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Adiabatische Kontroll-Protokolle für Quantensysteme mit wenigen
Zuständen:

Diese Arbeit beschäftigt sich mit sogenannten „shortcuts to adiabaticity“ Proto-
kollen, deren weitere Entwicklung eine effiziente Kontrolle von Quantensystemen
verspricht. Das Ziel dieser Klasse von Protokollen ist es, die instantanen Eigen-
zuständen eines Quantensystemen exakt zu treiben, sodass keine Übergänge zwi-
schen ihnen stattfinden.
Der Fokus bisherige Betrachtungen lag auf exakten Lösungen für Zwei- und Drei-
Niveau-Systemen. In dieser Arbeit analysieren wir das exakte „super-adiabatische“
Protokoll für ein Drei-Zustands-Modell und diskutieren dessen Aufspaltung in lo-
kale Zwei-Zustands-Korrekturen. Dafür zeigen wir zuerst, dass das exakte Kon-
trollprotokoll den Zustandsübergängen durch Impulse, die an deren Kreuzungen
im zeitabhängigen Spektrum liegen, entgegenwirkt. Die asymptotische Form dieser
Impulse wird durch Potenzgesetze beschrieben und verbietet somit eine natürliche
Definition von Seperabilität. Dennoch diskutieren wir die Möglichkeit der sequen-
zierten Kontrolle durch idealisierte Landau-Zener-Korrekturen. Wir finden, dass
der Fehler des „sequenziellen“ Protokolls als Potenz des Abstand zwischen den
individuellen Kreuzungen skaliert. Damit ist die Genauigkeit des präsentierten
Protokolls abhängig vom System. Schlussendlich schlagen wir verschiedene expe-
rimentelle Realisierungsmöglichkeiten vor und zeigen, dass diese Art sequentieller
Kontrolle theoretisch auf Systeme mit beliebig vielen Zuständen erweiterbar ist.

Adiabatic Driving Protocols for Few-Level Quantum Systems:

In this thesis we consider a set of protocols collectively known as “shortcuts to
adiabaticity” which suggest that efficient, that is rapid and robust, quantum con-
trol is possible. This class of control protocols allows to steer the instantaneous
eigenstates of a quantum system exactly, without inducing transitions between
them.
The ultimate goal of this thesis is to study the decomposition of these “super-
adiabatic” protocols for few-level systems into local two-level correction terms.
Therefore we explicitly construct a three-state model whose energy spectrum ex-
hibits multiple avoided crossings. We then show that the time profiles of the ex-
act control Hamiltonian are characterized by peaks centered around the crossing
times. These peaks are found to scale as power laws in the asymptotic time limit
which in principle invalidates the hypothesis of perfect separability. Nonetheless,
we address the problem from a pragmatic point of view and study the possibility of
constructing a “sequential control” protocol from local Landau-Zener corrections
acting at the avoided crossings. We find that the error made by the proposed pro-
tocol scales as a power of the inter-crossing separation. Finally, we present various
experimental test scenarios and show that the generalization of the protocol to
few-level systems is in principle possible.
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Humanity has always longed for control over nature. By nature I mean our-
selves, the human’s body and mind, as well as its surrounding environment from the
smallest to the largest scales. Now is the time when mankind has both sufficient
knowledge and the experimental experties to manipulate these systems at a quan-
tum level. In particular, the ability to control the dynamics of quantum systems has
pushed foreward the developement of quantum technologies like quantum simulators
and universal quantum computers. Since this thesis deals with the realization of the
control schemes just mentioned, with the results already being published (Theisen
et al., 2017), I like to stress that it is also time to think about its proper use. As
it is my personal stance, I want to advocate utilizations that are as ethical and
humanitarian as possible thereby ensuring the novel (computational) power to be
well distributed.
At the basis for sophisticated control schemes lies the understanding of fundamen-

tal processes that govern the system to be controlled. Although quantum theory
provides us with the mathematical toolkit to describe these processes the variety of
interpretations of quantum mechanics has been constantly growing since its devel-
opement. Only recently, renewed interest in foundations of quantum mechanics aims
to provide a modern axiomatisation of quantum theory in terms of information. Two
promising approaches are Quantum Thermodynamics, which characterises quantum
theory by its information content using the notion of entropy (Goold et al., 2016),
and Quantum Bayesianism, which refuses an objective realism by including an ob-
server in the theory (Caves et al., 2002). In QBism, the observer takes the role of an
agent who asigns and measures states according to its subjective knowledge. Both
ideas are conceptionally useful in the sense that they focus on the computational
aspects of quantum theory and make statements about the amount of information
that can be stored and accessed in a quantum system.
Given a sound quantum formalism, the task is to develope reliable and experi-

mentally realizable protocols that produce a fixed behaviour (Dong and Petersen,
2010). In the field of quantum computation much effort has been invested into the
efficient implementation of quantum gates. They form the analogon to logical gates
known from classical computation and usually are designed for Qubits, the most
basic entity of information in quantum theory.
In the more general framework of quantum control theory, time-dependent control

protocols, that go by the collective name of shortcuts to adiabaticity (Torrontegui
et al., 2013), have been attracting attention. Synonyms are transitionless quantum
driving theory (TQD) (Berry, 2009), superadiabatic (SA) (Bason et al., 2012) and
counterdiabatic (CD) control protocols (Demirplak and Rice, 2003). The core idea
is that, given an initial Hamiltonian H(t), it is always possible to find a correcting
term HCD(t) which cancels non-adiabatic effects. The combined Hamiltonian H(t)+
HCD(t) then drives the instantaneous eigenstates of H(t) exactly, i.e., adiabatically.
The TQD algorithm suffers of two main weaknesses. First of all, while in principle

it provides the CD control fields for quantum systems of arbitrarily many energy lev-
els, going beyond the two-level case often becomes analytically infeasible, and must
be treated numerically. To this extent, time-optimal control theory (Glaser et al.,
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2015) has been applied to find the optimal shape of the control pulses. Secondly,
even when the CD corrections are found, they might require physical interactions
which are not present in the original Hamiltonian, leading to difficulties in the ex-
perimental realizations. Both issues will be of concern here.
Still, exact analytical results have been produced and tested for some specific prob-

lems. The solvable Landau-Zener-Majorana-Stückelberg (LZ for brevity) model (Lan-
dau, 1932; Zener, 1932; Majorana, 1932; Stückelberg, 1932) playes a central role in
probing TQD protocols on idealized two-level scenarios (Bason et al., 2012; Malossi
et al., 2013). A major achievement in three-level dynamics is the insight that SA
control protocols improve the efficiency of stimulated Raman adiabatic passage (STI-
RAP) schemes in terms of fidelity, robustness and transfer time (Baksic et al., 2016;
Zhou et al., 2017). In addition, exact CD fields have been found for scale-invariant
dynamical processes (del Campo, 2013; Deffner et al., 2014).
In this thesis we will study the application of the SA protocol to a three-level

system in which the ground state undergoes a sequence of avoided crossings (ACs)
in the time-dependent energy spectrum. The motivation behind this choice resides in
the fact that the transition probability between two states is extreme enhanced in the
vicinity of an AC. As adiabatic control theory ultimately deals with the suppression
of these non-adiabatic transitions, the natural question we pose is whether the full
control problem can be decomposed into the sum of local SA protocols acting at
the individual ACs. Thus, the approach which we shall adopt here differs from the
typical quest for shortcuts to adiabaticity. Rather than demanding exact adiabatic
evolution, our main concern is to study the possibility of costructing a sequential
control (SC) Hamiltonian from single AC corrections, and to test the validity of such
an approximation. Ideally, the ACs can be treated as LZ-type interactions which
usually yields a good local approximation to more complex spectra (Shevchenko
et al., 2010).
The structure of this thesis is as follows. After a brief review of the TQD theory

and its application to the control of a single LZ event in Chapter 2, we model a
three-level system suited for studies on SC in Chapter 3. We analytically calculate
the control fields for limiting cases, compute the exact controls numerically and
finally discuss their long-range properties using perturbative arguments. Possible
construction schemes for the SC protocols are presented with focus on experimental
realizability. The effects of the exact CD and approximate SC protocols on the
ground state dynamics are presented in Chapter 4. Here, by numerical integration
of the time-dependent Schrödinger equation the dependency of the protocol’s error
on the time separation between the crossings is infered. Then in Chapter 5, we first
discuss aspects concerning possible experimental implementations of the three-level
system and conclude by generalizing the ideal of sequential control to a four-level
system. Numerical results are given. In the closing Chapter 6, the results are
summerized and future prospects are discussed.
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In this chapter, I present the theoretical background neccessary for the under-
standing of this thesis. First, I recapitulate the tenets and most basic features of
quantum mechanics introducing important concepts and notions. These are then
used to discuss the two-state quantum system, its mathematical properties and
physical time evolution. Finally, I give a short description of transitionless quantum
driving theory and discuss its application to general spin systems, particularly to
the Landau-Zener model.

2.1 Foundations of Quantum Mechanics

Let us begin by defining quantum states. The state space of an n-level quantum
systems is spanned by the finite-dimensional (complex) Hilbert space H(C, n). The
elements of that space are Hilbert space vectors which we denote in Dirac bra-ket
notation as |Ψ〉.
Let us next think about the information about this state that is accessible by

experimental measurement techniques. What is infered by repeated measurements
are transition probabilities Pi→j between two quantum states |Ψi〉 and |Ψj〉. In the
probabilistic interpretation of quantum mechanics it is defined by the inner product
of the respective states

Pi→j =
|〈Ψi|Ψj〉|2

〈Ψi|Ψi〉 〈Ψj|Ψj〉
. (2.1)

Clearly, this quantity does not depend on the complex phase of a particular Hilbert
space vector |Ψ〉; we say its phase is unobservable. Conventionally, choosing nor-
malized states by demanding 〈Ψ|Ψ〉 = 1 it is taming to assume that quantum states
correspond to rays in Hilbert space. A ray is defined as the equivalence class [Ψ] of
states:

(|Ψ〉 ∼ |Ψ′〉)⇔ (|Ψ〉 = eiα |Ψ′〉), α ∈ R. (2.2)

Here, α is the unobservable global phase of the state. In this sense Pi→j depends
only on the equivalence classes [Ψi] and [Ψj]. Formally spoken, the action of the
unitary group U(1) leaves the quantum state as we observe it invariant and consti-
tutes a gauge symmetry of the first kind. As the measurement process involves the
projection of states it is also called the projective symmetry. The quantum states
therefore merely describe states of knowledge about the physical system at hand.
Note, that for any state belonging to the equivalence class [Ψ], we can write its

decomposition into a complete set of basis states {|φi〉} such that the relative phases
between the expansion coefficients ci ∈ C are well-defined and fixed

|Ψ〉 =
n∑
i

ci |φi〉 . (2.3)

This allows the measurement of relative phases by interference experiments as in-
terference is always of a ray with itself. On the contrary the notion of superposition
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is ill-defined as there is simply no way to conveniently add two rays. Conventionally
on introduces the normalization constraint that the total probability, i.e., the sum
of all projection probabilities on the basis states |φi〉, adds up to one:∑

i

|ci|2 = 1. (2.4)

Let us next regard how dynamic processes are described in quantum mechanics.
For pure states time evolution is given by the Schrödinger equation

i~∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 , (2.5)

where H is the Hamiltonian operator acting on Hilbert space vectors. Thus state
propagation via the SE inevitably brakes the projective symmetry but contrarily
gives rise to dynamic and geometric phases (Solem and Biedenharn, 1993).

The formal solution to the evolution equation (2.5) is nicely written in terms of
the time evolution operator

U(t, t0) = T exp

{
− i
~

∫ t

t0

dt′H(t′)

}
(2.6)

involving the time ordered matrix exponential, also known as the Dyson series, such
that |Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 for t > t0. As to describe a measurable quantity,
i.e., an observable, H is usually chosen to be hermitian (Bender, 2007) and by the
exponential map U is ensured to be unitary. The consequence of unitarity is that
time evolution in quantum mechanics conserves the norm of a vector. Therefore
unitary time evolution is reversible and deterministic, however, by virtue of Eq. (2.1)
the measurement process makes quantum mechanics probabilistic.

2.2 Two-State System

The simplest non-trivial quantum system is constituted by two coupled energy lev-
els. It constitutes the most basic entity of information in quantum theory, i.e., a
qubit. Altough it is well discussed in text books like Sakurai and Napolitano (2011)
or Haken (1979) we will outline its basic features as it will play a central role in
our studies of more complex systems. In particular the LZ model is presented as an
idealized ACs event of two energy levels, which usually yields a good local approxi-
mation to more evolved spectra (Shevchenko et al., 2010).
For a given coordinatization (choice of coordinates) of the underlying Hilbert space
H(C, 2) any state |Ψ〉 can be represented by a linear combination of two complex
basis vectors

|Ψ〉 = c1 |φ1〉+ c2 |φ2〉 . (2.7)

Linear operations can be represented by matrices acting on the state and in partic-
ular observables correspond to hermitian matrices. The Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.8)
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span that space of hermitian 2-by-2-matrices. They obey the commutation relation

[σi, σj] = 2iεijkσk, (2.9)

where εijk is the Levi-Civita symbol. The conventional choice of basis for qubit
states is the eigenbasis of σ3, whose eigenvectors

|σ3; +〉 ≡ |0〉 =

(
1
0

)
, |σ3;−〉 ≡ |1〉 =

(
0
1

)
(2.10)

have respective eigenvalues ±1. Here, the state labels 0 and 1 are reminiscent of the
classical bit states. Defining the Pauli vector as σ = (σ1, σ2, σ3), any observable A
can be constructed as a linear combination of the Pauli matrices

A = a0I + a · σ =

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
, (2.11)

where ai ∈ R. Further, I is the identity matrix and a = an̂ is a three-vector of
length a = |a| and orientation n̂.
From the fundamental properties of the Pauli matrices (2.9), it follows directly

that the two-state quantum system is closed under hermitian operations as stated
mathematically by the completeness relation:

(a · σ)(a′ · σ) = (a · a′)I + i(a× a′) · σ. (2.12)

From this we can compute the commutator of two observables

[A,A′] = 2i(a× a′) · σ. (2.13)

Thus two observable A and A′ commute if and only if a and a′ are linear dependent,
i.e., if n̂ = n̂′.
Solving the eigenequation for A it turns out that the eigenvalues of A depend on

the bias a0 and the norm a, while computation of the eigenstates only involves the
direction n̂. Interpreting n̂ as a vector on the unit sphere S2 in can be parameterized
in spherical coordinates

n̂ =

sin θ cosφ
sin θ sinφ

cos θ

 . (2.14)

That is the eigenstates only depend on the two angles 0 ≤ θ < π and 0 ≤ φ < 2π
and can conveniently be visualized as positions on the unit sphere S2, which is also
called the Bloch sphere. We say, that the observable A measures the system along
axis n̂ with possible measurement outcomes given by its eigenvalues

a0 ± a = a0 ±
√
a2

1 + a2
2 + a2

3. (2.15)
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By the dot product in Eq. (2.11), which provides the mapping from the vector basis
{x̂i}i=1,2,3 to the Pauli matrix basis, the eigenstates in bra-ket notation are given
by

|A; +〉 =

(
cos(θ/2)

sin(θ/2)eiφ

)
, |A;−〉 =

(
sin(θ/2)e−iφ

− cos(θ/2)

)
. (2.16)

For θ = 0 (θ = π) the eigenstates of σ3 are recovered. Therefore the qubit states |0〉
and |0〉 correspond to measurements of along the z-axis of the Bloch sphere. This
further validates the synonymous notion of spin basis as they correspond to top and
bottom points on the Bloch sphere.

Now, with the Bloch sphere as an easy-to-grasp visualization of a qubit’s state
space, continuous and norm-conserving transformation of states is intuitively given
by rotations on the Bloch sphere. The corresponding unitary transformation on the
state |Ψ〉 is given by the exponential map of a general hermitian matrix

exp{−iA} = exp{−ia0I} exp{−ia · σ}. (2.17)

As the state’s global phase is unobservable we can discard the term involving a0.
After identifying a with φ general rotations are written as

Un̂(φ) = exp{−iφn̂ · σ} = cos(φ)I − i sin(φ)n̂ · σ. (2.18)

This is Stone’s theorem. It establishes a one-to-one correspondence between self-
adjoint operators A acting on a Hilbert space H and one-parameter families of
unitary operators U(φ). Under the action of Un̂(φ) a state is rotated around the
axis n̂ by the angle φ.
After this review on the mathematical properties of the two-state system let us

study the dynamics of physical systems described by the general Hamiltonian

H(t) =
~
2

(
ω(t) ∆(t)

∆∗(t) −ω(t)

)
. (2.19)

Here, ω is a real-valued energy sweep function and ∆ a complex coupling. As we
explicitly extracted the Planck constant ~, both quantities are meassured in units
of inverse time 1/T . Its eigenenergies are E± = ±~

√
ω2 + |∆|2 and instantaneous

eigenstates |E±〉 are given by Eq. (2.16). The usual parameterization of states is
defined by

tan θ(t) =
∆(t)

ω(t)
and φ(t) = arg ∆(t). (2.20)

2.2.1 Landau-Zener Problem

In the following let us solve the special case where the interaction is real and time-
independent (∆̇ = 0) and the energy sweep function is linear ω(t) = αt with α > 0.
Consequently, the paradigmatic Hamiltonian (~ = 1) reads

HLZ(t) =
1

2

(
αt ∆
∆ −αt

)
. (2.21)
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This model is best understood by regarding its time-dependent energy spectrum as
sketched in Fig. 2.1. On the basis of this idealized crossing event of two energy levels,
let us introduce some nomenclature that will be usefull in the general discussion of
avoided crossings (ACs).

−∆/(2α) 0 ∆/(2α)

−∆
2

0

∆
2

time

en
er

gy

Figure 2.1: Schematic of the time-dependent spectrum of HLZ(t). Dashed and
solid lines represent diabatic and adiabatic eigenstates, respectively. The temporal
evolution of the ground state subject to superadiabatic control is given by the orange
line.

Conventionally, we name the time-independent eigenstates of the uncoupled sys-
tem (∆ = 0) diabates and the instantaneous eigenstates of the coupled system adia-
bates. We denote them as {|n〉}n=1,2 and {|En〉}n=1,2, respectively. In the LZ model
(see Fig. 2.1), the diabatic energy levels (dashed lines) cross at t = 0, while due
to the coupling ∆ the adiabatic potential curves (solid lines) avoid the crossing,
with the minimal separation being ∆ at the origin. Therefore, ∆ is also called the
(minimal) level splitting or energy gap. Also note how the adiabatic states change
their characteristics: While for t → −∞ the two states |1〉 and |E1〉 coincide, for
t→ +∞ the two states |2〉 and |E1〉 share the same eigenvalue.
In order to study the dynamic behaviour of the system at an ACs, we define the

probability of non-adiabatic transition at given time instant by:

P(t) = 1− | 〈En(t)|Ψ(t)〉 |2 (2.22)

It gives the probability that the system is not in instantaneous eigenstate |En(t)〉 at
time t. For the exactly solvable LZ model we are interested in the particular solutions
that describe (adiabatic) population transport along the crossing. Therefore we
demand that the initial state to be the ground state |E0(t)〉 long before the crossing
(ideally for t → −∞) and we consider the probability of non-adiabatic transitions
long after the crossing (for t → ∞). In this asymptotic limit the probability of
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non-adiabatic transition is given by the Landau-Zener formula

PLZ = exp

{
−π∆2

2α

}
. (2.23)

At detailed derivation is given in Appx. A.
This fameous formula is the main result of the LZ model. It gives the survival

probability of a non-adiabatic transition scenario in the two-level case. Further, it
only depends on two parameters: the coupling ∆ and the sweep rate α. Alterna-
tively, the AC can be characterized by the interaction time τ0 = ∆/α. Because
of this simplicity, it is usually used to model single AC events embedded in more
complex spectra.

Possible Generalization An intuitive generalization is given by adding linear di-
abatic potential lines to the spectrum. Thereby, the Hamiltonian constituting an
N -level quantum system can be constructed as

Hii(t) = εi + αit and Hij = Vij for i 6= j, (2.24)

where εi and αi are energy bias and slope of the i-th diabatic state and Vij is the
real coupling element between respective diabates. Moreover, the indices are chosen
such that the slopes αi ∈ R are ordered, i.e., αi < αj for i < j. In this special
case there are analytical solutions and a generalized LZ formula can be derived for
arbitrarily many linear time-dependent levels. As stated and proven by Volkov and
Ostrovsky (2004) the survival probability of the initially populated diabatic state is

P = exp

{
−2π

N∑
j 6=1

V1jVj1
|α1 − αj|

}
(2.25)

provided α1 is the largest (or smalles) of all slopes. The later is import as to ensure
that the population lost at each crossing cannot return at a later transition, i.e., no
destructive interference (feedback) is allowed.

2.3 Control Theory: Transitionless Quantum
Driving

The idea of TQD theory was developed by Berry (2009) and Demirplak and Rice
(2003) and is briefly presented in the following. Intuitively, it describes a control
protocol that ensures adiabaticity of the system’s dynamics by destructive infer-
ence. Let H(t) be an arbitrary time-dependent Hamiltonian with instantaneous
eigenstates |En(t)〉 and energies En(t):

H(t) |En(t)〉 = En(t) |En(t)〉 . (2.26)
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In the adiabatic approximation (evolving the instantaneous eigenstates |En(t)〉
according to a slowly time-depending Hamiltonian), the propagated states would be

|Ψn(t)〉 = exp

{
− i
~

∫ t

0

dt′En(t′)−
∫ t

0

dt′ 〈En(t′)|∂t′En(t′)〉
}
|En(t)〉 . (2.27)

The general expression above includes the dynamic phase factor as well as geometric
phase generated by the effective vector potential 〈En(t)|∂tEn(t)〉.
Next, we want to construct a control Hamiltonian H ′(t) such that H(t) + H ′(t)

drives the eigenstates of H(t) exactly, i.e., without generating transitions between
them (for all values of slowness). This type of reverse engineering is formaly char-
acterized by the condition that

i~∂t |Ψn(t)〉 = (H(t) +H ′(t)) |Ψn(t)〉 (2.28)

for all times.
Berry (2009) showed that for non-degenerate spectra there is exactly one choice

to construct this super-adiabatic control Hamiltonian, as he calls it, and that it
solely depends on the time derivative and the instantaneous properties of H(t). The
formula he derived is:

H ′(t) = i~
∑
m 6=n

∑
n

|Em〉 〈Em|∂tH|En〉 〈En|
En − Em

, (2.29)

where we omitted the explicit time dependence of all quantities for brevety.
An equivalent form is found by Demirplak and Rice (2003). Let U(t) be the uni-

tary transformation that changes from some static basis S to the basis of instanta-
neous eigenstates D = {|En(t)〉} at time instance t. Then HD(t) = U(t)HS(t)U †(t)
is diagonal, with rows of U(t) consist of eigenvectors of HS(t). Then the counter-
diabatic control Hamiltonian, as they call it, at time instance t is given by

H ′(t) = i~
∂U †(t)

∂t
U(t). (2.30)

Further, we can check whether the adiabatic approximation is valid if∣∣∣∣U(t)
∂U †(t)

∂t

∣∣∣∣
ij

� 1

~
|Ei(t)− Ej(t)|. (2.31)

If not, the time-evolution of a system introduces some non-adiabaticity which has
to be accounted for by the control Hamiltonian.
From now on we call the control Hamiltonian H ′(t) that drives the system ac-

cording to TQD theory, CD Hamiltonian and denote it as HCD(t).
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2.3.1 General Spin System

Let us derive the CD Hamiltonian for spin systems in which the spin dynamics
are driven by a classical magnetic field B(t) of time-dependent strength B(t) =
|B(t)| and orientation n̂(t) = B(t)/B(t). These magnetic systems will become
relevant in the discussion of possible experimental realizations in Sec. 5.1. Also it
nicely illustrate the construction of CD fields and includes the LZ model for later
convenience.
The Hamiltonian for a general spin system takes the form

H(t) = γB(t) · S. (2.32)

Here, γ is the gyromagnetic ratio, and S = (Sx, Sy, Sz) the vector spin operator for
an arbitrary spin s. The individual spin operators obey the commutator relation

[Si, Sj] = iεijkSk (2.33)

and therefore the spin dynamics are governed by the special unitary group SU(2).
The super-adiabatic correction can then be calculated from Eq. (2.29) to yield

HCD = i~γ∂tB ·
∑
m6=n

∑
n

|Em〉 〈Em|S|En〉 〈En|
En − Em

, (2.34)

where the energies are given by

En(t) = γ~nB(t). (2.35)

As shown by Berry (2009), the expression can be simplified using the fact that most
matrix elements vanish. The result is

HCD =
1

B2
(B × ∂tB) · S. (2.36)

Note how the control Hamiltonian only depends on the orientation of the vector
field n̂(t) by virtue of the cross product and is in particular independent of system
specifications incorporated in γ. Thus the full Hamiltonian can be written as

H(t) +HCD(t) = [γB(t) + n̂(t)× ∂tn̂(t)] · S
= γB̃(t) · S. (2.37)

For arbitrary B(t), the modified magnetic field

B̃(t) = B(t) +
1

γ
n̂(t)× ∂tn̂(t) (2.38)

drives the spin evolution exactly, i.e., transitionless and non-precessing.
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Now, assume that the direction n̂ of the magnetic field is parameterized as in
Eq. (2.14) by the polar and azimuthal angles θ and φ. For the application of scheme
outlined above, we then calculate

n̂(t)× ∂tn̂(t) = ∂tθ(t)

− sinφ
cosφ

0

+ ∂tφ(t)

− sin θ cos θ cosφ
sin θ cos θ sinφ

sin2 θ

 . (2.39)

This quantity has two contributions given by the respective time dependencies of
the angles θ(t) and φ(t). Typically, we regard the spin system in the case where the
external magnetic field is non-rotating, i.e., if φ is time-independent. We are then
able to transform into a frame in which φ ≡ 0 without changing the dynamics and
the control Hamiltonian for a system of arbitrary spin is

HCD(t) = ∂tθ(t)Sy. (2.40)

We recognize that ∂tθ(t) determines the shape of the control functions (elements of
HCD).

Landau-Zener Control For the two-state system the vector spin operator is

S =
1

2
σ (2.41)

As described in section 2.2.1, in the LZ scenario the coupling ∆ is time-independent
and real. This condition translates into φ ≡ 0 by virtue of Eq. (2.20). With the
phase being fixed the only free parameter is the angle θLZ(t) defined by tan θLZ(t) =
∆/(αt). Application of (2.40) gives the CD control field

HCD(t) =
1

2
∂tθLZ(t)σy (2.42)

where

∂tθLZ(t) = − ∆/α

t2 + (∆/α)2 . (2.43)

Therefore the control functions for the LZ model form Lorentzian pulses. This
result has major implications for the later studies on separability of control protocols
discussed in Chap. 3 and Chap. 5. On the one hand we note that the control pulse
is centered around the AC at t = 0 and has a width of τ0 = ∆/α. This motivates
the idea to construct sequential control protocols for few-level systems by treating
each AC as an individual event. On the other hand the tails of the Lorentzian
function scale as power laws and this asymptotic behaviour for t → ±∞ prohibits
the definition of a natural scale at which the control pulse interacts with the system.
This is bad for the separability as it ultimately suggests that we cannot see ACs
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as phenomena which are local in time. Finally note, that the intensity of the peak
(area underneath the signal) is finite, as is shown by explicit time integration∫ +∞

−∞
∂tθLZ(t) dt = π. (2.44)

In this sense we say that ∂tθLZ constitutes a π-pulse.

23





3 Modelling a Three-State System
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With knowledge of the LZ problem and TQD theory in mind let us advance to the
more general three-level case. In accordance with our goal to study the separability
of CD protocols, we present a particular three-state system whose spectrum features
three avoided crossings (ACs) that are reasonably separated in time and locally
resemble LZ interactions. Special cases in which the CD Hamiltonian can be derived
analytically are discussed, while the full control problem is attacked numerically and
by perturbation theory.
Let us motivate the model that we will be studying in this chapter. Analysis

of the LZ problem shows that the probability of non-adiabaticity is extremely en-
hanced in the presence of an AC. As is clear by the discussion in the end of the last
chapter, the SA protocol effectively suppresses these transitions via the correction
term HCD. Its individual control elements are Lorentzian pulses located at the AC.
This suggest that we may control more complex systems with multiple isolated ACs
in their spectrum by summing local correction terms. The “sequential control” pro-
tocol constructed in this way should approximately drive a system’s instantaneous
eigenstates.
To grasp the notion of separability for few-level quantum systems we demand the

following features:

1. The time-dependent spectrum should include at least one eigenstate that un-
dergoes two sequential ACs.

2. These ACs should be well separated in order to be describable by effective
two-level LZ interactions.

3.1 Time-Symmetric Version

We now construct an explicit model that is as simple as possible while satisfying the
above mentioned requirements. Therefore we demand the diabatic potential curves
to depend linearly on time as in the original LZ model and introduce an energy bias
ε so that the crossings of the diabates are separated. Our generalized LZ scenario
involving three levels is then modelled by the Hamiltonian

H(t) =

ε+ αt ∆/
√

2 0

∆/
√

2 0 ∆/
√

2

0 ∆/
√

2 ε− αt

 . (3.1)

That the requirements are met can be seen by regarding the instantaneous energy
spectrum as a function of time as displayed in Fig. 3.1. As can be seen the spectrum
features three ACs, which are characterized by the interaction of diabatic states. We
call ACs that arise from explicit coupling of diabates (Hij 6= 0) “direct”, otherwise
“indirect” (Hij = 0). Thus, our Hamiltonian models a time-symmetric system with
two direct ACs at t = ±ε/α and one indirect AC at t = 0. The separation between
the direct Acs is controlled via the energy offset ε. The indirect AC arises from the
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coupling of the diabates |1〉 and |3〉 via the intermediate state |2〉. In this sense it is
a second order interaction process.

−ǫ/α 0 ǫ/α

0

ǫ

time

en
er

gy

Figure 3.1: Schematic of the time-dependent spectrum of H(t). Dashed and solid
lines represent diabatic and adiabatic eigenstates, respectively. The temporal evo-
lution of the ground state subject to superadiabatic control is given by the orange
line.

Throughout this work the Hamiltonian and its parameters are considered to be
dimensionless. This has the advantage that we do not have to worry about units and
can concentrate on conceptional ideas. An explicit, dimensionfull version ofH(t) can
always be constructed by adjusting the parameters according to some characteristic
energy Echar of the physical system at hand. For example, dimensionless time t
acquires units by letting t→ ~t/Echar.

3.2 Counterdiabatic Control Hamiltonian

We next want to compute the SA protocol that drives the dynamics of H(t) tran-
sitionlessly. Straight-forward calculation of the CD Hamiltonian HCD(t) requires
knowledge of the instantaneous eigenstates of H(t), as is evident by Eq.(2.29).
For three-level systems the general expressions involve Cardano’s casus irreducibilis.
However, these are difficult to handle especially because of their inavoidably complex-
valued representation. For this reason we choose a different route and rather solve
limiting cases analytically while attacking the full problem numerically. We then
approximate the control pulses by perturbation theory and discuss the asymptotic
scaling behaviour.
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3.2.1 Analytically Solvable Limits

There are two special cases in which the CD control Hamiltonian is accessible by
analytic means.

Case 1: Spin-1 System As discussed in Sec. 2.3.1, we can directly solve for
the CD fields if H(t) can be written as a linear combination of the respective spin
operators {Si}i=x,y,z. For a spin-1 system with three internal spin degrees of freedom
the respective operators are:

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , Sz =

1 0 0
0 0 0
0 0 −1

 . (3.2)

Rewriting the Hamiltonian in terms of these operators gives

H(t) = εS2
z + αtSz + ∆Sx. (3.3)

We now see, that for ε ≡ 0 the TQC theory for this specific problem is identical
to that of the LZ model, and the CD Hamiltonian in the diabatic basis is readily
written as

HCD(t) =
∂θSpin(t)

∂t
Sy. (3.4)

with the angle θSpin(t) defined by tan θSpin(t) = ∆/(αt). In particular the control
pulse ∂tθSpin(t) has the same properties as ∂tθLZ(t) from Eq. (2.43). Note, however,
that for ε = 0 all diabatic curves cross at the origin t = 0 and the spectrum does not
feature sequential crossings. Therefore this special case is not suited for application
of our sequential control prototcol.

Case 2: Time Instance of the Indirect AC At the instant t = 0 the CD Hamil-
tonian can be derived for a generic ε ≥ 0. Essentially, this is due to the fact that the
diabatic potential curves cross in an indirect AC event. In particular, the eigenen-
ergies (labeled by increasing energy) at this indirect AC are exactly given by

E2(0) = ε, E3,1(0) =
1

2

(
ε±

√
(2∆)2 + ε2

)
. (3.5)

Given these we can extrapolate the minimum distance between the two higher energy
levels to be

∆̃ ≡ E3(0)− E2(0) =
ε

2

(√
4∆2/ε2 + 1− 1

)
. (3.6)

This suggests that the corresponding indirect AC may be locally approximated by
an effective two-level LZ interaction with coupling ∆̃/2. In particular, for small
ratios ∆/ε the coupling to first order is given by ∆̃ ' ∆2/ε.
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As the explicit calculation of the HCD(t) is lengthy we only present the results
and refer to Appx. B for the detailed derivation.
At the origin the CD Hamiltonian takes the form

HCD(t = 0) =
i√
2

∂θSpin(t)

∂t

∣∣∣∣
t=0

 0 −1 −
√

2ε/∆
1 0 −1√

2ε/∆ 1 0

 (3.7)

where ∂tθSpin(0) = α/∆. There are two important things to be noted. Firstly,
altough the direct ACs are positioned away from the origin the elements (HCD(0))12

and (HCD(0))23 are independent of ε and constantly given by α/(
√

2∆). Secondly, we
see that the off-diagonal element (HCD(0))13 is in general non-zero and particularly
proportional to ε.
By noting that

{Sx, Sy} = SxSy + SySx =

0 0 −i
0 0 0
i 0 0

 , (3.8)

Eq. (3.7) can equivalently be written as

HCD(t = 0) =
α

∆

(
Sy +

ε

∆
{Sx, Sy}

)
. (3.9)

This version explicitly shows that the dynamics are no longer described by the action
SU(2) but rather by the more general SU(3). This is an important issue concerning
the realizability of control protocols.
Obviously, the implementation is possible if the respective matrix elements of H

can be addressed externally. Regarding our problem in terms of spin operators,
Eq. (3.3), we see that we can control the coupling elements H12 and H23 simulta-
neously via a single magnetic field Bx (By). However, there is no “natural” way to
manipulate the elements individually. The same is true for the single coupling ele-
ment H13. Although HCD(t) can be derived theoretically, there is not necessarily an
intuitive way to realize it in a physical system. It is just not clear how to implement
the anti-commutator of spin operators and thereby couple the diabatic states |1〉
and |3〉.

3.2.2 Numerical Shape of Control Pulses

In order to analyse the SA protocol for arbitrary separations of the direct ACs, we
compute numerically the full control Hamiltonian HCD(t) according to Eq. (2.29).
Importantly, keep in mind that HCD(t) drives any of the three eigenstates exactly
at the same time, although we are mainly concerned with the ground state, which
undergoes two ACs.
Let us inspect the individual control elements (HCD)ij. The diagonal entries

vanish by construction and as the control Hamiltonian is hermitian, we can focus
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Figure 3.2: Shape of CD control elements (HCD)12, (HCD)23 and (HCD)13 as
functions of time. Solid, dashed and dotted lines correspond to separations ε =
0, 2, 15, respectively. Parameters are: α = 1, ∆ = 1/

√
2.

on the elements (HCD)12, (HCD)23 and (HCD)13. The shape of the control elements
is shown in Fig. 3.2 for different values of ε.
We first regard the time symmetric elements (HCD)23(t) = (HCD)12(−t). In the

analytically solvable case ε = 0 (solid lines) the peaks are Lorentzian functions
centered around t = 0 as is clear from Eq. (3.4). For small (dashes lines) and large
(dotted lines) ε, the main peaks shift with respect to the origin. Their center, i.e.
the position of the ACs, is approximately given by t = ±ε/α and their maximum
reduces to half the value they have for ε = 0. Note that a sharp peak of constant
height is located at the origin for all values of ε as described by Eq. (3.7). As this
peak is connected to indirect AC, we expect it to be negligible for the ground state
dynamics.
Next we regard the remaining non-trivial element (HCD)13. It is non-zero for finite

separations and similar to the other elements it features a sharp peak at the origin
of maximum proportional to ε. However, it also features negative peaks close the
direct ACs whose maxima are small compared to all other peaks. The presence of
those negative peaks further affirms that the SA protocol effects the entire spectrum
and cannot be fully decomposed into local corrections involving only the respective
crossing states.
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3.2.3 Weak Coupling Limit

In order to derive approximate forms of the elements of HCD, we study the full
system in the limit of weak interaction, i.e., for small couplings ∆. Then, application
of stationary perturbation theory as described in Appx. C gives the following profiles
for the control functions:

(HCD)12 = i
ω̇

(ε+ ω)2

∆√
2

+O(∆3), (3.10a)

(HCD)23 = i
ω̇

(ε− ω)2

∆√
2

+O(∆3), (3.10b)

(HCD)13 = i
ω̇ε (ε2 − 5ω2)

4ω2 (ω2 − ε2)2 ∆2 +O(∆3). (3.10c)

Here, ω(t) = αt is the linear time dependence of our system and ω̇ denotes its
derivative. While the leading order for the control elements related to the direct ACs
is ∼ ∆, the one for the control of the indirect AC is ∼ ∆2. This witnesses the fact
that the narrower crossing at t = 0 is the result of a non-adiabatic coupling acting
at second-order in ∆. Perturbation theory, as is often the case, allows to reinterpret
the indirect interaction in terms of an effective direct coupling, which shows up at
the second order in ∆. Comparison with the exact controls (see Fig. 3.2) shows that
all peaks except for the central peak of (HCD)12 is accounted for.

The main difference lays in the description of the peaks which are modelled as
singularities in the perturbative approach reflecting the fact that the perturbation is
assumed to be small. By promoting these singularities to Lorentzians of appropriate
width, we get a smooth approximate analytic expression for the controls free of
singularities. For the direct ACs we choose a width of

√
2∆ with the factor of two

conveniently taking into account that the crossing happens at half the speed. The
width of indirect AC is estimated by Eq. (3.6). Thereby,

(HCD)12 = i
ω̇

2∆2 + (ε+ ω)2

∆√
2
, (3.11a)

(HCD)23 = i
ω̇

2∆2 + (ε− ω)2

∆√
2
, (3.11b)

(HCD)13 = i
ω̇ε(ε2 − 5ω2)∆2

4[2∆2 + (ε+ ω)2]
[
(∆2

2ε
)2 + ω2

]
[2∆2 + (ε− ω)2]

. (3.11c)

The elements (HCD)12 and (HCD)23 are Lorentz pulses centered at the direct ACs.
The shape of (HCD)13 is more complicated involving the product of three Lorentzians.
This is necessary to include the positive as well as negative peaks (see Fig. 3.2).

3.2.4 Asymptotic Behaviour

Let us now focus on the asymptotic behaviour of the control functions. In order
to obtain expressions reflecting the long-time behaviour of HCD(t) we again consult
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perturbation theory. However, this time we expand around the asymptotic limit
t → ∞. This is done by considering the rescaled version H(t)/t which shares the
instantaneous eigenstates with the original H(t). The explicit calculations are done
in Appx. C giving the 1/t-leading terms of the control functions. The resulting
behaviour of the asymptotic tails far from ACs is

HCD(t→∞) ∝ i

 0 ∆t−2 −∆2t−4

−∆t−2 0 ∆t−2

∆2t−4 −∆t−2 0

 . (3.12)

We now see that all elements scale as power laws in the asymptotic limit. These
findings are indeed verified by numerical evaluation as shown in Fig. 3.3. Note,
how the scaling of (HCD)13 (dotted line) for small times is proportional to t−2 until
it switches sign at t = ε/(

√
5α) (singularity in the plot). Finally, after the direct

AC at ε/α the tail scales as t−4. Actually, terms of order t−3 also appear in the
perturbative calculation for the indirect AC, but they cancel each other exactly due
to the temporal symmetry of the problem. The exact cancellation no more happens
when such symmetry is broken. this feature will be discussed in the next section.
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Figure 3.3: Asymptotic (large t) behaviour of control elements for ε = 1000. Full,
dashed and dotted lines are used for the elements (HCD)12, (HCD)23 and (HCD)13,
respectively. The power law fits (black lines) are shifted for better visibility. The
respective fit coefficients are −2, −2 and −4. Parameters are α = 1, ∆ = 0.5.

3.3 Time-Asymmetric Version

In this section we present a second generalization of the LZ problem by allowing for
asymmetric spectra. In this variant the left and right ACs are no longer equal in
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terms of coupling strength and sweep constant. We discuss how this changes the
asymptotic behaviour of the control pulses and the consequences for the robustness
of the SA protocol.
The general Hamiltonian in this scenario is given by

H(t) =

ε+ αt ∆1 0
∆1 0 ∆2

0 ∆2 ε− βt

 . (3.13)

From this definition we see that two types of asymmetry are introduced. The first
one effects the general form of the spectrum: the “isoscele” triangular configuration
is broken since the slopes of the two diabatic potential curves are independently
given by α, β > 0. The second one distinguishes the left and right ACs by the
separately tunable coupling elements ∆1 and ∆2. Figure 3.4 displays the new tem-
poral evolution of the instantaneous energy spectrum for a representative parameter
configuration. Comparison with the symmetric version (Fig. 3.1) indicates that two
direct ACs are still positioned to the left and right of the origin but now crossing
the horizontal curve at t = −ε/α and t = ε/β, repsectively. Also, in contrary to the
symmetric case the indirect AC is shifted with respect to the origin. Clearly, the
requirements for potential sequential control protocols, which we mentioned in the
beginning of this chapter, are fullfilled for large separations of ACs and respective
small couplings. Moreover note that the symmetric version is included by setting
∆1 = ∆2 = ∆/

√
2 and α = β.
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Figure 3.4: Schematic of the time-dependent spectrum of H(t). Dashed and solid
lines represent diabatic and adiabatic eigenstates, respectively. The temporal evolu-
tion of the ground state subject to superadiabatic control is given by the orange line.
The specific configuration of parameters is α = ∆2 = 1, β = ∆1 = 2, ε = 10.

Let us next regard the asymptotic behaviour of the new control pulses. Repeating
the perturbative analysis we calculate the CD Hamiltonian for t→∞. The results
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differ only in (HCD)13 from the symmetric case, which is given by

(HCD)13 =
i∆1∆2(α− β)

αβ(α + β)t3
− i∆1∆2ε(2α

2 + 2β2 + αβ)

α2β2(α + β)t4
+O(t−5) (3.14)

We see that the asymmetry introduces a t−3 term, which as is the nature of power
law scalings, will always dominate the large time scaling behaviour of the tails. The
transition time tc at which the tail changes its dominating time-dependency from
t−4 to t−3 can be estimated by equating the competing terms. Rearrangment and
subsequent cancellation yields

tc =
2α2 + 2β2 + αβ

αβ(α− β)
ε

=
2(α− β)ε

αβ
+

5ε

α− β
, (3.15)

where we completed the square to arrive at the later form. For small variations
δ = |α− β| � 1 the first term can be neglected and the transition point is

tc '
5ε

δ
. (3.16)

In the totally symmetric case where α = β (δ = 0), the t−3 in the perturbative
expansion (3.14) vanishes and consequently tc → ∞. Moreover, asymmetries in
the couplings of the left and right ACs leave the scaling of the asymptotic tails
uneffected. This is reasonable as variations in the interaction strength increase the
splitting of the adiabatic curves at the AC while keeping its position.

3.3.1 Sequential Control Hamiltonian

We now want to approximate the exact control by local correction terms. The
general strategy is that each time the system undergoes an AC, a superadiabatic
two-level control pulse is applied in order to drive the system transitionlessly. In
particular, each crossing is treated as an independent LZ event. We focus on driving
the instantaneous ground state of our system through the two sequential LZ crossings
it passes ignoring the third anti-crossing between the other states. We thereby call
this procedure the sequential control (SC) scenario.
In order to define the SC Hamiltonians, let us introduce the matrices UL(t) and

UR(t) which diagonalize respectively the upper-left and lower-right two-by-two sub-
matrices of H(t). They transform in a local eigenbasis at the left (L) and right (R)
ACs. From Eq. (2.16), they are defined by

UL(t) =

cos θL(t)
2

sin θL(t)
2

0

sin θL(t)
2
− cos θL(t)

2
0

0 0 1

 , (3.17a)
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UR(t) =

1 0 0

0 cos θR(t)
2

sin θR(t)
2

0 sin θR(t)
2
− cos θR(t)

2

 (3.17b)

with the angles being defined by

tan θL(t) =
2∆1

αt+ ε
and tan θR(t) =

2∆2

βt− ε
. (3.18)

With these local transformation matrices at hand we now give two definitions of the
SC Hamiltonian, an ideal and a realizable version.
The ideal one is constructed from the individual corrections of the (L) and (R)

ACs according to the definition of the CD fields in Eq. (2.30). It takes the form.

Hideal(t) = i
∂U †L
∂t

UL + i
∂U †R
∂t

UR

=
i

2

 0 −∂tθL(t) 0
∂tθL(t) 0 −∂tθR(t)

0 ∂tθR(t) 0

 . (3.19)

Comparison with the perturbative results (3.11) shows that Hideal is exactly HCD

to first order in ∆ and after promotion of the singularities to Lorentzians. From
a conceptional point of view, this is no surprise since we intentionally corrected
the direct ACs and ignored the indirect one. Thereby, it constitutes the simplest
valid SC Hamiltonian and is ideal in the sense that it only features CD peaks where
needed.
However, this minimal choice of SC Hamiltonian does not admit a simple decom-

position in terms of spin-1 operators. As a consequence the experimental implemen-
tation is not obvious. In order to overcome this issue, we present a second choice of
SC Hamiltonian which focuses on experimental realizability:

Hreal(t) = i∂tθrealSy. (3.20)

Here, the shape of the control pulse is given by summing the contributions of the
single (L) and (R) crossing corrections

∂tθreal = ∂tθL(t) + ∂tθR(t)

= − 2α∆1

(ε+ αt)2 + (2∆1)2
− 2β∆2

(ε− βt)2 + (2∆2)2
. (3.21)

The control functions (Hreal)12 and (Hreal)23 now feature two peaks, one at each
direct AC. This is justified as the peak of (Hreal)12 at the (R) AC does not induce
transition between the respective diabates. Formally, the peak is neglible if the
intensity of the control pulse is small compared to the separation of energy levels,
compare Eq. (2.31). At the (R) AC this condition is approximatly given by

|∂tθR(ε/α)| = α√
2∆
� αε, (3.22)

which is valid for large ε.
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4 Ground State Dynamics
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In the last chapter we analysed the exact CD fields for the specific Hamiltonian,
Eq. (3.13), and obtained approximate analytic expressions by perturbation theory.
We then discussed the possibility of separating the protocol into local corrections.
We now want to regard the effects of exact SA and approximate SC protocols on the
dynamics of the system, where we focus on adiabatic following of the ground state.
This is motivated by the fact that many quantum control problems require adiabatic
control over exactly one of the instantaneous eigenstates. This is true especially in
multi-level spectra where the number of ACs is very large, although the evolution
of only one instantaneous eigenstate is of interest.

4.1 Numerical Details

In order to study the dynamics we integrate the time-dependent Schrödinger equa-
tion numerically (2.5). We work in python and use the integration routines zvode
and dop853 provided by scipy.integrate.ode1. The zvode algorithm directly inte-
grates the set of N -complex ordenary differential equations by an implicit Adams
method for time efficiency. This linear multi-step method gains its speed up by
including previous evaluations into the calculation at the current iteration step.
Contrarily, dop853 is an explicit Runge-Kutta method and thereby an intermediate
step approach whose order is independet of previous results and adjusted at each
step (either 8,5 or 3). As such this method focuses on precision and is especially
usefull in studing of asymptotic probabilities. Further, both algorithms are imple-
mented using internally adaptive step size. This is especially important for cases
where the temporal changes in the Hamiltonian are large.
For our numerical studies we use the following procedure. We begin by prepating

the system in some inital state |Ψi〉, which is typically the instantaneous ground
state of H(t) at some inital time ti. Then we propagate the system in time using
H(t) + H ′(t), where H ′(t) is the Hamiltonian constituting the control protocol of
choice, until some final time tf . We monitor the systems dynamics in terms of
population numbers and relative phase. Importantly, the start and end points ti
and tf are choosen such that the ground state passes all ACs. The numerical task is
to ensure a small propagation error even for large propagation times. To this end, we
ensure a total normalization error smaller than 10−8 for all propagation scenarios.
The efficiency of the method is quantified by how close the state driven by the

control field H ′(t) results to be to the exact instantaneous ground state at the
end of the protocol. Formally, we define the fidelity of a protocol driving the n-th
instantaneous eigenstate by the probability

F(t) = | 〈En(t)|Ψ(t)〉 |2, (4.1)

where |Ψ(t)〉 is the propagated state. The error of the protocol is then defined as
the derivation of F from unity

P(t) = 1−F(t). (4.2)
1https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.ode.html
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Formally, it is equal to the probability of non-adiabatic transition as defined by
Eq. (2.22), although this time it is interpreted as a measure of quality for control
protocols from an optimization problem point of view.

4.2 Super-Adiabatic Protocol

We first regard the effects of the SA protocol on the system. In Fig. 4.1 the tem-
poral evolution of the system initially prepared in the ground state |E1〉 is shown.
Here, the left and right frames visualize the dynamics for the uncontrolled and CD-
controlled scenarios, respectively. The main visual diffference is the smoothness of
the lines in the CD-controlled case compared to the oscillatory behaviour in the
uncontrolled case. This discrepancy is clearly visual in the temporal development
of the occupation numbers (top two figures) as well as relative phases (bottom row
of Fig. 4.1) in terms of the diabatic basis states. For the occupation numbers note
that the asymptotic values differ in both scenarios: while the solution under sole
propagation of H(t) oscillates leaving the system in a superposition of all diabates
the dynamics of H(t) + HCD(t) are smooth and describe a complete switching of
diabatic states. Further regarding the phase differences, we see that the CD protocol
drives population as well as relative phases exactly.
Let us discuss this dynamic process in detail and step by step. We prepare the

system in the ground state |E1〉 at ti = −50 such that mainly the diabate |1〉 is
occupied. By choice of parameters the first direct AC happens at t = −15 after
which the ground state is approximately given by |2〉. This is the point at which the
two scenarios first differ: while in the CD-controlled system the population transfer
is complete, the switching is incomplete in the uncontrolled system. In the later
case, the syteme has a finite probability to still be in the state |1〉 after the crossing.
Also the occupation numbers begin to oscillate and the the phase differences start
to rotate. These effects are reminiscent of the idealized LZ-type crossing. At the
origin t = 0 the two excited states exchange.
Advancing further in time, we next approach the indirect AC at the origin. The

effect of this indirect AC on the ground state dynamics is hardly visible in the
uncontrolled scenario, although it introduce small oscillations in the phase difference
δφ13 between the crossing states. Indeed, the minor impact of this crossing was
expected by perturbation theory in which the crossing appeared only as a second
order interaction term.
At t = +15, the system undergoes a symmetric (R) AC but now involving the

diabatic states |2〉 and |3〉. As the interaction strength is equal to the first, the
population transfer and oscillation patterns are comparible. Only this time |2〉
the incoming population oscillates giving rise to a more complicated superposed
oscillation pattern after the crossing. Far away from the crossing, we may take the
population of |3〉 as an indicator for adiabatic population transfer since it tends
towards |E0〉 for t → +∞. In total, by virtue of HCD(t) the non-adiabatic effects
in the dynamics are effectively suppressed and |Ψ(t)〉 and |E1(t)〉 describe the same
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Figure 4.1: Dynamics of the uncontrolled (left) and CD-controlled system (right).
The control is computed numerically according to Eq. (2.29). Blue, orange and green
lines represent the population of (top row) and phase difference between (bottom row)
the diabatic states {|n〉}n=1,2,3. In both cases the initial state is taken to be the ground
state |E1〉. Parameters are: α = 1, ∆ = (1 + i)/(2

√
2), ε = 15.

state at all times as expected.

4.2.1 Robustness

The SA protocol drives the instantaneous ground state of H(t) exactly provided the
system starts in the ground state. Naturally, we ask what happens if the system is
initially prepared in a state different than the ground state. To aswer this question,
note that the initial state can always be written in the adiabatic basis at ti

|Ψi〉 =
∑
n

cn |En(ti)〉 . (4.3)
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By construction HCD drives each of these states in the adiabatic approximation as
described in Sec. 2.3. Therefore, the final state can be readily written as

|Ψf〉 =
∑
n

cn |Ψn(tf )〉 (4.4)

=
∑
n

cn exp

{
−i
∫ tf

ti

dt En(t)−
∫ tf

ti

dt 〈En(t)|∂tEn(t)〉
}
|En(tf )〉 . (4.5)

The time propagation introduces a dynamic and geometric phase to each instanta-
neous eigenstate. While the population of the adiabatic basis states is stationary
the relative phase varies with time.
In Fig. 4.2 this behaviour is visualized by numerical time integration. Note that

the relative phase angle oscillates quickly far from the ACs but takes definite values
at the ACs. Rather than starting the propagation with |E1(ti)〉 at time ti we now
prepare the system in the diabatic state |1〉 which coincides with |E1(t)〉 in the
asymptotic limit t→∞.
By initiating propagation at finite time ti multiple adiabatic states are populated

and the error with respect to the case where the initial state is the exact instanta-
neous ground state is given by

err(t) = 1− | 〈E1(t)|1〉 |2. (4.6)

This quantity can be estimated in the asymptotic time limit by substituting the per-
turbative result for |E1(t)〉 given by Eq. (C.22). As the spectrum is time symmetric
the error at t and −t is identical and for t large, we therefore find

err(t) = 1−
∣∣∣∣1− ∆2

4α2t2

∣∣∣∣2
= 1−

(
1− ∆2

4α2t2
+

∆4

16α4t4

)
' ∆2

4α2t2
. (4.7)

Here, in the first and last quantities, we kept only terms to the leading order
in 1/t. The preparation error far from the first AC scales as a power law ∝ t−2.
This is indeed verified by a numerical calculation, see Fig. 4.3. Therefore, fixing a
threshold value for the error we can read the calculate the time tc at which deviation
of diabatic and adiabatic states is given by that error according to Eq. (4.7) or vice-
versa. Then, by preparing the system in the state |1〉 at ti = tc this initial error is
transported by the SA protocol for all times.

4.3 Sequential Control Protocol

Finally, let us test our SC protocol and confront it with the exact results. For
simplicity, we here study the sequential control scheme (see Sec. 3.3.1) applied to
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Figure 4.2: Dynamics of the CD-controlled system with the initial state |1〉. Blue,
orange and green lines represent the population of (top row) and phase difference
between (bottom row) the diabatic states {|n〉}n=1,2,3. The control is computed nu-
merically according to Eq. (2.29). Parameters are: α = 1, ∆ = (1 + i)/(2

√
2),

ε = 15.

the symmetric version of our system. The ideal and realistic control Hamiltonian
are then given in terms of the Lorentzians

∂tθL/R(t) = −
√

2α∆

(ε± αt)2 + 2∆2
. (4.8)

These are

(Hideal)12(t) = − i
2
∂tθL, (Hideal)23(t) = − i

2
∂tθR (4.9)

and

Hreal(t) =
1√
2

(∂tθL + ∂tθR)Sy. (4.10)
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Figure 4.3: Deviation of adiabatic state |3〉 from instantaneous ground state |E1(t)〉
in terms of population after the second ACs at ε/α. The signature of the power law
fit is −2. Parameters are: α = 1, ∆ = 1, ε = 15.

The dynamics as induces by the SC protocols as shown in Fig. 4.4. Here, the left
and right columns display the dynamics of the ideal and realistic sequential control
protocols introduced in Sec. 3.3.1, respectively. Conversively, top and bottom rows
show the afidelity and the following of relative phases.

The main observation is that the ideal SC protocol yields better results than
the realistic one as the probability of non-adiabaticity at the end of the protocol
is about 4 times smaller. This can be explained by the additional Lorentzian in
the definition of Hreal. Because of its power law scaling it will always effect the
dynamics at the other crossing. In addition, the fact that the correction is not
perfect implies amplification of P(t) in the vicinity of the ACs. This phenomenon is
present in both scenarios although much more dominant in the realizable case where
additional strong oscillatory behaviour, which resembles the typical LZ transient,
is observed. However, these oscillations in the population of the adiabatic ground
state dampen quickly compared to the oscillations in the diabatic basis, see Fig. 4.1.

Next focusing on the relative phases, we see that after the first (L) AC, light
oscillations are present involving the crossing states. They are more pronounced in
the realizable scenario. After the second (R) AC the relative phases oscillate quickly
denying the extraction of a definite value at the end of the protocol. We note that
while SC protocols ensure approximate following of the ground state population the
relative phases are intrackable taking random values at the end of the protocol.
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Figure 4.4: Effects of the ideal (left) and realizable (right) SC Hamiltonians on
the system’s dynamics. The top row shows the error of the respective protocols as
defined by the probability of non-adiabaticity, Eq. (4.2). Blue, orange and green lines
in the bottom row represent the phase differences δφ12, δφ13 and δφ23 between the
respective expansion coefficients in the diabatic basis {|n〉}n=1,2,3. Parameters are:
α = 1, ∆ = (1 + i)/(2

√
2), ε = 15.

4.3.1 Probability of Non-Adiabaticity

The really interesting question, however, is: how does the asymptotic error P(t →
∞) depend on the structure of the spectrum, in particular on the separation of ACs?
In order to study this problem repeat the SC control procedures outlined above

for different values of ε. The initial time is chosen such that err(ti) = 10−3 and
the system is prepared in the ground state |E0(ti)〉. Then after the second ACs at
tf = −ti, we extract the large t error according to Eq. (4.2).
The dependency of P on the separation parameter ε, for fixed α and ∆ is shown in

Fig. 4.5. The error of the ideal and realistic sequential control protocol are plotted
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Figure 4.5: Asymptotic (large t) probability of non-adiabaticity as a function of
separation parameter ε. Orange and blue lines correspond to ideal and realistic se-
quential control protocols. The power law fits for large ε are shifted for better visibil-
ity. The dashed lines highlight the threshold separations for P ∼ 10−4. Parameters
are: α = 1, ∆ = 0.5.

with orange and blue lines, respectively. As a matter of fact, the realistic setup
suffers from the additional peaks in the control functions, which scale as power laws
and therefore effect the afidelity even for large separations. Moreover, P oscillates
in both cases for small ε.
For large ε, however, the oscillations in the probability are damped as the propa-

gated states approach the exact ones, eventually following a power law as P ∝ ε−2.
Due to the power-law scaling no natural threshold for ε can be defined at which the
two crossings can be considered fully separable. However, given a desired fidelity one
can extract the corresponding critical ε, or viceversa, from Fig. 4.5. As an example,
for P ∼ 10−4 we get ε ≈ 8 and ε ≈ 18 in the case of the ideal and realistic sequential
control procedures.
Similar graphs can be produced for different values of α and ∆, all scaling with

ε−2 for large separations but shifted with respect to each other. Unfortunately, no
general dependency could be found.
It must be stressed that this procedure approximately drives the population of the

instantaneous ground state to be close to one but does not provide a precise control
on phase factors, in contrast to the exact recipe of Eq. (2.29). While the fidelity
of the protocol can be choosen to be arbitrarily good by adjusting the separation
parameter ε, the inproper shape of the control pulses introduce oscillations in the
relative phases.
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5 Perspectives
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So far we discussed our particular three-level model from the theoretical point of
view and gave numerical results on the applicability of SA and SC protocols. Let us
now regard possible experimental implementations and generalizations of our model.

5.1 Experimental Realization

A huge amount of temporary research is devoted to the engineering of effective two-
level (qubits) and three-level (qutrits) quantum systems. In the following we will
describe possible ways to realize our model in different physical setups.
Let us start by discussing magnetic systems. As is evident by Eq. (3.3) our model

describes a spin-1 system, which may be realized in molecular nanomagnets (Gat-
teschi et al., 2006) and Nitrogen-Vacancy (N-V) color centers in diamond (Doherty
et al., 2013). The term “nanomagnet” is used to describe any system at sub-micro
scale which shows spontaneous magnetic order in the absence of external magnetic
fields. This type of magnetization arises from internal interactions which gives rise
to zero-field splitting of the spin triplet ground states. As a consequence nanomag-
nets are “remanent”: they remember their magnetic state and only relax slowly.
Moreover, due to their mesoscopic size, nanomagnets show quantum behaviour like
tunneling of magnetization and spin mixing (Carretta et al., 2004), which can be
visualized in magnetic hysteresis diagrams. Usually, the physical basis for nanomag-
nets are artifically created nanoparticles (quantum dots) or molecules, which allow
for particularly well-designed band structures of spin states. Of particular interest is
the situation in which the ground state of a single-molecule magnet (SSM) is three-
fold degenerate and isolated from the rest of the spectrum. Then, in the presence
of magnetic fields or microwave signals this structure is effectively manipulated and
energy sweeps can be realized (Zhou et al., 2017).
Two second implementation are point defects in solid-state quantum systems.

Such (well-isolated) impurities in the lattice formation can have definite charge and
spin quantum numbers. In the case of N-V− centers a negatively charged empty
lattice site is situated next to an Nitrogen atom and two unbound electrons form an
effective spin-1 system. These systems are long-lived (coherence times several µs),
can be operated at room temperature and are susceptible to manipulation via time-
dependent microwave pulses, magnetic and electric fields (Childress et al., 2006;
Dutt et al., 2007). The advantage of solid-state systems is the long coherence time,
while coupling with environment, in particular the nuclear spins of the surrounding
atoms gives rise to hyperfine spittings.
Leaving the regime of magnetic substances, Bose-Einstein condensates constitute

the archtype of coherent quantum systems which may be exploited for the control
tasks at hand (Pitaevskii and Stringari, 2003). They are well-known to be tunable
almost arbitrarily in size and interaction strength and have comparable long coher-
ence timescales. However, due to their many-body nature the spectrum is typically
complex involving large numbers of ACs. Thus the main issue is to single out spe-
cific levels and to exclusively address them. Fortunately, the isolation of effective
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few-level system in opitcal lattices is possible as has been shown by Bason et al.
(2012). Following their approach, we propose to load the condensate into an accel-
erated lattice and couple the emerging bands in sequence to generate an effective
three-level system. However, due to the different band gaps leakage to higher bands
is likely to occur (Zenesini et al., 2008; Tayebirad et al., 2010).
Further superconducting circuits can model effective three-level systems, which

then can be manipulated by microwave signals (K. S. Kumar and Paraoanu, 2016).
This is the another promising route to universal quantum computation with the
advantages of high versatility and scalability. A disadvantage is the typical 1/f
noise mainly due to material defects which constitute competing two-level systems.

5.2 Four-Level System

Let us quickly show that the generalization of the sequential control protocol to a
four-level system is possible.
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3ǫ
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Figure 5.1: Schematic of the time-dependent spectrum of H(t). Dashed and solid
lines represent diabatic and adiabatic eigenstates, respectively. The temporal evolu-
tion of the ground state subject to superadiabatic control is given by the orange line.
The specific configuration of parameters is α = ∆ = 1, ε = 10.

Out choice of generalized Hamiltonian is

H(t) =


3(ε+ αt)

√
3∆ 0 0√

3∆ ε+ αt ∆ 0

0 ∆ ε− αt
√

3∆

0 0
√

3∆ 3(ε− αt)

 . (5.1)

For ε ≡ 0 it can be written in terms of spin-3/2 operators as

H(t) = 2αtSz + 2∆Sx. (5.2)
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The time-dependent spectrum is shown in Fig. 5.1. Steering the ground state by
the sequential control protocol now involves the correction of non-adiabatic terms
at three direct ACs. All three ACs happen at the same effective sweep rate, while
the left (L) and right (R) ACs couple stronger than the central (C) one. Note that
the individual direct ACs are separated by ε/α, while in the three-level no central
ACs is present and therefore the separation is 2ε/α.
As described in Sec. 3.3.1 we can now transform into the local eigenbasis at each

ACs and find the unitary transformation that diagonalizes the two-by-two subma-
trix of H(t). The elements of the resulting local CD Hamiltonians constitute the
individual control pulses that are given by the Lorentzians

fL/R(t) =
1

2

√
3∆α

3∆2 + (αt± ε)2 and fC(t) =
1

2

∆α

∆2 + (αt)2 . (5.3)

In analogy to the three-state system, we construct the ideal and realistic SC Hamil-
tonians by

Hideal(t) = i


0 −fL(t) 0 0

fL(t) 0 −fC(t) 0
0 fC(t) 0 −fR(t)
0 0 fR(t) 0

 (5.4)

and

Hreal(t) = 2g(t)Sy = ig(t)


0 −

√
3 0 0√

3 0 −1 0

0 1 0 −
√

3

0 0
√

3 0

 , (5.5)

where

g(t) =
1√
3
fL(t) + fC(t) +

1√
3
fR(t)). (5.6)

As in the three-level case we are interested in the fidelity of the protocols in terms
of the probability of non-adianaticity. It is plotted in Fig. 5.2 for the ideal (top plot)
and realistic (bottom plot) versions. Importantly, the overall situation is comparable
to the three-level case: In both cases the afidelity features jumps and oscillations
located at the AC times. For the realizable version these are extremely enhanced,
still P(t→∞) at the end of the protocol is surprisingly small and about ten times
largen than in the ideal scenario. The fact that the error of the realizable protocol
is maximal at the origin can only be due to the fact that the remaining levels also
cross in an indirect AC event.
We finish our studies by extracting the dependency of the afidelity on the inter-

separation parameter ε as is shown in Fig. 5.3. We immediately note that the curves
are not as smooth as for the three-level case (compare Fig. 4.5). Especially the

50



0

1

2

3
P

[×
10

−6
]

−60 −40 −20 0 20 40 60
t

0

1

2

3

P
[×

10
−4

]

Figure 5.2: Effects of the ideal (top) and realizable (bottom) SC Hamiltonians
on the system’s dynamics. The error of the respective protocols as defined by the
probability of non-adiabaticity (4.2) is shown. Parameters are: α = 1, ∆ = 0.5,
ε = 30.

afidelity of the realizable (orange line) protocol ocillates quickly for small ε. However,
just as in the three-level case both SC protocols scale ε−2 for large separations.
Therefore, we say they achieve approximate driving of the instantaneous ground
state in terms of occupation numbers. For a desired precision of P ∼ 10−4, we
extract the critical values of the separation to be ε ∼ 5 for the ideal and ε ∼ 13 for
the realizable SC protocol.
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Figure 5.3: Asymptotic (large t) probability of non-adiabaticity as a function of
separation parameter ε. Orange and blue lines correspond to ideal and realistic se-
quential control protocols. The power law fits for large ε are shifted for better visibil-
ity. The dashed lines highlight the threshold separations for P ∼ 10−4. Parameters
are: α = 1, ∆ = 0.5.

52



6 Conclusion
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In this thesis, we developed a type of control protocol that achieves approximate
adiabatic driving of a three-level quantum system in the case where the instan-
taneous ground state undergoes sequential avoided crossings. We motivated our
quest by discussing transitionless quantum driving theory for the two-level system;
its theoretical background, experimental success and also limitations. Namely, the
counterdiabatic protocol suppresses non-adiabatic transitions between eigenstates
via Lorentzian pulses located at the avoided crossings. However, exact superadi-
abatic driving requires knowledge of the instantaneous eigenstates of a quantum
system which are in general not accessible for few-level systems.
We therefore asked the question whether it is possible to decompose the global

control task into individual two-level control scenarios acting at the avoided crossings
where the probability of non-adiabaticity is largest. In order to study this possibility
we modelled an idealized three-level system whose ground state passes two sequential
Landau-Zener events. Numerical studies of the exact superadiabatic protocol for
this system revealed that the control Hamiltonian indeed features peaks located at
the avoided crossings. Using perturbation theory we showed that these peaks can
be approximated as Lorentzian curves and that the asymptotic behaviour of the
exact control functions is accordingly governed by a power law t−2. On the one
hand, this validates the approximation of the control pulses as Lorentians as the
asymptotic scaling behaviour is equal, but on the other hand denies a notion of
perfect separability of the avoided crossing events, as no natural interaction scale
can be defined.
Nonetheless, we studied the effects of such “sequential control” protocols, in the

dynamic scenario. Numerical propagation indicated that the constructed protocol
indeed drives the population of the instantaneous ground state close to unity. Also,
we discovered that in the asymptotic time limit the probability of non-adiabaticity
scales as a power law with the separation of the avoided crossings. Thus the pre-
sented protocol can achieve approximate adiabatic quantum driving in the limit of
perfectly isolated single avoided crossing events. We like to mention that we al-
ready published the results for the three-level system in a shortend version (Theisen
et al., 2017). Here, we further argued that the idea of sequential control may easily
be adopted to arbitrary numbers of energy levels and driving of any instantaneous
eigenstate. This assumption was tested and found valid for a particular four-level
system which features three direct avoided crossings of the ground state.
Finally, we discussed ways to implement the protocol in physical systems. In

particular we modified our protocol to comply with experimental contraints and
showed that the model is most likely realizable in effective spin-1 systems or Bose-
Einstein condensates in optical lattices.
A successfull realization of the protocol could find application in a variety of quan-

tum technologies. In particular adiabatic quantum computing demands efficient,
that is fast and reliable, protocols that drive the adiabatic states transitionlessly.
In view of those requirements, we suggest to improve our sequential control with
quantum error correction techniques (Terhal, 2015). Further, we imagine possi-
ble usage in qutrit and two-qubit quantum gate implementation (Paul and Sarma,
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2016). Note, that the our model of a three-level system could also be read as the
sequential application of two single qubit operations in the presence of a auxiliary
third state. Our results on separability then give an effective estimate on whether
the single operations can be treated as individual events and how they effect each
other.
In concluding we want to give future prospects. An interesting question is the

generalization to even higher-level systems, particularly in view of the error scaling.
Does a reasonable restriction exist on how many avoided crossings can be controlled
by the proposed protocol? How does the presence of additional close states affect the
dynamics? Another aspect would be the improvement of the current protocol and
its recasting to alternate physically realizable forms. Is it possible to approximately
drive the relative phase as well? Can we control indirect avoided crossings in order
to allow for possitive probability feedback?
Eventually, I like to thank the WuTGe for their everlasting support - I love you

all - and further Francesco Petiziol - Yeah Bro - as well as my supervisor Sandro
Wimberger for their realistic relativation of aspirations and fruitfull discussions.
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A Derivation of Landau-Zener Formula

In this appendix we first derive the equations governing the dynamics of a general
two-state system and then solve them for the LZ problem and deduce the LZ formula.
For the later we closely follow the work of Majorana (1932).
If the two-state system is time-dependent, the Hamiltonian (2.19) evaluated at

different times may not commute and the time evolution operator has the general
form (2.6). We therefore fall back to the Schrödinger equation (2.5) which results
in a set of coupled differential equations for the diabatic expansion coefficients:

iċ1 = ωc1 + ∆c2, (A.1a)
iċ2 = ∆∗c1 − ωc2. (A.1b)

For simplicity, we treat the case where ∆ ≡ |∆| is a real function of time. We then
introduce a new set of coefficients by

d1(t) = exp

{
+i

∫
ω dt

}
c1(t) and d2(t) = exp

{
−i
∫
ω dt

}
c2(t). (A.2)

The modified differential equations read:

iḋ1 = ∆ exp

{
+i

∫
ω dt

}
d2, (A.3a)

iḋ2 = ∆ exp

{
−i
∫
ω dt

}
d1. (A.3b)

Differentiating and inserting (A.3) yields the decoupled second-order differential
equations:

d̈1 −

(
∆̇

∆
+ iω

)
ḋ1 + ∆2d1 = 0, (A.4a)

d̈2 −

(
∆̇

∆
− iω

)
ḋ2 + ∆2d2 = 0. (A.4b)

We now solve the special case where the interaction is time-independent ∆̇ = 0
and the energy sweep function is linear ω(t) = αt with α > 0. For this specific
problem the equations become:

d̈1 − iαtḋ1 + ∆2d1 = 0, (A.5a)

d̈2 + iαtḋ2 + ∆2d2 = 0. (A.5b)
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As the coeffcients are connected via the normalization constraint |d1|2 + |d2|2 = 1
we can focus on solving either of the above equations. By letting

d̃ = exp

{
i
αt2

4

}
d2 (A.6)

the second equation becomes

¨̃d+

(
(αt)2

4
− iα

2
+ ∆2

)
d̃ = 0. (A.7)

Now by the change of variables

z =
√
α exp

{
−π

4

}
t, ν = i

∆2

α
(A.8)

Eq. (A.7) can be brought into standard form

∂2
z d̃+

(
ν +

1

2
− z2

4

)
d̃ = 0. (A.9)

This is the Weber differential equation which has two independent solutions d̃ =
D−ν−1(−iz) and d̃ = Dν(z), where Dν(z) is the parabolic cylinder function. There-
fore, the general solution for the original coefficients from Eq. (A.1) is found by
superposing both solutions and resubstituting the defined expressions

c2(t) =
(
aD−ν−1(−i

√
αe−π/4t) + bDν(

√
αe−π/4t)

)
e+iαt2/4. (A.10)

Here, a and b are determined by the initial conditions.
As we are interested in the non-adiabatic population transfer induced by the

crossing, we demand that initially only one diabatic state is occupied, let us say |2〉.
The probability of non-adiabatic transition is then given by | 〈2|Ψ(t)〉 |2.
Then, the asymptotic solution for t→ ±∞ is found by regarding the asymptotic

expansion of the parabolic cylinder functions as found in Gradstheyn and Ryzhik
(2014). Accordingly,

PLZ = |c2(t→∞)|2

= exp

{
−2π

∆2

α

}
. (A.11)

This expression for the probability of non-adiabatic transition is called the Landau-
Zener formula. This formula is also valid for complex coulings, by taking the abso-
lute value |∆|. As shown by Wittig (2005) equation (A.5) can directly be solved by
contour integration to yield PLZ for the given initial conditions.

60



B Derivation of CD Hamiltonian at t = 0

In this appendix we derive exact expressions for the control elements of HCD(t = 0).
Consider the three-level system (3.13) at time t = 0. The corresponding Hamiltonian

H(0) =

 ε ∆1 0
∆1 0 ∆2

0 ∆2 ε

 (B.1)

is diagonalizable by analytic means and permits real-algebraic expressions for the
eigenvalues and (instantaneous) eigenstates. The former are given by

λ0 ≡ ε, λ± =
1

2

(
ε±

√
ε2 + 4(∆2

1 + ∆2
2)

)
, (B.2)

and the eigenstates are the columns of the corresponding trasformation matrix

U =
(
|λ−〉 |λ0〉 |λ+〉

)
=

 ∆1/k+ −∆2/∆ ∆1/k−
−λ+/k+ 0 −λ−/k−
∆2/k+ ∆1/∆ ∆2/k−

 , (B.3)

where we defined the following quantities for simplification purposes

∆ =
√

∆2
1 + ∆2

2, k =
√
ε2 + 4∆2 and k± =

√
λ2
± + ∆2. (B.4)

Note that U is orthogonal (unitary) but not hermitian. Before advancing let us give
some identities that will come in handy later:

λ± + λ∓ = ε

λ± − λ∓ = ±k
λ±λ∓ = −∆2

k±k∓ = ∆k

k2
± + k2

∓ = k2

k2
± − k2

∓ = ±εk
(B.5)

With the eigenvalues and eigenstates at hand we can now compute the CD Hamil-
tonian at t = 0 according to Eq. (2.29). In particular the individual control elements
in the eigenbasis of H(0), as indicated by the superscript λ, are given by

(
Hλ
CD

)
ij

(0) = i

(
U †(∂tH(0))U

)
ij

λj − λi
. (B.6)

Here ∂tH(0) describes the time derivative

∂tH(t) =

α 0 0
0 0 0
0 0 −β

 (B.7)
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evaluated at the origin. However, due to the linearity in our model this matrix is
constant for all times. Note that by definition Hλ

CD is hermitian and has zeros on
the diagnonal. Therefore we can focus on calculating the elements of the upper
triangular matrix.
For clearity we explicitly compute one coupling element:

(Hλ
CD)12 = i

1

∆k+(λ0 − λ−)

 ∆1

−λ+

∆2

T

·

α 0 0
0 0 0
0 0 −β

 ·
−∆2

0
∆1


= −i∆1∆2(α + β)

∆k+λ+

(B.8)

Similarly we find:

(Hλ
CD)13 = i

α∆2
1 − β∆2

2

∆k2
, (B.9)

(Hλ
CD)23 = i

∆1∆2(α + β)

∆k−λ−
. (B.10)

Finally, we transform back into the original basis as HCD = UHλ
CDU

†. Altough
the diagonals of Hλ

CD are zero this is not necessarily true for HCD. However in our
case the transformation matrix U is real-valued and to ensure hermiticity of the
Hamiltonian in all bases the diagonals must vanish. After some basic algebra and
by using the identities (B.5), the remaining independent elements take the values:

(HCD)12 = i
∆1(α∆2

1 − β∆2
2)

∆2k2
+ i

∆1∆2
2(α + β)

∆4
, (B.11)

(HCD)13 = i
∆1∆2ε(α + β)

∆4
, (B.12)

(HCD)23 = −i∆2(α∆2
1 − β∆2

2)

∆2k2
+ i

∆2
1∆2(α + β)

∆4
. (B.13)

There are two interesting things to be noted. First, we notice that for the α∆1 =
β∆2 the first term in the expressions of (HCD)12 and (HCD)23 vanishes. This is
particularly the case for the spin-1 system, where α = β and ∆1 = ∆2. Second and
in contrary to the spin-1 system, we see that the (HCD)13 element is not zero and
depends linearly on the offset ε.
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C Time-Independent Perturbation Theory

In this appendix we sketch how to use time independent perturbation theory (TIPT)
to calculate the CD control Hamiltonian. In particular, we derive the control ele-
ments in the case of weak coupling and in the asymptotic (large t) limit.
Let H be a Hamiltonian whose eigenvalue problem is not analytically solvable. In

order to approximate the exact solution, i.e., the eigenenergies En and eigenstates
|En〉, we decompose the Hamiltonian into two parts

H = H0 +H1, (C.1)

such that H0 is solvable with the eigenvalues and eigenstates given by E(0) and∣∣E(0)
〉
, respectively. We can now apply perturbation theory to derive approximate

solutions by treating H1 as a small perturbation. Usually, this is done by writing

H1 = λV (C.2)

and assuming the perturbation parameter λ ∈ R to be small. We next expand the
exact solution in orders of λ:

En =
∞∑
k=0

λkE(k)
n (C.3)

|En〉 =
∞∑
k=0

λk
∣∣E(k)

n

〉
. (C.4)

Here, E(k)
n and

∣∣∣E(k)
n

〉
are the k-order correction terms to En and |En〉. As described

in Sakurai and Napolitano (2011), they can then be calculated recursively by

E(j)
n =

〈
E(0)
n

∣∣V ∣∣E(j−1)
n

〉
−

j−1∑
k=1

E(k)
n

〈
E(0)
n

∣∣E(j−k)
n

〉
(C.5)

and ∣∣E(j)
n

〉
=
∑
m

〈
E(0)
m

∣∣E(j)
n

〉 ∣∣E(0)
m

〉
. (C.6)

The matrix elements in the later expression are computed for m 6= n by

〈
E(0)
m

∣∣E(j)
n

〉
= −

〈
E

(0)
m

∣∣∣V ∣∣∣E(j−1)
n

〉
E

(0)
m − E(0)

n

+

j−1∑
k=1

E
(k)
n

〈
E

(0)
m

∣∣∣E(j−k)
n

〉
E

(0)
m − E(0)

n

(C.7)
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and for m = n by

〈
E(0)
n

∣∣E(j)
n

〉
= −1

2

j−1∑
k=1

〈
E(j−k)
n

∣∣E(k)
n

〉
. (C.8)

Note that the later element ensures normalization of the approximate states. The
perturbative approach we use here is applicable in the case where the energy spec-
trum of H0 is non-degenerate and the perturbation V time-independent.
The CD control Hamiltonian is independent of the system’s dynamics since it

only depends on the instantaneous eigenstates as is evident from (2.29). With the
instantaneous eigenstates from TIPT, we can therefore calculate the approximate
control fields according to (2.30).

Weak Coupling Consider the instantaneous eigenvalue problem for the Hamilto-
nian (3.13) with a general energy sweep function ω(t). We can solve it approximately
in the weak coupling limit (∆ small):

ε+ ω(t) 0 0
0 0 0
0 0 ε− ω(t)


︸ ︷︷ ︸

H0(t)

+∆

0 1 0
1 0 1
0 1 0


︸ ︷︷ ︸

V

 |En(t)〉 = En(t) |En(t)〉 . (C.9)

The perturbation V is time independent and therefore TIPT can be applied to solve
the equation. The instantaneous eigenstates to the unperturbed system are exactly
the diabatic states∣∣∣E(0)

1

〉
= |1〉 ,

∣∣∣E(0)
2

〉
= |2〉 ,

∣∣∣E(0)
3

〉
= |3〉 , (C.10)

where the labeling is chosen such that

E
(0)
1 = ε+ ω(t), E

(0)
2 = 0, E

(0)
3 = ε− ω(t). (C.11)

Further, note that the spectrum of H0(t) is degenerate at times for which ω(t) = ±ε.
Thus, the perturbative approach breaks down when two diabatic states cross in the
spectrum. However, with the knowledge we still can approximate the solution.
Computing the eigenvectors up to second order in ∆ gives

|E1(t)〉 '
(

1− ∆2

2(ε+ ω)2

)
|1〉+

∆

ε+ ω
|2〉+

∆2

2ω(ε+ ω)
|3〉 (C.12)

|E2(t)〉 ' − ∆

ε+ ω
|1〉+

(
1− (ε2 + ω2)

(ε2 − ω2)2
∆2

)
|2〉 − ∆

ε− ω
|3〉 (C.13)
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|E3(t)〉 ' − ∆2

2ω(ε− ω)
|1〉+

∆

ε− ω
|2〉+

(
1− ∆2

2(ε− ω)2

)
|3〉 . (C.14)

From this we calculate the CD control Hamiltonian which yields:

(HCD)12 = i
ω̇

(ε+ ω)2
∆ +O(∆3), (C.15a)

(HCD)23 = i
ω̇

(ε− ω)2
∆ +O(∆3), (C.15b)

(HCD)13 = i
ω̇ε (ε2 − 5ω2)

2ω2(ε2 − ω2)2
∆2 +O(∆3). (C.15c)

As can be seen, the expressions include singularities at the crossings ω = ±ε due to
the degeneracy of the unperturbed system H0.

Asymptotic Limit Consider the instantaneous eigenvalue problem for the general
asymmetric Hamiltonian (3.13)

H(t) |En(t)〉 = En(t) |En(t)〉 . (C.16)

Dividing by t and explicitly separating the Hamiltonian into time-independent H0

and time-depedent H1 = V/t parts gives
α 0 0

0 0 0
0 0 −β


︸ ︷︷ ︸

H0

+
1

t

 ε ∆L 0
∆L 0 ∆R

0 ∆R ε


︸ ︷︷ ︸

V

 |En(t)〉 =
En(t)

t
|En(t)〉 . (C.17)

Here, we assume α, β > 0 to avoid degeneracy of H0 By rescaling the energy by
En(t) = En(t)/t and defining λ = 1/t the equation is brought into the canonical
form

(H0 + λV ) |En(t)〉 = En(t) |En(t)〉 . (C.18)

Note that the instantaneous eigenstates are the same as for the orginal problem (C.16).
Neither H0 nor V depend on time and therefore the solution to this equation can be
attained from time-independent perturbation theory for small values of the pertur-
bation parameter λ. The off-diagonal matrix elements of the control Hamiltonian,
We can now apply the general procedure described above to compute the eigenvec-
tors in the large t limit.
The zeroth-order solution is attained by solving the unperturbed eigenequation

H0

∣∣E(0)
n

〉
= E (0)

n

∣∣E(0)
n

〉
. (C.19)
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In this limit of t → ∞, the eigenstates are exactly given by the time-independent
diabatic basis states∣∣∣E(0)

1

〉
= |3〉 ,

∣∣∣E(0)
2

〉
= |2〉 ,

∣∣∣E(0)
3

〉
= |1〉 . (C.20)

Here, the eigenstates are labeled by increasing eigenvalues

E (0)
1 = −β, E (0)

2 = 0, E (0)
3 = α. (C.21)

Then, the eigenstates to third order read

|E1(t)〉 '
(

1− ∆2
1

2α2t2
+

∆2
1ε

α3t3

)
|3〉

+

(
∆1

αt
− ∆1ε

α2t2
− ∆1(3∆2

1 − 2ε2)

2α3t3
+

∆1∆2
2

α2(α + β)t3

)
|2〉

+

(
∆1∆2

α(α + β)t2
− ∆1∆2ε

α2(α + β)t3

)
|1〉 (C.22)

|E2(t)〉 '
(
−∆1

αt
+

∆1ε

α2t2
+

∆1∆2
2(α− 2β)

2α2β2t3
+

∆1(3∆2
1 − 2ε2)

2α3t3

)
|3〉

+

(
1− ∆2

1

2α2t2
− ∆2

2

2β2t2
+
ε(∆2

1β
3 −∆2

2α
3)

α3β3t3

)
|2〉

+

(
∆2

βt
+

∆2ε

β2t2
− ∆2∆2

1(β − 2α)

2α2β2t3
− ∆2(3∆2

2 − 2ε2)

2β3t3

)
|1〉 (C.23)

|E3(t)〉 '
(

∆1∆2

β(α + β)t2
+

∆1∆2ε

β2(α + β)t3

)
|3〉

+

(
−∆2

βt
− ∆2ε

β2t2
+

∆2(3∆2
2 − 2ε2)

2β3t3
− ∆2

1∆2

β2(α + β)t3

)
|2〉

+

(
1− ∆2

2

2β2t2
− ∆2

2ε

β3t3

)
|1〉 (C.24)

Note the high symmetry of the problem, e.g., 〈3|E1(t)〉 is equal to 〈1|E3(t)〉 by
letting α→ −β and ∆1 → ∆2.
The expansion is valid for 1/t small and thereby gives the approximate eigenstates

ofH(t) for t→∞. From these we can calculate the CD control Hamiltonian for large
times using (2.30). Note that the calculation of HCD involves the time derivative
of the eigenstates and therefore inavoidably raises the order of the perturbative
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approach. The independent non-zero elements are

(HCD)12 =
i∆1

αt2
− 2i∆1ε

α2t3
− i∆1(4∆2

1 − 3ε2)

α3t4
+
i∆1∆2

2(α + 3β)

α2β(α + β)t4
+O(t−5)

(C.25a)

(HCD)23 =
i∆2

βt2
+

2i∆2ε

β2t3
− i∆2(4∆2

2 − 3ε2)

β3t4
+
i∆2

1∆2(β + 3α)

αβ2(α + β)t4
+O(t−5)

(C.25b)

(HCD)13 =
i∆1∆2(α− β)

αβ(α + β)t3
− i∆1∆2ε(2α

2 + 2β2 + αβ)

α2β2(α + β)t4
+O(t−5) (C.25c)
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