′ = θ′ + β̄t = θ, (4.52)

which brings us to

F (k1, k2, t) =

∣∣∣∣∣
∫ 2π

0

dθ
1

2π
eı
k2−k1
β̄

sin(θ−β̄t)e−ı
k2−k1
β̄

sin θ

∣∣∣∣∣
2

(4.53)

=

∣∣∣∣∣ 1

2π

∫ 2π

0

dθeı
δk
β̄

2 cos
(
θ− β̄t

2

)
sin
(
β̄t
2

)∣∣∣∣∣
2

(4.54)

= J2
0

(
2δk

β̄
sin
( β̄t

2

))
, (4.55)

where δk ≡ k2 − k1. This is exactly the result also derived in [Abb09]. Although
the pendulum approximation has no meaning in the ε = 0 case the leading con-
tribution coincides with the result using a van Vleck propagator approach.

We have just checked that eq.(4.47) reproduces the expected result for ε→ 0.
In order to get more out of eq. (4.47) we need to discuss the di�erent components.
We will begin by discussing the properties of the coe�cients and later have a look
how the spectral structure in�uences the �delity.

4.5.2 Dominating Matrix Elements

In this section we will describe the properties of the coe�cients in eq. (4.47). We
will split the terms in the sum in eq.(4.47) into an exponential and a coe�cient5.
As these coe�cients have a dependency on n and m we introduce a coe�cient
matrix. We will refer to this interpretation when we talk about diagonal and
o�-diagonal terms. In order to understand the in�uence of the di�erent terms in
eq. (4.47) we will have a look to the entries of the coe�cient matrix. Therefore
we plotted the coe�cients in �g. 4.1 as a function of β. In (a) all coe�cients
with max(|m|, |n|) < 10 are plotted. By comparing with (b) we can see that
the diagonal dominates the summation. For small β the n,m = 0 coe�cient
dominates. For growing β the neighbouring diagonal elements dominate. The o�
diagonal elements are suppressed.

5This is the coe�cient we will talk about in this chapter.
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Figure 4.1: In this �gure the coe�cients of the complex exponentials from eq. (4.47) are shown
for ε = 0.01, k1 = 0.8π, k2 = 0.8π and τ = 2π+ ε. In (a) all coe�cients with max(|m|, |n|) < 10
are plotted as a function of β. In (b) the dominating coe�cients are plotted. One can see that
when β is small the central term with n,m = 0 dominates. With growing β the neighbouring
diagonal elements dominate. The o� diagonal elements are suppressed.

To understand this behaviour we need to recapitulate some properties of Bessel
functions and have to remind ourselves of which β̄ range the presented β range
corresponds to. As described in chapter 3 the range of β ∈ [0, 0.5] corresponds to
β̄ ∈ [−π, 0]. For the interpretation this means that for β near zero we are in the
regime of small argument of the Bessel functions and for β near to the resonance
in the regime of larger argument. For Bessel functions with order di�erent from
zero we know that for small arguments we have [Abr64]

Jn(x) ∝ 2√
2πn

( ex

2n

)n
, (4.56)

And for large argument we know that they behave like

Jn(x) ≈
√

2

πx
cos
(
x− nπ

2
− π

4

)
. (4.57)

This means, that the Bessel functions have contributions only in an intermediate
regime. This can be seen by considering for which values of the argument of
the Bessel function leads to large values. This way the relevant regime for the
argument of the Bessel function can be obtained. The lower boundary of the
interval of importance is higher for larger orders. The coe�cients in eq. (4.47) are
products of Bessel functions of order n, m and n−m. In order to get large values
the interval of contributions must have a maximal overlap because otherwise one
Bessel function suppresses the contributions of the other. This means n, m should
be similar and thus n−m should be small. This is the reason why for small β the
diagonal terms dominate. The o� diagonal terms are suppressed by the Bessel
function of order n−m, but for small argument in addition the m = n 6= 0 terms
are also small. They grow when the argument is of similar magnitude as the
order. Therefore they grow as β gets larger. Nevertheless they are suppressed
more and more by the n −m term as β grows. By this we can understand that
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more and more coe�cients contribute as we get closer to the resonant β although
they decay in magnitude.

The case plotted in �g. 4.1 is already a case of big ε. In our numerics evaluation
of eq. (4.47) we use coe�cients with max(|m|, |n|) < 10. This includes nearly all
coe�cients contributing up to β ≈ 0.4.

4.5.3 Spectral Properties

In this section we will have a look at the quality of the approximation of the
spectrum in eq. (4.38). Therefore we will compare it to the numerical result �rst.
After that we will discuss the e�ect of the di�erent orders in ε on the �delity.
Therefore we will also discuss a case with a very poor approximation in order to
show where the decay in the pendulum �delity originates.

To do the comparison with the numerical pendulum data we have to identify
the energy levels from the numerics with those of the WKB theory. As already
shown in chapter 3 due to β there can be nearly degeneracies. These degeneracies
can be understood having a look at eq. (4.38). We can see that the dominating
term is a n2 term. This means that the energies are near to the parabola, as
we would expect for the free rotor. So there can be terms which are nearly
degenerate although the corresponding quantum numbers are very di�erent. This
corresponds to the degeneracy of left and right rotating states in the free rotor.
As the numerics are done by diagonalising the matrices using algorithms of QL or
QR type6 [And99] we get the eigenvalues sorted by their value. This ordering is
completely non-physical so we need to �nd some identi�cation scheme to compare
them.

We have to �nd a observable which allows us to identify the di�erent en-
ergy levels. As already mentioned the dominating behaviour is the one of the
rotor. There the degeneracy can be broken by distinguishing the momentum.
If we calculate the momentum for the WKB energy eigenfunctions we see that
k〈n|Î|ψn〉k = nε. This means we could sort the WKB values by calculating the
momentum. Therefore we also sort the numerical values by the momentum ex-
pectation value of the energy eigenfunctions. This is done in �g. 4.2. There we
show the sorted momentum expectation values in black and the WKB result in
red. We see that the states that are located on the island form a step in the
momentum. They propagate with momentum β̄ as this is the momentum o�set,
whilst island type states are not supposed to move as they are trapped on the
island7. We see, therefore, that the WKB prediction just di�ers on the island.
This is clear as the WKB method we used is made for rotating type states and
therefore has to fail for oscillating states.

Another way to see this, is having a look at eq.(3.10). We can see that there
are regimes where the diagonal dominate and regions where the o� diagonal
dominates. The entries on the diagonal are those of a rotor with momentum nε+

6This algorithms should not be mixed with the QR or QL decomposition. The QR algorithm is for
example described in [Sch05a]. The algorithms have their name from their extensive use of the QR/QL
decomposition but are themselves iterative algorithms for �nding eigenvalues and vectors.

7This can be seen by having a look at harmonic eigenoscillator states. Their momentum expectation
value is 0. Here β is an o�set on the momentum and so the trapped states move with this momentum.
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(a) (b)

Figure 4.2: In this �gure we want to illustrate the momentum structure of the pendulum
energy eigenstates. We show the sorted momentum expectation values for ε = 0.01, k = 0.8π
and β ≈ 0.07648. In (a) the an overview is shown. In red we show the WKB expectation and
in black the corresponding pendulum values, which are obtained using the numerical procedure
described in chapter 3. In (b) we show the part which corresponds to the island in detail.

β̄. This means that in the diagonal dominated regime m is still a good quantum
number, whereas in regions with dominating side bands m is no good quantum
number any more. This is an alternative motivation for the identi�cation of
energy eigenvalues we do. Having this identi�cation we can now compare the
energies.

This is done in �g. 4.3(a). The energy values follow the WKB prediction quite
well. In �g. 4.3(b) the deviation near to n = 0 between the numerical energies
and those in WKB approximation is shown in di�erent orders of ε in eq. (4.38).
We can see that we have to take up to O(ε3) into account in order to match the
qualitative features of the spectrum. All lower orders have systematic o�sets or
di�erent slopes.

Next we will discuss some qualitative features of the �delity of the pendulum
by having a look at the di�erent terms in eq. (4.38). In order to give a feeling
what happens we will do a much cruder approximation which is not too bad for
small times. We will have a look at the lowest order WKB solutions8

En =
1

2
(nε+ β̄)2 (4.58)

〈θ|n〉k =
1√
2π

eınθe−ı
k

nε+β̄
sin θ

. (4.59)

8To be precise the formulation is not consistent. Squaring the �rst order is not the same as taking
the square to second order. Nevertheless looking at eq. (4.63) we see that doing it the right way just
contributes a common phase factor which does not change the result. Important is that the diagonal
terms do not depend on n.
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Figure 4.3: The numerical pendulum data is compared to the WKB result for β ≈ 0.07648,
k = 0.8π and ε = 0.01. The energy values are sorted by the corresponding 〈ψn|Î|ψn〉. This
sorting has to be done because of of the (nearly) degeneracy due to the two sides of the minimum
of the parabola in (a). There the pendulum spectrum (red) is shown and also the leading order
in the WKB solution (black) is shown. One can see that the qualitative shape is met quite well.
In (b) the di�erence of the WKB result eq. (4.38) to the numerical result is shown. Therefore
we took the energy eq.(4.38) in di�erent orders in ε. The red line is O(ε), the green line is O(ε2),
the blue line is O(ε3), the magenta line is O(ε4) and the cyan line is O(ε5). It is obvious that
only the solution with at least order ε3 reproduces the characteristic features in the vicinity of
n = 0.

Inserting this into eq. (4.16) we arrive at

F (k1, k2, β, t) =

∣∣∣∣∣∑
n,m

Jn

(
k2
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)
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)
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)
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2
t
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(4.60)

=
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ı
2
t
(

(n2−m2)ε−(n−m)β̄
)∣∣∣∣∣

2

. (4.61)

Here we can see that the �rst sum over n only does not depend on time which
means that it leads to a non decaying component. This is shown in �g. 4.4(a).
There a pendulum and the WKB approximation eq. (4.61) are compared. There
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(a) (b)

Figure 4.4: In this �gure we compare the WKB result (red) to the numerical result for the
pendulum (black). We show the β ≈ 0.7486, k1 = 0.6π, k2 = 0.8π, ε = 0.05 case. In (a)
we show the �delity with the simple spectrum of eq.(4.58). Obviously the oscillations are
reproduced quite well but the decay is not included. In green the saturation value of the �rst
term in eq. (4.61) is shown. It describes the o�set quite well. In (b) the �delity is calculated
using the more detailed spectrum from eq. (4.38). It reproduces the oscillations and the decay
well. In blue the running average over 50 kicks is shown. In green we plotted the contribution
of the diagonal terms. As we can see it reproduces the averaged �delity quite well.

are two characteristic features; the decay and the oscillations modulated on it.
The oscillations are described well by the WKB solution where the decay is not
covered. On the other hand the �rst sum in eq.(4.61) can be evaluated and
describes the saturation value quite well.

In order to include the decay we have to include terms in the energy which
do not vanish trivially as the diagonal n = m terms in eq. (4.61). This means
we need to include further terms in order to get rid of this behaviour. Therefore
we have a look at eq. (4.38). The ε2 term will not destroy the saturation as it is
a common phase of all diagonal terms. It even has a part independent of n or
m which contributes a phase to all terms and which means that the overlap is
spinning in the complex plane9. The ε3 term is the �rst term which really gives
each diagonal term an unique phase evolution so that we cannot �nd a partial
sum having a common phase.

We give the energy di�erences needed in the exponent in eq. (4.47). From
eq. (4.38) we obtain

∆En,m ≡ En
k2
− Em

k1
=

(n−m)β̄ε+

(
n2 −m2

2
+
k2

2 − k2
1

4β̄2

)
ε2 − k2

2n− k2
1m

2β̄3
ε3 +O(ε4). (4.62)

In order to see the structure more clearly, we rewrite the expression by introducing
9Nevertheless this term will be very important when building ensembles as it carries the strongest

β̄ dependency.
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the distance to the diagonal d by n = m+ d. This way we obtain

∆Em+d,m = dβ̄ε+

(
d2 + 2dm

2
+
k2

2 − k2
1

4β̄2

)
ε2−k

2
2d+ (k2

2 − k2
1)m

2β̄3
ε3+O(ε4). (4.63)

We can see that most of the terms contain a factor d which means that they vanish
on the diagonal. The leading order of the energy di�erence terms on the diagonal
are of order ε3 as the ε2 term contains no m. The ε2 term even has a contribution
containing no m or d which means that it is a common phase for all terms. It
will be important if we average over di�erent β̄ as it might not be sensitive to
di�erent m but it is to di�erent β̄. Nevertheless the diagonal elements contribute
the smallest energies to the time evolution and therefore also the longest time
scales.

Inserting eq. (4.63) into eq. (4.47) we obtain

F (β, k1, k2, ε, t) =∣∣∣∣∣
∞∑

m=−∞

Jm

(
k2

mε+ β̄

)
Jm

(
k1

mε+ β̄

)
J0

(
k2 − k1

mε+ β̄

)
eı
t
ε
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. (4.64)

We are interested to describe the long time behaviour. In �g. 4.4 we could see
that the o�-diagonal elements and the leading energy terms already give rise to
the fast oscillations. As the diagonal carries the low energies we have to analyse
their structure in order to understand the long time behaviour. The coe�cients
of the diagonal terms are shown in detail in �g. 4.5. These coe�cients decay
very fast for not too small β̄ and k. The sign of the coe�cient is invariant with
respect to the change from m → −m in the argument of the Bessel functions
as both Bessel functions on the left contribute the same sign and it therefore
cancels. Nevertheless, for ε 6= 0, the argument of the Bessel function does not
have this property. However the di�erence due to this asymmetry is very small.
In �g. 4.5(b) we plotted the e�ect due to the m dependency of the argument. To
show this we plotted∣∣∣∣Jm(k1

β̄

)
Jm

(k1

β̄

)
J0

(k1 − k2

β̄

)
−Jm

( k1

β̄ + εm

)
Jm

( k1

β̄ + εm

)
J0

(k1 − k2

β̄ + εm

)∣∣∣∣. (4.65)
This di�erence is very small and we can also see that for small m even the
relative di�erence is small compared to �g. 4.5(a). Therefore we neglect this m
dependence of the argument and only keep it in the order of the Bessel functions.

The coe�cients in �g. 4.1 have a quadratic shape. For Bessel functions we can
give the series representation of eq. (A.9). For small argument we just take the
�rst term in this expansion. This means for large n using Stirling's approximation
[Abr64],we get

Jn(x) ≈ xn

2nn!
≈ 1√

2πn

( ex

2n

)n
. (4.66)
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(a) strength of asymmetry and magnitude of co-
e�cients

(b) di�erence of coe�cients with and without n
dependency in the argument of the Bessel func-
tions

Figure 4.5: In this �gure we show some of the properties of the diagonal coe�cients. We
show the β ≈ 0.7486, k1 = 0.6π, k2 = 0.8π, ε = 0.05 case. In (a) the coe�cients of the
diagonal terms in eq. (4.64) are plotted. We can see that they decay rapidly with growing
order of the Bessel functions. Comparing the m with the −m coe�cients we see that there is
just a weak asymmetry. This asymmetry is due to the m dependency of the argument of the
Bessel functions. This is shown in (b). Here we see the absolute value of the di�erence of the
coe�cients with argument k/β̄ and k/(β̄ + εm), see eq. (4.65). We see that the di�erence is
very small. Both �gures are in semi-logarithmic scale. Especially for small m also the relative
di�erence is small.

In our case the argument is much smaller as the order. The di�erence between
the arguments for di�erent k is also small compared to the order. Therefore we
neglect the m dependence and assume that the arguments are equal. We will call
this argument x. Applying this approximation we obtain

Jn(x)Jn(x)J0(x) ∝ 1

2πn

(ex
2n

)n(ex
2n

)n
=

1

2πn

( ex

2n

)2n

. (4.67)

Taking the logarithm and neglecting terms proportional to lnn we see that the
dominating term is a n2 term. We can see this scaling also in �g. 4.5(b). This
ensures also that the coe�cients on the diagonal drop very quickly.

We will now insert this approximations into eq. (4.64). This means we will
neglect the m dependency in the denominator of the arguments of all Bessel
functions.

F (k1, k2, β, t) ≈
∣∣∣∣eı k2
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(4.68)
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In the discussion we will use this approximation and the di�erent terms very often.
What we have just given is the basic idea of the approximation. Motivated by this
idea we will give own names the di�erent parts of the �delity. The �rst idea is to
separate the diagonal and the o� diagonal contributions by F = |f exact

diag +fo�diag|2.
This leads to the de�nition of
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The next step in the approximation was to neglect the m dependency of the
argument which motivates the de�nition of
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. (4.72)

These approximation will be the starting point for the theory for ensembles.
Therefore it is important to de�ne a versatile vocabulary here.

In order to understand the value of this approximation we will �rst compare it
to the result without the approximations, which is done in �g. 4.6. In �g. 4.6(a)
we show fdiag including terms up to m = 2 and f exact

diag . We can see that the �rst
few terms inherit most of the characteristics and the di�erences are very small.
In �g. 4.6(b) we compare the approximation from �g. 4.6(a) to the full WKB
result and the pendulum. fdiag describes the long time behaviour of the WKB
result very well which means that the long time behaviour is determined by the
diagonal terms as already suspected. Unfortunately the WKB result misses the
decay of amplitude seen in the pendulum case. This e�ect will be much stronger
when being near the nonlinear resonance island. In chapter 5 we will discuss the
behaviour in di�erent regimes and in this discussion also some considerations how
to explain this decay.

We have now a pretty good description for the �delity of single rotors in
comparison to the pendulum. Now we can go on and see what we can �nd out
on the �delity of ensembles of rotors.
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Figure 4.6: In this �gure we compare eq. (4.70) to the full WKB result, the full diagonal result
f exactdiag and the pendulum result. We show the k1 = 0.6π, k2 = 0.8π, ε = 0.05 and β ≈ 0.07648

case. In (a) we compare fdiag (red) to the f exactdiag (black). In fdiag we included the terms up
to m = 2. In the inset we can see that the di�erence is very small. In (b) we show the
full WKB result (red), the pendulum result (black), and |fdiag|2 (green),. The diagonal result
approximates the long-time behaviour of the WKB result very well which unfortunately misses
some decay of amplitude compared to the pendulum result.

4.6 Properties of WKB Fidelity - Ensembles

As mentioned in chapter 2 one cannot prepare single rotors but rather ensembles
of rotors in the experimental set ups. Therefore we need to understand the e�ects
due to building an ensemble. Unfortunately we could not arrive at a closed
theory for these ensembles. Therefore we will give some rather weak results for
the �delity of pendulums. As we will mention in chapter 5 there are also some
problems in the QKR-pendulum correspondence.

We will use a special set of parameters, which will be introduced and justi�ed
in the plots in chapter 5. To build an analytical formula we will take eq. (4.72)
and use it to build an ensemble. But �rst we would like to give an idea of the
mechanism which leads to the decay.

In subsection 4.5.3 we showed how ∆En,m in�uences the �delity on the corre-
sponding time scale. Therefore we focused on the dynamics of single rotors. Now
we will focus onto the dynamics of an average over several rotors. As introduced
in chapter 2 the average is de�ned as

F (k1, k2, ε, t) =

∣∣∣∣∣
∫ β2

β1

f(β, k1, k2, ε, t)dβ

∣∣∣∣∣
2

, (4.73)

where f is the overlap and β1/2 are the boundaries of the averaging interval.
When discussing single rotors we focused on the interplay of ∆En,m with the
coe�cients by focusing on the dependence on n andm. In ensembles also di�erent
β contribute to the result. We will see that the averaging introduces a decay of
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�delity. This decay can be understood by the oscillations that are generated when
varying β. In order to understand the approximations we do, it is important to
understand how averaging of a fast oscillating function leads to a decay.

One example of this mechanism was already used in section 4.1. There we used
the stationary phase approximation to introduce the Legendre transformation.
The stationary phase approximation is used when dealing with integrals over
oscillating terms. One example of such an expression is

F (λ) =

∫ ∞
∞

dteıλf(t). (4.74)

By expanding the exponent in a Taylor series around an isolated extremal point
we arrive at an expression whose leading term is quadratic. Truncating after this
term we can integrate the resulting Fresnel integral and we obtain

F (λ) =

∫ ∞
−∞

dteıλf(t) ≈

√
2πı

λf ′′(t0)
eıλf(t0). (4.75)

This example from [Sch96] shows that fast oscillating functions behave like Dirac
δ-functions. In this case the oscillating function extracts the point of stationary
phase. The same mechanism is also used in the theory of Dirac series. These are
series of functions whose integral is 1 and which converge to 0 nearly everywhere.
This series can be used to derive the Dirac δ-distribution [Arf08]. Two well known
examples for such series are the sinc representation and the Fresnel representation.
In this examples a sin(t/ε)/t and an eıt

2/ε
√
ε term are used to obtain the Dirac

property in the limit ε→ 0.
To show how oscillations can lead to a δ-function like behaviour we have a

look at ∫ b

a

eıtxdx =
1

ıt
eı
b+a

2
t 2ı sin

(b− a
2

t
)
. (4.76)

In the limit t → ∞ we observe a 1/t decay. If we assume t = 1/ε and a ≈ b
this is an approximation of the sinc representation. This example shall show how
integrals over oscillating functions decay when increasing the oscillation frequency
as long as the integration interval does not contain a point of stationary phase.

This is the mechanism we will use in the following. At �rst we will identify
the important terms. Then we will do some approximations which allow us to
arrive at an analytical approximative expression for the �delity.

Diagonal Approximation

We showed that a strong dependence on β in the exponent leads to a decay. The
exponent is given by t∆En,m/ε. In the regime where β̄ is not too close to zero the
�rst term in eq. (4.63) has the strongest e�ect. This means that the o�-diagonal
terms have a very fast decay due to the averaging procedure. To check this we
compare |f exact

diag |2 to the �delity of the pendulum. This is shown in �g. 4.7. We
can see that on longer time scales the decay of the �delity of the pendulum is well
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Figure 4.7: In this �gure we compare the ensemble using fdiag to the �delity of the pendulum.
We used k1 = 0.6π, k2 = 0.8π, ε = 0.05, and β ∈ [0.035, 0.135]. For the diagonal WKB
ensemble we used 10000 rotors and for the pendulum we used ≈ 70000 rotors. We can see that
the diagonal approximation describes the pendulum data very well.

described by the diagonal terms of the WKB result. On the other hand we can
see that the o�-diagonal terms have hardly any in�uence for longer time scales.

First we will also do the approximations shown in the last section. This means
we neglect the m dependency of the argument of the Bessel functions. We will
therefore recall the de�nition of fdiag and introduce a new notation

fdiag ≡ eı
k2
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2
1

4β̄2 εt

(
c00 + 2
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cmn ≡ Jm

(k1
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)
Jn

(k2

β̄

)
J0

(k2 − k1

β̄

)
(4.77b)

A di�erence to single rotors is that we also need to consider the β̄ dependence
of the coe�cients. As we can see in �g. 4.1, far away from the island10 the β̄
dependency is very weak. Therefore we neglect this dependence and assume that
the coe�cients are constant. We �x their value at the arithmetical mean of the
integration boundaries. Thiis choice is arbitrary and might not be the best. It is
made to simplify the equations which will arise in the following calculations.

Neglecting the β̄ dependence in the argument of the Bessel function reduces
the calculation of the ensemble to the structure of the exponent. So we have to
focus on its β̄ dependence. We can see that the exponent has a 1/β̄2 and a 1/β̄3

dependence. In the example above we showed how to integrate a phase factor
with linear dependence on the phase. Integrals of the form

Pα(x) =

∫ b

a

eıxz
α

dz (4.78)

10For the parameters in �g. 4.1 the island has a diameter of ≈ 0.2 in units of β. This means the
rotors with β < 0.4 are of rotating type and the others are of oscillating, and therefore island, type.
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cannot be expressed by means of simple function. We showed that we can give a
simple expression in for α = 1 but already for α = 2 we need Fresnel integrals.
We do not know any simple solutions for α < 1. As only linear exponents can
be integrated in a simple way we need to linearise the phase. This can be done
by means of Taylor expansion. We expand the exponent at the middle of the
integration interval. This leads to the following approximations and de�nitions

1

β̄2
≈ 1

β̃2
− 2

β̃3
δβ̄

1

β̄3
≈ 1

β̃3
− 3

β̃4
δβ̄ β̃ =
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2
β̄ = β̃ + δβ̄, (4.79)

where β̄1 and β̄2 are the boundaries of the averaging interval. Introducing this
approximation into eq. (4.77a) we obtain
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(4.80)
This expression can be integrated. We will show here as an example the inte-
gration of the c00 term. This will explain the general procedure. After writing
the cosine as a sum of complex exponentials the same method can be used for
the other terms too. As the calculations are lengthy and not very enlightening
we refer to appendix D. De�ning δk2 ≡ k2

2 − k2
1 and δ ≡ β̄2 − β̄1 we can give the

contribution of the c00 term by∫ β2
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In appendix D we de�ned I(k1, k2,m, ε, β̃, t) which allows us to give the complete
integral as∫ β2
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(4.83)

This is the �nal formula for ensembles in diagonal approximation. The result
is shown in �g. 4.8. There the same data from �g. 4.7 and the theoretical result
of eq. (4.83) are plotted. We can see that the result reproduces some of the
qualitative features. It reproduces the period of the oscillations and the decay
behaviour approximately. The period of f app

diag is a little bit too long and eq. (4.83)
overestimates the minima.

The deviation can be understood by reconsidering the approximations we did.
To get a feeling of what approximation has which e�ect we plotted the di�erent
stages of approximation in �g. 4.9. Neglecting the m dependency does hardly
change anything. This is expected as we already showed in �g. 4.5(a) that the
error is very small. The negligence of the β̄ dependency has a much larger e�ect.
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Figure 4.8: This �gure shows the same setting as �g. 4.7 but also includes the theoretical result
(green) from eq. (4.83). We can see that the theoretical curve describes the decay pretty well
and it also describes the oscillationsapproximately.

Figure 4.9: In this �gure the di�erent stages of the approximation leading to eq. (4.83) are
shown. As usual we show the case of k1 = 0.6π, k2 = 0.8π, ε = 0.05, and β ∈ [0.035, 0.135].
The �gure contains an ensemble using f exactdiag (black), the same but with neglectedm dependence
in the arguments of the Bessel functions (fdiag) (red), the result with neglected m dependence

and introduction of β̃ to the arguments of the Bessel functions (green), and in the end the
result from eq. (4.83), where also the phase dependence is simpli�ed (fappdiag) (blue). We can see
that the �rst approximations are small and the largest deviation is due to the simple phase
approximation. In the inset the same data is shown on a linear scale. Comparing these to the
logarithmic scaling we can see that the absolute correspondence is not as good as the logarithmic
plot pretends. Nevertheless we can deduce the essential features of the decay
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This can be understood as by doing this approximation we match two coe�cients
perfectly to obtain a cosine in eq. (4.77a). In the exact WKB result11 there would
not be a perfect match and therefore we would still see the small di�erence in the
minimum. The �delity does not decay to zero as we still have the 1/β̄α in the
exponent. This prevents a perfect match. Therefore the green line overestimates
the minimum only slightly. By removing the non linear β̄ dependency in the
exponent we generate a perfect match of the phases. By enforcing this match we
were able to introduce the sine in eq. (4.82) and eq. (D.5). This is also the reason
why we �xed β̃ to be the arithmetical mean of the integration boundaries. The
price we pay is an overestimation of the minima.

In the inset of �g. 4.9 we can see that the position of the maxima gets worse for
longer times but the hight of the maxima is met quite well. As already mentioned
we chose β̃ in order to get the sine in eq. (4.82) and eq. (D.5). This choice might
be bad for approximating a function which is a sum of a 1/β̄2 and a 1/β̄ term.
A linear approximation has to miss the skewness of such a function. Therefore
we probably have chosen not the best β̃ for the description of the period of the
oscillations in �g. 4.9. A linear approximation reproducing the average value
and the average slope would be better but would be more arbitrary, as it is no
expansion of the exponent, and the formulas would be more complicated.

4.7 Summary

In this chapter we introduced an approximative theory for the pendulum using
the WKB approximation. We had to use approximations of di�erent quality in
order to be able to get a closed picture. Especially the evaluation of the wave
function was only possible in leading order in a consistent way. For the spectrum
we were able to give a procedure that reproduces the spectrum in high precision.
Nevertheless we have to keep in mind that this approximation can only be valid
in the rotator like regime and has to fail near the island. In the picture of the
WKB spectrum one is able to develop a better understanding of the behaviour
observed in �g. 3.2. Although we are able to understand the structure of the
dependence of the rotator like states on β by the WKB spectrum we cannot
explain avoided crossings in our semi-classical theory. In the picture of WKB we
expect real crossings whereas from the point of view of quantum mechanics we
did not �nd a reason why the crossing should not be avoided and in the lower
lying levels avoided crossings can be seen. In chapter 3 we also pointed out the
similarity to the band model in which at the one border a gap exists in �rst
order perturbation theory. We did not follow this question although it would
be interesting to understand why and how the WKB approximation is getting
unstable near this crossings.

We could give an approximative result for the �delity of small ensembles.
However this approximation is very crude and we do not have a very strict es-
timation of the error. This theory is surely a �rst shot as presented here. One

11We still use the WKB approximation as an approximation and would like to emphasise that �exact�
in this context means not doing the approximations we introduced.
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could try to obtain a more detailed picture of the error by studying the in�uence
of the neglected terms in the exponent. We think that one might try to include
the second order as it can be treated by means of Fresnel integrals and so there
might be some approximations that might give some insight. We decided not
to follow this idea as we felt that it was more important to look whether this
approximation helps in the understanding of the QKR data.

Until now we only focused on the comparison to the pendulum data and a
regime where we expect our approximations to hold. We still need see in which
regime our approximations are feasible. Therefore we will compare to numerical
calculations in chapter 5. There we will also go back to the system of the quantum
kicked rotor that was neglected in this chapter.



Chapter 5

Numerical Results

Until now we have just checked the correspondence of pendulum and QKR by
using Husimi functions. We also derived a theory for pendulums and ensembles of
pendulums. These results were checked shortly against numerical data. We did
not yet discuss the behaviour in di�erent regimes. This is what we will do in this
chapter. We describe the qualitative properties of the phase space. After that
we will describe the �delity qualitatively in order to de�ne characteristics. Using
these characteristics we will compare the three approaches to each other. After
discussing the properties of single rotors we will switch to sums of two rotors
and go on with ensembles. In this section we will continue the discussion of the
analytical result from section 4.6. We will de�ne several characteristics of the
decay of �delity and show in which regime which approximation is valid.

5.1 Di�erent Regimes of the QKR

To do numerics we need to de�ne the range of the parameters of interest. Some
of the parameters will be determined by practical needs, as for example phase
space structures, others can be chosen freely. We �xed the kicking strength to
values that are comparable to the experimental ones used in [Wu09]. We chose
k1 = 0.6π and k2 = 0.8π. The other parameters can now be determined by several
other needs. One of the most important ones is that we need the ε-classical phase
space to be near integrable which means that k̃ / 0.1. In order to ful�l this need
we choose the ε range of interest to be ε ∈ [0.1, 0.001] and �x the ε-classical phase
space in this way.

As the ε-classical phase space is de�ned now we have to chose the regions in
which we want to place the rotors. As we determined the parameters in a way
that the phase space is always near integrable we do not have stochastic regions
in the phase space1. The only structures we have to respect besides near trivial2

tori are resonances leading to islands. The most dominating resonance structure
is the �rst order resonance at J = 0 and ϑ = 0 which was analysed in [Abb09].

1At least not on the scale of the Planck cell.
2Near trivial tori is meant to be in the sense of Hamilton-Jacobi theory. There one chooses the

canonical variables so that the trajectories are �at. So are the rotator like orbits in the case k̃ = 0.

71
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(a) (b)

Figure 5.1: We plotted rotors with β ≈ 0.177, ε = 0.05, k1 = 0.6π and k2 = 0.8π. This β value
corresponds to a initial state representing J ≈ −2.02 which is on to the third order resonance
in �g. 5.2. To see the behaviour clearer we build the running average over 100 kicks. The
ascending order of the rotors is green, red and black, where the spacing is ≈ 0.0003. In (a)
we show QKR data and in (b) we show pendulum data. We can see that the revival behaves
smooth in the pendulum case and has a dip in the QKR data. This is due to the higher order
resonance.

Abb et al. analysed the main resonance by using the harmonic oscillator
approximation. They found a rapid decay and revivals. Their argument, however,
should also be valid in states that are dominated by higher order resonances. In
order to understand in what way higher resonances in�uence the �delity, we
placed in �g. 5.1 some rotors near to the third order resonance at J ≈ 2. We
show three rotors with a spacing of about ∆β ≈ 0.0003 and can see that in the
case of the QKR the middle rotors shows a di�erent behaviour in contrast to the
neighbouring ones. This behaviour cannot be seen in the case of the pendulum as
the pendulum might have also rational winding numbers but has no islands near
to such periodic points in phase space. The in�uence is not as large as in the case
of the main resonance because the higher order resonance only covers the rotors
in parts due to its wave shape in phase space. Nevertheless, we notice that there
is an in�uence on the �delity that leads to a qualitative di�erence that lies in the
qualitative di�erence of the trajectories. As we are not able to understand the
in�uence in detail we will try to use only rotator like orbits for our description.

In order to avoid higher order resonances we have to have a close look at the
ε-classical phase space. In �g. 5.2 we show the ε-classical phase space for the case
of ε = 0.1, which is already our worst case, in the sense that it will be the largest
ε we use in this thesis. It is enough to show only half the phase space as the other
half can be obtained by point mirroring at J = 0 and ϑ = π what can be seen
easily by inserting this transformation into eq. (2.4). On the scale of �g. 5.2 we
observe the primary resonance at J = 0, the second order resonance at J = −π
and the third order resonance at J ≈ −2.
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(a) Overview over the complete phase space (b) Details of the subensemble we chose

Figure 5.2: We show the ε = 0.1 and k = 0.8π phase space. In (a) the half of the phase space is
shown. The black frame is a region which satis�es the requirements indicated in the text. This
region does not contain higher order resonances or the existing resonances are small compared
to the Planck cell volume 2π|ε|. In (b) a detailed plot is given. The solid black box represents
the phase space cell and the black frame the subensemble also indicated in (a).

The size of the main resonance can be estimated by the pendulum approxi-
mation [Lic92] by calculating the width of the island of the pendulum. This way
we obtain for half the diameter of the island

∆Jhalf =
√
k̃. (5.1)

This estimate is also valid for higher order resonances as these can be mapped to
primary resonances using canonical perturbation theory [Lic85]. We will, how-
ever, not use this for higher order resonances. To decide whether a resonance
may in�uence the dynamics we need to compare its size to the volume a state
needs in phase space. This volume is the Planck cell and is given in ε-classical
approximation by 2π|ε|[Gia91]. This means that the Planck cell grows like ε and
the island like

√
ε but also that the Planck cell shrinks faster than the princi-

pal island. This way we are able to place states on the island even in the case
ε→ 0 and can observe the behaviour of the island. Nevertheless, the phase space
volume o� the resonance island shrinks and so is its in�uence onto an ensemble
covering the complete phase space cell.

In order to de�ne ranges for β in which we want to test our theory we have
to �nd stripes in the ε-classical phase space in which there is no higher order
resonance and the trajectories are of rotor type. We will therefore focus on the
spaces in between the resonances. In �g 5.2(b) we show the stripe between the
second and the third order resonance in detail. By comparison with the Planck
cell we see that the resonances are large enough to carry a quantum state and
have to be avoided. The stripe that is marked corresponds to β-values

β ∈ [0.035, 0.135]. (5.2)
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This β-values are obtained by using eq. (3.6) under the assumption of a I = 0
state. This is important to mention as J , I and β are no equivalent quantities.
The quasi-momentum is a conserved quantity and therefore does not change in
time. The physical momentum is I which is not continuous when treated quantum
mechanically. The procedure we use here to �x β values are only valid for initial
states.

The stripe we have just de�ned is very far from the island and will therefore
be called the far regime. In order to analyse the dependence we need to �nd also
stripes near to the island and in between. The space between the third order and
primary resonance is a candidate and is shown in �g. 5.3 for several values of ε.
The space without large higher resonances is smaller than in the case far from
the island. We can de�ne another stripe which we call the intermediate regime
by

β ∈ [0.20, 0.30]. (5.3)

This regime is reasonable even for ε = 0.1, but it contains the fourth order
resonance which is small compared to the Planck cell for large enough ε. If we
restrict ε further we can de�ne a stripe that avoids this fourth order resonance
for ε ≤ 0.05 by

β ∈ [0.27, 0.37], (5.4)

which will be called the near regime. This regime needs to be handled with care
as it is only valid for small enough ε.

The regimes we have just de�ned will be our testing ground in the rest of this
chapter. We will now check whether these regimes we just de�ned also in�uence
the behaviour of the �delity. Now we will have a look at �delities and analyse
qualitative changes as we scan the various regimes.

5.2 Single Rotors

We will start the numerical analysis of the �delity with the most simple case;
the single rotor. We will use the term rotor for QKR the rotor in pendulum
approximation and the rotor in WKB approximation. Which method was used
to obtain the data will be said where the results are shown. We try to emphasise
this way that we treat the QKR in di�erent approximations, which means we will
not treat a pendulum but a rotor in pendulum approximation.

Before we can compare the di�erent approaches to each other we will need
to de�ne the characteristics of the �delity of a rotor we will use to evaluate the
quality of the approximation. De�ning this characteristics will be the basis of
our further discussion of the �delity as these properties will be our vocabulary
we use. Unfortunately the pendulum approximation has a systematic deviation
which will be discussed in section 5.2.2 so that it is impossible to de�ne a strict
measure for the quality of the approximation. The discussion therefore will be
rather qualitative and because of that we need to de�ne the terms and subjects
of the discussion carefully. We will start with the discussion of these properties
and the pairwise comparison of the approaches.
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(a) (b)

(c) (d)

Figure 5.3: We show the case of k1 = 0.6π and k2 = 0.8π. In (a) and (c) we show the phase
space for ε = 0.05 and in (b) and (d) for ε = 0.1. In (c) and (d) we indicated the stripe
corresponding to β ∈ [0.27, 0.37] and in (a) and (b) we indicated β ∈ [0.20, 0.30]. The black
boxes indicate the Planck cell.
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To explain the behaviour we will utilise the WKB result to show in what
way the correspondence breaks down. The behaviour of this approximation was
already discussed in chapter 4. We will now use its properties to see how the
approximations fail and which properties are not described by the pendulum
approximation or the WKB result. It will also help to understand why and how
the approximations fail.

5.2.1 Qualitative Description

Before we treat the rotors in di�erent approximations in di�erent regimes we �rst
have to describe the rotors qualitatively. This is very important as we will also
de�ne several characteristics of the �delity we will describe. We have a look at
a rotor which is in the overlap of near and intermediate regime as this can be
regarded as the most moderate regime. In order to keep the time scales short3

we decided to take a rather large ε. Such an example is given in �g. 5.4. We
see immediately that there are several distinct time scales. In �g. 5.4(a) we can
see that there are some long time oscillations with fast oscillations modulated on
it. The fast oscillations look like noise on this scale. Averaging over 100 kicks
kills this fast oscillations and shows the long time behaviour quite clearly. In
�g. 5.4(c) we show the beginning of the �rst oscillation and can see that the fast
oscillations again have a structure. The fast oscillations from (a) turn out to be
an still fast oscillating function with an oscillating envelope function. So we can
distinguish three time scales:

• the long time oscillations which have the largest amplitude and could be
regarded as collapse and revivals,

• the envelope oscillations,

• the fast oscillations modulated on the envelope.

These three characteristics will be our criteria for the quality of the approxima-
tions. Later we will however stop distinguishing the last two and just divide in
long time oscillations and fast oscillations.

For the description of the characteristics of the �delity we focused on a case
that is rather near to the island in contrast to the examples discussed in chapter 4
which were far from the island. We did only compare the WKB result to the
pendulum in �g. 4.6 and not to the QKR. This is done in �g. 5.5. We can see
that the correspondence between the pendulum and the QKR is poor whereas the
correspondence between pendulum and WKB is better. This discrepancy can be
understood qualitatively and will be the subject of the next subsection where we
will focus on the quality of the approximation when going to a di�erent regime.

5.2.2 Quality of the Approximations

We will now focus on the properties of the results in di�erent approximation in
more detail. As we already noticed in the description of the qualitative properties

3A larger ε leads to a stronger perturbation which results in a more rapid decay of �delity.
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(a) (b)

(c) (d)

Figure 5.4: In this �gure we show the �delity of a single rotor with ε = 0.05, k1 = 0.6π,
k2 = 0.8π and β ≈ 0.27031. The black lines is the WKB result, the green line is the pendulum
data and the red line the QKR. In (a) we show an overview. To show the details we averaged
the data from (a) over 100 kicks to kill fast oscillations in (b). We also added the result from
eq. (4.70) in blue. In (c) we show the initial decay in detail. The inset shows the detail of the
fast oscillation. In (d) a detail in the second revival is shown.
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(a) (b)

Figure 5.5: Here we show a rotor for ε = 0.05, k1 = 0.6π, k2 = 0.8π and β ≈ 0.07648. The
QKR data is shown in red, the pendulum data in green and the WKB result in black. In (a)
we show the mentioned data. In (b) we show the same data as in (a) averaged over 100 kicks.
We can see that, although the fast oscillations coincide quite well, the long time oscillation is
not described by the pendulum approximation.

the quality of the approximation di�ers between rotors near and far from the
island. In this section we focus on understanding the di�erent characteristics by
looking at the spectral properties and the coe�cients. To get a better picture we
need to discuss the transition more accurately.

To discuss this breakdown of the correspondence in a more systematic way
we will compare rotors in di�erent regimes. In �g. 5.6 we plotted three di�erent
rotors using QKR, WKB and pendulum. To see the long time characteristics
better we averaged over 100 kicks.

We will now compare the results pairwise in order to work out the value of
the di�erent approximations. We will begin with the comparison of pendulum
and WKB result which is more or less the continuation of the brief discussion in
section 4.3. After that we will compare the pendulum to the QKR and explain
in what way the pendulum approximation may help to describe the QKR.

WKB and Pendulum

In chapter 4 we already compared the WKB and pendulum data shortly. There
we used an rotor which is in the regime far from the island. We saw a very good
correspondence there. The case of a rotor far from the island is a case of good
agreement between pendulum and WKB as can be seen in �g. 5.6. In this section
we need to understand why and how this correspondence breaks down when
approaching the island and which characteristics of the �delity are nevertheless
described. We will repeat the interpretation of the pendulum as an perturbed
rotor and show how the approximations in�uence di�erent quantities. In order
to prepare the discussion of the properties described by the WKB result we will
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(a)

(b)

(c)

Figure 5.6: In this �gure the �delity using WKB (black) and the pendulum (green) are compared
to the QKR (red). We show the ε = 0.05, k1 = 0.6π and k2 = 0.8π case. In (a) we show β = 0.1,
in (b) β = 0.2 and in (c) β = 0.3. The data is averaged over 100 kicks to kill fast oscillations.
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give a description of the correspondence between WKB and pendulum data in
di�erent β ranges.

In the discussion of the WKB result in section 4.3 we chose some rotor deep
in the rotating regime of the pendulum phase space. This is important for the
approximations to be valid as we already showed that the WKB result can be
understood essentially as perturbation of the free rotor. In this interpretation the
kicking term is a perturbation to the free rotor and the quality of the approxima-
tion is governed by k̃/E as this determines the quality of the Taylor expansion in
eq. (4.21). This is also what we see in �g. 5.6. We can see that we have a nearly
perfect correspondence in �g. 5.6(a) which breaks down as we go closer to the
island.

Another hint for the interpretation of the WKB result as an perturbation of
the free rotor is the structure of the energy eq. (4.38). There we can see that
the expansion is also an expansion in powers of 1/β̄. This terms explode as we
approach the island4. This is a sign that the approximations for the energy break
down.

Before we continue the discussion we will �rst use the example in �g. 5.4 to
describe the features and problems of the WKB result closer. We will therefore
compare the characteristics de�ned in subsection 5.2.1. In �g. 5.4(c) we can see
that the fast oscillations and the envelope of the pendulum is described well by
the WKB result. This correspondence breaks down for larger times as can be
seen in (d). In in the long time behaviour we observe a variation of the hight of
the revivals in the pendulum data in �g. 5.4(b). This variation in hight is not
described by the WKB result. Although the variation in the hight of the revivals
are not described the period of the revivals is described perfectly.

When focusing onto the behaviour in di�erent regimes we can see that between
the main revivals in �g. 5.6(a) smaller bumps appear in �g. 5.6(a) to �g. 5.6(c)
when approaching the island. In the discussion of �g. 5.4(b) we found that the
hight of the revivals varies in the pendulum data. This variation gets stronger
near the island. The WKB result however does not show such a behaviour but
describes the appearance of the bump between the principal revivals. To under-
stand this behaviour we will now use the results from chapter 4.

We have just seen that the WKB result reproduces the fast oscillations only
initially. Nevertheless the long time behaviour is described well. To understand
this behaviour we will have a closer look at eq. (4.63) in order to identify the
terms that lead to this fast oscillations. In section 4.3 we discussed shortly that
the contributions with d = 0 are of order ε2 whereas the other energy di�erences
are of order ε or 1 and therefore much larger which corresponds to shorter time
scales. That the long time behaviour is due to the diagonal terms can be seen
when comparing fdiag to the averaged WKB data in �g. 5.4(b) where the WKB
data in diagonal approximation describes the averaged WKB data very well which
means that the fast oscillations are due to the o� diagonal terms.

The revivals can be associated to special terms in eq. (4.63) where d = 0.
Therefore we use the WKB result in diagonal approximation eq. (4.70) for the

4Reminder: The island corresponds to β̄ = 0 in contrast to β where the principal nonlinear island
corresponds to β = 0.5. This is discussed in detail chapter 3.



5.2. SINGLE ROTORS 81

discussion. Calculating the periods of the cosine terms we can identify the main
revival in �g. 5.4(b) with them = 1 term. As all other frequencies of the cosine are
integer multiples of the m = 1 frequency the bump between the principal revivals
can be associated to the m = 2 term. Which frequency component is present
how strong is given by the behaviour of the coe�cients cmm in eq. (4.77a). The
behaviour of this coe�cients is described in the discussion of �g. 4.1. There we
found out that the components with higher m contribute more when approaching
the island. This corresponds to the occurrence of higher order contribution in
�g. 5.6 when going from (a) to (c) which corresponds approaching the island.

On the one hand we see higher frequency components and the principal revival
in the WKB result but on the other hand the height of the revivals varies in the
pendulum data in contrast to the WKB result. This decay of the principal revival
and the rise of the higher frequency component in �g. 5.4(b) can be understood
as a beating phenomenon. In order to describe this phenomenon as beating one
needs to introduce small energy di�erences between the terms with m = −m′.
One idea would be to take the next order in ε in eq. (4.63) into account that
contributes such an energy di�erence. Introducing this term we observe a beating
in the hight of the revivals and an ampli�cation of the higher order contributions.
The order of the hight is the same as the one observed in the pendulum data but
the temporal sequence of the heights is not described. The next order correction
to the energy therefore cannot explain this decay in the hight of the revivals.
Another idea would be to take further terms in the expansion of the action into
account in eq. (4.21). However, the accuracy we use here proved to be su�cient
enough for our purpose.

The behaviour of the revivals depends crucially on the magnitude of the co-
e�cient, which controls how strong the contribution is, and the exact spectral
structure, which controls the beating behaviour. It is very di�cult to separate
these two contributions in detail as the behaviour arises in their interplay. This
is problematic as we used two di�erent accuracies in our approximations in chap-
ter 4.

QKR and Pendulum

In chapter 4 we focused on the WKB approximation as an approximation for the
pendulum which itself is an approximation to the QKR. We still need to discuss
this correspondence. It is obvious from �g. 5.5 that this correspondence is not
perfect in all regimes and is therefore problematic and we have to notice that
there are β-rotors whose description is not very good. Having a look at �g. 5.6
we can see that the correspondence becomes worse when we go away from the
island. The most striking mismatch is in the period of the long time oscillation,
whereas we can see that this time scale is described pretty well near the island but
scales incorrectly when going away from the island. Unfortunately, this scaling
is what determines the decay when building ensembles as we have seen already
in section 4.6. Despite this mismatch the pendulum describes the amplitude of
the long time behaviour very well and also reproduces the appearance of higher
frequency components in �g. 5.6(b). Having a look at �g. 5.4(d) we can see that
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the pendulum describes the envelope even on longer time scales at least if the
large oscillation scale is described well.

The pendulum shows an impressive accuracy on the long time scale as long
as the rotor is near the island. Comparing �g. 5.4(c) and �g. 5.4(d) we see
that the pendulum describes the envelope oscillation for a long time whereas the
correspondence to the WKB result breaks down. In �g. 5.4(b) we can see that the
variation of the height of the revivals already discussed above coincides between
pendulum data and QKR data. This behaviour is also relatively stable when
varying β as can be seen in �g. 5.6(b) and �g. 5.6(c). The most obvious problem
is the failure in describing the time scales. We can see that when leaving the
island the QKR shows longer time scales than the pendulum.

We can obtain a qualitative understanding of this problems by comparing the
phase space. To understand this we need to recall the di�erent structure of the
phase space of the pendulum and the KR. The phase space of the pendulum is
the cylinder whereas the phase space of the KR is the torus as the the momentum
is also periodic. This is discussed in detail in chapter 3 and can easily be seen in
�g. 3.1. As the pendulum lacks this periodicity it is not periodic at the border of
the phase space cell and therefore has to di�er there from the kicked rotor. This
gives a qualitative motivation why the correspondence breaks down at the border
of the phase space cell.

The amplitude of the �delity also deviates and this di�erence is still present
in the ε → 0 limit. In order to understand this we need to compare the result
for resonant rotors to the resonant limit of the ε-classical theory. In [Wim06] a
result for the �delity of resonant QKR is given as

Fβ̄(t) =

∣∣∣∣J0

(
sin(tβ̄/2)

sin(β̄/2)
δk

)∣∣∣∣2 (5.5)

on the one hand, but on the other hand we showed in chapter 4 in correspondence
with [Abb09] that the pendulum approximation leads to

Fβ̄(t) =

∣∣∣∣J0

(
2δk

β̄
sin
( β̄t

2

))∣∣∣∣2 (5.6)

in the resonant limit. This results can be understood as approximations to each
other by approximating the denominator of the argument of the Bessel function
linearly. To understand the e�ect of this approximation we need to understand the
structure of the term better. The argument is an oscillating function whose period
is de�ned by the numerator and whose amplitude is de�ned by the denominator
so that the oscillation of the argument is centred around zero. This function
is the argument of a Bessel function of zeroth order which is one for vanishing
argument and decays with an oscillating behaviour [Abr64]. This means the
�delity is an oscillating function around some average value which is determined
by the amplitude of the oscillations of the argument. In order to compare an
o�set we averaged the �delity over 8000 kicks. In �g. 5.7 we show this averaged
�delity Fav for di�erent β and for the pendulum and the QKR. We can see that
even in the resonant case the results are better near the island. The mismatch of
initial amplitude can therefore be described already in the resonant picture.
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(a) (b)

Figure 5.7: To illustrate the di�erence between eq. (5.5) and eq. (5.6) we averaged over 8000
kicks to kill the oscillation and obtain the mean value. In (a) we show the averaged �delity
of the QKR (green) and the pendulum (red). In (b) we show the relative di�erence of the
Pendulum to the QKR.

The initial oscillations and the o�set are described by the resonant result for
the QKR. The detuning leads to a decay as was pointed out in [Wim06]. In this
thesis we aim to describe this decay. Taking the results by [Abb09] into account
it is clear that the decay from this saturation value and the saturation itself
must come from the rotator like orbits. On the one hand the harmonic oscillator
approximation describes island states well [Abb09] but on the other hand the
island states cannot describe the saturation in the limit ε → 0 and therefore
also cannot describe the decay of the �delity starting at this saturation value.
The comparison of the results for the resonant case shows clearly that there is a
lack of correspondence between pendulum and QKR, which corresponds to the
di�erent results for the resonant rotor in [Abb09] and [Wim06]. Therefore we
cannot expect this discrepancy to disappear in the resonant case but we can hope
to at least describe other properties.

5.3 Two Rotors

Before averaging over an interval in β we �rst focus on the average over two
overlaps. This will give us a feeling of the properties of the �delity which are
important to describe the behaviour of the average of a continuous ensemble. It
also allows us to see whether the QKR has just a wrong coe�cient or whether it
inhibits a di�erent scaling law in general. As our ensemble average is de�ned as
the average of the overlap we need to add the overlaps

f = 1
2

(
fβ1 + fβ2

)
, (5.7)

where f is the overlap and so the �delity is obtained by F = |f |2. In this section
we also need to consider the phase of the overlap and not just its absolute value
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Figure 5.8: In this �gure we show the absolute value of the sum of two rotors. We show WKB
(black), pendulum (green) and QKR (red) data for β1 = 0.03, β2 = 0.13, k1 = 0.6π, k2 = 0.8π
and ε = 0.05. The corresponding time for the �rst decay is T1 = 1275.9.6 according to eq. (5.9).
We can see that the WKB and pendulum data agree well but both deviate from the QKR data.

as we did for single rotors.
A closer look at the WKB result for the pendulum shows that we could simplify

it by separating a common phase factor in eq. (4.72). This means that the �delity
rotates in the complex plane with a frequency which scales like β̄−2. This is the
dominating frequency scale as the other frequencies are of order ε2. When adding
two overlaps we expect some beating between these two rotors. The beating
frequency can be obtained by considering just the c00 term. Building the average
of two rotors with β̄1/2 we obtain by neglecting the β̄ dependence in c00

f ≈ c00
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)
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where δk2 ≡ k2
2 − k2

1 was de�ned in chapter 4. One characteristic of the �delity
is the �rst oscillation that decays nearly until zero. As a characteristic quantity
we can de�ne the time to the �rst minimum T1. Because the �delity F is de�ned
as the square of f , the time to the �rst minimum corresponds to the time to the
�rst zero of the cosine and therefore to the fourth of the period of the cosine.
This way we obtain

T1 ≡
4π

δk2ε

β̄2
1 β̄

2
2

β̄2
1 − β̄2

2

. (5.9)

In �g. 5.8 we show such an ensemble. As we can see the pendulum does not
describes the QKR data. On the other hand this is not too surprising as we
already discussed that the β̄ scaling is described very poorly by the pendulum
approximation. This beating time is very sensitive to this scaling.

In order to check the scaling of the beating we have to compare pairs of rotors.
When dealing with pairs of rotors we can construct pairs which have a common
property. This way we can check whether they ful�l this property without re-
producing the right absolute time scale. We will construct pairs of rotors having
the same T1. Therefore we �x one pair of rotors whose quasimomentum we call
β̄1/2 and �x the one rotor of the other pair to have quasimomentum β̄′1 and cal-
culate the second quasi momentum β̄′2. As the other parameters are the same we
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(a) Pendulum data (b) QKR data

Figure 5.9: In this �gure we show pairs of rotors which are chosen according to eq. (5.11). The
ensembles shown are β1 = 0.2, β2 = 0.25, β′

1 = 0.25 and β′
2 = 0.28. We show the dashed

ensemble in black and the undashed ensemble in red. In (a) we show pendulum data and in (b)
QKR data.

obtained
1

β̄2
1

− 1

β̄2
2

=
1

β̄′
2
1

− 1

β̄′
2
2

. (5.10)

Solving this equation for β̄′2 we obtain

β̄′2 = ± |β̄1β̄2β̄′1|√
β̄2

1 + β̄2
2 + β̄′

2
1(β̄2

1 + β̄2
2)
. (5.11)

This equation is build just by using the right scaling in β̄. By testing its validity
we can test for the right scaling even if the absolute values do not match.

In �g. 5.9 we show such a pair of rotors. We can see that the initial decay
of the rotor pairs coincides for the pendulum but only coincides approximately
in the case of the QKR. In the QKR data we can see that the �delity deviates
qualitatively after the �rst decay. This means that our model describes the pen-
dulum again pretty well but can only be a very weak model for the QKR system.
In this regime we can only hope to �nd the qualitative behaviour of the initial
decay and a scaling factor in the time. This can be seen in the black plot in
�g. 5.9(b). A second minimum is reached at about t = 2100 which corresponds
to approximately three times the time of the �rst minimum. We have about the
same ratio for the pendulum in �g. 5.9(a). So we can hope to �nd a description
for the qualitative shape up to a �nite some time scaling factor.

5.4 Continuous Ensembles

In the last section we studied how two overlaps interfere. In chapter 2 we showed
that we have to average the overlap over a whole interval in order to describe
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(a)

(b)

Figure 5.10: To give an idea of the in�uence of the regime we show di�erent QKR ensembles
containing ≈ 10000 rotors with β2 − β1 = 0.1 and 0.03 < β1 < 0.27. The other parameters are
ε = 0.05, k1 = 0.6π and k2 = 0.8π. In (a) we show the data in semi-logarithmic scaling and
in (b) in logarithmic scaling. The arrows indicates which ensemble is near and which is far the
island.
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the behaviour of a cloud of atoms. We saw in the last section that not only the
relative phases of the single coe�cients in the expansion of a single rotor plays a
role but also the β dependence of the common phase. In section 4.6 we could see
that this mechanism is the main contribution to the decay. As our theory is made
for small ensembles we will focus on ensembles not covering the complete phase
space cell. As we just treat ensembles covering only a part of the phase space cell
we also have to say which part we cover. The importance of this questions and
the e�ect of this choice is illustrated in �g. 5.10. There we can see that the region
in phase space has a large impact on the behaviour. The aim of this chapter will
be to understand this behaviour qualitatively and also to show which aspects of
this behaviour can be understood in which approximation. A special focus will
be on the quality of the approximations and regimes of their validity.

We begin by saying a few things on the numerical implementation. Afterwards
we will compare the di�erent approximations. We will start with the comparison
of the pendulum and the WKB result for ensembles and continue the discussion of
the analytical result from section 4.6 but now in di�erent regimes. The discussion
of the validity of the pendulum approximation in the context of ensembles will
follow and we will end with a summary of this chapter.

5.4.1 Numerical Implementation

As our numerical procedure gives us the �delity iteratively we cannot integrate
in every time step over the β interval. We generated 50000 random numbers
using RAN2 from [?] and averaged over the corresponding �delities. The code
was ported to FORTRAN 90 and double precision by hand. We produced a set
of random numbers for the the interval β ∈ [0.035, 0.135] and shifted this values
for other regimes. If we needed larger stripes of very �exible data we used a set
of values in β ∈ [0, 0.5]. We saved the resulting overlap in small sub ensembles
and were able to build various ensembles afterwards this way.

The choice of the βs has to be handled with care. Not only the way we choose
but also the question how many we chose is important to obtain a reliable ap-
proximation to a continuous strip in β. We want to obtain a result that describes
a continuous ensemble best. this is done this by approximating the continuous
ensemble by a �nite ensemble. This leads to a �nite spacing in the energies and
therefore the di�erence between the �nite and the in�nite ensemble will show
after some time connected to this spacing5. On the other hand we found out that
equal spaced rotors lead to arti�cial revivals. These can be avoid by choosing
random rotors which in exchange leads to some noisy behaviour.

5.4.2 Pendulum and WKB

First we will compare the pendulum data to the WKB data in order to analyse
the correspondence for ensembles. In �g. 5.11 we show the pendulum and WKB
data for the three regimes de�ned in section 5.1 and the di�erences between

5This argument is similar to those in [Izr90] where they used the �nite energy spacing to describe
the break of di�usive growth.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: In this �gure we show ensembles for k1 = 0.6π, k2 = 0.8π and ε = 0.05 using
the WKB (black) and the pendulum (green) data. In (a) to (d) we show ensembles of 500
rotors and in (e) and (f) we show an ensembles of ≈ 7000 rotors for the pendulum data and
10000 rotors for the WKB data. In the left column we show the data and in the right column
we show the absolute value of the di�erence between pendulum and WKB data. We show
the ensembles (from left to right, also indicate by arrows in (a)) for the near (orange), the
intermediate (magenta) and the far (blue) regime. In (c) we show the data from (a) averaged
over 100 kicks and in (d) the di�erence of the time averaged �delities in (c).
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them. In order to show the long time behaviour more clearly we also show the
data averaged over 100 kicks and the di�erence of these averaged �delities. In
the discussion of single rotors we found out that the fast oscillations are not
described well by the WKB result. That the ensemble also shares this problem
can be seen in �g. 5.11(b) as the fast oscillations are of the same order as the fast
oscillations in the di�erence between the WKB result and the pendulum data.
By averaging we can get rid of the fast oscillations. In the case without the fast
oscillations the correspondence is much better as can be seen in �g. 5.11(d). The
deviation is much smoother here. Nevertheless the WKB result does not describe
the pendulum data in the saturation like part of the �delity decay. As soon as
the data is smoother the WKB result describes the pendulum very well in the
non saturated regime.

In order to get a feeling on how big the ensembles need to be we focus on
�g. 5.11(e). There we show the same data as in the far from island ensembles in
�g. 5.11(a) but with much larger ensembles. For numerical reasons we only have
≈ 7000 rotors for the pendulum data and 10000 rotors for the WKB data. By
comparing to the small ensemble we see that the numerics have not converged at
500 rotors. Nevertheless the correspondence to the WKB data hold although the
ensembles contain a di�erent amount of rotors.

As the numerics for the pendulum are very time consuming6 we cannot build
ensembles much larger than 500. Unfortunately we need larger ensembles in or-
der to obtain an ensemble that describes the continuous ensemble. When we
need big ensembles we will therefore assume that WKB and pendulum are equiv-
alent despite the di�erences in the case of single rotors. This is feasible as the
correspondence for ensembles is much better than for single rotors.

5.4.3 WKB and Analytical Result

In chapter 4 we gave an analytic formula for the �delity of an ensemble of rotors
and compared it shortly to pendulum data. Now we will continue this comparison
in more regimes. In �g. 5.10 we showed a variety of QKR ensembles placed in
di�erent regions in the phase space cell and their decay behaviour. In order to see
the e�ect of the regime in the phase space onto the quality of the approximation
we depict a few ensembles and present them separately. In �g. 5.12 and �g. 5.13
we show data for WKB, QKR ensembles and the analytical result eq. (4.83) for
two di�erent ε and di�erent ranges of β. For now we will focus at the WKB and
the analytical data and discuss the QKR data in the next section.

We see that the analytical result produces a slightly too long period and
overestimates the minima, as already discussed in section 4.6. This behaviour
can be seen very nicely in �g. 5.12. If we increase ε we can see that the analytical
result deviates from the WKB result. In �g. 5.13(a) and �g. 5.13(c) the analytical
result describes the WKB data still well but it starts to fail in �g. 5.13(b).

After some initial fast decay the WKB data shows some decay with an os-
cillation. This behaviour is illustrated best in �g. 5.15. In order to show the

6In order to obtain reliable numerical results we need to choose the matrices big enough to cover
the island. For such big matrices the calculation of eigenvectors and eigenvalues takes quite some time.
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(a) β ∈ [0.08, 0.18] (b) β ∈ [0.18, 0.28]

(c) β ∈ [0.13, 0.23] (d) β ∈ [0.23, 0.33]

Figure 5.12: In this �gure we show data for WKB (black) and QKR (red) ensembles containing
≈ 11000 rotors with ε = 0.01, k1 = 0.6π and k2 = 0.8π. The corresponding analytical result
eq.(4.83) is shown in blue.
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(a) β ∈ [0.08, 0.18] (b) β ∈ [0.18, 0.28]

(c) β ∈ [0.13, 0.23] (d) β ∈ [0.23, 0.33]

(e) (f)

Figure 5.13: In this �gure we show data for WKB (black) and QKR (red) ensembles containing
≈ 11000 rotors with ε = 0.05, k1 = 0.6π and k2 = 0.8π. The corresponding analytical result
eq.(4.83) is shown in blue. In (e) we show the data from (c) and (d) in semi-logarithmic scaling.
In (f) we show QKR data for an ensemble with β ∈ [0.035, 0.135] containing 10000 rotors for a
long time. The blue line is a 1/t functional �t.
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behaviour, in this �gure the data is smoothed by averaging over 100 kicks. This
way we can see that as the �delity decays an oscillation becomes visible that seems
to dominate the longer time behaviour. Comparing7 �g. 5.13(d) and �g. 5.15 we
can see that we cannot decide whether the WKB decays exponentially or alge-
braic. On the one hand the oscillation hides the interesting region when the decay
crosses over into the saturation like regime and on the other hand the decay is
not long enough to decide the kind of the decay. Nevertheless, we can observe
in �g. 5.13(a), �g. 5.13(b) and �g. 5.12 that the �delity in WKB approximation
can be approximated well by a power law until intermediate times. As soon as
the �delity decays further this algebraic behaviour breaks down and therefore
can just be regarded to be a crude approximation for the initial behaviour. This
breakdown happens sooner near the island due to the faster decay of �delity in
general there.

As the analytical result is strict 1/t2 (see eq. (4.83)) the correspondence be-
tween the analytical result and the WKB result has to fail near the island as
the WKB decay shows clear non algebraic behaviour. The failure of the approx-
imation can be understood as the linear approximation of eq. (4.63) we used in
the derivation in section 4.6 gets worse when approaching the island which cor-
responds to the pole of the 1/β̄2 and 1/β̄3 term. Due to the strict 1/t2 behaviour
of the analytical result the oscillations that generate some saturation behaviour
in the WKB data cannot be reproduced and the analytical result can only be
expected to be valid on short time scales. However, the period of the remain-
ing oscillation matches to the initial oscillations that are described well by the
analytical result.

Unfortunately, we could not derive a mathematical estimation of the error.
This means we can just consider numerical evaluation to check the validity of the
analytical result. Comparison to the WKB result shows that the decay and the
oscillations modulated on it are described although the shape is not met perfectly.
The description of the decay breaks down as the ensembles approach the island.
This happens faster for larger ε. Even in the regime near the island some features
are described. The analytical result is only valid on not too long time scales.

5.4.4 WKB and QKR

In the last section we compared the QKR data to the analytical result. We
still need to understand the correspondence between pendulum and QKR. As
the pendulum is numerically very extensive and we need big ensembles in order
obtain results that are reliable on longer time scales we have to �nd another way
to obtain data for the pendulum. As we saw in subsection 5.4.2 when building
ensembles the WKB result describes the pendulum good enough for our needs.
Therefore we will discuss the correspondence between WKB result and QKR data
instead of the pendulum.

In the decay of �delity we can identify three temporal regimes. In order to
de�ne these regimes we will continue the discussion of the behaviour we already

7We are aware that the ensembles shown are not the same but the qualitative behaviour is the same
and the argument is valid nevertheless.
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(a) β ∈ [0.08, 0.18] (b) β ∈ [0.18, 0.28]

(c) β ∈ [0.13, 0.23] (d) β ∈ [0.23, 0.33]

Figure 5.14: In this �gure we show we show �g. 5.13(a) to �g. 5.13(d) in semi-logarithmic
scaling.
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Figure 5.15: In this �gure we show an ensemble containing ≈ 10000 rotors with ε = 0.05,
k1 = 0.6π, k2 = 0.8π and β ∈ [0.2; 0.3]. in order to show the oscillatory behaviour at long times
we averaged the data over 100 kicks. The KR data is shown in red and the WKB data is shown
in black.

started in the last subsection. The regimes can be seen best in the intermediate
ensembles in �g. 5.14:

• An initial fast decay could be approximated by a Gaussian decay. On the
other hand also the analytical result describes the behaviour well by using
a sin(t)/t function. This can also be interpreted as approximations to each
other and therefore we cannot really give a strict criterion to decide how
this initial decay can be described.

• A intermediate decay. After the initial drop the �delity decays over a quite
long time. Onto this decay process an oscillation is added which is dominat-
ing as soon as the value of the �delity decays to the order of the oscillation
amplitude which therefore de�nes the crossover to the next regime. This os-
cillation on the one hand limits the duration of the decay and on the other
hand hides the behaviour in the vicinity to the crossover to saturation.
These reasons make it impossible to identify an exponential or algebraic
decay. Not only is the duration of the decay to short to justify algebraic
behaviour but the region where one would see a di�erence is also blurred by
the oscillation.

• A remaining oscillation that behaves like some saturation. In the introduc-
tion of the decay regime we mentioned that there is an oscillation superim-
posed. It seems that the amplitude of this oscillation saturates and therefore
remains as the �delity decays to the scale of this oscillation. This oscillation
can be seen nicely in �g. 5.15. Nevertheless in this regime also other time
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scales are visible and we cannot exclude further decay due to the limited
time shown.

The visibility of this regimes depends on the range of β. It seems that the
amplitude of the remaining amplitude only shows a weak β dependence and
therefore the onset of the remaining oscillation or saturation depends on the
decay rate of the �delity in the decay regime. As can be seen in �g. 5.10 this
decay is faster near the island. This corresponds to the idea of the KR as a
perturbation of the pendulum and the pendulum approximation shows that the
perturbation is strongest near the island. So we expect a stronger decay due to
this perturbation.

For the second regime it is di�cult to identify the decay behaviour. In order
to specify the type of the decay one needs to plot the decay logarithmically and
semi-logarithmically. This is done in �g. 5.13 and �g. 5.14. In the case far from
the island we can �nd regions in which the behaviour can be approximated by a
power law but these regions are much to short to clearly identify a power law. On
the other hand the behaviour cannot be described by an exponential decay either.
The oscillations make it di�cult to distinguish between exponential and algebraic
decay as they contribute signi�cantly in the region where a di�erence between
exponential and algebraic decay would show up. We therefore cannot apply this
scheme to describe the decay. Despite the oscillation we have the impression
that the WKB data shows a bending behaviour in the semi-logarithmic plots and
therefore is less likely to be exponential than the QKR data, but the oscillations
nevertheless avoid a clear classi�cation.

The correspondence of WKB and QKR also depends of the regime of β. In
�g. 5.13 we can see that the correspondence breaks down most signi�cantly far
from the island. There the time scale of the decay seems to be stretched in
the QKR data. This deviation, however, starts rather abrupt as can be seen
by comparing �g. 5.14(b), �g. 5.13(c) and �g. 5.13(a) or their semi logarithmic
counterparts in �g. 5.14. The deviation between the two ensembles near to the
island is small whereas the di�erence between the two outer �gures is much larger.
The nearer we are to the island the better the correspondence gets for the decay.
Nevertheless in the remaining oscillations some of the frequencies are seen to
agree but the overall correspondence is lost.

Motivated by the analytical result one might be tempted to search for alge-
braic behaviour. However, this picture is somehow misleading and the picture of
exponential decay allows us to understand a few things better. For the rotors far
from the island we observed an algebraic behaviour for quite a long time but not
for a too large range in the �delity8 itself. In �g. 5.13(f) we show the �delity of
an ensemble up to long times far from the island. We can see that it shows an
algebraic behaviour on the scale we show. Unfortunately this decay behaviour
is 1/t which is in direct contradiction to the prediction of a t−2 decay from our
analytical theory. In order to compare to the WKB result we plotted the QKR
data and the WKB data in �g. 5.16 in logarithmic and linear scaling. We can see

8At F ≈ 10−3 usually the problems appear. In �g. 5.13(f) and �g. 5.16 we the �delity for an
ensemble of QKRs is still larger.
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(a) (b)

Figure 5.16: In this �gure we show an ensemble of 10000 rotors for ε = 0.04, k1 = 0.6π,
k2 = 0.8π and β ∈ [0.035, 0.135]. The QKR data is shown in red and the WKB data in black.
In (a) we show the data in logarithmic and in (b) in linear scaling. To guide the eye we added
a 1/t2 and a 1/t decay in blue. We can see that the WKB result is described by the 1/t2 until
some intermediate time whereas the QKR data is more likely described by an unclear exponent.

that the WKB ful�ls the prediction by the analytical theory well, whereas the
QKR data seems to follow a power law with some non integer exponent. This
emphasises that the algebraic behaviour may be just an approximation to an un-
known asymptotic decay law. Considering �g. 5.10(a) we see that an exponential
interpretation of the decay would lead to a growing decay time when leaving the
island. This leads also in the logarithmic scaling to a bending of the �delity
and therefore would look like an algebraic behaviour but with a modi�ed expo-
nent. This explains why in the crossover region one observes strange exponents
in �g. 5.13(f) and �g. 5.16.

5.4.5 Summary

In the end we are left with the question what we learned from the numerical
observations. Therefore we have to distinguish the observations for single rotors
and ensembles of rotors.

For single rotors we saw that the WKB result and the pendulum approxima-
tion correspond quite well, especially the main oscillatory time scale does so. This
time scale is described well in a wide range where the amplitude and higher fre-
quency components of the �delity signal are missed when approaching the island.
The pendulum describes the QKR when initial conditions are chosen near to
the island. Leaving the vicinity of the island the correspondence becomes worse.
Especially the β dependence of the main oscillation frequency is mis-estimated.

This wrong scaling was further analysed by building a sum of two rotors.
This way we observed a beating phenomenon that can be described using the
dominating term in WKB approximation. Also in this case we observe a mismatch
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in time scales between pendulum and QKR. By comparing pairs of overlaps we
could show that the pendulum locally can be a qualitative approximation to the
QKR evolution.

Going from two rotors to a continuum of rotors we could not continue using the
pendulum numerics as the calculations were to extensive. Instead we could use
the WKB numerics as it describes the pendulum su�cient well. We compared the
�delity in several regimes and found out that the ensemble shares the problems
of the approximation for single pendulums. Another problem is the type of the
decay. On the one hand the decay is too short and on the other hand a remaining
oscillation � leading to a saturation � hides the interesting behaviour. For a not
too long time the WKB result can be regarded as a good approximation for the
QKR.

We continued the discussion for the analytical result derived in section 4.6. We
could show how this approximation breaks down when approaching the island.
We could see that it nevertheless explains some special properties of the WKB.
There is also a regime in which the analytical result describes the WKB solution
and this describes the QKR result. Unfortunately, the long time decay is strictly
1/t2 for the analytical result and therefore it cannot explain the decay of the
QKR. The just mentioned problems remain an open question for future studies.





Chapter 6

Conclusion and Outlook

6.1 Summary

In the calculation of the �delity of a quantum state integrable states on the one
hand are problematic as they cannot be described by universal properties and
on the other hand such states allow explicit use of classical methods that by
de�nition require regular structure. We focused at the kicked rotor as one of the
cornerstones of non-linear dynamics and quantum chaos. Near to a resonance the
system can be described by a pseudo-classical limit (dubbed also ε-classics). In
this limit Abb et al. were able to calculate the �delity using the island structure
of the phase space [Abb09].

In this thesis we continued this approach and tried to �nd a description of the
rotors belonging to some rotator type orbit. In order to describe these rotors we
introduced the pendulum approximation. To obtain an analytical solution of the
pendulum �delity we used the WKB method in chapter 4. As the pendulum is
already quite complicated and can be solved only by means of elliptic functions we
had to do some further approximations. These approximations were discussed in
section 4.3. In the end we could also give an approximate but analytical expression
for ensembles of rotors using the WKB approximation for the pendulum. All these
approximations were compared numerically to each other in chapter 5.

To understand the dynamics we �rst analysed the spectrum and the dynamics
of the pendulum in chapter 3. Our focus was on two topics: We wanted to under-
stand the e�ect of the quasimomentum as some intrinsic momentum o�set onto
the spectrum and we wanted to see whether we could reproduce the behaviour of
the QKR using the pendulum Hamiltonian. We observed a part of the spectrum
with a nearly equally spaced, β independent behaviour and another part with a
parabolic net structure. We could explain this behaviour in a semi-classical way
by considering island type tori which show β independent behaviour and rotator
like tori which are shifted when varying β. This is also what the result of the
WKB calculations in section 4.3 showed.

The pendulum approximation was derived in the ε-classical approximation.
We know that the pendulum approximation works quite well in the classical
phase space when the kicking is not too strong. It also reproduces the two dif-
ferent topologies of trajectories. Nevertheless, this does not guarantee that it
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also reproduces the quantum behaviour. We compared the evolution of an initial
state between QKR and pendulum using ε-classical Husimi functions. We saw
that the pendulum approximation reproduced the dynamics of the QKR1 for ini-
tial β-rotors quite well for short times. For long time behaviour we cannot say
anything by using the Husimi function as the wave function becomes non-classical
very quickly.

To describe the pendulum we used the WKB approximation in section 4.3.
We approximated the action in a power series. For the calculation of energy
eigenfunctions we had to ful�l a periodic boundary condition which forced us to
take only the �rst order term into account. For the calculation of the eigenen-
ergies we were able to give a more accurate result. We showed that the main
characteristics of the pendulum can be understood by the spectral structure. To
show this, we selected the dominating terms using the wave function and iden-
ti�ed their temporal behaviour focusing on the spectrum. We showed that the
long time oscillations can be described by the slowest oscillating terms.

In order to build the �delity of an ensemble we checked whether the dominating
terms we identi�ed describe the �delity. We showed that the slow components
dominate the long time behaviour also in the case of ensembles. For building
the ensemble, we integrated the WKB result restricted to the diagonal elements
in section 4.6. To do this we had to approximate the spectrum linearly. In
this way we could obtain an analytical approximation that describes the �delity
qualitatively. The analytical result predicts an strict 1/t2 decay of the �delity.
We could understand the shortages of the approximation.

To test these predictions we did extensive numerical checks in chapter 5. We
compared single pendulums, averages of two overlaps and ensembles in the di�er-
ent approximations. For single rotors we showed that the WKB approximation
gets worse near the island and the approximation of the pendulum to the QKR
gets worse when leaving the island. In the case of WKB and pendulum, the mis-
match arises in the underestimation of higher frequency components or beating
phenomena. Nevertheless the main energy scales are reproduced quite well. Com-
paring the pendulum and the QKR we found that the pendulum does not well
reproduce the time-scales of the QKR. The QKR has much longer time scales at
the border of the phase space cell as the pendulum. Nevertheless, the fast oscilla-
tory behaviour is described quite well initially. We showed that the mismatch of
the amplitude can be understood when interpreting the near resonant results as
deviation of the resonant behaviour. Even in the resonant behaviour a deviation
could be shown by comparison to the previous results [Wim06] and [Abb09]. The
mismatch of time scales could be motivated by comparing phase spaces.

Using pairs of rotors we could show that the decay behaviour is related to
some common phase factor that does not in�uence the �delity of single rotors
but can lead to beating when comparing di�erent rotors. By comparing di�erent
pairs of rotors we could show that the scaling behaviour of the quantum kicked
rotor can locally be described by the pendulum approximation. Nevertheless we
have the same breakdown of time scales that we also observed in the single rotors

1We did not use some ε-classical Floquet operator. We used the Floquet operator that was de�ned
on the original space but analysed it using coherent states in the ε-classical phase space.
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and the scaling factor is similar.
In the case of continuous ensembles the results are inconclusive. We had to

master two tasks independently. On the one hand, we had to understand where
which approximation fails and, on the other hand, we had to understand the
decay behaviour of pendulum, WKB and QKR ensembles. The discussion of
the quality of the approximation is very important as we cannot calculate big
ensembles using the pendulum as their evaluation is very time consuming. We
showed that the correspondence between the WKB result and the pendulum data
is surprisingly good even in the regime where the approximation is not perfect
for single rotors. This allowed us to use the numerical WKB result which can be
evaluated easily for comparison to the QKR. The comparison of the analytical
result to the pendulum data showed that the analytical result approximates the
data very well far from the island and for not too large ε. When approaching
the island the result breaks down quite fast. The analytical result shows a strict
algebraic behaviour in contrast to the WKB ensembles and QKR ensembles.
They show an initial fast decay which is followed by an intermediate decay on
which an oscillation is added. This oscillation leads to a seemingly saturation like
behaviour in contrast to the analytical result.

We have a description for the pendulum in which we can describe some features
even using an analytical approximation. The correspondence breaks down near
the island. The correspondence between QKR and pendulum breaks down far
from the island. The regime where both approximations are valid is narrow. The
WKB result is only able to describe the decay qualitatively for not too long times.
At long times also the pendulum approximation breaks down.

6.2 Outlook and Open Questions

Our treatment of the QKR in pendulum approximation could not give a closed
picture of the �delity decay. We saw in chapter 5 that the breakdown of the
approximations is only understood in a very qualitative way. There is no strict
estimate of the errors. There are three steps of approximation: the approximation
of the WKB result for the pendulum, the approximation of the pendulum to the
QKR and the approximation for the exponent when deriving the analytical result.

One of the major problems in the derivation of the eigenfunctions for the
pendulum in chapter 4 was that we had to truncate the approximation very soon
because we needed to be able to solve the resulting equation consistently. We
chose to make an expansion in powers of k̃/E where k̃ is the ε-classical kicking
strength and E is the energy. Maybe there is another type of expansion that
allows the calculation of the energy with a higher precision. This would result in
better wave functions and a better matrix. On the other hand one might try to
introduce the exact solution of the pendulum and use some expansion of them.
This might improve the theory near to the island. Such an approach might lead
to an expression that is easier to integrate when building ensembles.

The correspondence between pendulum and the QKR is nevertheless still prob-
lematic on the classical level. We were not able to obtain a strict estimation of the
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errors in this case. Having a better understanding of this approximation might
help to understand the deviation in the time scales. Including higher order terms
into the expansion makes the time independent pendulum approximation time
dependent. We do not know how to treat such a problem semi-classically. Maybe
it is possible to derive an e�ective model on the classical level.

In the derivation of the analytical result some consideration to the approxi-
mation of the integral would be helpful. We made the crudest approximation one
can imagine in section 4.6. The integration can only be carried out directly in
linear approximation in the exponent. Higher orders would lead to Fresnel inte-
grals. One could try to introduce these functions into the solution in order to see
where they contribute. We also thought about a di�erent linear approximation.
Our choice of the Taylor expansion was somehow arbitrary. Another idea was to
choose a linear approximation reproducing the average slope and average value.
This might solve the problem of the wrong time scale. Nevertheless it will make
the formulas more complicated and the problem of missing higher orders is still
present. A di�erent expansion for the energy di�erence might help to include
higher orders and therefore the skewness of the energy di�erences as a function
of β in the calculations.

Besides the control of the approximations the comparison with other works of
numerical data would be interesting. Other publications in this �eld deal mainly
with coherent initial states [Wei05, San03, Hau05]. Our observations were mostly
in momentum eigenstates for the sake of simplicity in the calculations. Using
coherent states would introduce additional square terms that one might be able
to control. On the other hand there exist theories for the �delity of coherent
states [Gor06].

There is also a theory for �delity based on correlation functions [Gor06]. One
could numerically evaluate these correlations in order to see whether it helps
identifying the type of exponential decay numerically observed in the QKR sys-
tem. Even if we might not be able to calculate these correlation analytically, such
consideration might give an idea what determines this decay. The evaluation of
the correlations for the pendulum could help to decide whether the unclear decay
behaviour is due to a crossover between two regimes of decay.

In �g. 5.10 we showed ensembles of same width centred around di�erent β
values. We noticed that the functional form of all the �delity decays is similar.
Therefore we tried to rescale the time for each ensemble individually in order
to see whether they show universal behaviour. The result of this rescaling is
shown in �g. 6.1. We can see that in intermediate times the �delities show some
universal behaviour. We did not yet �nd a theoretical explanation but we think
that this is a sign for some interesting future work.

However, these possibilities are rather technical ideas to continue this work.
In our treatment of the rotator like orbits we found out that a simple treatment
using the pendulum will not give a convincing description of the decay behaviour
of the QKR. Therefore it is more promising to go back to states on the island
and add gravity. By adding the gravity the rotational tori are destroyed and the
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Figure 6.1: In this �gure we show the same data as in �g. 5.10, where we presented di�erent
ensembles with δβ = 0.1, ε = 0.5, k1 = 0.6π and k2 = 0.8π, but with rescaled times. The
rescaled time t′ ≡ αt where 0.1 < α < 0.75 was chosen for each ensemble individually. We want
to show that the intermediate behaviour seems to be universal. The thick black line is an t5/2

function.

Figure 6.2: We show the �delity for states in a QKR system with gravity with β = 0.4898,
ε = −0.42319, τ = 6.28319, η = 0.09253, k1 = 0.7π and k2 = 0.8π (for a de�nition of the
gravity parameter η and a derivation of the Hamiltonian see [Fis03]). We show di�erent initial
states. The black data is a coherent state centred on the island an with optimal squeezing, the
red data is a coherent state centred on the island but squeezed in order to have an overlap with
the chaotic sea. For comparison we also show a angular momentum eigenstate covered partially
by the resonance island. In the inset we show the ε-classical phase space.
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phase space develops chaotic regions, whereas the island is deformed but survives
for moderate parameters. In this mixed phase space a state on the island couples
to the chaotic sea.

Fidelity is one possibility to study the stability of such states and the in�uence
of the chaotic environment on them. In [Wim04] the in�uence of the mixed phase
space on the �delity decay of a initial angular momentum eigenstate was studied
numerically. It was found that the �delity decay of a momentum eigenstate can
be separated into two regimes. In the beginning a rapid decay followed by a slow
exponential decay was observed. A central result from [Wim04] is shown in green
in �g. 6.2. A �rst interpretation was that the initial decay is due to the part of
the wave function overlapping with the chaotic sea and that the slow decay is due
to tunnelling to the chaotic environment.

We tried to test his surmise by placing a coherent state on the island. The
result is shown in �g. 6.2. We can see that such a state shows the same slow
exponential decay as an initial angular momentum state. This essentially a�rms
the surmise by of [Wim04]. It would be interesting to understand how tunnelling
out of a nonlinear resonance island e�ects the �delity. Besides the here presented
results on the gravity-free case, the question how �delity evolves for the system
of �g. 6.2 opens a new interesting �eld of study [Dub].
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Appendix A

Bessel Formulas

One of the constant visitors in the �eld of calculations around the quantum kicked
rotor are the Bessel functions. One of the main reasons is the Anger expansion
which is basically an integral representation of the Bessel functions of �rst kind.
It allows to express the kick operator in the angular momentum representation
using the Bessel functions. On the other hand the same reason makes them also a
perfect tool in the pendulum calculations. Therefore we will give several formulas
and identities that help handling them.

Some Expansions

Jacobi-Anger Expansion

The following formulas are eqs. (9.1.42) and (9.1.43) from [Abr64]. They relate
the Bessel functions of �rst kind to the trigonometric functions.

cos(z sin θ) = J0(z) + 2
∞∑
k=1

J2k(z) cos(2kθ) (A.1)

sin(z sin θ) = 2
∞∑
k=0

J2k+1(z) sin((2k + 1)θ). (A.2)

Using these two equations to rewrite eız sin θ = cos(z sin θ) + ı sin(z sin θ) we arrive
after resorting the indices and rewriting the sine and cosine in terms of complex
exponential functions at

eız sin θ =
∞∑

k=−∞

Jk(z)eıkθ (A.3a)

=
∞∑

k=−∞

(−1)kJk(z)e−ıkθ (A.3b)
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By shifting θ we �nd as an analogous eqs. (9.1.44) and (9.1.45) from [Abr64]

cos(z cos θ) = J0(z) + 2
∞∑
k=1

(−1)kJ2k(z) cos(2kθ) (A.4)

sin(z cos θ) = 2
∞∑
k=1

(−1)kJ2k+1(z) cos((2k + 1)θ) (A.5)

the corresponding expansion of eız cos θ

eız cos θ =
∞∑

k=−∞

ıkJk(z)eıkθ (A.6a)

=
∞∑

k=−∞

ıkJk(z)e−ıkθ. (A.6b)

Some Representations

A very helpful integral representation can be achieved by using the Jacobi-Anger
expansion. ∫ 2π

0

eınθeız sin θ = 2π(−1)n Jn(z) (A.7)∫ 2π

0

eınθeız cos θ = 2π ın Jn(z). (A.8)

they can be derived by inserting eq. (A.3) and eq. (A.6) and carry out the inte-
gration.

Asymptotic Expansion

In [Arf08] an expansion for the Bessel functions of integer order is derived:

Jn(x) =
∞∑
s=0

(−1)s

s!(n+ s)!

(x
2

)n+2s

. (A.9)

For large order and the rest �xed we have eq.(9.3.1) in [Abr64]:

Jn(x) ∝ 1√
2πn

(ex
2n

)n
. (A.10)



Appendix B

Density of Trajectories

In chapter 4 we reviewed the derivation of WKB by applying a Fourier trans-
formation to the van Vleck propagator. In the van Vleck propagator there is a
term representing the density of states. This density gives us a measure of the
trajectories starting in the vicinity of x and ending in the vicinity of y within the
�xed time t. This density of trajectories is given as

D ≡ det

∣∣∣∣∂2S(x, y, t)

∂x∂y

∣∣∣∣, (B.1)

where the time is �xed. The problem is to express this determinant by means of
energy instead of time. In chapter 4 therefore a Legendre transformation is done.
This yields

E = −∂S(x, y, t)

∂t
(B.2)

W (x, y, E) = S(x, y, t(E)) + Et(E) (B.3)

S(x, y, t) = W (x, y, E(t))− E(t)t, (B.4)

where the �rst equation determines t(x, y, E) and vice versa.
In order to introduce this transformation to D we have to remind ourselves

that the term comes from the variation of the classical action by x and y at given
time t. If we want to express D by means of W we need to take into account that
the energy must not be constant when varying x and y at �xed t. In addition
there are some identities for the derivatives [Sch96]

∂W (x, y, E)

∂E
= t (B.5)

∂S(x, y, t)

∂u
=
∂W (x, y, E)

∂u
, (B.6)

where the derivative with respect to u means derivation with respect to x or y
where all other quantities (including E and t) are kept �xed. As the variation
is at �xed time, the derivative of the time by x or y must vanish. This means
[Gut90]

∂t

∂u
= 0 =

∂2W (x, y, E)

∂u∂E
+
∂2W (x, y, E)

∂E2

∂E

∂u
, (B.7)
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which directly gives

∂E

∂u
=
∂2W (x, y, E)

∂u∂E

(
∂2W (x, y, E)

∂E2

)−1

. (B.8)

Introducing this into D we arrive at

∂2S(x, y, t)

∂x∂y

∣∣∣∣
t

=
∂

∂x

(
∂W (x, y, E)

∂y

∣∣∣∣
E

+
∂W (x, y, E)

∂E

∣∣∣∣
E

∂E

∂y

∣∣∣∣
t

− ∂E

∂y

∣∣∣∣
t

t

)
(B.9)

=
∂2W (x, y, E)

∂x∂y

∣∣∣∣
E

+
∂2W (x, y, E)

∂E∂x

∣∣∣∣
E

∂E

∂y

∣∣∣∣
t

+
∂W (x, y, E)

∂E

∣∣∣∣
E︸ ︷︷ ︸

=t

∂2E

∂x∂y

∣∣∣∣
t

− ∂2E

∂x∂y

∣∣∣∣
t

t (B.10)

=
∂2W (x, y, E)

∂x∂y

∣∣∣∣
E

+

∂2W (x, y, E)

∂E∂x

∣∣∣∣
E

∂2W (x, y, E)

∂y∂E

(
∂2W (x, y, E)

∂E2

)−1

(B.11)

As t(E) and E(t) are inverse to each other we �nd for the derivatives ∂tE =
(∂Et)

−1. Inserting eqs. (B.2) and (B.5) we obtain

∂2S

∂t2
= −

(
∂2W

∂E2

)−1

. (B.12)

Putting all these formulas together we �nd

− det(∂2S/∂x∂y)

∂2S/∂t2
= det

[
∂2W
∂x∂y

∂2W
∂x∂E

∂2W
∂y∂E

∂2W
∂E2

]
≡ D̃. (B.13)

In chapter 4 a specialised version of this is used. There we noticed just shortly
that we will deal with Hamltonians which have a spatial potential and a kinetic
term which just depends on the momentum quadratically. This means we can
write the action W as an integral

W (x, y, E) =

∫ y

x

√
2mE − V (u)du. (B.14)

This means that we can write the result as a sum of primitives. One consequence
is that there are no terms containing a product of x and y and therefore the left
upper entry in the matrix in eq. (B.13) will vanish. So we get the expression used
in chapter 4

D̃ = − ∂2W

∂y∂E

∂2W

∂x∂E
(B.15)



Appendix C

Multinomial Expansion

From standard calculus we know the binomial theorem to expand (a + b)n. If
we would like to calculate a sum to some integer power we need the multinomial
theorem. This gives( m∑

i=1

ai

)n
=

∑
16k1,...,km6m
n=k1+...+km

(
n

k1, . . . , km

)
ak1

1 . . . akmm , (C.1)

where the multinomial coe�cients are de�ned as(
n

k1, . . . , km

)
=

n!

k1! . . . km!
. (C.2)

We want to use this theorem to get the power series of a Taylor expansion to an
integer power. This means that we are interested in the case ai = Ai−1ε

i−1 which
corresponds to (

∑m−1
i=0 Aiε

i)n witch is equal to (
∑m

i=1 Ai−1ε
i−1)n. Inserting this in

eq.(C.1) We get( m∑
i=1

Ai−1ε
i−1

)n
=

∑
16k1,...,km6m
n=k1+...+km

(
n

k1, . . . , km

)
Ak1

0 · · ·Akmm−1ε
1·k1+2·k3+...+(m−1)·km .

(C.3)
We are now interested in the contributions in the di�erent orders in ε. Therefore
we assume m > n. This is no real restriction as Ai is at least of order εi and the
case of m < n can be included by choosing ∀i > m : Ai = 0.

We now need to collect all terms to a certain power of ε. If we are interested
in the order εl we have to �nd all combinations of k2 . . . km so that k2 + 2 · k2 +
. . . + (m − 1) · km = l where

∑
i ki < l. This means we have to collect all terms

which contribute some ε with the corresponding exponent. As all terms have the
same number of factors we still have to choose k1 = n−

∑
i ki which means �lling

up with terms contributing no ε.
We do this for the di�erent orders in ε seperately. In the course of this we

hope that the procedure gets clear.
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O(1)

This means we just have contributions by k1 because all other ki would lead to
an power in ε. This means

k1 = n ∧ ∀i > 1 : ki = 0. (C.4)

O(ε)

Here the case is still simple as only one ε appears. This means

k2 = 1 ∧ (∀i > 2 : ki = 0) ∧ k1 = n− 1. (C.5)

O(ε2)

This is the �rst non trivial case. But we know that there are only two di�erent
types of ki involved. So we have already two di�erent types of terms:

k3 = 1 ∧ k1 = n− 1 ∧ (∀i 6= 3 ∨ i 6= 1 : ki = 0) (C.6a)

k2 = 2 ∧ k1 = n− 2 ∧ (∀i 6= 2 ∨ i 6= 1 : ki = 0). (C.6b)

O(ε3)

In this case we need to list all combinations with the right resulting power in ε:

k4 = 1 ∧ k1 = n− 1 ∧ (∀i 6= 4 ∨ i 6= 1 : ki = 0) (C.7a)

k3 = 1 ∧ k2 = 1 ∧ k1 = n− 2 ∧ (∀i 6= 3 ∨ i 6= 2 ∨ i 6= 1 : ki = 0). (C.7b)

k2 = 3 ∧ k1 = n− 3 ∧ (∀i 6= 2 ∨ i 6= 1 : ki = 0). (C.7c)

If we go on like this we will �nd the contribution in every order in ε we desire.
As we need only the order ε4 as motivated in section 4.3.2 we will stop here and
build the �nal formula. We hope we made clear how to proceed in order to get
higher orders.

After we now found out which index combinations contribute in which order
we now have to calculate the corresponding multinomial coe�cients from eq.(C.2).
Doing this we arrive at our �nal formula( ∞∑

i=0

Aiε
i

)n
= An0 + ε n An−1

0 A1 + ε2
(
n An−1

0 A2 +
n(n− 1)

2
An−2

0 A2
1

)
ε2
(
n(n− 1)(n− 2)

6
An−3

0 A3
1 + n(n− 1) An−2

0 A1A2 + n An−1
0 A3

)
+O(ε4).

(C.8)



Appendix D

Integrating the Oscillation in the

Diagonal Approximation

In chapter 4.6 We show an integral that shows the decay of �delity. We showed it
for the most simple case of the c00 term. The terms connected to the cosine terms
in eq. (4.80) are more complicated. Therefore we rewrite the cosine in complex
exponential functions

∫ δ/2
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(D.1)

We will focus on one of the summands as the di�erent sign in the exponent can
be absorbed in m. Therefore we rewrite

eı
δ(k2)εt

4β̃2

∫ δ/2

−δ/2
e−ı
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(D.2)

and carry out the integration

= eı
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DIAGONAL APPROXIMATION

Applying this on eq.(D.1) we �nd∫ δ/2

−δ/2
eı
k2
2−k

2
1

4

(
1
β̃2−

2
β̃3 δβ̄

)
εt

cos
(
m
k2

1 − k2
2

2

( 1

β̃3
− 3

β̃4
δβ̄
)
ε2t
)
dδβ̄

=
2β̃3

δ(k2)εt
eı
δ(k2)εt

4β̃2

[
eı
δ(k2)mε2t

2β̃3
sin
( δ(k2)εt

4β̃3

(
1 + 3mε

β̃

)
δ
)

1 + 3mε
β̃

+

e−ı
δ(k2)mε2t

2β̃3
sin
( δ(k2)εt

4β̃3

(
1− 3mε

β̃

)
δ
)

1− 3mε
β̃

]
. (D.4)

This formula is not verry handy. Unfortunatlly there is not too much hope for
simpli�cations. This comes from the denominator. If we could factor out the
denominator we could treat the rest as an trigonometric expression and try to
recombine the terms, but the denominator somehow leads to a missmatch of the
amplitudes and therefore is verry hard to handel.

In order to get a more handy expression we de�ne
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(D.5)

so we can write∫ δ/2
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