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Abstract

Due to the lack of experimental evidence for weakly interacting particles (WIMPs)
and the unsatisfying numerical predictions of the established cold dark matter (CDM)
paradigm on galactic scales, alternative dark matter models remain an intriguing
and active field of research.

A model of recent interest in cosmology is Fuzzy Dark Matter (FDM) which
assumes the nonbaryonic matter component of the universe to consist of scalar bosons
with mass m ∼ 10−22 eV. FDM possesses a rich phenomenology in (3 + 1) dimensions
recovering predictions of CDM on large scales while suppressing structure growth
below the de-Broglie wavelength which, due to the miniscule boson mass, attains
values of galactic size.

As full fledged (3 + 1)-dimensional, cosmological simulations, especially for FDM,
are extremely time consuming this thesis investigates to what extend phenomena in
three spatial dimensions can be observed with only one geometric degree of freedom.
To this end, a first principle derivation of the governing equation of FDM, i.e. (3 + 1)-
Schrödinger-Poisson (SP) is presented and dimensionally reduced to two distinct
(1 + 1)-FDM representations, namely (i) the standard (1 + 1)-SP equation and (ii)
the novel periodic, line adiabatic model (PLAM). After investigating the nature of
FDM in linear theory, we present a comprehensive, unified and thoroughly tested
numerical method capable of integrating both reduction models into the nonlinear
regime. By analyzing an ensemble of high-resolution, cosmological simulation runs,
we find standard (1 + 1)-SP to only partially recover the sought after asymptotic
dynamics of (3 + 1)-FDM — a result which holds true even under simplified initial
conditions or expansion free scenarios. PLAM, on the other hand, shows the most
prominent feature of full fledged FDM — a solitonic, dynamical attractor — for both
expanding and static background cosmologies. We argue the discrepancy between the
models lies in the different nonlocality of the underlying nonlinear interaction and
substantiate this with numerical and analytical arguments. Moreover, our results
indicate that independent of the reduction model used, the long term dynamics
is best understood as a consequence of thermodynamics aiming to maximize the
system’s entropy.





Zusammenfassung

Alternative Dark Matter Modelle stellen aufgrund fehlender experimenteller Evidenz
für die Existenz von WIMPs sowie unzureichender numerischer Vorhersagen des
etablierten Modells kalter, dunkler Materie (CDM) ein attraktives und aktives
Forschungsgebiet dar.

Insbesondere Fuzzy Dark Matter (FDM) gilt als vielversprechende Dark Matter
Theorie, in der nicht-baryonische Materie als skalare Bosonen mit Masse m ∼
10−22 eV modelliert wird. Zu den wichtigsten Charakteristika FDMs zählen die
Übereinstimmung mit dem CDM Paradigma auf großen Längenskalen sowie die
Unterdrückung nicht-linearer Materiestrukturen unterhalb der bosonischen de-Broglie
Wellenlänge, die aufgrund der winzigen Teilchenmasse kosmisch relevante Größe
annimmt.

Da großskalige, hochauflösende (FDM) Simulationen dunkler Materie in (3 + 1)-
Dimensionen extrem zeitaufwendig sind, stellt sich die Frage ob und wie charakteris-
tische Eigenschaften FDMs auch in lediglich einer Raumdimension realisiert werden
können. Untersuchung dieses Aspektes ist Gegenstand dieser Arbeit. Ausgangspunkt
hierfür bildet die Herleitung der FDM Evolutionsgleichung, die (3 + 1)-Schrödinger-
Poisson (SP) Gleichung, sowie eine detaillierte Dimensionsreduktion resultierend
in (i) der Standard (1 + 1)-SP Gleichung und (ii) des periodisierten "line adiabatic
models"(PLAM). Wir kontrastieren das Verhalten von FDM und CDM in linea-
rer Ordnung und präsentieren des Weiteren eine einheitliche, ausführlich getestete,
numerische Methode, mit derer beide niederdimensionale FDM Repräsentationen
bis ins nichtlineare Regime integriert werden können. Die ausührliche Analyse eines
Ensembles hochauflösender, kosmologischer Simulationen zeigt das Versagen (1 + 1)-
SPs wesentliche Eigenschaften der (3 + 1)-FDM Phänomenologie in einer Dimension
abzubilden — auch nicht unter vereinfachten Anfangsbedigungen oder expansions-
freien Szenarien. PLAM, anderseits, realisiert mit der Existenz eines solitonischen,
dynamischen Attraktors die wohl wichtigste Eigenschaft FDMs, sowohl für statische
wie auch expandierende Hintergrundkosmolgien. Auf Basis analytisch-numerischer
Argumente interpretieren wir dieses Verhalten als Konsequenz der verschiedenen
Nicht-Lokalitäteten in der Wechselwirkung beider Modelle. Unabhängig vom Re-
duktionsmodell indizieren die präsentierten Resultate die Anwendbarkeit thermo-
dynamischer Prinzipien für die Beschreibung der asymptotischen Systemzustandes,
insbesondere die Gültigkeit des Maximum Entropie Prinzips.
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Chapter 1

Motivation

While ordinary, baryonic matter contributes only ∼ 5% to the total energy budget of
the observable universe, origin and physical nature of the remaining ∼ 95% are still
an open question. In fact, gaining a fundamental understanding of the "dark sector",
which consists of dark matter (∼ 25%) and dark energy (∼ 70%), is arguably the
largest challenge in modern cosmology.

Until such a fundamental understanding becomes available a parametrized theory
— the standard model of cosmology — takes its place. In it, dark energy is interpreted
as constant vacuum energy density set by the cosmological constant Λ. Dark matter,
on the other hand, is modeled as massive, exclusively gravitationally interacting
particles with vanishing thermal velocity. It is the latter property that qualifies dark
matter to be cold (CDM) and gives the standard model its name — ΛCDM.

While the established ΛCDM paradigm, [64], is a long standing, well understood
theory, it was only the advent of high resolution, large scale cosmological simulations
[73] that allowed detailed predictions of structure growth in the deeply nonlinear
evolution regime. Comparison with observation data proofed ΛCDM to be a superb
description for the large scale structure of the universe and promoted the theory to
a corner stone of modern cosmology.

Although successful on large scales, there are still significant discrepancies between
the observed small scale structure and numerical predictions. These problems are
commonly referred to as the "small scale crisis" of CDM, see [17] for a review.

For instance, according to simulations dark matter halos, i.e. gravitationally
collapsed and dynamically relaxed dark matter clumps, are expected to have a rich
substructure containing thousands of sub-halos many of which should be hosts to
observable satellite galaxies. On the other hand, we only know about ∼ 50 satellites
of the Milky way. This overabundance of small scale structure under ΛCDM is coined
the "missing satellite problem".

Also puzzling is the fact that dark matter halos of satellite galaxies which we
can observe would not even be the largest sub-halos one has to expect from a Milky
way-sized host galaxy — at least according the CDM simulations. Naturally, one
must ask what happened to even more massive sub-halos, which would have been
"too big to fail" their existence due to processes like baryonic feedback.

At last, we mention the quite universal shape of CDM halos well approximated
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CHAPTER 1. MOTIVATION

by the famous NFW profiles, [61]. At small radii these predict ρ(r) ∝ r−1. However,
such a steep, cuspy core is not suggested by dark matter dominated, dwarf spherical
galaxies (dSphs). Instead, dSphs favor a flat, cored halo center and thus give rise to
the "cusp-core problem".

There are multiple approaches in solving these dilemmas, all of which aim at
smoothing out structure growth at galactic or sub-galactic scales and can be generally
understood as extensions, modifications or replacements of CDM.

We already mentioned the incorporation of baryonic physics as a viable exten-
sion of cold dark matter dynamics. Here cataclysmic events auch as supernovae
provide a baryonic feedback mechanism for dark matter potentially destroying small,
gravitationally bound structures or influencing the internal structure of larger halos.

A common modification of CDM is to relax the assumption of it being perfectly
cold, i.e. vanishing thermal velocity. Warming the nonbaryonic matter to ∼ 10ms−1

implements a thermally driven dispersion effect, therefore smoothing out structure
growth on small scales. This is warm dark matter (WDM).

More radically, one can also discard CDM all together and replace it with an
alternative dark matter model that (i) recovers CDM at super-galactic scales and (ii)
behaves different than CDM on sub-galactic distances. Note this approach is not
at odds with the current understanding of dark matter. In fact, it’s fundamental
character is still an open question and CDM is therefore also just a phenomenological
theory.

A particularly interesting alternative dark matter model is Fuzzy Dark Matter,
[41], or FDM in short. FDM assumes dark matter to be a bosonic scalar field
of ultralight particles with mass m ≈ 10−22 eV and in the nonrelativistic limit
governed by the (3 + 1) Schrödinger-Poisson (SP) equation. It is this miniscule
mass which magnifies the de-Broglie wavelength to λdB ∼ 1kpc. We therefore expect
quantum effects to act on galactic scales, in particular a spatial smoothing due
to the uncertainty principle. On the other hand, casting the governing equations
into hydrodynamic form reveals the scalar field to be well described by a comoving
Euler-Poisson equation, at least on scales on which gradients of the matter density
are small, i.e. at large wavelengths. Consequently, one expects FDM to behave
as a classical cosmic fluid on super-galactic distances therefore recovering CDM
predictions.

Although the following discussion will accept the scalar field approach as is,
we quote ultralight axions as possible FDM particle candidate — pseudo Nambu-
Goldstone bosons that arise from a spontaneous breaking of an approximate shift
symmetry [4, 42].

One of the most prominent properties of FDM is the existence of stable density
configurations, known as solitons. Already early on in the development of the model
it was found that these special states act as dynamical attractor in the evolution
of the scalar field, [37], and provide a natural realization of a flat halo core, free of
any cusps. Moreover, high resolution (3 + 1)-dimensional simulations of cosmological
initial conditions, [67], found solitons to not just constitute the core of each relaxed
FDM structure but also being surrounded by a power-law like matter halo decaying
as ρ ∝ r−3 — exactly as NFW profiles predict.
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While possible on supercomputing clusters, numerical studies of (3+1) dimensional
FDM remain extremely demanding. This is an inherent problem of the Eulerian
point of view suggested by Schrödinger’s equation and the vastly different spatial
scales which need to be resolved. These range from ∼ 10 Mpc domains down to small
scale structure of only ∼ 100 pc. By contrast, N -Body problems, i.e. the canonical
approach in simulating CDM, are inherently Lagrangian and the "spatial grid" does
consequently not have any resolution limits. Sophisticated numerical methods, [67],
are required to make the integration of (3 + 1)-SP a tractable problem for even
mid-sized boxes. Naturally, one can ask if lower dimensional representations, being
certainly cheaper to work with compared to (3 + 1)-SP, are useful to learn something
about the behavior of full fledged (3 + 1)-FDM: How does power evolve on small and
large scales as a function of redshift? Can we recover the large scale CDM evolution?
Does nonlinear mode coupling occur? What is the physical character of the relaxation
process? What its associated time scale? How does space-time expansion impact
the relaxation process? Can we realize a lower dimensional analogue of the solitonic
core? This thesis attempts to answer all these questions and is structured as follows:

Chapter 2 derives (3 + 1)-SP from first principles, section 2.1 - 2.2, and discusses
a variety of different physical interpretations for it, section 2.2.1. A careful dimension
reduction of the three-dimensional problem in section 2.3 leads up to two distinct
one dimensional representations of FDM: (i) the naive (1 + 1)-SP equation and (ii)
the novel line adiabatic model (PLAM) which is arguably closer to the original long
range interaction of (3 + 1)-SP while not imposing any symmetry assumptions on the
original scalar field. Crucial differences between both reduction models, especially
in terms of their long range interactions and admitted symmetries, section 2.4, are
discussed.

Chapter 3 introduces key statistical observables such as the matter power spectrum
or correlation function, section 3.1, and investigates discrepancies in their evolution
under FDM and CDM in linear theory, section 3.2. Moreover, construction of one-
dimensional cosmological initial conditions for FDM will be discussed in section
3.3.

Before embarking on an in-depth analysis of the nonlinear (1 + 1)-SP evolution
under cosmological conditions in chapter 5, we present a comprehensive, easy to
implement and thoroughly tested numerical method for integrating both (1 + 1)-
SP and PLAM in chapter 4. This entails an overview of existing techniques for
integrating FDM, section 4.1, as well as an exposition of the spatial discretization and
details of the time propagation under expanding space-time conditions, see sections
4.2 - 4.3. Properties of the devised scheme, especially concerning convergence and
stability, are summarized in section 4.4.

Following the evolution of the matter power spectrum in section 5.2 shows clear
imprints of the galactic-scale uncertainty principle. By investigating an ensemble of
cosmological random fields in section 5.2.1, we are able to give a quantitative estimate
on which spatial scales one should expect to see modifications of the nonlinear power
spectrum. Systematic effects inherent to FDM and their impact on the large scale
evolution and mode coupling are analyzed in section 5.2.2-5.2.3. Section 5.3 focuses
on the failure of (1 + 1)-SP in reaching the asymptotic soliton configuration known
from (3 + 1)-SP.
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CHAPTER 1. MOTIVATION

Chapter 6 analyses and explains dynamical discrepancies between both reduction
models, especially with respect to the attained asymptotic state and underlying
relaxation mechanism. More precisely, we discuss virialization and thermalization
as possible processes driving the system towards equilibrium in section 6.1. Section
6.2 is devoted to the preparation and the distinctive properties of the FDM soliton
in one spatial dimension. The static space-time considerations of section 6.3 reveal
PLAM to follow "soliton turbulence" dynamics ultimately attaining the sought
after single-soliton state known from (3 + 1)-SP. On the other hand, (1 + 1)-SP
obeys "incoherent soliton dynamics" producing halo profiles consistent with lower
dimensional models of CDM. However, it still fails to realize a solitonic density core.
Inspired by results from nonlinear optics and the properties deduced in section 2.3
and 6.2, section 6.3.3 argues (1 + 1)-SP is incapable to form solitons, irrespective of
the physical parameters used. The dynamic space-time considerations of section 6.4
substantiate this result.

We conclude and extend this thesis in chapter 7. To keep the discussion compact
longer mathematical asides and supplementary material are deferred to Appendix
A-C.
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Chapter 2

Fuzzy Dark Matter from First
Principles

Purpose of this chapter is to give a reasonably self-contained derivation of the
governing dynamical equations of Fuzzy Dark Matter (FDM) in d = 1, 2, 3 spatial
dimensions starting from first principles. In [85, 86] we only gave an a posteriori
justification off the correctness of the (3 + 1)-dynamical equations by the correspon-
dence with Vlasov’s equation in the semi-classical limit ~→ 0, see [76]. Informations
about the dimension reduction were completely omitted. The results of this chapter,
in particular the one-dimensional models of FDM will form the basis of our numerical
investigations in chapter 4 - 6

More rigorously, Schrödinger-Poisson (SP), i.e. the evolution equation of FDM,
emerges as the non-relativistic limit of the Klein-Gordon-Einstein equation (KGE) for
which the space-time geometry is set by a perturbed Friedmann-Lemaître-Robertson-
Walker (FLRW) metric in Newtonian gauge.

After deriving the (3 + 1)-SP equation from first principles and discussing it’s
interpretation, we contrast two different approaches how the three dimensional
problem can be reduced to lower dimensions. The result will be the (i) the (d+ 1)-SP
equation and (ii) the periodic, line adiabatic model valid for d = 1 spatial degree
of freedom. Crucial differences of both reduction procedures and their resulting
dynamical models will be emphasized.

A unified description for both models is the nonlinear Schrödinger equation
(NLSE) with a convolution-type, non-local interaction potential and it is only the
convolution kernel which changes as one replaces (1 + 1)-SP with PLAM. The NLSE
is therefore main subject in our closing discussion on conserved quantities and
symmetries of the (1 + 1)-dimensional dynamics. It also builds the foundation for
the numerical considerations in chapter 4.

The discussion follows closely the arguments given in [75] for the derivation of the
(3 + 1)-SP equations and adopts the approach given in [9] for reducing the number of
spatial dimensions. Along the way, we also hint at how relativistic corrections could
be realized in future works. The latter is motivated by the results presented in [48,
33].
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CHAPTER 2. FUZZY DARK MATTER FROM FIRST PRINCIPLES

2.1 General Relativistic Considerations

Our starting point must be GR. We are somewhat brief in this section because the
formalism is well established by any textbook on GR, e.g. [79], and calculation tend
to be lengthy with limited physical insight.

2.1.1 Derivation of the Klein-Gordon-Einstein Equation

The dynamics of the space-time geometry as well as of all matter contained in it can
be found by varying the action, [11]:

S =

∫
d4x
√−g

(
R− 2Λ +

16πG

c4
Lmatter

)
. (2.1)

Here g denotes the determinant of the metric gµν for which we adopt the "mostly
plus" sign convention (− + + +). R and Λ are the Ricci scalar and the cosmological
constant respectively, G is Newton’s gravitational constant. Let dark matter now
be modeled by means of a massive, complex scalar ϕ(xµ) minimally coupled to the
space-time geometry:

Lmatter = Lϕ = −1

2
∂µϕ

∗∂µϕ− V (|ϕ|2) , (2.2)

with potential:

V (|ϕ|2) =
m2c2

2~2
|ϕ|2 . (2.3)

Herem is the dark matter particle mass. Note that (i) partial derivatives are sufficient
in this context because ϕ is a scalar and (ii) we deliberately keep factors of c in our
derivation as we later on perform an expansion in powers of 1/c to arrive at the
non-relativistic limit of the theory.

Setting the variation of (2.1), δS, with respect to ϕ to zero is equivalent to solving
the Euler-Lagrange equation,

∇µ

(
∂L

∂ (∂µϕ∗)

)
− ∂L
∂ϕ∗

= 0 , (2.4)

which is readily done:

2ϕ ≡ ∇µ(∂µϕ) =
m2c2

~2
ϕ . (2.5)

This is Klein-Gordon’s equation. In order to make further progress we need to express
the covariant derivative on the left hand side more explicitely. This is most easily
done by realizing that the covariant divergence of the vector ∂µϕ can be written as:

∇µ (∂µϕ) =
1√−g∂µ

(√−ggµν∂ν
)
. (2.6)

If we consider a zero curvature FLRW universe, perturbed by a weak scalar field Φ
then the space-time element reads:

ds2 = −
(

1 +
2Φ

c2

)
c2dt2 + a(t)2

(
1− 2Φ

c2

)
δijdxidxj . (2.7)
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Here weak is meant in the sense that Φ/c2 � 1, thus in the following, we will exclude
terms up to O

[(
Φ
c2

)2
]
. As always, x is understood as a comoving coordinate and

a(t) is the dimensionless scale factor found by solving Einsteins (or equivalently
Friedmann’s equation) for the unperturbed, Φ = 0, problem. t denotes cosmic time.

To compute (2.6) both the inverse metric gµν and the metric determinant up the
first order in Φ/c2 are required. It is easily verified that:

gµν =




−
(
1− 2Φ

c2

)
0 0 0

0 1
a2

(
1 + 2Φ

c2

)
0 0

0 0 1
a2

(
1 + 2Φ

c2

)
0

0 0 0 1
a2

(
1 + 2Φ

c2

)


 (2.8)

satisfies gµσgσν = δνµ +O
[(

Φ
c2

)2
]
and

g = −a6

(
1− 4

Φ

c2

)
+O

[(
Φ

c2

)2
]
. (2.9)

Substituting (2.8) and (2.9) into (2.6) and dropping all terms quadratic in Φ yields
after some algebra the Klein-Gordon equation incorporating our choice of the metric
(2.7),

1

c2
∂2
t ϕ−

1

a2

(
1 + 4

Φ

c2

)
4ϕ+

3H

c2
∂tϕ−

4

c4
∂tΦ∂tϕ+

(
1 + 2

Φ

c2

)
m2c2

~2
ϕ = 0 , (2.10)

where we defined the Hubble parameter H = ȧ/a.

To close the system we need an equation for the scalar perturbation Φ which is
found by considering Einstein’s field equation:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (2.11)

with Rµν as Ricci tensor. Eq. (2.11) is obtained by varying (2.1) with respect to
the metric in the process of which we define the Einstein-Hilbert energy momentum
tensor Tµν as:

Tµν = −2
∂L
∂gµν

+ Lgµν . (2.12)

Using the Lagrangian (2.2) and ∂gαβ

∂gµν
= 1

2

(
δαµδ

β
ν + δβµδ

α
ν

)
, one arrives at the well known

energy momentum tensor of a complex scalar field:

Tµν =
1

2
(∂µϕ

∗∂νϕ+ ∂µϕ
∗∂νϕ)− gµν

(
1

2
gαβ∂αϕ

∗∂βϕ+
m2c2

2~2
|ϕ|2

)
. (2.13)

For later use we also compute the energy density ε of the field given by:

ε = −T 0
0 =

1

2c2

(
1− 2

Φ

c2

)
|∂tϕ|2 +

1

2a2

(
1 + 2

Φ

c2

)
|∇ϕ|2 + V (|ϕ|2) (2.14)

as well as its pressure P :

T = T µµ = −ε+ 3P ⇒ P
(2.14)
=

1

3
T ii

=
1

2c2

(
1− 2

Φ

c2

)
|∂tϕ|2 +

1

6a2

(
1 + 2

Φ

c2

)
|∇ϕ|2 − V (|ϕ|2) . (2.15)
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Back to eq. (2.11) and our objective of deriving an equation for Φ. Consider the
mixed tt-component of eq. (2.11):

R0
0 −

1

2
R+ Λ = −8πG

c4
ε . (2.16)

The Ricci tensor, Rµν , and its trace, the Ricci scalar R are determined via:

Rµν = 2
(

Γρµ[ν,ρ] + Γρλ[ρΓ
λ
ν]µ

)
, R = gµνRνµ , (2.17)

with Γρµν as Chistoffel symbols and [. . . ] denoting index anti-symmetrization. Com-
puting these objects is best done via a symbolic math program such as Mathematica.
Up to first order in Φ/c2 eq. (2.16) yields:

4Φ = 4πGa2

[
ε

c2
− 3H2

8πG
+

3H

4πGc2
(∂tΦ +HΦ) +

c2

8πG
Λ

]

= 4πGa2

[
1

2c4

(
1− 2

Φ

c2

)
|∂tϕ|2 +

1

2c2a2

(
1 + 2

Φ

c2

)
|∇ϕ|2 +

1

c2
V (|ϕ|2)

−3H2

8πG
+

3H

4πGc2
(∂tΦ +HΦ) +

c2

8πG
Λ

]
.

(2.18)

Eq. (2.10) together with (2.18) constitute the weak field Klein-Gordon-Einstein
equations (KGE).

2.1.2 Recovering the Homogeneous Universe

Although the previous section aimed at deriving the dynamics of a complex, inho-
mogeneous scalar field in a perturbed FLRW space-time, the formalism obviously
contains the unperturbed problem. In fact, we can use the results derived up till
now to determine the expansion rate of the background space-time H(t) simply by
reinterpreting the meaning of the energy density ε.

To see this, set ϕ(xµ) = ϕ(t) and Φ(xµ) = 0 in accordance with the assumption
of an unperturbed, isotropic and homogeneous universe. Due to homogeneity, all
off-diagonal components produced by the first term in eq. (2.13) vanish and Tµν
becomes the rest frame energy-momentum tensor of a perfect fluid:

T µν = Diag(−ε(t), P (t), P (t), P (t)) . (2.19)

The standard ΛCDM background cosmology follows by forgetting about the fact
that ε actually belongs to a scalar field and is given by eq. (2.14) but instead treat
it as the energy density composed of a relativistic and non-relativistic perfect fluid
component:

ε(t) ≡ εγ(t) + εm(t) . (2.20)

With these definitions in place, eq. (2.18) becomes:

H2 =

(
ȧ

a

)2

=
8πG

3c2

(
ε+

c4Λ

8πG

)
⇒ E(a)2 ≡

(
H

H0

)2

=
1

εc
(εγ(t) + εm(t) + εΛ)

(2.21)
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where we defined:

εc(t) = ρc(t)c
2 =

3H2(t)c2

8πG
, εc = ε(t0) (2.22)

as (present day) critical energy density. εΛ = ρΛc
2 = c4Λ

8πG
denotes the constant

vacuum energy density. To keep the notation compact we distinguish present day
densities from time dependent densities by an explicit time argument for the latter.
Eq. (2.21) is simply the zero-curvature Friedmann equation.

Furthermore, if we consider the µ = 0 component of the local energy-momentum
conservation,

∇νT
0ν = 0, (2.23)

the well known continuity equation follows:

dε
dt

+ 3H(ε+ P ) = 0 . (2.24)

Let us summarize a couple of well known results and definitions associated with
the Friedmann equation [23], which we will use later on.

Firstly, using the general equation of state p = wε for non-relativistic matter,
w = 0, and radiation, w = 1

3
, in eq. (2.24) shows:

εm ∝ a−3, εγ ∝ a−4 . (2.25)

Given that structure formation sets in deeply in the matter dominated era, we will
neglect all radiation contributions and set ε(t) ≡ ρm(t)c2.

Next, define density parameters by Ωi(t) ≡ εi(t)
εc(t)

for i ∈ {m,Λ} as well as their
present day values by Ωi ≡ Ωi(t0). Eq. (2.21) then takes the form:

E(a)2 = Ωma
−3 + ΩΛ . (2.26)

Recall that with the choice of the metric in eq. (2.7) we restricted ourselves to
flat FLRW models. Thus, with the definitions made above, one can easily check that
for flat models:

1 = Ωm(t) + ΩΛ(t) (2.27)

holds true for all values of cosmic time t. Let’s rephrase this conclusion: The total,
homogeneous rest mass density of the universe is critical:

ρc(t) = ρm(t) + ρΛ . (2.28)

2.2 The Non-Relativistic Limit of KGE — (3+1)-SP

Following [81, 75] we now take

ϕ(x, t) = A exp

(
imc2

~
t

)
ψ(x, t)

=
~
m

exp

(
imc2

~
t

)
ψ(x, t)

(2.29)
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as ansatz in order to arrive at the non-relativistic limit of our theory. This is
justified by the solutions of the Klein-Gordon equation for a vanishing potential
ϕ ∝ exp (iE/~t) with E2 = (mc2)

2
+ (pc)2. The rest mass energy has been factored

out as it should dominate the total energy in the limit c→∞.

Alternatively, one could consider eq. (2.29) as a WKB-like expansion known
from semiclassics, [48]. In this context, however, the expansion is not carried out in
powers of ~ but in 1/c and takes the form:

ϕ(x, t) ∝ exp

(
it

~
(
c2S0(x, t) + c0S1(x, t) . . .

))
. (2.30)

Plugging eq. (2.30) into eq. (2.10) and demanding that all orders in c vanish
independently yields equations for the complex coefficients Sn. Ansatz (2.29) then
corresponds to a truncation after two terms in the power series and the non-relativistic
scalar ψ = exp

(
it
~S1(x, t)

)
. In principle we could use this procedure to compute

relativistic correction terms for the non-relativistic Schrödinger-Poisson equation.
However, we will not pursue this idea further at this point but refer to [48, 33].

To fix the prefactor A proceed as outlined in [75] and plug eq. (2.29) into eq.
(2.14):

ε = V (A2|ψ|2) +
A2c2m2

2~2

(
1− 2Φ

c2

)
|ψ|2 +

A2

2a2

(
1 +

2Φ

c2

)
|∇ψ|2

+
A2

2c2

(
1− 2Φ

c2

)
|∂tψ|2 −

A2m

~

(
1− 2Φ

c2

)
Im [ψ∗∂tψ] . (2.31)

As c→∞ we obtain the asymptotic relation:

ε ∼ A2m2

~2
|ψ|2c2 , (2.32)

where one half of the right hand side comes from the quadratic term of the potential
in (2.3). Demanding ε ∼ ρmc

2 = |ψ|2c2 as c→∞, one justified the second equality
in eq. (2.29). In the process we defined the proper dark matter density to be:

ρm(x, t) ≡ |ψ(x, t)|2 . (2.33)

Note that we treat all matter, including baryons, as dark matter, i.e. everything that
interacts gravitationally is subsumed by the dynamics of ψ(x, t) and all baryonic
physics is neglected.

At last, insert ansatz (2.29) into Klein-Gordon’s equation (2.10) as well as the
tt-component of Einstein’s field equation (2.18). After some algebra, this yields:

i~∂tψ +
3

2
i~Hψ − ~2

2mc2

(
∂2
t ψ + 3H∂tψ +

4

c2
∂tΦ∂tψ

)

=

[
− ~2

2ma2

(
1 +

4Φ

c2

)
4+mΦ +

2i~
c2
∂tΦ

]
ψ ,

(2.34)
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1

4πG

[
1

a2
4Φ− 3H

c2

(
∂tΦ +HΦ

)]
=

(
1− Φ

c2

)
|ψ|2 +

c2

8πG
Λ− 3H2

8πG

+
~2

2m2c2

[
1

c2

(
1− 2

Φ

c2

)
|∂tψ|2 +

1

a2

(
1 + 2

Φ

c2

)
|∇ψ|2

−2m

~

(
1− 2

Φ

c2

)
Im [ψ∗∂tψ]

]
.

(2.35)

Taking c→∞ one finds the Schrödinger-Poisson equations,

i~∂tψ +
3

2
i~Hψ =

[
− ~2

2ma2
4+mΦ

]
ψ , (2.36)

4Φ = 4πGa2

(
|ψ|2 +

c2

8πG
Λ− 3H2

8πG

)

= 4πGa2
(
|ψ|2 + ρΛ − ρc(t)

)

(2.28)
= 4πGa2

(
|ψ|2 − ρm(t)

)
.

(2.37)

We never assumed that our scalar field is a perturbation. Therefore, ρm(x, t) as
defined in eq. (2.33) is the dark matter density that includes both the homogeneous
dynamics,

ρm(t) = ρm(t) ≡ 1

|Ω|

∫

Ω

d3x|ψ(x, t)|2, (2.38)

as well as the perturbative deviations from it. The integration domain Ω will be
defined shorty. Equation (2.37) shows that only the density perturbations source the
peculiar, gravitational potential Φ.

The imaginary, dissipative term on the left hand side of eq. (2.36) is due to
the Hubble flow. It simply states the fact that the matter density is still measured
in a proper volume |ψ|2 = ρ ∝ a−3. Thus, in order to restore hermiticity of the
Hamiltonian, we substitute ψ → a−3/2ψ and arrive at:

i~∂tψ =

[
− ~2

2ma2
4+mΦ

]
ψ

4Φ =
4πG

a

(
|ψ|2 − ρm

) x ∈ Ω . (2.39)

By this substitution, |ψ|2 now measures the matter density measured in a comoving
volume.

So far the problem (2.39) is not completely specified as both wave function and
potential lack suitable boundary conditions. The natural choice is to impose periodic
boundary conditions on both fields. To this end, let us define a 3-dimensional cube
Ω = Ω1 × Ω2 × Ω3 ⊂ R3 with Ωi = [0, Li] ⊂ R as one dimensional intervals. We then
demand a matching mth-derivative with m = 0, 1 for the potential and the wave
function across the domain boundaries:

∂mx1
Φ (0, x2, x3) = ∂mx1

Φ (L1, x2, x3) , ∂mx1
ψ (0, x2, x3) = ∂mx1

ψ (L1, x2, x3)

∂mx2
Φ (x1, 0, x3) = ∂mx2

Φ (x1, L2, x3) , ∂mx2
ψ (x1, 0, x3) = ∂mx2

ψ (x1, L2, x3)

∂mx3
Φ (x1, x2, 0) = ∂mx3

Φ (x1, x2, L3) , ∂mx3
ψ (x1, x2, 0) = ∂mx3

ψ (x1, x2, L3)

(2.40)
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2.2.1 Overview of Competing Interpretations

Before proceeding further, it is instructive to shed some physical light onto the
character of the non-relativistic scalar ψ. In fact, although eq. (2.39) has the
mathematical structure of Schrödinger’s equation, there is a priori nothing quantum
mechanical about the result — neither did we specify a Hilbert space for ψ nor did
the derivation depart from a many-body Hamiltonian. Moreover, apart from the
requirement for ~ to have dimensions of an action there was no point in the steps
leading up eq. (2.39) that demanded a particular value for it. Hence, the least arcane
way to interpret eq. (2.39) is in a literal sense, i.e. as the Euler-Lagrange equation of
a classical field theory which happens to coincide with Schrödinger’s equation. From
this perspective, FDM should better be called scalar field dark matter. The field
theoretic point of view will serve us well in section 2.4 when we identify symmetries
and conserved quantities of FDM.

That said, there is significant value in finding (formal) correspondences between
(3 + 1)-SP and other, potentially non-cosmological, theories as it enlarges the number
of available tools with which FDM can be analyzed.

For instance, if we accept eq. (2.39) as an abstract evolutionary problem and
forget momentarily about its interpretation as alternative dark matter model, we can
associate the dynamics of ψ with a smoothed version of the Vlasov-Poisson equation
(VP) or collisonless Boltzmann equation — the phase space description of CDM, [76].
More precisely, if fV (x,p) denotes the solution to VP and fW (x,p) the phase space
distribution constructed from ψ via:

fW (x,p) =

∫
d3x′ψ

(
x− x

′

2

)
ψ∗
(
x+

x′

2

)
e
i
~p·x

′
, (2.41)

then the evolution of the smoothed distributions,

f̄V/W (x,p) =

∫
d3x′

∫
d3p′

1

(2πσxσp)3
exp

(
−(x− x′)2

2σ2
x

− (p− p′)2

2σ2
p

)
fV/W (x′,p′) ,

(2.42)
obeys, [76]:

∂t(f̄W − f̄V ) =
~2

24
∂xi∂xj∇xV̄ ∂pi∂pj∇pf̄W +O(~4, ~2σ2

x) . (2.43)

We emphasize ~ is not Planck’s constant but acts as an independent model parameter
that sets the maximum resolution in phase space.

In that sense, eq. (2.39) can be understood as an alternative sampling of the CDM
distribution compared to the N -body approach: Instead of following the evolution of
N test particles sampling fV , we coarse grain the phase space distribution directly
and use ψ as a dynamical proxy for its evolution. This approach will be referred
to as Schrödinger’s method and will give us access to (i) classical CDM results
such as asymptotic density profiles, cf. section 6.3.1, and (ii) a starting point for a
thermodynamic analysis of FDM by means of an entropy functional based on eq.
(2.42), see section 6.1.2.

Chapter 1 already alluded to the usefulness of the macroscopic de-Broglie wave-
length of FDM, yet the foregoing discussion seems to abandon the quantum nature
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of ψ entirely. We now reestablish the quantum mechanical view point of FDM by
arguing that eq. (2.39) is not just the governing equation of an abstract complex
field but can in fact be identified with the evolution equation of a self-gravitating
Bose-Einstein condensate with negligible local self-interaction. In other words: In
addition to the simplistic field theoretic interpretation and Schrödinger’s method
there is a third interpretation for FDM, i.e. dark matter is a cosmic Bose-Einstein
condensate (BEC) and ψ the condensate wave function.

Let us substantiate this claim. Significant condensation into the lowest energy
state can only be achieved if the critical temperature of the boson gas Tc surpasses the
cosmic background temperature T , here identified with the temperature of the cosmic
microwave background (CMB). Practically, Tc is defined via the number density of
excited states, nb, at maximal chemical potential µ and in the thermodynamic limit,
i.e. N →∞, L3 →∞ while N/L3 <∞:

nb =
1

L3

∑

k

〈nk(βc, µ = mc2)〉 → 1

2π2

∫ ∞

0

dkk2 1

eβc(~kc−mc2) − 1
, (2.44)

with 〈nk(β, µ)〉 as mean occupation per state set by the Boson-Einstein statistic:

〈nk(β, µ)〉 =
1

eβ(E(k)−µ) − 1
, µ < E(0) . (2.45)

Moreover, assume:

E(k) =

{
mc2 k = 0

~|k|c k > 0
, (2.46)

so that only excited states are relativistic — a consequence of the tiny boson mass.

Unfortunately, this approach is to simplistic since kBT � mc2 implying thermal
boson-antiboson pair production is significant. Thus, one cannot invoke the textbook
result for Tc which would follow from direct inversion of eq. (2.44). The authors of
[39] derive for the situation including pair production:

kBTc =

√
3c~3 (nb − nb̄)

m
. (2.47)

To make further progress, follow [82] and set nb−nb̄ ∝ m
T
nb. This may be justified

by noting in chemical equilibrium µb̄ = −|µb| ≡ −|µ|. Therefore, a single chemical
potential determines the joint Bose-Einstein distribution:

nb − nb̄ =
1

L3

∑

k

〈nk(β, µ)〉 − 〈n̄k(β, µ)〉

→ sinh βµ

2π2

∫ ∞

0

dkk2 1

cosh β~kc− cosh βµ

and |µ| ≤ mc2 (2.48)

to ensure 〈nk〉 and 〈n̄k〉 are positive for all k. Hence, an arbitrary not, necessarily
extremal, chemical potential still satisfies β|µ| � 1 under pair production. It is then
straight forward to solve eq. (2.44) and eq. (2.48) to find:

nb − nb̄ =
π2

3ζ(3)

µ

kBT
nb ≈

π2

3ζ(3)

mc2

kBT
nb , (2.49)
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and consequently:

kTc =

√
~3c3π2nb
ζ(3)kT

∝ a−1 . (2.50)

A couple of remarks are in order. Firstly, ~ is now of course Planck’s constant.
Secondly, as Tc ∝ a−1, just like the CMB temperature scales as T ∝ a−1, it is enough
to check whether the condensation condition is satisfied at z = 0. If so, FDM should
be in the BEC phase for all of cosmic time. We find:

kBTc =
6.3 MeV

a

( m

10−22 eV

)− 1
2

(
T

2.7 K

)− 1
2
(

Ωb

3 · 10−3

) 1
2

(
H0

68 km
sMpc

)
, (2.51)

and denote with Ωb the fraction of excited dark matter bosons, e.g. Ωb = 0.01 Ωm =
3 · 10−3. Since present CMB photons have kT ≈ 2 · 10−4 eV, we conclude FDM is
fully condensed.

In that light, it is natural to ask what the evolution equation of the macroscopic
BEC wave function is. A rigorous derivation could depart from a second quantized
many-body Hamiltonian which is subsequently reduced to an effective Hamiltonian
for the order parameter, i.e. the condensate wave function ψ. For the sake of brevity
we omit the calculation at this point but mention it is conceptionally close to the
procedure for a standard, locally interacting BEC, see [52]. The result is again eq.
(2.39). From this point of view FDM should best be called Bose-Einstein dark matter,
e.g. [60].

Having a quantum mechanical framework at hand is invaluable and will serve us
in many ways, for instance in section 4.3 when we formulate the time integration
for FDM as approximation to time evolution operator or in section 6.1.1 when we
employ the quantum virial theorem to analyse the long term FDM dynamics.

2.2.2 SP as Nonlinear Schrödinger Equation

To keep the notation compact, but also in preparation for numerical considerations, it
is advisable to recast eq. (2.39) into a dimensionless form. We follow the convention
employed in [67, 85, 86] and define:

x′ ≡
(m
~

) 1
2

[
3

2
H2

0 Ωm

] 1
4

x , (2.52)

dt′ ≡ 1

a2

[
3

2
H2

0 Ωm

] 1
2

dt . (2.53)

Moreover, if we set:

ψ′(x′, t′) ≡ ψ(x′, t′)√
ρm

, (2.54)

V (x′, t′) ≡ a
m

~

[
3

2
H2

0 Ωm

]− 1
2

Φ , (2.55)
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then eq. (2.39) can be brought into a convenient dimensionless form. By dropping
primes one arrive at:

i∂tψ =

[
−1

2
4+ a(t)V

]
ψ (2.56)

4V = |ψ|2 − 1 . (2.57)

In this representation the role of the scale factor a(t) becomes apparent: It acts as
a time-dependent coupling strength for the nonlinear term in eq. (2.56) and increases
its dominance as time progresses since a(t) is monotonically increasing with t.

Moreover, realize the crucial role of the adimensional domain size L′ in the chosen
convention (2.52): It is influenced by both the boson mass m and the physical box
size:

L′ =
(m
~

) 1
2

[
3

2
H2

0 Ωm

] 1
4

L . (2.58)

In practice this implies once the cosmology is fixed through Ωm and H0 then by
solving eq. (2.56) for a particular value of dimensionless L′, one obtains the solution
for all physical scenarios for which

√
mL = const.. For the convenience of the reader

Figure 2.1 illustrates the domain-mass relation (2.58) for typical boson masses of the
order m ∼ 10−22 eV.

1 2 3 4 5

m 10−22 [eV]
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L
×
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1000λ

Figure 2.1: Domain-mass relation for Ωm = 0.3 and H0 = 68 km
s·Mpc in the range of typical

boson masses m. The level lines depict the associated adimensional box size
L′. Once equation eq. (2.56) is integrated for one particular value of L′, one
solved the dimensionfull problem (2.39) for all scenarios lying on the L′-level
line. λ denotes a dimensionless parameter which can be used to adapt the
domain size to the physical scenario in mind.
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To make further progress in characterizing the interactions we recall Poisson’s
equation is equivalent to a convolution of it’s source term with Green’s function
G43(x,x′) of the 3-dimensional Laplace operator. Physically speaking G43(x,x′) is
then to be interpreted as a nonlocal interaction kernel the scalar field is subject to.

Realize that G43(x,x′) is not the well known 1/r-potential:

G43(x,x′) 6= Gfree
43

(x,x′) = − 1

4π|x− x′| , (2.59)

which only holds when free space or asymptotic boundary conditions are imposed.
In d = 3 spatial dimensions this amounts to setting, [47]:

lim
|x|→∞

|x|V (x) = − 1

4π
. (2.60)

As discussed in section 2.2, eq. (2.57) is considered on a periodic domain. Conse-
quently, we seek for a Green’s function that satisfies the boundary conditions set
in eq. (2.40) and eq. (2.59) certainly does not. Clearly, a sensible periodic Green’s
function is expected to approach eq. (2.59) as |Ω| → ∞.

The construction of the periodic interaction kernel Gπ
4(x,x′) in its canonical

form is straight forward. We utilize this simple task to establish further conventions.
Any Ω-periodic function, such as the potential, can be expanded in a Fourier series:

V (x) =
1

L1L2L3

∑

n3

Vn3e
ik3·x with Vn3 =

∫

Ω

d3x′V (x′)e−ik3·x′ , (2.61)

where n3 ∈ Z3, k3 ∈ R3 and (k3)i = 2π
Li

(n3)i. Inserting eq. (2.61) as well as the
series of |ψ|2 − 1 into eq. (2.57) yields the expansion coefficients Vn3 :

Vn3 =

{
0 ‖n3‖ = 0

− 1
k2

3
‖n3‖ > 0

. (2.62)

It is important to realize that for ‖n3‖ = 0 the factor −k−2 diverges. This singularity
is only circumvented by the fact that the density contrast, |ψ|2 − 1, and not just the
matter density, |ψ|2, sources V . The former has a vanishing ‖n3‖ = 0 (DC)-mode
and hence makes eq. (2.57) under periodic conditions well-defined.

To arrive at the periodic Green’s function substitute eq. (2.62) into eq. (2.61)
and reinsert the Fourier coefficient integral for |ψ|2 to arrive at an expression in
real-space:

V (x) =

∫

Ω

d3x′Gπ
43

(x,x′)|ψ(x′)|2 with (2.63)

Gπ
43

(x,x′) =
1

L1L2L3

∑

‖n3‖>0

−1

k2
3

eik3·(x−x′) . (2.64)

It should be noted the convolution integral in eq. (2.63) only convolves |ψ|2 and
not the density contrast, being the true source of the potential. This seeming
inconsistency is remedied by the fact that we exclude the DC-mode in the periodic
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Green’s function. Recall that the DC-mode of |ψ|2 is the sole difference between the
density contrast and the matter density.

Eq. (2.64) is not particularly insightful to understand the behavior of the
interaction. We will encounter more refined representations of eq. (2.64) in section
2.3 which also yield more physical insight. At this stage it suffices to see that eq.
(2.63) is a convolution integral, making the nonlocality of the gravitational interaction
manifest: The potential at a point P is the result of all matter inside the range of
the interaction kernel and not just the density contrast at P .

We can now rewrite eq. (2.56) and (2.57) into a single, nonlinear Schrödinger
equation (NLSE):

i∂tψ =

[
−1

2
4+ a(t)

(
Gπ
43
∗ |ψ|2

)]
ψ x ∈ Ω . (2.65)

2.3 Dimension Reduction

So far, we succeeded in deriving the comoving (3 + 1)-SP in its standard, coupled
partial differential equation (PDE) and NLSE representation. To reduce the com-
putational complexity of the problem even further it seems reasonable to consider
a lower dimensional form of our equation system. This section is meant to provide
details on how such lower dimensional representations of eq. (2.56)-(2.57) can be
obtained. We anticipate that the result of the reduction will depend on how matter
is distributed along the eliminated spatial dimension.

The naive way of carrying out the reduction is to simply drop all x3 (x2, x3)
partial derivatives to arrive at a two (one) dimensional version of eq. (2.56)-(2.57).
This appears to be the common approach in low-dimensional studies on Structure
Formation employing Fuzzy Dark Matter [82, 76, 51, 60, 31] and turns out to be true
assuming we demand a uniform matter distribution along the neglected dimensions.
The approach is equally applicable for d = 1, 2. One then arrives at the d-dimensional
SP equation in which we retain Poisson’s equation for the gravitational potential.

As we will see, maintaining Poisson’s equation as field equation has implications
on how gravity acts in lower dimensions because the periodic Green’s function in eq.
(2.64) depends on the dimensionality of the Laplace operator. Unfortunately, it is not
possible to simply enforce a 1/r-interaction kernel in one dimension. Even on finite
domains will the singularity at the origin be too strong and will consequently yield an
ill-defined convolution kernel. This is different for d = 2 where the volume element
dV = rdrdϕ cancels the singularity. Consequently, we ask whether a reduction
procedure exists by which we approximately preserve the 3-dimensional interaction
with only one spatial degree of freedom. This is realized by strongly confining matter
along the dimension the evolution is observed. The result is the (periodized) line
adiabatic model (P)LAM — a (1 + 1)-dimensional NLSE in which the long-range
interaction will be modelled by a convolution-type potential. This potential is neither
the solution to Poisson’s equation nor can it be recast into a PDE form.

We already alluded to the equivalence of the PDE formulation of (3 + 1)-SP
with the convolution-type NLSE (2.65). It turns out to be convenient to adopt the
latter formulation for the following discussion as well, i.e. the starting point for any
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reduction procedure will be eq. (2.65) and a lower dimensional version of it will
again be a NLSE involving a convolution-type nonlinearity. Thus, the overall form
of eq. (2.65) will be preserved and what changes is the convolution kernel. For the
convenience of the reader, but also to fix notation, we refer to Figure 2.2 in which
all interaction kernels of section 2.3.1 and 2.3.2 together with their relations to each
other are anticipated.

Periodic Conditions

Gπ
43

Uπ
LAM Gπ

41

Gfree
43

U free
LAM Gfree

41

Free Space Conditions

L→∞ L→∞ L→∞

strong confinement

ε� 1, [9]

strong confinement

ε� 1

weak confinement
ε� 1

weak confinement
ε� 1

uniform matter

uniform matter

Figure 2.2: Overview of all interaction kernels appearing in section 2.3 as well as their
relations. Green’s function are denoted by a G, general convolution kernels
with U . Boundary conditions are specified as superscript with π referring to
periodic conditions. The subscript either specifies a differential operator (in
the case of a Green’s function) or the model name of the interaction. Under
the confinement approach an effective one-dimensional reduction, say onto the
x3-direction, is achieved by reducing the confinement parameter ε, i.e. making
the external potential in the orthogonal plane, say an harmonic-potential in
x1x2-direction, steeper, see eq. (2.83).

Notation-wise, we denote Green’s functions, i.e. point-source solution to PDEs,
with G and give the associated differential operator as subscript. If an interaction
kernel is not the fundamental solution to a PDE, it is denoted by U followed by the
model name as subscript. To denote periodic boundary conditions, a π-superscript
is used. Asymptotic conditions are denoted by a free-superscript.

2.3.1 Homogeneous Matter Sheets — (1 + 1)-SP

Let us focus on the (3 + 1)→ (2 + 1) reduction for the time being.

From a cosmological perspective, the most natural way to reduce the spatial
degrees of freedom is to insist that matter is homogeneously distributed in one
dimension, say x3, such that all gravitational forces cancel out in this direction and
the potential V is constant along the x3-direction.

Quantum mechanically, this ansatz motivates a factorization of the full fledged
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wave function ψ(x, t) into a two-dimensional part ψ2(x⊥, t) and a plane wave eigen-
state χ(x3, t) of the Hamiltonian Hx3 :

ψ(x, t) = χ(x3, t)ψ2(x⊥, t) and (2.66)

Hx3χ =

[
−1

2
∂2
x3

]√
L3e

i(px3−Et) = Eχ with E =
p2

2
. (2.67)

Our objective is to determine the evolution equation of ψ2(x⊥, t). Inserting eq. (2.66)
into eq. (2.65), using eq. (2.67), multiplying the result by χ∗, integrating over z and
swapping the integration order leaves us with:

i∂tψ2 =

[
−1

2
4⊥ +

a(t)

L3

∫

Ω1×Ω2

d2x⊥

(∫

Ω3

dz
∫

Ω3

dz′Gπ
43

(x,x′)

)
|ψ2(x′⊥)|2

]
ψ2 .

(2.68)

For the nonlocal term, the new periodic interaction kernel Uπ(x⊥,x
′
⊥) is:

Uπ(x⊥,x
′
⊥) =

1

L3

∫

Ω3

dz
∫

Ω3

dz′Gπ
43

(x,x′) (2.69)

=
1

L1L2L2
3

∑

‖n3‖>0

−1

k2
3

eik3·(x−x′)
∫

Ω3

dz
∫

Ω3

dz′eik3·(x−x′) . (2.70)

Let k2 and n2 be the first two components of k3 and n3. We split the series
into

∑
‖n3‖>0 =

∑
‖n2‖>0,n3i=0 +

∑
‖n2‖,n3i 6=0. The second sum vanishes because the

integral in eq. (2.69) vanishes. For the first sum we get:

Uπ(x⊥,x
′
⊥) =

1

L1L2

∑

‖n2‖>0

−1

k2
2

eik2·(x⊥−x′⊥) . (2.71)

This is precisely the same as setting n3i = 0 and L3 = 1 in eq. (2.64), i.e. considering
the Laplace operator on a two dimensional domain. Hence:

Uπ(x⊥,x
′
⊥) = Gπ

42
(x⊥,x

′
⊥) . (2.72)

By exactly the same reasoning, one can reduce to d = 1 degrees of freedom. The
periodic interaction kernel then reads:

Uπ(x1, x
′
1) = Gπ

41
(x1, x

′
1) =

1

L1

∑

|n1|>0

−1

k2
1

eik1(x1−x′1) . (2.73)

We arrive at the d-dimensional SP equation:

i∂tψ =

[
−1

2
4d + a(t)V

]
ψ, 4dV = |ψ|2 − 1 . (2.74)

Eq. (2.74) is equivalent to the NLSE:

i∂tψ =

[
−1

2
4d + a(t)

(
Gπ
4d ∗ |ψ|

2
)]
ψ x ∈ Ω . (2.75)
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On balance, one finds that by assuming a homogeneous matter distribution
Poisson’s equation is preserved but the point source potential, i.e. its Green’s
function changes.

So far, we’re still lacking descriptive representations for Gπ
4d . Starting from eq.

(2.64) [59] derives the following periodic interaction kernels:

Gπ
41

(x1, x
′
1) =

1

2
|x1 − x′1| −

1

2

[
(x1 − x′1)2

L1

+
L1

6

]
, (2.76)

Gπ
42

(x⊥,x
′
⊥) =

1

L2

Gπ
41

(x1, x
′
1)

+
1

4π

∑

m∈Z

log

(
1− 2e

− 2π
L2
L1

∣∣m+
x1−x

′
1

L1

∣∣
cos

(
2π

L2

(x2 − x′2)

)

+ e
− 4π
L2
L1

∣∣m+
x1−x

′
1

L1

∣∣)
,

(2.77)

Gπ
43

(x,x′) =
1

L3

Gπ
42

(x⊥,x
′
⊥)− 1

πL3

∞∑

m=1

{
cos

(
2πm

L3

(x3 − x′3)

)

×
∑

n,l∈Z

K0

(
2πm

L3

√
L2

1

(
n+

x1 − x′1
L1

)2

+ L2
2

(
l +

x2 − x′2
L2

)2)}
,

(2.78)

where K0 denotes the 0th-modified Bessel function of the second kind. Realize the
(d+1)-dimensional interaction kernel depends on the d−dimensional Green’s function.
Also note that we are only able to find a closed form expression for d = 1. For the
convenience of the reader, Appendix A.1 sketches the derivation of eq. (2.76)-(2.78).
We refer to [59] for more details.

Approaching Free Space Conditions It is instructive to consider the limiting
behavior of these expressions for εi =

|xi−x′i|
Li
→ 0. This can be realized by either

making the domain infinitely large, i.e. approach the free-space problem, or by
moving source and field points ever closer together, i.e. consider the situation in
which the domain boundaries are far away.

Clearly, for d = 1 we have (modulo an offset):

Gπ
41

(x1, x
′
1)

ε1→0−−−→ Gfree
41

(x1, x
′
1) =

1

2
|x1 − x′1| . (2.79)

For d = 2, only the m = 0 term in eq. (2.77) contributes significantly as ε1,2 → 0.
Expanding both the cosine and the exponential up to O(ε3) yields:

Gπ
42

(x⊥,x
′
⊥)

ε1,2→0−−−−→ Gfree
42

(x⊥,x
′
⊥) =

1

2π
log |x⊥ − x′⊥| . (2.80)

For d = 3 we follow [59] and first take ε1,2 → 0 to obtain a mixed Green’s function
for two unconstrained and one periodic dimension. Similar to before, only n = l = 0
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dominates in this limit since K0(x)→ 0 for x→∞. Hence:

Gπ
43

(x,x′)
ε1,2→0−−−−→ Gmixed

43
(x,x′)

=
1

2πL3

log |x⊥ − x′⊥|

− 1

πL3

∞∑

m=1

cos

(
2πm

L3

(x3 − x′3)

)
K0

(
2πm

L3

|x⊥ − x′⊥|
) (2.81)

Now take ε3 → 0 by L3 →∞. Then the Riemann sum in eq. (2.81) approaches an
analytically solvable integral:

Gmixed
43

(x,x′)
ε3→0−−−→ Gfree

43
(x,x′)

= − 1

2π2

∫ ∞

0

dkK0 (k|x⊥ − x′⊥|) cos (k(x3 − x′3))

= − 1

4π|x| .

(2.82)

The limiting, free space, cases in eq. (2.79)-(2.82) reemphasize the argument made
before that the nonlocal interaction changes as a function of dimension.

2.3.2 Strong Confinement — PLAM

Section 2.3.1 conducted the dimension reduction by assuming matter is maximally
delocalized, i.e. uniformly distributed, in the subspace orthogonal to the direction in
which we observe the dynamics.

Alternatively, we can trap matter by an external potential in the orthogonal
subspace and control it’s confinement via a small parameter ε < 1. In the limit of
infinitely strong confinement, ε = 0, this leads to a lower-dimensional form of eq.
(2.56). We will see this is not achievable with only one remaining spatial degree
of freedom. However, strong confinement, ε � 1, still yields an effective lower
dimensional version of eq. (2.56).

This reduction procedure was thoroughly investigated in [9] for asymptotic
boundary conditions resulting in the surface adiabatic- and line adiabatic model
(LAM) in d = 2 and d = 1 dimensions respectively. We only focus on the (3 + 1)→
(1 + 1) reduction and take the arguments of [9] as inspiration for developing a novel
lower dimensional representation of eq. (2.65) — the periodic line adiabatic model
(PLAM).

To this end, define x⊥ = (x1 x2)ᵀ ∈ R2 and introduce a confining potential,

V (x⊥) =
1

ε2
V
(x⊥
ε

)
, ε > 0 , (2.83)

into the Hamiltonian of eq. (2.65). Notice that we do not impose periodic boundary
conditions in x1x2-plane. Consequently, the interaction kernel we depart from is
the mixed -conditions three dimensional Green’s function (2.81) for which only the
x3-direction is periodic.
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The Hamiltonian then reads:

H = Hx3 +Hε
⊥ with (2.84)

Hx3 = −1

2
∂2
x3

+ a(t)
(
Gmixed
43

∗ |ψ|2
)
, (2.85)

Hε
⊥ =

1

ε2

[
−1

2
4⊥̃ + V (x⊥̃)

]
=

1

ε2
H⊥̃ , (2.86)

with x⊥̃ = x⊥/ε. As done for the homogeneous case in section 2.3.1, consider the
eigenstates, χk(x⊥̃) of the orthogonal Hamiltonian H⊥̃:

H⊥̃χk(x⊥̃) = λkχk(x⊥̃) , (2.87)

with ‖χk‖2 = 1. This time, however, these eigenstates have a non-trivial spatial de-
pendence. Once the set {λk, χk} is determined, rescaling yields normalized eigenstates
χεk for Hε

⊥ as well:

Hε
⊥χ

ε
k(x⊥) = λεkχ

ε
k(x⊥) with (2.88)

λεk =
1

ε2
λk, χεk (x⊥) =

1

ε
χk

(x⊥
ε

)
. (2.89)

Now assume the orthogonal dynamics is set by the ground state χε0(x⊥, t) inde-
pendent of the evolution along the x3-direction. We then have a factorization of the
form:

ψ(x, t) = ψ1(x3, t)χ
ε
0(x⊥, t) (2.90)

and seek for an evolution equation of ψ1 only. Following the steps of section 2.3.1
leaves us with an equation similar to eq. (2.68), but this time the new, one dimensional
interaction kernel depends on the ground state χε0(x⊥, t) and integration is performed
over the entire x1x2-plane:

Uπ
LAM(x3, x

′
3; ε) =

∫

R2

d2x⊥

∫

R2

d2x′⊥G
mixed
43

(x⊥, x3,x
′
⊥, x

′
3)|χε0(x⊥)|2|χε0(x′⊥)|2

(2.81)
=

1

2πL3

∫

R2

d2x⊥

∫

R2

d2x′⊥ log |x⊥ − x′⊥||χε0(x⊥)|2|χε0(x′⊥)|2

− 1

πL3

∞∑

m=1

{
cos (km(x3 − x′3))

×
∫

R2

d2x⊥

∫

R2

d2x′⊥K0 (km|x⊥ − x′⊥|) |χε0(x⊥)|2|χε0(x′⊥)|2
}

with km = 2πm
L3

. The first integral is finite and constitutes a physically irrelevant
offset. Define ui = ε−1(x⊥,i − x′⊥,i) and vi = ε−1(x⊥,i + x′⊥,i) so that:

Uπ
LAM(x3, x

′
3; ε)

(2.89)
= − 1

4πL3

∞∑

m=1

{
cos (km(x3 − x′3))

∫

R2

d2u

∫

R2

d2vK0 (kmε|u|)

×
∣∣∣∣χ0

(
u+ v

2

)∣∣∣∣
2 ∣∣∣∣χ0

(
u− v

2

)∣∣∣∣
2
}
.
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To make further progress a confining potential needs to be fixed. The canonical
choice is a harmonic potential, [9]:

V (x⊥) =
1

2
|x⊥|2 and χ0(x⊥) =

1√
π
e−
|x⊥|

2

2 . (2.91)

Thus, Uπ
LAM(x3, x

′
3; ε) reads:

Uπ
LAM(x3, x

′
3)

(2.91)
= − 1

4π3L3

∞∑

m=1

cos (km(x3 − x′3))

∫

R2

d2u

∫

R2

d2vK0 (kmε|u|) e−
|u|2+|v|2

2

= − 1

πL3

∞∑

m=1

cos (km(x3 − x′3))

∫ ∞

0

du uK0 (kmεu) e−
u2

2

The remaining integral can be brought into the following form: [36]:

Uπ
LAM(x3, x

′
3; ε) = − 1

2πL3

∞∑

m=1

e
1
2
k2
mε

2

E1

(
1

2
k2
mε

2

)
cos (km(x3 − x′3)) , (2.92)

where E1(x) =
∫∞

1
dt e−tx

t
denotes the exponential integral. Eq. (2.93) is the PLAM

Green’s function and constitutes a Fourier series of an even function with vanishing
DC mode:

Uπ
LAM(x3, x

′
3; ε) =

1

L3

∑

|m|>0

− 1

4π
e

1
2
k2
mε

2

E1

(
1

2
k2
mε

2

)
eikm(x3−x′3) . (2.93)

The author is neither aware of (i) a function producing this type of spectrum nor (ii)
an associated linear differential operator with a Green’s function taking the form of
eq. (2.93). Consequently, it is (i) not possible to invert the series in eq. (2.93) to
a closed-form, real space representation and (ii) PLAM can only be represented as
integro-NLSE:

i∂tψ =

[
−1

2
∂2
x + a(t)

(
Uπ

LAM ∗ |ψ|2
)]
ψ , x ∈ Ω1 . (2.94)

Approaching Free Space Conditions As done in section 2.3.1, it is instructive
to consider the free-space limit, L3 →∞, for eq. (2.92) by transforming the Riemann
sum into an integral over k. In accordance with the considerations of [9], we obtain:

Uπ
LAM(x3, x

′
3; ε)

L3→∞−−−−→ U free
LAM(x3, x

′
3; ε) = − 1√

32πε
e

(x3−x
′
3)2

2ε2 Erfc

( |x3 − x′3|√
2ε

)
,

(2.95)
with Erfc(x) = 2√

π

∫∞
x

dte−t2 as complementary error function.

To answer in which sense (P)LAM approximates the familiar 1/r-interaction in
d = 1, recall the asymptotic expansion of the complementary error function and
truncate it after the first term,

Erfc(|x|) ∼ e−x
2

√
π|x| as |x| → ∞ , (2.96)
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implying:

Uπ
LAM(x3, x

′
3; ε) ∼ −1

4π|x3 − x′3|
= Gfree

43

∣∣∣∣
x⊥=0

(2.97)

at far field, |x3 − x′3| → ∞. In other words, PLAM approaches the canonical
gravitational interaction assuming a sufficiently large periodic domain and in the
limit of large source-field separation.

Approaching the Weak/Strong Confinement Limit Additionally, one can
study the limiting behavior of eq. (2.92) under (infinitely) strong or weak confinement.
Of course, the most interesting situation is ε = 0, i.e. infinitely strong confinement
which would be equivalent to constraining the dynamics onto a d=2 manifold while
retaining a 1/r2-force law. Unfortunately, limx→0E1(x) =∞, implying there is no
well behaved reduction for, ε = 0. This result is in alignment with the free-space
considerations of [9]. We note in passing that for d = 2, infinitely strong confinement
and consequently a 1/r2-force law is in fact realizable and gives rise to the surface
adiabatic model. Based on the introductory remarks of section 2.3, this is not
surprising: If it is possible to directly implement a 1/r-interaction by hand, it should
also be possible to smoothly approach the same convolution kernel by increasing the
orthogonal confinement.

For ε→∞ we employ the first term in the asymptotic expansion of the confluent
hypergeometric function of the second kind, U(a, b, x), [63]:

exE1(x) = U(1, 1, x) ∼ x−1 . (2.98)

Therefore:

Uπ
LAM(x3, x

′
3; ε) = − 1

2πL3

∞∑

m=1

U

(
1, 1,

1

2
k2
mε

2

)
cos (km(x3 − x′3)) (2.99)

∼ − 1

2πL3

∞∑

m=1

2

ε2k2
m

cos (km(x3 − x′3)) as ε→∞ . (2.100)

Using the limit, [36]:
∞∑

m=1

cosmx

m2
=
π2

6
− π|x|

2
+
x2

4
(2.101)

one arrives at:

Uπ
LAM(x3, x

′
3; ε) ∼ 1

2πε2
Gπ
41

(x3, x
′
3) as ε→∞ . (2.102)

In other words, under weak confinement, PLAM only approaches the uniform
reduction kernel if one additionally rescales the coupling strength a→ 2πε2a. The
same result holds true for free space conditions, i.e. LAM obeys asymptotically:

U free
LAM(x3, x

′
3; ε) ∼ 1

2πε2
Gfree
41

(x3, x
′
3) as ε→∞ . (2.103)

For all other finite values of ε > 0, it is worth mentioning that eq. (2.93) yields a
potential free of any singularities. In fact, it is easy to see this must be true: For
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large values of x we already had U(1, 1, x) ∼ x−1. Moreover, one can check that
for x → 0 the spectrum can still be bounded by x−1. Consequently the Fourier
coefficients decay at most ∝ k−2

m for |m| > 0 and any ε > 0. Uπ
LAM(x3, x

′
3; ε) is then

bounded by:

|Uπ
LAM(x3, x

′
3; ε)| ≤ c

∣∣∣∣∣∣
∑

|m|>0

1

k2
m

eikm(x3−x′3)

∣∣∣∣∣∣
∝ |Gπ

41
(x3, x

′
3)| <∞ , (2.104)

with c as constant depending on ε.

Figure 2.3 illustrates all periodic, one dimensional interaction kernels encountered
in section 2.3. For the positive half-space we assume periodic boundary conditions
and therefore show eq. (2.93) for various confinement strengths together with the
Green’s function of the Laplace operator in eq. (2.76). Note all these kernels have a
vanishing mean. Taking L→∞ we arrive at the free-space interactions (2.79) and
(2.95) depicted in the negative half-space.

A crucial aspect not mentioned yet is the range R of an symmetric interaction
U(x,x′) = U(|x− x′|) = U(r). An intuitive way to define it, is to demand a particle
at a distance R away from the potential source to be force free:

− ∂rU |r=R ≡ 0 . (2.105)

Unfortunately, eq. (2.105) is not practical as under periodic boundary conditions
all considered symmetric kernels would have r = L/2 so that no kink exists at the
domain boundary.
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Figure 2.3: Comparison of the point source potentials for a source at x′ = 0 and two
different periodic domain sizes L.
Positive half spaces: Periodic boundary conditions. We therefore show the
PLAM kernel of eq. (2.93) (red) and the periodic Laplace Green’s function
(yellow) given in eq. (2.76).
Negative half spaces: Free space conditions, i.e. the limit of the positive
half space as L→∞. Shown are the line adiabatic kernel (LAM) of eq. (2.95)
(blue) and the free space Laplace Green’s function (green) of eq. (2.79).

Revisit Figure 2.3 for clarification of this claim. Hence, it is more practical to
define the interaction range R relative to the maximal force exerted by a point source
generating a potential U :

∣∣∣∣∂rU |r=R
∣∣∣∣ ≡ cmax

r
(|∂rU |) , (2.106)

where c� 1 denotes a constant, say c = 10−2.

Figure 2.4 illustrates that the confined kernel (2.93) has a finite range smaller
than L slowly approaching the free space range as L→∞. This is not the case for
the one dimensional Poisson interaction (2.76) the range of which grows ∝ L and is
infinite in the free-space case (2.79).

Additionally, we observe ε ∝ R for PLAM. Thus, one can identify ε also as the
parameter setting the interaction range. We get back to the importance of the
interaction range in section 6.3.3.
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Figure 2.4: Interaction ranges, eq. (2.106) for PLAM and (1 + 1)-SP with c = 10−2. ε
chosen as in Figure 2.3. Dashed lines depict the corresponding finite range of
the free space (LAM) limit. Notice how the Poisson interaction for (1 + 1)-SP
is unbounded. Since RLAM ∝ ε, one can interpret the confinement strength
equally well as interaction range parameter.

2.4 Symmetries and Conserved Quantities

Section 2.3 illustrated that the specifics of the dimension reduction procedure only
affects the form of the interaction kernel but not the form of the nonlinear Schrödinger
equation. Hence a unified description for both one dimensional models is the NLSE
for which the nonlocality is given by a convolution type interaction with symmetric,
periodic kernel Uπ(|x|) = Uπ(r):

i∂tψ =

[
−1

2
∂2
x + a(t)

(
Uπ ∗ |ψ|2

)]
ψ , x ∈ Ω1 . (2.107)

Naturally, we are interested in the conserved quantities of eq. (2.107), especially
from a numerical perspective. A theoretical point of departure for deriving these
is obtained by noting that eq. (2.107) has a Lagrangian structure, i.e. follows by
taking the variation of the action:

S =

∫
dt
∫

Ω1

dxL[ψ, ψ∗, ∂xψ, ∂xψ
∗, t])

=

∫
dt
∫

Ω1

dx(iψ∗∂tψ −H[ψ, ψ∗, ∂xψ, ∂xψ
∗, t]) ,

(2.108)

with the Hamiltonian density

H =
1

2

(
|∂xψ|2 + a(t)(Uπ ∗ |ψ|2)|ψ|2

)
. (2.109)
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Invoking Noether’s theorem then yields mass conservation,

d
dt

(∫

Ω1

dx|ψ(x, t)|2
)

= 0 , (2.110)

due to invariance of the action under global phase changes, ψ(x, t)→ eiϕψ(x, t), and
momentum conservation,

d
dt

(
−i
∫

Ω1

dxψ∗∂xψ
)

=
d
dt

(
Im
∫

Ω1

dxψ∂xψ∗
)

= 0 , (2.111)

due to spatial translation invariance, ψ(x, t) → ψ(x − x′, t) — a consequence of
periodic boundary conditions and the symmetry of the interaction kernel. Moreover,
eq. (2.108) is invariant under inertial frame changes of the form:

ψ(x, t)→ ei(vx−
1
2
v2t)ψ(x− vt, t) (2.112)

and thus conserves the galileian boost operator, see [5].

If we consider a static space-time, i.e. a(t) = const., then the action (2.108) is
also time translation invariant, ψ(x, t)→ ψ(x, t− t′), and the total energy,

E =

∫

Ω1

dxH[ψ, ψ∗, ∂xψ, ∂xψ
∗, t]

=
1

2

∫

Ω1

dx|∂xψ|2 +
a

2

∫

Ω1

dx
(
Uπ ∗ |ψ|2

)
|ψ(x)|2 ≡ 〈T 〉+

a

2
〈V 〉 ,

(2.113)

is conserved as well. This is of course not true once we allow space-time to expand.

Most of these results are clear without taking a field theoretical point of view
but instead stay in the quantum mechanical framework: Eq. (2.107) consititutes
a Schrödinger equation free of complex dissipation terms. It therefore must be
norm preserving. Recall this was not the case for proper coordinates in eq. (2.36).
Moreover, under static space-time conditions we deal with a closed quantum system
without any external, driving forces. Thus, the dynamics must be energy preserving.
Once we allow space-time to expand, a driving force is added and energy conservation
is lost. As we show in Appendix A.2, momentum conservation can also directly be
obtained from eq. (2.107).

From the quantum mechanical point of view it is also clear that in the orthogonal
plane of (1 + 1)-SP the dynamics is set by a free Schrödinger equation, cf. eq.
(2.67), implying norm-, momentum and energy conservation immediately. The same
holds true under confinement for which the orthogonal dynamics is governed by an
harmonic Hamiltonian with potential (2.91).

Another important symmetry heavily used in the context of FDM, [67, 69, 71,
60] is the scaling symmetry of (d + 1)-SP under static space-time conditions, i.e.
a(t) = a = const.: If ψ(x, t) solves eq. (2.75) then so does:

ψ̃(x, t) = λ2ψ(λx, λ2t) , λ ∈ R+ . (2.114)

We emphasize this is true for any d < 3 and under both free space and periodic
boundary conditions. This can easily be confirmed by inserting one of the six possible
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kernels (2.76) - (2.80) or (2.82) into the d-dimensional SP equation (2.75). We refer
to Appendix A.3 for the calculation.

Unfortunately, this scaling symmetry is not found for the (periodic) line adiabatic
model, i.e. for kernels (2.92) or (2.95). Here the confinement strength ε introduces a
novel length scale, the interaction range, into the problem. Consequently, one would
have to rescale ε→ ε/λ to make eq. (2.114) a valid solution of the NLSE. However,
changing the interaction range means changing the physical system and we therefore
conclude (P)LAM breaks the symmetry (2.114).

As a final remark we mention that in (3 + 1) dimensions eq. (2.65) is also
rotationally invariant implying conservation of angular momentum. This is useful as
it allows a factorization of the wave function into a radial and angular part, just as
for the hydrogen atom. The angular wave function will then be an eigenstate of the
angular momentum operator whereas the radial part obeys a one-dimensional NLSE,
giving us access to yet another lower dimensional representation of FDM in addition
to (1 + 1)-SP and PLAM. The reader is referred to section 7.2.3 for more details.
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Chapter 3

Fuzzy Dark Matter in the Linear
Growth Regime

As we saw in chapter 2, the wave function ψ consists of a spatially homogeneous
part and perturbations which source the gravitational potential Φ. Clearly, only
these perturbations act as the seeds of all non-homogeneous structures we see in the
universe today. Understanding their dynamics early on in the process of structure
formation when fluctuations are small compared to the homogeneous background is
the main objective of this chapter and vital for the generation of cosmological initial
conditions.

The discussion follows mostly the standard practice for cold dark matter, e.g. [64,
23, 45]. However, we emphasize distinguishing aspects unique to FDM, e.g. [82, 20].

As in chapter 2, we depart from the three dimensional problem, i.e. FDM as
modeled by (3 + 1)-SP, and start by characterizing small scale perturbation in a
statistical sense both in the position and frequency space. Along the way we define
the linear matter power spectrum as the key observable in the linear growth regime.

Understanding how the three dimensional power spectrum evolves in time will
demand a rephrasing of eq. (2.39) into a hydrodynamical form as well as a first order
stability analysis to identify gravitationally stable spatial scales. In contrast to CDM,
not all scales turn out to be unstable but only those for which gravity dominates the
intrinsic pressure of the perturbations. This pressure is not of kinetic origin like in
ordinary fluids or gases but originates from Heisenberg’s uncertainty principle. The
result is a sharp suppression of linear fluctuation power on scales smaller than the
de-Broglie wavelength, [41], of the zero spin boson our scalar field models. Following
[41], we encapsulate this effect in a FDM transfer function which acts on the linearly
rescaled CDM matter power spectrum.

Once the evolution of the (3 + 1)-FDM power spectrum is understood, we reduce
its dimensionality to arrive at a lower dimensional fluctuation description used to
generate cosmological initial conditions for (1 + 1)-SP. For implementation details,
the reader is referred to [85].
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3.1 Statistical Description of Fluctuation

Let us start by defining the dark matter density contrast δ(x, t) as the density
fluctuation δρ(x, t) relative to the homogeneous background ρm(t):

δ(x, t) ≡ δρ(x, t)

ρm(t)
=
ρ(x, t)

ρm(t)
− 1 . (3.1)

As remarked before, in the linear growth regime fluctuation are assumed to be small,
so δ � 1.

There is nothing unique about the primordial fluctuations from which our universe
evolved from, so the exact form of δ(x, t) for t→ 0 is best understood as a realization
of a particular type of stochastic process known as Random Field. Characterizing
the statistical properties of the fluctuation field can be done in real space and in its
reciprocal domain.

The discussion will concentrate on R3. Dimensional Reduction will be considered
in section 3.3.1.

3.1.1 Statistics in Real Space - The Correlation Function

Giving a rigorous definition, [1], of a random field is cumbersome and not required
for our purposes since we will work on discrete spatial grids later on. Therefore, we
invoke the more practical approach reviewed in [10] and restrict ourselves to finitely
many points in space.

Definition. Let {xm ∈ R3|1 ≤ n ≤ m <∞} be an arbitrary, finite set of points in
space. A Random Field F (x) is then a set of random variables F (xm) for which the
probability of realizing a particular set is:

p[F (x1), . . . , F (xm)]dF (x1) . . . dF (xm) . (3.2)

A random field is homogeneous if the joint probability p is invariant under
translation y of all points:

p [F (x1 + y), . . . , F (xm + y)] = p [F (x1), . . . , F (xm)] . (3.3)

A random field is isotropic if the joint probability p is invariant under spatial
rotations R of all points:

p [F (Rx1), . . . , F (Rxm)] = p [F (x1), . . . , F (xm)] . (3.4)

Most inflationary models predict the primordial density perturbation to be a
Gaussian Random Field (GRF). In the discrete sense considered here, this means that
all possible n-point joint probability densities are multivariate gaussian distributions:

p(δ) =
1

(2πdetΣ)3/2
exp

[
−1

2
(δ − 〈δ〉)ᵀ Σ (δ − 〈δ〉)

]
(3.5)
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with δ = (δ(x1) . . . δ(xn)) ∈ Rn as vector representation of the random set. Σ
denotes the covariance matrix specified shortly.

Before this, however, consider the expectation value of the density contrast 〈δ〉.
Fortunately, for conditions valid in cosmology GRFs are in fact ergodic, see [1].
Therefore, the expectation value 〈Q〉 of a quantity Q(x) can be computed via spatial
averaging of a single realization:

〈Q〉 !
= lim
|Ω|→∞

〈Q〉Ω ≡ lim
|Ω|→∞

1

|Ω|

∫

|Ω|
d3xQ(x) . (3.6)

A direct consequence of this is by definition (3.1):

〈δ〉 = 0 . (3.7)

Moreover, by ergodicity we have two estimators of the expectation value at
hand for practical applications: Firstly, the arithmetic mean over an ensemble of
realizations and secondly, a finite volume average over a single realization.

Coming back to eq. (3.5) now with vanishing 〈δ〉. In this case the covariance
matrix Σ is just a sampling of the continuous two-point correlation function ξ(x,x′):

Σij = 〈δ(xi)δ(xj)〉 ≡ ξ(xi,xj) . (3.8)

Next, assume the cosmological principle is satisfied in a statistical sense, that is
we enforce statistical homogeneity and isotropy for the random field. Since GRFs
are completely determined by the two-point correlation function, just as a gaussian
distribution is completely fixed by its covariance, both homogeneity and isotropy
translate into conditions on ξ. More concretely, if neither rotations nor translations
are allowed to alter ξ(x,x′), it can only be a function of spatial separation:

ξ(x,x′) = ξ(|x− x′|) . (3.9)

3.1.2 Statistics in Reciprocal Space - The Power Spectrum

Obviously, the connection between real-space and its reciprocal k-space is the Fourier
transform. We already introduced our convention for bounded domains in eq. (2.61)
and eq. (2.62). For convenience, we restate them:

δ̂k =

∫

Ω3

d3xδ(x)e−ik·x , δ(x) =
1

L3

∑

k

δ̂ke
ik·x , (3.10)

assuming L1 = L2 = L3 = L. Here, the inverse is just the Fourier series of δ and the
sum runs over all vectors k = 2π

L
· (i, j, k)ᵀ with i, j, k ∈ Z.

For unbounded three dimensional domains the Fourier transform of a function
δ(x) and its inverse are:

δ̂(k) =

∫

R3

d3xδ(x)e−ik·x , δ(x) =

∫

R3

d3k

(2π)3
δ̂(k)eik·x . (3.11)
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Consider now the infinite space Fourier transform of the correlation function under
the assumption of statistical homogeneity and reality of δ, implying δ̂(−k) = δ̂∗(k):

ξ(x,x′) = 〈δ(x)δ(x′)〉
!

= 〈δ(x+ y)δ(x′ + y)〉 (homogeneity)

=

∫

R3

ddk
(2π)3

∫

R3

ddk′

(2π)3
〈δ̂∗(k)δ̂(k′)〉e−ik·xeik′·x′ei(k′−k)·y (δ(x) ∈ R) .

(3.12)
Notice the left hand side is independent of the arbitrary translation vector y. There-
fore, the integrand is only allowed to be non-zero if k = k′. To make this observation
manifest, define the continuous linear matter power spectrum P (k) via:

〈δ̂∗(k)δ̂(k′)〉 ≡ (2π)3P (k)δD(k′ − k) (3.13)

and denote with δD the Dirac delta function.

Integration over k′ then yields the statement of the Wiener–Khinchin theorem:

ξ(x,x′) = ξ(x− x′) =

∫
ddk

(2π)3
P (k)eik·(x−x

′) . (3.14)

The two-point correlation function is the Fourier transform of the power spectrum.

So far we only used homogeneity. Statistical isotropy demands the power spectrum
do be only a function of the modulus of k. Consequently, we can integrate out the
angular dependence in eq. (3.14) to arrive at:

ξ(|x− x′|) = ξ(r) =
1

2π2

∫ ∞

0

dkP (k)k2 sin kr

kr
(3.15)

and
P (|k|) = P (k) = 4π

∫ ∞

0

drξ(r)r2 sin kr

kr
(3.16)

respectively.

3.2 Time Evolution of the Matter Power Spectrum

As we noted before, all statistical properties of a GRF are encapsulated in the
two-point correlation function or equivalently in the power spectrum. Higher order
statistics such as the n-point correlation function vanish exactly. Thus, it suffices to
determine the time evolution of P (k, t) as long as we are in the linear regime with
δ � 1. Once we enter the nonlinear growth regime at z / 10, we depart from a GRF.
The random field then acquires non-gaussian features and higher order moments will
be populated.

By definition of the power spectrum in eq. (3.13), it is apparent if we seek for
the evolution of P (k, t), we must understand how the density contrast evolves in the
reciprocal domain. To this end, we start by bringing eq. (2.39) into a hydrodynamical
form and subsequently linearize the emerging equations.

Note we start from a dimensionfull equation as opposed to the adimensional form
(2.56). We do this to make contact with the existing literature but also to prepare
for the dimensional analysis of (1 + 1)-SP in Appendix C.3.
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3.2.1 The Quantum-Euler-Poisson Equation

The connection to hydrodynamics is established by means of the Madelung transfor-
mation [58]:

ψ(x, t) =
√
ρ(x, t) exp

(
i

~
S(x, t)

)
, (3.17)

which is inserted into (2.39) in order to find equations for both density ρ and phase
S. The imaginary part then yields:

∂tρ+
1

a
∇(ρv) = 0 , (3.18)

which is just the continuity equation in comoving coordinates. To arrive at eq. (3.18),
we also demanded that the peculiar velocity v is globally given as the gradient of the
phase function:

v(x, t) =
1

ma
∇S(x, t) . (3.19)

Some remarks are in order. Firstly, note that the phase of our wave function acts
as velocity potential. Consequently, the matter flow is irrotational as it is true for
any conservative field:

∇× v = 0 . (3.20)

Secondly, different conventions can be found in the literature concerning the type
of velocity in which one chooses to write eq. (3.18) and subsequent equations. Here,
we chose the peculiar flow as done in [74, 20]. Recall the peculiar flow v is the
deviation from the Hubble flow and the total proper velocity ṙ is:

ṙ = Hr + aẋ ≡ Hr + v . (3.21)

Another approach, e.g. [82, 76, 85], is to use the conjugate velocity u set via the
wave function phase by

u(x, t) ≡ 1

m

dL
dẋ

= a2ẋ =
1

m
∇S(x, t) , (3.22)

with L as the Lagrange function of a classical particle, see [85].

Thirdly, using eq. (3.19) to compute the peculiar flow is somewhat cumbersome
because of the phase jumps in S(x, t) from −π to π. One would have to unwrap
the entire phase function before the gradient can be applied. Alternatively, one can
bypass this inconvenience by extracting the peculiar flow directly from the wave
function via:

v(x, t) =
1

ma|ψ|2 Im (ψ∗∇ψ) (3.23)

— a relation readily verified.

Back to the substitution of the Madelung representation (3.17) into the SP
equation. From the real part we obtain an equation for the phase function:

∂tS +
1

2ma2
(∇S)2 = −mΦ +

~2

2ma2
∇
(4√ρ
√
ρ

)
. (3.24)
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Next, take the gradient and use eq. (3.19) to find:

∂tv +
1

2a
m∇v2 +Hv = −1

a
∇Φ +

~2

2m2a3
∇
(4√ρ
√
ρ

)
. (3.25)

Since v is irrotational, we have:

1

2
∇v2 = (v · ∇)v + v(∇× v) = (v · ∇)v . (3.26)

In summary, eq. (3.17) turns the SP equation into the irrotational Euler-Poisson
equations:

∂tρ+
1

a
∇ · (ρv) = 0 ,

∂tv +
1

a
(v · ∇)v +Hv = −1

a
∇Φ +

~2

2m2a3
∇
(4√ρ
√
ρ

)
,

∇× v = 0 ,

4Φ =
4πG

a
(ρ− ρm) .

(3.27)

Equation (3.27) provides a very intuitive picture for the dynamics of FDM in terms
of pressure forces. Main driver of the gravitational instability is obviously the
gravitational force −∇Φ which for CDM, i.e. in the limit ~ → 0, turns out to be
the only force. This already hints at the result we will encounter in section 3.2.2:
CDM is dynamically unstable on all scales. FDM, on the other hand, allows for a
stabilization against gravitational collapse due to the quantum pressure,

pQ =
~2

2m2a2

(4√ρ
√
ρ

)
. (3.28)

Before we proceed, please note the Euler-Poisson equation in eq. (3.27) is not
equivalent to the SP equation in eq. (2.39), see [77]. The argument is based on
the fact that a well-defined wave function must be single-valued everywhere in its
domain. Without any further constraints eq. (3.27) can only guarantee this to be
true on simply connected domains C for which irrotationality implies:

Γ =

∮

∂C
v · dx =

1

ma

∮

∂C
∇S · dx = 0 . (3.29)

Unfortunately, in regions of destructive interference it is quite common for the wave
function to develop points with ψ = 0, therefore rendering the phase function S
ill-defined. Once these pathological points are taken out of the domain it is not
simply connected anymore and v cannot globally be represented as a gradient field.
That said, for any curve γ, not necessarily enclosing a simply connected subset, we
must have:

Γ =

∮

γ

v · dx =
1

ma

∮

γ

∇S · dx !
=

~
ma
· 2πj , j ∈ Z n (3.30)

in order to guarantee single-valueness of ψ.
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Fortunately, in the linear regime where δ � 1 essentially guarantees that patho-
logical points don’t exist, it is perfectly fine to use eq.(3.27) and not to worry about
the condition (3.30).

By contrast, it is insufficient to evolve FDM by means of eq. (3.27) with stan-
dard fluid dynamics codes. Additionally, one must check whether the quantization
condition (3.30) is satisfied. We refer to [54, 84] for a discussion on how this af-
fects the results of standard fluid solvers, attempting to integrate FDM by merely
incorporating eq. (3.28) as an additional pressure.

3.2.2 Stability Analysis and Growth Factors

With the hydrodynamical equations at hand, proceed by setting:

ρ(x, t) = ρm(1− δ(x, t)) , (3.31)

substitute into eq. (3.27) and drop all quadratic terms of small quantities. This
includes terms of order O(v2) and O(δ · v) as well. Realize ρm in eq. (3.31) is a
comoving density and hence constant in time. The linearization is straight forward
and yields:

∂tδ +
1

a
∇ · v = 0 , (3.32)

∂tv +Hv = −1

a
∇Φ +

~2

4m2a3
∇4δ , (3.33)

4Φ =
4πG

a
δ . (3.34)

At this stage we are only concerned with the evolution of δ. Thus, eliminate the
velocity by taking the combination ∇ · (3.33)− a∂t (3.32) and insert eq. (3.34) into
the result:

∂2
t δ + 2H∂tδ =

4πGρm
a3

δ − ~2

4m2a4
44δ . (3.35)

Upon Fourier transformation, we arrive at:

¨̂
δ(k, t) + 2H(t)

˙̂
δ(k, t) +

(
~2k4

4m2a4
− 4πGρm

a3

)
δ̂(k, t) = 0 , (3.36)

where dots denote total derivatives with respect to cosmic time.

Note that no mode coupling occurs meaning all perturbations evolve independently.
Concerning the power spectrum, we conclude no power is transferred from large to
small scales, or vice versa, as long as eq. (3.36) is valid.

For each mode k, eq. (3.36) is a harmonic oscillator with time dependent
dampening H(t) and frequency:

ω(k, t) =

√
~2k4

4m2a4
− 4πGρm

a3
. (3.37)

From here two insightful cases can be considered.
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Cold Dark Matter The behavior of CDM, i.e. ~ = 0, is that of a classical,
pressure-less fluid. In this limit, ω is purely imaginary which implies instability on
all scales.

To determine how modes grow, set ~ = 0 and choose the scale factor a as time
parameter instead of cosmic time t. This takes eq. (3.36) to:

δ̂′′(k, a) +
2

a
δ̂′(k, a)− 3Ωm

2a5E2(a)
δ̂(k, a) = 0 , (3.38)

or equivalently as given in [23]:

δ̂′′(k, a) +

(
3

a
+

d logH

da

)
δ̂′(k, a)− 3Ωm

2a5E2(a)
δ̂(k, a) = 0 , (3.39)

where we denote f ′ ≡ df
da and interpret E(a) as Hubble constant normalized to unity

at present time, cf. eq.(2.26).

Since the coefficients of eq. (3.39) are independent of k, we can separate out the
dependence of δ̂ on k by setting δ̂(k, a) = D(a)δ̂(k; astart). Physically, this implies
CDM perturbations do not just grow independently but also identically in the linear
regime.

Inserting the separation ansatz and confining ourselves to flat, radiation-free
FLRW models with 1 = Ωm + ΩΛ this equation has the exact, growing solution, [23]:

D(a) =
5

2
ΩmE(a)

∫ a

0

da′

a′3E(a)3
(3.40)

[12]
=

5

6
Bx

(
5

6
,
2

3

)(
Ωm

ΩΛ

) 1
3
√

1 +
Ωm

ΩΛa3
with x =

ΩΛ

E2(a)
(3.41)

and Bx(a, b) =
∫ x

0
duua−1(1−u)b−1 as incomplete Beta function. The latter represen-

tation proofs to be convenient for numerical purposes as specialize algorithms exist
for evaluating Bx(a, b). Figure 3.1 illustrates the linear growth factor D(a). One
commonly normalizes its value to a reference time zi such as present time, z = 0:

Dai(a) ≡ D(a)

D(ai)
. (3.42)

Fuzzy Dark Matter For ~ 6= 0 the condition ω = 0 defines a time-dependent,
critical spatial scale, the comoving Jeans scale λJ = 2π/kJ below which quantum
pressure counteracts gravity and perturbation do not collapse under their own
gravitational force. We find:

kJ(a) =

(
16πGρmm

2a

~2

) 1
4

∝ a
1
4 , λJ(a) = π

3
4

(
~
m

) 1
2

(Gρma)−
1
4 ∝ a−

1
4 (3.43)

and write:

¨̂
δ(k, t) + 2H(t)

˙̂
δ(k, t)− 4πGρm

a3

[
1−

(
k

kJ(a)

)4
]
δ̂(k, t) = 0 . (3.44)
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Figure 3.1: Linear CDM growth factor D(a), i.e. eq. (3.40). Notice how the ration
D(a)/a is unity for small values of a.

Intuitively, the Jeans scale can be understood as a consequence of Heisenberg’s
uncertainty principle. To see this, consider the uncertainty between proper position
σr and the proper, peculiar velocity σv,

mσrσv = amσxσv ' ~ , (3.45)

and remember its relation to the comoving position:

σr = aσx . (3.46)

In hydrodynamic terms the flow uncertainty σv can be interpreted as a velocity
dispersion and a simple way to estimate it is to consider the velocity of a particle
trapped inside a gravitational well of a matter distribution with mean density ρm.
For such a particle we have:

σv ∝ r ·
√
Gρma−3 = ax ·

√
Gρma−3 , (3.47)

with (Gρma
−3)
−1/2 as the free-fall time scale. It then follows:

σx '
~

amσv
=

~
mx
√
Gρma

. (3.48)

Setting x = σx yields eq. (3.43) up to a numerical constant.

The interpretation then is that the source of the quantum pressure is Heisenberg’s
uncertainty principle which induces an increasing velocity dispersion in the FDM
condensate once particles are confined to a space region that is comparable to the
comoving de-Broglie λdB ∝ σx, [41].
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It is also possible to get a rough order of magnitude estimate for the boson mass
m. Set a = 1 and demand the uncertainty principle to be effective on galactic scales,
say λdB ≈ 1 kpc. Furthermore, assume a dark matter velocity of v ≈ 100 kms−1

consistent with a typical velocity dispersion in galaxies. Then m ≈ 10−22 eV and
such miniscule boson masses are in fact characteristic for FDM, [41].

From the explicit dependence of eq. (3.44) on k it is apparent that FDM modes
will evolve independently but differently as opposed to CDM. In principle one would
have to find a solution of eq. (3.44) which depends parametrically on k. The author is
not aware of a solution with the same generality as eq. (3.40) for CDM. Nevertheless,
two insightful limits are worth mentioning.

Firstly, for an Einstein-de-Sitter universe (EdS), i.e. when:

a =

(
t

t0

)2/3

, H = 2/3t−1, and ρm = (6πGt20)−1 , (3.49)

eq.(3.36) can be solved exactly. This situation is interesting as our canonical flat
FLRW universe is accurately approximated by EdS at high redshifts of 1000 > z >
O(1). The growing solution reads, [82, 20, 54]:

δ̂(k, a) ∝ 1

a
1
4

J− 5
2

(√
6

k2

kJ(a)2

)
, (3.50)

with Jn(x) as nth Bessel function of the first kind.

We illustrate eq. (3.50) in Figure 3.2 which reproduces our arguments made
before: Modes with k > kJ(a) are stabilized by the quantum pressure and oscillate
in time whereas scales with k < kJ(a) are dominated by gravity and quickly leave
the linear growth regime.

Secondly, for modes satisfying k � kJ eq. (3.44) reduces to the CDM case and
we conclude on sufficiently large scales compared to the Jeans wavelength CDM and
FDM grow identically as set by the linear growth factor (3.40). This will become
important in section 5.2.2.

By now the reader may be convinced that the quantum pressure (3.28) always
opposes gravity and should therefore leave a sharp imprint even in the power spectrum
dominated by non-linear dynamics. As already noted by [41, 54], this is not true.
Realize the arguments above are only valid up to first order in δ. In fact, by keeping
higher order terms in the expansion of eq. (3.28), one already identifies the second
order correction to amplify the gravitational instability of a perturbation:

pQ =
~2

4m2a2

(
4δ −

[
1

2
δ4δ +

1

4
4
(
δ2
)])

+O(δ3) . (3.51)

Consequently, the Jeans stability is a purely linear notion and only suppresses power
of linearly evolving scales with k > kJ . This does of course note imply Heisenberg’s
principle looses its importance in the nonlinear regime. In fact, section 5.2.1 we will
argue suppression imprints in the nonlinear power spectrum can be quantitatively
understood as consequence of the cosmic-scale uncertainty in x and k.
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Figure 3.2: Growth behavior of a FDM perturbation in an Einstein-de-Sitter universe as
a function of scale factor and spatial scale, cf. eq. (3.50). Wave numbers are
normalized to the critical wave number at present time, kJ(1). As one can see,
modes k above the black stability line oscillate in time. This changes once
the time-dependent Jeans scale passes k. After this point the perturbation
enters the unstable, graviationally dominated evolution and quickly leaves
the linear regime.

3.2.3 Transfer Functions

At this point we succeeded in understanding how the entire CDM spectrum and the
large scale part of the FDM spectrum evolve in linear approximation. Unfortunately,
eq. (3.36) is only valid for a universe free of radiation and in which matter can be
approximated as non-relativistic fluid. Adding radiation allows for baryon-photon
interactions such as Thompson scattering. These interactions are significant during
radiation domination when baryons where tightly coupled to the relativistic photon
fluid. We also note radiation pressure has a stabilizing effect on perturbations and
that expansion was slower during radiation domination impacting the growth rate of
all density constituents in general. All this effects leave observable imprints on the
present day matter power spectrum.

The full fledged analysis is beyond the scope of this thesis. We refer to [23,
45] for an in depth discussion. In short, one is required to solve a coupled system
of linearized Boltzmann equations for baryons, dark matter and radiation under
space-time expansion. Publicly available codes such as CAMB, [53], exist performing
exactly this task. One of the key quantities computed by these codes is the CDM
transfer function T (k). T (k) encapsulates all pre-matter domination physics by
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representing the enhancement or suppression of mode δ̂(k) relative to the large scale
limit k → 0, [45]:

T 2(k) ≡ 〈|δ̂(k, a = 1)|2〉
〈|δ̂(k, a→ 0)|2〉

/
〈|δ̂(0, a = 1)|2〉
〈|δ̂(0, a→ 0)|2〉

. (3.52)

Now, choose a red shift z∗ large enough such that all scales of interest are still
linear and denote the primordial power spectrum Pprim(k). The present day, linear
CDM matter power then takes the form:

PL
CDM(k) ∝ D2

a∗(1)T 2(k)Pprim(k) . (3.53)

Three remarks are in order. Firstly, eq. (3.53) is of course not identical to the
measurable present day matter power spectrum PCDM(k) which developed non-linear
features at high k. That said, eq. (3.53) has practical relevance as it can be used to
construct linear spectra at a = astart from which CDM simulations can depart:

PL
CDM(k, astart) = D2

1(astart)P
L
CDM(k) . (3.54)

One then compares the nonlinear simulation results with PCDM(k).

Secondly, the normalization of the matter power spectrum must be measured.

Thirdly, the form of the primordial spectrum was left unspecified. One usually
employs a Harrison-Zeldovich spectrum, Pprim(k) ∝ k, to ensure scale-invariance of
perturbations in the gravitational potential Φ, [45].

As discussed in section 3.2.2, the evolution of the FDM matter power spectrum
is expected to follow CDM for modes k � kJ . On the other hand, for perturbations
larger than kJ a modification to the linear CDM matter power spectrum is required.
[41] proposes to encode these changes in yet another transfer function:

TFDM(k) =
cos(x3)

1 + x8
with x = 1.61 ·

( m

10−22eV

) 1
18 k

kJeq

(3.55)

and kJeq = 9 ·
(

m
10−22eV

)1/2 Mpc−1 as Jeans scale at matter-radiation equality. In
alignment with our expectation, TFDM quickly approaches unity below kJeq. With
this additional modification the linear FDM matter power spectrum at simulation
start time astart reads:

PL
FDM(k, astart) = D2

1(astart)T
2
FDM(k)PL

CDM(k) . (3.56)

Figure 3.3 illustrates how the CDM-FDM transition (red) and the linear rescaling
(yellow) affect the present day, linear CDM matter power spectrum (black). We
also anticipate the dimension reduction (green) from three to one spatial dimension
discussed in section 3.3.1. The steep power law suppression introduced by the FDM
transfer function leads to a smoothing of initial density contrast compared to CDM.
This is illustrated in Figure 5.2.
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Figure 3.3: Comparison of different matter power spectra. Black: linear, CDM matter
power spectrum at present time. Red: FDM matter power spectrum at
present time Yellow: FDM matter power spectrum at z = 100 according to
eq. (3.56) Green: FDM spectrum at z = 100 reduced to one dimension by
applying eq. (3.62).

3.3 Initial Conditions for (1 + 1) SP

The forgoing discussion contains almost all the necessary ingredients to construct
cosmological initial conditions for (1 + 1)-SP. In this section we tie up loose ends.

Since δ � 1 the hydrodynamic picture is applicable and we can represent the
initial (1 + 1)-SP wave function via Madelung’s representation, cf. eq. (3.17):

ψ(x, astart) =
√
ρm(1 + δ(x, astart) exp

(
i
S(x, astart)

~

)
. (3.57)

Hence, one is required to construct an initial density contrast and phase function.

3.3.1 Initial Density Contrast

To construct the initial density contrast, we need a reduction procedure mapping
the three dimensional FDM spectrum in eq. (3.56) to d = 1 degrees of freedom.

To this end, we adopt our previous approach in [86] and depart from the one
dimensional correlation function ξ1D(x, x′). By the same arguments which lead to eq.
(3.14) in d = 3, it is related to the d = 1 matter power spectrum by an infinite space
Fourier transform:

ξ1D(x, x′) =
1

2π

∫

R
dkP 1D(k)eik(x−x′) . (3.58)
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Next, set x = x′ to arrive at the variance of the fluctuation field:

(
σ1D
)2

= ξ1D(x, x) =
1

2π

∫

R
dkP 1D(k) =

1

π

∫ ∞

0

dkP 1D(k) , (3.59)

being uniform in space. For the last equality we used isotropy, or equivalently
evenness, of P 1D(k).

In d = 3 one finds, cf. eq. (3.15) with r = 0:

(
σ3D
)2

=
1

2π2

∫ ∞

0

dkP 3D(k)k2 . (3.60)

Demanding the variance to be independent of the number of dimensions, i.e.
(σ1D)2 = (σ3D)2, yields a simple relation between both power spectra:

P 1D(k) =
k2

2π
P 3D(k) . (3.61)

In total, the one dimensional, linear FDM matter spectrum at a = astart is:

PL,1D
FDM(k, astart) =

k2

2π
D2

0(astart)T
2
FDM(k)PL

CDM(k) . (3.62)

However, careful attention must be paid as this spectrum assumes an unbounded
domain. To adjust it to a bounded periodic domain of size L, we rederive the matter
power spectrum akin to eq. (3.12) but this time using the series in eq. (3.10) instead
of the Fourier integral in eq. (3.11). By the same arguments as for eq. (3.12) we
arrive at:

ξ(x, x′) = 〈δ(x)δ(x′)〉 !
= 〈δ(x+ y)δ(x′ + y)〉 (homogeneity)

=
1

L2

∑

k,k′

〈δ̂′kδ̂k〉eikxeik
′x′ei(k+k′)y

=
1

L2

∑

k

〈δ̂−kδ̂k〉eik(x−x′) (LHS independent of y)

=
1

L2

∑

k

〈δ̂∗kδ̂k〉eik(x−x′) (δ(x) ∈ R)

(3.63)
and consequently:

ξ(x, x′) = ξ(x− x′) =
1

L

∑

k

P (k)eik(x−x′) with P (k) ≡ 1

L
〈|δ̂k|2〉 (3.64)

which is the finite domain, lower dimensional analogue to eq. (3.14) including an
additional factor of L−1. Combining eq. (3.62) with eq. (3.64) yields an expression
for the second moment of the k-space modulus of δ̂k:

〈|δ̂k|2〉(astart) = LPL,1D
FDM(k, astart) = L

k2

2π
D2

0(astart)T
2
FDM(k)PL

CDM(k) . (3.65)

Notice that in addition to eq. (3.7) we have 〈|δ̂0|2〉 = 0. This is crucial as it guarantees
every realization of δ(x) and not just its ensemble average 〈δ〉 to have a vanishing
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DC-mode. As discussed in section 2.2.2, this was the condition for Poisson’s equation
to be well defined.

It remains to be shown how a single realization, δ(x), of a GRF obeying eq. (3.65)
is generated. As noted in [10], for a GRF to be homogeneous means its Fourier modes
are (i) mutually independent (ii) have random phases and (iii) Rayleigh-distributed
moduli.

(i) implies we can concentrate on each mode individually. Let’s decompose δ̂k
into modulus and phase:

δ̂k = |δk|eiϕk . (3.66)

By (ii) and (iii) the probability of realizing such a δ̂k then is:

p(|δ̂k|, ϕk)d|δ̂k|dϕk =
|δ̂k|
σ2(k)

exp

(
− |δ̂k|

2

2σ(k)2

)
d|δ̂k|

dϕk
2π

. (3.67)

To determine the yet unknown function σ2(k) we compute the second moment of eq.
(3.67):

〈|δ̂k|2〉 =

∫ ∞

0

d|δ̂k||δ̂k|2
|δ̂k|
σ2(k)

exp

(
− |δ̂k|

2

2σ(k)2

)
= 2σ2(k) . (3.68)

Now substitute eq. (3.65) and solve for σ2(k) to arrive at:

σ2(k, astart) =
L

2
PL,1D

FDM(k, astart) =
L

2

k2

2π
D2

0(astart)T
2
FDM(k)PL

CDM(k) . (3.69)

On balance, the following steps must be undertaken to construct δ(x, astart):

1. Compute the present day, linear CDM matter power spectrum PL
CDM(k) via

CAMB, please see discussion around eq. (3.53). This must be done only once.

2. Apply eq. (3.69) to get σ2(k). By doing so we adjusted CDM to FDM, rescaled
to astart, reduced the dimensionality to d = 1 and truncated the domain to a
periodic box of size L.

3. For each mode k, represented on a discrete grid, cf. section 4.2, use σ2(k) to
draw a Rayleigh-distributed modulus |δ̂k| and uniform phase ϕ. The result is a
discrete coefficient vector δ̂(astart) representing the realization in k-space.

4. Apply an inverse Fourier transform to arrive at δ(x, astart) on a discrete uniform
grid.

The reader is referred to Figure 5.2 for an example of the end result of these steps.

3.3.2 Initial Phase

We seek for a relation between the initial phase function and the density contrast. As
explained in section 3.2.2, modes with k � kJ(a) follow the CDM fluctuation growth.
Since TFDM suppresses modes with k > kJ(a) we simply assume in the following that
early on, i.e for z ≈ 100, the full FDM spectrum evolves according to the CDM
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growth factor (3.40). Under this simplification, all modes evolve identically such
that in x-space:

δ(x, a) = Dastart(a)δ(x, astart) . (3.70)

The time derivative at a(tstart) = astart then reads:

∂tδ(x, t) = H(astart)
astart

D(astart)
δ(x, astart)

dD(a)

da

∣∣∣∣
astart

. (3.71)

By Figure 3.1 it is clear that for astart ≈ 10−2 both the derivative and astart

D(astart)
are

unity and therefore:
∂tδ(x, t) = H(astart)δ(x, astart) . (3.72)

Now insert this result into the linearized continuity eq. (3.32) for d = 1, i.e.:

∂xv(x, astart) = −astartH(astart)δ(x, astart) , (3.73)

and use the definition of the peculiar flow (3.19) to find:

∂2
xS(x, astart) = −ma2

startH(astart)δ(x, astart) . (3.74)

Hence, once the initial density is known, solving eq. (3.74) yields the initial phase.
Again, we refer to Figure 5.2 for a visualization of an exemplary initial phase
function.
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Chapter 4

Numerical Considerations

After deriving the dynamical equations of FDM in chapter 2 and analyzing the
behaviour of small scale fluctuations in the linear growth regime in chapter 3, we
present the necessary numerical tools to extend the dynamical study of (1 + 1) FDM
deeply into the nonlinear growth regime, cf. chapter 5 and 6. Main purpose of this
chapter is twofold: (i) present numerical procedures for computing the collective,
non-local interaction potentials of SP and PLAM and (ii) devise integration methods
for the non-local, non-linear Schrödinger equation (2.107).

We embark by stating general challenges involved in the integration of FDM and
continue with a brief survey of existing approaches to simulating FDM by means of
the (d+ 1)-Schrödinger-Poisson equation.

Due to the periodic nature of the problem, a pseudospectral approach involving
Fourier-basis functions is a well established and highly accurate method of discretizing
the NLSE (2.107) in the spatial domain. Since its non-local interaction potential is
of convolution-type, application of the convolution theorem yields a general approach
to computing the gravitational potential for SP and under strong confinement for
PLAM.

The result of the spatial discretization will be aN -dimensional ordinary differential
equation (ODE) for the values of the wave function on a uniform grid of N grid
sites. Integration of this ODE is performed by the operator splitting technique.
More precisely, we present a simple extension of the well known second order Strang
splitting scheme applicable as approximation to the full fledged time-evolution
operator of eq. (2.107) for both static and expanding background cosmologies.

We demonstrate the effectiveness and convergence of the numerical approach by
a detailed convergence analysis for unstable synthetic initial conditions in the sense
of chapter 3 in Appendix B.2. Main results of this analysis will be summarized in
the main text.
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4.1 Numerical Challenges and Existing Methods

Let us return to our original conventions 2.52 and restate the equation to solve:

i∂tψ(x, t) =

[
−1

2
∂2
x + a(t)

(
Uπ ∗ |ψ|2

)]
ψ(x, t) x ∈ Ω = [0, L] (4.1)

ψ(0, t) = ψ(L, t)

∂xψ(0, t) = ∂xψ(L, t)
(4.2)

ψ(x, 0) = ψ0(x) with
∫

Ω

dx|ψ0|2 = L (4.3)

with the interaction kernel Uπ given as:

Uπ(x, x′) =

{
1
L

∑
|m|>0− 1

k2
m
eikm(x−x′) = 1

2
|x− x′| − 1

2

[
(x−x′)2

L
+ L

6

]
(1 + 1) SP

1
L

∑
|m|>0− 1

4π
e

1
2
k2
mε

2
E1

(
1
2
k2
mε

2
)
eikm(x−x′) PLAM

.

(4.4)
As mentioned before, eq. (4.1) constitutes a non-local, non-linear Schrödinger equa-
tion with explicitly time-dependent, non-autonomous, Hamiltonian. It is especially
the latter two properties which pose a challenge to the numerical integration: After
spatial discretization, whatever form it may take, one arrives at a semi-discrete
version of eq. (4.1) of the type:

i∂tΨ(t) = Ĥ(|Ψ|2, t)Ψ (4.5)

with discrete Hamiltonian Ĥ and a vector of wave function coefficients Ψ. Obviously,
the exact form of both objects depends on the discretization and will be specified in
section 4.2.

At this stage it suffices to see that non-linearities induce a (large) system of
nonlinear equations in eq. (4.5). Such a system needs to be solved at every time step
in an iterative fashion rendering most methods unusable already for small problem
sizes.

The explicit time dependence of Ĥ, on the other hand, makes the structure of the
exact time evolution operator Û(t, t′) complicated due to the non-commutativity of
Ĥ for t 6= t′. This is already true for linear problems. Consequently, one is required
to find an efficient approximation, Û , to the time ordered evolution operator Û :

Û(t, t′) = T̂
(

exp

∫ t′

t

dsĤ(s)

)
≈ Û(t, t′) . (4.6)

Moreover, a non-autonomous Hamiltonian makes the dynamics non-energy preserving,
depriving us of an important constant of motion by which we can assess the stability
and convergence of a candidate method.

All these numerical obstacles concern primarily the temporal discratization and
are independent of the exact type of nonlinear interaction or the dimensionality
of the domain Ω. It is therefore instructive to survey existing methods for FDM
employing the (d+ 1)-dimensional SP equation.
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The authors of [81] and [51] consider SP for d = 1, 2 spatial degrees of freedom in
an expanding FLRW universe. The time integration in these works are of Crank-
Nicolson/Cayley type, an implicit finite-difference scheme to approximate eq. (4.6)
which is second order in time and manifestly unitary. The gravitational potential is
computed with a Fourier-based solver for Poisson’s equation. As discussed above, the
implicit nature of Cayley’s method requires the solution of multiple linear systems
per step. In fact, we employed a predictor corrector version of Cayley’s method in
[85, 49] and found unfavourable behavior of the integrator for dynamic a(t).

[71] investigated the dynamics of core mergers under (3+1) FDM by incorporating
the wave function as an additional scalar field into the Eulerian hydrodynamics code
Nyx, [2]. Time integration is then performed by the classic 4th-order Runge-Kutta
method. This all purpose integrator enjoys great reputation due to it’s ease of
implementation and favorable accuracy at comparably low cost. Unfortunately,
it does not respect the special structure of eq. (4.1), in particular it’s unitarity.
Consequently, norm conservation is only satisfied up to 10−3. Also note that [71]
does not consider an expanding space-time, but instead sets a = 1.

In [60] a second order Strang-type splitting approach is employed and combined
with a Fourier pseudospectral discretization akin to the well known Leapfrog method
for N-body problems. This integrator is manifestly unitary, easy to implement and
reasonably accurate. Although [60] only considers a static space-time, we will see
that their approach can readily be extended to the non-autonomous problem with
no additional cost.

An inherent problem of all grid based approaches is the vast disparity of spatial
scales found in truely cosmological simulations. These range from 100 Mpc boxes
down to galactic cores of kpc-size — 5 orders of magnitude! Therefore, if one
wants to stay in the Eulerian, i.e. grid based, framework then adaptive meshes
are indispensable for high resolution simulations in d = 3 dimensions. To this
end, [67] developed GAMER, [68] — an adaptive mesh refinement (AMR) framework
suited for FDM. Combined with an operator splitting technique, [67] is arguably the
state-of-the-art approach for the full fledged (3 + 1) dimensional simulation of FDM.

Although not considered here, a first step towards relaxing the rigidity of the
uniform grid approach which does not come with the implementation complexity of
full fledged AMR is to expand ψ in a spatially localized basis such as B-splines, [18].

We refer to [84] for further comparisons, in particular for the applicability of the
smoothed particle hydrodynamics approach to FDM.

4.2 Spatial Discretization

Since eq. (4.1) is considered on a periodic domain and only contains second derivatives
in space, expansion of ψ in a finite-dimensional Fourier-basis is a natural way to
discretize eq. (4.1). Let N denote an even positive integer. We then have:

ψ(x, t) =
1

L

N/2−1∑

l=−N/2

ψ̂l(t)e
iklx, kl =

2π

L
l (4.7)
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and time-dependent coefficients:

ψ̂l(t) =

∫ L

0

dxψ(x, t)e−iklx . (4.8)

Assuming the continuous dynamics of ψ(x, t) is p-times continuously differentiable,
periodic function, ψ(x, t) ∈ Cp

π(Ω), then the expansion coefficients of eq. (4.7) decay
as |ψ̂k| ∼ k−p and therefore provide an accurate approximation to the complete
Fourier series. For smooth ψ(x, t) ∈ C∞(Ω) we achieve spectral convergence, i.e.
faster than any polynomial.

Now, substitute expansion (4.7) into eq. (4.1), multiply by e−ikmx and integrate
over the entire domain to arrive at:

i∂tψ̂m(t) =
k2
m

2
ψ̂m(t) +

a(t)

L

N/2−1∑

l=−N/2

ψ̂l(t)(U
π ∗ |ψ|2)
∧

m−l . (4.9)

Two obstacles are apparent. Firstly, since the wave function is unknown we
obviously cannot precompute the coefficient integral in eq. (4.8). Therefore, we
resort to numerical quadrature and discretize the spatial domain as well. By choosing
the same number of grid points as for the reciprocal domain in eq. (4.7), we obtain
a uniform mesh with grid sites on which we evaluate the wave function and the
non-linear potential:

xj = ∆x · j, j = 0, . . . , N − 1, ∆x =
L

N
(4.10)

ψj(t) ≡ ψ(xj, t) Vj(t) ≡ (Uπ ∗ |ψ|2)(xj, t) . (4.11)

The coefficient integral (4.8) is then approximated by the trapezodial rule. Under
normal circumstances this would be an inadequate choice for the evaluation of proper
integrals. However, under periodic conditions and the aforementioned smoothness
assumption on ψ it holds:

ψ̂l(t) =

∫ L

0

dxψ(x, t)e−iklx =
L

N

N−1∑

j=0

ψj(t)e
−iklxj +O (∆xp) ≡ Lψ̃l(t) +O (∆xp)

(4.12)
as one can verify by the Euler-Maclaurin summation formula, [63]. Up to a constant
prefactor, the reader will recognize eq. (4.12) as the discrete Fourier transform
(DFT). The expansion (4.7) evaluated at the uniform grid sites xj now reads:

ψ(xj, t) =

N/2−1∑

l=−N/2

ψ̃l(t)e
iklxj = ψj(t) (4.13)

and eq. (4.9) is approximated as:

i∂tψ̃m(t) =
k2
m

2
ψ̃m(t) + a(t)

N/2−1∑

l=−N/2

ψ̃l(t)Ṽm−l(t) . (4.14)
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The second obstacle still present in eq. (4.14) is the discrete convolution in the
potential term. To get rid of it, we retransform into real space by multiplying with
eikmxj and summation over all modes.

Let � denote the Hadamard product, i.e. component-wise multiplication. This
yields:

i∂tΨ(t) = Ĥ(t)Ψ(t) =

[
F−1

(
k2

2
�
)
F + a(t)V (|Ψ(t)|2)�

]
Ψ(t) (4.15)

for which we defined (Ψ)j = ψj, k2 = k � k, |Ψ|2 = Ψ�Ψ∗, (V (|Ψ|2))j = Vj and
introduced the DFT operators:

F : CN −→ CN F−1 :CN −→ CN

Ψ 7−→ FΨ =
1

N
exp(−ik · xᵀ)Ψ Ψ̃ 7−→ F−1Ψ̃ = exp(ix · kᵀ)Ψ̃

(4.16)
with component-wise exponentiation followed by a matrix-vector product.

Next, we construct the vector V (|Ψ(t)|2). Omitting the time argument, its
components are given by:

Vj = V (xj)
(4.11)
=

∫ L

0

dx′Uπ(|xj − x′|)|ψ(x′)|2 (4.17)

into which we insert the truncated and approximated Fourier series of |ψ|2 akin to
eq. (4.13) and the series of the interaction kernel with coefficients Ûπ

n . A simple
calculation reveals the statement of the convolution theorem:

V (xj) =

N/2−1∑

n=−N/2
n 6=0

|̃ψ|2nÛπ
ne
iknxj (4.18)

If we define Ûπ
0 = 0 then (4.18) is equivalent to an inverse DCT. Hence, we can

return to the vector notation of eq. (4.15) and write:

V (|Ψ(t)|2) = F−1
(
Ûπ�

)
F(|Ψ(t)|2) (4.19)

with kernel coefficient vector:

(Ûπ)n = Ûπ
n

(4.4)
=





0 k = 0

− 1
k2
n

k 6= 0 (1 + 1) SP
− 1

4π
U(1, 1, 1

2
k2
nε

2) k 6= 0 PLAM
. (4.20)

U(a, b, x) = exE1(x) denotes the conflluent hypergeometric function of the second
kind, [63], and introducing it has practical relevance since computing the product
ex

2
E1(x

2) will only succeed for small values of x. Already for moderate values
of x ∼ 10 floating point overflow occurs due to the leading exponential function.
Hence, it is required to use specialized algorithms, [30], for U(a, b, x) to calculate the
interaction vector.
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This completes the spatial discretization step, the result of which is an ordinary
differential equation for the values of the wave function on the equidistant x-grid:

i∂tΨ(t) = Ĥ(t)Ψ(t) =

[
F−1

(
k2

2
�
)
F + a(t)V (|Ψ(t)|2)�

]
Ψ(t) (4.21)

=

[
F−1

(
k2

2
�
)
F + a(t)

(
F−1

(
Ûπ�

)
F(|Ψ(t)|2)

)
�
]

Ψ(t) .

(4.22)

Naïvely computing ĤΨ requires three component-wise vector multiplications and
one vector addition both of O(N) complexity. Moreover, application of the DFT
operators amounts to a total of four matrix-vector products with O(N2) arithmetic
steps. Fortunately, the matrix-vector product can be accelerated by means of a
fast Fourier transform (FFT). This reduces the overall computational work to
O(N logN).

4.3 Time Integration

In this section we focus on finding an adequate approximation Û(t0, t0 + ∆t) to the
time evolution operator (4.6). To keep to scope of the discussion reasonable, we only
highlight key ideas and refer to Appendix B.1 for more details.

The problem at hand is approached in two steps: First, we consider the au-
tonomous, non-expanding case. Second, we generalize to the fully time-dependent
problem.

4.3.1 Integration in a Static Space Time

The ODE to integrate reads:

i∂tΨ(t) =
[
ĤK + ĤV (t)

]
Ψ(t) =

[
F−1

(
k2

2
�
)
F + aV (|Ψ(t)|2)�

]
Ψ(t) (4.23)

where we introduced the kinetic and potential sub-Hamiltonian. Interestingly, if each
subproblems is analyzed independently, i.e.:

i∂tΨ(t) = F−1

(
k2

2
�
)
FΨ(t) (4.24)

i∂tΨ(t) = aV (|Ψ(t)|2)�Ψ(t) (4.25)

we can find exact time evolution operators ÛK/V respectively. This is trivial for the
kinetic subproblem. Denote ÛK(t0, t0 + ∆t) ≡ ÛK(∆t):

ÛK(∆t) = exp

(
−ik

2

2
∆t

)
. (4.26)

For the potential subproblem we realize since V is real, eq. (4.25) conserves |Ψ|2:
d
dt
(
|Ψ|2

)(4.25)
= 0 (4.27)
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and the potential sub-Hamiltonian of eq. (4.25) is therefore time-independent :

i∂tΨ(t) = aV (|Ψ(t0)|2)�Ψ(t) . (4.28)

Consequently, no time-ordering problem occurs and the evolution operator ÛV follows
by simple integration. In abbreviated notation, we have:

ÛV (∆t) = exp
(
−iaV (|Ψ(t0)|2)∆t

)
. (4.29)

So far, no approximation was made. This changes, once we employ the idea of
operator splitting to combine the exact evolutionary maps ÛK/V in such a way that
they approximate the full fledged operator ÛK+V .

In general, a s-stage splitting of order O(∆tp) takes the form, [72]:

ÛK+V (∆t) = ÛK+V (∆t) +O(∆tp+1)

= ÛK(bs+1∆t) ◦ ÛV (as∆t) ◦ ÛK(bs∆t)

◦ · · · ◦ ÛK(b2∆t) ◦ ÛV (a1∆t) ◦ ÛK(b1∆t) +O(∆tp+1)

(4.30)

with splitting coefficients {ai}i=1,...,s and {bi}i=1,...,s+1 and ◦ as composition operation.
A plethora of possible splittings exist, each of which defined by a particular set of
ai’s and bi’s. Here, we pick a rather simple representative known as second order
Strang splitting S [2]:

ÛK+V (∆t) = S [2](∆t) +O(∆t3)

= ÛK

(
1

2
∆t

)
◦ ÛV (∆t) ◦ ÛK

(
1

2
∆t

)
+O(∆t3)

. (4.31)

For more information consult Appendix B.1 or [27, 72].

A couple of remarks are in order: Firstly, S [2] satisfies ai = as+1−i and bi = bs+2−i
and is therefore time-symmetric. Moreover, since the composition of unitary maps
is unitary, S [2] is norm-preserving by design. Unfortunately, it cannot conserve the
total energy (2.113) exactly. This can be understood as follows: If one would recast
the composition of eq. (4.31) into a single operator exponential by means of the
Baker-Campbell-Hausdorff formula, we could read of the Hamiltonian which S [2]

integrates exactly. The result would take the form, [72]:

ĤS[2] = ĤK+V + ∆t2Herror +O
(
∆t4
)

(4.32)

with Herror consisting of nested commutators. Importantly, the dynamics under ĤS[2]

is still energy preserving, but the numerically conserved energy only coincides with
the FDM energy (2.113) up to second order.

At last we draw attention to the first-same-as-last (FSAL) property, bs+1 = b1, in
eq. (4.31). Due to FSAL, one can omit application of the first operator in time-step
n by enlarging ∆t → 2∆t for application of the last evolution map in step n − 1.
This saves one FFT per time-increment.
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4.3.2 Integration in an Expanding Space Time

Once we allow space time to expand the sub-Hamiltonian ĤV does become explicitly
time dependent:

i∂tΨ(t) = a(t)V (|Ψ(t0)|2)�Ψ(t) (4.33)

and the evolution operator ÛV (∆t) cannot be written as:

ÛV (∆t) 6= exp

(
−i
∫ t0+∆t

t0

dsĤ(s)

)
(4.34)

due to the non-commutativity
[
ĤK(t0), ĤK(t0 + ∆t)

]
6= 0.

Multiple strategies exist for dealing with this problem. For the extension of S [2]

we invoke the Magnus expansion, [16], stating ÛV (∆t) can be written as operator
exponential of a formal series of hermitian operators Ω̂k(t):

ÛV (∆t) = exp

(
−i

∞∑

k=1

Ω̂k(∆t)

)
(4.35)

where the first two terms read:

Ω̂1(∆t) =

∫ t0+∆t

t0

dt1ĤV (t1) (4.36)

Ω̂2(∆t) =
1

2

∫ t0+∆t

t0

dt1
∫ t1

t0

dt2
[
ĤV (t1), ĤV (t2)

]
. (4.37)

An important property of eq. (4.35) is that any finite truncation

ÛV (∆t) = exp

(
−i

N∑

k=1

Ω̂k(∆t)

)
+O(∆tr+1) (4.38)

yields a unitary operator, [16]. Therefore, Magnus-based integrators are norm
preserving by design.

Since S [2] is of order p = 2, there is no point in approximating ÛV (∆t) by a
truncation of the type (4.38) that is of order r > 2, as the overall order will be
min(p, r). It therefore suffices to use the first term in Magnus and approximate the
remaining integral by means of the midpoint method. We arrive at:

ÛV (∆t) = ÛV (∆t) +O(∆t3) = exp

[
−ia

(
∆t

2

)
V (|Ψ|(t0)|2)∆t

]
+O(∆t3) . (4.39)

Substituting ÛV (∆t) for ÛV (∆t) in the splitting (4.31) for S [2] yields the second order
Strang-Magnus splitting SM[2]. Compared to S [2] no additional cost is required to
compute SM[2].

This concludes the extension to the non-autonomous case. Apart from specifying
the procedure to compute a(t) nothing is left to be done for the integration of FDM.
For the latter we recall it’s differential definition in eq. (2.53). a(t) then follows
by numerical integration of dt

da and subsequent inversion of the result. Storing the
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result makes it possible to "compute" the scale factor for any value of t in O(1)
steps by interpolating between precomputed values. We refer to [85, 86] for further
informations.

We note in passing that the author recently implemented a promising higher
order splitting applicable in the non-autonomous case. Although it is not used for
integrating FDM in this work, we give more details about it in Appendix B.1 as
reference for future works.

4.4 Convergence and Stability

In Appendix B.2 an extensive study concerning the convergence and stability as a
function of the spatio-temporal grid parameters {N,∆t} is conducted. We summarize
the main results of the analysis for completeness sake but encourage the reader to
consider Appendix B.2 for more information about the methodology.

Dominance of the Temporal Error Our tests show once enough Fourier modes
N are used in the expansion of ψ so that the spectrum |ψ̂k|2 is well resolved, there is
no numerical benefit in adding additional grid points. To be more precise, the error
metric ε used to assess convergence is independent of N in the range of considered
grid point numbers and changing N therefore has no observable effect on convergence
or stability of the integration. This statement is true for both (1 + 1)-SP and PLAM
examined in static or expanding space-times.

In fact, for static (1+1)-SP this result is not surprising as existence and uniqueness
results, [43], guarantee smooth initial conditions to stay smooth. The Fourier
expansion is therefore expected to converge rapidly.

Behavior of the Temporal Error For both reduction models and both expan-
sion scenarios second order scaling of the error metric can be confirmed, ε ∝ ∆t2.
Concerning stability, a distinction has to be made:

Under static space-time conditions, an investigation of the evolution of the
numerical error as a function of time ε(t) reveals stability of S [2] for SP and PLAM.
More precisely, we find ε ∝ t. For (1 + 1)-SP a rigorous stability analysis under
evolution of S [2] exists, [56], and its predictions are confirmed by our implementation.

Adding expansion to the evolution induces a exponentially growing error in SM[2]

at low redshifts, z < 10. This is true for both reduction models. For sufficiently
small time steps, say ∆t < 10−4, the error increases to a still reasonable magnitude.
Hence, we deem the simplistic, first order Magnus approach to be effective.

Let’s recapitulate. SM[2], the approximation to the exact time evolution operator,
in combination with the pseudospectral Fourier discretization of section 4.2 is an
easily implemented, explicit method that provides second-order accuracy in time
and spectral accuracy in space. Since SM[2] approximates the non-autonomous,
potential sub-problem by truncating its associated Magnus expansion and subse-
quently combines it with the exact evolution operator of the kinetic sub-problem via
a composition, the entire integrator is unitary by construction. Furthermore, under
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static space-time conditions, i.e. a = 1, it is unconditionally stable and preserves both
energy and total momentum well, see section 6.3 and 6.4. Approximate momentum
conservation is also achieved for a dynamic space-time.

The main numerical problem remaining is its exponentially growing error under
expanding space-time conditions. At this stage, we combat this issue by decreasing
the temporal step size to ∆t ≈ 10−5. In the light of the spectral convergence in
space this does not seem like a substantial obstacle — after all there is no numerical
constraint on the choice of N . Unfortunately, section 5.2.2 will reveal that there is
in fact a physical constraint on ∆x. In short, it turns out to important to resolve
the entire spectrum of ψ, and not just the scales one is interested in, otherwise the
large scale dynamics is systematically affected. It is this combination of a numerical
constraint on ∆t and a physical one on ∆x that restricts us to grids with N = 220

and ∆t = 2 · 10−5 implying typical simulation run times of T = 60 h, see section 5.1.
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Chapter 5

Fuzzy Dark Matter in the Nonlinear
Growth Regime

After investigation of the linear FDM evolution in chapter 3 and the numerical
preparations of chapter 4, we attempt to integrate a cosmological gaussian random
field with (1 + 1)-SP deeply into the nonlinear growth regime. We stress that all
results presented in this chapter are obtained for (1 + 1)-SP, i.e. the reduction model
without confinement in the transversal plane.

Over the course of chapter 2-4 a number of physical and numerical parameters
were introduced, their exact values, however, were mostly left unspecified. Thus, we
begin with a brief discussion on how and why we set the numerical value of certain
parameters.

Next, an in depth analysis of the matter power spectrum evolution is carried
out revealing intriguing physical and systematic effects. More precisely, we find the
importance of the cosmic-scale uncertainty principle to carry over from linear theory
inducing a sharp suppression of nonlinear matter power on scales comparable to the
de-Broglie wavelength of the FDM condensate.

On large scales a CDM-like perturbation growth, akin to eq. (3.40), is confirmed
for most of the integration time. At late evolution stages, however, this correspon-
dence breaks down and one finds (i) an unphysical growth suppression in the matter
power spectrum as well as (ii) a phase of mode de-correlation in the k-space correla-
tion matrix. Reasons for this systematic effect, in particular its connection to the
small scale suppression effect are explored.

Turning to x-space evolution, special attention is drawn to the issue of attaining a
qualitatively identical asymptotic state for (1 + 1)-SP as it is realized for FDM under
(3 + 1)-SP. In the later, stable density structures known as solitons emerge which act
as dynamical attractor for the (3 + 1)-SP evolution. Although such unique states
exist for (1 + 1)-SP, see chapter 6, our analysis indicates they are not realized under
the cosmological conditions of the present chapter, i.e. GRF initial conditions and
FLRW background cosmology. This failure motivates the exploration of PLAM as an
alternative low-dimensional analogue of (3 + 1)-SP which we compare to (1 + 1)-SP
in chapter 6.
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5.1 Parameter Choices and Experimental Setup

A physically reasonable simulation setup entails many parameters, some of which
can not be chosen independently but are intertwined to some degree. In this section
the employed parameter set is presented and justified.

For the background expansion, we choose a flat FLRW universe with total mass
density of Ωm = ΩDM+Ωbaryon = 0.3 and a present day Hubble constantH0 = 68 km

sMpc
,

comparable with recent measurements, [22]. The integration is initialized at z = 100
which is well inside the linear growth regime for all scales of interest.

To justify this claim, the reader is reminded that linearity breaks down once δ / 1.
Ignore the influence of the real space correlation function ξ(r > 0) for the moment
and focus on on-diagonal elements only. The initial density contrast can then be
understood as a single draw from a zero mean, N -variate normal distribution with
spatially uniform variance given by eq. (3.59). Under these simplified circumstances
one can identify the nonlinear length scale, lNL = 2π

kNL
, by demanding, cf. (3.59):

1
!

= ξ1D(0) = σ2(a) =
1

π

∫ kNL

0

dkPL,1D
FDM(k, a) (5.1)

and PL,1D
FDM(k, a) given by eq. (3.62).
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Figure 5.1: Linear FDM fluctuation variance as a function of spectral content, cf. eq.
(5.1). At z = 100 integration of the entire spectrum yields a variance of
σ2 ≈ 2× 10−3. The entire spectrum is therefore still linearly evolving. On
the other hand, at z = 0 linearity breaks down past kNL ≈ 0.24 Mpc−1 (red
dashed line) and we expect to see nonlinear behavior in the matter power
spectrum on spatial scales smaller than 2π/kNL.

Figure 5.1 visualizes the right hand side integral at z = 100 (red) and z = 0
(yellow) as a function of its upper integration limit. In both cases, allowing for
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more spectral modes first increases the linear FDM fluctuation variance until the
strong suppression of the FDM transfer function (3.55) leads to a quick saturation at
k ≈ 4 Mpc−1. Notably, the final value for z = 100 is σ2 ≈ 2× 10−3. Consequently,
we draw the initial density field from a gaussian with variance significantly smaller
than unity implying linear theory is applicable.

On the other hand, naively extending linear theory up to z = 0 produces
a fluctuation variance that exceeds unity at kNL ≈ 0.24 Mpc−1 or equivalently
lNL ≈ 26 Mpc. Scales larger than lNL are expected to be linear until present day,
wheres scales with k > kNL should be ruled by a nonlinear evolution.

We repeat that this simple argument only focuses on the real space variance but
excludes the non-zero, off-diagonal elements of the full, real space covariance matrix.
Nevertheless, the result is in good alignment with the structure of the nonlinear,
three dimensional, present day matter power spectrum from CDM simulations. Here,
one identifies scales with kNL > 0.2 Mpc−1 to be nonlinearly modified. The good
correspondence is of course no surprise as the dimension reduction of the matter
power spectrum, section 3.3.1, was build around the idea of a dimension independent
fluctuation variance.

Having identified the linear scales at present time also allows us to choose a
domain size L such that the largest representable mode, 2π

L
, is still linear at z = 0.

Doing so makes it possible to compare it’s evolution with the CDM growth factor in
eq. (3.40) which it is required to obey, cf. section 3.2.2. This is an important sanity
check for the integration process and will give us valuable inside into systematic
problems associated with the numerical evolution of FDM.

Obviously, one wants to set L as large as possible. However, a large L induces
a reduction of the largest (Nyquist) frequency kmax = π

∆x
if the number of spatial

points N is not increased accordingly. Increasing N is obviously paid with an increase
in computation time. Unfortunately, it is a priori not clear how the wave function
spectrum |ψ̂k|2 will evolve and consequently how large kmax must be in order to
resolve all features of the density field. We investigate this in more detail in section
5.2.1 and its consequences on the large scale evolution in section 5.2.2.

That said, a good compromise between resolution and runtime is L = 50 Mpc−1

and N = 220 = 1048576 yielding a uniform spatial resolution of ∆x ≈ 50pc.
Combining this with a fixed temporal step size of ∆t = 2 · 10−5 implies good
convergence, see B.2, and manageable single-realization run times of T1 = 60h. 1

Further increasing the resolution ∆x or box size L is not possible at this point due to
implementational limitations as well as resource and time constraints. The possibility
of a dynamic time increment and implications on the runtime are discussed in section
5.2.2.

1 The current implementation is AVX-512 vectorized and delegates FFT and linear algebra steps
to the highly optimized Intel MKL. The runtime T1 was measured under single threaded operation.
Shared memory parallelization was also tested and achieved an additional speed up of TN ≈ T1/N
with N as the number of spanned threads. Simulations were conducted on compute nodes of the
bwUniCluster2 using Intel Xeon Gold 6230 CPUs. The memory footprint of a single threaded
process was measured as roughly 200 MByte.
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Figure 5.2: Exemplary cosmological initial conditions at z = 100 in a comoving box of
L = 50 Mpc and N = 219 spatial points. (A): Density contrast. (B): Phase
of the initial wave function, eq.(3.74). (C): Peculiar velocity, eq. (3.23). (D):
Gravitational potential.

Based on the convergence and stability discussion of section 4.4 the reader cannot
anticipate the physical necessity of such an excessive resolution at this point. We
refer to section 5.2.1 for an explanation.

For the FDM mass, we adopt m = 5 ·10−23 eV which is slightly smaller than what
was numerically deduced in [67] by fitting the ground state density of (3 + 1)-SP, cf.
section 6.2, to the mass distribution of the dwarf spherical galaxy Fornax. The chosen
boson mass is compatible with the cosmological parameter constraints derived in
[40], where a lower bound of m > 10−24 eV based on CMB temperature anisotropies
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is established. On the other hand, it is in marginal tension with the upper bound of
m < 4 · 10−23 eV inferred from fitting the luminosity-averaged velocity dispersion of
dwarf spherical galaxies, [35], or the lower bound of m > 10−21 eV following from
measurements of the Lyman-α forest flux power spectrum, [44]. It should be clear
from these, partially contradictory, bounds that the discussion on the FDM mass is
by no means settled and will require higher resolution numerical investigations in
the future. That said, we do not attempt to give high precision results anyways and
therefore deem a mass of m ≈ 10−22 eV to be acceptable.

As all quantities of interest, such as the matter power spectrum or the real-space
correlation function, are properties of an ensemble one is required to approximate
expectation values of the latter. Unfortunately, ergodicity breaks down once δ
develops non-gaussian features meaning it is not enough to spatially average a single
realization. Instead we are required to estimate the ensemble average by taking the
arithmetic over a set of realizations of size N . In general N cannot be to large.
We choose to limit our considerations to N = 100 realizations in order to limit the
required computational effort. The total ensemble computation time then amounts
to 6000 CPU hours.

By following the steps outlined in section 3.3, one arrives at the initial conditions
depicted in Figure 5.2. Here two aspects are worth mentioning. Firstly, note the
smoothness of the density contrast in (A) — a consequence of the sharp power
suppression mediated by the FDM transfer function for scales larger than kJeq, eq.
(3.55).

Secondly, the gravitational potential shown in (D) proves to be a lot smoother
and less spiky as one might expect by comparison with the density field in (A). This
is the consequence of the long range behavior of the periodic Poisson kernel Gπ

41
, eq.

(2.76), effectively smoothing out the small scale features of the density contrast from
which it is sourced. In fact, the initial phase function in (B) shows the same slowly
varying behavior as Φ which is not surprising as it obeys a Poisson-type equation,
eq. (3.74), as well.

Recall from the discussion in section 2.3 that the range R of Gπ
41

was R ≈ L/2.
We therefore expect only the half-box-averaged behavior of δ to affect the structure
of Φ or S. This is readily verified: Overdensities in δ are somewhat more often to find
in the interval 25 Mpc ≤ x ≤ 50 Mpc, hence a gravitational trough at x ≤ 40 Mpc,
whereas the initial density contrast in 5 Mpc ≤ x ≤ 25 Mpc is negative on average,
thus forming a ridge in Φ at x ≤ 15 Mpc. This results in the sinusoidal shape of Φ
and S. We get back to the potential smoothing of (1 + 1)-SP in section 6.3.3.

5.2 Evolution in Reciprocal Space

Let us begin by investigating the evolution of the one dimensional FDM matter power
spectrum P 1D

FDM as a function of the redshift. For this consult Figure 5.3 illustrating
P 1D

FDM at various stages of the integration up to z = 0.

Here, the black, dashed spectrum represents PL,1D
FDM , i.e. the linear FDM spectrum

used to construct the initial conditions. All remaining spectra are depicted together
with their respective 1σ-confidence interval (shaded areas) which we determined as
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error of the arithmetic mean.

Generally, one finds small scale power to emerge quickly from the numerical noise
at 10−30. In the process a sharp power cut off develops traveling to ever smaller
scales, i.e. larger k, as the evolution progresses.

100 101 102 103 104

k [Mpc−1]

10−30

10−26

10−22

10−18

10−14

10−10

10−6

10−2

102

P
1
D

F
D

M
[M

p
c]

z = 0.0

z = 1.0

z = 2.0

z = 5.0

z = 10.0

z = 20.0

z = 50.0

z = 100.0

Figure 5.3: One dimensional FDM matter power spectrum as a function of redshift
estimated from N = 100 realizations. The shaded regions represents the
1σ-confidence interval and the black, dashed line depicts the linear spec-
trum PL,1D

FDM of eq. (3.62) used for the sampling process of the initial condi-
tions in Figure 5.2. Colored, vertical dashed lines illustrate the dynamical
Heisenberg/de-Broglie scale which we infer from the velocity dispersion of
the peculiar flow — the hydrodynamic analogue to the quantum uncertainty
— and Heisenberg’s uncertainty principle. Consult section 5.2.1 for more
information.

Simultaneously, one observes an overall increase in power, mostly pronounced
on large scales, i.e. small k and based on the discussion of section 3.2.2 we expect
this power growth to be governed by the CDM growth function in eq. (3.40). Both
aspects, i.e. the sharp small scale suppression and the large scale growth are analyzed
in the following.

5.2.1 Small Scale Suppression — The Heisenberg Scale

We already saw in the context of linear theory, section 3.2.2, how the uncertainty
principle gave rise to the Jeans scale below which gravitational collapse was quantum
mechanically suppressed. It is therefore natural to conjecture that the uncertainty
principle leads to an equivalent effect in the nonlinear regime.
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To test this hypothesis, we set in accordance with section 3.2.2:

σr '
~

mσv
(5.2)

Remember this relation is in proper coordinates. The velocity dispersion on the scale
of the comoving box is then estimated via:

σv =
√
〈v2〉L − 〈v〉2L (5.3)

where 〈.〉L denotes a spatial average, v follows from eq. (3.23) and σr as proper
spatial uncertainty. Figure 5.4 shows the arithmetic mean of σv and σr over all N
realizations together with their respective 1σ confidence intervals.
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Figure 5.4: Estimated expectation value of the peculiar velocity dispersion σv and induced
proper spatial uncertainty σr, eq. (5.2). The behavior of both quantities
follows our expectation: As time progresses, matter accumulates in the
gravitational wells, therefore getting more localized in space. The system
responds to this increased spatial localization by an increase in the velocity
uncertainty, i.e. a repulsion in the reciprocal space.

We find numerical values of the velocity uncertainty which are in fact compatible
with generic galaxy dispersion velocities in (3+1) dimensions and the behavior of both
quantities follows our expectation: As time progresses, matter accumulates in the
gravitational wells, therefore getting more localized in space. The system responds
to this increased spatial localization by an increase in the velocity uncertainty,
i.e. a repulsion in the reciprocal space. The saturation in the velocity dispersion
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around σv = 210 kms−1 may be an indicator for reaching the system’s equilibrium
configuration. However, in light of the systematic effects encountered in section
5.2.2 it may also be an indicator for the finite velocity resolution of the uniform
spatio-temporal grid {∆t,∆x}.

Defining the comoving reciprocal scale kσx = 2π
σr/a

, one arrives at the dashed,
vertical lines of Figure 5.3. These yield a reasonable estimate for the cutoff wave
number discussed before and we conclude that the uncertainty principle is responsible
for the matter power suppression in the nonlinear regime.

5.2.2 Large Scale Growth

To assess how large scales evolve compared to CDM, we normalize the nonlinear
matter power spectrum of Figure 5.3 to the prediction of the linear CDM theory,
i.e. analyze the ratio P 1D

FDM(k, z)/PL,1D
FDM(k, z) and take the linearly evolved spectrum

PL,1D
FDM(k, z) from eq. (3.62).

Figure 5.5 depicts the normalized spectrum for modes k < 10 Mpc−1. Here, three
aspects are important.
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Figure 5.5: Comparison between the large scale FDM spectrum and linear theory. Linear
theory is valid at redshift z if the ratio ∆ = P 1D

FDM/P
L,1D
FDM approaches unity

for k → kmin. Inset: Power loss of kmin compared to linear theory.

Firstly, matter power is massively enhanced compared to linear theory for mid-
sized scales. This is the result of the nonlinear evolution. Non-linear evolution also
explains the emerging peak structure: Recall the heuristic FDM transfer function in
eq. (3.55) has multiple roots where the linear spectrum vanishes exactly. Although
our uniform k-grid never hits such a root exactly, it still includes points close to
them. These appear as dips in the initial, normalized spectrum at z = 100. If linear
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theory were correct, these dips should persist to exist for later times, yet nonlinear
dynamics enhances the spectral power close to these roots and therefore turns dips
into peaks.

Secondly, if linear theory were correct on the largest scales until redshift z,
the corresponding normalized spectrum should converge to unity as k → kmin.
Interestingly, we observe a loss of power as the integration approaches z = 0. The
inset in Figure 5.5 analyzes this effect in more detail for k = kmin by means of:

∆(a) =
1

D2
astart

(a)

P 1D
FDM(kmin, a)

P 1D
FDM(kmin, astart)

(5.4)

and its respective 1σ-confidence interval. As in section 3.2.2, D2
astart

(a) denotes the
linear CDM growth factor normalized to unity at a = astart. The inset indicates a
power loss of about 45%.

The large scale power loss effect was also reported in [54] for d = 3 dimensions
and recently analyzed in more detail for d = 1, 2 degrees of freedom by [32]. Both
works identify an insufficient resolution of the Heisenberg- or (up to a factor of
2π) de-Broglie scale to be the main source of this systematic effect. Verifying this
claim is simple. One can either reduce the boson mass, [54], while keeping all other
parameters fixed or decrease the number of spatial nodes N , [32]. The latter saves
computation time which is why we reduce the discussion to this approach. Figure
5.6 illustrates the large scale growth for N = 215 points. Clearly the suppression
effect is strongly enhanced and power drops to less than 10% of what linear theory
predicts at present time.
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Figure 5.6: Comparison between the large scale FDM spectrum and linear theory in a
L = 50 Mpc box with only N = 215 points. Note how at late times a loss of
power on the largest scale induces a power reduction for the entire spectrum.
Inset: Power loss of kmin compared to linear theory.
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Understanding this systematic effect on an intuitive level is straight forward: Let
us return to the linearized continuity equation (3.73) and transform it into k-space:

v̂k =
iaH(a)

k
δ̂k . (5.5)

Now, consulting Figure 3.3 shows that the linear, one dimensional FDM spectrum
PL,1D

FDM is nearly white noise, i.e. uniform, for 0.1 Mpc−1 ≤ k ≤ 5 Mpc−1 implying
δ̂k is drawn from a gaussian distribution with approximately constant variance σ2

k.
It is therefore valid to assume δ̂k is approximately constant as k → kmin. However,
v̂k increases in the same limit as it behaves ∝ k−1. Thus large scales are associated
with high peculiar velocities. Velocities, on the other hand, are encoded in the phase
of the wave function and if the uniform grid is not capable of resolving the phase
function up to the largest physical velocity associated with the Heisenberg/de-Broglie
scale kσx ∝ amσv

~ the integration systematically underestimates the flow of large
scale modes. Hence, we fail to follow the large scale evolution correctly and find
FDM simulations to be extremely demanding in terms of spatial resolution. It is not
enough to resolve the length scales of interest. Additionally, one must ensure that
the Heisenberg/de-Broglie scale is resolved which is typically significantly smaller.
This only reemphasizes the urgent need of a spatially adaptive discretization such as
the B-spline approach, [18], or non-uniform FFTs. Note that CDM simulations or
FDM-SPH (smoother particle hydrodynamics) codes typically satisfy this resolution
constrained implicitly. This is plausible due to the Lagrangian nature of their
formulation: One follows the trajectories of a fixed number of (fluid) particles instead
of a field on a fixed uniform grid. Combined with a adjustable step size, this implies
no velocity resolution limit for N -body or FDM-SPH codes.

That said, our N = 215-ensemble clearly supports the resolution arguments made
in [54, 32] but it does not explain the origin of the power loss for N = 220 for which
Figure 5.3 proves that the Heisenberg scale is well resolved. One possible explanation
is the size of the periodic box. Realize kmin = 0.126 Mpc−1 is according to Figure
5.1 with σ2(kmin) = 0.48 already dangerously close to leaving the linear regime at
z = 0. One should therefore expect deviations from the linear growth function
anyways. Furthermore, an insufficient time step size might be a source of errors.
Appendix B.2 illustrated the sensitivity of the integration on ∆t, especially for late
times where an expanding background cosmology induces exponentially growing
errors. Hence, it is only natural to assume that decreasing ∆t alleviates the power
loss effect. Unfortunately, as ∆x = L

N
is essentially fixed by the Heisenberg scale and

L cannot be made significantly smaller without kmin leaving the linear regime, there
is no immediate way to reduce N while decreasing ∆t to (i) keep computation times
within reasonable bounds and (ii) check the impact on ∆t on the power loss without
violating the Heisenberg scale or the box size linearity constrained. Application of
the fourth order splitting scheme presented in section B.1 might be a sensible path
forward. We leave further investigations to future works.

Thirdly, the systematic loss effect does not just influence small k but leads to
an unphysical reduction of matter power on all scales, cf. Figure, 5.6. This makes
the assessment of nonlinear growth somewhat complicated. [32] proposes to simply
rescale the final spectrum by the loss experienced for small k. However, it is also
noted that "the extent to which this naive rescaling captures nonlinear growth is
unclear", [32]. In fact, we will see in section 5.2.3 how the power loss problem leads
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to a decorrelation of nonlinear modes and it is clear that the proposed rescaling
will never resolve this issue. We refrain of imposing any artificial corrections on our
results at this point

Let us close this section by mentioning that [32] achieves a power loss of only
10% in a one dimensional domain of L = 1 Gpc/h with only N = 217 spatial points.
At first sight, it seems that the integration results presented here are inferior. This is
conclusion is premature. [32] considers (d+1)-SP in the framework of the Schrödinger
method (SM), cf. section 2.2, and therefore interprets ~ as a free model parameter.
Converting their employed phase space resolution yields a boson mass of m ≈ 10−26

eV implying a Heisenberg scale σx which is three orders of magnitude larger compared
to the boson mass used in this work. Consequently there is more freedom in tweaking
L and N until the resolution constraint is violated.

Furthermore, the authors of [32] do not follow the same procedure of generating
cosmological initial conditions as outlined in section 3.3. In particular, the moduli
|δ̂k| are not drawn from a Rayleigh distribution but taken as:

|δ̂k(astart)| =
√
LPL,1D

CDM(astart, k) .

Only phases are randomly drawn. This reduces the sampling variance significantly
but is not strictly correct.

We also emphasize (i) the equivalence of the dimension reduction procedure in
eq. (3.61) but (ii) the application of the CDM spectrum when using SM as oppose
to the FDM version of eq. (3.62). An interesting consequence of this is the missing
small scale power suppression in the initial conditions which nevertheless will arise
during the time integration as the governing equation is still (d + 1)-SP. In that
sense, power suppression below σx is not an intriguing physical effect in the context
of SM but must be interpreted as a systematic error.

At last, it should be noted that integration scheme of [32] is essentially equivalent
to SM[2] with the additional property of being time adaptive. In practice, the time
step ∆t is adapted by demanding a constant phase change θmax in each unitary
evolution operator,

∆t = min

(
4∆x2

π2
,

1

amaxx |V |

)
× θmax ,

an approach which proves to be quite popular in the FDM literature, e.g. [71, 60] and
many others. Usually the quadratic nature of the kinetic condition makes it more
stringent than the potential phase limiter. Inserting our parameters for θmax = 0.1
yields a miniscule step size of ∆t = 10−7, implying single realization run times of
500 days!

5.2.3 Nonlinear Mode Coupling

Another intriguing property of the nonlinear growth regime is mode coupling. Recall
from section 3.2.2 that both CDM and FDM perturbation modes evolve independently
as long as δ � 1. The difference between both dark matter models then lies in how
these independent modes evolve. For CDM all modes behave indentically and obey
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eq. (3.40) whereas FDM modes evolve differently depending on the wave number k.
Once we leave the linear regime, structures form by gravitational collapse on large
scales resulting transferring matter power to smaller scales. Here we expect to find
strong correlation between these small scale modes.

To investigate how these correlations emerge, we compute the unbiased estimator
C(ki, kj) of the matter power covariance matrix over N realizations,

C(kl, km) =
1

N − 1

N∑

i=1

(
P̄i(kl)− P̄ (kl)

) (
P̄i(km)− P̄ (km)

)
, P̄ (k) =

1

N
N∑

i=1

P̄i(k) .

(5.6)
Importantly, P̄ (k) in eq. (5.6) is not the same power spectrum illustrated in Figure 5.3
but a re-binned version of it. More precisely, one chooses a new bin size ∆k′ = K ·∆k
with K as even positive integer and then averages over all K modes inside the new
bin centered at kj. Hence, the re-binned spectrum of realization i reads:

P̄i(kj) =
L

K

K∑

l=1

|δ̂i,j+l−K
2
|2 . (5.7)

and is sometimes coined the band power spectrum. Purpose of this re-binning is to
reduce the scatter of the single realization spectrum. This is especially important in
d = 1 dimensions where a bin of ∆k contains N(k) = 1 mode. Compare this with
d = 3 where one averages over radial shells with N(k) ∝ 4πk2 modes. Evidently, this
leads to a significantly reduced sampling variance compared to d = 1 which we could
only combat by drastically increasing the number of realizations N .

In the following K = 4 was chosen leaving us with N(k) = 4 modes per bin. This
seems rather small — and it is — but the correlation structure is most interesting at
low k where one expects a linear-to-nonlinear transition region. Increasing K to say
K ≈ O(10 − 100) would certainly increase the signal-to-noise ratio but also leave
us with a very limited number of modes in the large scale regime. The only way to
increase the resolution, and therefore allow larger K, is to decrease kmin ∝ L−1 itself.
As outlined in the foregoing discussion, this has implications on the required number
of spatial points in order to satisfy the resolution conditions at high-k and quickly
becomes unwieldy.

After normalization of eq. (5.6) we arrive at the correlation matrix :

R(kl, km) =
C(kl, km)√

C(kl, kl)C(km, km)
(5.8)

the elements of which are confined to −1 ≤ R(kl, km) ≤ 1.

Consult Figure 5.7 for the evolution of the correlation matrix in the N = 220-
ensemble. The evolution starts from a uncorrelated, diagonal state at z = 100 and
evolves into a highly correlated configuration most pronounced at z = 10. As one
expects, small scales are affected first by nonlinear mode coupling, cf. z = 50, and
the correlated regime than expands to ever smaller, originally linearly evolving k
over the course of the integration.

Interestingly, past z = 10, the ensemble undergoes a de-correlation phase during
which large off diagonal elements reduce in magnitude. Although some nonlinear
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Figure 5.7: Evolution of the matter band power correlation matrix, eq. (5.8) for N = 220

spatial points and N = 100 realizations for large to mid-sized scales. Notice
the unphysical de-correlation of modes past z < 10

imprints remain close to the diagonal and at large k, the correlation matrix is again
close to its initial diagonal form when the integration reaches present time. This
second evolution phase is obviously unphysical and with the Heisenberg scale being
well resolved we suspect the insufficient temporal resolution already mentioned in
section 5.2.2 to be the dominant source of errors.

5.3 Evolution in Real Space

In section 5.2 special attention was put on temporal evolution of ensemble properties
in k-space. We now turn the focus to the evolution in real, comoving space. This
entails an investigation of conjugate observable of the matter power spectrum — the
two-point correlation function ξ(r) — and the spatial structure of the dark matter
clusters present at z = 0.
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5.3.1 Correlation Function

The real space correlation function ξ(r) and the matter power spectrum P (k) form a
Fourier transformation pair, cf. eq. (3.58). Thus, no new physics is encapsulated in
ξ(r) and we are therefore somewhat brief in its analysis. Nevertheless, it is interesting
to see how (i) presumably large correlations at small distances and late times change
as one moves to larger scales as well as (ii) how the uncertainty principle presents
itself on cosmic scales.

For this, we turn the attention to Figure 5.8 depicting ξ(r) alongside its 1σ-
confidence interval at different stages in the integration. Here, spatial correlations
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Figure 5.8: One dimensional correlation function ξ(r) as a function of redshift. Dashed,
vertical lines show the Heisenberg/de-Broglie scale σx below which spatial
correlations are damped.

show a logarithmic decay of increasing slope as the integration approaches z = 0.
Additionally, the uncertainty principle induces an upper bound on the correlation
function which is quickly reached by ξ(r) once we pass the comoving Heisenberg/de-
Broglie scale σx depicted as dashed lines in Figure 5.8.

An intriguing regime for studying ξ(r) in d = 3 dimensional CDM studies is
the baryonic acoustic oscillation (BAO) scale at roughly r = 100 Mpc/h. Since the
dimension reduction of the initial conditions used in this work is found by a local
rescaling of P 3D(k) and the FDM transfer function leaves modes below k < 1 Mpc−1

unaltered, BAOs are still present in the d = 1 FDM power spectrum. Unfortunately,
the employed box size too small to probe this regime. One would have to quadruple
L, and most likely N , in order to increase the domain of ξ(r) sufficiently. Once
next generation numerics, i.e. B-spline discretization plus BM[4] integration, see
Appendix B.1, are implemented and tested this should be one of the first physical
studies carried out in the future as one expects FDM to approach CDM on such
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large scales. We note in passing that the authors of [32] conducted a numerical study
designed to probe the BAO regime in the context of Schrödinger’s method and found
good correspondence for (2 + 1)- and (3 + 1)-SP with the three dimensional CDM
correlation function.

5.3.2 Failure of (1 + 1)-SP in Reaching the Soliton State

We close this chapter by investigating the spatial structure of the gravitationally
bound objects present at z = 0. To give the reader a sense of how these structures
emerge from the fluctuation field consider Figure 5.9, depicting the spatio-temporal
evolution of |ψ|2 and departing from the initial conditions of Figure 5.2. Also
illustrated are fixed time snapshots of |ψ|2 = δ + 1 and the gravitational potential
Φ. Realize the latter is not the interaction potential V present in the NLSE. Their
relation is given in eq. (2.55) and includes, apart from a dimensional constant, an
additional factor of a(t)−1.

Now, from the spatio-temporal evolution of |ψ|2 it is evident that overdense
regions grow independently from each other until late in the evolution. Past z = 10
this changes when the most massive matter clusters attract their smaller satellites
and merge into a single gravitationally bound matter clump, which we identify as
dark matter halo in the following discussion. The late time evolution is depicted in
the zoom inset of Figure 5.9.

Comparing the potentials Φ at z = 70 and z = 10 shows only marginal differences.
This is the result of the long interaction range inherent to the convolution kernel Gπ

41

making V and consequently Φ somewhat insensitive to the exact matter distribution.
Only later on, when δ ∼ 100, do we observe noteworthy changes in the shape of the
gravitational potential.

An interesting consequence of this observation is that evolution under (1 + 1)-SP
is essentially a linear problem for most of the integration time, i.e. it would be enough
to relax the recomputation of V from every integration step to every nth-step early on.
One then gradually decreases n back to n = 1 once the density contrast becomes large
and the computation of a self consistent potential regains its importance, especially
at late times when the scale factor magnifies any inconsistencies in V .

Arguably, the most compelling property of FDM in d = 3 dimensions, i.e.
evolution of the scalar field under (3 + 1)-SP, is the existence of flat density cores
at the center of the emerging dark matter halos. These so called solitons provide a
natural solution to a number of problems associated with the small scale crises of
CDM like the "cusp-core-problem", see chapter 1. In fact, curious physical properties,
such as invariance under mutual, nonlinear interaction, can be associated with this
stable matter configuration. We postpone an in depth discussion until section 6.2
and only mention here that a FDM soliton exist for (1 + 1)-SP as well.

Numerical considerations of (3 + 1)-SP, e.g. [38, 37, 67, 71, 60], identify the
soliton state as a dynamical attractor in the evolution of FDM. More precisely,
overdense regions collapse under their self-gravity and in the process radiate away
excess matter. The result of this process, sometimes dubbed gravitational cooling,
is a relaxed matter distribution in which a solitonic core is immersed in a "sea of
fluctuations".
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Figure 5.9: Exemplary spatio-temporal evolution of the realization with initial conditions
depicted in Figure 5.2. Left, Inset: Temporal evolution of |ψ|2. The density
was clipped to 0.1 ≤ |ψ|2 ≤ 10. Right: Three snapshots of the matter density
(red) and gravitational potential Φ (black). Notice (i) the smoothness and
(ii) similarity of Φ at z = 70 and z = 10. (i) is a consequence of the large
interaction range of Uπ41

so that only the averaged behavior of |ψ|2 on the
scale of the box matters for Φ. (ii) is and indicator for the quasi-linearity of
the evolution until z ≈ 10.
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Naturally, one wants to know if solitons are also realized in only one spatial
dimension assuming the simple dimension reduction procedure of section 2.3.1 leading
up to (1 + 1)-SP.

Since (3 + 1)-SP forms a soliton in every halo, we start our search with the
realization shown in Figure 5.9 and extract from it the medium-sized halo around the
mass peak at x = 26 Mpc. Let us denote this cluster as C. Note we do not choose
the highest-mass structure at x = 40 Mpc since the spatio-temporal evolution in
Figure 5.9 indicates it to be in the midst of a merger with its satellites. One should
therefore expect disturbances of the equilibrium mass distribution anyways. The
C-cluster, on the other hand, evolved comparatively isolated and should consequently
be closer to the sought after asymptotic state at z = 0.

To check this hypothesis, we compare the soliton density |ϕGS|2 of mass MGS, cf.
section 6.2.1, with |ψ|2 in the halo core region. This is achieved by exploiting the
scaling symmetry of (1 + 1)-SP, eq. (2.114), according to which knowledge of ϕGS

grants access to an entire family of solitons ϕGS(x;λ) differing in their mass MGS(λ):

ρGS(λ) = |ϕGS(x;λ)|2 = λ4|ϕGS(λx)|2 , λ ∈ R+ ,

MGS(λ) =

∫

Ω

dx|ϕGS(x, λ)|2 . (5.9)

We get back to this in section 6.2.2.

However, as the spatial distribution of C indicates, Figure 5.10A, a real space fit is
essentially impossible given the highly oscillating nature of |ψ|2. Thus we transform
the density to k-space in the hope to achieve at least a partial spectral separation
of fluctuations and potential soliton, a strategy also employed in chapter 6. The
k-space analogue of the one parameter family (5.9) reads:

|ρ̂GS(k;λ)| = λ3|ρ̂GS(λ−1k)| (5.10)

where intermediate values of k not part of the uniform k-grid follow from linear
interpolation.

Consider Figure 5.10B, depicting the spectral distribution of cluster C, i.e. ρC(x),
alongside a selection of spectral soliton profiles. Even without a proper fit the
failure of (1 + 1)-SP to produce two well separated components, namely soliton and
random fluctuations, is evident. More precisely, the distribution of C is to wide and
fluctuates too strongly on all scales. Above k > 3 · 103 Mpc−1 a k−1-decay is found
— an numerical artefact of the rather crude cluster extraction. Closer inspection of
|ψ|2 reveals a jump discontinuity across the truncated box of Figure 5.10. Hence
ρC(x) ∈ C1

π only and according to the discussion of section 4.2 this directly implies
|(̂ρC)k| ∼ k−1 as k →∞. We reiterate this deficiency is only present in ρC and not
in ρ.

The exemplary analysis of Figure 5.10 was repeated for a number of realizations
all of which with identical result: Solitons, if present under (1 + 1)-SP, are far less
pronounced and, at best, compete in magnitude with the fluctuation component the
in the late time matter configuration. This is qualitatively different to (3 + 1)-SP
where the solitonic core is a distinctive feature in every dark matter halo.
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Figure 5.10: Spatial and spectral structure of the matter cluster C at x = 26.5 Mpc also
illustrated in Figure 5.9. (A): Spatial distribution of ρ = |ψ|2. The highly
fluctuating nature makes a sensible fit in x-space impossible. (B): Spectral
composition |ρ̂k| of cluster C (yellow) and different mass solitons (black-gray)
given by eq. (5.9). The reference soliton, ϕGS(x; 1) has adimensional mass
of M = L = 10. For conversion see Figure 2.1.

Note we do not exclude the possibility of a naturally emerging (1 + 1)-SP soliton
at this stage. It’s spectral structure might still become visible in the distribution
of |ρ̂k| once the fluctuations are suppressed. To this end, consider now the entire
ensemble, extract from each realization i a cluster Ci, treat Ci as separate solution to
(1 + 1)-SP and thus use the scaling symmetry to homogenize the individual bounding
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boxes of size Li, see eq. (6.35). In practice, we choose the arithmetic mean of all Li
as common domain. At last, take the average of all rescaled clusters.

This procedure is based on the assumption that fluctuations inside each cluster are
random, i.e. have no special structure and no spatial correlation which is preserved
across realizations. Note a naive time averaging of a single realization would be
conceptionally wrong since the ergodic hypothesis is not applicable in the nonlinear
regime. Moreover, the scale factor changes rapidly close to z = 0 implying one would
average over physically quite different situations.

Although simple in theory, the practical execution is cumbersome as we want to
exclude clusters akin to the massive structure in the inset of Figure 5.9 undergoing a
not yet completed merger at z = 0. These clusters are most likely out of equilibrium
and would induce systematic effects in the spectral composition of |ρ̂k|. Therefore
only clusters with approximate spatial symmetry, as in Figure 5.9A are included in
the analysis. Unfortunately, these need to be identified by hand which is why we
limit ourselves to only N = 25 individual clusters.

Figure 5.11 illustrates the obtained mean spectrum |ρ̂k| and multiple (1 + 1)-
SP solitons. Although, fluctuation are now significantly reduced compared to the
single realization of Figure 5.10, there is still no reasonable correspondence between
experimental data and any soliton profile. We conclude a direct analogue to the
asymptotic state of (3 + 1)-SP is not realized by (1 + 1)-SP under sound cosmological
conditions, neither in a single realization nor in the ensemble sense.
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Figure 5.11: Spatial and spectral structure of the mean matter cluster and its 1σ-
confidence interval obtained from averaging over N = 25 individual clusters
each of which was taken from a different realization of the N = 220, N = 100
ensemble. Again, very poor correspondence with the (1 + 1)-SP soliton is
found (gray lines).
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Clearly, the presented analysis is by no means exhaustive. For instance, the
reported failure of (1 + 1)-SP to form a soliton might very well be a problem of the
length of integration time. In fact, we already saw in Figure 5.9 how long it took
the system to form nonlinear structures in the first place. A working hypothesis
is therefore that the relaxation time-scale for (1 + 1)-SP is simply larger than the
expansion time from z = 100 to z = 0. These and more aspects will be thoroughly
explored in chapter 6.
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Chapter 6

Asymptotic Dynamics

Chapter 5 revealed that, contrary to (3 + 1)-dimensional SP equation, the naively
reduced (1 + 1)-SP system is not capable of relaxing into a asymptotic equilibrium
configuration characterized by collapsed density structures in which a solitonic core
is embedded in a "sea of fluctuations".

Purpose of this chapter is to investigate why (1 + 1)-SP fails to do so and if the
asymptotic dynamics is altered once we perform the dimension reduction by strongly
confining matter in the orthogonal plane. The problem is approached as follows:

We first attempt to characterize the asymptotic state more precisely. This includes
an in-depth discussion on potential types of equilibria FDM relaxes into. In this
context, a dynamical equilibrium, in the sense of the quantum virial theorem, and
a thermal equilibirium, in the sense of maximal entropy are introduced alongside
observables which measure if the system has virialized or thermalized. Special
attention will be drawn to the role of periodic boundary conditions.

Next, the nature of the solitonic ground state for (1+1)-FDM with and without
confinement is explored in detail. This includes a rephrasing of the stationary version
of eq. (4.1) as nonlinear optimization problem and the exposition of a physically
motivated numerical procedure, Appendix C.2, capable of generating these ground
states. Analytical arguments based on the hydrostatic equilibrium and numerical
studies are used to identify the mass-size-relation and the solitonic nature of the
FDM ground state for (1 + 1)-SP and PLAM.

We then return to numerical collapse studies, this time however, in a more
controlled setting compared to chapter 5. In the spirit of [71, 60], artificial initial
conditions without space-time expansion are investigated first. Under these conditions
the confinement approach turns out to be capable in generating a single solitonic
core after sufficiently long integration time, whereas (1 + 1)-SP still fails to attain the
expected asymptotic state. We attempt to explain this disparity by comparing the
interaction range with the ground state size of both reduction models. Moreover, our
results indicate that irrespective of the dimension reduction approach the long term
dynamics is best understood as a thermalization process maximizing the entropy of
the system.

By reintroducing space-time expansion, we neither find (1 + 1)-SP nor PLAM to
be fully thermalized at present time z = 0. Nevertheless, the spectrum of ψ under
strong confinement is still close to its ground state for a = 1.
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6.1 Relaxation Processes and Equilibrium States

It is a priori not clear what mechanism drives FDM into its asymptotic equilibrium
state let alone what type of equilibrium is attained. Moreover, it may be just the
emerging density core, or even the total density field including its fluctuations,
reaching this ominous equilibrium. At this stage, without further theoretical insight,
only data can give us a hint. We therefore broaden the discussion and consider two
types of equilibria.

6.1.1 Quantum Virial Equilibrium

It is a well known fact from classical physics that any bounded dynamics obeys the
classical virial theorem, [34]. It is derived by taking the time derivative of G = px,
using Newton’s axioms and performing a time-averaging,

2(T )∞ − (x∂xV )∞ = 0, (6.1)

with T as total kinetic energy of a system of N particles and

(A)t =
1

t

∫ t

0

dt′A(t), (A)∞ = lim
t→∞

(
1

t

∫ t

0

dt′A(t′)

)
. (6.2)

Realize eq. (6.1) only holds in the limit t → ∞. Notable exceptions from this
are stationary or T -periodic particle configuration which obey eq. (6.1) already for
arbitrary finite t > T .

Eq. (6.1) proves to be an extremely handy tool in astrophysics and it is reasonable
to seek for a corresponding result in quantum mechanics. Relaxation into virial
equilibirum, i.e. the regime where the quantum analogue of eq. (6.1) is (approxi-
mately) satisfied, is then to be understood as a consequence of the evolution under
Schrödinger’s equation. That said, any finite quantum system would virialize in the
limit t→∞.

Interestingly, a quantum virial theorem exists and was first derived for stationary
states by Fock, [29]. The most general form akin to eq. (6.1) and also applicable
for non-stationary problems is based on Ehrenfest’s theorem for which the textbook
version reads:

Theorem (Ehrenfest’s Theorem, [25]). Let H = L2(R) be the Hilbert space of
interest, Ĝ(t) an hermitian operator and Ĥ the Hamiltonian. Then the evolution of
its expectation value is:

d

dt

〈
Ĝ(t)

〉
= −i 〈ψ|

[
Ĝ, Ĥ

]
|ψ〉+ 〈ψ|∂tĜ|ψ〉 . (6.3)

Unfortunately, eq. (6.3) is incomplete for operators Ĝ for which Ĝψ /∈ Dom(Ĥ),
rendering the commutator in eq. (6.3) meaningless. It is easily seen that this situation
occurs in the present context for Ĝ = x̂ and periodic domains, i.e. when:

H = {ψ ∈ L2(Ω) | ψ(0) = ψ(L), ∂xψ(0) = ∂xψ(L)} (6.4)
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since x̂ψ = xψ is not periodic anymore, [3].

To see how Ehrenfest’s theorem needs to be extended, e.g. [28, 50], we take the
total time derivative of 〈Ĝ〉 and use Schrödingers equation to find:

d

dt

〈
Ĝ(t)

〉
= 〈ψ|∂tĜ|ψ〉+ i

〈
Ĥψ
∣∣∣ Ĝ |ψ〉 − i 〈ψ| ĜĤ |ψ〉 . (6.5)

Notice how we do not use the familiar self-adjointness of Ĥ in the second term to
form a commutator with the third term — self-adjointness only holds on the domain
of Ĥ but here we allow Ĝψ /∈ Dom(Ĥ). However, we can always take the adjoint of
Ĥ and insert a zero to write:

d

dt

〈
Ĝ(t)

〉
= 〈ψ|∂tĜ|ψ〉 − i 〈ψ|

[
Ĝ, Ĥ

]
|ψ〉+ i 〈ψ| Ĥ†Ĝ− ĤĜ |ψ〉 . (6.6)

The last term constitutes a correction term to the standard Ehrenfest theorem and
measures the degree to which Ĥ is not self-adjoint anymore once we allow it to act
on Ĝ |ψ〉 ≡ |ϕ〉.

Computing the correction term with the Hamiltonian of eq. (4.1) under periodic
boundary conditions is straight forward. One finds:

B ≡ i 〈ψ| Ĥ†Ĝ− ĤĜ |ψ〉 = − i
2

(∂xψ
∗ϕ− ψ∗∂xϕ)

∣∣∣∣
L

0

. (6.7)

The quantum virial theorem then follows by considering a quantized version of
G = px in the extended formulation of the Ehrenfest theorem. Since x̂ and p̂ are
non-commutative, one typically takes the symmetric version Ĝ = 1

2
(p̂x̂ + x̂p̂) as

starting point. However, it holds:

d

dt
〈x̂p̂〉 =

d

dt
(〈p̂x̂〉+ i) =

d

dt
〈p̂x̂〉 (6.8)

which is why we set Ĝ = p̂x̂ to arrive at:

d

dt

〈
Ĝ
〉

= −i 〈ψ|
[
Ĝ, Ĥ

]
|ψ〉+B

= 2 〈T 〉 − a(t) 〈x∂xV 〉+
L

2

(
ψ∗(0, t)∂2

xψ(0, t)− |∂xψ(0, t)|2
)
,

(6.9)

where the boundary term B follows trivially from eq. (6.7). For the evaluation of
the commutator expectation value we refer to Appendix C.1.

Now, if ψ is a stationary state then
〈
Ĝ
〉
is constant in time. This directly yields

the stationary quantum virial theorem under periodic boundary conditions:

0 = 2 〈T 〉 − a 〈x∂xV 〉+
L

2

(
ψ∗(0, t)∂2

xψ(0, t)− |∂xψ(0, t)|2
)
. (6.10)

A particularly import stationary state that satisfies eq. (6.10) is the ground state.
Eq. (6.10) was also found in [80] by integrating the stationary Schrödinger equation
directly.
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On the other hand, if ψ has a non-trivial time dependence, we time-average
according to eq. (6.2) and take t→∞:

lim
t→∞

1

t

[〈
Ĝ
〉

(t)−
〈
Ĝ
〉

(0)
]

= 2 (〈T 〉)∞ − (a(t) 〈x∂xV 〉)∞

+

(
L

2

(
ψ∗(0, t)∂2

xψ(0, t)− |∂xψ(0, t)|2
))

∞
.

(6.11)

Assuming
〈
Ĝ
〉
is bounded, one arrives at the time-dependent quantum virial theorem

under periodic boundary conditions:

0 = 2 (〈T 〉)∞ − (a(t) 〈x∂xV 〉)∞ +

(
L

2

(
ψ∗(0, t)∂2

xψ(0, t)− |∂xψ(0, t)|2
))

∞
. (6.12)

Strictly speaking, eq. (6.12) only holds for t→∞. However, for practical purposes
we may consider the finite time average and interpret the system to be virialized
once eq. (6.12) is approximately satisfied.

6.1.2 Thermal Equilibirum

Following section 6.1.1 we take our motivation from classical N -Body physics. In
the classical CDM paradigm, dark matter is assumed to be collionless due to the
humongous number of particles involved, thereby rendering a dynamical relaxation
based on two-body interactions ineffective — at least on time-scales comparable
to the age of the universe, [45]. On the other hand, dark matter halos turn out
to be of relative universal shape, [61], suggesting their evolution ends in some sort
of asymptotic equilibrium configuration. Naturally, if two-body interaction cannot
explain this relaxation process one must ask what mechanism replaces it. The very
same problem is known from stellar systems such as elliptical galaxies.

In the seminal work [57], it was shown while a fan-out of particle trajectories in
phase space leads to an entropy preserving filamentation of the fine-grained Vlasov
phase space distribution, a coarse-grained version of the latter does in fact attain a
quasi-stationary state. This process is called violent relaxation and it is expected
that the final, coarse-grained phase space distribution maximizes entropy and the
relaxation process should then be understood as a consequence of thermodynamics.

To adopt this idea for FDM a phase space description is required. Luckily, this
is the central task of Schrödinger’s Method, [81, 76, 51], mentioned in section 2.2.1.
One first associates the wave function ψ with a fine-grained phase space distribution
fW (x, k) known as Wigner distribution,

fW (x, k) =
1

2π

∫

Ω

dx′ψ
(
x− x′

2

)
ψ∗
(
x+

x′

2

)
eikx

′
, (6.13)

and subsequently performs a coarse graining of fW (x, k) by smoothing it with a
bivariate gaussian. This yields Husimi’s distribution:

fH(x, k) =
1

2πσxσk

∫

Ω

dx′dk′

2π
e
− (x−x′)2

2σ2
x e

− (k−k′)2

2σ2
k fW (x′, k′) . (6.14)
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The relation between the smoothing scales σx and σk is set according to Heisenberg’s
uncertainty principle, σxσk = 1

2
, to guarantee positiveness of eq. (6.14), [19]. We

then use Wehrl’s entropy, [78],

SH = S[fH ] = − 1

2π

∫

Ω

dxdkfH(x, k) log fH(x, k), (6.15)

as our entropy functional. Thermalization is completed once SH attains its maximum
value.

6.2 The FDM Groundstate

We expect the central region of a collapsed density structure to contain a stable core
matching the density distribution of the FDM ground state, e.g. [37, 67, 69, 71, 60].

In this section we give details on how the ground states of (1 + 1)-SP and PLAM
can be obtained and what properties they satisfy. For instance, we already saw that
any stationary state is in virial equilibrium according to eq. (6.10) irrespective of
the form of the interaction.

6.2.1 Construction of the (1 + 1)-FDM Ground State

Let us set a = const. Mathematically, the ground state ϕ(x) of eq. (4.1) with mass
M is defined as:

ϕGS = argmin
ϕ∈S

E[ϕ] = argmin
ϕ∈S

{T [ϕ] + V [ϕ]}

= argmin
ϕ∈S

{
1

2

∫

Ω1

dx|∂xψ|2 +
a

2

∫

Ω1

dx
(
Uπ ∗ |ψ|2

)
|ψ(x)|2

} (6.16)

with the set of admissible functions:

S =

{
ϕ |
∫

Ω

dx|ϕ|2 = M

}
. (6.17)

Eq. (6.16) constitutes a constrained, nonlinear, non-convex, minimization problem.
Under free-space conditions for SP, i.e. when U = Gfree

41
, [21] proves existence of a

unique, real, symmetric and always positive minimizer. We tacitly assume this to be
true under periodic conditions for both SP and PLAM as well. The idea is then to
find critical points ϕc of eq. (6.16) and check if ϕc has roots in the domain. If not,
we set ϕGS = ϕc.

To find critical points of the energy functional we perform a standard gradient
descent with time τ as continuous descent parameter. Thus, we account for the
normalization constrained by introducing a Lagrange multiplier µ(τ) and descent
along the "grand canonical energy":

∂τϕ = −1

2

δ

δϕ
EGC[ϕ] = −1

2

δ

δϕ
(E[ϕ] + µ(τ)N [ϕ]) , N [ϕ] =

∫

Ω

dxϕ2 . (6.18)

Note we have infinitely many normalization constraints, one for every τ . Consequently,
µ needs to be a function of the descent parameter.
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Taking the functional derivative of the kinetic part T [ϕ] and the mass functional
N [ϕ] is straight forward. For the potential part, we find:

δV [ϕ, h] =
d
dε

∣∣∣∣
ε=0

V [ϕ+ εh]

= a

∫

Ω

dx
∫

Ω

dx′h(x)ϕ(x)Uπ(|x− x′|)ϕ2(x′)

+ a

∫

Ω

dx
∫

Ω

dx′ϕ2(x)Uπ(|x− x′|)h(x′)ϕ(x′) .

(6.19)

Upon interchanging x↔ x′ in the last integral and exploiting the symmetry of the
convolution kernel, one finds:

δV [ϕ, h] =

∫

Ω

dx
∫

Ω

dx′h(x) · 2aϕ(x)Uπ(|x− x′|)ϕ2(x′)

=

∫

Ω

dxh(x) · 2aϕ(x)
(
Uπ ∗ ϕ2

)
(x) =

∫

Ω

dxh(x)
δV

δϕ
.

(6.20)

In total, eq. (6.18) yields the equation of the continuous normalized gradient flow :

∂τϕ =
1

2
∂2
xϕ− a(Uπ ∗ ϕ2)ϕ+ µ(τ)ϕ . (6.21)

Eq. (6.21) is norm-preserving, d
dτ (‖ϕ‖2) = 0, by construction. Thus, by multiplying

with ϕ, integrating over Ω and using Leibniz’ integral rule we find:
∫

Ω

ϕ∂tϕ =
1

‖ϕ‖2

d
dτ

(‖ϕ‖2)
!

= 0 =

∫

Ω

dx
{

1

2
ϕ∂2

xϕ− a(Uπ ∗ ϕ2)ϕ2

}
+ µ(τ)‖ϕ‖2

2 .

(6.22)
Upon partial integration, we obtain the value of the Lagrange multiplier along the
descent path:

µ(τ) =
1

‖ϕ‖2
2

∫

Ω

dx
{

1

2
(∂xϕ)2 + a(Uπ ∗ ϕ2)ϕ2

}
. (6.23)

This closes eq. (6.21). In Appendix C.2, a simple numerical method is devised to
solve eq. (6.21) and eq. (6.23), giving us access to the ground state wave function
for (1 + 1)-SP and PLAM.

Let us now assume the descent was successful such that at τ ∗ the descent led us
to the global minimum EGS = E[ϕGS] and Lagrange multiplier µGS ≡ µ(τ ∗). At this
point ∂τϕ

∣∣
τ=τ∗

= 0 and eq. (6.21) therefore reduces to:

µGSϕGS =

[
−1

2
∂2
x + a(Uπ ∗ ϕ2

GS)

]
ϕGS . (6.24)

We recognize this nonlinear eigenvalue problem as the stationary Schrödinger equation.
Clearly, one would have arrived at the same result by bringing ψGS into stationary
form, i.e. ψGS(x, t) = ϕGS(x)e−iµGSt and inserting into the time-dependent problem
(4.1). However, the optimization approach gives us additional inside into the physical
nature of the eigenvalue. In this formulation the eigenvalue coincides with the
Lagrange multiplier which in turn can be interpreted as the change of EGS induced
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by a change in the total mass. To see this, recall the total Lagrange functional of
the constrained optimization problem:

L[ϕ, µ(t)] = EGC[ϕ]− µ(t)M = E[ϕ] + µ(t)(N [ϕ]−M) (6.25)

which at the global minimum reduces to:

L[ϕGS, µGS] = EGS (6.26)

since ϕGS satisfies the constraint.

Let us parametrize the global minimum, i.e. have EGS(M), µGS(M) and ϕGS(M).
Taking the total derivative of EGS wrt. M then yields:

dEGS

dM
=

dL[ϕGS;µGS]

dM
=

δL

δϕGS

dϕGS

dM
+

∂L

∂µGS

dµGS

dM
+

∂L

∂M
. (6.27)

The first two terms vanish because µGS(M) and EGS(M) represent the global mini-
mum for all M by construction. Hence, we are left with:

dEGS

dM
=

∂L

∂M
= −µGS (6.28)

which is essentially the chemical potential.
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Figure 6.1: Evolution of densities and energies during gradient descent for both reduction
models and a ground state mass of MGS = 50 and a = 1. (A) depicts
different densities for (1 + 1)-SP. (B) illustrates the same situation under
strong confinement (PLAM) with ε = 10−2. (C/D) show the energy evolution
for (1 + 1)-SP, (C), and PLAM, (D), respectively. Both models realize an
energy minimum with an all positive density. Moreover the green line in
(C/D) indicates both reduction models satisfy the stationary virial theorem
(6.10) without the boundary term — a consequence of ϕGS’s exponential
decay.
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Figure 6.1 compares the results of an exemplary energy descent for (1+1)-SP and
PLAM assuming a ground-state mass of MGS = 50 and a = 1. Evidently, confining
matter in the transversal direction, i.e. PLAM, leads to a narrower ground state
compared to the (1+1)-SP ground state containing the same total mass. We quantify
this import observation in section 6.2.2.

As we mentioned in section 6.1.1 but also saw explicitly in the forgoing discussion
on the ground-state, ϕGS is, like any critical point of E[ϕ], a stationary state.
Therefore, ϕGS is in virial equilibrium given by eq. (6.10). As Figure 6.1 illustrates,
this is true for both reduction models even without the boundary term B of eq. (6.7).
The reason is quite simple: ϕGS decays exponentially fast in space implying B to be
negligible.

6.2.2 Properties of the (1 + 1)-FDM Ground State

So far we identified the virial equilibrium as a property of the FDM ground state
which holds true independent of the exact form of the long-range interaction. Here,
we want to draw attention to multiple other important characteristics of ϕGS. As
before we set a = const.

Hydrostatic Equilibrium Following the hydrodynamic considerations of chapter
3 for (3 + 1)-SP, it is easy to find identical results for one spatial degree of freedom
only. On balance, application of Madelung’s transformation reveals a one dimensional
Euler equation akin to eq. (3.27) and valid for both (1 + 1)-SP and PLAM. However,
further progress can be made since ϕGS is stationary and therefore has vanishing
velocity, v = 0. Thence, eq. (3.27) reduces to the equation of hydrostatic equilibrium
in which the quantum pressure force balances gravity to avoid further collapse. In
one spatial dimension this force equilibrium reads:

m∂xΦ =
~2

2ma2
∂x

(
∂2
x

√
ρGS√
ρGS

)
. (6.29)

We return to this dimensionfull equation shortly. For now, apply the unit convention
(2.52) to find:

− FG ≡ ∂xV =
1

2a2
∂x

(
∂2
x

√
ϕ2

GS√
ϕ2

GS

)
≡ FQ . (6.30)

Figure 6.2 compares the gravitational force FG and the quantum pressure force FQ
across the density of the ground state generated in Figure 6.1. We find excellent
agreement with eq. (6.30).

Mass-Size Relation Another interesting question one can ask is how the spatial
extent RGS of the ground state depends on its total mass MGS. For (1 + 1)-SP this
can be answered in two different ways, either by application of the scaling symmetry
(2.114) or by dimensional arguments. Here only the former is shown but the reader
is encouraged to consult Appendix C.3 for the attractive 1 derivation based on a
simple dimensional analysis for the hydrostatic equilibrium condition (6.29).

1 at least in the eyes of the author
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Figure 6.2: Force comparison according to eq. (6.30) across the extent of the ground
states generated in Figure 6.1. (A) (1 + 1)-SP and (B) PLAM.

Back to the objective of deducing the relation RGS(MGS). We start by defining
the ground state’s spatial extent RGS by:

∆ ·MGS =

∫ RGS

−RGS

dxϕGS(x)2 (6.31)

with ∆ as numerical constant close to unity, say ∆ = 0.99. Consider now two ground
states ϕ2

GS(x) and ϕ̃2
GS(x;λ) related by a scale transformation of magnitude λ. Their

respective ranges are set by the conditions

∆ ·MGS =

∫ RGS

−RGS

dxϕ2
GS(x) and (6.32)

∆ · M̃GS =

∫ R̃GS

−R̃GS

dxϕ̃2
GS(x;λ)

(2.114)
= λ4

∫ R̃GS

−R̃GS

dxϕ2
GS(λx) . (6.33)

Now perform the transformation x′ = x/λ in the second condition to find:

∆ · M̃GS = λ3

∫ R̃GS/λ

−R̃GS/λ

dx′ϕ2
GS(x′) . (6.34)

If we identify the integration limits in this expression with the spatial extent of the
unscaled state ϕGS(x) it follows:

R̃GS = λ−1RGS, M̃GS = λ3MGS . (6.35)

and consequently
R′GS

RGS

=

(
MGS

M ′
GS

) 1
3

⇒ RGS ∝M
− 1

3
GS (6.36)

which is the sought after mass-size relation.

Consider Figure 6.3 for the numerical results assessing the validity of eq. (6.36).
To arrive at the data shown, we computed the (1 + 1)-SP ground state with total
masses ranging from MGS = 10 − 1000. The associated range RGS was found by
numerical quadrature of ϕ2

GS/MGS up to the 99 percentile. Our numerical results
suggest:

RGS,SP = 2.83 ·M−0.34
GS (6.37)
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which is in good agreement with the arguments above.

For PLAM the situation is considerably more difficult as (i) the scaling symmetry
(2.114) is not satisfied and (ii) no closed form expression is available for the second
derivate of the gravitational potential Φ. An extension of our analysis, in particular
Appendix C.3, is therefore not immediate and we investigate the ground state
mass-size relation for PLAM only numerically. Again a power-law is found:

RGS,PLAM = 4.91 ·M−0.72
GS (ε = 10−2) . (6.38)

101 102 103

MGS

10−1

100

R
G

S

2.83 ·M0.34
GS

4.91 ·M0.72
GS

(1 + 1) SP

PLAM

Figure 6.3: Ground state mass-size relation for (1 + 1)-SP (blue) and PLAM (red) for
ε = 10−2. The numerical result for (1 + 1)-SP is in good agreement with the
considerations following a dimensional analysis.

Soliton Behavior The term soliton tends to be a loaded notion. Here, we mean
a nonlinear wave which is (i) stationary, i.e. has a time-independent envelope |ψ|2,
and (ii) preserves it’s form in interactions with other solitons.

Property (i) clearly holds for the FDM ground state. Testing (ii) is done by
conducting a collision study with the two ground-states generated in Figure 6.1. To
this end, we place two equal mass ground states into a domain of size L = 2MGS = 100
and boost each one to velocity v = 2π and −v respectively, cf. section 2.4 and [71]:

ψ0(x) = ϕGS

(
x+

L

4

)
eivx + ϕGS

(
x− L

4

)
e−ivx . (6.39)

Figure 6.4 illustrates the result for both reduction models. During the interaction
strong interference patterns emerge at the point of collision. However, once both
ground-states passed through each other, the post-collision density is still remarkably
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close to the initial matter distribution. Realize this behavior is highly non-trivial as
the evolution is nonlinear.

We conclude property (ii) is satisfied and we will use the term ground state and
soliton interchangeably and furthermore set MS ≡MGS and RS ≡ RGS.
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Figure 6.4: Equal mass ground state collision in (1 + 1)-SP (A) and PLAM (B). In
both models, the ground states interfere at x = 0 but retain their shape
once they passed through each other. The emerging interference patterns
are shown in the left insets. Comparison between the initial and final state
is illustrated in the right insets. These show good correspondence and we
conclude ground state-ground state collisions are form-preserving despite the
nonlinear interaction. This is the defining property of a soliton.
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6.3 Static Space-Time Dynamics

As explained in the beginning of this chapter, we investigate the long term dynamics
of both reduction approaches under simplified conditions.

Concerning the choice of initial conditions, chapter 5.3 already showed how the
existence of multiple overdense regions in the initial conditions leads to multiple high
density structures at late times which in a subsequent evolutionary phase undergo
mergers. Especially late time mergers complicate the dynamics unnecessarily as
they drive clusters out of equilibirum therefore increasing the required integration
time to re-relax into the asymptotic state. Naturally one, wants to minimize the
integration time to keep numerical errors under control, especially when the nonlinear
coupling constant is large. In this light, we choose to use artificial initial conditions
with a single spatially localized overdense reason as oppose to spatially delocalized
cosmological initial conditions.

More precisely, this section sets a = 1, assumes a zero initial peculiar velocity
and a gaussian initial density:

|ψ0(x)|2 = N e− x2

2σ2 , Arg[ϕ0(x)] = 0 , (6.40)

where the normalization constant N is determined numerically. The width of the
gaussian is chosen based on the stability considerations of section 3.2.2. Strictly
speaking, these only apply for (d + 1)-SP and not for PLAM. However, our focus
does not lie on exactly picking the critical length scale under confinement below
which matter is quantum mechanically stabilized. Instead getting a rough idea of the
size of this length scale is enough and we assume the (d+ 1)-SP Jeans wavelength
λJ to be a reasonable guess for PLAM as well. We then exceed λJ significantly to
make sure collapse really happens in both models. That said, set:

σ = 6 · λJ(a = 1)

2π
= 6 ·

√
2π

2π
≈ 4.24 . (6.41)

To assure periodicity of the initial conditions up to floating point precision, the box
size is chosen as L = 30 · σ ≈ 127.28.

6.3.1 (1 + 1)-Schrödinger-Poisson

Figure 6.5 illustrates the collapse under (1 + 1)-SP. The collapse proceeds violently
in the beginning of the simulation but results in a spatio-temporal evolution of |ψ|2,
(D), which develops no new features past t ≈ 10.

As expected the total energy (2.113) is preserved, cf. (E), and we find the system
to both virialize according to eq. (6.12), (F), and thermalize (G).

Notably, the boundary term in eq. (6.12) does not play a role in achieving
virial equilibrium. This is clear from considering the time evolution of |ψ|2: Under
(1 + 1)-SP no excess matter is ejected from the collapse site towards the boundaries.
Hence, ψ and its derivatives persist to be small at x = 0 and x = L.

The entropy evolution reveals eq. (6.15) not to be a strictly increasing function
which one might intuitively expect from Boltzmann’s H-theorem. However, this is
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Figure 6.5: Collapse of gaussian initial conditions (6.40) under (1 + 1)-SP for a = 1
in multiple observables. (A): Husimi’s phase space distribution (6.14) at
t = 980. (B/C): matter density |ψ|2 and spectrum |ψ̂k|2 at t = 980. (D):
spatio-temporal evolution of |ψ|2. Only a zoomed interval around the collapse
center is shown. (E): total, kinetic and potential energies as a function of
integration time. (F): deviation from the virial theorem (6.12). (G): Entropy
evolution, cf. eq. (6.15). All energies in (E/F) have been normalized to a
(1 + 1)-SP ground state of mass MS = L = 30σ, the spectrum of which is
shown as dashed black line in (C). Also note the logarithmic time axis in
(E)-(G)
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acceptable as the H-theorem only applies for ideal, collisional dynamics, which is
not the case here. Although strict monotony is not achieved, Wehrl’s entropy is still
maximized during the evolution.

Comparing virialization with the thermalization process indicates that the entropy
S(t) is a better suited measure to assess whether the relaxation of the total system is
completed: As we mentioned before, the physically observable density |ψ|2 does not
develop new features after a few collapse cycles and therefore attains its asymptotic
state already at t = 10. This is clearly reflected in the entropy evolution but not
in the deviation from the virial equilibrium in (G). A natural question is then how
the thermalization time scale depends on the system parameters, in particular the
nonlinear coupling strength a. We come back to this point shortly.

The asymptotic state is visualized in (A)-(C). In real space, (B), |ψ|2 develops
a central peak surrounded by strong fluctuations. Everything is quickly oscillating,
both spatially and temporally, and far from a stationary state. Also note the
unphysical asymmetry of the density distribution. This asymmetry originates from
tiny numerical errors adding up over the long integration time until the spatial
symmetry around the origin is broken. In (C) we compare the asymptotic spectrum
|ψ̂|2 with an exemplary soliton spectrum |ϕ̂|2 of mass MS = 30σ. Clearly, |ψ̂|2 is
heavily distorted compared to |ϕ̂|2. Thus, (1 + 1)-SP failed to relax into a single
solitonic core even under the simplified conditions studied here. This result is in
alignment with our previous study in [86].

Although (1 + 1)-SP fails to attain the sought after asymptotic FDM state there
is still something to be learned about the long term density distribution. After
all, the Wigner-Weyl formalism establishes a connection between (1 + 1)-SP and
a smoothed, classical phase space distribution governed by Vlasov-like dynamics.
Thus, the complementary, classical view point suggests to compare the results of
(1 + 1)-SP with predictions for one-dimensional gravitating collisionless systems, in
particular density profile models for dark matter haloes.

The Navarro-Frenk-White (NFW) profiles, [61] with ρNFW(|x|) ∝ |x|−1(|x|+α)−2

is the canonical choice for the spherically averaged halo mass density in d = 3
dimensions. For the d = 1 situation at hand [13] observed how the process of violent
relaxation drives the system towards power-law densities ρ(|x|) ∝ |x|−γ with γ ' 0.5.
Inspired by Einasto’s profile [26], the authors of [70] extended this by an exponential
suppression factor dominant past a cut-off radius r0. Following [70], we therefore
expect:

ρ̄(x) ∝ |x|−γ exp

(
−
(
r

r0

)2−γ
)
. (6.42)

Importantly, ρ̄(x) 6= |ψ|2: Realize we reentered the framework of Schrödinger’s
method by expecting eq. (6.42) — a classical prediction — to be a good model for
the dark matter density encoded in |ψ|2. As noted before, the Schrödinger-to-Vlasov
mapping is only accurate for Husimi’s distribution fH(x, k), i.e. a smoothed phase
space distributions, and statistical moments of it, see [76]. Consequently, it is the
marginal distribution, or 0th-order moment,

ρ̄(x) ≡ 1

2π

∫

Ω

dkfH(x, k)
[51]
=

1√
2πσ

e
− x2

2σ2
x ∗ |ψ|2 , (6.43)
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which must be compared to eq. (6.42). To spare us the necessity of choosing the
smoothing scale σx we consider the integrated halo mass M(r) rather than the mass
density directly. That said, one expects:

M(r)

Mtot

= − r1−γ
0

Mtot(2− γ)2

[
Γ

(
1

γ − 2

)
+ (2− γ)Γ

(
1 +

1

γ − 2
,

(
r

r0

)2−γ
)]

(6.44)

with Γ(x) and Γ(x, y) denoting the (incomplete) Gamma function.

Figure 6.6 illustrates the integrated mass of the final time density |ψ|2 from
Figure 6.5 together with a fit of eq. (6.44). The correspondence is convincing and
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6× 10−1

M
(r

)/
M

to
t

M(r) fit

(1 + 1)-SP at t = 1000

Figure 6.6: Comparison of the final integrated mass under (1 + 1)-SP and the classical
prediction, eq. (6.44), for one dimensional, collisionless, self-gravitating
systems

similar results were obtained by [31, 86]. Although the best fit value of γ = 0.58
is slightly too large with respect to the classical findings of [13, 70], it should be
emphasized that the analysis is also somewhat crude. For more reliable results an
ensemble of simulations should be considered.

Before proceeding with PLAM, let us return to the thermalization time tth and
investigate its dependence on the coupling strength a. To this end, we rerun the
experiment of Figure 6.5 for different values of a and extract tth from the entropy
evolution by computing the final entropy Sfinal as time average in 990 ≤ t ≤ 1000
and demanding S(tth) = Sfinal.

Consult Figure 6.7 for a comparison of all entropy curves with the red dots
designating the individual thermalization points. Also included is the case a = 0
for which eq. (4.1) reduces to the free Schrödinger equation. An analytical solution
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exists in this scenario and one can compute the entropy exactly:

Sfree = S[ffree] =
σx|Ω|
σ|f |

1√
Re[Ω] (1− Re[Ω])

(
1− log

2σx|Ω|
σ|f |

)
with

Ω =
1

1 + σ2
x

σ2f

, f = 1 +
it

2σ2
.

(6.45)

The good agreement between eq. (6.45) and the numerical data (black crosses) is
reassuring.
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Figure 6.7: Entropy evolution under (1+1)-SP for different values of the coupling strength
a. Red dots designate the extracted thermalization time found by demanding
S(tth) = Sfinal. The final value Sfinal corresponds to the average value of the
entropy in the interval 990 ≤ t ≤ 1000. Averaging is required as Wehrl’s
entropy is not a strictly monotonically increasing function as known from clas-
sical, collisionless gases but instead shows oscillations on top of its saturated,
final value. The solid black line corresponds to the entropy function of the
free Schrödinger equation given in eq. (6.45).

Plotting tth as a function of the coupling strength, Figure 6.8, reveals a power
law dependence over two orders of magnitude:

tth(a) = 3.01 · a−0.43 (6.46)
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Figure 6.8: Thermalization time of (1 + 1)-SP as a function of the coupling strength a.

6.3.2 PLAM

Next, we turn our attention to PLAM and rerun the experiment of section 6.3.1.
This requires us to choose a confinement strength ε. Since we are interested in a
lower dimensional approximation of (3 + 1)-SP, it is evident to investigate the strong
confinement regime, ε� 1. Other than this, no conditions are imposed on ε leaving
some arbitrariness in its numerical value. The results reported below were obtained
for ε = 10−2. Additional tests were conducted for ε = 10−1 yielding qualitatively
similar results.

Turning to Figure 6.9 proves PLAM dynamics to be significantly different from
(1 + 1)-SP. Firstly, the spatio-temporal density evolution in (D) illustrates that soon
after integration starts the gravitational collapse leads to an emission of excess matter
towards the boundaries. These matter lumps organize into a stable solitonic form
and collide, or more precisely pass through each other, at the boundaries at t ≈ 100 .
Around the same time, the earliest emitted matter chunks re-collide with the central
soliton. A slight, most likely numerically induced, difference in their velocity breaks
the symmetry of the problem, resulting in a drift of the high-mass soliton originally
situated at the box center. From this point forward, the dynamics is characterized
by multiple soliton-soliton interactions of different mass ratios. We find, the highest
mass soliton to slowly consume lower mass solitons until only a single one remains.
At the same time, the background fluctuations increase in magnitude up to O(1)
until the end of the integration.

The background fluctuation growth is also nicely visible in the phase space
distribution (A)-(C). Here multiple, ovally shaped soliton distribution are embedded
into the background matter field which slowly broadens in momentum direction over
the course of the integration. At t = 990 a single stable core immersed in a "sea of
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fluctuations" remains.

The energy evolution in (E) also follows our expectations. As the background is
not expanding, the total energy must be conserved which is readily verified by our
data (black line). In general, we observe a slow but steady conversion from potential
energy 〈V 〉 into kinetic energy 〈T 〉. This is plausible since the main contributor to
the kinetic energy is the emerging fluctuation field. Remember that 〈T 〉 depends
on the gradient of the wave function which obviously increases if higher amplitude
fluctuations are present. Peaks in the energy evolution, such as at t = 650, are
associated with soliton-soliton collisions.

Figures (F)-(G) show, as in the case of (1 + 1)-SP, how the system slowly
approaches the expected virial and thermal equilibrium. This time, however, achieving
virialization hinges on the boundary contribution B in eq. (6.12), simply because
significant mass travels across the boundary over the course of the integration.
Please note that without the correction term, the dynamics would depart from virial
equilibrium. Also note that the way we follow the virialization process is still not
perfect. For instance, the sudden jump in

|(2〈T 〉 − a〈x∂xV 〉+B)t|

at t = 250 is of course unphysical. Comparing with (D) reveals how matter is
moving across the boundary at this point, which constitutes a sudden change for the
boundary term. To account for these sudden changes, one would have to increase the
temporal resolution with which the time-average integral in eq. (6.2) is computed.
However, one doesn’t know in advance when these critical points will occur. All of
these problems can of course be addressed, but we refrain from doing so at this point
as we already identified the entropy to be better suited metric to assess relaxation.

This is again true in the present case, cf. (G). Compared to (1 + 1)-SP entropy
increases very slowly up to t = 850 after which only one soliton is present.

Two open question remain. Firstly, we tacitly called the final state to be a ground-
state soliton. It remains to be shown this is the case. Secondly, the spatio-temporal
evolution of |ψ|2 proves that these (supposedly) solitonic cores are quite mobile.
Hence, one must ask if the total momentum is actually preserved. Both aspects are
addressed in Figure 6.10, where we compare the spectrum of |ψ̂|2 at t = 1000 with
the spectrum of the best matching soliton and show momentum conservation up to 1
part 1000.

It should be noted that Figure 6.10 is not a fit but follows from manual adjustment.
Since (P)LAM has no scaling symmetry akin to eq. (2.114) for (1 + 1)-SP, a simple
rescaling of a reference ground state to a best fitting core mass is not possible. In
practice, the soliton mass was manually tweaked under the constraints (i) of a good
correspondence of |ψ̂k|2 with |ϕ̂k|2 and (ii) Etot/|EGS| > −1.

Obviously, one can rerun the simulation with different standard deviations of
the initial gaussian, and therefore different total masses, to check if the dynamics
changes qualitatively. It turns out this is not the case. In all conducted studies, the
behavior is identical to Figure 6.9: Multiple solitons get emitted during the first
collapse which then merge into a single core after sufficiently long integration time.
At the same time the fluctuating background increases in magnitude. Figure 6.11
depicts the asymptotic spectra of simulation runs with σ′ = 2/3σ and σ′′ = 1/3σ.
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Figure 6.9: Collapse of gaussian initial conditions (6.40) under strong confinement with
confinement strength ε = 0.01 for a = 1 in multiple observables. (A)-(C):
Husimi’s phase space distribution (6.14) at t = 8, 352, 990 respectively. The
distribution at t = 990 has been re-centered at the origin for convenience.
(D): Spatio-temporal evolution of |ψ|2. Compared to Figure 6.5C the entire
spatial domain is shown. Notice how multiple solitons merge into one while
the fluctuating background increases in magnitude up to O(1) (E): total,
kinetic and potential energies as a function of integration time. (F): deviation
from the virial theorem (6.12). Without addition of the boundary term, the
system would depart from virial equilibirum. (G): Entropy evolution, cf. eq.
(6.15). All energies in (E/F) have been normalized to a PLAM ground state
of mass MS = 50, cf. Figure 6.10. Also note the linear time axis in (E)-(G)
compared Figure 6.5E-G.

105



CHAPTER 6. ASYMPTOTIC DYNAMICS

10−1 100 101 102

k

10−26

10−22

10−18

10−14

10−10

10−6

10−2

102
|ψ̂
k
|2

|ψ̂k|2
|ϕ̂k|2 (M = 50)

0 200 400 600 800 1000

t

−1.0

−0.5

0.0

0.5

1.0

p

×10−3

Figure 6.10: Spectrum of the last PLAM wave function at t = 1000 together with a
ground state of mass MS = 50. This ground state was also used for the
energy normalization in Figure 6.9. Background fluctuations show up as
spectral disturbances below k ≤ 10. Given the extremely long integration
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Figure 6.11: Asymptotic PLAM spectra at t = 1000 together with best matching ground
state for smaller total mass inside the domain compared to Figure 6.10.
Insets show momentum conservation.

6.3.3 Self-Organization Processes in Nonlinear Dynamics

The observed self organization principle of (1 + 1)-FDM under strong confinement
is not new. In fact, [83] already showed how for a large class of focusing, local
nonlinearity’s of the NLSE perturbed uniform initial conditions have a single soliton
as dynamical attractor. More precisely, the perturbed initial conditions develop a
number of small mass solitons which subsequently merge into a single high-mass
soliton at late times. This phenomenon was coined soliton turbulence and it was
argued it is "thermodynamically favorable" for the system to develop in this particular
way.

The authors of [46] later put these findings on more theoretical grounds by
developing a statistical theory around a mean-field approximation of the nonlinear
Hamiltonian and the maximum entropy principle.

More recently, the problem of nonlocal interactions was considered in the context
of nonlinear optics by [65]. Numerical and analytical arguments showed that the
dynamics is mainly driven by the ratio between the interaction range R and the soliton
size RS. This is quite intuitive: If the interaction range is too large, matter far away
from a potential soliton, but still within interaction range, contributes significantly
to the convolution integral. Consequently, the delicate potential required to form
a soliton get’s averaged out by the surrounding fluctuations. Hence, we expect
soliton-turbulence-like behavior for RS > R. For the opposite case RS < R, [65]
found the system to organize "into a spatially localized incoherent structure" coined
incoherent soliton. Their results resemble our findings of section 6.3.1.
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To check if we can associate the PLAM and (1 + 1)-SP dynamics to the soliton
turbulence regime RS > R or the incoherent soliton regime RS < R we combine the
data of Figure 2.4 with the mass-size relation of Figure 6.3. Figure 6.12 illustrates
the situation for (1 + 1)-SP.

Here, two regimes need to be distinguished. Up to MS = L ≈ 3.5 the size of
the soliton is larger then half the domain size. This would violate the periodicity
of ψ and is therefore not realized. Above this minimum mass the linearly growing
interaction range of the (1 + 1)-SP interaction kernel dominates the SP-soliton size.
Following [65], we expect the generation of incoherent solitons and the results of
section 6.3.1 support this claim.
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soliton size from gradient descent
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Figure 6.5

Figure 6.12: Comparison of the relations RS(MS) (blue line), i.e. the mass-size relation
of the ground state soliton of (1 + 1)-SP, and RSP(L) (black line), i.e.
the interaction range of (1 + 1)-SP as a function of the box size L. Blue
crosses correspond to the numerically determined soliton sizes of Figure
6.3. Choosing a box size L implies a particular interaction range RSP. For
instance, choosing L ≈ 127, as done for Figure 6.5, yields RSP ≈ 65 found at
the location of the black arrow. Since there is no soliton of size RS > 65, we
expect the gravitational potential of any potential soliton to get averaged
away due the convolution with the surrounding matter field. The region for
which RS > RSP would be satisfied (red) is inconsistent with the periodicity
of the domain, i.e. the soliton would be larger than the box.

The situation changes under strong confinement shown in Figure 6.13. Here
the interaction range is bounded by it’s finite free space limit of limL→∞RPLAM =
RLAM ≈ 0.1. This allows for an intermediate soliton mass regime which is consistent
with soliton turbulence requirement formulated by [65]. The confined systems
of Figure 6.10 and 6.11 then organize into solitons with final masses satisfying
RS/RPLAM = 3− 5.

By the above reasoning PLAM should also allow for incoherent soliton dynamics
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(yellow part of Figure 6.13). We tested this by increasing the total box mass well
into this regime. Note this does not mean the system is forced to generate a single
incoherent soliton of mass MS ≈ L for large enough t. It is still possible to form
lower mass ground states within the soliton turbulence regime and have more matter
bound in the fluctuating background. By rerunning the experiment of section 6.3.2
we again find soliton turbulence. More investigation is required but it seems if the
system is able to form both solitonic cores or incoherent solitons the former is favored.
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Figure 6.9 - 6.10

Figure 6.13: Comparison of the relations RS(MS) (red line), i.e. the mass-size relation
of the ground state soliton of PLAM in eq. (2.106), and RPLAM(L) (black
line), i.e. the interaction range of PLAM as a function of the box size L,
eq. (6.38). Red crosses correspond to the numerically determined soliton
sizes of Figure 6.3. In contrast to Figure 6.12, we find domain sizes which
are consistent with the boundary conditions and satisfy RS > RPLAM. Here
soliton turbulence is achievable. For instance, consider the situation of
Figure 6.9 (black dots) where a L ≈ 127 domain induces an interaction range
of RPLAM ≈ 0.1. Given this situation, the analysis of Figure 6.10 identified
a final soliton of mass MS = 50 implying RS = 0.3 by eq. (6.38). Hence,
RS/RPLAM = 3 as one expects for "soliton turbulence".

6.4 Expanding Space-Time Dynamics

We now allow space-time to expand. Although the exact dynamics leading to the
asymptotic configuration of the system might be different, the arguments of section
6.3.3 stay intact and one should not expect changes in the final, thermalized states
of (1 + 1)-SP and PLAM if attained.

The "if attained" qualification becomes clear once we realize that the, now time-
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dependent, coupling strength a(t) is small, i.e a � 1, for a significant portion of
the integration time. We already saw for (1 + 1)-SP how a small coupling strength
implies longer relaxation times, cf. Figure 6.8, and since thermalization in PLAM at
a = 1 took long anyways, cf. Figure 6.9G, we should not expect fully relaxed matter
configurations.

To assure comparability with the static space-time discussion in section 6.3, the
same initial conditions are employed. By choosing a reasonable starting redshift of
z = 100, these still proof to be gravitationally unstable:

σJ =
λJ(z = 100)

2π
= 2.24 < σ = 4.24 (6.47)

and collapse should set in right away, however, less violent as for a = 1.

6.4.1 (1 + 1)-Schrödinger-Poisson

Figure 6.14 depicts the collapse under (1 + 1)-SP. The less violent collapse allows to
clearly distinguish recurring phases in the evolution. Focusing on the spatio-temporal
density evolution in (D), we find central matter to contract until z = 70 when the
core region reaches its peak density. The system responds to this event by pushing
matter outward while at the same time outer matter is still flowing towards the
center. Unfortunately, the interaction range is too large so that expelled density
clumps return to the center around z = 20, superposing with yet another "radiation
wave" which originated from the second core collapse at z = 36. These phases recur
in ever smaller time intervals and are confined to a region in space of decreasing
size. Also note that the total energy in (E) is not a conserved quantity anymore, see
section 2.4.

Virialization, (F), reaches a plateau around z = 20 and is potentially the limit of
our finite resolution numerics. Again, the boundary term is insignificant since no
matter travels across the domain boundaries.

Concerning thermalization, (G), we find an increase in entropy after the first
collapse which gets superposed by oscillations past z = 20. Since these oscillations
still show a growing baseline for z ≤ 10 we deem the thermalization process to be
not fully completed.

For assessment of the (almost) asymptotic state, turn to Figure 6.15 in which
the final spectrum at z = 0 is compared with a MS = L (1 + 1)-SP ground state
for a = 1. In alignment with Figure 6.5, we find significant distortions from the
smoothly decaying soliton spectrum. This is reassuring given that the interaction
range is unaltered under space-time expansion and should therefore still dominate
the spatial extent of the soliton.
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Figure 6.14: Collapse of gaussian initial conditions (6.40) under (1 + 1)-SP in a FLRW
universe with Ωm = 0.3 , ΩΛ = 1− Ωm illustrated in multiple observables.
(A)-(C): Husimi’s phase space distribution (6.14) at z = 70 (first collapse),
z = 18 and z = 1. (D): Spatio-temporal evolution of |ψ|2. Only a zoomed
interval around the collapse center is shown. (E): total, kinetic and po-
tential energies as a function of integration time. Note how total energy
is not conserved anymore. (F): deviation from the virial theorem (6.12).
(G): Entropy evolution, cf. eq. (6.15). All energies in (E/F) have been
normalized to a (1 + 1)-SP ground state of mass MS = L = 30σ, cf. Figure
6.15.
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Figure 6.15: Final (1 + 1)-SP spectrum at z = 0 together with total mass ground state.
Inset shows momentum conservation.

6.4.2 PLAM

Redoing the same experiment for PLAM with ε = 10−2 yields Figure 6.16. The
time to first collapse is considerably longer compared to (1 + 1)-SP and is reached
at z = 18. Notice how in the evolution of |ψ|2 outer matter at x = 50 or x = 70
is essentially untouched throughout the integration time, contrary to the overall
contraction observed in 6.14. This is a clear imprint of the small interaction range
under confinement due to which no significant attracting force acts on the outer
regions of the initial gaussian.

Similar to (1 + 1)-SP, each core collapse leads to an emission of matter radiation.
Interestingly, and contrary to the static space-time evolution under confinement,
this excess matter does not organize into outward traveling solitons but is more
comparable to small scale oscillations.

As was the case for (1+1)-SP, virialization cannot be improved past the first couple
of core collapse cycles and the entropy evolution indicates only partial thermalization
at z = 0. One should therefore not expect to find a perfect solitonic core in the
domain center. Interestingly, the correspondence of the sameMS = 50 PLAM ground
state already used under static conditions in Figure 6.10 matches the final spectrum
at z = 0 still quite nicely. We show this comparison in Figure 6.17. The momentum
evolution in Figure 6.10 also indicates that with the soliton-soliton interactions gone,
the total momentum is well better preserved compared to the static case.
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Figure 6.16: Collapse of gaussian initial conditions (6.40) under PLAM for ε = 10−2 in
a FLRW universe with Ωm = 0.3 , ΩΛ = 1 − Ωm illustrated in multiple
observables. (A)-(C): Husimi’s phase space distribution (6.14) at z = 70
(first collapse), z = 18 and z = 1. (D): Spatio-temporal evolution of |ψ|2.
Only a zoomed interval around the collapse center is shown. (E): total,
kinetic and potential energies as a function of integration time. Note how
total energy is not conserved anymore. (F): deviation from the virial theorem
(6.12). (G): Entropy evolution, cf. eq. (6.15). All energies in (E/F) have
been normalized to a PLAM ground state of mass MS = 50, cf. Figure 6.17.
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Figure 6.17: Final PLAM spectrum at z = 0 together with the same soliton spectrum
already used in Figure 6.10. Although thermalization is clearly not completed
according to Figure 6.16G the correspondence between both spectra is good.
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Chapter 7

Conclusion and Perspectives

"It is finished!"

—Jesus Christ

7.1 Summary of Results

Purpose of this thesis was to investigate to what extend lower-dimensional repre-
sentations of (3 + 1)-FDM can be employed to map three dimensional phenomena
to only one spatial degree of freedom while benefiting from the significantly higher
resolution achievable in (1 + 1)-dimensions.

We found the lower dimensional representation of FDM depends on how matter
is organized in the orthogonal subspace. Whereas a uniform matter distribution
yields the standard (1 + 1)-SP equation, strong confinement lead to the novel PLAM
reduction which behaves at far field identical to the canonical 1/r-interaction known
from (3 + 1)-SP. (1 + 1)-SP, on the other hand, underlies an infinite range interaction
inducing constant particle-particle forces independent of the spatial separation. In
both cases the nonlocal, nonlinear Schrödinger equation (NLSE) with convolution
type interaction term allowed for a unified description of both reduction models.
Symmetries, in particular (d+ 1)-SP’s scaling symmetry were revisited and discussed.

Contrasting FDM and CDM in linear theory emphasized the importance of Heisen-
berg’s uncertainty principle which gave rise to a natural stabilization mechanism
against gravitational collapse of overdense matter perturbations. In the hydrody-
namic Madelung picture of FDM this stabilization mechanism can be understood as
a quantum pressure term due to which the system reacts with an increased velocity
dispersion once matter is to strongly confined in x-space. On the other hand, the
dynamics on scales significantly larger than the stabilization length — the comoving
Jeans scale — is expected to follow predictions of linear CDM theory, in particular
the applicability of the linear growth function.

Extending the analysis to the highly nonlinear regime demanded us to formulate
a unified numerical method applicable for both reduction models under arbitrary
background cosmologies. In this context, numerical challenges associated with the
non-autonomous, nonlocal NLSE, especially the explicit time dependence and the
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nonlinear interaction, were emphasized and possible solutions shown. A combination
of exponential operator splitting and Magnus series truncation yielded SM[2], a
second-order, explicit approximation to the full fledged time evolution operator.
Appendix B.2 analyses its convergence and stability in detail. Furthermore, Appendix
B.1 introduces a promising fourth order scheme for future works.

Investigation of a high-resolution ensemble of cosmological simulations under
(1 + 1)-SP revealed a number of interesting physical and systematic effects.

Firstly, as one would expect, Heisenberg’s uncertainty principle remains important
even under nonlinear evolution and is responsible for a sharp suppression of matter
power below a time-dependent spatial scale. By evaluating the velocity dispersion of
the FDM matter distribution this scale could be identified and was found to be in
good agreement with the large k-behavior of the matter power spectrum.

Secondly, large scale modes grow identically to the CDM prediction for most of
the integration time. For small redshifts, however, an unphysical power suppression
was observed and its connection to the Heisenberg/de-Broglie scale discussed. On
balance, FDM proofs to be extremely demanding in terms of spatial resolution and
one typically needs to resolve distances far below the scales of interest to obtain
reliable results — an observation which implies significant numerical problems for
d > 1 simulations. Nevertheless, even if all features are spatially resolved, there is
still a significant loss of power which we conjectured to be a result of an insufficient
box size and an inappropriate time increment. Further work is required to obtain
control over this systematic effect which also showed up in the mode correlation
matrix as a phase of de-correlation at small z.

Thirdly, the real-space ensemble evolution indicated the failure of (1 + 1)-SP to
realize the most prominent feature of (3 + 1)-SP, i.e. the existence of a asymptotic
soliton state. We emphasize a soliton does exist for (1 + 1)-SP but it is not attained
under real time evolution neither per realisation nor in a statistical sense.

To understand why (1 + 1)-SP fails to realize a lower dimensional analogue of the
(3 + 1)-FDM asymptotic state and how PLAM behaves in this respect a thorough
numerical study under simplified conditions, i.e. artificial, cold initial conditions and
simplified background cosmologies, was conducted. In this context, adherence to
the quantum virial theorem and the maximum entropy principle were discussed as
possible relaxation mechanism. Moreover, we extended the formulation of the former
to periodic domain conditions.

Irrespective of the considered reduction model or the expansion behavior of the
background, we observed the system to maximize the entropy S associated with
Husimi’s phasespace distribution. Once S is close to saturation no new features
emerge in the FDM wave function indicating the arrival in the asymptotic equilibrium
state. That said, the attained equilibrium configuration is quite different for (1+1)-SP
and PLAM.

In accordance with the aforementioned cosmological simulations (1 + 1)-SP still
fails to realize the sought after FDM soliton. Instead, a strongly oscillating halo
structure is found with an integrated mass function well described by classical CDM
predictions. In contrast, FDM does attain a final soliton state. More precisely,
after first collapse one observes FDM to organize into multiple stable solitons which
subsequently merge into a single high-mass soliton through multiple soliton-soliton
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interactions of different mass ratios. Simultaneously, a delocalized radiation field
emerges embedding the final soliton.

Inspired by considerations in nonlinear optics, we argued the essentially infinite
range of the (1 + 1)-SP interaction kernel to be responsible for the discrepancy in the
equilibrium configurations. In general, one can only generate solitons if the range R
of the non-local interaction is smaller than the spatial extent of the soliton RS. If this
condition is violated, it is not possible for the potential soliton to feel its intricate
confining potential due to smoothing behavior of the convolution-type interaction in
the NLSE. In fact, we found the condition RS > R to be violated for all conceivable
scenarios under (1 + 1)-SP resulting in "incoherent soliton" dynamics. PLAM,
however, satisfies RS > R for a wide range of periodic domain sizes. Consequently,
the system follows "turbulent soliton dynamics" and organizes itself into a final
high-mass structure with RS/R ≈ 3 − 5. These findings keep their validity even
under flat space FLRW expansion although the thermalization processes cannot be
fully completed in the given integration time.

7.2 Future Extensions

Evidently, the physical problem and its numerical treatment, as it was discussed in
this thesis, are by no means exhausted and the possibilities for further investigations
and optimizations are rather diverse. A short overview is given below.

7.2.1 Next Generation Numerics

As discussed in the cosmological context of chapter 5 but also more abstractly
in Appendix B.2 SM[2], i.e. the approximation of the time evolution operator,
struggles to approximate the true evolution under space-time expansion past z = 10.
Retaining it as integrator means choosing extremely small time increments which
quickly becomes intractable especially for large problems. A possible path forward
is the application of BM[4], i.e. the optimized fourth order scheme presented in
Appendix B.1. In fact, preliminary results in Appendix B.2 indicate it to be superior
compared to SM[2].

Another interesting extension might be to partially embed a lower order splitting
into BM[4], see [6], therefore gaining access to a cheap error estimate per time step
with which the time increment can be adjusted dynamically.

We also note BM[4] circumvents the difficulties of an explicitly time dependent
Hamiltonian by promoting time to an additional dependent variable akin to the
spatial coordinate. This has to be contrasted with SM[2]’s approach of truncating
and approximating the Magnus expansion of the time evolution operator. Although
mathematically sound, extensive tests will be required to assess if BM[4]’s simple
approach is competitive with higher order approximations of Magnus’ expansion. In
the light of [14] we conjecture this might not be the case.

Concerning the spatial discretization, the aforementioned high-resolution demand
of FDM makes a spatially non-uniform grid almost a necessity. This is especially
true if one wants to achieve cosmological scale simulations with d > 1 dimensions.
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A variety of approaches to achieve non-uniform grids are conceivable. For instance,
the seminal work of [67] employed a sophisticated adaptive mesh refinement (AMR)
technique.

We already alluded to the possibility of using B-splines in the main text. B-splines
constitute finite support polynomials allowing a fast and accurate computation of
expansion coefficients by means of gaussian quadrature, see [18]. One then expands
the wave function in this localized basis and achieves higher spatial resolution by
either increasing the number of basis functions or more importantly stretching and
compressing the individual supports of each spline. This can of course be done
adaptively throughout the integration. To assess where higher spatial resolution is
required [67] employed a refinement technique of the finite element (FEM) approach,
[55], and since a B-spline discretization is conceptionally close to FEM we believe
the very same approach can also be used.

At last, application of nonuniform FFTs (NUFFTs) is worth mentioning since it
(i) requires the least implementational effort, therefore minimizing surface area for
potential bugs, and (ii) implements periodic boundary conditions by construction. In
fact, the implementation of the present work is essentially compatible with NUFFTs.
The only additional work required would be to devise a spatial node placement
strategy akin to (or maybe exactly as) [55] for FEM. Also note that FFTs in the
present work contribute the most expensive part of the integration step. This stays
valid for NUFFTs as well which are typically implemented by a series of uniform
FFTs. Since FFTs are a standard problem in scientific computing, off-the-shelf
routines exist for shared/distributed memory parallelization or even accelerator cards
such as GPUs. That said, the NUFFT approach should also scale to large problems
with rather limited effort.

7.2.2 Nonlocal NLSE as Distinct Physical Problem

Although somewhat artificial from a cosmological perspective, the results of this
thesis should have made clear that the NLSE with a nonlocal interaction term is an
intriguing physical system in its own right and thus worth exploring.

Of particular interest are interaction models which allow for a free adjustment of
their interaction range, such as PLAM, and we conjecture to find a dynamical phase
transition from the regime of incoherent soliton dynamics to a phase of standard
soliton turbulence. Recall only the latter was probed in this work by demanding
strong confinement in order to realize an effective (1 + 1)-reduction of FDM.

It might also be worth adding a local nonlinearity ∝ |ψ|2 to the Hamiltonian and
then study the transition between local and non-local interaction dominance.

From a theoretical point of view it is desirable to understand the thermalization
aspect of the long term dynamics. It was remarked before that a statistical theory
for the NLSE and a class of local interactions already exists. Naturally, one can ask
if these arguments can be extended to the nonlocal case as well.
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7.2.3 Towards (3 + 1)-FDM — Spherical Symmetry

Obviously the ultimate goal is to conduct cosmological simulations of (3 + 1)-FDM
— a formidable task. A first conceptional step is to impose additional symmetries
on the (3 + 1) wave function ψ(x, t) and its self-consistent potential V (x, t), in
particular spherical symmetry, which allows us to implement a 1/r-interaction with
an effectively one dimensional model. The following discussion closely follows the
arguments presented in [24].

First note under spherical symmetry only the azimuthal and polar direction
are periodic whereas the radial distance should be geometrically unconstrained.
Our point of departure is therefore the nonlocal NLSE with the free space three
dimensional Laplace Green’s function on an unbounded domain:

i∂tψ =

[
−1

2
4+ a(t)

(
Gfree
43
∗ |ψ|2

)]
ψ , x ∈ R3 . (7.1)

Assuming ψ(x, t) = ψ(r, t) and V (x, t) = V (r, t) this is equivalent to the PDE
representation:

i∂tψ =

[
− 1

2r2

∂

∂r

(
r2 ∂

∂r

)
+ a(t)V [|ψ|2]

]
ψ ,

1

r2

∂

∂r

(
r2∂V

∂r

)
= |ψ|2 ,

r ∈ R+\{0} (7.2)

supplemented with asymptotic boundary conditions:

∂rψ(0, t) = ∂rV (0, t) = 0 , lim
r→∞

ψ(r, t) = 0 , lim
r→∞

rV (r, t) =
1

4π
. (7.3)

Here the first two conditions enforce regularity at the origin. We emphasize the
radial Poisson equation in eq. (7.2) is well defined without further compatibility
conditions. This was not the case under periodic conditions, see discussion around eq.
(2.62). Consequently, the normalization of the wave function can be freely chosen.

To transform eq. (7.2) into a more familiar form define:

ξ(r, t) = 2
√
πrψ(r, t) , U(r, t) = 4πrV (r, t) , (7.4)

recasting eq. (7.2) into:

i∂tξ =

[
−1

2
∂2
r +

a(t)

4πr
U(|ξ|2)

]
ξ ,

∂2
rU =

1

r
|ξ|2 ,

r ∈ R+\{0} (7.5)

alongside:

ξ(0, t) = U(0, t) = 0, lim
r→∞

ξ(r, t) = 0, lim
r→∞

U(r, t) = 1 . (7.6)

Once eq. (7.5) is solved for ξ and U the original wave function ψ and potential V
follow from inversion of eq. (7.4) for r > 0 and the first derivative of ξ and U at
r = 0:

ψ(r, t) =
1

2
√
π

{
ξ(r,t)
r

r > 0

∂rξ(r, t) r = 0
, V (r, t) =

1

4π

{
U(r)
r,t

r > 0

∂rU(r, t) r = 0
, (7.7)
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where validity of the second case is readily seen by taking the derivative of eq. (7.4).

For practical purposes eq. (7.5) is truncated on a finite domain Ω = (0, R) and
r = R is interpreted as spatial infinity. Thus the free space conditions in eq. (7.6)
become inhomogeneous Dirichlet conditions:

ξ(0, t) = U(0, t) = 0, ξ(R, t) = 0, U(R, t) = 1 . (7.8)

From a numerical perspective it is beneficial to work with homogeneous Dirichlet
boundaries as this allows for a sine-pseudospectral spatial discretization which imple-
ments the boundary conditions naturally. Hence, [24] proposes the homogenization:

Ū(r, t) = U(r, t)− r

R
, r ∈ Ω̄ . (7.9)

The radial, truncated, coupled PDE system then takes the form:

i∂tξ =

[
−1

2
∂2
r + a(t)

(
1

4πr
Ū(|ξ|2) +

1

4πR

)]
ξ ,

∂2
r Ū =

1

r
|ξ|2 with

x ∈ Ω (7.10)

ξ(0, t) = U(0, t) = 0, ξ(R, t) = Ū(R, t) = 0 . (7.11)

For the sake of brevity further informations on the sine-pseudospectral discretization
are omitted, see [24].

In principle SM[2] is directly applicable for integrating eq. (7.10). However,
to avoid matter radiation from travelling to r = R, potentially inducing reflection
artefacts within the integration time, it is customary to add a static but complex
absorbing potential ϕ(r) to the Hamiltonian:

i∂tξ =

[
−1

2
∂2
r + a(t)

(
1

4πr
Ū(|ξ|2) +

1

4πR

)
− i

2
ϕ(r)

]
ξ ,

ϕ(r) =
Φ

2

[
tanh

(
1

∆
(r − rs)

)
+ 1

]
Θ(r − rp) ,

x ∈ Ω , (7.12)

where the Heaviside function Θ(x) forbids any matter absorption inside the physical
domain Ωp = (0, rp) ≡ (0, 4/5R). rs denotes the radius at which ϕ drops to its
half-amplitude value Φ/2. We set rs based on the numerical value of the absorption
width ∆, i.e. rs = rp + 5∆.

Back to the modification of SM[2], in particular the potential subproblem con-
tributing one evolution operator to the splitting method:

i∂tξ =

[
a(t)

(
1

4πr
Ū
[
|ξ|2
]

+
1

4πR

)
− i

2
ϕ(r)

]
ξ . (7.13)

Recall for Φ = 0 this equation could be solved exactly since |ξ|2 was a conserved
quantity. This is not true anymore and we have:

d
dt
|ξ|2 = −ϕ(x)|ξ|2 ⇒ |ξ|2 = |ξ0|2e−ϕ(x)t (7.14)
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and

ÛU(∆t) = exp

(
−i
∫ ∆t

t

dt′a(t′)

{
1

4πr
Ū
[
|ξ(t)|2e−ϕ(x)t′

]
+

1

4πR

}
− ϕ(x)

2
∆t

)

(7.15)
as first term truncation of the Magnus expansion for the exact operator ÛU(∆t).
Following the arguments of section 4.3 this is approximated by the midpoint method:

ÛU(∆t) = exp

(
−i∆ta

(
t+ ∆t

2

){
1

4πr
Ū
[
|ξ(t)|2e−ϕ(x) t+∆t

2

]
+

1

4πR

}
− ∆t

2
ϕ(x)

)

(7.16)
completing the required modification of SM[2]. Note the exponential attenuation of
ξ due to the last term in eq. (7.16).

Clearly, one can now depart for an in depth analysis of the radial model for various
initial conditions, parameter choices and expansion models. Here, only preliminary
result for static space-time conditions, i.e. a = 1, and an ensemble of different
gaussians varying in variance and mass are reported.

Figure 7.1 depicts the early evolutionary stages of the same mass and equal
variance gaussian used for the (1+1)-SP and PLAM analysis in Figure 6.5 and 6.9
respectively. Around t = 10 the initial matter distribution is only slightly perturbed
by small scale oscillations traveling outward. This effect magnifies considerably at
t ≈ 20 when a continuous flux of matter has widened the spatial matter distribution
up to the absorption region (black). The delocalized distribution is then used by
radiation waves as propagation medium. Note Figure 7.1 depicts r2|ψ|2 to combat
the effect of geometrical dilution.

At last, Figure 7.2 investigates the asymptotic state of an ensemble of N = 20
gaussians of different mass and variance. The data reported was obtained by rescaling
the final matter densities at t = 100 by application of eq. (2.114) to a common peak
density at r = 0 and subsequently taking the arithmetic mean.

The resulting matter distribution clearly shows a core-halo structure with a core
region well described by a (3 + 1)-SP soliton (black, dashed line) and an approximate
NFW halo profile ∝ r−3. In fact, this turns out to be true not just for the entire
ensemble but for each individual realisation. The halo distribution shows mid-sized
distortions from a perfect power law and we conjecture this is the result of reflection
effects at the absorbing potential. More investigation will be required to assess this
behavior.

Nevertheless, the preliminary results are satisfactory and in good alignment with
the full (3 + 1)-dimensional phenomenology. That said, imposing radial symmetry
deprives the system of a potentially important relaxation mechanism, namely the
emission of quantum vortices, [60]. These should carry away turbulent kinetic energy
and, due to subsequent emission of ever smaller vortices, implement an energy cascade
very much like it is known from Kolmogorov’s turbulence theory. Allowing the system
to form such vortices could potentially decrease the thermalization time. This is
especially important for expanding space-time conditions for which the integration
time is roughly five times smaller compared to the static scenario investigated in
Figure 7.2.
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Figure 7.1: Gravitational cooling for the gaussian initial conditions of Figure 6.5 and
Figure 6.9. Note how matter waves propagate outward until they experience
exponential absorption past rs.
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Figure 7.2: Final average density of N = 20 gaussian initial conditions of different masses
and widths rescaled by eq. (2.114). The distinct FDM core-halo structure is
apparent.
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Appendix A

Fuzzy Dark Matter from First Principles

A.1 Derivation of Periodic Greens Functions

We sketch the derivation of the Green’s functions (2.76) - (2.78). For more details
consult [59]. The starting point is eq. (2.64):

Gπ
43

(x,x′) =
1

L1L2L3

∑

‖n3‖>0

−1

k2
3

eik3·(x−x′) , (A.1)

with n3 = (n,m, l)ᵀ ∈ Z3, k3 ∈ R3, (k3)i = 2π
Li

(n3)i and Ω = [0, L1]× [0, L2]× [0, L3].
The series excludes n3 = (0, 0, 0)ᵀ. We first note the spectrum is spherical symmetric
around k3 = 0. Therefore, expand the exponentials in terms of trigonometric
functions, carry out the product and drop all factors involving a sin-function. The
last step follows by symmetry if summed over all of Z3. One finds:

Gπ
43

(x,x′) =
8

L1L2L3

∞∑

n=0

∞∑

m=0

∞∑

l=0

{
−γnml

k2
n + k2

m + k2
l

× cos (kn(x1 − x′1)) cos (km(x2 − x′2)) cos (kl(x3 − x′3))

} (A.2)

and

γnml =





0 n = m = l = 0
1
4

n = m = 0 ∨ n = l = 0 ∨m = l = 0
1
2

n = 0 ∨m = 0 ∨ l = 0

1 otherwise

. (A.3)

One Dimensional Kernel Set L2 = L3 = 1 and m = l = 0. Eq. (A.2) then
reduces to

Gπ
41

(x1, x
′
1) =

2

L1

∞∑

n=1

−1

k2
n

cos (kn(x1 − x′1)) . (A.4)

Using the limit, [36]:
∞∑

n=1

cosnx

n2
=
π2

6
− π|x|

2
+
x2

4
, (A.5)
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with x = 2π
L1

(x1 − x′1) one arrives at:

Gπ
41

(x1, x
′
1) =

1

2
|x1 − x′1| −

1

2

[
(x1 − x′1)2

L1

+
L1

6

]
. (A.6)

Two Dimensional Kernel Set L3 = 1 and l = 0. Eq. (A.2) then reduces to:

Gπ
42

(x⊥,x
′
⊥) =

8

L1L2

∞∑

n=0

∞∑

m=0

−γnm0

k2
n + k2

m

cos (kn(x1 − x′1)) cos (km(x2 − x′2)) , (A.7)

where x⊥ = (x1, x2, 0)ᵀ. Now, split the double series into a contribution with m = 0
and a remainder series, use the definition of γnm0 and exploit symmetry to arrive at:

Gπ
42

(x⊥,x
′
⊥) =

2

L1L2

∞∑

n=1

−1

k2
n

cos (kn(x1 − x′1))

− 2

L1L2

∞∑

m=1

cos (km(x2 − x′2))
∑

n∈Z

1

k2
n + k2

m

cos (kn(x1 − x′1))

(A.8)

=
1

L2

Gπ
41

(x1, x
′
1)

− 2

L1L2

∞∑

m=1

cos (km(x2 − x′2))
∑

n∈Z

1

k2
n + k2

m

cos (kn(x1 − x′1))
.

(A.9)

Recall for functions f : R → R which are sufficiently smooth and decay quickly,
e.g limx→∞(1 + x)2 (|f ′′(x)|+ |f ′(x)|) = 0, Poisson’s summation formula (PSF) is
applicable. For symmetric f(t) the PSF reads:

∑

n∈Z

f(n) cos(Tn) =
∑

N∈Z

∫ ∞

−∞
dtf(t) cos(t(2πN + T )) . (A.10)

The inner series over Z in eq. (A.9) can be recast into this form if one sets:

T =
2π

L1

(x1 − x′1) and f(t) =
L2

1

2π2

1
(
L1

L2
m
)2

+ t2
. (A.11)

Moreover, it holds: ∫ ∞

−∞
dt

cos(ta)

b2 + t2
=
π

b
e−b|a| , (A.12)

so that with a = 2πN + T and b = L1

L2
m the series takes the form:

∑

n∈Z

1

k2
n + k2

m

cos (kn(x1 − x′1)) =
L1L2

4πm

∑

N∈Z

e−km|NL1+x1−x′1| (A.13)

and consequently:

Gπ
42

(x⊥,x
′
⊥) =

1

L2

Gπ
41

(x1, x
′
1)− 1

2π

∑

n∈Z

∞∑

m=1

e−km|NL1+x1−x′1|

m
cos (km(x2 − x′2)) .

(A.14)
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Now recall the series expansion of the complex, natural logarithm and take its real
part:

Re [log(1− z)]
|z|<1
= −

∞∑

m=1

Re [zm]

m
= −

∞∑

m=1

|z|m
m

cos (mArg[z]) . (A.15)

By identification with eq. (A.14), it must hold:

|z| = e
− 2π
L2
|NL1+x1−x′1| < 1, Arg[z] =

2π

L2

(x2 − x′2) . (A.16)

On the other hand:

Re [log(1− z)] =
1

2
[log(1− z) + log(1− z∗)] =

1

2
log
(
1− 2Re[z] + |z|2

)
. (A.17)

Collecting these results and inserting them into eq. (A.14) yields:

Gπ
42

(x⊥,x
′
⊥) =

1

L2

Gπ
41

(x1, x
′
1)

+
1

4π

∑

N∈Z

log

(
1− 2e

− 2π
L2

∣∣NL1+x1−x′1
∣∣
cos

(
2π

L2

(x2 − x′2)

)

+ e
− 4π
L2

∣∣NL1+x1−x′1
∣∣)

.

(A.18)

Three Dimensional Kernel No initial simplifications are possible for d = 3 and
we need to work with eq. (A.2) directly. In analogy with the treatment for d = 2,
split the l-sum into a l = 0 and l > 0 contribution, use γnml as well as the symmetry
of the spectrum in the remainder series to extend the latter over all of Z:

Gπ
43

(x,x′) =
8

L1L2L3

∞∑

n=0

∞∑

m=0

∞∑

l=0

{
−γnml

k2
n + k2

m + k2
l

× cos (kn(x1 − x′1)) cos (km(x2 − x′2)) cos (kl(x3 − x′3))

}

(A.19)

=
1

L3

Gπ
42

(x⊥,x
′
⊥)− 2

L1L2L3

∞∑

l=1

cos (kl(x3 − x′3))

{

×
∑

m∈Z

cos (km(x2 − x′2))
∑

n∈Z

1

k2
n + k2

m + k2
l

cos (kn(x1 − x′1))

}
.

(A.20)

Applying the PSF, eq. (A.10), to the innermost series and carrying out the same
integral already found for d = 2 yields:

∑

n∈Z

1

k2
n + k2

m + k2
l

cos (kn(x1 − x′1)) =
L1

2

∑

N∈Z

e−|NL1+x−x′|
√
k2
l +k2

m

√
k2
l + k2

m

. (A.21)
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The bracket term in eq. (A.20) becomes:
∑

m∈Z

cos (km(x2 − x′2))
∑

n∈Z

1

k2
n + k2

m + k2
l

cos (kn(x1 − x′1))

=
L1

2

∑

m∈Z

cos (km(x2 − x′2))
∑

N∈Z

e−|NL1+x−x′|
√
k2
l +k2

m

√
k2
l + k2

m

, (A.22)

which is yet again of PSF-type — this time however with:

T =
2π

L2

(x2 − x′2) and f(t) =
L2

2π

∑

N∈Z

exp

(
− 2π
L2
|NL1 + x− x′|

√(
L2

L3
l
)2

+ t2

)

√(
L2

L3
l
)2

+ t2
.

(A.23)
That said, eq. (A.22) is recast into:

L1

2

∑

m∈Z

cos (km(x2 − x′2))
∑

N∈Z

e−|NL1+x−x′|
√
k2
l +k2

m

√
k2
l + k2

m

=
L1L2

4π

∑

N∈Z

∑

M∈Z

∫ ∞

−∞
dt
e−B

√
A2+t2

√
A2 + t2

cos (tC(M))

(A.24)

with:

A =
L2

L3

l, B =
2π

L2

|NL1 + x− x′|, C(M) = 2πM + T . (A.25)

The remaining integral is solved by, [36]:
∫ ∞

−∞
dt
e−B

√
A2+t2

√
A2 + t2

cos (tC(M)) = 2K0

(
A
√
B2 + C(M)2

)
. (A.26)

Collecting results and plugging everything into eq. (A.20) completes the derivation
for the d = 3 Laplace kernel:

Gπ
43

(x,x′) =
1

L3

Gπ
42

(x⊥,x
′
⊥)− 1

πL3

∞∑

k=1

{
cos

(
2π

L3

(x3 − x′3)

)

×
∑

M,N∈Z

K0

(
2π

L3

l

√
(NL1 + x1 − x′1)2 + (ML2 + x2 − x′2)2

)}
.

(A.27)

A.2 Momentum Conservation of (1 + 1) Fuzzy Dark
Matter

The task is to show

d
dt
P (t) ≡ d

dt

(
Im
∫

Ω

dxψ∗∂xψ
)

= 0 . (A.28)
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We start from eq. (2.107), multiply by x∂xψ∗, integrate over the periodic domain
and take the imaginary part. This yields:

I1︷ ︸︸ ︷
Im
(∫

Ω

dx∂tψ∂xψ∗
)
−Im




I2︷ ︸︸ ︷
i

2

∫

Ω

dx∂2
xψ∂xψ

∗




+ Im
(
ia(t)

∫

Ω

dx(Uπ ∗ |ψ|2)∂xψ
∗ψ

)

︸ ︷︷ ︸
I3

= 0 . (A.29)

Consider the second integral first. By partial integration we have:

I2 =
i

2

∫

Ω

dx∂2
xψ∂xψ

∗ =
i

2
∂xψ∂xψ

∗
∣∣∣∣
L

0︸ ︷︷ ︸
=0 (PBC)

− i
2

∫

Ω

dx∂xψ∂2
xψ
∗ . (A.30)

The left hand side is the complex conjugate of the right hand side, hence it is real
and taking the imaginary part makes it vanish.

Now, investigate the third integral:

I3 = Im
(
ia(t)

∫

Ω

dx(Uπ ∗ |ψ|2)∂xψ
∗ψ

)

= Re
(
a(t)

∫

Ω

dx(Uπ ∗ |ψ|2)∂xψ
∗ψ

)

=
a(t)

2

∫

Ω

dx∂x
(
|ψ|2

) ∫

Ω

dx′Uπ(|x− x′|)|ψ(x′)|2 .

(A.31)

Use the product rule the express the integrand as an overall derivative plus a
correction term:

∂x
(
|ψ|2

) ∫

Ω

dx′Uπ(|x− x′|)|ψ(x′)|2 = ∂x

(
|ψ|2

∫

Ω

dx′Uπ(|x− x′|)|ψ(x′)|2
)

− |ψ|2
∫

Ω

dx′Uπ(|x− x′|)∂′x
(
|ψ(x′)|2

)
. (A.32)

To arrive at this result, we used the convolution property ∂x(f ∗g) = ∂xf ∗g = f ∗∂xg.
Substitute eq. (A.32) into eq. (A.31). The first term then vanishes due to

periodic boundary conditions. What remains is:

I3 = −a(t)

2

∫

Ω

dx|ψ(x)|2
∫

Ω

dx′Uπ(|x− x′|)∂′x
(
|ψ(x′)|2

)
. (A.33)

Swap the integration order and use the symmetry of the interaction kernel:

I3 = −a(t)

2

∫

Ω

dx′∂′x
(
|ψ(x′)|2

) ∫

Ω

dxUπ(|x− x′|)|ψ(x)|2

= −a(t)

2

∫

Ω

dx′∂′x
(
|ψ(x′)|2

) ∫

Ω

dxUπ(|x′ − x|)|ψ(x)|2

= −I3 .

(A.34)
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We conclude the third integral is zero as well. At last, dissect I1:

Im
(∫

Ω

dx∂tψ∂xψ∗
)

=
d
dt
P (t)− Im

(∫

Ω

dxψ∂t∂xψ∗
)

︸ ︷︷ ︸
I4

. (A.35)

What remains to be shown is I4 = 0. For this we insert the NLSE (2.107) to find:

I4 = −1

2
Re
(∫

Ω

dxψ∂3
xψ
∗
)

+ I3 = −1

2
Re
(∫

Ω

dxψ∂3
xψ
∗
)
. (A.36)

Performing three successive partial integration on the remaining integral term reveals
I4 = −I4 which concludes the proof.

A.3 Scaling Symmetry

We aim to proof the scaling symmetry,

ψ̃(x, t) = λ2ψ(λx, λ2t) λ ∈ R+, (A.37)

of the NLSE,

i∂tψ =

[
−1

2
4d + a

(
G
π/free
4d ∗ |ψ|2

)]
ψ x ∈ Ω, (A.38)

for Poisson interactions (2.76) - (2.80) and (2.82).

The left-hand side of eq. (2.75) and the kinetic part of the Hamiltonian are trivial
to transform:

i∂t
(
λ2ψ(λx, λ2t)

)
= λ4 · i∂t̃ψ(x̃, t̃) (A.39)

−1

2
4d

(
λ2ψ(λx, λ2t)

)
= −λ4 · 1

2
4̃dψ(x̃, t̃) (A.40)

with t̃ = λ2t, x̃ = λx and 4̃d = ∂x̃i∂
x̃i . For the d-dimensional convolution term, we

first have in general:
(
G
π/free
4d ∗ |ψ̃|2

)
ψ̃ = λ6ψ(x̃, t̃)

∫
Ωd
λ
/Rd

ddx′Gπ/free
4d (x,x′)|ψ(λx′)|2

= λ6−dψ(x̃, t̃)

∫

Ωd/Rd
ddx′′Gπ/free

4d

(
x,
x′′

λ

)
|ψ(x′′)|2 .

(A.41)

What remains to be shown is:

G
π/free
4d

(
x,
x′′

λ

)
= λd−2G

π/free
4d (λx,x′′) , (A.42)

so that (
G
π/free
4d ∗ |ψ̃|2

)
ψ̃ = λ4 ·

(
G
π/free
4d ∗ |ψ|2

)
(x̃)ψ(x̃, t̃) . (A.43)

It is trivial to see this is true for free space kernels in d = 1, 3. In d = 2 we have:

Gfree
42

(
x,
x′′

λ

)
=

1

2π
log

(∣∣∣∣x−
x′′

λ

∣∣∣∣
)

=
1

2π
log(|λx− x′′|)− 1

2π
log(λ) . (A.44)
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The second term is a physically irrelevant offset which can be dropped. The first
term is in the required form to satisfy the symmetry.

For periodic conditions we note in addition to eq. (A.37) one must also rescale the
domain according to L̃i = Li/λ to assure periodicity of ψ̃ on Ω̃i = [0, L̃1]×· · ·× [0, L̃i].
Substituting this new domain size in the kernel expressions (2.76) - (2.78) yields the
validity of eq. (A.42) by direct computation.
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Appendix B

Numerical Considerations

B.1 An Augmented Fourth Order Scheme

We give additional information on how method coefficients are obtained and discuss a
higher order splitting scheme put forward by [15]. Assume the autonomous situation
of section 4.3.1 and recall the form of a general s-stage splitting:

ÛK+V (∆t) = ÛK+V (∆t) +O(∆tp+1)

≡ ÛK(bs+1∆t) ◦ ÛV (as∆t) ◦ ÛK(bs∆t)

◦ · · · ◦ ÛK(b2∆t) ◦ ÛV (a1∆t) ◦ ÛK(b1∆t) +O(∆tp+1) ,

(B.1)

with splitting coefficients {ai}i=1,...,s and {bi}i=1,...,s+1 and ◦ as composition operation.
The procedure of obtaining a methods coefficients, [27, 72], is somewhat technical
and employs the formal calculus of Lie derivatives and Lie transformations. This is
necessary because of the nonlinear nature of ÛV . In a nutshell, one can associate
exponentials of differential operators with both the true evolution operator ÛK+V

and its approximation ÛK+V :

ÛK+V (∆t) = e∆tLK+V = e∆t(LK+LV ) (B.2)

ÛK+V (∆t) = eb1∆tLKea1∆tLV . . . eas∆tLKebs+1∆tLV , (B.3)

where LK/V denotes the Lie derivative of the time dependent vector field ĤKΨ(t) and
ĤV [Ψ(t)] respectively. Note the reversal of the coefficients in eq. (B.3) compared to
eq. (B.1). Understanding how LK/V is defined and how it behaves is not essential at
this point.

The idea is then to iteratively apply the BCH-formula to the right hand side of
eq. (B.3) to arrive at an operator eF (∆t) which can be compared with the right hand
side of eq. (B.2). For instance, for a s = 2 stage method one finds up to second
order in ∆t:

F (∆t) = ∆t (p1(ai)LV + p2(bi)LK) + ∆t2p3(ai, bi)[LV , LK ] +O(∆t3) , (B.4)

with polynomials:

p1(a1) = a1, p2(b1, b2) = b1 + b2 p3(a1, b1, b2) =
1

2
p1(a1)p2(b1, b2)− b1a1 . (B.5)

130



APPENDIX B. NUMERICAL CONSIDERATIONS

From comparison with eq. (B.2) we get:

p1 = p2 = 1, p3 = 0 ⇒ b1 = b2 =
1

2
and a1 = 1 , (B.6)

which the reader will recognize as the method coefficients of Strang’s splitting S [2].

This exemplifies the general procedure: Expand the combined s-stage BCH-
exponent up to order p+ 1 and solve a system of polynomial equations, the so called
order conditions, to obtain the method coefficient.

Contrary to the case of S [2], it is of course possible to have s > p. One then
arrives at a overdetermined system of equations and consequently a solution space
of the polynomial equations with dimension d > 1. Probing this space for optimal
coefficients that minimize the leading error term is a non-trivial task. The authors
of [15] conducted such an analysis in a systematic way and found the coefficients of
a 6-stage-4th-order method which we denote BM[4]. It is defined in Table B.1.

Û splitting coefficients
S [2] a1 = 1 b1 = b2 = 0.5

BM[4]

a1 = a6 = 0.209515106613361891 b1 = b7 = 0.0792036964311954608
a2 = a5 = −0.143851773179818077 b2 = b6 = 0.353172906049773948
a3 = a4 = 0.434336666566456186 b3 = b5 = −0.0420650803577191948

b4 = 0.219376955753499572

Table B.1: Splitting coefficients of the integrators S [2] and BM[4].

As in the case of S [2], the integrator BM[4] is time-symmetric, unitary and satisfies
the FSAL property.

Extending BM[4] to the non-autonomous situation appears problematic at first
sight because retaining order p = 4 would require taking Magnus up to higher
order and solving the remaining integrals up to order p = 4. Higher oder terms
contain nested commutators, increasing the complexity of the problem considerably.
Fortunately, there is a trick, [66], to circumvent the explicit time dependence in eq.
(4.33) all together. For this we go back to the unsplitted problem (4.21) and augment
it by an auxiliary dependent variable τ :

∂t

(
iΨ(t)
τ

)
=

([
ĤK + ĤV (τ)

]
Ψ(t)

1

)
. (B.7)

Clearly, because dτ
dt = 1⇒ τ = t, eq. (B.7) is equivalent to eq. (4.21). Now separate

eq. (B.7) as:

∂t

(
iΨ(t)
τ

)
=

(
ĤKΨ(t)

1

)
+

(
ĤV (τ)Ψ(t)

0

)
(B.8)

and subsequently consider each subproblem individually, i.e.:

∂t

(
iΨ(t)
τ

)
=

(
ĤKΨ(t)

1

)
(B.9)

∂t

(
iΨ(t)
τ

)
=

(
ĤV (τ)Ψ(t)

0

)
(B.10)
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It is clear that τ does not change in the potential subproblem. In this formulation τ
is to be understood as a parameter set by the evolution of the kinetic problem only.
Moreover, its evolution τ(t) = t is trivial.

Let ÛV (∆t; τ) denote the evolution operator which depends parametrically on τ
and in accordance with eq. (4.29) reads:

ÛV (∆t, τ) = exp
(
−ia(τ)V (|Ψ(t0)|2)∆t

)
. (B.11)

The BM[4] splitting of the augmented problem (B.7) then takes the form:

BM[4] = ÛK(b7∆t) ◦ ÛV
(
a6∆t; ∆t

6∑

i=1

bi

)
◦ ÛK(b6∆t)

◦ · · · ◦ ÛK(b2∆t) ◦ ÛV (a1∆t; b1∆t) ◦ ÛK(b1∆t) +O(∆t5) .

(B.12)

Notice how we eliminated the auxiliary variable τ by propagating it through all
application of UK(∆t). In practice this means the scale factor at stage k is evaluated
at a

(
t0 + ∆t

∑k
i=1 bi

)
.

This concludes the extension to the non-autonomous case and no additional work
is done for the extension of BM[4].

B.2 Convergence Analysis

This section provides a detailed analysis of the convergence and stability properties
of SM[2]. Preliminary results for BM[4] introduced in section B.1 are also shown.

The range of imaginable scenarios to investigate is vast. We limit the scope of
the discussion in multiple respects:

Firstly, we focus on static, a = 1, and dynamic expansion models. For the latter
we demand 1 = Ωm + ΩΛ with Ωm = 0.3. Dynamic studies are started at z = 100
and integrated until present time.

Secondly, only artificial, spatially localized initial conditions are examined. Equiv-
alent tests were conducted for spectrally localized conditions and the results are
identical to what is presented in the following. Specifically, we set:

ψ0(x) =
√
N e− x2

4σ2 (B.13)

and enforce "periodicity" via L = 30σ so that the initial wave function decays down
to 10−30 at the boundaries. The normalization constant N follows numerically from:

L = N∆x
N−1∑

n=0

|ψ0,n|2 . (B.14)

What remains is the standard deviation σ. In the unit convention (2.52) the critical
Jeans scale is:

λJeans(z) =
√

2π(1 + z)1/4 (B.15)
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and we set σ so that the initial spectrum is unstable withing the 1σ-interval at
z = 100:

σ =
λJeans(100)

2π
>
λJeans(0)

2π
. (B.16)

Thus we only consider a gravitationally unstable scenarios.

Since no analytic solution is available, the convergence study is performed self-
consistently, i.e. we integrate a reference solution on a fine spatio-temporal grid
{Nref ,∆tref} and accept it tacitly as correct. In run i, we increase Nref and ∆tref by
constant factors and compare ψi with ψref . To this end, we measure the numerical
error εji at time tj by the approximating the continuous L2-norm:

εji =

∥∥ψjref − ψji
∥∥

2∥∥ψjref

∥∥
2

=
Nref

Ni

Ni−1∑

n=0

∥∥ψjref(xk)− ψjk,i
∥∥

2
. (B.17)

To get the wave function value of the reference solution at the coarse grained grid
sites xk a downsampling is performed:

ψjref(xk)

N/2−1∑

n=−N/2

ψ̃jrefne
iknxk . (B.18)

B.2.1 Dominance of the Temporal Error

We chose Nref = 218 = 262144 and ∆tref = 10−5 and only present results for (1+1)-SP.

Figure B.1 and B.2 illustrate the numerical error ε as a function of the spatio-
temporal grid parameters in a static and dynamic expansion scenario. For a cross
section at ∆t = 10−5 (the green line in Figure B.1 and B.2) consult Figure B.3.

Apart from N = 512, the results show uniformity of ε in the number of spatial
grid points. The distinctive behavior of N = 512 is not due to a non-convergent
integration but arises because the Fourier basis is not large enough to capture the
entire spectrum. Initial conditions set by eq. (B.16) are extremely unstable at a = 1.
Collapse and mode-coupling set in immediately and considerable spectral power is
already transported past kmax = 512π

L
at t = 1. This explains the discrepancy to

ψref which easily resolves these spectral features due to its larger Fourier basis. The
collapse is less violent for dynamic a(t) and no significant power is transported past
kmax.

Concerning convergence, we conclude there is no numerical constraint on the
value of N — at least in the patch of the parameter space probed here.

B.2.2 Behavior of the Temporal Error

In the light of section B.2.1, we specialize to a single spatial with grid N = 8192
small enough to allow the integration of a reference solution with ∆tref = 10−6 in
reasonable time.

Figure B.4 illustrates the error scaling as a function of ∆t for both reduction
models under static space time conditions. The quadratic scaling ε ∝ ∆t is apparent
and is in alignment with our expectation.
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Figure B.1: Numerical error as a function of the spatio-temporal grid for a = 1 under SP
evolution. Note the uniformity of ε in N .
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Figure B.2: Numerical error as a function of the spatio-temporal grid for dynamic a.
Again, ε is independent of N .
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Figure B.3: Numerical error at fixed ∆t = 10−5 under static (green line in Figure B.1)
and expanding conditions (green line in Figure B.2).
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An equal error scaling is found under expanding conditions which is depicted
in Figure B.5. We conclude that the simplistic first-term Magnus approximation is
effective for the non-autonomous Hamiltonian.

At last, SM[2]’s stability is assessed by following the numerical error as a function
of the integration time. As indicated in section 4.4, a distinction has to be made based
on the underlying cosmology. In a static-spacetime, Figure B.6 shows the numerical
error is well under control for the entire integration time. In fact, ε scales roughly
linearly in t for (1 + 1)-SP and PLAM. Figure B.6b shows additional oscillatory
features under strong confinement. One can check by inspection of |ψ|2 that these
are associated with a periodic variation of the height and width of the emerging
ground state. Such oscillations were also reported for (3 + 1)-SP in [60] and it was
conjectured they arise due to interactions with the fluctuating background density.

For understanding the stability behavior of SM[2] under static (1+1)-SP evolution,
we can make contact with the mathematical literature. The author of [56] proofs the
following for (3 + 1)-SP under free space conditions

Theorem. Suppose the exact solution ψ(x, t′) of (3+1)-SP is in H4(R3) for 0 ≤ t′ ≤
t. Then the numerical solution under S [2], ψn, at time tn = n∆t has a second-order
error bound in L2:

‖ψn − ψ(tn)‖2 ≤ C(t)∆t2 . (B.19)

Here H4 denotes the function space:

H4(R3) ≡
{
ψ ∈ L2(R3) : Dαψ ∈ L2(R3) ∀α with |α| ≤ 4

}
(B.20)

and recall SM[2] = S [2] for a = 1. The author claims this result is easily extended
to (1 + 1)-SP under periodic boundary conditions.

In fact, if we pick simulation runs with ∆ti and ∆tj then by application of the
triangle inequality it is easy to see that eq. (B.19) implies:

ε(t) ≤ C(t)∆t2i

[
1 +

(
∆tj
∆ti

)2
]
. (B.21)

To check if this bound is satisfied, we revisit Figure B.6a and find cases with(
∆tj
∆ti

)
≈ 10 lying at most two orders of magnitude apart. This is precisely the

statement of the bracket term in eq. (B.19).

Once we allow space-time to expand, Figure B.7, the situation changes and an
exponential error growth is observable past z / 10. That said, if we restrict ourselves
the small enough step sizes ∆t ≤ 10−4 the error magnitude is still within reasonable
limits.

B.2.3 SM[2] vs. BM[4]

We conclude this section with a preliminary comparison between SM[2] and BM[4].
To this end, the experimental setup of section B.2.2 was adopted. ψref was integrated
via BM[4]. We only focus on (1 + 1)-SP in the following. Results for PLAM are
qualitatively identical.
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Figure B.4: Error scaling as a function of ∆t for a = 1
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Figure B.5: Error scaling as a function of ∆t in an expanding space-time
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Figure B.6: Error evolution of SM[2] as a function of integration time t for a = 1.
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Figure B.7: Error evolution of SM[2] as a function of integration time t under expansion.
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Figure B.8 depicts the ∆t scaling of the numerical error at final times tfinal = 20
and zfinal = 0 respectively. The quartic scaling of BM[4] is clearly visible under static
space-time conditions. Independently of whether the scale factor changes with time
or not BM[4] reaches a convergence plateau already for comparatively large time
increments. This does not mean the BM[4]-integration is closer to the true solution
than the result of SM[2] — without an analytical solution to compare to we can
only measure relative distances.

For the stability properties of BM[4] consult Figure B.9. The behavior is generally
the same as for SM[2], i.e. linear stability for a = 1 but exponential error growth
under expansion.

As discussed in section B.1, BM[4] is a 6-stage method and therefore six times
more expensive per step than SM[2]. Hence, its application is only justifiable if an
increased time increment compensates or even outweighs the higher cost per step.
Figure B.10 illustrates the efficiency of both integrators by plotting the final error as
a function of required number of Fourier transformations. Based on this data, BM[4]

requires roughly a factor of 102 less transformations to achieve the same numerical
error.

142



APPENDIX B. NUMERICAL CONSIDERATIONS

10−5 10−4 10−3 10−2 10−1

∆t

10−6

10−5

10−4

10−3

10−2

10−1

100

ε

SM[2]

BM[4]

(a) Static Space-Time

10−5 10−4 10−3 10−2 10−1

∆t

10−5

10−4

10−3

10−2

10−1

ε

SM[2]

BM[4]

(b) Expanding Space-Time

Figure B.8: Comparison of the error scaling in SM[2] and BM[4] as a function of ∆t at
t = 20 (Figure B.8a) and z = 0 (Figure B.8b).
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Figure B.9: Error evolution of BM[4] as a function of integration time t.
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Figure B.10: Comparison of the efficiency of SM[2] and BM[4] measured by the number
of required FFTs to achieve a prescribed numerical error at t = 20 (Figure
B.10a) and z = 0 (Figure B.10b).
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Asymptotic Dynamics

C.1 Quantum Virial Theorem

Our task is to show:

− i 〈ψ|
[
Ĝ, Ĥ

]
|ψ〉 = 2 〈T 〉 − a(t) 〈x∂xV 〉 (C.1)

with Hamiltonian:

Ĥ =
p̂2

2
+ a(t)V̂ (x̂) (C.2)

and Ĝ = p̂x̂. Insertion yields:

− i 〈ψ|
[
Ĝ, Ĥ

]
|ψ〉 = −i 〈ψ|1

2

[
p̂x̂, p̂2

]
+ a(t)

[
p̂x̂, V̂

]
|ψ〉 . (C.3)

Consider the remaining two commutators individually:

[
p̂x̂, p̂2

]
= p̂x̂p̂2 − p̂3x̂ = p̂

(
x̂p̂2 − p̂2x̂

)

= p̂ (([x̂, p̂] + p̂x̂)p̂− p̂([p̂, x̂] + x̂p̂))

= p̂ ((i+ p̂x̂)p̂− p̂(x̂p̂− i))
= 2ip̂2 .

(C.4)

To compute
[
p̂x̂, V̂

]
we let it act on ψ:

[
p̂x̂, V̂

]
ψ = −i (∂x (xV ψ)− V ∂x (xψ))

= −i (V + x∂xV + xV ∂x − V − V x∂x)ψ
= −ix∂xV ψ .

(C.5)

So in total we have
[
Ĝ, Ĥ

]
= i
(
p̂2 − a(t)x̂∂̂xV

)
and therefore:

− i 〈ψ|
[
Ĝ, Ĥ

]
|ψ〉 =

〈
p̂2
〉
− a(t) 〈x∂xV 〉 = 2 〈T 〉 − a(t) 〈x∂xV 〉 . (C.6)
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C.2 Discrete Normalized Gradient Flow

Recall the equations of the continuous normalized gradient flow:

∂τϕ =
1

2
∂2
xϕ− a(Uπ ∗ ϕ2)ϕ+ µ[ϕ]ϕ (C.7)

µ[ϕ] =
1

‖ϕ‖2
2

∫

Ω

dx
{

1

2
(∂xϕ)2 + a(Uπ ∗ ϕ2)ϕ2

}
(C.8)

for which we need to devise a numerical method. Following [8, 7] we apply a Lie-
Trotter splitting to eq. (C.7). Advancing the descent from τn → τn+1 = τ + ∆τ is
then a two step process:

ϕ1(τn) = ϕ2(τn) ,

∂τϕ1 =
1

2
∂2
xϕ1 − a(Uπ ∗ ϕ2

1)ϕ , τn ≤ τ ≤ τn+1 ,
(C.9)

followed by:

ϕ2(τn) = ϕ1(τn+1) ,

∂τϕ2 = µ[ϕ2]ϕ2 , τn ≤ τ ≤ τn+1 .
(C.10)

Eq. (C.10) is a hard problem given the nonlinear, integral form of µ in eq. (C.8). So
let’s simplify even further and replace µ with a piecewise constant approximation:

To this end, we realize if one computes µ with ϕ1 instead of ϕ2 we find the
convenient result:

µ[ϕ1] =
1

‖ϕ1‖2
2

∫

Ω

dx
{

1

2
(∂xϕ1)2 + a(Uπ ∗ ϕ2

1)ϕ2
1

}

(C.9)
= − 1

‖ϕ1‖2
2

· 1

2

d
dt
(
‖ϕ1‖2

2

)

= −1

2

d
dt

log
(
‖ϕ1‖2

2

)
.

(C.11)

Hence, a simple approximation is:

µ[ϕ1] = − 1

2∆τ
log
(
‖ϕ1(τn+1)‖2

2

)
. (C.12)

By replacing µ[ϕ2] with the approximation for µ[ϕ1] in eq. (C.10), we can solve the
latter exactly:

∂τϕ2 = − 1

2∆τ
log
(
‖ϕ1(τn+1)‖2

2

)
ϕ2 ⇒ ϕ2(τn+1) =

ϕ1(τn+1)

‖ϕ1(τn+1)‖2

. (C.13)

Thus, the approximated second splitting step is equivalent to a re-normalization of
ϕ. We are left with the discrete normalzied gradient flow :

ϕ1(τn) = ϕ2(τn) ,

∂τϕ1 =
1

2
∂2
xϕ1 − a(Uπ ∗ ϕ2

1)ϕ , τn ≤ τ ≤ τn+1 ,

ϕ2(τn+1) =
ϕ1(τn+1)

‖ϕ1(τn+1)‖2

.

(C.14)
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The physics literature often terms eq. (C.14) imaginary time propagation as it follows
directly by setting τ = it in the NLSE of eq. (4.1).

To make eq. (C.14) practical, [7] suggests a forward, backward Euler method:

ϕn+1
1 − ϕn1

∆τ
=

1

2
∂2
xϕ

n+1
1 + α(ϕn1 − ϕn+1

1 )− a
(
Uπ ∗ (ϕn1 )2)ϕn1 . (C.15)

Here all nonlinear terms are evaluated at known time τn whereas the linear kinetic
term is evaluated implicitly. Consequently, one linear system needs to be solved per
step. To enlarge the stability region a stabilization parameter α is introduced. For
the optimal choice of α and ∆τ we refer to [7].

At last, we remark that the spatial discretization proceeds as in section 4.2.

C.3 Mass-Size Relation from Dimensional Analysis

This section derives eq. (6.36) by means of a dimensional analysis, [62], for eq. (6.29).
To this end, we return to eq. (6.29), take its derivative and use Poisson’s equation
to eliminate the potential:

4πGmρGS =
~2

2ma2
∂2
x

(
∂2
x

√
ρGS√
ρGS

)
. (C.16)

Careful attention must be paid to ρGS. Recall from section 2.3.1 that in order to
derive (1 + 1)-SP we assumed matter to be uniformly distributed in the orthogonal
plane. Therefore, the surface density in orthogonal direction σ is constant and ρGS

factorizes into:
ρGS(x) = ϕ2

GS(x)σ (C.17)

with ϕ2
GS having dimension [ϕ2

GS] = ML−1. Accordingly, deriving the ground state
ϕGS with mass M ′

GS using the equation of hydrostatic equilibrium means simultane-
ously solving:

4π ·Gmσ · ϕ2
GS(x) =

1

2a2
· ~

2

m
· ∂2

x

(
∂2
x

√
ϕ2

GS√
ϕ2

GS

)
, M ′

GS =

∫
dxϕ2

GS(x) . (C.18)

To apply dimensional analysis we identify the dimensional and adimensional
input parameters to eq. (C.18).

[Gmσ] =
E

ML
,

[
~2

m

]
= EL2, [M ′

GS] = M, [a] = 1 . (C.19)

All parameters can be dimensionally fully specified by the three fundamental, linearly
independent, dimensions {E,L,M}. The Buckingham-Π-Theorem now assures that
the total number of independent dimensionless parameters involved in eq. (C.18) is
the number of adimensional input parameters (1) plus the number of dimensional
input parameters (3) minus the number of fundamental dimensions involved (3). In
other words, apart from the fixed scale factor a no product of rational powers of the
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input parameters exists which is free of dimensions. We conclude, any length scale
of interest, R, must be of the form:

R = f(a)L′ (C.20)

with L′ the length scale set by the dimensional input parameters of eq. (C.18) and
f a function. One can easily check:

[L′] =

[(
~2

m ·Gmσ ·M ′
GS

) 1
3

]
= L (C.21)

so that

R = f(a)

(
~2

Gm2M ′
GS

) 1
3

. (C.22)

To test this claim, we return to our dimensionless convention (2.52) and find:

RL
1
3 = const. · f(a) . (C.23)

It should be noted that R is now the length scale of interest in dimensionless form as
opposed to eq. (C.22) and L is the adimensional box size. If we specialize to a = 1,
we expect:

RGS ∝ L−
1
3 = M

− 1
3

GS (C.24)

for the extend of the ground state.
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