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Chapter 1

Introduction

The possibility of realizing systems at extremely low temperatures provided

new tools to investigate the quantum nature of matter. One of this tools

regards the quantum transport of ultracold atoms, which only recently has

been investigated in various setups with ultracold fermions and bosons [1,

2, 3, 4].

Quantum transport is an essential topic in solid state physics and elec-

tronic applications, for which the tunneling is one of the most important

processes. However, due to complications such as impurities, lattice vibra-

tions, and multi particle interactions clean observations of these effects have

been difficult in crystals. The introduction of ultracold atoms in optical lat-

tices gave the opportunity to work at quasi-zero temperature and to have

experimental control on most of the system parameters as the lattice depth,

the lattice periodicity or the strength of the atom-atom interactions. This

makes atomic systems attractive as model systems for crystal lattices. The

conceptual simplicity in such systems allows an efficient investigation and

understanding of the microscopic transport. Optical lattices are nowadays

easy to realize in the laboratory, and their parameters can be perfectly con-

trolled both statically and dynamically. By superimposing laser beams from

different directions and with slightly different wave-lengths, it is possible to

generate many different three-dimensional lattice geometries [8].

In this thesis, our results for different engineered potentials are pre-

sented. This systems are realized with ultracold atoms forming a Bose–
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6 1. Introduction

Einstein condensate in an optical lattice subjected to a static tilting force

[8]. The tilt is experimentally implemented by accelerating the optical lat-

tice [6, 10]. We investigate the transport of Bose-Einstein condensates in

different chosen parameter of the potential. To do this we start preparing

the initial state as the ground state of an harmonic oscillator and than open

the trap in one direction, so that the wave propagate only in that direction.

We investigate in detail how the particle current in such a setup depends on

the interactions which we treat in mean-field approximation following the

Gross–Pitaevskii equation [11].

Chapter 2:

In this chapter we provide the theoretic for our studies. We start with

a short review on the bosonic system of ultracold atoms and the formation

of Bose–Einstein condensate in section 2.1. In the first part of this section,

the non-interacting dilute Bose-gas and in the second part, the interacting

Bose–gas in the regime of weak atom-atom interactions is shortly reviewed.

The dynamics of Bose–Einstein condensates in such a regime is very well

described in a mean-field regime based on the so-called Gross–Pitaevskii

equation. Section 2.2 presents this non-linear Hamiltonian to describe the

dynamics of condensate atoms, that are trapped in a three-dimensional har-

monic oscillator potential. Bose–Einstein condensates in optical lattices are

used to simulate solid state systems. Section 2.3 presents how the optical

lattices can be created theoretically and experimentally through the inter-

action between atoms and light. Later in section 2.3, it is described that

more complex and non-periodic optical lattices can be generated easily by

superimposing more laser beams with arbitrary frequency difference.

Due to the Stark force it is possible to tilt the optical lattices. Particles in

periodic potential and in the presence of the external field perform oscilla-

tory movements. The so-called Bloch oscillation phenomenon is described

in section 2.4. The problem of finding the eigenstates of the periodic sys-

tem under the influence of an external field, the so-called Wannier–Stark

problem is introduced in section 2.5.

Section 2.6 shows simply transformations in the system of natural units
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which makes the numerical calculus without carrying big constant value.

Chapter 3:

In order to describe the dynamics of our systems, we need to integrate

the Gross–Pitaevskii equation. Our numerical integration method is pre-

sented in chapter 3. Starting from the integration scheme in one dimen-

sion and its discretization. Then we present the predictor-corrector method

which helps to get a better approximation when the Hamiltonian present

a non-linear term. In order to prepare the initial state, we use an imagi-

nary time method to integrate the Hamiltonian. We discuss these methods

for a one-dimensional system and we introduce a method to ignore the non

limitless of the grid: the absorption method.

Chapter 4: Finally we show our results, yet to be tested experimentally,

we propose this contribution a relatively simple method to prepare the initial

state, namely within a steep harmonic trap. Transport occurs when the trap

is opened in one direction. We investigate in detail how the particle current

in such a setup depends on the interactions which we treat in mean-field

approximation following the Gross–Pitaevskii equation. We present how

the interaction acts on the evolution of a wave packet in free half space, and

in two optical tilted lattice with different parameters.

Chapter 5: We conclude showing fewer applications and a method to

approach the problem of the more general three dimensional case, for cylin-

drical systems, can be reduced to a two dimensional problem in principle,

which otherwise it requires a lot of time in calculations. We introduce here

the problems we encountered and a partial solution to them.
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Chapter 2

Ultracold atoms

2.1 Bose-Einstein condensation

At the beginning of the 20th century, following the work of Bose on the

statistics of photons [16], Einstein considered a gas of non-interacting mas-

sive particles, and concluded that, below a critical temperature, of about

one hundred nano Kelvin, a finite fraction of the total number of particles

would occupy the lowest energy single-particle state [17]. Such a system

undergoes a phase transition and forms a Bose-Einstein condensate, where

a macroscopic number of particles occupy the fundamental energy state.

According to the theory of an ideal quantum gas of particles with mass

M conform to Bose-Einstein statistics, at temperature T , a phase transition

occurs when the De Broglie wavelength of characteristic thermal motions:

λB = (2π h̄/MkBT )1/2, becomes comparable to the mean inter-particle sep-

aration: r = n−1/3. Where kB is the Boltzmann constant and n is the atom

number density. The particle density at the centre of a Bose-Einstein con-

densate is typically ∼ 1013 − 1015cm−3 [11]. In order to observe quantum

phenomena at such low density, the temperature of the system must be of the

order of 10−5K or less. Laser cooling methods are used to cool down alkali

metal atoms, but since these techniques alone cannot produce sufficiently

high densities and low temperatures for condensation, it is followed by an

evaporative cooling stage. During the latter stage, more energetic atoms are

removed from the trap, and as result the remaining atoms are cooled further.

9



10 2. Ultracold atoms

A microscopic population of atoms is achieved at such low temperature [8].

2.1.1 Non-interacting dilute Bose-gas

Every realistic Bose gas shows some level of particle-particle interac-

tion. Therefore, the system of an ideal gas consisting of non-interacting

Bosons is a fictitious system. Nevertheless, this model provides the sim-

plest example for the realization of Bose-Einstein condensation. At zero

temperature, a non-interacting Bose gas is fully condensed and all N parti-

cles are described by identical single particle wave function [11]. The many

body ground state wave function in then given by the product of N identical

ground state functions.

Ψ(r1,r2, ...,rN) =
N

∏
i=1

ψ(ri) (2.1)

This condensate wave function is a normalized macroscopic wave func-

tion. For a non-interacting Bose gas and an inhomogeneous system, this

state is simply the single particle ground state of the confining potential.

2.1.2 Interacting Bose gas in the mean-field limit

When weak interactions between particles are included in the problem,

the ground state many body wave function is still, to a very good approxi-

mation, a product of N single particle wave functions. These functions are

now obtained from the solution of a non-linear Schrödinger equation [8],

which is known as Gross–Pitaevskii equation and describes the dynamics

of weakly interacting bosons. The condensate typically consists of a few

thousands to millions of atoms which are confined by a trapping potential.

The macroscopic behaviour of the Bose-Einstein condensate is affected by

the internal interactions between the atoms, and by the shape of the external

trapping potential. The atom-atom interaction in a cold dilute gas of bosons

is dominated by elastic binary collisions and can be treated in the frame-

work of scattering theory. At very low temperatures, the thermal de Broglie

wavelength λB is much larger than the mean inter-particle separation, thus
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only s-wave collision are important. For such a dilute gas the interactions

can be modeled by a Dirac delta potential whose strength is proportional to

the s-wave scattering length as. The inter-atomic potential can be replaced

by an effective contact interaction:

V =
4π h̄2as

M
δ (r)≡ gδ (r) (2.2)

where r is the relative coordinate between two atoms, M is the mass of

the single atom, as is the s-wave scattering length and g ≡ 4π h̄2as/M is

the coupling constant [11]. The strength of the two-body interaction (∼ as)

in the ultracold atomic gas can be tuned by means of Feshbach resonances

[18]. It is possible to create attractive interactions for negative as, repulsive

interactions for positive as, or even non-interacting gases.

2.2 Gross–Pitaevskii Equation

For a dilute gas, the dynamics of a Bose-Einstein condensate can be de-

scribed by the mean-field approximation. The diluteness of the gas is char-

acterized by the ratio of scattering length as and the inter-particle spacing.

This ratio can be expressed as a gas parameter na3
s and is typically less

than 103. In this limit, due to the mean field of all other atoms in the con-

densate, each atom feels an additional potential. Therefore, the interaction

potential to the local atomic density |ψ(r, t)|2. The dynamic properties of a

Bose-Einstein condensate at temperature T < Tc are usually well modeled

by a general non-linear Schrödinger equation for the macroscopic function,

where the Hamiltonian reads:

H =
p2

2m
+Vext(r)+Vint(r, t) (2.3)

This Hamiltonian contains the trap potential Vext(r), typically an har-

monic oscillator potential, as well as the coupling interactions in the form

of the non-linear term.

Vint(r, t) = g3DN|ψ(r, t)|2 (2.4)
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Where the coupling constant g3D is the same as in Eq. (2.2), and N is the

number of atoms in the condensate. the wave function is then normalized

to 1. We restrict here to a system which is confined in an harmonic trap

characterized by a frequency ω⊥ in the two transverse directions with radial

symmetry. This system can be approximated to a quasi one-dimensional

situation. This regime is obtained if the traverse confinement length l⊥ ≡√
h̄

Mω⊥
is on the order of ξh = 1√

8πnas
[11] where n is the mean particle

density. In this regime we have to change the coupling constant in order to

keep in consideration the others dimensions:

g1D = 2h̄ω⊥as (2.5)

2.3 Optical Lattice

2.3.1 Connection to solid state physics

Following the classical experiments which showed the mechanical ac-

tion of light on neutral atoms [19], proving the theoretical prediction of

Maxwell that electromagnetic waves carry momentum, the development of

the lasers made it possible to realize resonant light forces on neutral parti-

cles. Only in the 1970s the first scattering measurements were done using

both travelling and standing waves [20]. In 1998 Anderson and Kasevich

loaded a Bose-Einstein condensate in a standing light wave [7] which was

the beginning point to study its dynamics in periodic potentials [8]. Opti-

cal lattices are periodic potentials created by light-atom interactions. When

an atom interacts with an electromagnetic field, its internal states depends

on the light intensity. Therefore, a spatially dependent intensity induces

a spatially dependent potential energy [21]. The system of a particle in

a periodic optical lattice is the textbook model of an electron in a crystal

lattice. Optical lattices have several advantages with respect to solid state

system. The optical system can be made free from defects, resulting in a

larger mean free path of particles. Defects prevented for example the obser-

vation of the theoretically predicted coherent phenomenon such as Bloch
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Oscillations. The lattice depth and geometry can be easily controlled by

optical means. Using multiple-beam, interference makes it possible to real-

ize two-dimensional and three-dimensional lattices, super-lattices, ratchets

and more complex structures. In optical system the relaxation time can be

made much larger than the coherent time scale. In addition, the possibil-

ity to dynamically control the interaction potential in real time during the

experiment allowed recent experiments to observe many of the coherent ef-

fects, such as Bloch oscillations on the Wannier-Stark ladders, which are

hardly accessible in solid state systems [5, 8, 22, 23, 24].

2.3.2 Interaction of atoms and light

Neutral atoms interact with a light field in both a dissipative and a con-

servative way. The conservative interaction comes from the interaction of

the light field with the light induced dipole moment of the atom. It causes a

shift in the potential energy, the so-called Stark shift. The dissipation arises

due to the absorption of photons followed by spontaneous emissions. It re-

sults in a dissipative force on the atoms caused by the momentum transfer of

the absorbed and spontaneously emitted photons. This light force is widely

used for laser cooling and magneto optical traps [25]. For a large detuning

of the light from atomic resonances, spontaneous emission processes can be

neglected and the energy shift can be used to create a conservative trapping

potential for neutral atoms [26]. Periodic optical potentials are created by

superimposing two laser beams with the same frequency ωL. The resulting

electric field is of the form

E(r, t) =
1
2

E0(ei(k1·r+ωLt)+ ei(k2·r−ωLt))+ c.c. (2.6)

where E0 is the amplitude, ki = 2π/λi is the wave vector of the laser wave-

length. The atom-field interaction energy is:

Hint =−d ·E(r, t) (2.7)

Using two laser beams related by k1 = −k2 = kL leads to the effective

interaction
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Ve f f =
V0

2
cos(2kL · r) (2.8)

The amplitude of the periodic potential V0 can be expressed in terms of

the Rabi frequency ΩR which can be rewritten in therms of the laser inten-

sity I. This way the amplitude of the periodic potential can be expressed in

terms of measurable quantities [6, 8]

V0 =
h̄Ω2

R
∆L

= ζ h̄
I
Is

Γ2
s

∆L
(2.9)

where ∆L = ωL −ω0 is the average detuning from resonance, Is is the

saturation intensity, ζ is a correction which depend on the level structure of

the atom and Γs is the photon scattering rate [27]. Therefore, considering

two counter-propagating laser beams along the x-axis, the resulting one-

dimensional periodic potential can be written as V =V0 sin2(klx).

2.3.3 Tilted optical lattice

Ultracold atoms in optical lattices can model the solid-state systems of

electrons in a crystal in the presence of applied fields. The force induced

by an external field is necessary to observe phenomena like Bloch oscilla-

tions and Wannier-Stark ladders. Such a force can be easily implemented

in optical lattices, i.e. by an inertial force by accelerating the optical lattice

[6].

H =
p2

2M
+V0 sin2(kLx)+Fx (2.10)

This Hamiltonian presents the so-called Wannier-Stark system. The last

term in the Hamiltonian mimics the role of the interaction potential VC =

eEx between the electric field E and the electron of charge e in the crystals.

2.4 Bloch oscillations

In solid-state physics, the temporal dynamics of an electron facing an

electric field is a fundamental quantum-mechanical problem. Felix Bloch
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predicted the dynamical behaviour of electrons in a solid, subject to a uni-

form, static electric field [28]. It was expanded later by Zener, showing

that electrons accelerated by an electric field in a periodic potential, under

the right conditions, could oscillate [29]. The frequency of oscillations in

given by ωB = FdL/h̄, where F = eE is the force and dL is the lattice con-

stant. This phenomenon is known as Bloch oscillations. Bloch oscillations

have never been observed in natural crystals because the scattering time of

the electrons at lattice defects is much shorter than the Bloch period. In

fact only in 1992 the Bloch oscillations were detected using semiconductor

superlattices [5, 22].

For a particle in a periodic potential V (x) = V (x+ dL) in the presence

of a force F , the Schrödinger equation can be written

ih̄
∂
∂ t

ψ(x, t) =
(
− h̄2

2M
d2

dx2 +V (x)+Fx
)

ψ(x, t) (2.11)

it is assumed that the wave function has the following form

ψ(x, t) = ∑
n,k

cn,k(t)ψn,ke−iEnt/h̄ (2.12)

and the time variation of the amplitude of the coefficients can be found

as [28]

d
dt
|cn,k(t)|2 =−F

h̄
∂
∂k

|cn,k(0)|2 (2.13)

A particle confined to a single energy band will move in the opposite

direction of the field until being reflected by the lattice, and then it moves

in the opposite direction until is stopped by the force, where it starts the

same motion over again [29]. This periodic oscillation is characterized by

the period

TB =
2π h̄
FdL

(2.14)

Bloch oscillations in the time domain are related to the existence of a

Wannier-Stark ladder in the frequency domain [31].
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2.5 Wannier-Stark ladders

The dynamics of a particle in a one-dimensional periodic lattice poten-

tial V (x) = V (x + dL) under the influence of a force is described by the

so-called Wannier–Stark Hamiltonian

H =
p2

2M
+V0 sin2(kLx)+Fx (2.15)

The problem of describing the spectrum of this system created a long

standing discussion about its properties [30, 31, 32, 33, 34, 35]. This dis-

cussions were initiated due to a counter intuitive prediction and by the dif-

ficulty to verify the predictions experimentally. The application of a force

destroys the translational invariance of the periodic potential and causes a

gradual localization of the initially delocalized Bloch states which is called

Stark localization [31]. The Wannier functions are in essence a Fourier

transform of the Bloch states. Applying a force, the continuous density of

states is transformed into a series of equally spaced - in energy and real

space - ladder states with energies forming the Wannier–Stark ladder:

En,m = En +mFdL, m = 0,±1,±2... (2.16)

where En,m are the energy levels, En is the mean energy of the band,

and mFdL are the ladder spacing intervals with m being the site index and

n the band index. This implies that if there exists an eigenstate ψn(x) with

energy En, then the set of states corresponding to wave functions ψn,m(x) =

ψn(x−mdL) are eigenstates of the Hamiltonian with energies En,m. The

ladder spacing is related to the Bloch oscillation period TB and leads to

what is called Stark ladders.

2.6 External potential

To study the transport of a Bose-Einstein condensate in mean field ap-

proximation with a numerical approach, we prepare the wave function in

the ground state of an harmonic trap. Transport occurs when the trap is
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opened one direction. We investigate in detail how the particle current de-

pends on the structure of the potential first without internal interaction and

then switching it on following the Gross-Pitaevskii equation. Our potential

can be written:

Vext(x)=
{ 1

2mω2(x− x0)
2 t < 0

θ(x0 − x)1
2mω2(x− x0)

2 −θ(x− x0)[Fx+ sin2(K(x− x0))] t > 0
(2.17)

From now on we will see the transformations of the Hamiltonian only

for t > 0, because the case t < 0 is included in it. The extended one dimen-

sional Hamiltonian is then:

H(x, p) =
p2

2m
+g|ψ(x, t)|2+

+θ(x0 − x)
1
2

mω2(x− x0)
2+

−θ(x− x0)[Fx+Asin2(K(+x− x0))]

(2.18)

2.6.1 Natural units

To simplify the problem, we rescale Eq. (2.18) by introducing dimen-

sionless variables,

{
p ≡ (h̄ωm)

1
2 p̃

x ≡ ( h̄
ωm)

1
2 x̃

(2.19)

where ω is the harmonic trap frequency at t = 0. Imposing that the norm

remains the same
∫
|ψ|2dx =

∫
|ψ̃ |2dx̃ = 1 we obtain the transformation for

the wave function:

|ψ|2 = dx̃
dx

|ψ̃|2 =
(

ωm
h̄

) 1
2

|ψ̃|2 (2.20)

Replacing this in the Hamiltonian we have:
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H̃(x̃, p̃)≡ 1
2

p̃2 + g̃|ψ̃(x̃, t̃)|2+

+
1
2

θ(x̃0 − x̃)(x̃− x̃0)
2+

−θ(x̃− x̃0)[F̃ x̃+ Ãsin2(K̃(x̃− x̃0))]

(2.21)

where the new constants become g̃ ≡ g(m/h̄3ω)1/2, F̃ ≡ F/(h̄ω3m)1/2,

Ã ≡ A/h̄ω , K̃ ≡ K(h̄/ωm)1/2, H̃ ≡ H/h̄ω .

The transformation of time we get from the Schrödinger equation:

ih̄
∂
∂ t

ψ(x, t) = H(x)ψ(x, t) = h̄ωH̃(x)ψ(x, t) (2.22)

in our units the system can be rewritten as:

i
∂
∂ t̃

ψ̃(x̃, t̃) = H̃(x̃)ψ̃(x̃, t̃) (2.23)

where t̃ ≡ ωt is time in our units. In the remaining part of the thesis we

use the dimensionless units introduced above. We leave away the tildes for

simplicity in what follows.



Chapter 3

Numerical Methods

In order to integrate the Gross-Pitaevskii equation, we used a numerical

approach. In this chapter, an implicit integration procedure is introduced,

based on numerical evaluation of the time evolution operator. This is ap-

plied to the representation of the wave function in a spatial grid basis. Since

the Bose-Einstein condensate can be prepared with certain symmetries due

to the trap, different coordinates representations can be considered. This

can reduce the three dimensional Gross-Pitaevskii equation into a quasi one

dimensional one.

3.1 Integration scheme in one-dimension

In this section, an implicit method to solve the partial differential equa-

tion given by a one dimensional Gross-Pitaevskii equation is presented. The

time evolution of the wave function ψ(x, t) is described as

i
∂
∂ t

ψ(x, t) = H(x)ψ(x, t)

H(x, t) =− 1
2

∂ 2

∂x2 +Vext(x)+g1D|ψ(x, t)|2
(3.1)

where Vext(x) is the external potential, g1D ≡ 2h̄ω⊥asN is the one di-

mensional coupling constant for the weak atom-atom interactions of the

condensate atoms. The Gross-Pitaevskii equation represents a non-linear

19
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time dependent Schrödinger equation.

The solution to this time dependent equation in the Schrödinger repre-

sentation is given by

ψ(x, t) =U(t, t0)ψ(x, t0) (3.2)

where the time evolution operator is defined as

U(t, t0) = T
(
− i

∫ t

t0
dt ′H(x, t ′)

)
= 1− i

∫ t

t0
dt1H(x, t1)+(i)2

∫ t

t0
dt1

∫ t1

t0
dt2H(x, t1)H(x, t2)+ ...

(3.3)

The non-linear term g1D|ψ(x, t)|2 is considered as a self consistent time

dependent effective potential. For small time difference ∆t, according to the

mean-value theorem the above integral can be approximated as

U(t +∆t, t) = 1− iH(x, t)∆t +(i)2H2(x, t)∆t2 + ... (3.4)

Knowing the state ψ(x, t) at time t, the wave function ψ(x, t +∆t) at

time t +∆t can now be calculated by Eq. (3.2). Taking into account only

the terms of the order O(∆t), a simple solution reads

ψ(x, t +∆t) =
[

1− iH(x, t)∆t
]

ψ(x, t) (3.5)

But since the operator [1 − iH(x, t)∆t] is not unitary, this explicit in-

tegration method is numerically unstable [44], and moreover, it does not

conserve the normalization of the wave function. To circumvent these dis-

advantages, the Cayley’s theorem can be used which results in the following

presentation of time evolution operator [45]

ψ(x, t +∆t) =
1− i

2H(x, t)∆t

1+ i
2H(x, t)∆t

ψ(x, t) (3.6)
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This approximation has error on the order of O(∆t3). This error can be

determined by comparing the power series of the time evolution operator

given in Eq. (3.6) with the power series of exp(−iH∆t). Taking the first

four terms in the power series expansion of this time evolution operator

reads

e−iH∆t = 1− iH∆t − (H∆t)2

2
+ i

(H∆t)3

6
+ ... (3.7)

while the expansion for the approximation gives

1− i
2H(x, t)∆t

1+ i
2H(x, t)∆t

= 1− iH∆t − (H∆t)2

2
+ i

(H∆t)3

4
+ ... (3.8)

These two expansions differ beginning only in the third term, and the

error will be of the third order. With this unitary time-evolution operator,

the norm of the wave function is also conserved. Eq. (3.6) results in the

following integration algorithm:

[
1+

i
2

H(x, t)∆t
]

ψ(x, t +∆t) =
[

1− i
2

H(x, t)∆t
]

ψ(x, t) (3.9)

In numerical analysis, this type of solution is called an implicit scheme

or a Crank–Nicholson scheme [44]. In the numerical simulation of the time

evolution over a total time period ∆T = t f − ti (with t f > ti), we divide ∆T

into Nt equal time intervals ∆t =∆T/Nt . The aim is to calculate numerically

the wave function of the discrete times tn = n∆t, by means of the implicit

scheme given in Eq. (3.9). To solve this equation numerically, one must

discretize Eq. (3.1). In the following, the discretization process is presented.

3.1.1 Expansion over a grid

To solve the Gross-Pitaevskii equation given in Eq. (3.1), the wave func-

tion is expanded over a discrete basis. The continuous variable x is repre-

sented as a discrete variable x j = x0 + j∆x, where ∆x is the mesh size, x0
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the starting value, and j is an integer which runs from 1 to Nx. Time is also

represented as a discrete variable as tn = t0+n∆t, where ∆t is the time step,

t0 the initial time and n is an integer. Both x0 and t0 can be set to zero for

simplicity. We can define the following basis states

χ j ≡
{

1, x j − 1
2∆x ≤ x ≥ x j − 1

2∆x

0, otherwise
(3.10)

The wave function is therefore expanded over this discrete space as

ψ(x j, tn) = ∑Nx
j=1 ψn

j χ j, where the expansion coefficient, at time tn, is ψ j ≡
ψn

j

The form of the wave function is a column vector, with each component

taken at the mesh point, such that for any time t, the wave function can be

rewritten as

ψn(x) =



ψ(∆x)

ψ(2∆x)

ψ(3∆x)

.

.

.

ψ(Nx∆x)


(3.11)

In our numerical calculation Nx is typically on the order ∼ 212. The

potential term in the Hamiltonian is a function of x, therefore, the discrete

representation of V (x), at time tn, is

V n(x) =



V (∆x)

V (2∆x)

V (3∆x)

.

.

.

V (Nx∆x)


(3.12)



INDEX 23

The interaction term consists of the time-dependent wave function and

can also be generated at each time step as g1D|ψ(x,n∆t)|2 ≡ g1D|ψn
j |2. The

discretization of the kinetic energy operator is more involved. A proper dis-

crete representation for the second spatial derivative can be found using a

finite difference method. The Crank–Nicolson method is a finite difference

method which is based on central difference in space, and the trapezoidal

rule in time, giving second-order convergence in time. This method pro-

vides a discrete representation for the kinetic term

−1
2

∂ 2ψn
j

∂x2 =−1
2

ψn
j+1 +ψn

j−1 −2ψn
j

∆x2 (3.13)

where ψn
j is in fact ψ( j∆x,n∆t). Therefore the Hamiltonian operating

on ψ(x, t) has the following discrete form

Hψn
j =− 1

2∆x2 [ψ
n
j+1 +ψn

j−1 −2ψn
j ]+V jψn

j +g1D|ψn
j |2ψn

j (3.14)

The mesh runs from j = 1, ...,Nx, therefore, for solving this equation,

values for ψ(0) and ψ((Nx +1)∆x) are needed, which are outside the mesh

system. These values are simply set to zero. Of course, this is like assuming

the potential is suddenly infinite outside the mesh system. Practically, the

spatial system should be constructed sufficiently large so that, over the time

scales of interest, the wave functions do not reflect from these “hard walls”.

Since we are studying the transport of the condensate, it is in our interest to

make the wave travel far enough, therefore we will introduce an absorption

method of the wave function beyond a fixed position. As a result of the

discretization, a single differential equation is thus replaced with a set of Nx

coupled equations. The Hamiltonian has the form of an Nx ×Nx matrix:

H =


−2k+K k 0 . . .0

k −2k+K k 0 :

0 ... ... ... 0

... ... ... ... :

0 ... 0 ... 0 k −2k+K

 (3.15)
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where k = − 1
2∆x2 and K = Vj +g1D|ψn

j |2. As seen, the Hamiltonian H is a

tridiagonal matrix, with non-zero term only on the main diagonal and the

first upper and lower diagonals. To reduce the memory required for this

calculation, only non-zero terms are stored. Using the discrete representa-

tion of the Hamiltonian the terms [1± iH∆t/2]ψ(x j, tn) in the discrete form

reads

ψn
j ±

i∆t
2

[
1

2∆x2 [ψ
n
j+1 +ψn

j−1 −2ψn
j ]+V jψn

j +g1D|ψn
j |2ψn

j

]
(3.16)

Using the matrix representation, one finds the following tridiagonal ma-

trix for the operators M± ≡ 1± iH∆t/2

M± =



.

.

∓α 1±β j−1 ∓α
∓α 1±β j ∓α

∓α 1±β j+1 ∓α
.

.


(3.17)

where

α ≡ i∆t
4∆x2

β j ≡
i∆t

2∆x2 +
i∆t
2
(Vj +g1D|ψn

j |2)
(3.18)

Therefore the numerical evaluation of the implicit integration scheme

given in Eq. (3.9) is described by the following matrix equation

M+ψn+1 = M−ψn ⇒ ψn+1 = M−1
+ M−ψn (3.19)

The vectors ψn and ψn+1 are wave functions at time tn and tn+1, respec-

tively. The above equation has the form of A · X⃗ = b⃗, where b⃗ is an Nx ×1

column vector and equals M−ψn, the matrix A = M+ and X⃗ = ψn+1 is what
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has to be found, through solving the above equation. In our numerical sim-

ulation, we solve this matrix equation using Gaussian elimination method

for tridiagonal matrices [44]. This algorithm allows to calculate the inver-

sion without actually storing the matrix, one only needs to store its non-zero

elements as a vector.

3.1.2 Predictor-Corrector method

Due to the non-linear term g1D|ψn
j |2, the Hamiltonian is time depen-

dent. Starting from ψ(x, t), using the matrix representation of the integra-

tion scheme, one can calculate ψ(x, t +∆t). Therefore, the wave function

ψ(x, t) at time t is used in the matrices M+ and M−. This assumes, how-

ever, the approximation that the effective potential g1D|ψ|2 induced by the

non-linearity is not changing during the time interval ∆t. In principle, the

error caused by this approximation can be reduced by choosing an infinites-

imally small time interval ∆t for the numerical integration. Due to such a

small time interval, it becomes necessary to have a larger number of ma-

trix inversions which causes a growth of numerical costs. To deal with this

problem, a two step Predictor–Corrector method [44] is used in our sim-

ulations, which allows to reduce the approximation error induced by the

non-linearity, without being forced to use an infinitesimally small time in-

terval ∆t. The basic idea is to use the averaged value over the time interval

for the wave function, instead of the wave function ψ(x, t). Therefore, each

integration step is really done two times to go from time t to time t +∆t. In

the first time, ψ(x, t) is used in the non-linear term, and a “predicted” wave

function ψ̃(x, t +∆t) is obtained, This is the so-called predictor step. In the

second time, the integration step is repeated starting again from ψ(x, t), but

placing the averaged value g1D|1
2(ψ(x, t)+ ψ̃(x, t +∆t))| in the non-linear

term. In this way, in this so-called corrector-step, an already better approx-

imate value for the non-linear term is used. This process is represented

schematically here:
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Predictor step :

ψ(x, t)
g1D|(ψ(x,t)|2−−−−−−−→ ψ̃(x, t +∆t)

Corrector step :

ψ(x, t)
g1D| 1

2 (ψ(x,t)+ψ̃(x,t+∆t))|
−−−−−−−−−−−−−−−→ ψ(x, t +∆t)

(3.20)

3.1.3 Ground state

The numerical method developed in this chapter, can be used not only to

simulated the time evolution of a Bose-Einstein condensate, but also it al-

lows calculating the ground-state wave function ψ0(x) of a condensate in an

external potential. The ground state is the lowest energy state of a solution

of the Schrödinger or the Gross-Pitaevskii equation. Here, we introduce

a method which is known as the time-imaginary propagation [46], which

allows the calculation of the ground state wave function. In this method

the imaginary time are t → τ =−it which leads to the transformation in the

time interval ∆t → ∆τ =−i∆t. By these substitutions, the evolution become

the following non linear diffusion equation

∂
∂τ

ψ(x,τ) =
[
− 1

2
∂ 2

∂x2 +Vext(x)+g1D|ψ(x,τ)|2
]

ψ(x,τ) (3.21)

The process of finding the ground state of this equation is quite similar to

the process of finding the wave function at time τ of the real time evolution

explained previously. The implicit integration scheme given in Eq. (3.9) is

also used for the imaginary propagation in the following modified form

[
1+

1
2

H(x,τ)∆τ
]

ψ(x,τ +∆τ) =
[

1− 1
2

H(x,τ)∆τ
]

ψ(x,τ) (3.22)

Using the discrete forms of wave function and the Hamiltonian, one can

arrive at the matrix representation

ψn+1 = M̃−1
+ M̃−ψn (3.23)
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with

M̃± =
1
i



.

.

∓α 1±β j−1 ∓α
∓α 1±β j ∓α

∓α 1±β j+1 ∓α
.

.


(3.24)

In order to determine the ground state wave function with the imaginary

propagation, the iteration scheme used is

Propagation :

ψn+1 =M̃−1
+ M̃−ψn

Renormalization :

ψn+1 →ψn+1 =
√

N/Ñ

(3.25)

where N ≡
∫ ∞
−∞ |ψ0(x)|2 which is equal to 1 in most case, and Ñ ≡∫ ∞

−∞ |ψ(x, t0 +∆t)|2 ≤ N, until a given initial wave function ψn=0 has de-

veloped to a steady wave function. Numerically, this can be implemented,

by computing the maximum norm difference Nmax ≡ max j|ψn+1
j −ψn

j | for

each integration step. Once Nmax, over several propagation steps, become

smaller than a predetermined limit δ , one can say that the stationary ground

state in the desired precision has been achieved.

3.2 Absorption method on a grid

In the numerical simulation of wave propagation, by spatially discrete

methods, the evolution itself of a wave packet presents some issues: for

example it’s impossible to create a grid indefinitely large with fixed step.

Reflections from the boundaries of numerical grids have always presented

a difficulty in applying discrete methods to simulate physical phenomena.
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This problem is very important in the case the evolution of the wave packet

reaches the edges of the grid. One solution could be adding a periodic

boundary conditions, making the wave evolve in a closed circle (1D). This

method could be inconvenient in our case, because it brakes the tridiago-

nal symmetry of the Hamiltonian causing a significant increase at the time

of calculus (see section 3.1.1). Our solution of this problem, came from

the idea that most of the observables, of our interest, depend on the value

of the wave packet in a neighbourhood of positions. Therefore, there will

be a point in the grid beyond that the value of the wave is not interest-

ing. From this idea we introduced a method of absorption of the wave be-

yond a fixed position x > xA. The importance of absorbing boundaries has

been recognized in the past and consequently a number of methods have

been proposed for constructing absorbing boundaries [47, 48, 49]. Lysmer

and Kuhlemeyer [47] proposed a method based on viscous damping on the

boundaries of the numerical mesh. A class of methods derived more re-

cently is based on replacing the wave equation on the boundary grid points

by a one way equation which allows energy to propagate in the outward

direction only [48, 49].

There are different numerical methods of doing this, based on a simple

modification of the wave or the wave equation so that the wave amplitude

becomes attenuated at the grid boundary region. We will discuss only two

of them in the following.

The first one consists in multiplying, at each time step, the wave in the

absorption region ψ(x > xA) by a function which values are 0 ≤ f (x) ≤ 1,

as smooth as possible.

ψ(x)→ f (x)ψ(x), x > xA (3.26)

for example one can use a sigmoid function as follow

f (x)∼ 1− 1
1+ exp(−L(x− xC))

(3.27)

The second method consists in adding to the Hamiltonian an imaginary

smooth potential, that acts as an absorption trap.
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H(x)→ H(x)− iV (x), x > xA (3.28)

i.e. one can use an exponential for the imaginary potential as follow

V (x)∼ eL(x−xA)
α
−1 (3.29)

These kind of methods are highly dependent on the type of wave equa-

tion and the spatial discretization, therefore one must test them and find the

optimal parameters. To test this methods one can compare wave function

after the evolution in these situations ψ(x) with the evolution of the wave

function in a grid large enough in which the wave doesn’t reaches the edges

ψtrue(x). This comparison can be expressed by the calculus of the variance

σ2 =

∫ xA
0 |ψ(x)−ψtrue(x)|2dx∫ xA

0 |ψtrue(x)|2dx
(3.30)

The variance can be used to optimize the parameters of the absorption

function and the imaginary potential. Another way to optimize the param-

eters is to calculate the Fourier transform of the wave function, and then

minimize the reflections in the momentum space. In our case, we tested the

two methods by studying the evolution of a free wave function initially pre-

pared in the state of a Gaussian shifted in the momentum space, comparing

it with the evolution of the same wave but in a grid big enough in which it

doesn’t reach the edges.

Optimizing the parameters in function of the kinetic energy of the in-

coming wave to minimize the variance, we obtained, for this particular case

a significant better approximation for the second method as shown in Fig.

3.2. Thus for our results we decided to use the second method.
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x
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|ψ
(x

,t
)|
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Figure 3.1: Comparison of the wave functions evolved using the first method of

absorption (red continuous line), the second one (blue continuous line) discussed

above and the true evolved wave function (black dotted line) evolved in a grid large

enough in which the wave doesn’t reach the edges. The absorption point has been

placed in x = xa = 30, it is indicated by the vertical line.

Time
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lo
g

(σ
)

10-30

10-25

10-20

10-15

10-10

Figure 3.2: Comparison of the variance in logarithmic scale over time for the first

method of absorption (red line) and the second one (blue line) discussed above.

The conditions are the same of the Fig. 3.1.



Chapter 4

Results

Numerical results of a Bose-Einstein condensate evolution across different

potentials in mean field approximation by the Gross-Pitaevskii equation are

presented in this chapter.

The initial state is the wave function of the ground state prepared in

the confining potential given by a one-dimensional harmonic trap V0 =
1
2(x−x0)

2, which for the non-interacting problem is a Gaussian in the form

ψ(x, t = 0) = Aexp(−x2/2). A is the normalization constant, the interacting

problem is analytically more complicated, but numerically it is calculated

in the same way. Then the condensate is loaded instantaneously into our

chosen engineered potential and left free to evolve through it.

In the first section we will see the evolution of a wave packet in free

half space. Half space here means that the wave packet can only move

towards the right because of the harmonic potential always present on the

left. In the second section the evolution on the half tilted optical lattice will

be presented. We will also show how the atom-atom interactions affect the

evolution in these systems. Bloch oscillations are also presented, and how

the interactions affect them. It is shown how the condensate behaves in very

different ways when changing the parameters of the tilted optical lattice.

Our main observable for the study of the transport of ultracold atoms is

the density current. In our units the current can be expressed as

31
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j(x, t) =
1
2i
[ψ∗(x, t)

∂
∂x

ψ(x, t)−ψ(x, t)
∂
∂x

ψ∗(x, t)] (4.1)

This observable strongly depends on the nature of the interaction (attrac-

tive or repulsive) and the strength of it, which is determined by the number

of interacting atoms.

For a grid-step size of ∆x, the time-dependent current at the grid point

x j is given by

j(x j, t) =
i

2∆x
[ψ∗(x j +∆x, t)ψ(x j, t)−ψ∗(x j, t)ψ(x j +∆x, t)] (4.2)

4.1 Evolution of a wave packet in free half space

The simplest case is shown in this section, in which we investigate the

behaviour of a wave packet prepared in the ground state of an harmonic

potential in the presence of the atom-atom interaction. For attractive in-

teractions (g < 0) the initial wave packet will be more narrow, while for

repulsive ones (g > 0) it will be wider. Then the wave is left free to evolve

in the right half space as shown in Fig. 4.1.

xx
0

V
ex

t(x
)

0

Figure 4.1: Sketch of the experiments we are proposing. The initial state (red solid

lines) is prepared within an harmonic trap (blue lines for x < x0 and viola dashed

lines for x > x0). The trap is released on the right part of x0 to zero, which makes

the initial wave packet move towards the right.
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To understand how the interactions act we first plot the current den-

sity for different interaction strengths g measured at the point x = 2x0, with

x0 = 20.5 (Fig. 4.1). It can be observed that the wave packet passes the point

at which we measure the current with a characteristic maximum, whose pre-

cise position is determined by g. While for repulsive interactions the wave

packet widens over time subject to diffusion, for attractive interactions, after

a settling time, the wave packet keeps it’s identity and moves as in classical

regime as shown in Fig. 4.3.

Time
10 30 50 70

C
u

rr
en

t 
D

en
si

ty

0

0.05

0.1

0.15

0.2

0.25

τ (g)

Figure 4.2: The particle current as a function of time at x = 2x0 for the following

values of interaction strength from left to right: g = 2 (black dashed line), g = 0

(blue solid line), g =−1 (viola dotted line), and g =−2 (red dot-dashed curve).We

observe clear maxima of the currents, whose position on the time axis (denoted by

τ) is determined by the sign and the strength of the non-linearity.

For repulsive interactions (g> 0), the wave packet tends to expand faster

due to the additional repulsive potential term. For the attractive case (g <

0), the opposite happens and the wave packet tends to stabilize and the

expansion is slowed down. In order to study the rates of these changes, we

plot the dependence of the times τ when the maximum density is reached

at x = 2x0 in Fig. 4.4. While the qualitative behaviour of the enhanced

expansion and the slowdown for positive and negative g, respectively, is

clear (see also [50]), we have no analytic explanation so far for the scaling

of τ(g) seen in Fig. 4.4.
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Figure 4.3: Three-dimensional comparison of the current in time calculated for

different positions xJ and different interactions: (a) g = 2, (b) g = 0, (c) g =−1 (d)

g =−2.
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Figure 4.4: The times τ(g) of maximal current at position x = 2x0 extracted from

data sets such as shown in the previous figure. For positive non-linearities g, the

scaling of the enhancement of the expansion seems logarithmic (see inset). For

negative g, the expansion is slowed down a lot, which can be seen by the steep

increase of the curve for decreasing g < 0.
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4.2 Optical tilted lattice

The presence of an optical lattice slows down the expansion into it,

while a constant negative tilt accelerates an initially localized wave packet

towards the right. However, when both potential are present simultane-

ously, e.g. our setup shown in Fig. 4.5 , the situation is less clear. A tilted

lattice problem defines the Wannier-Stark system, which was investigated

with Bose condensates in great detail before, see section 2.5.

xx
0

V
ex

t(x
)

0

Figure 4.5: Schematic view of the potential we use, which is harmonic for x < x0

and a Wannier-Stark ladder for x > x0. We also show the starting wave function,

which is the ground state of the potential (dashed line). From now on, the density

current is calculated at the first relative maximum at the right of x0, because, with

this potential, most part of the wave will be localized only within a small range of

space.

4.2.1 Oscillations of the current density

In this system, an initially localized wave packet remains localized but

it oscillates with a characteristic Bloch frequency ωB given by the constant

level distance in the energy spectrum (arising from the constant spatial tilt).

In our units, ωB = FdL, where the dL is the lattice spacing. This linear

scaling of the oscillation frequency with the tilting force F is seen also in

our expansion problem in the absence of interactions (g= 0). Because of the
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presence of the harmonic confinement on the left, the proportionality factor

is slightly lower than one, as seen in Fig. 4.6 (blue symbols connected by

dotted line). Releasing also this left part of the trap, we instead observe

the correct pre factor one, please see the red symbols in Fig. 4.6. The

frequencies are extracted from the current oscillations to the right of (but

close to) x0 after a short initial transient, in which the wave packet adapts

to the presence of the tilted lattice. It seems as if the potential left barrier

reduces the effect of the Bloch oscillation.

F
0.035 0.04 0.045 0.05 0.055 0.06 0.065

ω

0.15

0.2

0.25

Figure 4.6: Oscillation frequency ω at g = 0 vs. the Stark (or gravity) force F for

the case with left confinement (blue symbols connected by dotted line) and without

it (red symbols connected by dashed line). In both cases, the scaling is linear as

expected. The presence of the left part of the harmonic trap affects only the slope.

The lattice parameters are A = 1 and dL = 4.

More interesting is the oscillatory behaviour in the presence of inter-

actions. We investigate again both cases of repulsive and attractive non-

linearity. For now lets focus on the repulsive interactions. Our results are

shown in Fig. 4.7. A repulsive interaction with g > 0 increases the oscilla-

tion frequencies. For not too large positive g, this increase is linear. For too

large non-linearities a saturation is observed, see g > 1 in Fig. 4.7. Here

the repulsion leads to a fast expansion which in turn decreases the density

again. There our observed linear scaling of the oscillation frequency with

the non-linear coupling parameter is theoretically predicted. Here we can
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explain the initial linear increase in the oscillation frequency seen Fig. 4.7

by the local level shift induced by the non-linear potential term. This shift

depends on the density in the lattice sites which is largest in the first well

centred at x0. This shift then leads to an effective increase of the difference

∆E of the two energy levels in the neighbouring wells, and consequently to

a larger oscillation frequency. We may estimate

∆E = g
∫

1stwell
|ψ(x, t)|2dx−g

∫
2ndwell

|ψ(x, t)|2dx ≈ g
∫

1stwell
|ψ(x, t)|2dx

(4.3)

Because of the oscillations, we take the time t of maximal density dif-

ferences in the two wells for computing the above estimate. In principle,

we can reduce the effect of the non-linear interactions by rescaling the tilt-

ing force from F to F −F ′, where F ′ ≈ ∆E/dL. This reduces the problem

to the non-interacting one with the same Bloch-like oscillation frequency

determined just by F alone. Corresponding numerical simulation for the

current density are shown in Fig. 4.8 . Of course, our estimate is a bit too

rough in order to be perfect for all times (in particular because of the time-

dependence of the process). Yet, this possibility of controlling the dynamics

of a Bose-Einstein condensate is quite interesting. We refer to similar sit-

uations where the effect of the interaction was approximately cancelled by

applying appropriate external potentials in theory [51] and an actual exper-

iment at Innsbruck [52].

We identified two different regimes, first a linear scaling and then a sat-

uration. Here the theory developed by Kolovsky in [53] applies, and it

predicts our observed linear scaling of the oscillation frequency with the

non-linear coupling parameter. In Kolovsky’s theory, a new period appears

induced by the atomic interactions (in [53] shown using a many-body quan-

tum model). In our regime of small and intermediate interactions therefore

an additional period arises, beside the Bloch period, which is inversely pro-

portional to the coupling strength.

The localization of the wave packet can be seen in the behaviour of

the current, which oscillates around zero giving no average current over a
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Figure 4.7: Comparison of the Bloch oscillations in the density current of a non-

interacting packet (blue dashed line) and a repulsive one (red continuous line) (a).

Dependence of the Bloch oscillation frequencies on the repulsive coupling constant

(g > 0) (b). The first point on the left corresponds to the non-interactive case

(g = 0). Every point was calculated with the same gravity force F ≈ 0.0427, and

same lattice parameters as in the previous figure.

period. Thus the choice of the point in which we measure the current must

be near the first well, as shown in Fig. 4.9.

More complex is the case of attractive interactions with g < 0. Here for

small |g|< 1, the Bloch-like oscillations are rather stable. For large |g|> 1,

again the non-linearity potential dominates the dynamics, in the sense that

the non-linear term is larger than the kinetic term. Here interaction-induced

oscillations with a frequency ω ∼ |g| occur. Here the density remains large
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Figure 4.8: Temporal evolution of the current to the right but close to x0 = 20.5

for the three cases: (a) g = 0; F = 0.043 (black solid line), g = 0.2; F = 0.043

(blue symbols), and (b) g = 0.2; F = 0.043−F ′ = 0.029 (viola solid line). In (b)

the non-linear shift of the local energy level (where the atomic density is large) is

corrected by a reduction of the tilting force with F ′ = 0.014. We observe good

agreement between the oscillation frequencies of the black (a) and the purple (b)

curves. Lattices parameters as in previous figures.

also during the evolution because of the attractive forces.
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Figure 4.9: Three-dimensional comparison of the current in time calculated for

different positions xJ: (a) for same parameters of the non-interacting system (g= 0)

in Fig. 4.8(a) and (b) same parameters of Fig. 4.8(b).

4.2.2 No tilting force

To understand the compensation of the interaction to the force (shown in

Fig. 4.8), we investigated the behaviour of the interacting condensate with

no tilting force, which in the case of a non interacting condensate g = 0

would travel through the lattice indefinitely as shown in Fig. 4.11. Switch-

ing on the interactions the wave behave as if it is on a Wannier-Stark ladder

with localized oscillations Fig. 4.11. The frequencies are not constant be-

cause the splitting of the energies’ level, generated by the interactions, is

not constant over time, but it’s subject to oscillations.

4.3 Other results

The parameters of the optical lattice chosen in the previous section give

a small amount of transport, for which the wave packet stays most localized

in the first well. This behaviour is the reason why the repulsive interaction

acts as an effective tilting force. To increase the transport due to the tun-

neling effect, the best option is to reduce the lattice spacing dL which in the

following will be fixed to dL = 3. With this choice of parameters we cannot

say that most of the wave packet is localized, but it is equally distributed
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Figure 4.10: Comparison of the Bloch oscillations in density current of a non-

interacting packet (blue dashed line) and attractive one (red continuous line) (a).

Dependence of the Bloch oscillations’ frequencies on the attractive coupling con-

stant (g < 0) (b). The first point to the right correspond to a non-interactive

coupling constant (g = 0). Every point calculated with the same gravity force

F ≈ 0.0427, and same lattice parameters as in the previous figures.

over more wells over time (see Fig 4.12).

With these chosen parameters, we can see a substantial transport though

the potential, e.g. estimating the amount of the wave function that remains

within a fixed range 0 < x < xL, which in our case is up to the tenth well

(xL ≃ 68). The observable can be written as n(t) =
∫ xL

0 |ψ(x, t)|2dx and will

be shown in Fig. 4.13

The ”permanence” of the wave function n(t) in the firsts nine wells
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Figure 4.11: Comparison of the Density Currents of a non-interacting packet (blue

line) and a repulsive one (red line) travelling through an optical lattice (a), and an

attractive one (b). Here no gravity force is present.

shows an exponential decay, with an oscillating behaviour on top due to

the Bloch oscillations.

The atom-atom interactions act now in a very different way respect the

previous results (in Section 4.2.1). This time, due to the evenly distribu-

tion of the wave function and the maximum located in the minimum of the

potential, the interaction raises (or reduces) each energy level, increasing

(or decreasing) the tunneling effect. The attractive interaction raises up the

energy levels, increasing the current density amplitude and speeding up the

decay of the permanence in the firsts wells. Vice-versa the repulsive inter-

action increases the amplitude of the lattice, decreasing the current density
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Figure 4.12: Evolved wave function |ψ(x, t)| for different times t = 1200 (red line),

and t = 1400 (blue line) over our engineered potential (dotted line)

amplitude and slowing down the decay of the permanence(see Fig. 4.14).

Thus we can say that the interactions act as an effective contribution to the

lattice amplitude after a small time in which the waves settles down to an

evenly distributed state. After this time, the current density shows oscilla-

tions with frequencies ω ≃ FdL.

Here the continuous loss of wave make the shift of the energy levels

dependent on time. Thus a constant perturbation on the lattice depth can

be valid for short times or it must be made time dependent with the same

decay over time as the permanence function of the non-interacting case.
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Figure 4.13: Temporal evolution of the permanence function (a) and current den-

sity (b) in the case of no interactions (g = 0), lattice spacing dL = 3, lattice am-

plitude A = 1 and tilting force F = 0.0407. After a small initial time in which

the wave-function settles from a Gaussian function to a Bloch state, it can be seen

the characteristic Bloch oscillations. The current density is calculated at the point

xJ = xL ≃ 68.
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Figure 4.14: Temporal evolution of the permanence function (a) and the current

density (b) with same potential parameters as in Fig. 4.13, for different interac-

tions: non interacting atoms (black dotted line), repulsive with coupling constant

g= 0.15 and g= 0.05 (green and blue lines respectively), attractive with g=−0.15

and g =−0.05 (red and purple lines respectively).
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Chapter 5

Conclusions

Quantum transport in engineered potential provides a way to study the be-

haviour of ultracolds atoms in certain conditions and to provide proves of

quantum theories developed in the solid state physics. In this thesis, we

restricted to the simplified case of a one-dimensional setup for transport a

Bose-Einstein condensate. We applied a mean-field approximation to in-

clude interaction-induced effects in the limit of weak and intermediate in-

teraction strength. Our numerical results show how the transport can be

controlled by adjusting the parameters of the engineered potential, in a spe-

cific but realistic setup. Our parameters include the depth and periodicity of

an optical lattice,, the tilting force and the atom-atom interactions coupling

constant. Moreover, our results show that for a sufficiently deep lattice and

large periodicity, compared to the tilting force, the localization of the wave

provides a simple way to make the non-linear term of the interactions ap-

proximated to an effective tilting force. Vice-versa decreasing the lattice

periodicity, the non-linearity acts on each energy level, increasing (or de-

creasing) the tunneling.

5.1 Perspectives

Many open problems have remained which allow for further studies.

During our work we tried to understand many problems which are not pre-

sented in the body of this thesis. Since the atom-atom interactions couple
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the three orthogonal direction x,y,z, a three-dimensional system must be

studied, thus we tried to reduce the problem of the transport of a Bose-

Einstein condensate through a cigar-shaped three-dimensional trap, which

requires a huge amount of calculation time, to a two-dimensional system,

respecting the symmetries. The considered system is described by the radial

variable ρ ≥ 0 and the longitudinal variable x. The potential V (⃗r) is consid-

ered radially symmetric, so in principle this system can be described by the

two-dimensional Gross-Pitaevskii equation in cylindrical coordinates.

i
∂
∂ t

ψ(x,ρ , t) = H(x,ρ, t)ψ(x,ρ, t)

H(x,ρ, t) =− 1
2

(
∂ 2

∂x2 +
∂ 2

∂ρ2 +
∂ 2

ρ∂ρ

)
+Vext(x,ρ)+g3D|ψ(x,ρ , t)|2

(5.1)

The first partial derivative in ρ causes problems in the integration scheme

given in Eq. 3.6, because the expansion over a grid of the Hamiltonian be-

comes asymmetric, which makes the discrete evolution operator non uni-

tary. This causes a non constant normalization, which especially in our

case, where the wave is absorbed by the boundary, is important to remain

constant.

Our partial solution of the problem consists on finding the solution for

ψ(x,ρ) = χ(ρ)
ρ1/2 ϕ(x), which removes the problem of the first derivative in

the kinetic energy of the radial part.

Tρψ(x,ρ) =−1
2

1
ρ

∂
∂ρ

ρ
∂

∂ρ
ψ(x,ρ) (5.2)

Tρ χ(ρ) =−1
2

(
∂ 2

∂ρ2 +
1

4ρ2

)
χ(ρ) (5.3)

Now the finite element method gives a symmetric Hamiltonian matrix,

thus it doesn’t give any problem regarding the conservation of the wave

function’s normalization, but another problem arises. Here the term 1
4ρ2

diverges in ρ = 0, which is where the wave function ψ(x,ρ) has it’s maxi-

mum, so it cannot be simply avoided. The simplest way to avoid this issue,

is to act manually on the first element of the Hamiltonian matrix.
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