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Introduction
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Chapter 2

Background

2.1 Classical kicked rotor

2.1.1 Derivation of the Standard Map

Figure 2.1: The kicked rotor with Periodic Kicks

The Hamiltonian of the kicked rotor reads

H(L, θ, t) =
L2

2I
+ k cos(θ)

∑

n

δ(t− nT ) (2.1)

where L is the angular momentum, I the momentum of inertia, S is the kick-
strength, δ(t − nT ) is the Dirac delta function, T is the period of kicks and θ is
the angular position of the rotor. The first term of the Hamiltonian is the kinetic
energy term for a rotor. The second term is the potential from applying δ-kicks in a
period of T . The corresponding Hamiltonian equations of motion for (1) are given
by

L̇ = −∂H(L, θ, t)

∂θ
= k sin(θ)

∑

n

δ(t− nT )

θ̇ =
∂H(L, θ, t)

∂L
=
L

I
.

(2.2)
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The angular momentum changes discontinuously across kicks whereas θ is con-
tinuous. Between kicks there are periods of free motion. We denote Lj and θj as

the values of the rotor immediately before kick j and L
′

j and θ
′

j as the values of the
rotor immediately after kick j. Integrating (2) over the infinitesimal time-interval
of the kick we obtain

L
′

j − Lj = k sin(θj), (2.3)

additionally we have

θ
′

j = θj . (2.4)

During the periods of free motion L is conserved (Lj+1 just before kick j + 1 Lj)
and θ varies according to equation (2), therefore we get

Ln+1 = Ln + k sin(θn)

θn+1 = θn +
T Ln+1

I

(2.5)

We set lj = Lj T/I which means measuring the angular momentum in units of
I/T , we also set S = k T/I, to obtain the dimensionless mapping equations

ln+1 = ln + S sin(θn)
θn+1 = θn + ln+1

(2.6)

From the equations, we can see, that the phase space has a symmetry of 2π in
l as well as in θ. Therefore we only plot the unit cell of modulo 2π both in l and
θ. Given a set of initial conditions in phase space it is possible to determine if the
trajectory is simple or complex. To see more structure in phase space we take a set
of initial conditions. The only parameter in this case is S the kick-strength. When
increasing S, we expect the phase space to become more chaotic. To observe this
we draw phase spaces with different values of S.

We can see here, that increasing S leads to a more chaotic phase space, as
expected. Starting with S = 2 we see a phase space with a large regular structure,
that has its fixed point of order one at l = 0, θ = π, this regular region is enclosed in
a seperatrix. There is also a fixed point of second order, which is split into because
of the boundaries chosen for the phase space, at l = π and l = −π and some higher
order fixed points just outside the seperatrix in the centre of the phase space. At
higher S the regular structures in phase space decrease in size. Already at S = 4,
the fixed points at l = ±π are not visible on the chosen scale. From S = 4 to S = 5
we observe how the regular elliptical island in the middle of the unit cell breaks up.
At S = 7 there are no more regular structures visible, and the whole phase space is
globally chaotic on the usual scale. There still are some fixed points, but they are
very small. The phase space of the kicked rotor is only globally chaotic on all scales
for S → ∞.

The first chaotic regions in phase space appear for S ≈ 0.9 as the value quoted
in literature. The value quoted for the onset of chaos on the usual scale is S ≈ 5.
On the scale used here there were still some regular structures at S = 6, but there
size was already quite small.

The lines drawn in phase space plots for S = 4, 5, 7 are in the chaotic Region of
phase space are important for the discussion of the energy and decay in the following
sections. These lines specify initial conditions for trajectories in the chaotic region.
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For S = 2 it is not in fact possible to find such a line, hence a square grid with initial
points will be used. Since in the classical phase space these trajectories cannot cross
over into the regular regions.

2.1.2 Energy

To get the energy for the kicked rotor as a function of kicks, we need to calculate
E = l2/2 from (2.6);

En =
l2n
2

= En−1 +
S2 sin2(θn)

2
+ S ln−1 sin(θn). (2.7)

Applying this equation recursively for E on right hand side of the equation we
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Figure 2.2: phase space plots for different values of S.
top left: S=2, top right: S=4, bottom left: S=5, bottom right: S=7

get

En = E0 +

n−1
∑

i=0

(

S2 sin2(θi)

2
+ ai sin(θi)

)

(2.8)

now if we take an average over the number of kicks in the chaotic region,
sin2(θi) = 1/2 and sin(θ) = 0. Therefore we get the approximation

En ≈ E0 +
S2n

4
. (2.9)
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If we now plot En as a function of n, the expected straight line has the gradient

D = S2/4 (2.10)

it is necessary to specify initial conditions which are in the chaotic regime,
because the above equation only applies to trajectories which are unbound, i.e.
they evolve freely. If the trajectories are started in the regular regions of phase
space, they stay inside the seperatrix and the Energy cannot grow freely. The best
way to come close to this in a phase space with bound regular structures separated
from the chaotic part, is to choose the initial condition in the chaotic part, which
minimises the probability of trapped trajectories. The reason is, that even when
starting in the chaotic regions some trajectories come close to a seperatrix and get
trapped around this structure.

The dashed line represents initial values in a 900 ∗ 900 grid, the solid line initial
values in a 30 ∗ 30 grid and the dotted line the time average. The solid straight
line is the expected Energy growth from (2.9). The grids for the initial values are
chosen in the chaotic region of phase space.

S 2 2.2 3 4 5 6 7

line (ensemble ave) 0.25 2.10 2.89 6.18 13.62 36.98
line (time ave) 0.13 0.99 1.41 3.05 7.10 20.25
square 900*900 (ens) 0.19 0.29 2.15 3.09 6.31 14.34 37.50
square 300*300 (ens) 0.31 0.29 2.23 2.91 5.90 15.49 39.24

predicted 1 1.21 2.25 4 6.25 9 12.25

Table 2.1: gradients of different ensembles and kick strengths

For S = 2 we see a straight line for the energy against time as expected, but
the gradient of the line is not as predicted by equation (2.10). The main reason for
this discrepancy is, that the trajectories in the phase space get trapped around the
regular regions, which results in an energy change which is not the expected linear
growth according to equation (2.9).

For S = 5 where most of the phase space is chaotic we do not see the skewing
of the graph due to trapped trajectories as expected. The gradient of the curve
with an average over the ensemble of initial conditions is 6.31 (for an ensemble of
900*900 square grid, compare with Table 1), which is close to the expected value
of D = 6.25.

Looking at the case with S = 7, we see that the proximity for the expected
value and the actual gradient at S = 5 are only by chance. S = 7 yields a
completely chaotic phase space, but D 6= S2/4. According to Rechester and White
(1980) equation (2.10) is an approximation to the actual value of D, which in fact
oscillates around the mean value D̄ (equation (2.10)), which is a good approximation
for S ≫ 1, because the oscillations have died down. There are also effects due to
“accelerator modes” (Chirikov (1979)) in the phase space, thought these effect only
play a role for values of S which have regular structures in the phase space.

2.1.3 Decay

Looking at motions in the chaotic regime, we define a trajectory as decayed, after
it enters a defined strip bound in phase space by a l1 and l2. Once a trajectory has
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”decayed” we discard it, because it could jump out of the strip and than back in to
”decay” again, which would distort our findings. Now we plot the number of decays
against n. If we define this decay in the whole cylinder, for S with large regular
structures some of the trajectories get trapped around accelerator modes and jump
with steps ≈ 2π, changing the graph of decayed values. Since the cylinder is also
periodic in 2π for l, it is possible to take value of l modulo 2π. All the trajectories
need to be started in the chaotic regime, because otherwise we could not observe
any decays, since the trajectories would be trapped in the regular regions. We plot
decay rates against n for different S. The values of S are chosen to have different
amounts of regular structures in the phase space.

The figures all have initial points in a 900 ∗ 900 grid in the chaotic part of
phase space. The decay-strip was chosen with l = 2.6 − 2.8. The decay rate for
S = 2 follows an exponential decay for the first 100 kicks, after that the decay
rate gradually approaches a power law. As it can be observed from the plots, for
increasing S the exponential curve becomes a better approximation for the decay
rate. For large n, all plots have steps, this is due to the fact that the number of
decays is very small and insufficient for the statistic.
If we plot the phase space for the decay, we see regular structures emerging (see Fig.
2.5). These structures resembles a strange repeller in phase space. A repeller is a
structure that repels all trajectories that come close to it. The large white space,
that can be observed for the phase space of S = 4 around θ = π and l = ±π/2
comes from the regular structure, that is bound by a separatrix of the phase space
as can be seen in Fig (2.2), though in this case l goes from 0 to 2π.

2.2 Quantum kicked rotor

2.2.1 Derivation of the Quantum Map

The Quantum version of the δ-kicked rotor can also be realised experimentally as
mentioned in 1. The quantum mechanical Hamiltonian for this system can be de-
rived from (2.1), by replacing the classical angular momentum L by the quantum
mechanical angular momentum operator L̂ = −i ~ ∂/∂θ. Therefore the Hamilto-
nian operator reads

Ĥ =
L̂2

2 I
+K cos(θ̂)

∑

n

δ(t− nT ). (2.11)

Like in the classical case, the quantum mechanical Hamiltonian is also periodic,
but the wave function is not. This can be remedied by applying Bloch’s Theorem,
which reduces it to a periodic problem with an additional parameter for the system.
Bloch’s theorem states, that for a system with periodic potential the wave function
can be split into two components. One is the phase factor and the other is the
periodic part of the wave function

ψ(θ) = eiβθ u(θ); u(a) = u(−a) (2.12)

where β is the quasimomentum, a conserved quantity hence also a parameter of the
system. The quasimomentum is also the decimal part of the momentum L = n+ β,
where n ǫN and β ǫ[0, 1[. Since β is constant, it is possible to write the momentum

8



operator as L̂ = n̂+ β, resulting in the Hamiltonian

Ĥ =
(n̂+ β)2

2 I
+K cos(θ̂)

∑

n

δ(t− nT ) (2.13)

To get an expression for the evolution of the quantum kicked rotor as a function
of time, the quantum mapping operator needs to be evaluated. For this system it
is the Unitary time evolution operator, which can be derived from the Schrödinger
equation

i ~
∂

∂t
|u(θ, t)〉 = Ĥ |u(θ, t)〉 (2.14)

where |u(θ, t)〉 is the state of the system at t. By neglecting the kinetic energy
operator immediately around the kick we obtain

i ~
∂

∂t
|u(θ, t)〉 = K cos(θ)δ(t − nT )|u(θ, t)〉. (2.15)

If we now set |un〉 to be the state of the system immediately before the kick n
and |u′

n〉 to be the state immediately after kick n we get

|u′

n〉 = exp[
−iK T cos(θ)

~
] |un〉. (2.16)

Between kicks the system evolves freely, because there is no external force. This
leads to

|un+1〉 = exp[−i L̂2 T/2 I ~]|u′

n〉 (2.17)

where |un+1〉 is the state of the rotor immediately before kick n + 1. From
equations (2.17) and (2.16) we construct the complete unitary time propagator
over one kick

Û = exp[−i L̂2 T/2 I ~] exp[−iK T cos(θ)/~]. (2.18)

Now we introduce the dimensionless angular momentum operator

L̂ = ~ l̂ (2.19)

and the two dimensionless control parameters

τ =
~T

I
, k =

K T

~
(2.20)

using these the time propagator (2.18) can be written as

Û = exp[−i τ (n̂+ β)2/2] exp[−i k cos(θ)]. (2.21)

From the quantum mapping Û we can obtain analogous to the classical map
(2.6)

ln+1 = ln + k sin(θn)

θn+1 = θn + τ ln+1

(2.22)
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where l is not an operator but a complex number. To write this in the same
form as the classical map we need to introduce l̃n = τ ln. Substituting this into
(2.22) to obtain

l̃n+1 = l̃n + S sin(θn)

θn+1 = θn + l̃n+1

(2.23)

where S = k τ . As can be seen the mapping of the quantum kicked rotor has
two dimensionless control parameters. They cannot be transformed into one by a
scaling transformation, since τ is an independent parameter. In addition we also
have one parameter which is not present in the classical case, the quasimomentum
β.

2.2.2 Properties

Dynamical localisation

The change in energy as a function time, for most value of the parameters τ and β,
is in general an initial linear growth followed by fluctuation around a constant value.
It means, that independent of the kicking strength, the system eventually stops
absorbing energy. The wave function is localised in momentum space, commonly
referred to as ”dynamical localisation”. This an essentially property for the purpose
of the project, since without this property the system cannot be opened (as explained
in 2.2.3).

Quadratic energy growth

As explained above for most choice of the parameters τ and β the system exhibits
dynamical localisation. For τ commensurate to 2 π though, the system exhibits
quadratic energy growth [5], which is referred to as ”quantum resonance”. This
affect is also important in the further study of the system. To avoid distorting
the results obtained in analysing the system, it is necessary to avoid values of τ
commensurate to 2 π, when scanning through parameter space.

2.2.3 Survival probability

Opening System

The aim to study the system requires the study of the system under external per-
turbation. It has to be ensured though, that the external perturbation does not
significantly change the properties of the system. For the kicked rotor due to the
dynamical localisation, it is possible to have system which decays and the decaying
process can be studied.

Survival probability

The decay process is implemented by neglecting components of the momentum,
which lie outside of a certain interval ]n1, n2[. This is achieved, by setting the wave
function to zero for these components of the momentum. The wave function does
not need to be normalised after this process, since the maximum for the Energy lies
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at ≈ ñ and decreases exponentially to both sides. Therefore, asserting the interval
]n1, n2[ is chosen large enough, the introduced perturbation is indeed small and
negligible.
To measure the effects of the decay due to the boundaries we choose the ”quantum
survival probability”

Psurv(t; τ, β, k, n1, n2) =
∑

n

|ψ(n; t)|2. (2.24)

This represents the remaining momentum states inside the system after the decay
process at time t.
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Figure 2.3: plot of Energy E against number of kicks n
left: S = 2, center: S = 5, right: S = 7
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Figure 2.4: plots of decay rate (on a logarithmic scale ) against n
left: S = 2, centre: S = 4, right: S = 7 solid line: decay rate, dashed line:

exponential best fit, dotted line: best fit power law13



Figure 2.5: plot of phase space after decay
left: S = 7, right: S = 4
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Chapter 3

Numerical method

3.1 Classical kicked rotor

The map of classical δ-kicked rotor shown in eqn (2.6) can be directly implemented
into an algorithm, by incrementing the momentum and position in the loop. To
enable having different initial conditions l0 and θ0, a loop over the initial values is
implemented. To get a phase space plot the values of (ln, θn) are outputted after
each kick. Since in classical phase space the chaotic and regular parts in phase
space are separated by an impenetrable seperatrix. To ensure a complete phase
space picture, initial values have to be chose, that are both in the chaotic and
regular part of phase space.

3.2 Quantum kicked rotor

3.2.1 Time evolution

The algorithm used to implement the time evolution of the Quantum kicked rotor
is explained in the following. To start up, the periodic factor of the wave function
is rewritten as

u(θ) =

nmax
∑

n=nmin

un e
2πnx (3.1)

where un is a vector representing the expansion coefficient in the momentum space.
The vector would need to be infinite for a complete description of the system, but
for the purpose of this project, it is sufficient as long as nmin ≪ n1 and nmax ≫ n2

(for definition of n1 and n2 see sec. 2.2.3). For most results the basis is chosen
such that nmin=-1024 and nmax=1023, so the interval spans a basis of 2048.
For some cases the interval was doubled, which will be further discussed in the
following chapter. In all the following discussion expansion coefficient is initially
set to un(t = 0) = δn0, which means that initially the wave function represents a
particle at rest.
The implementation of the time evolution from eqn. (2.21) is done in two steps by
looking at the two factors of Û . The first step is the free evolution in momentum
space. For this we look at the momentum dependant factor of Û , which is diagonal
in momentum space so it can be multiplied with the expansion coefficient in the
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following way
(

Û u
)

n
= exp

[

−i τ (n+ β)
2

2

]

un. (3.2)

The second step is the instantaneous kick, for which it is necessary to transform
the expansion coefficient into position space. This is implemented by using a Fast
Fourier Transform as a subroutine, thus transforming expansion coefficient in mo-
mentum space un to the expansion coefficient in position space uj. The θ dependant

factor of Û is diagonal in position space and can be multiplied with the expansion
coefficient but this time in position space

(

Û u
)

j
= exp [−i k cos(θ)] uj (3.3)

Now the Fast Fourier Transform is implemented again, which transforms the ex-
pansion coefficient back into momentum space. In momentum space the absorbing
boundary conditions are applied, this is achieved, by setting un=0 ∀ n ≤ n1 and
n ≥ n2. The resulting expansion coefficients are used to calculate the average
energy and the probability of states, which is than used to calculate the survival
probability. The survival probability is calculated as a function of τ , to ensure that
the underlying phase space remains the same, k has to be varied as well, to compen-
sate for the change in τ . This comes from the fact that the parameter S determines
the phase space of the classical δ-kicked rotor, and in the quantum mechanical case
S = k τ . The time evolution is implemented in C++ with an external subroutine
for the Fast Fourier Transform in fortan70.

3.2.2 Analysing fractal dimension

The curves of the survival probability show, as mentioned before, fractal structures.
To evaluate the Hausdorff dimension of a geometric set, the standard procedure is
to use the box-counting algorithm. In this case with the graph of a real function, it
becomes particularly simple. The interval of τ , [τmin, τmax] is split into subintervals
Ii of equal width δ. Computing

N(δ) =
∑

i

⌈(max Psurv(τn) − min Psurv(τn))⌉
δ

τn ǫ Ii (3.4)

with varying δ leads to the power law N(δ) ∼ δ−Df , only if the graph of Psurv(τ)
shows a fractal structure. The plot of log [N(δ)] against log [1/δ] is straight line
with slope Df . Though for large δ the slope is 2 and for small δ it is 1 (see Fig
(3.1)). The box counting algorithm is tested on a random walk with Df=1.5, the
fractal dimension is obtained correctly to the first decimal place. The box counting
algorithm underestimates fractal dimensions for graphs with Df ≥ 1.5 [8]. Getting
a more accurate estimate is difficult because of uncertainties when fitting.
The fractal dimension can also be calculated by two alternative ways using the
correlation, C and variance, V . They are derived from the Brownian-motion like
nature of the fluctuation curves, it can be shown in the semiclassical case [9].

C(∆τ) = 〈Psurv(τ).Psurv(τ + ∆τ)〉τ
V (∆τ) = 〈|Psurv(τ + ∆τ) = Psurv(τ)|2〉τ (3.5)
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Figure 3.1: General structure expected for a plot of log [N(δ)] against log [1/δ]

In the limit of ∆τ → 0, both methods should yield a power law, with exponent α

1 − C(∆τ)/C(0) ∼ c∆τα, V (∆τ) ∼ c∆τα (3.6)

where c is a constant. The fractal dimension can be calculated from α by

Df = 2 − α/2. (3.7)

The double logarithmic plot of the relations eqn. (3.6) yields straight lines which
tail off, for large ∆τ . The part of the graph which follows the straight do have
a slope of α. The exponent for correlation is labeled αcorr and the exponent for
variance is labeled αvar.

3.2.3 Floquet operator

The non-unitary Floquet operator is computed including the projection inside the
absorbing boundary conditions. It is than diagonalised for several values of τ ,
generating the eigenphases Eτ − iΓτ/2, where Eτ represents the quasienergies and
Γτ represents the decay widths. This is done to ensure that the system does yield
fractal reaction curves. One condition is that the distribution of the density of decay
widths, ρ(Γ), follows the power law ρ(Γ) ∝ Γ−α. Another condition is that the real
parts of the energy spectrum are uncorrelated. To verify the first condition ρ(Γ) is
plotted against Γ on a double logarithmic plot. As expected this yields a straight
line, with α ≈ 1 for both sets of parameters. To verify the second condition, firstly
all the energies are sorted such that Eτ,j < Eτ,j+1. Then the probability densities
renormalised quasi energy spacings P (sτ,j), where sτ,j = ∆Eτ, j/ 〈∆E〉 is plotted
against s. Typically the probability densities of differences of uncorrelated variables
should follow a Poisson distribution of the form P (s) = e−s. Both plots are shown
in fig. (3.2) for S = 2.2 and S = 4.
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Figure 3.2: log [ρ(Γ)] against log[Γ] and P (s) against s for two sets of parameters.
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Chapter 4

Results

Answering the question about the behaviour of the complexity of the quantum
kicked rotor for underlying mixed classical phase space is the subject of this project
and will be the main focus in this chapter. The complexity of the quantum kicked
rotor is studied by analysing survival probability curves as a function of τ, k and
β (explained in detail in sec. 4.1). The fractal dimension of these curves is a
measure for the complexity of the system. The results from the classical δ-kicked
rotor are used to choose parameters to determine the phase space structure and
initial condition. In essence this project is an extension of the work done in [10]. In
previous studies the fractal fluctuations studied were for systems with an underlying
phase space, which is completely chaotic. In this project the range of parameters
is increased to include systems with and underlying mixed phase space and the
problem approached more systematically.

4.1 Method

Psurv(τ, k) are calculated at fixed phase space and initial conditions. The resulting
curves are analysed using the three methods mentioned in ch. 3.2.2, namely the
box counting analysis, the temporal correlation and variance. In this section the
methods used and some of the problems encountered are discussed in detail.
As mentioned in sec. 2.2.2, for τ comparable to 2π quantum resonances occur,
therefore when survival probabilities are calculated these values of τ need to be
avoided. The effect of including these values would change the structure of the
Psurv(τ, k) significantly, since for these parameters the trajectories would decay
very quickly even after small times. The grid for τ has to be chose in such a way,
that these values are avoided. The golden ratio, (

√
5−1)/2 is the ”most irrational”

number because it shows the slowest convergence in the expansion of continued
fractions of all irrational numbers. To ensure the resonant values of τ are avoided,
the golden mean is used to calculate the separation between successive values of τ .

4.1.1 Boxcounting

The definition of the boxcounting includes a ceiling function when counting the
number of boxes needed to cover the curve. When this is implemented numerically,
the resulting curves of log [N(δ)] against log [1/δ] do not follow the predicted trend
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of Fig. (3.1). This is only the case, when the spread of Psurv(τ, k) is similar to the
step size in τ . For these curves the predicted Df ≈ 2 for large δ are not observed.
This is only the case, when the ceiling function is used (see eqn. (3.4)), when leaving
out the ceiling function, the predicted structure in the double logarithmic plot of
N(δ) against 1/δ is observed. To evaluate the slope to get Df , these regions need
to be avoided. This is done systematically by comparing curves with and without
the ceiling function for different parameters to identify a value of log [1/δ] which
separates the region in which both curves follow the same trend from the region
where they differ. This applied to two different sets of parameters can be seen in
Fig (4.1.1). As mentioned in sec. 3.2.2, it is difficult to get the value of the fractal
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Figure 4.1: The comparison between the two different methods for box counting are
show for two sets of parameters. Panel a) shows the plots for S=5, τǫ [0.886, 0.896],
after 10 000 kicks. Panel b) shows the plots for S=5, τǫ [1.40, 1.42], after 5000
kicks.

dimension precise to more than the first decimal point.To identify the best fit for
the slope, the cutoffs are varied changing the size of the interval for the fit. The
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cutoffs are chose to ensure, that Df is stable to a change in the size of the interval.
A plot of Df against interval size is show in Fig. (4.2).

Figure 4.2: Wrong picture, needs to redone

4.1.2 Correlation

To compute the fractal dimension from the analysis of the correlation as mentioned
in 3.2.2, is not possible for some of the survival probability curves. One example of
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Figure 4.3: Survival probability as a function of τ for S = 3 after 3000 kicks

such a curve can be seen in fig. (4.3), where the large peak for small τ makes the
analysis of the correlation impossible. As can be seen in fig. (4.4), the correlation
has an initial positive slope, which is not as expected in a normal correlation. This
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initial increase makes it impossible to study the double logarithmic plot of eqn.
(3.6), because it would be initially negative. To make sure that the correlation of
this function can be studied despite this problem, a shift in the survival probability
is introduced. It is implemented by subtracting 〈Psurv(τ, k)〉τ from all the val-
ues of the survival probability. This centres the curve around x-axis, ensuring the
appropriate structure of the correlation function as can be seen in fig. (4.4).
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Figure 4.4: Correlation

4.1.3 Localisation

For the analysis of the survival probability curves, as mentioned in ch. 2.2.2, the
localisation of the wave function inside the absorbing boundaries is a necessary
condition. For large values of S the boundaries initially used ]−1, 200[ do not
ensure localisation over a sufficiently large range as can be seen in Figure (4.5).
The first plot shows the probability for states logarithmically against the state, and
it is visible, that the wave function is only localised for n between roughly 150 and
200. This localisation is not large enough. In the second plot, for small Γ the plot
tends towards a constant value, though the expected trend is shown as a solid line.
Both these effects can be avoided, by increasing the size of the interval ]n1, n2[.
Increasing n2 only, does not have a large effect on the localisation of the wave
function, because, most of the decay takes place at the boundary n1. This can be
seen in fig. (4.6), where the localisation is only extended to the right for larger
n, but it has no effect on the wave function for small n. When changing n1 care
has to be taken not to make much small than -1, because otherwise the amount
of decay would be minimal, and the resulting curves for the survival probability
would be meaningless. This can be seen in table 4.1, where for n1=-50 the survival
probability is close to 1.
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Figure 4.5: Wave function
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Figure 4.6: Wave function in momentum space for different values of the cut off

4.1.4 Quasimomentum

Initially the only parameters varied in the system are τ and k. This is done, to ensure
that the underlying phase space is constant. For S ≤ 4 this is no sufficient, because
p0 = l0/τ = n+ β, where p0 is the momentum of the quantum kicked rotor and l0
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S τ n1 n2 250 kicks 1000 kicks 5000 kicks 10 000 kicks

2.2 0.886 -1 200 0.2967292 0.1670350 0.0175889 0.0087693
5 0.886 -1 200 0.0090429 0.0029328 0.0005758 0.0003611
10 0.886 -1 200 0.0082947 0.0016362 0.0002481 0.0001136
2.2 1.400 -1 200 0.4867750 0.1203949 0.0326365 0.0265505
5 1.400 -1 200 0.0079890 0.0015688 0.0003452 0.0001507
10 1.400 -1 200 0.0094683 0.0016767 0.0003033 0.0001843
2.2 0.886 -10 500
5 0.886 -10 500
10 0.886 -10 500
2.2 1.400 -10 500
5 1.400 -10 500
10 1.400 -10 500
2.2 0.886 -25 500
5 0.886 -25 500
10 0.886 -25 500
2.2 1.400 -25 500
5 1.400 -25 500
10 1.400 -25 500
2.2 0.886 -50 500
5 0.886 -50 500
10 0.886 -50 500
2.2 1.400 -50 500
5 1.400 -50 500
10 1.400 -50 500

Table 4.1: Survival probability for different values of ]n1, n2[

the momentum of the classical δ-kicked rotor. For p0 6= 0, β should be non-zero as
well, because otherwise for changing tau, the equation would not hold. β has to be
set, to represent the decimal part of p0. For all parameters with S ≤ 4, the survival
probability curves are plotted again, with changing β. The change introduced by
this change in β varies according to the value of the parameters. In fig. (4.7),
two plots are shown with two different sets of parameters, with different effects of
changing the β. Changing the qusimomentum ensures, that the underlying phase
space as well as the initial conditions remain constant.

4.2 Central results

The results were obtained for two different intervals of τ , firstly τǫ[1.4, 1.42] and
secondly τǫ[0.886, 0.896]. In both cases S is varied between 2 and 10 and number
of kicks are varied between 100 and 10000. The plots of the survival probability
show stronger fluctuations for higher S and for larger number of kicks. In general
overlapping peaks start to appear for S =5, in both intervals of τ . A plot with
hardly any fluctuations can be seen in fig. (4.3), an example on the other extreme
with a large number of overlapping peaks can be seen in fig. (4.8). The trend for
these preliminary results is an initial increase followed by a saturation. The point at
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Figure 4.7: Two curves of Psurv(τ, k, β) against τ . Top curve for
τǫ [0.886.0.896] , S = 3 after 10000 kicks. Bottom curve for τǫ [1.40.1.42] , S = 4
after 6000 kicks

which the saturation starts differs between the two intervals. The error is estimated
by comparing two most extreme fits and taking the difference to be the error. The
resulting error is quite large, but this only shows the difficulty of finding a fit. The
results of the fractal analysis using correlation and with the same parameters is
shown in fig. (4.10). For correlation of the interval τǫ[0.886, 0, 896], the first value
is problematic as can be seen in table (??), for small S and small number of kicks,
the correlation does not measure the fractal dimension well. The same problem
occurs for some values of the correlation with shift (see table (??)). Doing the
analysis with varying β does not introduce a big difference in the trend of the data
as can be seen in fig. (4.11). The new data points connected here by a solid red
line, lie almost without exception well within the errors of the original points.
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Figure 4.8: Psurv(τ, k) against τ for S=9 after 3000 kicks
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Figure 4.9: Df(S) for increasing S. Panel a) for τǫ[0.886, 0.896]. Panel b)
τǫ[1.4, 1.42]
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Chapter 5

Conclusion
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