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Kapitel 1

Einleitung

1.1 Motivation

Noch vor etwa zwanzig Jahren hätte man nicht zu träumen gewagt, welche Möglich-
keiten heutzutage moderne Experimente auf dem Gebiet der ultrakalten Quantengase
bieten. Obwohl die untersuchten Objekte (Atome, schwach gebundene Moleküle) neu-
tral sind, lassen sie sich in ihren externen und internen Freiheitsgraden mit hoher Präzi-
sion kontrollieren [1,2]. Dies erlaubt eine „bottom up”-Realisierung komplexer Systeme,
wobei die Komplexität gezielt erhöht werden kann [3, 4]. Letzteres wird beispielsweise
erreicht durch das Einschalten der Wechselwirkung zwischen den Konstituenten, durch
Erhöhung der Teilchenzahl bzw. durch Anlegen äußerer Potentiale in verschiedenen For-
men und räumlichen Dimensionen. Dadurch lassen sich nicht nur wohlbekannte theore-
tische Modelle direkt im Labor testen, sondern man kann an gänzlich neue Szenarien der
Quantenzustandskontrolle denken, die von der Systemsteuerung durch Ankopplung an
geeignete Bäder (s. beispielsweise [5–9]) bis hin zu komplexen Hybridsystemen reichen,
bei denen mehrere verschiedene quantenmechanische Freiheitsgrade gekoppelt werden
(s. beispielsweise [10–13]).

Man könnte fast sagen, dass sich moderne quanten- und atomoptische Experimente
die Methodik der Theorie zu eigen machen, indem sie die einzelnen Manifestationen
eines komplexen Quantensystems Schritt für Schritt mit hoher Präzision synthetisieren.
Die Aufgaben der theoretischen Physik lassen sich in diesem Zusammenhang wie folgt
zusammenfassen: die untersuchten Systeme auf den verschiedenen mikroskopischen bis
mesoskopischen Skalen zu verstehen; den Beitrag fundamentaler Einzel- bzw. Vielteil-
cheneffekte zu deuten; Komplexität zu quantifizieren (z. B. durch statistische Maße);
und aus all den gewonnenen Erkenntnissen neue, interdisziplinäre Methoden, aber auch
Vorschläge für neue Experimente zu erarbeiten. Insbesondere bei Anwesenheit äußerer
Kräfte kann eine Trennung diverser Effekte schwierig sein. Mein Ziel ist es, genau dieses
Wechselspiel zwischen induzierter Dynamik von innen (d.h. durch Vielteilchenkorrela-
tionen) und von außen (durch explizite Zeitabhängigkeit oder Ankopplung an Rauschen
oder Bäder) zu untersuchen. Erwartet werden neue emergente Eigenschaften komple-
xer Systeme, die sich sonst nicht unmittelbar aus dem Verhalten der unterschiedlichen
Konstituenten ergäben. Besonders interessant sind Systeme unter zeitlich periodischem
Antrieb und das dynamische Verhalten, welches über reine Dämpfungsdynamik hinaus-
geht und wesentliche Teile des quantenmechanischen Energiespektrums miteinschließt.
Unsere Untersuchungen bauen soweit möglich auf drei Säulen. Erstens auf der theore-
tische Modellierung und auf analytischen Einsichten, zweitens auf der Weiterentwick-
lung fortgeschrittener numerischen Methoden und nicht zuletzt auf dem experimentellen
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Fortschritt, der uns nicht nur als „Benchmark” dient, sondern wiederum die ersten beiden
Säulen stützt.

Im nächsten Abschnitt soll der Grundgedanke der experimentellen Realisierung von
optischen Potentialen dargelegt werden. Die vorliegende Arbeit wird sich dann weitge-
hend auf das konkrete Szenario der Kontrolle kalter und ultrakalter atomarer Gase durch
optische, zeitabhängige wie zeitunabhängige Kräfte konzentrieren. Die grundlegenden
theoretischen Modelle zur Beschreibung der betrachteten Systeme werden kurz in Ab-
schnitt 1.3 vorgestellt.

Kapitel 2 führt in die Originalarbeiten des Verfassers aus den letzten sieben Jahren
ein [6,14–50]. Ein Teil dieser Veröffentlichungen entstand in enger Zusammenarbeit mit
den Kollegen aus der Experimentalphysik um Ennio Arimondo (Universität Pisa) und
Rainer Leonhardt (Universität Auckland), und später direkt mit dessem ehemaligen Stu-
denten Mark Sadgrove (jetzt an der University of Electro-Communications, Tokyo). Der
Großteil sind jedoch theoretische Arbeiten, die aus der Zusammenarbeit mit Kollegen im
In- und Ausland und insbesondere mit meinen Mitarbeitern in Pisa und Heidelberg unter
meiner Leitung hervorgingen. Die Originalarbeiten sind in der Form [14 | S. 39] zitiert,
wobei sich die erste Ziffer auf das Literaturverzeichnis am Ende dieser Schrift bezieht,
und die zweite die Seite angibt, ab der die entsprechende Publikation hier abgedruckt ist.

1.2 Optische Potentiale

Der Mechanismus, der einem optischen Potential zugrunde liegt, ist in Abbildung 1.1
schematisiert. Da ein Laserstrahl im (nah-)optischen Bereich schnell im Vergleich zu
allen Zeitskalen der atomaren Schwerpunktsbewegung oszilliert, ergibt sich ein zeitge-
mitteltes effektives Potential [51]. Durch eine entsprechend große Verstimmung ∆ der
Laserfrequenz von einem atomaren Übergang bleibt im Wesentlichen nur das Grundzu-
standsniveau (1 in Abbildung 1.1) besetzt. Bei gegebener räumlicher Intensitätsvertei-
lung I(r) des Laserstrahls ergibt sich folgendes konservatives Potential:

V (r) ∝ h̄Γ
Γ

∆

I(r)
I0

. (1.1)

Γ−1 ist die Lebensdauer des angeregten elektronischen Zustandes (2 in Abbildung 1.1)
und I0 die Sättigungsintensität des Übergangs, die vom Dipolmatrixelement zwischen
den Zuständen 1 und 2 und anderen Parametern abhängt [52–54]. V (r) stellt eine orts-
abhängige Energieverschiebung dar, die – je nach Vorzeichen der Verstimmung – po-
sitiv oder negativ sein kann. Es bestimmt also eine Potentiallandschaft für die Atome.
Da die spontane Streuung aus dem oberen elektronischen Niveau proportional zu ∆−2

ist [52–54], sind für nicht zu kleine Verstimmungen dissipative Effekte vernachlässig-
bar, und es ergibt sich tatsächlich ein quasi konservatives Potential.

Neuere Experimente fangen einmal abgekühlte atomare Gase in sogenannten opti-
schen Fallen (im Gegensatz zu Fallen, die auf magnetischen Feldern beruhen), die sehr
flexibel einsetzbar sind [2, 52]. V (r) stellt in diesem Fall ein durch einen starken Laser
(mit hoher Intensität) erzeugtes Gaußsches Profil in transversaler Richtung dar, das ro-
tationssymmetrisch ist. In axialer Richtung ergibt sich dagegen eine schwache Falle, die
weitgehend homogen im Laserfokus über die relevanten räumlichen Skalen ist, vgl. die
rechte Skizze in Abbildung 1.1.

Zusätzlich zum Fallenpotential kann man periodische Potentiale in einer, zwei oder
drei Raumrichtungen anlegen, wobei sich unsere Arbeiten auf den Fall konzentrieren,
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∆ x

2

1

r

r

Abbildung 1.1: Ein starker Laserstrahl (links unten im Profil als dunkle Kreise) ver-
schiebt die internen Energieniveaus 1 und 2 eines Atoms. Ist die Laserfrequenz wie
im links gezeigten Fall kleiner als die atomare Resonanzfrequenz (mit Verstimmung
∆ < 0), ergibt sich ein attraktives Potential in Richtung maximaler Intensität für ein
Atom im Grundzustand 1 (roter Punkt). Rechts ist ein Bose-Einstein-Kondensat (rote
Ellipse) skizziert, das in radialer Richtung durch den Laserstrahl gefangen ist, wobei das
Potential in axialer x-Richtung weitgehend homogen und konstant ist.

für den das periodische Gitter sich in longitudinaler Richtung ausdehnt, und die Ato-
me in transversaler Richtung relativ stark gefangen sind. Dann spricht man vom soge-
nannten quasi eindimensionalen Regime. Das Gitter wird durch zusätzliche gegenläufi-
ge Strahlen erzeugt, die eine stehende Welle bilden [1]. Dabei kann man einerseits die
Gitterkonstante über die Laserwellenlänge (für ∆ im Rahmen der oben beschriebenen
Einschränkungen) oder über eine Neigung der beiden Strahlachsen relativ zueinander
einstellen [1]. Das statische, periodische Gitter kann man auch zeitlich ändern, sodass
die Atome effektiv ein zeitabhängiges Potential spüren. Im Folgenden sind dabei vor al-
lem zwei Realisierungen wichtig: zum einen ein beschleunigtes Gitter, was im beschleu-
nigten Bezugssystem einer konstanten Stark-Kraft F oder VS(x) = Fx entspricht [55],
und zum anderen ein Gitter, das zeitlich periodisch an- und abgeschaltet wird und so-
mit einen großen Impulsübertrag auf die Atome durch diese Kraftstöße oder „Kicks”
bewirkt [56, 57].

1.3 Theoretische Modelle

Wir beschreiben nun drei grundlegende Modelle für kalte und ultrakalte atomare Syste-
me. Sie bilden die Basis für unsere theoretischen und experimentellen Untersuchungen,
die im nächsten Kapitel zusammengefasst sind.

1.3.1 Kalte atomare Gase

Kalte Atome mit Temperaturen weit über der kritischen Temperatur, unterhalb derer
sich ein Bose-Kondensat formt, werden üblicherweise in einer Kombination aus ma-
gnetischen und optischen Feldern gefangen. Dabei spielen – im Gegensatz zu den oben
beschriebenen konservativen Fallen – dissipative Prozesse (bei kleiner Verstimmung ∆)
eine entscheidende Rolle. In solchen sogenannten Magneto-Optischen-Fallen [54, 58]
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werden Temperaturen erreicht, die einer Impulsverteilung entsprechen, die sich über
mehrere Brillouin-Zonen in einem typischen optischen Gitter erstreckt. Detailphäno-
mene wie zeitaufgelöste Bloch-Oszillationen innerhalb einer Brillouin-Zone sind damit
nicht unmittelbar beobachtbar. Nichtsdestoweniger kann man durchaus interessante Ex-
perimente machen, solange z. B. dabei der Impulsübertrag groß im Vergleich zur an-
fänglichen Impulsverteilung ist. Diese atomaren Gase sind wegen der relativ großen
mittleren Geschwindigkeiten sehr verdünnt, sodass die Wechselwirkung zwischen den
einzelnen Atomen vernachlässigbar ist. Experimentelle Messungen sind daher üblicher-
weise Ensemblemessungen unabhängiger Teilchen, die mit einer Einteilchentheorie und
anschließendem Ensemblemittel gut beschrieben werden [56, 57, 59–62]. In der in Ab-
schnitt 2.1 behandelten Zeitentwicklung gekickter Atome ergibt sich dabei das Ensemble
aus den Anfangsbedingungen, d.h. aus der Geschwindigkeitsverteilung der Atome zur
Zeit t = 0.

1.3.2 Bose-Einstein Kondensate in Molekularfeldnäherung

Kühlt man bosonsche Atome unter ihre kritische Temperatur ab, kondensieren sie be-
vorzugt in den gleichen Zustand [63, 64]. Diesen Vorgang nennt man Bose-Einstein-
Kondensation. Die entsprechenden Impulsverteilungen haben eine Breite, die typischer-
weise weit unterhalb der Breite einer Brillouin-Zone (in einem optischen Gitter) liegt,
was natürlich entscheidend ist, um auch kleine Impulsveränderungen in einem wei-
terführenden Experiment zu messen. Die einfachste Näherung für die Gesamtwellen-
funktion eines Systems aus N Atomen ist ein Produktansatz bestehend aus N Einteil-
chenwellenfunktionen (Hartree-Ansatz) [65]. Im Falle der Beschreibung eines Bose-
Kondensates bei idealisierter Temperatur T = 0 führt dies auf eine Molekularfeldnähe-
rung, die unter dem Namen Gross-Pitaevskii-Gleichung [66,67] bekannt ist. Berücksich-
tigt man nur Zweiteilchenwechselwirkung und die Tatsache, dass bei sehr tiefen Tem-
peraturen nur niederenergetische s-Wellen-Streuung zwischen den Atomen eine Rolle
spielt, erhält man folgenden Vielteilchen-Hamilton-Operator:

Ĥ =
∫

dr ψ̂
†(r, t)

(
− h̄2

2m
∆ + V (r, t) +

U0

2
ψ̂

†(r, t)ψ̂(r, t)
)

ψ̂(r, t) . (1.2)

V (r, t) beschreibt ein Fallen- und Gitterpotential und die Wechselwirkungsstärke ist
durch U0 = 4π h̄2as

m gegeben, wobei as die s-Wellen-Streulänge zwischen zwei Atomen
und m die relative Masse im Streuprozess ist [2, 66, 67]. Der Hartree-Ansatz ergibt nun
mit Hilfe des Variationsprinzips folgende einzelne Gross-Pitaevskii-Gleichung für das
„optimale” Einteilchenorbital φ(r, t) [65, 66]:

ih̄
∂

∂ t
φ(r, t) =

[
− h̄2

2m
∆ + V (r, t) + g|φ(r, t)|2

]
φ(r, t) , (1.3)

wobei für die Wechselwirkungskonstante g = U0N mit der Gesamtteilchenzahl N gilt1.
Da wir allem voran an zeitabhängigen Potentialen (oder allgemeiner zeitabhängigen
Hamilton-Operatoren) interessiert sind, gebe ich oben die zeitabhängige Version der
Gross-Pitaevskii-Gleichung. Gerade in diesem Fall ist die Gleichung jedoch problema-
tisch, da man von einer konstanten Gesamtteilchenzahl ausgeht und Anregungen des

1Im Gegensatz zu vielen Autoren reskalieren wir die Wellenfunktion nicht mit
√

N, aus dem einfachen
Grund, dass N ein experimenteller Parameter ist, der im direkten, quantitativen Vergleich mit experimentel-
len Daten angepasst werden kann (s. die Arbeiten [18 | S. 105] und [23 | S. 52]).
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Kondensat von vorne herein vernachlässigt [65, 68]. Wir haben beispielsweise im Rah-
men des diskreten Modells, das im nächsten Abschnitt eingeführt wird, genau aus diesem
Grund Korrekturen zur diskreten Version der Gleichung (1.3) untersucht [48 | S. 283].
Trotzdem beschreibt die obige Gleichung relativ gut die Dynamik schwach wechselwir-
kender Kondensate, für die g|φ |2 klein im Vergleich zur kinetischen oder potentiellen
Energie im System ist [1].

1.3.3 Bose-Hubbard Modell

Anstatt der extremen Vereinfachung, welche die Gross-Pitaevskii-Gleichung darstellt,
kann man konzeptionell einen anderen Weg gehen und annehmen, dass man eine Basis
aus Einteilchenwellenfunktionen {χ`(r)}` finden kann, die gut im Ort lokalisiert sind
[69–71]. In dieser Basis kann man die Feldoperatoren ψ̂(r, t) entwickeln

ψ̂(r, t) = ∑
`

χ`(r)â`(t) , (1.4)

und erhält statt kontinuierlich vom Ort abhängiger Felder Operatoren â`, die nur an dem
einen Gitterplatz wirken, an dem die Einteilchenwellenfunktionen im Wesentlichen lo-
kalisiert sind. In der Sprache der zweiten Quantisierung ist â` ein Vernichtungsoperator
und sein Adjungiertes â†

` ein Erzeugungsoperator jeweils eines Bosons am Gitterplatz `.
In einer Raumdimension lautet dann der Hamilton-Operator dieses sogenannten Bose-
Hubbard-Modells in seiner minimalen Form mit n̂` = â†

` â` und `= 1 . . .L [2, 72]

ĤBH = −J
L−1

∑
`=1

(
â†
` â`+1 +h.c.

)
+

U
2

L

∑
`=1

n̂`(n̂`−1) . (1.5)

Die konstanten Koeffizienten J und U ergeben sich aus den entsprechenden Matrixele-
menten des Einteilchen-Hamilton-Operators bzw. des Teilchenwechselwirkungsterms
aus Gl. (1.2) in der Basis der sogenannten Wannier-Funktionen χ`(x) [69–71]. Dieses
„tight-binding” Modell vernachlässigt die Dynamik innerhalb eines Potentialtopfs des
Gitters. Notwendige Voraussetzung für seine Gültigkeit ist, dass das System gut durch
stark lokalisierte Einteilchenmoden in den Gittertöpfen eines genügend tiefen periodi-
schen Potentials beschrieben wird. Der Hamilton-Operator ĤBH ist der Ausgangspunkt
einer ganzen Reihe von Arbeiten, die in den Abschnitten 2.2.4 und 2.3 zusammengefasst
sind, wobei zusätzliche Terme hinzugenommen wurden, die von zufälligen Gitterplatz-
energien [30 | S. 179] bis hin zu einer wesentlich komplexeren Zweibandversion von
Gl. (1.5) [39 | S. 235] reichen. Zudem lässt sich ausgehend von ĤBH systematisch für
große Teilchenzahlen eine diskrete nichtlineare Schrödinger-Gleichung ableiten, welche
einen Molekularfeldlimes des Vielteilchensystems darstellt, der dann für die konkreten
Szenarien aus Abschnitt 2.5 auf seine Gültigkeit getestet wurde [48 | S. 283].
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Kapitel 2

Einführung in die Originalarbeiten

Dieses Kapitel führt in die im Anschluss abgedruckten Originalarbeiten des Autors ein.
Es motiviert die Fragestellungen, hebt die Bedeutung der erzielten Forschungsergebnisse
hervor und ordnet diese in knapper Form in ihren wissenschaftlichen Kontext ein. Auf
die Verwendung von Formeln wird dabei weitgehend verzichtet.

Die Originalarbeiten sind untergliedert in Kurzartikel, reguläre Artikel und einge-
ladene Buchbeiträge. In den folgenden Kapiteln sind sie jeweils entsprechend ihrem
Erscheinungsdatum angeordnet. Mein relativer Beitrag ist der Autorenreihenfolge zu
entnehmen, wobei ich in der Funktion des Betreuer von Abschlussarbeiten [73–80] oder
des Ideengebers als Letztautor auftrete. In gemeinsamen Publikationen mit Kollegen aus
der Experimentalphysik verantworte ich den Theorieteil.

Der Schwerpunkt meiner Arbeiten liegt in der Beschreibung gekickter Atome (Ab-
schnitt 2.1) und der Realisierung des Wannier-Stark-Systems mit Bose-Einstein-Kon-
densaten (Abschnitt 2.2). Die wichtigsten Themenkomplexe hierzu sind in den Reviews
[50 | S. 324] und [49 | S. 293] zusammengefasst. Einen neuen Anstoß zum Studium of-
fener Vielteilchenquantensysteme geben unsere Arbeiten zur Stochastischen Resonanz
im Doppeltopf (s. die Referenzen [6 | S. 60] und [35 | S. 207]), die wir momentan auf
komplexere Systeme ausdehnen; vgl. dazu die Teilkapitel 2.4.3 und 2.5.

2.1 Lokalisierung und Quantenresonanzen in gekickten kal-
ten Atomen

Der sogenannte „Kicked Rotor” ist seit den siebziger Jahren ein etabliertes Standardmo-
dell, um klassisches Chaos in niedrigdimensionalen Systemen zu untersuchen [81, 82].
Seine quantenmechanische Version als freier Rotor mit quantisiertem Drehimpuls, der
zeitlich periodisch gekickt wird, zeigt ferner, dass das System für typische Parameter
nach einer charakteristischen Zeit keine Energie mehr aus den Kicks absorbiert [83–85].
Dieses Phänomen ist unter dem Namen Dynamische Lokalisierung bekannt und ist ein
Analogon [86, 87] der Anderson-Lokalisierung von Wellenpaketen in ungeordneten Po-
tentialen [88,89]. Seit fast zwanzig Jahren erfreut sich der quantisierte Kicked-Rotor re-
ges Interesses, aus dem einfachen Grund, dass er sich mittels atomoptischen Methoden
gut experimentell realisieren lässt [56,90]. Dabei werden Atome in Magneto-Optischen-
Fallen abgekühlt (s. Abschnitt 1.3.1), und dann nach Abschalten der Falle mit einer
stehende Welle gekickt, die periodisch mit einer extrem kurzer Rampe ein- und ausge-
schaltet wird. Mit jedem Kick erfolgt eine Beugung der Impulsklassen der Atome durch
das räumlich periodische Gitter in hohe Ordnungen (sogenanntes Raman-Nath-Regime
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der Atomoptik [91, 92]).
Vor allem in den letzten zehn Jahren haben sich unter anderem zwei neue Foschungs-

schwerpunkte herauskristallisiert. Zum einen die Untersuchung von Lokalisierung und
deren Zerstörung in einem System, das mit mehr als einer Frequenz gekickt wird (das
entspricht mehreren Raumdimensionen im Anderson-Problem, vgl. die Referenzen [93–
96]). Neben Lokalisierungsphänomenen werden zum anderen Resonanzeffekte studiert,
die nur für spezielle Parameterkombinationen auftreten [84,97–99]. Letztere Effekte sind
zunächst quantenmechanischer Natur, wobei sich herausstellt, dass sie sich weitgehend
auch durch ein pseudo-klassisches, effektives Modell [60, 100–104] verstehen lassen.
Dieses Modell, das in den folgenden Abschnitten oft zitiert wird, hat den großen Vor-
teil hat, dass man im klassischen Phasenraum reguläre Strukturen identifizieren kann,
die den Resonanzmoden entsprechen. Die Beschreibung des Systems vereinfacht sich
dadurch erheblich gegenüber quantenmechanischer Analytik. Die experimentelle Her-
ausforderung ist aber lange Zeit gewesen, die quantenresonante Bewegung, die ballis-
tisch ist (d.h. der mittlere Impuls wächst linear mit der Zeit), gut zu messen. Mit einem
Ensemble aus kalten Atomen können nur indirekte Spuren der Resonanzen beobachtet
werden [17,19,61,105–107], da die Resonanzbedingung vom anfänglichen Impuls (bes-
ser Quasiimpuls im räumlich periodischen Kick-Potential) der Atome abhängt [60,100].
Nur wenn sich diese Anfangsbedingungen im Impulsraum gut kontrollieren lassen, kann
man die rein ballistische Bewegung für die Resonanzen niedriger und hoher Ordnung
auch schön sehen [108–111]. Die besten Daten liefern demnach Experimente mit Bose-
Einstein-Kondensaten, die deshalb einen erheblichen, qualitativen Fortschritt in der ex-
perimentellen Kontrolle bedeuten [108, 109, 111–113].

Unser Beitrag während der letzten sieben Jahren erstreckt sich von der experimen-
tellen Beobachtung, über den Ausbau der Theorie, um beispielsweise den Einfluss von
atomaren Wechselwirkungen eines Bose-Einstein-Kondensates zu verstehen, bis hin zur
Anwendung der Resonanzmoden, die, wie beispielsweise Abschnitt 2.1.4 zeigt, sehr ro-
buste Arbeitspferde zur Realisierung anderer Phänomene sind.

2.1.1 Einfluss atomarer Wechselwirkung

Am einfachsten modelliert man interatomare Wechselwirkung durch einen nichtlinearen
Term in einer effektiven Molekularfeldtheorie. Der Einfluss eines nichtlinearen Terms
im Impulsraum, der kubisch in der Wellenfunktion ist, auf die Dynamik des Quanten-
Kicked-Rotors wurde schon 1993 untersucht [114]. Dabei stand die Frage im Fokus, ob
die Nichtlinearität die dynamische Lokalisierung zerstört. Experimente mit Kondensa-
ten werden dagegen durch die Gross-Pitaevkii-Gleichung (1.3) beschrieben, wobei der
kubisch nichtlineare Term lokal im Ortsraum ist. Da dadurch aber die Translationsinva-
rianz des Systems gebrochen wird (das effektive Potential ist nun nicht mehr periodisch,
und folglich lässt sich das experimentelle Problem nicht mehr exakt auf einen Rotor
mit periodischen Randbedingungen abbilden), sind entsprechende numerische Untersu-
chungen schwieriger. Auf der analytischen Seite scheint die Frage, welchen Einfluss eine
räumliche Nichtlinearität auf die Lokalisierung hat, bis heute offen (s. z. B. [115]).

In einer ersten Studie [16 | S. 81] haben wir beide Arten von Nichtlinearitäten un-
tersucht, wobei mein Beitrag hauptsächlich den Quantenresonanzen gilt. Ab initio nu-
merische Rechnungen, in denen die Gleichung (1.3) für gegebene Anfangsbedingungen
(z. B. ein Kondensat, das in einer dreidimensionalen Falle relaxiert wurde), zeitlich in-
tegriert wird, sind vor allem deshalb schwierig, da man dreidimensional rechnen muss,
um den Effekt des nichtlinearen Terms wirklich quantitativ zu beschreiben [14 | S. 39].
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Abbildung 2.1: Ensemblegemittelte Energien aus Experimenten mit kalten Atomen in
Nähe der Quantenresonanz (rote Kreise) und im Grenzfall τ → 0 (blaue Rechtecke) im
Vergleich zu den theoretischen Vorhersagen (volle und gestrichelte Kurve). Die Energien
sind dabei mit dem Wert bei x→ 0 reskaliert worden, woraus R(x) folgt; x = t

√
|ε|k,

wobei t die Anzahl der Kicks, k die Kickstärke und ε die Verstimmung der Kickperiode
τ von der exakten Resonanzbedingung bzw. von τ = 0 ist. Abbildung aus [19 | S. 96].

Effektive eindimensionale Modelle, wie auch von uns in [16 | S. 81] benutzt, machen üb-
licherweise Annahmen über die spezielle (zeitlich konstante!) Form der Wellenfunktion
in radialer Richtung (senkrecht zur Kickachse), die sehr von den experimentellen Rand-
bedingungen abhängen kann. In Ref. [14 | S. 39] zeigen wir für ein realistisches Szena-
rio, dass eine schwache Wechselwirkung, wie sie durch die Gross-Pitaevkii-Gleichung
gut beschrieben wird, nur einen kleinen Effekt während der anfänglichen Expansion des
Kondensates hat, danach aber im Vergleich zu den Impulsüberträgen durch die Kicks
vernachlässigbar wird. Mit anderen Worten führt gerade die schnelle Expansion zu ei-
nem Dichteabfall, der die Quantenresonanzen immun gegen die nichtlineare Störung
macht. Unsere Vorhersagen, insbesondere auch für Resonanzen höherer Ordnung, wur-
den in einem Experiment mit einem Kondensat aus Natriumatomen am National Institute
for Standards and Technology (NIST, USA) sehr schön bestätigt [108].

2.1.2 Quantenresonanzen im semiklassischen Limes

Gewisse Aspekte des NIST-Experiments [108] konnten wir mit Hilfe eines „alten” Ex-
perimenttyps mit nur kalten Atomen vorwegnehmen. Die breite anfängliche Impulsver-
teilung macht zwar die direkte Beobachtung ballistischer Moden in Quantenresonanzbe-
dingung unmöglich, aber unser pseudo-klassisches Modell [101] gibt eine genaue Theo-
rie des Resonanzpeaks der mittleren Energie des atomaren Ensembles als Funktion der
Kickperiode, der Zeit und der Kickstärke. Diese universelle Vorhersage des Peaks als
Funktion nur einer einzigen Kombination der drei genannten Parameter konnte direkt im
Experiment als Skalierungsfunktion nachgemessen werden [17 | S. 89]. Dabei stellten
wir fest, dass eine kleine Abänderung der Theorie ausreicht, um auch den Grenzfall ver-
schwindender Kickperiode zu beschrieben (τ → 0). Dieser unterscheidet sich vom übli-
chen semiklassischen Limes im Rotor, der zwei Grenzfälle braucht (τ→ 0 und Kickstär-
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Abbildung 2.2: Ensemblegemittelte Energien aus Experimenten mit kalten Atomen in
Nähe einer Quantenresonanz (farbige Symbole) im Vergleich zu den theoretischen Vor-
hersagen ohne Rauschen (dicke Kurven) und relative Rauschstärken der Kickamplitu-
de von 50% (gestrichelt), 100% (dünne Linie), 150% (gepunktet) und 200% (strichge-
punktete Kurve). Die Energien sind dabei mit dem Wert bei x→ 0 reskaliert worden;
x = t

√
|ε|k, wobei t die Anzahl der Kicks, k die Kickstärke und ε die Verstimmung der

Periode von der exakten Resonanz ist. Abbildung leicht adaptiert aus [50 | S. 324].

ke k→∞), dadurch, dass bei uns die Kickstärke konstant gehalten wird. Damit lässt sich
die Theorie, die im Rahmen der Quantenresonanzen entwickelt wurde, direkt auf den
Fall τ → 0 übertragen [15 | S. 43]. Interessant ist dabei vor allem, dass die breite An-
fangsimpulsverteilung in die pseudo-klassichen Gleichungen als (Breite× Kickperiode)
eingeht [101] und daher für kleine Perioden effektiv sehr schmal wird. Dies ermöglicht
die Beobachtung ballistischen Transports auch direkt mit kalten Atomen zumindest bis
zu einer Zeit, die das System braucht, um den endlichen Wert von τ aufzulösen [19 |
S. 96]. Abbildung 2.1 zeigt die beiden Skalierungsfunktionen im Falle der Annäherung
an eine Quantenresonanz (rote Datenpunkte), und des Grenzfalls τ → 0 (blaue Daten-
punkte). Der von uns neu untersuchte Grenzfall τ → 0 ist immer interessant, wenn man
sonst eine sehr schmale Impulsverteilung braucht, um Effekte beobachten zu können.
So basiert auch ein weiterer Vorschlag für ein Experiment, der am Ende des folgenden
Abschnitts beschrieben wird, auf diesem Trick.

2.1.3 Stabilisierung durch reguläre Strukturen im Phasenraum

Amplitudenrauschen

In Experimenten mit periodischen optischen Gittern ist die Kalibrierung der Amplitu-
de der stehenden Welle nicht ganz so gut möglich, und Unsicherheiten von etwa zehn
Prozent der Amplitude sind die oft Regel (s. z. B. [17 | S. 89] und [1, 116]; Gründe
sind unter anderem Amplitudenschwankungen von Experiment zu Experiment und die
radiale Variation der Laserintensität, sodass nicht alle Atome dieselbe Amplitude wie im
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Strahlzentrum spüren). Wir haben uns daher nach der Stabilität der Quantenresonanzen
in Anwesenheit von Amplitudenrauschen [62, 117] gefragt und dabei festgestellt, dass
diese äußerst robust sind (im Gegensatz zur Dynamischen Lokalisierung, die bei wach-
sendem Rauschen systematisch in Diffusion übergeht [118, 119]). Das Rauschen wurde
dabei gezielt und kontrolliert im Experiment zugeführt, und deutliche Effekte sind erst
bei etwa fünfzig Prozent Rauschstärke erkennbar [33 | S. 203]. Die beobachtete Sta-
bilität der Dynamik lässt sich folgendermaßen erklären. Formal gesehen und qualitativ
gesprochen sind die Bedingungen für das Auftreten von Quantenresonanzen nicht von
der Kickstärke abhängig, sondern vor allem von der Periode der Kicks [50, 84, 97]. Un-
ser pseudo-klassisches Bild kann auch auf den Fall von Rauschen erweitert werden, was
zu einer neuen Skalierungsfunktion der mittleren Energie des atomaren Ensembles führt,
die stark auf der regulären, pendelähnlichen Struktur der Resonanz im pseudo-klassichen
Phasenraum basiert [33 | S. 203]. Das Rauschen bewirkt nun, dass Zustände nahe der
Separatrix (welche Rotations- und Librationsbewegung trennt) mischen, und dadurch
mehr Energie absorbiert wird als im Falle ohne Rauschen. Abhängig von der Rausch-
stärke werden also aus oszillierenden Pendelorbits mehr und mehr Rotationsorbits, was
die Zunahme der Energie mit der Rauschstärke quantitativ erklärt, die in Abbildung 2.2
sichtbar ist.

Stabilitätsanalyse mittels der „Fidelity”

Eine dynamische Methode, um die Stabilität eines quantenmechanischen Systems zu
charakterisieren, wurde erstmals 1984 von Peres vorgeschlagen [120]. Dabei wird der-
selbe Anfangszustand durch die Schrödinger-Gleichung zweimal propagiert, wobei aber
in einem Fall ein Systemparameter leicht variiert wird. Das Stabilitätsmaß ist dann die
sogenannte Fidelity, d.h. der Absolutbetrag des Hilbertraumüberlapps (des Skalarpro-
dukts) der beiden gleichzeitigen Zustände als Funktion der Zeit. Die Fidelity wurde
im Detail vor allem für Systeme untersucht, die im semiklassichen Limes chaotisch
sind [121, 122]. Für (quasi-)reguläre Systeme – wie in unserem Fall der Pseudo-Klassik
nahe der Quantenresonanzen – existiert bisher aber keine geschlossene Theorie. Intuitiv
sollte aber klar sein, dass die schon im vorhergehenden Abschnitt beschriebenen Librati-
onsorbits innerhalb einer stabilen klassischen Resonanzinsel ein periodisches Verhalten
als Funktion der Zeit zeigen. Vergleicht man nun die Zeitentwicklung zweier Zustän-
de, die mit leicht unterschiedlicher Geschwindigkeit oszillieren (bestimmt durch leicht
unterschiedliche Kickstärken, was unser Fidelity-Parameter ist), sieht man tatsächlich
zunächst einen Abfall der Fidelity von eins auf sehr kleine Werte, danach aber eine pe-
riodische Wiederkehr des Signals. Die Periode ergibt sich relativ einfach aus den beiden
Oszillationsperioden der Einzelzustände, wie in Ref. [37 | S. 231] gezeigt wird. Inter-
essant ist dabei, dass Zustände, die anfänglich genau mit dem stabilen Fixpunkt (dem
Zentrum) der Resonanzinsel überlappen, auch bei der halben Periode ein Wiederkehren
der Fidelity bewirken. Dies hat mit einer Symmetrie zu tun, welche einer Spiegelung des
Drehwinkels um den Fixpunkt entspricht (vgl. auch [123]), und die schon bei leicht ande-
ren Anfangsbedingungen gebrochen wird. Um den Unterschied zwischen diesen beiden
Fällen zu sehen, bräuchte man deshalb sehr schmale Anfangsbedingungen im Impuls-
raum, die entweder durch ein hochverdünntes Bose-Einstein-Kondensat (ohne Wech-
selwirkung!) oder effektiv mittels des in Abschnitt 2.1.2 beschriebenen Tricks (τ → 0
anstatt nahresonanter Dynamik) erreicht werden können.
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2.1.4 Gerichteter Transport

Eine direkte Anwendung der ballistischen Quantenresonanzmoden ist die Möglichkeit,
durch sie gerichteten Transport (vulgo eine Quanten-Ratsche) zu realisieren. Vorschläge
in dieser Richtung finden sich z. B. in [124–127]. Experimente im quantenresonanten
Regime benutzen anstelle asymmetrischer Kickpotentiale leichter herzustellende, asym-
metrische Anfangsbedingungen im Impulsraum [128, 129]. Unser Beitrag war es, eine
einfache Erklärung für den im Experiment [128,129] beobachteten Effekt zu geben, ba-
sierend auf unserer pseudo-klassischen Theorie [36 | S. 218]. Ferner erweiterten wir die
Vorhersagen für exakte Resonanzbedingung auf kleine Verstimmungen um die Reso-
nanz. Analog den in den vorherigen Abschnitten beschriebenen Skalierungsfunktionen
für die Energie, lässt sich insbesondere eine neue Skalierungsfunktion des mittleren Im-
pulses der Atome ableiten [36 | S. 218]. Der von uns beschriebene Ratschen-Effekt bei
endlicher Verstimmung ist transient, d.h. er existiert, bis das System die Verstimmung
bemerkt. Er hat aber den Vorteil, dass die Richtung des mittleren Impulses alleine durch
die Verstimmung gesteuert werden kann (bei festen Anfangsbedingungen), und somit
prinzipiell ein dynamischer Richtungswechsel möglich ist.

Neben den gerade erwähnten Quantenresonanz-Ratschen, lässt sich gerichteter Trans-
port auch standardmäßig im Regime realisieren, in welchem die Dynamik des klassichen
Rotors (jetzt nicht im pseudo-klassichen Sinne) chaotisch ist. Dazu bricht man üblicher-
weise sowohl eine räumliche als auch eine zeitliche Symmetrie des Problems [130–132].
In einer gemeinsamen Arbeit meiner ehemaligen Gruppe aus Pisa und Theoretikern aus
Como schlagen wir in Analogie zu der Studie in Ref. [133] eine konkrete Implemen-
tierung mit nicht (oder schwach-) wechselwirkenden Atomen vor, in der sowohl beide
Symmetrien gebrochen sind, als auch zusätzlich Dissipation auftritt. Die Symmetriebre-
chung erfolgt durch Doppelkicks mit zwei unterschiedlichen Kickperioden [134] durch
zwei zueinander phasenversetzte optische Gitter, die aber die gleiche räumliche Periodi-
zität aufweisen1. Die relative Phase zwischen den Gittern bestimmt den Absolutwert und
die Richtung des mittleren Impulses. Die Dissipation wird bewirkt durch absorbieren-
de Randbedingungen, die Impulsklassen außerhalb eines gewissen Fensters abschnei-
den. Der damit beobachtete Ratscheneffekt des Quantensystems ist dann zwar transient,
da die Teilchen ja asymptotisch verloren gehen, aber sehr stabil gegenüber Parameter-
schwankungen, wie wir in Ref. [22 | S. 137] zeigen. Dasselbe Prinzip der absorbie-
renden Randbedingungen, die einer geschwindigkeitsabhängigen Selektion der Atome
entsprechen, wie sie z. B. durch Raman-Übergänge realisierbar wäre [137], verwenden
wir ferner in einem anderen Zusammenhang, der im nächsten Abschnitt kurz vorgestellt
wird.

2.1.5 Fraktale Fluktuationen als Signatur Dynamischer Lokalisierung

Nachdem in den vorhergehenden Abschnitten die ballistischen Quantenresonanzmoden
im Mittelpunkt standen, widmen wir uns nun dem Regime der Dynamischen Lokalisie-
rung. Letztere kann auf verschiedene Weise charakterisiert werden: am besten durch in
situ Messungen des Betragsquadrats der Wellenfunktion im Impulsraum [105], welche
direkt den die Lokalisierung kennzeichnenden exponentiellen Abfall zeigt; aber auch
durch die mittlere Energie des atomaren Ensembles, die nach einer transienten Zeit sät-
tigt [105], was dem Einfrieren der Wellenfunktion in ihre exponentiell abfallende Form

1Damals war die Phasenkontrolle doppelperiodischer Gitter, wie sie mittlerweile realisiert wurde [135,
136], noch nicht so einfach möglich.
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entspricht. Eine weitere Methode besteht im Studium parametrischer Fluktuationen, die
im lokalisierten Regime von der Größenordnung des Mittelwerts des Signals sind [138].
Letztere ist die Methode der Wahl in der Festkörperphysik, wo Lokalisierung vor allem
durch Transportmessungen festgestellt werden kann.

Einer anderen Arbeit zum Quanten-Kicked-Rotor folgend [139], untersuchten wir
dazu die Überlebenswahrscheinlichkeiten eines Ensembles von Anfangsbedingungen in
einem Bereich im Impulsraum, der groß genug ist, um die Lokalisierung der Wellen-
funktionen nicht wesentlich zu stören. Teile der Wellenfunktionen, die aus dem Bereich
hinausreichen, werden abgeschnitten, was den Zerfall definiert, und dem im vorheri-
gen Abschnitt besprochenen absorbierenden Randbedingungen entspricht. Wir wählten
aber im Gegensatz zu früheren Untersuchungen die Kickperiode als Variationsparame-
ter, als Funktion dessen die Fluktuationen der Überlebenswahrscheinlichkeit zu fester
Zeit betrachtet werden. Das hat den einfachen Grund, dass die Periode im Experiment
als Variable im Frequenzraum leichter kontrollierbar ist. Unsere theoretischen Ergebnis-
se, sowohl für einzelne Rotoren als auch für experimentell realisierbare Ensembles von
Rotoren [20 | S. 110], übertragen nicht nur die früheren Resultate auf unseren Fall der
Periodenvariation, sondern zeigen ferner, dass deutliche Signaturen der fraktalen Natur
der parametrischen Fluktuationen schon bei relativ kurzen Kickzeiten beobachtet wer-
den können; dazu ist jedoch eine hohe experimentelle Auflösung über mindestens eine
Größenordung der Kickperiode nötig. Zudem sollte der Einfluss von Quantenresonan-
zen hoher Ordnungen [84, 140], die dicht in jedem Intervall von Kickperioden liegen,
möglichst ausgeschlossen werden. Letzteres ist eine Frage von Zeitskalen, denn Reso-
nanzen hoher Ordnung machen sich erst bei extrem großen Kickzahlen bemerkbar [140].
Weitere detaillierte numerische Rechnungen und Analysen [27 | S. 161] weisen ferner
auf eine bislang nicht näher untersuchte multifraktale Struktur der Fluktuationen hin;
analoge komplexe Eigenschaften sind z. B. bekannt für Wellenfunktionen im kritischen
Bereich eines Lokalisierung-Delokalisierungs-Übergangs [141]. Ob beide Phänomene
zusammenhängen, und was die genaue Ursache der in Ref. [27 | S. 161] beobachteten
Multifraktalität ist, sind offene Fragen.

2.2 Interbandtunneln in gekippten periodischen Potentialen

Ein altes Problem der Quantenmechanik ist die Dynamik eines Teilchens in einem pe-
riodischen Potential und unter Einfluss einer konstanten Kraft (z. B. eines Elektrons im
Festkörpergitter bei Anlegen einer konstanten Spannung) [55, 142, 143]. Dieses soge-
nannte Wannier-Stark-System wurde schon in den neunziger Jahren mit kalten Atomen
realisiert [144], was unter anderem die deutliche Messung von Bloch-Oszillationen er-
möglichte [144, 145]. Auch Experimente mit Bose-Einstein-Kondensaten wurden von
1998 an gemacht [146, 147]. Letztere haben den Vorteil, dass nicht nur die Anfangs-
bedingungen im Impulsraum, sondern auch alle externen Potentiale sowie die Wech-
selwirkung zwischen den Teilchen mit hoher Präzision kontrollierbar sind [1]. Dies ist
notwendig, um z. B. die Bloch-Ozillationen gut aufzulösen und den Einfluss der Wech-
selwirkung auf diese zu untersuchen [1, 147–149]. Für Experimente mit einem Konden-
sat aus Rubidiumatomen (87Rb) ist die interatomare Wechselwirkung direkt durch eine
Änderung der Streulänge in den Atom-Atom-Stößen schwer zu kontrollieren [150]. Ihr
Effekt kann aber in einem gewissen Bereich durch das Einsperren des Kondensates in
radialer Richtung, d.h. durch die Änderung der Teilchendichte, verstärkt werden [23 | S.
52]. In den im Folgenden beschriebenen Experimenten in Pisa war dies jedoch kein Hin-
dernis, da wir entweder möglichst ohne Wechselwirkung arbeiteten oder deren schwache
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Abbildung 2.3: Skizze zum resonanten Tunneln in einem gekippten periodischen Po-
tential mit Amplitude V0 und Gitterkonstante dL. Die eingezeichneten Zustände in den
Gittertöpfen, die sogenannten Wannier-Stark-Zustände, bekommen durch die Tunnel-
kopplung eine endliche Zerfallsbreite. Diese Breiten sind für die dargestellten Fälle der
Resonanz zwischen zwei Gitterplätzen mit Abstand ∆i = 2 bzw. ∆i = 3 stark erhöht,
was durch die grauen Pfeile angegeben ist, die den Zerfall aus dem Gitter andeuten.
Abbildung aus [23 | S. 52].

Wirkung gezielt durch resonantes Tunneln verstärken konnten.

2.2.1 Resonanzverstärktes Tunneln

Wie in Abbildung 2.3 für ein Einteilchenproblem skizziert, lässt sich der Transport in ei-
nem periodischen Potential erheblich verstärken, wenn man die konstante Stark-Kraft
F so wählt, dass verschiedene Zustände in benachbarten Potentialtöpfen energetisch
entarten [55]. Die Kopplung durch quantenmechanisches Tunneln führt dann zu ver-
miedenen Kreuzungen der Energieniveaus [55], deren Breite die Kopplungsstärke wi-
derspiegelt. Da das System durch die Stark-Kraft an das energetische Kontinuum kop-
pelt, ergeben sich derartige Kreuzungsszenarien in der komplexen Energieebene [143].
Mittels eigens entwickelter numerischer Methoden, wie der komplexen Skalierung zur
Berechnung von Zerfallsraten [21 | S. 125] und einem Shooting-Suchverfahren [42 |
S. 249], haben wir solche Szenarien für das nichtlineare Problem der Gross-Pitaevskii-
Gleichung [151–153] untersucht, unter anderem auch in geneigten, doppelperiodischen
Potentialen ([26 | S. 144] und [42 | S. 249]).

Während sich diese fundamentalen Studien auf eindimensionale Systeme beschrän-
ken, entwickelten wir eine hocheffiziente Methode zur direkten Integration der dreidi-
mensionalen Gross-Pitaevskii-Gleichung (1.3) unter realistischen experimentellen Be-
dingungen [18 | S. 105], welche auch für die in Abschnitt 2.1.1 erwähnten Rechnungen
eingesetzt wurde [14 | S. 39]. Unsere Vorhersagen zum Einfluss der Wechselwirkung auf
die Zerfallsraten aus dem Grundzustandsband werden durch die in [23 | S. 52] und [31
| S. 183] beschriebenen Experimente bestens bestätigt. Der beobachtete Effekt des reso-
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Abbildung 2.4: Experimentelle Messung der Zerfallsraten Γ1 in einem gekippten pe-
riodischen Potential (Symbole) und theoretische Vorhersage (durchgezogene Linien).
Links: Die Modulation auf der globalen exponentiellen Abhängigheit der Raten von der
inversen, dimensionslosen Stark-Kraft F−1

0 folgt aus der Resonanzbedingung zwischen
den Zuständen in den Töpfen, welche zwei, drei und vier Gitterplätze voneinander ent-
fernt liegen. Abweichungen bei großen und sehr kleinen Raten, im Bereich außerhalb
der beiden Pfeile, sind durch experimentelle Probleme bedingt [23 | S. 52]. Die klei-
ne Abbildung zeigt die Zerfallsrate relativ zur Vorhersage der Landau-Zener-Formel (s.
Abschnitt 2.2.2 und z. B. [116]) welche die Resonanzen nicht berücksichtigt; letztere ist
direkt als gestrichelte Linien in beiden Bildern zu sehen. Rechts: Abstoßende Wechsel-
wirkung hebt systematisch die Zerfallsraten, zudem wird der Resonanzpeak ausgewa-
schen (Symbole mit steigender Teilchendichte von Rechtecken über Kreisen zu Pyra-
miden); beide Effekte konnten wir in der Arbeit [18 | S. 105] theoretisch vorhersagen.
Abbildungen aus [23 | S. 52].

nanten Tunnels zwischen verschieden weit entfernten Nachbartöpfen kann mit oder ohne
Wechselwirkung benutzt werden, um den Zerfall durch die Kippkraft stark zu beeinflus-
sen. Wählt man beispielsweise einen experimentellen Arbeitspunkt zwischen einem Ma-
ximum (resonantes Tunneln) und einem Minimum („Antiresonanz”), führt eine kleiner
Änderung der Kraft zu einer großen Variation der Raten (s. Abbildung 2.4). Eine solche
Kontrolle des Transports durch resonantes Tunneln wurde bereits von Tsu und Esaki für
ähnliche Systeme mit kleinerer Ausdehnung vorgeschlagen [154], wobei damals aber
nicht mit der Präzision der Experimente mit ultrakalten Gasen gerechnet werden konnte
[49 | S. 324].

2.2.2 Zeitaufgelöste Messung der Überlebenswahrscheinlichkeit

Wie das Arbeiten mit ultrakalten Atomen die direkte Beobachtung von Bloch-Oszil-
lationen über lange Zeiten ermöglicht [148, 149], lässt sich auch der Zerfall aus dem
Grundzustandsband des periodischen Potentials in Anwesenheit der Stark-Kraft mit fei-
ner Zeitauflösung untersuchen. Die schmale Impulsbreite des Anfangszustandes verbes-
sert dabei erste Messungen von Raizen und Mitarbeitern [116,155] erheblich und macht
die Stufenstruktur erst sichtbar, die aus der zeitlichen Trennung der Prozesse – Bloch-
Oszillation bis zur Bandkante und Zerfall in der Nähe der Bandkante – folgt. Die Stu-
fen haben dann eine endliche Breite, die der Breite des Wellenpakets im Impulsraum
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Abbildung 2.5: Überlebenswahrscheinlichkeiten nach sechs Bloch-Perioden TB =
2π/ωB als Funktion der skalierten Rauschfrequenz, bezogen auf das Referenzgitter, für
das die Vorhersage als durchgezogene horizontale Linie gezeigt ist. Die Varianz des
Rauschens variiert dabei von 〈φ 2〉 = 0.25 (offene Kreise) über 1 (volle Rechtecke) bis
10 (offene Rechtecke). Für große Werte auf der x-Achse gehen die Daten in die Vorher-
sage des jeweiligen effektiven statischen Potentials über, das aus dem zeitlichen Mittel
über die schnell variierende Phase folgt (durchbrochene Linien in gleicher Farbe wie
entsprechende Symbole). Abbildung adaptiert aus [45 | S. 72].

entspricht [34 | S. 64]. Für den wechselwirkungsfreien Fall konnte die Gültigkeit einfa-
cher Modelle getestet werden, welche die Interbandkopplung auf einen Landau-Zener-
Übergang (beschrieben durch eine zwei mal zwei Matrix) im einfachperiodischen Po-
tential [40 | S. 241] zurückführen. Abweichungen von den Vorhersagen dieser Modelle
stammen unter anderem von Resonanzeffekten (s. vorhergehenden Abschnitt) oder der
Tatsache, dass es sich im Wannier-Stark-Problem um eine zeitlich äquidistante Serie von
Durchgängen durch vermiedene Kreuzungen handelt, vgl. [40 | S. 241] und [156, 157].

Interessant ist auch der Fall, wenn atomare Wechselwirkung eine Rolle spielt, die
man unter Ausnutzung der zeitlichen Änderung der atomaren Dichte und von Resonanz-
effekten verwenden kann, um starke Abweichungen von einem monoexponentiellen Zer-
fallsgesetz zu erhalten [28 | S. 155]. Aber auch ohne resonantes Tunneln erhält man nur
asymptotisch das für den Einteilchenfall erwartete exponentielle Zerfallsgesetz, welches
sich erst einstellt, wenn die Teilchendichte auf vernachlässigbare Werte abgefallen ist,
vgl. [158] und [21 | S. 125]. Die Abweichungen vom globalen exponentiellen Zerfall
sind zwar für die beispielsweise in Pisa hergestellten atomaren Dichten [31 | S. 183]
schwach, und daher im Rahmen der Meßfehler schwer zu sehen, aber doch deutlich in
den ansonsten realistischen numerischen Simulationen sichtbar [18 | S. 105].
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2.2.3 Kontrolle des Zerfalls durch Phasenrauschen

Experimentell können heute standardmässig auch komplexere Potentiallandschaften rea-
lisiert werden [1, 2]. Ein Beispiel sind Doppelgitter, deren Gitterkonstanten entweder
kommensurabel (üblichweise sich um einen Faktor zwei oder vier unterscheiden [135])
oder inkommensurabel (im Rahmen der experimentellen Genauigkeit) [159, 160] sind.
Während erstere eine Implementierung der von uns in [26 | S. 144] und [42 | S. 249] un-
tersuchten Wannier-Stark-Systeme darstellen, sind inkommensurable Gitter interessant,
um Lokalisierungsphänomene im statischen, pseudo-zufälligen Potential, das durch sie
realisiert wird, zu untersuchen [161, 162].

Man kann sich fragen, wie sich nun eine zeitabhängige Unordnung auf die Dynamik
in einem so veränderten Wannier-Stark-System auswirkt. Dazu betrachten wir den Fall
zweier inkommensurabler Gitter, wobei das erste das in den vorhergehenden Abschnitten
untersuchte Referenzsystem darstellt, das zweite aber einer zeitabhängigen Phasenver-
schiebung gegenüber dem ersten ausgesetzt ist. Für die Phasenverschiebung wählen wir
einen stochastischen Prozess, um somit eine zeitabhängige Unordnung zu haben. Expe-
rimentell sollte eine solche dynamische Phasenverschiebung durch geeignete Modulato-
ren, die das Gitter kontrollieren, in einem weiten Parameterbereich herstellbar sein [1].
Insbesondere liefert die Wahl eines harmonischen Rauschens eine mittlere Energieskala,
die man auf die Skalen des Referenzsystems abstimmen kann. Damit lässt sich nun der
Zerfallsprozess aus dem Grundzustandsband des Referenzsystems zusätzlich kontrollie-
ren. Das Ergebnis ist, dass sich das Signal (die Überlebenswahrscheinlichkeit zu fester
Zeit) schön skalieren lässt, was die Universalität unserer Vorhersagen über einen weiten
Parameterbereich hervorhebt. Abbildung 2.5 zeigt, dass bei geeigneter Reskalierung der
mittleren Rauschfrequenz ω0 mit der Varianz des Rauschens 〈φ 2〉 und der Bloch-Periode
im Referenzgitter ωB ein Minimum nahe dem universellen Wert 1 auftritt. Für größere
Rauschfrequenzen gehen die Datenkurven in eine ebenfalls universelle Vorhersage für
schnelles Rauschen über, wobei in diesem Fall ein Phasenmittel ein effektives statisches
Potential ergibt, das nur von der Varianz 〈φ 2〉 abhängt [44 | S. 263]. Abweichungen
vom universellen Verhalten treten bei zu kleinen Rauschfrequenzen auf, wenn einerseits
die spektrale Breite des Rauschens wichtig wird, und andererseits die systemrelevanten
Zeitskalen zu kurz sind, sodass sich die Details des Rauschens nicht mehr ausmitteln
können [45 | S. 72].

2.2.4 Vielteilchen-Wannier-Stark-System

Die in den letzten Abschnitten vorgestellten Fragestellungen lassen sich auf den Fall
tiefer Potentialgitter und starker interatomarer Wechselwirkung ausdehnen. Für tiefe
Gitter kann man das ursprüngliche Kontinuumsproblem gut durch ein diskretes Mo-
dell beschreiben, dessen Grundstruktur oben in Abschnitt 1.3.3 eingeführt worden ist.
Um Interbandkopplungen mitzunehmen, muss man das Bose-Hubbard-Modell natürlich
erweitern und entsprechende Terme für die Stark-Kraft und das zweite Band mitberück-
sichtigen. Während das Einband-Modell mit Stark-Kraft in den Referenzen [72, 163–
165] untersucht wurde, gibt es hauptsächlich nur Aussagen über Phasendiagramme der
Grundzustandsmoden von Mehrbandmodellen ohne zusätzliche Kraft (s. beispielswei-
se [166–168]). Ein Zweibandmodell kann experimentell gut durch ein Übergitter reali-
siert werden, das aus zwei Gittern mit um einen Faktor zwei verschiedenen räumlichen
Perioden gebildet wird [135]. Durch das zweite Gitter wird das Grundzustandsband in
zwei Minibänder aufgespalten, die bei geeigneter Wahl der Gitteramplituden und -pha-
sen energetisch gut von höheren Bändern getrennt sind [135,169]. Für Füllfaktoren (An-
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zahl der Bosonen geteilt durch die Zahl der Gitterplätze) um eins untersuchten wir dieses
System unter Einfluss einer konstanten Stark-Kraft, wobei wir in zwei Schritten vorgin-
gen:

Effektives Einbandmodell

Wir begannen mit dem Studium eines aus dem vollen Zweibandmodell abgeleiteten ef-
fektiven Systems, das die Interbandkopplungsterme störungstheoretisch behandelt. Aus-
gehend von einer Besetzung rein im Grundzustandsband kann dadurch ein effektiver
Hamilton-Operator für dieses Band abgeleitet werden, der absorbierende Terme enthält,
welche den Zerfall ins angeregte Band perturbativ beschreiben. Letztere Terme wurden
auf der Basis von Fermis Goldener Regel analytisch abgeleitet und dann am Ende in
die Diagonalterme der Einband-Hamilton-Matrix eingesetzt. Dabei werden die Matrix-
elemente in der üblichen Fock-Basis im Ortsraum ausgedrückt, und somit erhält jeder
Fock-Zustand seinen eigenen, von den jeweiligen Besetzungszahlen abhängigen Zer-
fallsterm [29 | S. 170]. Die exakte Diagonalisierung dieser effektiven Hamiltonschen
Matrix ist für größere Systeme als für das volle Zweibandmodell möglich, wobei wir
typischerweise Systeme bis zu zehn Bosonen in zehn Gitterplätzen betrachteten.

Unsere Ergebnisse bestätigen einerseits die Resultate zu den spektralen Eigenschaf-
ten des geschlossenen Einbandmodells [163,164], erlauben aber darüber hinaus die Ana-
lyse der Zerfallsraten der Eigenzustände, die den Imaginärteilen der Eigenenergien ent-
sprechen. Das überraschende Resultat ist, dass die Statistik dieser Zerfallsraten den Vor-
hersagen für den Zerfallsprozess eines einzelnen Teilchens in einem eindimensionalen,
ungeordneten Gitter entspricht [24 | S. 56]. Dort tritt für genügend starke Unordnung
Anderson-Lokalisierung auf, die auf eine Normalverteilung der Logarithmen der Zer-
fallsraten führt [170]; im Falle schwacher Unordnung, d.h. für Systemlängen klein oder
vergleichbar mit der Lokalisierungslänge, erwartet man dagegen diffusiven Transport,
aus dem eine Zerfallsratenverteilung folgt, die durch ein Potenzgesetz beschrieben wird
(vgl. [171] und die darin enthaltenen Referenzen). Unser Vielteilchenmodell zeigt – bis
auf systemspezifische Abweichungen – vergleichbare Statistiken, wobei hier die Teil-
chenwechselwirkung die Unordnung ersetzt [29 | S. 170]. Qualitativ gesprochen wirken
also die restlichen Teilchen wie ein effektives Unordnungspotential für ein ausgezeich-
netes Boson. Da es sich aber prinzipiell um ununterscheidbare Bosonen handelt, ist die-
ses Bild natürlich falsch und nur eine Hilfe zum Verständnis der beschriebenen Analogie.
Um eine quantitative Interpretation zu geben, könnte man von der Matrixstruktur unseres
Systems starten und diese mit üblichen Modellen aus der Theorie ungeordneter Syste-
me [172] vergleichen. Diese etwas technische Fragestellung wollen wir künftig weiter
verfolgen.

Geschlossenes Zweibandmodell

In einem zweiten Schritt betrachteten wir das volle Zweibandmodell. Hier ergibt sich
eine Vielzahl von Fragen, die man untersuchen kann. Im Gegensatz zum Einbandmo-
dell besteht die Hamiltonsche Matrix nun aus zwei Teilen, die Zuständen entsprechen,
die ausschließlich nur Besetzungen in einem der beiden Bänder haben, und einer großen
Mehrheit von Zuständen, die zwischen dem oberen und unteren Band hybridisiert sind.
Man kann dann – je nach Wahl der Parameter – starke Kopplungen in einem Teilbereich
(z. B. in dem Teil, der dem unteren Band entspricht) haben und mehr oder weniger Ein-
teilchendynamik im anderen Band. Darüberhinaus kann man die Interbandkopplungs-
terme durch die Stark-Kraft, aber auch durch die atomare Wechselwirkung einstellen.
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Abbildung 2.6: Veranschaulichung des effektiven Spinmodelles mit jeweils zwei mög-
lichen Spineinstellungen (innerhalb der gestrichelten Ellipsen), die den hybridisierten
Zuständen des ursprünglichen Gittersystems entsprechen. Die Kopplung der Spins ent-
lang der Kette bewirkt zunächst den Kollaps und das spätere „Revival” der Interband-
oder Spinoszillationen. Es ist der in Abbildung 2.3 gezeigte Fall von resonantem Tun-
neln zwischen jeweils übernächsten Nachbarn (∆i = 2) skizziert. Abbildung aus [46 | S.
270].

Startet man von einer schwachen Teilchenwechselwirkung, kann man die Resultate
aus Abschnitt 2.2.1 reproduzieren, bei denen die Interbandkopplung durch eine reso-
nante Stark-Kraft verstärkt wird. Der Unterschied besteht dann aber darin, dass unser
Zweibandmodell an sich geschlossen ist, d.h. anstatt eines Transports ins Kontinuum
sieht man Oszillationen in den Besetzungen der Bänder [47 | S. 277]. Für verschwin-
dende Wechselwirkung sind solche resonanten Oszillationen perfekt, was mit der Rabi-
Oszillation in einem Zweizustandssytem vergleichbar ist. Schaltet man schwache Wech-
selwirkung dazu, beobachtet man einen anfänglichen Zerfall der Oszillationen, aber auch
eine Wiederkehr nach einer charakteristischen Periode, die hauptsächlich durch die Ener-
gieskala der wechselwirkungsinduzierten Interbandkopplung bestimmt ist [39 | S. 235].
Dieses Kollaps- und „Revival”-Phänomen lässt sich am besten dadurch verstehen, in-
dem man – wie in Ref. [46 | S. 270] vorexerziert – das ursprüngliche System mit durch-
schnittlich einem Teilchen pro Gitterplatz auf eine Kette von Spins 1/2 abbildet, wobei
der besagte Wechselwirkungsterm der Atome zu einer Kopplung der Spins entlang der
Kette führt. Wie in Abbildung 2.6 skizziert, entspricht dabei der untere Spinzustand
einem Boson im unteren Niveau und der obere Spinzustand einem Boson im oberen Ni-
veau des jeweils übernächsten Topfes. Der so erhaltene Hamilton-Operator für die Spins
beschreibt ein eindimensionales Ising-Modell mit konstantem Magnetfeld, also ein ana-
lytisch lösbares Problem, aus dem eine analytische Abschätzung für die Wiederkehrzeit
der Interbandoszillationen folgt [46 | S. 270]. Kollaps- und Revivalphänomene, die auf
der starken Wechselwirkung zwischen den Atomen beruhen, wurden bereits im Experi-
ment beobachtet [173, 174]. Im Gegensatz dazu ist bei uns der Oszillationseffekt durch
die Stark-Kraft induziert und gewissermaßen durch die Wechselwirkung gestört, was
zum Auftreten einer neuen Periode, eben der Revivalzeit, führt.

2.3 Quantenchaos in Vielteilchensystemen

Nicht nur niedrigdimensionale Quantensysteme wie der in Abschnitt 2.1 beschriebe-
ne Quanten-Kicked-Rotor zeigen komplexes dynamisches Verhalten, sondern natürlich
auch Viellteilchensysteme. Während in ersteren der äußere Antrieb zu starken Kopplun-
gen im Energieraum führt, können in letzteren die Teilchen-Teilchen-Wechselwirkung
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und auch äußere Kräfte dazu beitragen, dass viele Zustände einer typischen Basis (bei-
spielsweise der Fock-Zustände im Modell aus Gl. (1.5)) im Laufe der zeitlichen Ent-
wicklung gekoppelt werden. Hochdimensionale Vielteilchensysteme charakterisiert man
dabei am besten durch ihre spektralen Eigenschaften auf der Basis der sogenannten
Bohigas-Giannoni-Schmit’schen Vermutung [87, 175], die besagt, dass komplexe Dy-
namik zu Statistiken führt, wie sie die Theorie von Zufallsmatrixen [176] vorhersagt.
Ein übliches Maß dafür ist die Statistik der Energieabstände nächster Nachbarn im
Spektrum, die anzeigen ob sich Energieniveaus als Funktion eines Kontrollparameters
kreuzen (also nicht koppeln) oder als vermiedene Kreuzungen meiden (ein Zeichen von
Kopplung zwischen den jeweiligen Niveaus). Ferner kann man die Verteilung der Brei-
ten der vermiedenen Kreuzungen betrachten, die im Falle eines „quantenchaotischen”
Systems einer Gaußverteilung genügt [177], im Gegensatz zu einer sehr engen Vertei-
lung (im Extremfall konstanter Kreuzungsbreiten einer δ−Verteilung), wie sie in re-
gulären Systemen auftritt. Neben dem Spektrum lassen sich auch die Eigenfunktionen
untersuchen [87, 176], z. B. projiziert auf eine typische Basis des Problems, wie der
Fock-Basis [178] für das Modell aus Abschnitt 1.3.3.

Im Folgenden stellen wir Ergebnisse von Studien des Einband-Hubbard-Modells, s.
Gl. (1.5), vor, wobei wir die meisten der gerade beschriebenen Maße zur Charakteri-
sierung der Systemeigenschaften benutzen. Methodisch stellten wir ein neues Maß vor,
um vermiedene Kreuzungen zu detektieren und weiter zu untersuchen. Diese in [43 | S.
256] eingeführte „Fidelity” wurde bereits verwendet, um Phasenübergänge numerisch
in Vielteilchenmodellen zu charakterisieren [179,180]. Wir zeigten zusätzlich seine Eig-
nung für das ganze Spektrum eines komplexen Systems.

2.3.1 Chaos verstärkt durch Unordnung

Als erstes widmen wir uns dem reinen Modell aus Abschnitt 1.3.3. Wie bereits in Ref.
[178] gezeigt wurde, zeichnet sich dieses System durch verschiedene dynamische Re-
gime aus: in den beiden Grenzfällen von entweder verschwindender Tunnelkopplung J
oder verschwindender Wechselwirkung U ist es natürlich integrabel mit den bekannten
Lösungen, z. B. der kosinus-förmigen Energiedispersion bei U = 0. Sind dagegen die
Parameter so gewählt, dass beide Terme im Hamilton-Operator etwa gleich stark sind,
also J ≈Un, wobei n = N/L für den Füllfaktor (bei Teilchenzahl N und Systemlänge
L) steht, zeigen die Unterräume des Problems, die sich aus der Berücksichtigung der
Translationsinvarianz und möglicher Inversionssymmetrie ergeben, alle oben genannten
Zeichen eines quantenchaotischen Verhaltens [178].

Da es experimentell schwierig ist, die aufgrund einer Symmetrie nicht koppelnden
Bereiche zu trennen, untersuchten wir das Verhalten des um einen statischen Unord-
nungsterm erweiterten Hamilton-Operators aus Gl. (1.5). Die Unordnung hebt natürlich
die Translationsinvarianz auf (wie auch die für bestimmte Quasiimpulse bestehende In-
versionssymmetrie). Dadurch ergibt sich im Parameterbereich J ≈ Un ≈ ∆, wobei ∆

die Unordnungsstärke angibt, eine ähnliche Situation wie für Unterräume im Falle ohne
Unordnung, nur jetzt global für das ganze Spektrum. Diese Tatsache macht sich in der
zeitlichen Entwicklung sowohl im Impuls- als auch im Ortsraum bemerkbar, was als ex-
perimentelle Signatur der spektralen Eigenschaften messbar sein sollte, wie wir in der
Arbeit [30 | S. 179] folgern.
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2.3.2 Fidelity-Maß zur Charakterisierung vermiedener Kreuzungen

Wie oben erwähnt, zeigt sich der Charakter stark koppelnder Systeme nicht nur in den
Eigenspektren, sondern auch in den Eigenfunktionen. Statt die Niveaudynamik als Funk-
tion eines Kontrollparameters λ zu untersuchen, kann man auch die Eigenfunktionen
über variierendes λ verfolgen, was am besten über den Überlapp der Eigenzustände zu
jeweils festem Kontrollparameter geht. Der Absolutbetrag dieses Überlapps ist auch als
Fidelity bekannt [181], die verwandt zur im Abschnitt 2.1.3 behandelten zeitabhängigen
Größe ist, aber zunächst ein zeitunabhängiges Maß, basierend auf den Eigenzuständen,
darstellt. Bei einer vermiedenen Kreuzung wird dieser Überlapp stark variieren, da der
entsprechende Eigenzustand |E(λ )〉 durch die Kopplung an den anderen seinen Charak-
ter ändert. Um einerseits eine Größe zu haben, die ein Maximum anstelle eines Mini-
mums aufweist, und um andererseits die Abhängigkeit von der Parametervariation δλ

klein zu halten, definiert man am besten folgendes Maß

SE(λ ,δλ ) =
1−|〈E(λ )|E(λ +δλ )〉|

(δλ )2 . (2.1)

Damit lassen sich nicht nur, wie beispielsweise in den Referenzen [179, 180] gezeigt,
Phasenübergänge detektieren, sondern auch der spektrale Verlauf im allgemeinen cha-
rakterisieren [43 | S. 256]. In der numerischen Analyse von Daten bietet die Unter-
suchung von SE verschiedene Vorteile. Erstens hat es sich als zuverlässiger Detektor
von vermiedenen Kreuzungen herausgestellt, der somit als „Black Box” universell ein-
setzbar ist. Zweitens kann man aus einer lokalen Untersuchung im Energieraum bereits
Erkenntnisse über das Systemverhalten gewinnen, ohne eine globale spektrale Statistik
von Niveauabständen machen zu müssen (letztere bedarf einer Vielzahl von Niveaus, um
zuverlässige Statistiken zu erhalten). Dieser zweite Aspekt mag natürlich auch experi-
mentell interessant sein, wenn man jeweils nur eine geringe Zahl von Energieniveaus aus
mehren Bereichen des Spektrums untersuchen und daraus bereits Signaturen komplexen
oder regulären Verhaltens bekommen kann.

Da SE nur jeweils zwei Zustände vergleicht, muss man sich fragen, was passiert,
wenn sich mehrere Energieniveaus an einer vermiedenen Kreuzung nahekommen. Dies
wurde in [43 | S. 256] für den Fall eines dritten, schwach mit den anderen beiden Zustän-
den gekoppelten Niveaus analytisch und für den Fall dreier stark gekoppelter Zustände
numerisch untersucht. Dabei ergeben sich Korrekturen zu der Peakform der Maxima
von SE , die aber immer noch als solche aufgelöst werden können, solange sich mehrere
stark gekoppelte Zustände sich nicht so nahe kommen, dass die Signalmaxima vollstän-
dig miteinander verschmelzen. Letzteres kann in quantenchaotischen Systeme auftreten,
passiert aber erfahrungsgemäß selten (vgl. die in [43 | S. 256] untersuchten Systeme,
z. B. die Einbandversion des bereits in Abschnitt 2.2.4 behandelten Hubbard-Modell mit
konstanter Stark-Kraft [163–165]). In den gerade laufenden Untersuchungen des we-
gen der Abwesenheit einfacher globaler spektraler Eigenschaften weitaus schwieriger
zu verstehenden Zweiband-Hubbard-Modells (s. Abschnitt 2.2.4) setzen wir das hier be-
schriebene Fidelity-Maß bereits erfolgreich ein, um lokale Niveauaufspaltungen durch
Wechselwirkungsterme, z. B. im Bereich resonanten Tunnelns, zu untersuchen [182].

2.4 Dynamik im Doppeltopf

Bald nach den ersten Realisierungen eines Bose-Einstein-Kondensates aus ultrakalten
Atomgasen [63, 64] wurde der mit einem Kondensat gefüllte Doppeltopf [183] einge-
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hend theoretisch untersucht [65, 184–188]. Experimentell wird er implementiert durch
die Überlagerung eines periodischen Gitters mit einer engen harmonischen Falle, vgl.
beispielsweise die Referenzen [189, 190]. Eine einfache Abbildung der Molekularfeld-
dynamik im Doppeltopf auf eine klassische Hamiltonsche Funktion, die ein Pendel be-
schreibt, bei dem die Pendellänge aber vom kanonischen Impuls abhängt, liefert ver-
schiedene Regime oszillierender und rotierender Bewegung mit entsprechenden Orbits
im Phasenraum [65, 187, 191]. Im sogenannten Josephson-Regime entsprechen zwei
mögliche Bewegungen der Oszillation des Kondensates als ganzes vom einen in den
anderen Topf bzw. dem Fall des sogenannten „self-trappings”, in dem das Kondensat in
einem Topf verweilt [65, 189].

Wir haben das Doppeltopfproblem aus zwei Blickwinkeln untersucht. Zum einen
haben wir uns der Frage gewidmet, wie man im geschlossenen Problem möglichst dyna-
misch zwischen den beiden Fällen im Josephson-Regime schalten kann, ohne die expe-
rimentelle Anfangssituation zu verändern, was z. B. in Ref. [189] geschah. Zum anderen
dehnten wir die Fragestellung in zweierlei Hinsicht aus; nämlich auf Vielteilchenaspek-
te wie Verschränkungserzeugung durch einen periodischen Antrieb und auf das Problem
eines Doppeltopfs, aus dem heraus Teilchen dissipieren können und zudem einem Pha-
senrauschen unterworfen sind. Die genannten Themen werden im Folgenden kurz vor-
gestellt.

2.4.1 Kontrolle kollektiven Tunnelns

Durch ein spezielles Design des Doppeltopfes kann man erreichen, dass die beiden Mo-
lekularfeldlösungen, die einem oszillierenden bzw. dem in einem Topf gefangenen Kon-
densat entsprechen, energetisch beinahe entartet sind. In unserem Vorschlag geschieht
dies durch eine kleine periodische Modulation in jedem der beiden Töpfe [25 | S. 47].
Die beinahe Entartung über einen weiten Bereich der atomaren Wechselwirkungskon-
stante erlaubt dann relativ einfach, durch eine minimale zeitabhängige Veränderung der
Barriere zwischen den Töpfen von einem Josephson-Regime ins andere zu schalten.
Dabei lösten wir das statische Problem exakt durch Reduktion auf eine rechtwinklige
Doppeltopfgeometrie ohne Modulation, woraus die Bedingungen für die minimale Bar-
rierevariation abgeleitet werden konnten. Das dynamische Schaltverhalten wurde dann
numerisch im Detail untersucht, vgl. Ref. [25 | S. 47].

2.4.2 Verschränkungserzeugung im Bose-Hubbard-System

Stellt man sich eine Situation mit einer tiefen periodischen Modulation vor, kann man
nun auch das Bose-Hubbard-Modell mit einem Doppeltopf folgendermaßen verbinden:
Zur Erzeugung und dem anschließenden Nachweis von Verschränkung im System ent-
wickelten wir ein Szenario, das in Abbildung 2.7 skizziert ist: man startet im Grund-
zustand eines periodischen Gitters; dann treibt man das System, indem man die Git-
tertiefe leicht periodisch in der Zeit variiert, und zwar so, dass die Antriebsfrequenz
energetisch einer Einteilchenanregung U entspricht; nachdem das System in einen quasi-
stationären Zustand übergegangen ist, schaltet man den Antrieb ab und kurze Zeit später
eine Barriere in der Mitte des Gitters hoch, sodass das System effektiv in zwei Teilsys-
teme separiert wird. Dadurch kann man übliche und einfache Verschränkungsmaße, die
für zwei Subsysteme definiert sind [192, 193], anwenden. Das Einschalten der Barrie-
re friert gewissermaßen die Kopplung zwischen den beiden Teilbereichen und auch die
Verschränkungsdynamik ein. Jeder der zwei Teilbereiche enthält dann eine Superposi-
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Abbildung 2.7: (a) Präparation des Systems in einem endlichen Gitter; eine periodische
Modulation der Gitteramplitude führt zu einer zeitlichen Änderung der Kopplungskon-
stanten J und U des Hubbard-Modells aus Gl. (1.5). (b) Nach Abschalten der Modulation
wird durch das Hochfahren der Barriere die Dynamik zwischen dem linken und rechten
Teil der Barriere eingefroren, und man findet stark korrelierte Zustände in diesem „Dop-
peltopf” vor. Abbildung aus [38 | S. 68].

tion verschiedener Teilchenzahlen, was formal bedeutet, dass die beiden Bereiche stark
quantenmechanisch korreliert sind. Unsere Rechnungen zeigen, dass eine hohe und ro-
buste Verschränkung in sogenannten postselektierten Zuständen (unter der Bedingung
gleicher Teilchenzahl in beiden Teilbereichen) vorliegt [38 | S. 68]. Ein periodischer
Antrieb ist also nicht nur nützlich zur Kontrolle der Dynamik (vgl. z. B. [194, 195])
oder zur Spektroskopie (vgl. z. B. [196]) in einem Vielteilchensystem, sondern auch
zur kontrollierten Herstellung verschränkter Zustände, wie in anderen Zusammenhän-
gen beispielsweise für zwei unterschiedliche Atomsorten in Ref. [194] oder an Hand
eines einfacheren, reinen Zweitopfmodells in Ref. [197] gezeigt wird.

2.4.3 Stochastische Resonanz

Stochastische Resonanz tritt in den verschiedensten Kontexten in Erscheinung, in klassi-
schen bis hin zu quantenmechanischen Systemen [198,199]. Die Grundidee ist schlicht-
weg, dass die untersuchte Observable, in klassischen Systemen üblicherweise das so-
genannte Signal-zu-Rausch-Verhältnis, ein Maximum bei einem endlichen Rauschwert
aufweist. Mit anderen Worten tritt eine Signalverstärkung durch die Anwesenheit von
Rauschen auf. Inspiriert von den experimentellen Möglichkeiten [1,189,190] untersuch-
ten wir die Reaktion eines Kondensates in einem Doppeltopf auf Phasenrauschen und
Teilchenverluste aus beiden Töpfen.

Unsere zentrale Observable ist dabei der Interferenzkontrast, der sich ergibt, wenn
die Teilchen aus den zwei Töpfen nach Abschalten aller Potentiale interferieren. Dieser
Kontrast ist in der Sprache der Bose-Hubbard-Moden aus Gl. (1.5) durch das Nichtdia-
gonalelement der reduzierten Einteilchendichtematrix für zwei Moden bzw. durch die
folgende Operator-Korrelationsfunktion gegeben:

α =
2〈â†

1â2〉
〈n̂1 + n̂2〉

, (2.2)

wobei wegen des Teilchenverlusts die Besetzungszahlen der Töpfe, 〈n̂1〉 und 〈n̂2〉, zeit-
abhängig sind. Im Rahmen dieses Zweimodenmodells kann man die Bewegungsglei-
chungen in der Molekularfeldnäherung auf die bekannten Bloch-Vektorgleichungen für
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Abbildung 2.8: Phasenkontrast aus Gl. (2.2) als Funktion des Tunnelmatrixelements J
und der Dissipationsrate T−1

1 bei verschwindender Wechselwirkung. Bei festem J sieht
man deutlich ein Maximum im Kontrast bei endlicher Rate. Abbildung aus [6 | S. 60].

die Dynamik eines Spin-1/2-Systems abbilden. Dissipation und Rauschen führen da-
bei – wie im Problem der Kernspinresonanz [200] – zu den sogenannten T1 und T2-
Relaxationszeiten, und eine zusätzliche Gleichung beschreibt die zeitliche Abnahme der
Teilchenzahl [6 | S. 60].

Interessant ist dabei die Rolle der Wechselwirkung. Bei verschwindender oder schwa-
cher Wechselwirkung bildet sich nach einem kurzen Transienten ein quasi stationärer
Zustand aus, in dem der oben definierte Phasenkontrast ein deutliches Maximum bei
endlicher Zerfallszeit T1 ausbildet, wie in Abbildung 2.8 zu sehen ist. Im Falle star-
ker Wechselwirkung bleibt dagegen der beobachtete Stochastische-Resonanz-Effekt üb-
licherweise transient, d.h. verschwindet bei langen Zeiten. Im zeitlichen Verlauf des
Phasenkontrastes zeigt sich aber – nach einer anfänglichen Abnahme – eine neuerli-
che Zunahme, die weitgehend ausbleibt, falls man entweder die Wechselwirkung oder
die Dissipation ausschaltet. Mit andern Worten trägt die simultane Anwesenheit von
Dissipation und Wechselwirkung zum Effekt bei. Ein gutes qualitatives Verständnis des
Systemverhalten lässt sich aus der Molekularfelddynamik [32 | S. 198] ableiten. Dar-
aus ergibt sich eine Schwelle für das minimale Produkt aus Wechselwirkungskonstante
und Teilchenzahl, für die der Phasenkontrast merklich ansteigt. Diese ist verwandt mit
der Schwelle für das Auftreten des „self-trappings” im geschlossenen und ungestörten
Doppeltopf [184, 185, 189, 190]. Vielteilchenrechnungen auf der Basis des Zweitopf-
Hubbard-Modells bestätigen im Wesentlichen unsere Molekularfeldresultate, sind aber
nötig, um Anregungen aus den Kondensatmoden zu beschreiben [35 | S. 207].

2.5 Transport und Dynamik in offenen Vielteilchensystemen

Das im vorhergehenden Abschnitt 2.4.3 beschriebene Problem lässt sich auf größere
Systeme erweitern. Dies eröffnet eine Vielzahl neuer Fragestellungen. Schon metho-
disch gesehen kann man im Rahmen eines Einband-Hubbard-Modells nur relativ klei-
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ne Systeme hinsichtlich der Zahl der Teilchen und der Gittertöpfe untersuchen. Damit
stellt sich automatisch die Frage nach effizienten Rechenmethoden für geschlossene, vor
allem aber auch offene Vielteilchensysteme. In ausgedehnten Systemen lässt sich dann
konkret die zeitliche Entwicklung über das Gitter untersuchen, welche durch Dissipation
und Phasenrauschen beeinflusst wird. Derartige Transportphänomene sind verwandt mit
Untersuchungen aus der Festkörperphysik, und man spricht daran angelehnt in diesem
Zusammenhang schon von „Atomtronics” [201, 202].

Unser erster Schritt in die Richtung der Behandlung offener, ausgedehnter Vielteil-
chensysteme ist die systematische Weiterentwicklung numerischer Verfahren in Ref. [48
| S. 283]. Das System wird in Anlehnung an die Arbeiten [203,204] durch ein gekoppel-
tes Gleichungssystem für die Erwartungswerte der reduzierten Ein- und Zweiteilchen-
dichtematizen geschrieben. Dieses Gleichungssystem erhält man aus der Entwicklung
des Vielteilchenproblems in Korrelationsfunktionen von Erzeugungs- und Vernichtungs-
operatoren, die wir in zweiter Ordnung abbrechen. Im Falle großer Teilchenzahl N ist
diese Näherung gut und geht im Molekularfeldlimes für N→ ∞ in eine diskrete Gross-
Pitaevskii-Gleichung auf dem Gitter über. Zusammen mit einer effektiven Beschreibung
des offenen Systems durch eine Master-Gleichung können wir damit Transportphäno-
mene in Gegenwart von Teilchendissipation und Phasenrauschen nahe am Molekular-
feldlimes untersuchen. Die Mitnahme der Zweiteilchenkorrelationsfunktionen erlaubt
aber auch Aussagen über die Fragmentierung eines Bose-Kondensats und die Stabilität
der entsprechenden Molekularfeldlösungen. Durch geeignete Ankopplung an die Um-
gebung durch Rauschen und/oder Dissipation konnten wir dadurch bereits die Bildung
stabiler (zumindest für experimentell relevante Zeitskalen) Strukturen wie eines soliton-
ähnlichen Zustandes vorhersagen [48 | S. 283]. Unsere Ergebnisse entsprechen dabei für
kleinere Systeme weitgehend den Daten aus einer Vielteilchenzeitentwicklung, die auf
dem Einband-Hubbard-Modell basiert [48 | S. 283].

Dieses hochaktuelle Themenfeld beinhaltet natürlich noch viele offene Fragen. Mo-
mentan erweitern wir unsere bisherigen Studien in folgender Hinsicht. Wir streben an,
die Kopplung an Bäder nicht nur perturbativ im Sinne der Master-Gleichung mitzuneh-
men, sondern die Bäder unter vereinfachenden Annahmen direkt in unseren Formalis-
mus miteinzubauen. Damit lassen sich Szenarien wie Transport durch das Gitter von Bad
zu Bad studieren, wie sie in der Festkörperphysik z. B. durch einzelne oder eine Kette
von Quantenpunkten (vgl. die Referenzen [205, 206]) auftreten. Der Einfluss von Viel-
teilchenkorrelationen auf die mögliche Einstellung eines dynamischen Gleichgewichts
ist dabei eine zentrale Frage. Dazu versuchen wir, unsere an die Molekularfeldtheorie
angelehnte Methode weiter zu verallgemeinern, um Vielteilcheneffekte unter expliziter
Mitnahme der Bäder besser behandeln zu können. Wir implementieren daher gerade
eine Umformulierung in gekoppelte Gleichungssysteme von zeitgleichen und zeitunter-
schiedlichen Operatorkorrelationsfunktionen (Greensfunktionen), die – wie wir hoffen
– zeitabhängige Phänomene realistischer beschreiben [207].
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Our realistic numerical results show that the fundamental and higher-order quantum resonances of the
�-kicked rotor are observable in state-of-the-art experiments with a Bose condensate in a shallow
harmonic trap, kicked by a spatially periodic optical lattice. For stronger confinement, interaction-induced
destruction of the resonant motion of the kicked harmonic oscillator is predicted.
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Dynamical systems that exchange significant energy
with an external driving (time-dependent) field are para-
digmatic objects for the study of complex evolutions with
only a few degrees of freedom. In contrast to autonomous
systems, where chaotic behavior can originate from many-
body interactions, the complexity in driven systems arises
from and can be controlled by the external field. An
experimental setup where both types of complexity—-
many-body dynamics and external drive—are present is
realizable and to a large degree controllable with state-of-
the-art atom optical systems [1,2]. Good control over non-
trivial dynamics is the necessary tool for manipulating
quantum states in a desired way [3]. Controlled coherent
evolution is the necessary ingredient for quantum comput-
ing schemes and, in particular, for algorithms which are
based on a fast spreading over the Hilbert space of interest.
Recently, ballistic expansion (i.e., linearly increasing mo-
menta with time) was proposed to realize such quantum
random walk algorithms [4].

In this Letter, we answer the question of whether ballis-
tic resonant quantum transport can be realized with a
periodically kicked Bose condensate. Cold dilute atomic
gases have so far been used to realize many features of
quantum chaos, such as dynamical localization [5] or
dynamical tunneling [6]. To implement a fast spreading
in momentum space, one can use quantum accelerator
modes found recently [7], or the standard �-kicked rotor
(KR) which shows ballistic motion at the so-called quan-
tum resonances [8]. The latter, however, are hard to realize
if the initial conditions cannot be optimally controlled [9].
The preparation of a Bose condensate within a harmonic
trap offers very well-defined initial momenta, necessary for
observing ballistic motion for a substantial number of
kicks.

We use the time-dependent Gross-Pitaevskii equation
(GPE) [10] to describe a Bose-Einstein condensate in a
harmonic confinement which is subject to a temporally and
spatially periodic optical potential, created by a far detuned
optical lattice. If the external potentials are not too strong,
the GPE provides a good approximation of experiments
with dilute Bose gases [11,12]. The GPE which we nu-
merically integrate has the following form:
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with 2 � y2 � z2.  �~r; t� represents the condensate wave
function, and M is the atomic mass. The nonlinear cou-
pling constant is given by g � 4� �h2a=M, N is the number
of atoms in the condensate, a is the s-wave scattering
length, and kL is the wave vector of the laser creating the
optical potential. In principle, an arbitrary pulse shape F�t�
may be realized, but here we restrict ourselves to a situ-
ation where the laser is switched on at time instants sepa-
rated by T, with maximum amplitude V0 and periodic pulse
shape function F�t� of unit amplitude and duration �T 	
T. Our system is then the nonlinear analogue of noninter-
acting cold atom experiments [5,9], which implement the
KR model, and we can directly compare our results with
the well-studied KR (for !x ! 0) or with the kicked
harmonic oscillator (KHO) [13] (for nonvanishing !x).
The commonly used dimensionless kicking strength and
kicking period of the KR are k � �V0= �h�

R
T
0 dtF�t� and

� � 8TER= �h, with the recoil energy ER � � �hkL�2=2M [9].
The GPE was numerically integrated using a finite dif-

ference propagator, adapted by a predictor-corrector loop
to reliably evaluate the nonlinear interaction [14]. The
external, time-dependent potential makes the integration
challenging, in both time and computer memory. Typical
integration times range from a few hours for a simplified
1D version of Eq. (1), to several weeks for the full 3D
problem. For the 1D model, the motion is confined to the
longitudinal (x) direction, and we use the renormalized
nonlinear coupling parameter g1D � 2 �h!ra, assuming a
radial trapping frequency !r � !x [15]. Experimentally,
such a confinement is obtained using a cigar-shaped optical
tube, as realized in the experiment of Moritz et al. [16].
The initial state inserted into (1) is the relaxed condensate
wave function corresponding to the experimental ground
state in a magnetic or optical trap. The ground state lies
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between the cases of a Gaussian, for g � 0, and the
Thomas-Fermi limit, which is essentially an inverted pa-
rabola, for large nonlinearity [10]. Its characteristic width
�px in momentum space is determined by the nonlinearity.
Increasing the nonlinearity in Eq. (1) leads to a smaller
width �px of the initial state [10].

The dynamics of the system described by (1) depends
sensitively on the relative strength of the three potentials,
i.e., on the control parameters V0 (for fixed pulse shape),
!x, and g. Since the system absorbs energy from the
optical lattice, we must at all times compare the kinetic
energy with the (longitudinal) trap potential and the non-
linear term. If the latter two contributions are small, we can
easily realize ballistic quantum motion, up to interaction
times above which the trap potential is no longer negli-
gible. On the other hand, we can tune the system to a
situation where the trap crucially affects the dynamics,
and we then have a realization of the KHO.

In the following, we show that the fundamental as well
as higher-order quantum resonances (QR) of the KR can be
observed in an experiment using a Bose condensate, in the
presence of a shallow harmonic confinement. In the linear
KR, the QRs occur at specific kick periods T � TTs=r (s, r
integer) [8]. At the Talbot time T � TT , the amplitudes of
the wave function in momentum space exactly rephase
between successive kicks for particular initial momenta
(pinit � 0) [1,8]. The result is a maximal, i.e., perfectly
phase-matched, absorption of energy from the kicks, lead-
ing to a ballistic spread of the wave packet [8,9]. Only
signatures of the QRs at T � TT=2 and T � TT have been

observed up to now in experiments with essentially non-
interacting atoms, because the initial momenta of the
atoms could not be sufficiently controlled [9].

Figure 1 presents our results for the fundamental QR of
the KR at the Talbot time for Rb atoms, T � TT �
� �h=�2ER� ’ 66:26 "s, with kL ’ 8:1 106 m�1. Shown
are the kinetic energy and the momentum distribution of
the condensate along the longitudinal direction. The en-
ergy is computed from the momentum distribution, inte-
grated over the transverse directions, i.e.,

E�K� �
1

2

Z
dpxp

2
xP�px; K�

with P�px; K� �
Z
dpydpzj � ~p; t � KT�j2; (2)

where K denotes the number of kicks. We present also the
integrated spatial distribution along the transverse direc-
tion [in y, or equivalently z, because of the radial symmetry
in Eq. (1)]: Py�K� �

R
dxdzj � ~r; t � KT�j2. As an ex-

ample for higher-order QRs, which up to now have never
been resolvable experimentally, Fig. 2 shows data for the
resonance at T � TT=4. For all the parameters studied, the
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FIG. 1 (color online). (a) Kinetic energy (in units of 8ER) vs
K, at T � TT , k � 0:1 (pulse width �T ’ 500 ns, rise time 70 ns;
V0=ER ’ 8), !x=2� � 10 Hz, !r=2� � 100 Hz, and N � 104

(circles), N � 5 104 (crosses). The linear KR evolution with
pinit � 0 is shown by the dashed line. (b) Momentum distribu-
tion (2) after K � 15, N � 104 (solid line), N � 5 104

(crosses). (c) The longitudinal (dotted line: K � 0; shaded
area: K � 15) and (d) the transverse (dotted line: K � 0;
squares: 7; plusses: 15) spatial distributions for N � 104 (thin
distributions) and N � 5 104 (broad distributions). The trans-
verse dynamics is frozen due to the small effective nonlinearity.
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FIG. 2 (color online). Kinetic energies at T � TT=4, same trap
and pulse shape as in Fig. 1: (a) 1D, N � 104, k � 0:1 (red
diamonds) and k � 0:09 (blue stars), and (b) k � 0:45 (V0=ER ’
42), N � 104 (1D, solid line; 3D red stars), and 3D k � 0:48
(V0=ER ’ 45), N � 103 (squares). (c) Momentum distribution
(2) for 3D with k � 0:45 after K � 15. (d) A scan of the kinetic
energy vs T for the 1D case from (b), after K � 10 (circles) and
K � 20 (red crosses), with the corresponding data for the linear
KR (dotted and dashed lines). The resonance at T � TT=4
manifests itself clearly, and a tiny peak of another higher-order
resonance is marked by the arrow. The inset in (a) confirms the
correspondence between our method (circles) and a 1D fast
Fourier transform evolution of the linear KR (solid line) [a
wave packet (circles) or an incoherent ensemble of plane waves
(solid line) was evolved, respectively, with initial Gaussian
momentum distribution—�px � 0:026 �hkL—k � 0:09]. For
comparison, the linear KR (pinit � 0) in (a) for k � 0:1 (solid
line), k � 0:09 (dotted line), and (b) k � 0:48, k � 0:45 (dotted
line).
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ballistic quantum transport, with a quadratic growth
E�K� / K2, is clearly visible.

Deviations from the idealized ballistic motion arise
because of the contributions of the trap potential and the
nonlinearity. At long times, the expanding condensate feels
the harmonic trap potential, and further acceleration is
hindered by the trap. This effect is negligible for vanishing
!x. Equating the longitudinal trap potential and the kinetic
energy, and using px & �kK �hkL at T � TT [8,17], we
estimate the kick number above which the trap dominates
the dynamics asK � 2kL

����������������
�h=M!x

p
’ 55 for the parameters

of Fig. 1. More crucial is the small but finite initial con-
densate momentum spread (�px 	 2 �hkL [1,2]), which,
after a characteristic time t� / 1=�px , leads to a linear
increase of the energy E�K� / K [17]. This crossover
sets in at K ’ 10 in Fig. 1(a). For small �px , the condensate
ground state extends over many lattice sites of the kicking
potential, which in turn makes a smaller trap potential
necessary for ideal ballistic motion. The interplay between
these situations is illustrated in Fig. 3, where we system-
atically vary the number of atoms in the condensate. We
stress that the effect of the nonlinearity manifests itself
indirectly via its influence on the initial state, while the
nonlinear interaction is negligible during the kick evolu-
tion at the QRs studied. This finding is quite surprising,
remembering that the QRs correspond to exact phase re-
vivals between kicks. On short time scales, however, the
perturbation induced by the nonlinearity cannot accumu-
late a large enough dephasing, because even for the small

kick strength k < 0:5 it is at least 1 order of magnitude
smaller than the kinetic energy. Our results are consistent
with a simplified 1D model analysis of the QR, in the
presence of a small nonlinear perturbation [18]. This analy-
sis, however, could not account for the exact nonlinear
wave packet evolution including the harmonic
confinement.

We finally note that for a large number of atoms N �
5 104 the results of our 1D model and the full 3D
computations differ [cf. Fig. 3(a)] because initially the
condensate substantially expands along the transverse di-
rections. This is crucial for the realization of ballistic
quantum transport, since for the same number of atoms
in the condensate, the trap has less effect in the 3D as
compared with the 1D case, but, on the other hand, �px in
the 3D case is slightly larger. For the parameters of
Fig. 3(a), the larger �px has a negligible influence, while
the smaller initial spatial extension allows the ballistic
motion to survive longer in the 3D than in the 1D case.

The nonlinearity manifests itself if we scan the kick
period over the fundamental QR and plot the kinetic energy
at fixed K. The resonance peak shows a slight asymmetry,
which does not occur in the linear KR. The asymmetry
decreases when (i) reducing the longitudinal confinement
[solid line as compared with circles in Fig. 4(a)], or
(ii) evolving the initial condensate state without the non-
linear term [pyramids in Fig. 4(a)]. Again the trap potential
hides the influence of the nonlinearity, but the observed
asymmetry originates from both perturbations of the usual
KR. Any such perturbation is expected to introduce an
asymmetric peak shape, following a semiclassical analysis
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FIG. 3 (color online). Scan of the number of atoms (trap as in
Fig. 1 if not stated otherwise): (a) for T � TT , and 1D N �
5 103 (crosses), N � 104 (circles), N � 5 104 (diamonds),
N � 105 (plusses); 3D in the inset for N � 103 (solid line), N �
5 103 (crosses), N � 104 (circles), N � 5 104 (diamonds).
The dot-dashed line shows the analytical result E�K� � k2K2=4
[linear KR, pinit � 0], and the dotted line 1D data for !x=2� �
5 Hz, and N � 5 104. (b) T � TT=4, k � 0:45, 1D for N �
102 (stars), N � 103 (solid line), N � 3 103 (dashed line),
N � 104 (circles), N � 5 104 (diamonds); 3D in the inset for
N � 103 (solid line), N � 5 103 (crosses), N � 104 (circles).
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5 104: red crosses). (b) Kinetic energy of 3D KHO with T �
250 "s, !x=2� � 1 kHz, !r=2� � 5 kHz, and k � 0:1 for
N � 0 (solid line) and N � 100 (stars).
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specifically developed for the description of decoherence
by spontaneous emission [17].

We can also tune our system described by the GPE (1) to
the limit, in which the nonlinear interaction term becomes
very important and even dominant for small kick strength.
Experimentally such a situation can be realized either close
to a Feshbach resonance (where the scattering length for
two-body atomic collisions can increase by orders of mag-
nitude [10]) or by simply increasing the strength of the
harmonic confinement. The latter situation has been ana-
lyzed as a nonlinear generalization of the KHO in [11,19].
The analysis showed clear signatures of the nonlinearity in
the resonant transport regime of the KHO, i.e., for T!x �
2�=r with r � 3, 4, 6, where the quantum transport is
enhanced with respect to the classical one, much in the
same way as at the QRs of the KR [13]. In the KR studied
above, the total energy—corresponding to the chemical
potential in the stationary case [10]— is almost entirely
given by the kinetic energy obtained from the kicks. In the
KHO, the energy distribution is very different: here the
kinetic, the potential, and the self-energy (given by the
nonlinear term) are of the same order of magnitude, which
leads to a nonlinearity-induced redistribution of energy
also to the transverse degrees or freedom.

Our numerical technique can be used to generalize the
previous studies of the nonlinear KHO to the full 3D GPE,
properly including the coupling of the transverse dimen-
sions which is necessary for comparison with real-life
experiments. Results on the KHO are presented in
Fig. 4(b), where we observe the destruction of the resonant
motion at T!x � �=2 already for a small number of atoms
N � 100, and after just a few kicks. In contrast to what was
done in [11,19], the initial state need not be translated away
from the classically stable origin in phase space. It suffices
to use the relaxed ground state of the condensate to observe
the impact of the now much stronger effective nonlinearity
due to the strong harmonic confinement.

We have tested our data in different ways, making sure
that our numerical codes produce stable results. In the 1D
case and for g1D � 0, we compared them either with
analytical results for the linear KR [8] or with the much
simpler evolution on a discrete grid, using a standard
fast Fourier transform (FFT) [17,18]. The analytic growth
rate of the kinetic energy for pinit � 0 at T � TT is shown
in Fig. 1(a). For T � TT=4, in the inset of Fig. 2(a), we
compare both evolutions for up to K � 50 kicks. The FFT
code does not take into account (i) the trap, (ii) the finite
duration of the pulses, and (iii) the coherent evolution
of the wave packet, which explains the tiny deviations
for K � 40. The damping of the oscillations is due to
the nonzero �px , an effect which was experimentally ob-
served also for the antiresonance T � TT=2 in [2], where
the motion of the linear KR is perfectly periodic only for
pinit � 0.

In summary, we presented the first (3� 1)-dimensional
treatment of a Bose condensate driven by an external
temporally periodic force, which controls the dynamics
of the system. Ballistic motion is shown to be realizable
over a substantial number of kicks, even in the presence of
a weak harmonic confinement. Within the framework of
the 3D GPE, we have taken a first step towards the study of
higher-dimensional chaos induced by the nonlinear cou-
pling of the spatial dimensions, and future work will con-
centrate on situations where the transverse degrees of
freedom significantly contribute to the dynamics.
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Ballistic and Localized Transport for the Atom Optics Kicked Rotor
in the Limit of a Vanishing Kicking Period
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We present mean energy measurements for the atom optics kicked rotor as the kicking period tends to
zero. A narrow resonance is observed marked by quadratic energy growth, in parallel with a complete
freezing of the energy absorption away from the resonance peak. Both phenomena are explained by
classical means, taking proper account of the atoms’ initial momentum distribution.
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The atom optics realization of the paradigmatic kicked
rotor (KR) [1] allows the experimental study of uniquely
quantum mechanical aspects of a fundamental, classically
nonlinear system. Dynamical localization is perhaps the
most celebrated quantum phenomenon observed in the
quantum KR [1,2]; however, the phenomenon of quantum
resonance, whereby some atoms experience enhanced en-
ergy growth (quadratic in the kick number) for well-
defined kicking periods, has received renewed theoretical
and experimental attention of late.

The possibility for quadratic energy growth to occur for
the KR at quantum resonance has been known for some
time [3]. The first experiments to observe phenomena
related to quantum resonance employed the atom optics
kicked rotor (AOKR) to study the momentum distributions
of ensembles of kicked rotors [4], although the broad initial
momentum distributions involved prohibited the observa-
tion of quadratic mean energy growth. Recent studies have
shown that the quantum resonances, initially thought to be
extremely sensitive quantum effects, can be described by
classical means [5] and that, indeed, only linear growth in
mean energy is expected at quantum resonance for experi-
ments starting with a broad initial momentum distribution
[5]. The experimental signatures of quantum resonant be-
havior prove to be robust with respect to decoherence by
spontaneous emission [5,6], amplitude noise [7,8], and also
to large perturbations of the kicking strength [9]. These
counterintuitive findings make the quantum resonances a
potential source for creating directed fast atoms, e.g., for
the study of quantum random walks [10]. However, even
for narrow initial atomic momentum distributions (i.e.,
those with standard deviation �p< two-photon recoils),
true ballistic mean energy growth has only been observed
convincingly for up to two kicks [11].

In this Letter, we present the first signatures of true
ballistic peaks in the mean energy of a kicked atomic
ensemble, with a relatively broad initial momentum distri-
bution, but for an essentially classical regime. Our seem-
ingly counterintuitive experimental results are explained
by the same standard pendulum approximation [12] as used

to classically describe the structure of the quantum reso-
nance peaks of the AOKR [5]. Additionally, we observe a
regime in which an unexpected dynamical freezing effect
occurs, which corresponds to atoms ceasing to absorb
energy from the kicks. The close proximity, in terms of
pulse period, of regimes of ballistic and frozen energy
growth promises to allow fine control of atomic velocities.

We realize the AOKR by subjecting cold cesium atoms
to a far detuned standing wave with spatial period�=kL (kL
being the wave number of the kicking laser) and pulsed
with a period T. Our system is described, in dimensionless
units, by the Hamiltonian [13]

H �t0� �
p2

2
� k cos�x�

XN

t�0

��t0 � t�; (1)

where p is the atomic momentum in units of 2 �hkL (i.e., of
two-photon recoils), x is the atomic position divided by
2kL, t0 is time, and t is an integer which counts the kicks.
Experimentally, we approximate � kicks by pulses of
width p which are approximately rectangular in shape.
We also define an effective Planck constant  � 8!rT,
where !r is the recoil frequency (associated with the
energy change of a cesium atom after emission of a photon
with kL � 7:37� 106 m�1). The dimensionless parameter
k � V0p= �h (with V0 the height of the optical potential) is
the kick strength. By exploiting the spatial periodicity of
the Hamiltonian, we can use Bloch’s theorem to reduce the
atomic dynamics along the x axis to that of a rotor on a
circle, as described in [5,14]. Then, the one-kick propaga-
tor for a given atom is

Û � � e�ik cos��̂�e�i�N̂���2=2; (2)

where � � xmod�2��, N̂ � �id=d�, and � is the qua-
simomentum (i.e., the noninteger part of p). To examine
the limit as ! 0, we can use the classical version of the
mapping induced by the Hamiltonian (1). We define J �
p and find

Jt�1 � Jt � ~k sin��t�1�; �t�1 � �t � Jt; (3)
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where ~k 
 k is the classical stochasticity parameter of the
standard map [12]. Equation (3) implicitly contains the
different quasimomentum classes which are vital to the
description of quantum resonances [5]. In fact, (3) is
equivalent to the �-classical standard map developed in
[5] to describe quantum resonance behavior when  �
2�l� � for the special case where l � 0. Below, we will
see that, in our case, the typically uniform initial distribu-
tion of quasimomenta [5,6] does not hinder ballistic motion
at the observed resonance as ! 0.

Assuming for simplicity an initially flat distribution of
p 2 �0; 1�, we have J0 � �0 with �0 uniformly distrib-
uted in �0; 1�. Since J � p, the mean energy of the atomic
ensemble at time t is given by hEt;i � �2h��Jt�

2i=2,
�Jt � Jt � J0. As the initial conditions in phase space
populate mainly the region close to J0 � 0, we compute
hEt;i for  > 0 by means of the pendulum approximation
for the principal nonlinear resonance [12]. The motion is
described (in continuous time) by Hres �

1
2 �

�J0�2 � k cos���, with the characteristic time for the mo-
tion in the resonant zone tres � �k��1=2 [12]. We remove 
from the Hamilton equations, by scaling momentum into
�J � J0=�k�1=2 and time into t=tres. This gives h��Jt�

2i �
h�J0t � J00�

2i ’ kG, for an ensemble of orbits started inside
the resonant zone. The function G�x� 


��
k

p

2�
��


p
R
2�
0 d�0 �

R ������
=k

p

0 dJ0 �J�x; �0; J0�
2 ’ 1

2�

R
2�
0 d�0 �J�x; �0; J0 � 0�2 de-

pends on the variable x � t�k�1=2 and weakly on k and
, in contrast to the quantum resonant case studied in [5].
In Fig. 1,G is shown as a function of x. We see thatG tends
to a level  � 0:7 as x! 1. This is because G is an
average over nonlinear pendulum motions with a contin-
uum of different periods, and therefore saturates to a

constant value for x * 1. The dependence of G on  is
negligibly small for  & 1=k, so that G can be viewed as a
function of the scaling parameter x alone. We obtain as
final result for the mean energy hEt;i ’

k
22
G, and we can

now derive two interesting limits.
First, as x! 0, G�x� � x2=2 leading to

hEt;ires �
k2t2

4
: (4)

This describes quadratic growth in mean energy, which
occurs as exact resonance is approached. We note that, in
the case of quantum resonances, �-classical theory predicts
only linear mean energy growth with the kick number at
resonance [5]. This linear increase is induced by the con-
tribution of most quasimomentum classes which lie outside
the classical resonance island for  � 2�‘� � (‘ integer).
For small , almost all initial conditions (or quasimo-
menta) lie within the principal resonance island shown in
the inset of Fig. 1.

Dividing hEt;i by its small x limit (4), we arrive at an
elegant single-parameter scaling law for the energy ratio
hEt;i=hEt;ires ’ 2G�x�=x2 
 R�x�. The scaling function
R�x� describes the motion entirely for small , and specifi-
cally we see that, for  fixed, ballistic motion occurs for
t & 1=

������
k

p
, while for larger x, when G saturates to the

value  , we obtain for t� 1=
������
k

p
a second interesting

limit:

hEt;>0i ’
k
2
 : (5)

This result implies dynamical freezing—the ensemble’s
mean energy is independent of the kick number. This
phenomenon is a classical effect in a system with a regular
phase space (see inset of Fig. 1). It is distinct from dy-
namical localization, which is the quantum suppression of
momentum diffusion for a chaotic phase space [2].
Experimentally, this freezing corresponds to the cessation
of energy absorption from the kicks, similar to that which
occurs at dynamical localization. The freezing is explained
as the averaging over all trajectories which start at mo-
menta close to zero and move with different frequencies
about the fixed point of the map (3).

We now turn to the experimental verification of ballistic
growth and dynamical freezing. In our experiments, we
measured the mean energy of an atomic ensemble as  was
varied and for different kick numbers. Details of our ex-
perimental setup may be found in Ref. [7] and are summa-
rized below. Using a standard six-beam magneto-optical
trap, or MOT [15], we trap and cool cesium atoms typically
to below 10 #K. During an experiment, the trap is turned
off and the atoms are subjected to pulses from an optical
standing wave (created by a 150 mW, frequency stabilized
diode laser) detuned 500 MHz from the 6S1=2�F � 4� !
6P3=2�F

0 � 5� transition of cesium. Pulse durations of
p � 240 and 320 ns were used for our experiments with

FIG. 1. The function G vs x � t�k�1=2 for J0 2 �0; 0:1�. The
inset shows a portion of the classical phase space of the map (3),
for  � 0:1, k � 2:5. The dashed lines mark the position of the
initial momenta, corresponding to a uniform distribution of
quasimomenta in �0; 1�.
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optical powers of P � 20 and 30 mW, respectively, and the
atoms were subjected to at most 20 kicks. For these pa-
rameters, the effect of spontaneous emission is found to be
negligible. The experimental momentum distribution of
the atoms is found from a fluorescence image of the cloud
using the standard time-of-flight technique [4,6,7], and the
mean kinetic energy may be calculated from the second
moment of this distribution. In order to probe the very
narrow resonance predicted above as ! 0, it was neces-
sary to use very small pulse periods, leading to violations
of the �-kick assumption. Nonetheless, we found that finite
pulse duration effects were negligible for our results due to
the relatively low kick strengths, kick numbers, and kinetic
energies involved [9,16]. We determine k using the method
of Ref. [17], where the mean energy difference between
one and two kicks for  > 1 is equated to the quasilinear
value k2=4 [12]. To predict the correct offset from zero
energy of our measurements, it is still necessary to calcu-
late the standard deviation �p of the initial experimental
momentum distribution. This requires truncation of the
wings of the experimental momentum distribution at
some momentum so that the second moment calculation
is not ruined by noise in the wings. Since the initial
momentum distribution has considerable non-Gaussian
wings, we inevitably underestimate the value of �p using
this method. We estimate this systematic error to be less
than 20% for the results presented here.

Figure 2 shows measured energies (circles) and classical
data (solid lines) for a measured value of k � 2:5� 0:1,
and various kick numbers. The classical results are ob-
tained from the dynamics generated by (3) for a Gaussian
initial ensemble of 25 000 momenta p � J=, with 200
uniformly distributed angles each. We have taken �p �

8:4 for our simulations, and the results can be compared

with the predictions of Eqs. (4) and (5) if the initial
ensemble’s energy is added to the analytic results [derived
above for p 2 �0; 1�]. Allowing for experimental uncer-
tainties, excellent agreement is found between the mea-
surements and our classical theory. In particular, a ballistic
resonance peak is seen to exist and, although the vanishing
resonant kicking period itself cannot be probed, the trend
towards quadratic growth is clear in the data. The reso-
nance is very narrow—much more so than the quantum
resonances for the same parameters. Specifically, the half-
width of the ! 0 peak after five kicks is �0:05, whereas
that for a quantum resonance peak for the same value of k
would be �0:4 [5]. The extremely fast compression of the
resonance peak is characteristic of a quantum resonance
which would be observed for a purely plane wave initial
condition (e.g., for p � 0 at  � 4�). Hence, the peak
width observed here shrinks even faster than at the quan-
tum resonances observed in [6], for which a sub-Fourier
peak width / 1=t2 was predicted [5]. This makes the
resonance as ! 0 a sensitive phenomenon with the po-
tential to be useful for making high-precision measure-
ments. The results in Fig. 2 also demonstrate that
dynamical freezing is occurring for  > 0:1. To observe
this localization effect more convincingly, we chose a
larger value of k and measured the mean energy of our
atoms for up to 20 kicks. The results, shown in Fig. 3, are
for a measured value of k � 4:9� 0:2, with �p taken to be
eight for the simulations. After 20 kicks, for  > 0:1, the
mean energy of the atoms has not risen above the one-kick
level. Again, excellent agreement is seen between experi-
mental results and classical data. As a final test, we have
compared our data with quantum simulations for k � 4:9,
�p � 8. As shown in Fig. 4, the numerics and experimen-
tal measurements agree almost perfectly within the esti-
mated errors. Above the threshold  � 1=k, the standard
map enters the critical regime, which mainly affects the
small subclass of extremely large momenta in our initial
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FIG. 2. Results from experiments (circles) and classical simu-
lations (solid lines) showing energy vs  for k � 2:5 and t � 3,
4, 5, 6, 7, 8 for panels (a)–(f), respectively. The error bars shown
in (a) and (f) correspond to statistical fluctuations over three
experimental shots (they do not take into account systematic
effects such as power fluctuations of the kicking laser).
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for panels (a)–(f), respectively. The dotted line in (a) shows the
measured energy after just one kick.
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ensemble, lying outside the principal resonance island.
Stronger deviations are expected in this region for very
large interaction times (t� 10) [5]. The inset of Fig. 4
demonstrates the regimes of near-resonant and off-
resonant energy growth explicitly by plotting energy
against the kick number. The curve for  � 0:033 closely
resembles the function G from Fig. 1, showing initial
ballistic growth and saturation for t � 2=

������
k

p
’ 5 kicks.

In conclusion, we have experimentally observed and
theoretically explained the occurrence of ballistic, reso-
nancelike transport in the limit of a vanishing kicking
period for a broad initial ensemble of atomic momenta.
The quadratic energy growth at this resonance has been
verified in comparison with the linear growth of mean
energy found at quantum resonance for comparable initial
conditions [6,7]. For  > 0, a dynamical freezing effect,
arising from the underlying regular classical dynamics, has
been observed for up to 20 kicks in our experiment. These

phenomena, realized here for the first time, are of great
interest for experimentally controlling fast (ballistic) and
slow (frozen) atomic velocities [18].

We thank A. Buchleitner and S. Fishman for fruitful
discussions. M. S. thanks the Teritary Education
Commission of New Zealand for support.
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Since the first experimental discovery [1] of Macroscopic
Quantum Tunneling, this phenomenon has been usually
associated with the tunneling between different states
of the system with no reference to a spatial energy
barrier [2–5]. In Josephson junctions (JJ) one observes a
tunneling escape from a metastable state [1]. Afterwards,
similar realizations have been discovered in completely
different physical systems, such as liquid helium [6]
and nanomagnets [7]. Besides that, there are also several
examples where macroscopic objects, such as vortices [8,9]
or fluxons [10] in JJs, or magnetic domain walls [11],
tunnel through a spatial potential barrier. This latter
particle tunneling effect is hereafter referred to as
Collective Quantum Tunneling (CQT).
Recently [12,13], following earlier theoretical predic-

tions [14,15], it has been found that a Bose-Einstein
Condensate (BEC) trapped in a harmonic-well poten-
tial of mesoscopic length behaves like a single JJ: for
nonzero initial imbalance of the number of atoms in differ-
ent wells, Josephson oscillations are present in the system,
i.e. the condensate tunnels back and forth through the
barrier displaying a CQT regime. The only difference with
respect to superconducting JJ’s is that, for large initial

imbalance, the condensate is mainly trapped in one of the
wells, producing what is called Macroscopic Self-Trapping
(MST).
Our aim in this Letter is to suggest the experimental

realization of a BEC in an optical lattice, which is
engineered in such a way to mimic two weakly coupled
chains of JJ’s (see fig. 1). Using such an experimental
set-up, we demonstrate the feasibility of the efficient
control of a switch between tunneling (CQT) and trapped
(MST) states of the system. We show that our problem
reduces to the Gross-Pitaevskii equation (GPE) [16] in a
double square well, which displays very different properties
from the previously considered double harmonic well
potential [12,14,17–19]. Specifically, we show that for
both attractive and repulsive nonlinearities the stationary
solutions describing the CQT and MST regimes are
characterized by very close energies in a wide range
of values of the nonlinearity parameter. This property
itself allows one to switch from the oscillatory tunneling
regime to the trapped one and back via a simple pulselike
adiabatic change of the energy barrier. Our results are
broadly applicable and open the way to the experimental
study of these phenomena in BEC dynamics.
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Fig. 1: Schematics of the suggested experimental setup. The
optical lattice is supplemented with large energy barriers from
both sides and a small one in the middle (solid curve). The
condensate is initially loaded mainly into the right part of
the optical lattice (the dashed line represents particle density).
The inset shows the reduction of the problem to particle motion
in a double-square-well potential (details are given in the text).

We start from the following, one-dimensional Hamil-
tonian of a BEC in an optical lattice:

i�
∂ψ

∂t
=− �

2

2m

∂2ψ

∂x2
+V (x)ψ+

2�2as
ma2⊥

|ψ|2ψ, (1)

where m is the atomic mass, as the scattering length
(as < 0 corresponds to attractive atom-atom interactions
and as > 0 to repulsive interactions) and a⊥ =

√
�/mω⊥

is the transversal oscillation length, which implicitly
takes into account the real three-dimensionality of the
system [20], ω⊥ being the transversal frequency of the
trap. The optical lattice potential is

V (x) = v cos2(kLx) for |kLx|>π/2 ,
V (x) =

(
v+V0

)
cos2(kLx) for |kLx|<π/2, (2)

where kL is the wave number of the laser beams that
create the optical lattice and V0 is the height of the
additional spatial energy barrier placed in the middle
of the optical lattice. Besides that, Dirichlet boundary
conditions with ψ(±L) = 0 are chosen in order to describe
the large confining barriers at both ends of the BEC. These
boundary conditions could be realized experimentally by
an additional optical lattice with larger amplitude and
larger lattice constant, as shown in fig. 1.
Introducing a dimensionless length scale x̃= 2kLx and

time t̃=EBt/�, where EB = 8ER = 4�
2k2L/m and ER is

the recoil energy [21], we can rewrite eq. (1) as follows:

i
∂Ψ

∂t̃
=−1
2

∂2Ψ

∂x̃2
+ Ṽ (x̃)Ψ+ g|Ψ|2Ψ, (3)

where the normalized wave function,
∫ |Ψ(x̃, t̃)|2dx̃= 1, is

introduced [22]. The dimensionless potential Ṽ still has

the form (2) with the following dimensionless depths of
the optical lattice

ṽ=
v

EB
, Ṽ0 =

V0

EB
, g=

Nas

kLa
2
⊥
, (4)

g being the dimensionless nonlinearity parameter and N
the number of atoms.
We have performed numerical simulations of eq. (3) with

12 wells (6 wells on each side of the barrier as presented
in fig. 1) and the parameters ṽ= 0.25 (in physical units
this means that the depth of the optical lattice is
v= 2ER), Ṽ0 = 0.15 and we fix the nonlinearity to the
value g=−0.025, i.e., we choose attractive interactions.
The dynamics is similar for repulsive interatomic forces
(see the discussion below). The phenomenon we study
in this letter does not depend significantly on the actual
size of the system, if at least 3 lattice sites are present on
each side of the barrier.
As seen from the top panel of fig. 2, the self-trapped

state of the condensate persists until one applies the
pulse-like time variation of the barrier displayed in the
inset. After that action, the system makes a transition to
the oscillating tunneling regime. The nature of these oscil-
lations can be understood in terms of a two-mode approxi-
mation as was done in refs. [14,23], and in the limit of zero
nonlinearity oscillations are Rabi-like. On the other hand,
preparing the condensate in the oscillating tunneling
regime (bottom graph in fig. 2) one can easily arrive at a
self-trapping state by varying again the energy barrier in
the middle as displayed in the inset. Let us mention that,
as far as the energy of the barrier is changed adiabatically,
the total energy of the condensate does not vary, i.e. the
self-trapped and tunneling oscillatory regimes have the
same energy. This is quite different from what happens
in a double-harmonic-well potential [12,14,17–19]. The
point is that, in the double-harmonic-well for g < 0,
the asymmetric stationary solution is characterized by
a smaller energy than the symmetric solution and this
difference increases sharply with increasing nonlinearity.
Hence, a significant energy injection is required in order to
realize the transition between the two regimes; whilst in
our case the transition is achieved by a simple pulsewise
variation of the energy barrier. Below we argue that this
happens because our case effectively reduces to the case
of a double-square-well potential (see the inset of fig. 1
and the reduction procedure below) for which asymmetric
and symmetric stationary solutions carry almost the same
energies in a wide range of the nonlinearity parameter.
Now we proceed to reducing eq. (3) to a Discrete

NonLinear Schrödinger equation (DNLS). We discretize
it via a tight-binding approximation [24–26], representing
the wave function Ψ(x̃, t̃) as

Ψ(x̃, t̃) =
∑
j

φj(t̃)ϕj(x̃), (5)

where ϕj(x̃) is a normalized isolated wave function in an
optical lattice in the fully linear case g= 0 and could be

40005-p2

48 KAPITEL 3. WISSENSCHAFTLICHE KURZARTIKEL (LETTERS)



Driven collective quantum tunneling of ultracold atoms etc.

Fig. 2: Numerical simulations of eq. (3): the top graph repre-
sents the transition from a self-trapped (MST) state to a collec-
tive tunneling one (CQT), while the bottom graph shows the
inverse process. The right insets in both graphs show the vari-
ation of the energy barrier necessary to realize the switching
between the different regimes. The left insets display the time
evolution of the atomic imbalance between the different sides of
the barrier z =

∫
R
|Ψ|2dx̃− ∫

L
|Ψ|2dx̃, where ∫

R
and

∫
L
define

the integrations over right and left sides of the barrier, respec-
tively. The initial phase difference between the left and right
sides of the barrier is zero in the top panel, while in the bottom
panel the initial phase difference is taken equal to π. Time is
scaled in units of 104�/EB and space is scaled in terms of the
lattice constant π/kL.

expressed in terms of Wannier functions (see, e.g., [27]).
For clarity, we use here its approximation for a harmonic
trap centered at the points rj = jπ(|j|+1/2)/|j| (|j| varies
from 1 to n). In the context of the evolution equation (3)
ϕj(x̃) has the form

ϕj(x̃) =

( √
ṽ

π
√
2

)1/4
e−
√
ṽ(x̃−rj)2/

√
8 , (6)

for |j| �= 1, and one should substitute ṽ by ṽ+ Ṽ0 in the
above expression in order to get an approximate formula
for the wave function for |j|= 1.
Assuming further that the overlap of the wave functions

in neighboring sites is small, we get from (3) the following

DNLS equation for the sites |j| �= 1:

i�
∂φj

∂t̃
=−Q(φj+1+φj−1)+U |φj |2φj , (7)

while for |j|= 1 we have

i�
∂φ±1
∂t̃
=−Qφ±2−Q1φ∓1+U1|φ±1|2φ±1, (8)

where we assume pinned boundary conditions. The
constants Q, Q1, U and U1 are easily computed from the
following expressions (|j| �= 0)

Q = −
∫ [

∂ϕj

∂x̃

∂ϕj+1

∂x̃
+ ṽϕjϕj+1 cos

2 x̃

2

]
dx̃,

Q1 = −
∫ [

∂ϕ1

∂x̃

∂ϕ−1
∂x̃

+(ṽ+ Ṽ0)ϕ1ϕ−1 cos2
x̃

2

]
dx̃,

U = g

∫
ϕ4j dx̃�U1 = g

∫
ϕ4±1 dx̃ . (9)

In order to characterize the solutions of eqs. (7) and (8),
we follow the same procedure used in ref. [23], which
goes through a continuum approximation and leads to the
transformation j→ x̃ again. Assuming that φ1 = φ−1 we
finally arrive at

i�

Q

∂φ

∂t̃
=−∂

2φ

∂x̃2
+W (x̃)φ+R|φ|2φ, (10)

where W (x̃) is a double-square-well potential with a
barrier height w= 2(Q−Q1)/Q and width l= 1, φ(x̃, t̃)
obeys pinned boundary conditions φ(x̃=±2kLL) = 0 (2L
is the width of the double square well) and the nonlinearity
parameter is given by R=U/Q.
Summarizing, we have reduced the initial problem,

GPE with optical lattice and barrier potentials to a
DNLS equation and then this latter again to a GPE
with double-square-well potential. The reason for doing
this, is to get rid of the optical lattice potential and to
reduce our problem to the GPE with a double-square-well
potential, for which one can easily find exact stationary
solutions. They are sought as φ(x̃, t̃) =Φ(x̃) exp(−iβt̃)
with a real-valued function Φ(x̃) found in terms of Jacobi
elliptic functions [28], in the case of attractive atom-atom
interactions R< 0

−L< x̃ <−l : Φ = A cn[γA(x̃ + 2kLL)−K(kA), kA],
l < x̃ < L : Φ = B cn[γB(x̃− 2kLL)+K(kB), kB],
−l < x̃ < l : Φ = C dn[γC(x̃− x̃0), kC], (11)

with the parameters given in terms of the amplitudes by

γ2A = β+
A2

|R| , k2A =
A2

2(A2+ |R|β) ,

γ2B = β+
B2

|R| , k2B =
B2

2(B2+ |R|β) ,

γ2C = w−β− C2

2|R| , k2C =
w−β−C2/|R|
w−β−C2/2|R| ,
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while, in the case of repulsive interactions, R> 0, one
obtains the stationary solution written in the form

−L< x̃ <−l : Φ = A sn[γA(x̃ + 2kLL), kA],

l < x̃ < L : Φ = B sn[γB(x̃− 2kLL), kB],
−l < x̃ < l : Φ = C/cn[γC(x̃− x̃0), kC], (12)

where

γ2A = β− A2

2|R| , k2A =
A2

2|R|β−A2 ,

γ2B = β− B2

2|R| , k2B =
B2

2|R|β−B2 ,

γ2C = 2

(
w−β+ C2

|R|
)
, k2C =

w−β+C2/2|R|
w−β+C2/|R| .

Here K denotes the complete elliptic integral of the first
kind, and, by construction, the above expressions verify
the vanishing boundary values condition in x̃=±2kLL.
The solutions are then given in terms of five parameters

(A,B,C, β, x̃0), which are determined by the four conti-
nuity conditions in x̃=±l and the wave function normali-
zation condition

∫
dx̃Φ2(x̃) = 1. In both cases, repulsive

and attractive nonlinearities, one has a symmetric and
an antisymmetric solution, and an additional asymmetric
solution that appears above a given nonlinearity threshold
value |gt| ≈ 0.018. In fig. 3, we plot the profiles of the lowest
energy symmetric (attractive case, upper panel) and
antisymmetric (repulsive case, lower panel) solution, the
asymmetric solutions for both the repulsive and the attrac-
tive case, and, in the insets, the relative energy differences
∆E = 2(Ea−Es)/Ea+Es) between the asymmetric (Ea)
and the symmetric (Es case for attractive nonlinearities,
while for repulsive nonlinearities Es is replaced by
the energy of the antisymmetric solution. Below |gt|
the energy of the asymmetric solution joins those of the
symmetric and antisymmetric ones, making ∆E = 0. As
seen from the insets of both panels, these energies are very
close in the nonlinearity range 0.018< |g|< 0.03 (note
that the numerical simulations presented in fig. 2 are made
for g=−0.025) and hence it is easy to switch from the
tunneling regime to the self-trapped state and back again.
As mentioned above, for small nonlinearities only

the symmetric and antisymmetric solution exist. For
large nonlinearities, according to an intuitive guess, the
symmetric solution has lower energy than the asymmetric
one for repulsive nonlinearities (the system prefers to
be equally distributed on different sides of the barrier),
whilst the asymmetric solution is energetically preferrable
(the system prefers to occupy mostly one of the sides of
the barrier) in the case of attractive atomic interactions.
For large nonlinearities the behavior of the double square
well coincides with that of the double harmonic well, for
which we direct the reader to ref. [17], where the energetic
comparison and stability analysis of the above-mentioned
solutions are given in full detail. However, we remark

−0.4

−0.2

0

0.2

0.4

0.015 0.02 0.025

−0.04

−0.02

0

Φ

|g|

∆E

Distance  x

−0.4

−0.2

0

0.2

0.4

0.015 0.02 0.025
−0.01

0

0.01

Φ

|g|

∆E

Distance  x

Fig. 3: Upper graph: Stationary profiles described by expres-
sions (11) for attractive nonlinearities (g=−0.025): asym-
metric solution (solid line), symmetric solution (dashed line),
antisymmetric solution (dotted line). The inset shows the
relative energy difference between the asymmetric and the
symmetric stationary solution as a function of the nonlinearity
parameter. Lower graph: Stationary profiles described by
expressions (12) for repulsive nonlinearities (g= 0.025): asym-
metric solution (solid line), symmetric solution (dashed line),
antisymmetric solution (dotted line). The inset shows the
relative energy difference between the asymmetric and
the antisymmetric stationary solution as a function of the
nonlinearity parameter.

once again that the behavior of the double-square-well
potential differs from that of the double harmonic
well [12,14,17–19] in the range of intermediate nonlineari-
ties, where the energies of the symmetric and asymmetric
solutions turn out to be very close to each other and the
energetic ordering described for large nonlinearities is
different.
In order to get an idea about a possible experimen-

tal realization of these effects, we choose 7Li, which is
characterized by an attractive atom-atom interaction [29].
First of all we note that the confining harmonic poten-
tial along the optical lattice does not change the observed
switching effect if the characteristic longitudinal oscil-
lation length a‖ =

√
�/mω‖ of this potential (ω‖ being
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the longitudinal confining frequency) is much larger than
system size. In particular, for 7Li this condition yields ω‖ <
2π× 30Hz. Then, with the realistic experimental parame-
ters ω⊥ = 2π× 30Hz, as =−1.4 nm, kL = 7.4 ·µm−1, from
the formula for the nonlinearity g=Nas/a

2
⊥2kL one gets

that the total atom number needed to access values of |g|
around 0.025 is N ≈ 10000. While in case of 23Na [30] with
repulsive forces (as = 4.9 nm), the atom number should be
N ≈ 1000. Increasing the number of wells (system size) n
times, one should decrease the number of atoms n2 times
in order to observe the predicted effect. The optimal opti-
cal depth should be around v= 0.25EB and barrier height
V0 = 0.15EB (see eq. (2) for the definition of potential
parameters). Increasing the potential barrier width the
tunneling regime is suppressed and one should simulta-
neously decrease the potential barrier height in order to
still observe the effect, keeping all the other parameters
unchanged. The only restriction on the barrier width is
that it should be much less than system size. Small fluctu-
ations of the barrier parameters and position do not affect
the predicted phenomenon. We note that in our numerical
simulations, presented in fig. 1, the time is scaled in units
of 104�/EB , where, let us remind, EB ≡ 4�2k2L/m.
To summarize, we predict the presence of a rich switch-

ing scenario from an oscillatory tunneling regime to a
self-trapped one as a novel collective quantum tunnel-
ing (CQT) effect to be realized with ultracold atoms. We
have shown that the problem effectively reduces to particle
motion in a double-square-well potential, at variance with
earlier studies dealing with double harmonic wells. This
difference guarantees the possibility of a switch from an
oscillatory tunneling to a self-trapped state via a pulse-like
change of the central potential barrier. We have derived
typical ranges of physical parameters, for both attractive
and repulsive interatomic forces, in order to suggest a
ready-to-implement experimental verification.
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Resonantly Enhanced Tunneling of Bose-Einstein Condensates in Periodic Potentials
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We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into
an optical lattice. By controlling the initial conditions of our system we were able to observe resonant
tunneling in the ground and the first two excited states of the lattice wells. We also investigated the effect
of the intrinsic nonlinearity of the condensate on the tunneling resonances.
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Resonantly enhanced tunneling (RET) is a quantum
effect in which the probability for tunneling of a particle
between two potential wells is increased when the quan-
tized energies of the initial and final states of the process
coincide. In spite of the fundamental nature of this effect
[1] and the practical interest [2], it has been difficult to
observe experimentally in solid state structures. Since the
1970s, much progress has been made in constructing solid
state systems such as superlattices [3–5] and quantum
wells [6] which enable the controlled observation of RET
[7].

In recent years, ultracold atoms in optical lattices [8]
have been increasingly used to simulate solid state sys-
tems. Optical lattices are easy to realize in the laboratory,
and their parameters can be perfectly controlled both stati-
cally and dynamically. Also, more complicated potentials
can be realized by adding further lattice beams [9]. This
makes them attractive as model systems for crystal lattices,
and in the past few years cold atoms and Bose-Einstein
condensates (BECs) in optical lattices have been used to
simulate phenomena such as Bloch oscillations [10] and
the Mott insulator transition [11]. In this Letter we show
that BECs in accelerated optical lattice potentials are
ideally suited to studying RET. While in solid state mea-
surements of RET only a few potential wells were used and
the periodic structures had to be grown for each realization,
in our experiment the condensate is distributed over several
tens of wells and the parameters of the lattice can be freely
chosen. Moreover, we are able to control the initial con-
ditions of the system and thus observe RET in any chosen
energy level and can also add nonlinearity to the system.

A schematic representation of RET is shown in Fig. 1. In
a tilted periodic potential, atoms can escape by tunneling to
the continuum via higher-lying levels. The tilt of the
potential is proportional to the force F acting on the atoms,
and in general the tunneling rate �LZ can be calculated
using the Landau-Zener formula [12]. However, when the
tilt-induced energy difference FdL�i between wells i and
i� �i matches the separation between two quantized
energy levels, the tunneling probability is resonantly en-
hanced and the Landau-Zener formula no longer gives the
correct result, as previously investigated in [13] for cold
atoms in optical lattices. While for the parameters of our

experiment the enhancement over the Landau-Zener pre-
diction was around a factor of 2 [see theoretical and
experimental results of Fig. 2(a)], in general it can be
several orders of magnitude.

The starting point of our experiments is a BEC of 87Rb
atoms, held in an optical dipole trap whose frequencies can
be adjusted to realize a cigar-shaped condensate. The
BECs are created using a hybrid approach in which evapo-
rative cooling is initially effected in a magnetic time-
orbiting potential (TOP) trap and subsequently in a crossed
dipole trap. The dipole trap is realized using two intersect-
ing Gaussian laser beams at 1030 nm wavelength and a
power of around 1 W per beam focused to waists of
50 �m. After obtaining pure condensates of around 5�
104 atoms the powers of the trap beams are adjusted in
order to obtain an elongated condensate with the desired
trap frequencies (�20 Hz in the longitudinal direction and
80–250 Hz radially).

Subsequently, the BECs held in the dipole trap are
loaded into an optical lattice created by two Gaussian laser
beams (� � 852 nm) with 120 �m waist intersecting at an
angle �. The resulting periodic potential V�x� �
V0sin2��x=dL� has a lattice spacing dL � �=�2 sin��=2��
and its depth V0 is measured in units of the recoil energy

 

654321
well index i

∆i = 3

∆i = 2
dL

V0

F

FIG. 1. Explanation of resonantly enhanced tunneling.
Tunneling of atoms out of a tilted lattice is resonantly enhanced
when the energy difference between lattice wells matches the
distance between the energy levels in the wells.
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Erec � @
2�2=�2md2

L�, where m is the mass of the Rb
atoms. In the present experiment, we used dL �
0:426 �m (for V0=Erec � 6, 4, 9, and 16) and dL �
0:620 �m (for V0=Erec � 2:5, 10, 12, and 14). By intro-
ducing a frequency difference �� between the two lattice
beams (using acousto-optic modulators which also control
the power of the beams), the optical lattice can be moved at
a velocity v � dL�� or accelerated with an acceleration
a � dL�d��=dt�.

A ramp from 0 to V0 in around 1 ms loads the BEC
adiabatically into the optical lattice [14]. For loading the
ground-state levels, the lattice velocity is v � 0 during the
ramp. For the first and second excited levels, during the
ramp the lattice is moved at a finite velocity calculated

from the conservation of energy and quasimomentum [16].
Finally, the optical lattice is accelerated with acceleration a
for an integer number of Bloch oscillation cycles. In the
rest frame of the lattice, this results in a force F � ma on
the condensate. Atoms that are dragged along by the
accelerated lattice acquire a larger final velocity than those
that have undergone tunneling, and are spatially separated
from the latter by releasing the BEC from the dipole trap
and lattice at the end of the acceleration period and allow-
ing it to fall under gravity for 5–20 ms. After the time of
flight, the atoms are detected by absorptive imaging on a
CCD camera using a resonant flash.

From the dragged fraction Ndrag=Ntot, we then determine
the tunneling rate �n in the asymptotic decay law

 Ndrag�t� � Ntot exp���nt�; (1)

where the subscript n indicates the dependence of the
tunnneling rate on the local energy level n in which the
atoms are initially prepared (ground state: n � 1, first
excited state: n � 2, etc.). In the experiments reported in
this work, the number of bound states in the wells was
small (2–4, depending on the lattice depth), so after the
first tunneling event, the probability for tunneling to the
next bound state or the continuum was close to unity.

The resolution of our tunneling measurement is given by
the minimum number of atoms that we can distinguish
from the background noise in our CCD images, which
varies between 500 and 1000 atoms, depending on the
width of the observed region. With our condensate number,
and taking into account the minimum acceleration time
limited by the need to spatially separate the two fractions
after time of flight and the maximum acceleration time
limited by the field of view of the CCD camera, this results
in a maximum �n=�rec of �1 and a minimum of �1�
10�2, with the recoil frequency �rec � Erec=h.

A typical plot of the tunneling rate �1 out of the ground
state as a function of F�1

0 (where F0 � FdL=Erec is the
dimensionless force) in the linear regime is shown in
Fig. 2(a). This regime is reached either by choosing small
radial dipole trap frequencies or by releasing the BEC from
the trap before the acceleration phase and thus letting it
expand. In both cases, the density and hence the interaction
energy of the BEC is reduced. Superimposed on the overall
exponential decay of �1=F0 with F�1

0 , one clearly sees the
resonant tunneling peaks corresponding to �i � 2, 3, and 4
(for this choice of parameters, the �i � 1 peak lay outside
our experimental resolution). In order to highlight the
deviation from the Landau-Zener prediction, in the inset
of Fig. 2(a) we plot �1=�LZ, where the Landau-Zener
tunneling rate �LZ is given by [12,16]

 �LZ � �recF0e���
2�V0=Erec�

2=32F0	: (2)

The experimental results are in good agreement with nu-
merical solutions obtained by diagonalizing the Hamilton-
ian of the open decaying system [17,18]. Figure 2(b) sum-

 

(a)

(b)

FIG. 2. Tunneling resonances in an accelerated optical lattice.
(a) Tunneling resonances of the n � 1 lowest energy level for
V0 � 2:5Erec. The arrows indicate the upper and lower limits for
our precise measurement of �n. Inset: Deviation from the
Landau-Zener prediction. For clarity, in both graphs only one
representative error bar is shown. (b) Positions of the �i � 1
resonance peaks as a function of the lattice depth. Only data
points for which the resonance is clearly visible [e.g., not �i � 1
of (a)] are included. Inset: Positions of the peaks for �i � 2
and 3.
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marizes our results for the positions of the ground-state
resonances �i � 1, 2, and 3 as a function of the lattice
depth together with a theoretical fit assuming the separa-
tion of the lowest energy levels to be

 �E � �Erec

����������������
V0=Erec

q
: (3)

Independently of �i, the best fit is achieved for � � 1:5, to
be compared with � � 2 for the harmonic oscillator ap-
proximation. A value �< 2 is to be expected since our
lattice wells only contain a few bound states and are,
therefore, highly anharmonic.

Using BECs in optical lattices allows us to explore
resonant tunneling in regimes that are difficult or even
impossible to access in solid state systems. First, we can
prepare the condensates in the excited levels of the lattice
wells before the acceleration. Again, tunneling resonances
are clearly visible, and the experimental results agree with
theoretical calculations. The accessibility of higher energy
levels allows us to experimentally determine the decay
rates at resonance of two strongly coupled levels.
Although our experimental resolution does not allow us
to measure the decay rates in two different levels for the
same set of parameters F0 and V0, we are able to compare
the ground and excited state decay rates �1 and �2 with the
theoretical predictions for two different parameter sets, as
shown in Fig. 3. This figure reveals the anticrossing of the
decay rates of strongly coupled levels as a function of our
control parameter F0. These results demonstrate a peculiar
behavior of the Wannier-Stark states studied theoretically

[6,19] and more recently rephrased within a general con-
text of crossings and anticrossings for the real and imagi-
nary parts of the eigenvalues of non-Hermitian Hamilton-
ians [20]. Our data confirm the predictions of [17] that the
anticrossings modify the decay rates of the two perturbing
states in different ways.

Additionally, by exploiting the intrinsic nonlinearity of
the condensate due to atom-atom interactions, we can
study RET in the nonlinear regime, as simulated in [21].
In order to realize this regime, we carry out the accelera-
tion experiments in radially tighter traps (radial frequency
*100 Hz) and hence at larger condensate densities.
Figure 4(a) shows the results for increasing values of the
nonlinear parameter [22]

 

(a) (b)

FIG. 3. Anticrossing scenario of the RET rates. (a) Theoretical
plot of �1;2 for V0 � 2:5Erec with experimental points for �1.
(b) Theoretical plot of �1;2 for V0 � 10Erec with experimental
points for �2. For clarity, the vertical axes have been split and the
�n plotted on a linear scale, and only one representative error bar
is shown.

 

(a)

(b)

FIG. 4. Resonant tunneling in the nonlinear regime. (a) Reso-
nance �i � 3 for V0 � 2:5Erec with C � 0:024 (squares), C �
0:035 (circles) and C � 0:057 (triangles). The solid line is the
theoretical prediction for C � 0; the dashed lines are guides to
the eye. (b) Dependence on C of the tunneling rate at the position
of the peak F�1

0 � 1:21 (solid symbols) and of the trough F�1
0 �

1:03 (open symbols). The dashed lines are fits to guide the eye.
For clarity, in (a) and (b) only one typical error bar is shown.
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 C �
n0asd2

L

�
; (4)

where n0 is the peak condensate density and as the s-wave
scattering length. Two effects are visible: First, the over-
all (off-resonant) level of �1 increases linearly with C.
This is in agreement with our earlier experiments on non-
linear Landau-Zener tunneling [22,23] and can be ex-
plained describing the condensate evolution within a
nonlinearity-dependent effective potential Veff � V0=�1�
4C� [24]. Second, with increasing nonlinearity, the contrast
of the RET peak is decreased and the peak eventually
vanishes. This is confirmed by the different dependence
on C of the on- and off-resonant values of �1 [Fig. 4(b)].
We estimate that in order to significantly affect the reso-
nant tunneling rate, the nonlinearity parameter has to be
comparable to the width of the RET peak. This order-of-
magnitude argument agrees with our observations.

Finally, we have experimentally tested the robustness of
RET against a dephasing of the lattice wells induced by
nonadiabatic loading of the BEC into the lattice in the
nonlinear regime [15,25]. Even for completely dephased
wells, the tunneling resonances survive.

In summary, we have measured resonantly enhanced
tunneling of BECs in accelerated periodic potentials in a
regime where the standard Landau-Zener description is not
valid. Our results in the linear regime agree with numerical
calculations, and the possibility to observe RET for arbi-
trary initial conditions and parameters of the periodic
potential underlines the advantage of our system over solid
state realizations. Furthermore, we have explored RET in
the nonlinear regime and demonstrated that, as theoreti-
cally predicted, the tunneling resonances disappear for
large values of the nonlinearity.

In the present setup the measurement of the tunneling
rate is limited in its dynamic range by the detection ge-
ometry. A larger dynamic range can be realized by long-
distance transport of BECs [26]. Our method for observing
RET can also be generalized in order to study other regular
or disordered potentials, the effects of noise and the pres-
ence of a thermal fraction in the condensate. Furthermore,
one might exploit the tunneling resonances to explore the
spatial decoherence processes and to perform precision
measurements.
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A perturbative model is studied for the tunneling of many-particle states from the ground band to the
first excited energy band, mimicking Landau-Zener decay for ultracold, spinless atoms in quasi-one-
dimensional optical lattices subjected to a tunable tilting force. The distributions of the computed
tunneling rates provide an independent and experimentally accessible signature of the regular-chaotic
transition in the strongly correlated many-body dynamics of the ground band.
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The experimental advances in atom and quantum optics
allow the experimentalist to directly study a plethora of
minimal models which have been developed to describe
usually much more complex phenomena occurring in solid
states [1–3]. Bose-Einstein condensates loaded into optical
lattices, which perfectly realize spatially periodic poten-
tials, are used, e.g., to implement the Wannier-Stark prob-
lem [4–6] as a paradigm of quantum transport where
atoms move in a tilted lattice. Until now all experiments
on the Wannier-Stark system with ultracold atoms have
been performed in a regime where atom-atom interactions
are either negligible [4] or reduce to an effective mean-
field description [5,7]. State-of-the-art setups are, however,
capable to achieve small filling factors of the order of 1
atom per lattice site [2]. Moreover, the atom-atom inter-
actions can be tuned by the transversal confinement and by
Feshbach resonances [3,8], resulting in strong interaction-
induced correlations.

The regime of strong correlations in the Wannier-Stark
system was addressed in [9,10], revealing the sensitive
dependence of the system’s dynamics on the Stark force
F. The single-band Bose-Hubbard model of [9,10] is de-
fined by the following Hamiltonian with the creation âyl;1,
annihilation âl;1, and number operators n̂l;1 for the first
band of a lattice l � 1; . . . ; L:

 

X
l

Fln̂l;1 �
J1

2
�âyl�1;1âl;1 � H:c:� �

U1

2
n̂l;1�n̂l;1 � 1�:

(1)

A transition from a regular dynamical (dominated by F) to
a quantum chaotic regime (with comparable values of J1,
U1, F) was found [9,10]. The transition was quantitatively
studied using the distribution of the spacings between next
nearest eigenenergies of the Hamiltonian (1). This analysis
[9,10] verifies that the normalized level spacings s �
�E=�E obey a Poisson [P�s� � exp��s�] and a Wigner-
Dyson (WD) [P�s� � �s�=2� exp���s2=4�] distribution in
the regular and chaotic case, respectively, [11]. P�s� and
the cumulative distribution functions (CDFs) [C�s� �R
s
0 ds

0P�s0�] are shown for typical cases in Fig. 1, where

we scanned F to emphasize the crossover between the
regular and the chaotic regime. Statistical tests are also
shown which confirm the analysis of [9,10] in a more
systematic manner [12].

As shown in [9], the strong correlations in the quantum
chaotic regime induce a fast and irreversible decay of the
Bloch oscillations, which otherwise would persist in the
ideal, noninteracting case. Therefore, the crossover be-
tween the two regimes discussed above could be measured
in experiments by observing just the mean momentum as a
function of time. Here we introduce a new, robust and
hence also experimentally accessible prediction for this
crossover. In the presence of strong interactions parame-
trized by U1, the single-band model should be extended to
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FIG. 1. (a),(b) CDF (stairs) and P�s� (stairs in insets) for N �
5 atoms, L � 8, lattice depth V � 10 recoil energies (fixing
J1 � 0:038), U1 � 0:032, F ’ 0:063 (a) and 0.021 (b), with WD
(solid line) and Poisson distributions (dashed line). (c) �2 test
with values close to zero for good WD statistics. The dashed line
marks the transition to quantum chaos as F is tuned. (d) Variance
of the number of levels in intervals of length dE (with normal-
ized mean spacing), for the cases of (a) (squares) and (b)
(circles), with the random matrix predictions for Poisson (dashed
line) and WD (solid line) [11].
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allow for interband transitions [13], as recently realized at
F � 0 in experiments with fermionic interacting atoms [3].
Instead of using a numerically hardly tractable complete
many-bands model, we introduce a perturbative decay of
the many-particles modes in the ground band to a second
energy band. Our novel approach to study the Landau-
Zener–like tunneling between the first and the second
band [1,5,7,14,15] leads to predictions for the expected
decay rates and their statistical distributions. As we will
show, the latter are drastically affected by the dynamics in
the ground band, and they therefore provide a measurable
witness for the regular-chaotic transition.

We first derive the individual decay rates of the domi-
nating interband coupling channels. These decay rates will
serve to effectively open the single-band model (1) for
mimicking losses arising from the interband coupling.
Our analysis starts from the following ‘‘unperturbed’’
Hamiltonian for the first two bands:

 H0 �
XL
l�1

�
"1n̂l;1 � "2n̂l;2 �

J2

2
�âl�1;2

yâl;2 � H:c:�

� Fl�n̂l;1 � n̂l;2� �
U1

2
n̂l;1�n̂l;1 � 1�

�
: (2)

For a moment, we neglect the hopping in the lower band,
where the single-particle Wannier functions [14] are more
localized than in the upper band. In the latter we neglect the
interactions, since initially only a few particles populate
the excited levels. A closer analysis of the full two-bands
system [12] shows that there are two dominating mecha-
nisms that promote particles to the second band. The first
one is a single-particle dipole coupling arising from the
force term:

 H1 � FD
X
l

�âl;2
yâl;1 � âl;1

yâl;2�; (3)

where D depends only on the lattice depth V (measured in
recoil energies according to the definition in [7]). The
second one is a many-body effect, describing two particles
of the first band entering the second band together:

 H2 �
U�
2

XL
l�1

�âl;2
yâl;2

yâl;1âl;1 � �1$ 2�	: (4)

The cross-band interaction is characterized by the parame-
ter U� � ~as

R
dx�2

1�
2
2 ’ 0:5U1 (for V � 3; . . . ; 10) [12],

for U1 � ~as
R
dx�4

1, with renormalized scattering length
~as [8,12] and the Wannier functions �1;2 localized in each
well for the first or second band. To justify the following
perturbative approach, it is crucial to realize that the terms
(3) and (4) must be small compared with the band gap � �
"2 � "1 [not necessarily small with respect to the single-
band terms in (1)], and indeed FD, U�, U1 
 � for the
parameters considered here.

For the first perturbation, the decay channel of a given
unperturbed Fock state labeled jbi (with a total number of

atoms N and nh atoms in an arbitrary well h) is

 jb;Ni � jvaci ! jb0;N � 1i � jwi; n0h � nh � 1:

(5)

Here, jwi �
P
�1
m��1 J m�w�jJ2j=F�â

y
m;2jvaci is the single-

particle eigenstate for the Wannier-Stark problem, local-
ized around the site w in the second band, with the Bessel
function of the first kind J m�x� [14].

The expectation value of (3) for jb;Ni of the first band,
equal to the first-order �E�b�, is zero because the operator
does not conserve the number of particles within the bands.
The decay width at first order is given by the matrix
element of the perturbation between the initial and final
state according to Fermi’s golden rule, and only the first
term in (3) gives a nonzero contribution [12]:
 

hkjhb0j
XL
l�1

âl;2
yâl;1jbijvaci �

XL
l�1

J l�w�jJ2j=F���n
0
l; nl� 1�

�
�����
nl
p Y

m�l

��n0m;nm�: (6)

The ���; �� functions act as a selection rule for the Fock
states that are coupled by the perturbation. The tunneling
mechanism does not include any income of energy from an
external source, so the initial and final energies E0�b� �
hvacjhbjH0jbijvaci and E0�b

0; w� � hwjhb0jH0jb
0ijwi, re-

spectively, must be equal as required by the golden rule.
The condition on the energy conservation is, however,
relaxed to account for the uncertainty �E�b� of the un-
perturbed energy levels of the initial and final states in the
lower band arising from the hopping in this band initially
neglected in (2). A detailed derivation is given in [12], and
here we only state the result:

 �E�b� � 2��J1=2�2
X
b0

�E�b! b0�

� 2��J1=2�2
X
l

X
�l�1

n2
l ��nl��l � 1; nl�: (7)

The level density ��E; b� around the unperturbed energy
E0�b� of a Fock state jbi is then approximated by a rect-
angular profile, of width �E�b� and unit area: ��E; b� �
�fjE� E0�b�j � �E�b�=2g=�E�b�. The relaxed energy
conservation rule selects from (5) the set K of permitted
decay channels (h; w) parametrized by the two indices h;w
such that

 E0�b0;w��E0�b����F�h�w��U1�nh�1�

2

�
�

�E�b���E�b0�
2

;
�E�b���E�b0�

2

�
:

(8)

Hence the energy � required to promote a particle to the
second band is supplied by the decrease of the interaction
( / U1) and by the work of the force ( / F) exerted on the
promoted particle.
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The total width �1�b� for the decay via the allowed
channels K is proportional to the square of the matrix
element and to the level density ��E; b�:

 

�1�b� � 2��FD�2
X

�h;w�2K

���������J h�w

�
jJ2j

F

� �����
nh
p

��������
2

�
1

�E�b��E�b0�

�
: (9)

J m�x� significantly contributes only for jmj & jxj. If U1,
�E�b� 
 �, the energy conservation is roughly given by
j�j ’ F�h� w�. Requiring that the Bessel function in (9)
is substantially larger than zero, we obtain the inequality
j�j � jJ2j. The last condition does not depend on F, since
a twofold effect is at work: a stronger force produces a
larger energy gain when a particle moves along the lattice,
but the extension jJ2=Fj of the single-particle state shrinks.
Therefore, increasing F results in an increased energy
matching and a strongly reduced ‘‘geometrical’’ matching.
For 3< V < 26, we have j�j � jJ2j> 1:0 [12], such that
the energy matching cannot be realized by just tuning the
lattice depth. The decay can, however, be activated by an
increase of the interactions, which can be experimentally
achieved by acting on the transversal confining potential of
a quasi-one-dimensional lattice, or by a Feshbach reso-
nance [8]. In the calculations presented below, we aug-
mented U1 used in [9,10] by a factor of order 10, and as
noted in the introduction, a similar increase of the interac-
tion strength was used in the experiment to promote fer-
mions to higher bands [3], in close analogy to the here-
described field- and interaction-induced interband cou-
pling of bosons.

The second term (4) is treated in a similar way, with the
difference that two particles are promoted to the second
band, and the position of the second single-particle state
jw0i is an additional degree of freedom for the transition.
The decay channels are

 jb; Ni � jvaci ! jb0; N � 2i � jw;w0i; n0h � nh � 2:

(10)

The energy matching selects a set K of decay channels,
parametrized by the three site indices h, w, w0:

 

�h; w;w0� 2 K such that

E0�b
0; w; w0� � E0�b� � 2�� F�2h� w� w0�

�U1�2nh � 3�

2

�
�

�E�b� ��E�b0�
2

;
�E�b� � �E�b0�

2

�
: (11)

The computation of the matrix element yields [12]:

 

�2�b� � 2�
�
U�
2

�
2 X
�h;w;w0�2K

���������J h�w

�
jJ2j

F

�
J h�w0

�
jJ2j

F

���������
2

� 4nh�nh � 1�
1

�E�b��E�b0�

�
: (12)

With respect to (9), the additional degree of freedom w0

results in a summation over all possible values of w� w0.
This follows from the possibility to conserve the energy
even if a particle is pushed far, if the other particle is
pushed almost equally far in the opposite direction. Since
the decay widths in (12) depend on the product of two
(rapidly decaying) Bessel functions—again a geometrical
matching condition—we apply the truncation jw� w0j �
jJ2=Fj, to reduce the formula to a finite form.

We can now compute the total width �F�b� � �1�b� �
�2�b� defined by the two analyzed coupling processes for
each basis state jbi of the single-band problem given in (1).
The �F�b� are inserted as complex potentials in the diago-
nal of the single-band Hamiltonian matrix. After a gauge
transform that recovers the translational invariance of the
problem (see [10,12] for details), the latter matrix is used to
compute the evolution operator over one Bloch period TB,
which is finally diagonalized to obtain its eigenphases
exp��iEjTB�. Along with the statistics of the level spac-
ings defined by RefEjg, Figs. 2 and 3 analyze the statistical
distributions of the tunneling rates �j � �2 ImfEjg for
some paradigmatic cases. All rates are much smaller than
unity, which a posteriori is fully consistent with our per-
turbative approach.
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FIG. 2 (color online). (a),(c),(e) CDF from RefEjg (stairs),
together with WD (solid line) and Poisson predictions (dashed
line). (b),(d),(f) Distributions of the logarithm of the rates. In
(a),(b), (c),(d), (e),(f), F ’ 0:17, 0.31, 0.47, respectively, with
�N;L� � �7; 6�, V � 3, U1 � 0:2 (fixing U� ’ 0:1). In the regu-
lar regime (f), a log-normal distribution (dotted line) well fits the
data, with a scaling P��� / ��x for the largest � [dashed line in
the inset of (f) with x � 1]. In the chaotic case, a global power-
law behavior with x � 2 is found [dashed line in the inset of (b)].
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To observe what happens at the regular-chaotic transi-
tion (cf. Fig. 1), we scan F in Fig. 2, and as F increases, the
average decay increases by orders of magnitude, while the
distributions broaden. The large increase of the rates is due
to an improved energy matching, when F supplies the
necessary energy to promote particles to the second
band. For the parameters of Fig. 2, the single-particle
Landau-Zener formula [14] gives �LZ � �F=2���
exp���2�2=�8F�	 � 10�23, 10�12, 10�8 for 2(b), 2(d),
and 2(f). This huge variation, typical of semiclassical
formulas, implies that there are possibly parameters for
which our results are comparable to the single-particle
prediction, but, in general, the many-particle effects cannot
be neglected. Moreover, mean-field treatments of the
Landau-Zener tunneling at best predict a shift of �
[7,15], but cannot account for their distributions.

In the chaotic regime, the Fock states are strongly mixed
by the dynamics [9,10,12] and a fast decaying Fock state
can act as a privileged decay channel for many eigenstates.
Many states then share similar rates, leading to thinner
distributions. Therefore, the thinner distribution of
Fig. 2(b) is a direct signature of the chaotic dynamics
evidenced in 2(a), as compared with the regular case in
2(e) and 2(f). In Fig. 2(f), we found a good agreement with
the expected log-normal distribution of decay rates [16] (or
of the similarly behaving conductance [17]) in the regular
regime. There the system shows nearly perfect Bloch
oscillations [9], and the motion of the atoms is localized
along the lattice [14]. We can even detect a qualitative
crossover to a power law P��� / ��1 in the right tail of the
distribution, as predicted from localization theory
[16,18,19]. The distributions in Figs. 2(b) and 3 follow
the expected power law for open quantum chaotic systems
in the diffusive regime [18]. The exponents x are, however,

nonuniversal and depend on the opening of the system. In
our case, the decay channels are defined by the interband
coupling, which in a sense attaches ‘‘leads’’ to all lattice
sites within the sample. Going along with the regular-to-
chaotic transition in the lower band of our model [from
Fig. 2(f) and 2(b), or to Fig. 3] the � distributions trans-
form from a log normal to a power law with x � 2, in close
analogy to the transition from Anderson-localized to dif-
fusive dynamics in open disordered systems [18,20].

In summary, our perturbative opening of the single-band
Wannier-Stark system allows one to study Landau-Zener–
like interband tunneling within a many-body description of
the dynamics of ultracold atoms. The statistical character-
ization of the tunneling rates (mean values and form of the
distributions) provides clear and robust signatures of the
regular-to-chaotic transition for future experiments. A
more detailed analysis of the interband coupling in a full-
blown model, in which at least two bands are completely
included, calls for huge computational resources to access
the complete quantum spectra. Nonetheless, our results are
a first step in the direction of studies for which ‘‘horizon-
tal’’ and ‘‘vertical’’ quantum transport along the lattice are
simultaneously present and influence each other in a com-
plex manner.
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S. Fölling et al., ibid. 97, 060403 (2006).
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FIG. 3 (color online). (a),(c) Rate distributions in the chaotic
regime with F ’ 0:17, U1 � 0:2 (U� ’ 0:1), together with the
corresponding unscaled P��� in (b),(d). In (a),(b) �N;L� �
�7; 6�, V � 4, and in (c),(d) �N;L� � �9; 8�, V � 3. Power laws
P��� / ��x are found with x � 2 [dashed lines in (b),(d)].
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We discuss the dynamics of a Bose-Einstein condensate in a double-well trap subject to phase noise and

particle loss. The phase coherence of a weakly interacting condensate as well as the response to an

external driving show a pronounced stochastic resonance effect: Both quantities become maximal for a

finite value of the dissipation rate matching the intrinsic time scales of the system. Even stronger effects

are observed when dissipation acts in concurrence with strong interparticle interactions, restoring the

purity of the condensate almost completely and increasing the phase coherence significantly.

DOI: 10.1103/PhysRevLett.101.200402 PACS numbers: 03.75.Lm, 03.65.Yz, 03.75.Gg

In our naive understanding thermal noise is generally
distracting, hindering measurements and degrading coher-
ences in quantum mechanics. A paradigmatic counterex-
ample to this assertion is the effect of stochastic resonance
(SR), where the response of a system to an external driving
assumes its maximum in the presence of a finite amount of
thermal noise, when the time scales of the noise and the
driving match [1]. In this case the noise is strong enough to
cause a large dynamical effect when it adds up construc-
tively with the driving, whereas it is still weak enough not
to make the dynamics completely random. By now, SR has
been shown in a variety of systems, an overview is given in
the review articles [2–5].

In addition to numerous examples in classical dynamics,
SR has also been found in a variety of quantum systems
(see [5] and references therein). Recently, there has been an
increased interest in controlling and even exploiting dis-
sipation in interacting many-body quantum systems. For
instance, the entanglement in a spin chain assumes an SR-
like maximum for a finite amount of thermal noise [6].
Furthermore, it has been shown that dissipative processes
can be tailored to prepare arbitrary pure states for quantum
computation and strongly correlated states of ultracold
atoms [7] or to implement a universal set of quantum gates
[8]. Actually, a recent experiment has even proven that
strong inelastic collisions may inhibit particle losses and
induce strong correlations in a quasi one-dimensional gas
of ultracold atoms [9].

In this Letter we demonstrate the constructive effects of
dissipation for an interacting many-particle quantum sys-
tem realized by ultracold atoms in a double-well trap with
biased particle dissipation. It is shown that a proper amount
of dissipation maximizes the coherence of the two conden-
sate modes in the fashion of the SR effect. In this case the
particle loss is strong enough to significantly increase the
condensate purity, whereas it is still weak enough not to
dominate the complete dynamics. These effects are of
considerable strength for realistic parameters, especially

in the case of strong interparticle interactions, and thus
should be observable in ongoing experiments [10–13].
The unitary dynamics of ultracold atoms in a double-

well trap is described by the two-mode Bose-Hubbard
Hamiltonian [14–16]

Ĥ ¼ �Jðây1 â2 þ ây2 â1Þ þ �ðn̂2 � n̂1Þ
þU

2
½n̂1ðn̂1 � 1Þ þ n̂2ðn̂2 � 1Þ�; (1)

where âj and âyj are the bosonic annihilation and creation

operators in the jth well and n̂j ¼ âyj âj are the number

operators. In general we consider a biased double-well
trap, where the ground state energies of the two wells differ
by 2�. We set @ ¼ 1, thus measuring all energies in fre-
quency units.
The main source of decoherence is phase noise due to

elastic collisions with atoms in the thermal cloud [17,18]
which effectively heats the system. The heating rate is
fixed as �p ¼ 5 s�1 in the following, which is a realistic

value for the experiments in Heidelberg [10,11]. Methods
to attenuate this source of decoherence were discussed only
recently [19]. Amplitude noise, i.e., the exchange of parti-
cles with the thermal cloud due to inelastic scattering,
drives the system to thermal equilibrium. However, this
effect is usually much too weak to produce the effects
discussed below in present experiments (cf. the discussion
in [18]). In contrast, a strong and tunable source of dis-
sipation can be implemented artificially by shining a reso-
nant laser beam onto the trap, that removes atoms with the
site-dependent rates �aj from the two wells j ¼ 1, 2.

Nontrivial effects of dissipation such as the stochastic
resonance discussed below require strongly biased loss
rates, i.e., �a1 � �a2. For a laser beam focused on one of
the wells an asymmetry of fa ¼ ð�a2 � �a1Þ=ð�a2 þ
�a1Þ ¼ 0:5 should be feasible. Thus we consider the dy-
namics generated by the master equation
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_̂� ¼ �i½Ĥ; �̂� � �p

2

X

j¼1;2

ðn̂2j �̂þ �̂n̂2j � 2n̂j�̂n̂jÞ

� 1

2

X

j¼1;2

�ajðâyj âj�̂þ �̂âyj âj � 2âj�̂â
y
j Þ: (2)

The macroscopic dynamics of the atomic cloud is well
described by a mean-field approximation, considering only

the expectation values sj ¼ 2trðL̂j�̂Þ of the angular mo-

mentum operators L̂x ¼ ðây1 â2 þ ây2 â1Þ=2, L̂y ¼ iðây1 â2 �
ây2 â1Þ=2, L̂z ¼ ðây2 â2 � ây1 â1Þ=2 and the particle number

n ¼ tr½ðn̂1 þ n̂2Þ�̂�. The time evolution of the Bloch vector
s and the particle number is then given by [20]

_sx ¼ �2�sy �Usysz � T�1
2 sx;

_sy ¼ 2Jsz þ 2�sx þUsxsz � T�1
2 sy;

_sz ¼ �2Jsy � T�1
1 sz � T�1

1 fan;

_n ¼ �T�1
1 n� T�1

1 fasz:

(3)

As usual expectation values of products have been factor-
ized in the U-dependent interaction terms to obtain a
closed set of evolution equations [14–16], whereas the
dissipation terms are exact. Furthermore, we have defined
the transversal and longitudinal damping times by

T�1
1 ¼ ð�a1 þ �a2Þ=2 and T�1

2 ¼ �p þ T�1
1 : (4)

These equations of motion resemble the celebrated Bloch
equations in nuclear magnetic resonance [21,22] with
some subtle but nevertheless important differences. The
longitudinal relaxation is now associated with particle loss
and, more important, the dynamics is substantially altered
by the interaction term [10,14,15].

In the following, we will show that a finite amount of
dissipation induces a maximum of the coherence which can
be understood as an SR effect. We have to distinguish
between two different kinds of coherence, which will
both be considered. First of all we consider the phase
coherence between the two wells, which is measured by
the average contrast in interference experiments as de-
scribed in [10,11] and given by

� ¼ 2jhây1 â2ij
hn̂1 þ n̂2i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q

n
: (5)

Second, we will analyze how close the many-particle
quantum state is to a pure Bose-Einstein condensate
(BEC), which is a coherent state for the SUð2Þ operator
algebra [23]. This property is quantified by the purity p ¼
2trð�̂2

redÞ � 1 ¼ jsj2=n2 of the reduced single-particle den-

sity matrix �̂red cf. [16].
Let us first discuss the weakly interacting case, where

the mean-field equations of motion (3) provide an excellent
description of the dynamics, which is exact for U ¼ 0.
Obviously, only the trivial solution s ¼ 0 and n ¼ 0 is a
steady state in the strict sense. However, the system rapidly

relaxes to a quasisteady state of the form sðtÞ � s0e
��t and

nðtÞ � n0e
��t, where the internal dynamics is completely

frozen out and all components of the Bloch vector and the
particle number decay at the same rate �. Figure 1 shows
the contrast � for this quasisteady state as a function of the
tunneling rate J and the dissipation rate 1=T1 for U ¼ 0.
For a fixed value of one of the parameters, say J, one
observes a typical SR-like maximum of the contrast for a
finite value of the dissipation rate 1=T1. In particular, the
contrast is maximal if the time scales of the tunneling and
the dissipation are matched according to 4J2 �
faT

�1
1 ðfaT�1

1 þ �pÞ [24]. This scenario is robust and not

altered by weak interparticle interactions. Changes in the
system parameters such as � preserve the general shape of
�ð1=T1; JÞ and the existence of a pronounced SR-like
maximum. At the most, the function �ð1=T1; JÞ is
stretched, shifting the position of the SR-like maximum.
The occurrence of a maximum of the contrast is ex-

plained by Fig. 2(b), where the results of a Monte Carlo
wave function (MCWF) simulation [25] of the many-body
dynamics are shown for three different values of J andU ¼
0:1 s�1. We have plotted a histogram of the probabilities to
observe the relative population imbalance sz=n and the
relative phase � in a single experimental run for three
different values of the tunneling rate J after the system
has relaxed to the quasisteady state. With increasing J, the
atoms are distributed more equally between the two wells
so that the single shot contrast increases. Within the mean-
field description this is reflected by an increase offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x þ s2y

q
=jsj at the expense of jszj. However, this effect

also makes the system more vulnerable to phase noise so
that the relative phase of the two modes becomes more and
more random and jsj=n decreases. The average contrast (5)
then assumes a maximum for intermediate values of J as
shown in Fig. 2(a). In this example, the trap is assumed to
be weakly biased, shifting the position of the SR-like
maximum to a value of J which is more easily accessible
in ongoing experiments [10,11].
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FIG. 1 (color online). Contrast � in the quasisteady state in
dependence on the tunneling rate J and the dissipation rate 1=T1

for U ¼ 0 and � ¼ 0.
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So far we have demonstrated a SR of the contrast for a
BEC in a static double-well trap with biased particle losses.
We will now show that the system’s response to a weak
external driving also assumes a maximum for a finite
dissipation rate—an effect which is conceptually closer
to the common interpretation of stochastic resonance. We
consider a weak driving of the tunneling rate JðtÞ ¼ J0 þ
J1 cosð!tÞ at the resonance frequency ! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J20 þ �2

q
,

where the amplitude is not more than J1=J0 ¼ 10%. This
can be readily implemented in optical setups by varying the
intensity of the counterpropagating lasers forming the
optical lattice. Figure 3(a) shows the resulting dynamics
for T1 ¼ 0:5 s and J0 ¼ 1:5 s�1. After a short transient
period, the relative population imbalance szðtÞ=nðtÞ oscil-
lates approximately sinusoidally. The system response
measured by the amplitude of these forced oscillations
shows the familiar SR-like maximum as illustrated in
Fig. 3(b). It should be detectable without major problems
in ongoing experiments, in which the population imbal-
ance sz can be measured with a resolution of a few atoms
[10,11]. A more detailed study of such a driven case of SR
will be discussed in a forthcoming article [24].

Even more remarkable values of the coherences are
observed in the case of strong interactions, which is ex-
perimentally most relevant and theoretically most pro-
found. The interplay between interactions and dissipation
significantly increases the coherences in comparison to
situations where one of the two is weak or missing. An
example for the dynamics of a strongly-interacting BEC is
shown in Fig. 4 for an initially pure BEC with sz ¼ n=2,
calculated both with the MCWF method and within the
mean-field approximation (3). At first, the purity p and the
contrast � drop rapidly due to the phase noise and the
interactions cf. [16]. For intermediate times, however, the
system relaxes to a nonlinear quasisteady state, which is a
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FIG. 3. (a) Oscillation of the relative population imbalance
sz=n of a weakly driven two-mode BEC for J0 ¼ 1:5 s�1, T1 ¼
0:5 s and � ¼ 0. (b) Amplitude of the oscillations in dependence
on the tunneling rate J0.
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FIG. 4. Time evolution of the purity p and the contrast � for
J ¼ U ¼ 10 s�1, � ¼ 0, T1 ¼ 0:5 s. The initial state is a pure
BEC with sz ¼ n=2 and nð0Þ ¼ 100 particles. The results of a
MCWF simulation averaged over 100 runs are plotted as a thin
solid line while the mean-field results are plotted as a thick line.
The dashed line shows the steady state values for 1=T1 ¼
1=T2 ¼ 0, i.e., without coupling to the environment.
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� ¼ 10 s�1, U ¼ 0:1 s�1. (b) Histogram of the probabilities to
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from a MCWF simulation of the many-body dynamics.
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nearly pure BEC mostly localized in the well with the
smaller decay rate. Consequently, the purity p is restored
almost completely and the contrast � is relatively large. In
close analogy to the celebrated self-trapping effect
[10,14,15], this quasisteady state exists only as long as
the effective interaction strength UnðtÞ is larger than a
critical value given by [20,24]

U2n2 * 4J2 � f2aT
�2
1 : (6)

As the particle number n decays, this state ceases to exist
so that the system relaxes to a linear quasisteady state with
much smaller values of p and � as discussed above.

Moreover, the coherences at intermediate times are also
larger than in an interacting, but nondissipative system.
The dashed lines in Fig. 4 show the steady state values of
the purity p and the contrast � for 1=T1 ¼ 1=T2 ¼ 0, apart
from occasional revivals due to the finite particle number.
It is observed that the coherences are considerably smaller
compared to the strongly-interacting open system. This
loss of coherence can be understood by the fact that the
interactions lead to an effective decoherence on the single-
particle level [16], degrading � and p. This effect is mostly
cured by the dissipation.

The behavior illustrated in Fig. 4 is universal, in the
sense that the maxima of the purity and the contrast are
present for all values of U and 1=T1 if only Unðt ¼ 0Þ is
well above the critical value (6) for the existence of the
nonlinear quasisteady state. However, the maxima occur
later if T1 or U increase. The purity p and the contrast �
after a fixed time t ¼ 2 s are plotted in Fig. 5 in depen-
dence on the dissipation rate 1=T1, showing pronounced
maxima for finite values of 1=T1. For smaller dissipation
rates, the maximum of the contrast has not been assumed
yet while the system has already relaxed to the linear
quasisteady state for larger values of 1=T1.

To summarize, we have shown that the coherence prop-
erties of a weakly and, in particular, also of a strongly
interacting Bose-Einstein condensate in a double-well trap
can be controlled by engineering the system’s parameters

and dissipation simultaneously. An important conclusion is
that the interplay of interactions and dissipation can drive
the system to a state of maximum coherence, while both
processes alone usually lead to a loss of coherence. Since
the double-well BEC is nowadays routinely realized with
nearly perfect control on atom-atom interactions and ex-
ternal potentials [10,11], we hope for an experimental
verification and future extensions of the predicted stochas-
tic resonance scheme.
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FIG. 5. Purity p and contrast � after t ¼ 2 s in dependence on
the dissipation rate 1=T1 calculated within the mean-field ap-
proximation for the same parameters as in Fig. 4.
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We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in

accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. Using

different experimental protocols we were able to measure the tunneling probability both in the adiabatic

and in the diabatic bases of the system. We also experimentally determine the contribution of the

momentum width of the Bose condensates to the temporal width of the tunneling steps and discuss the

implications for measuring the jump time in the Landau-Zener problem.

DOI: 10.1103/PhysRevLett.103.090403 PACS numbers: 03.65.Xp, 03.75.Lm

Tunneling is one of the most striking manifestations of
quantum behavior and has been the subject of intense
research in both fundamental and applied physics [1].
While tunneling probabilities can be calculated accurately
and have an intuitive interpretation as statistical mean
values of experimental outcomes, the concept of tunneling
time and its computation are still the subject of debate even
for simple systems [2,3]. The time it takes a quantum
system to complete a tunneling event (which in the case
of cross-barrier tunneling can be viewed as the time spent
in a classically forbidden area) has been widely investi-
gated and measured recently for electrons ionized by atto-
second radiation [4]. It is related to the time required for a
state to evolve to an orthogonal state, and an observation,
i.e., a quantum mechanical projection on a particular basis,
is required to distinguish one state from another [3]. The
measured time depends both on the type of observation
(e.g., a temporal modulation of the potential in the classi-
cally forbidden region [5]) and on the quantum mechanical
basis used, as derived in [6] for Landau-Zener (LZ) tun-
neling [7,8], in which a quantum system tunnels across an
energy gap at an avoided crossing of the system’s energy
levels. Similarly to the tunneling time in real space, the LZ
tunneling time measures the duration of the quantum me-
chanical evolution (which plays an important role, e.g., in
quantum control [9]). In a given quantum basis for the LZ
Hamiltonian, Vitanov [6] defined the ‘‘jump time’’ re-
quired to evolve a state to an orthogonal one, following
previous works [10,11]. The role of the different bases was
also emphasized by Berry [12], who introduced a super-
adiabatic basis with a universal time evolution.

In this Letter we directly measure the dynamics of LZ
tunneling. The tunneling process is frozen at different
times by performing a projective quantum measurement
on the states of a given basis. The jump time is then derived
from the survival probability in the initial state as function
of time [6]. In our experiments, backed up by numerical

simulations, we use ultracold atoms forming a Bose-
Einstein condensate (BEC) inside an optical lattice [13,14].
For cold atoms, LZ tunneling in optical lattices was used

[15,16] for detecting deviations from an exponential decay
law at short times. In contrast to these experiments, our
BEC has an initial width in momentum space that is much
smaller than pB ¼ 2prec ¼ 2�@=dL, the width of the first
Brillouin zone of a periodic potential with lattice constant
dL. This enables us to observe the full dynamics for single
or multiple LZ crossings [17], the only limitation being the
initial momentum width of the condensates and nonlinear
effects. Our experiments are similar to recent studies of LZ
transitions in a solid-state artificial atom [18], but the high
level of control over the light-induced periodic potential
also allowed us to measure the tunneling dynamics in
different eigenbases (adiabatic and diabatic).
In our experiments we created BECs of 5� 104 87Rb

atoms inside an optical dipole trap (mean trap frequency
around 80 Hz). A one-dimensional optical lattice created
by two counterpropagating, linearly polarized Gaussian
beams was then superposed on the BEC by ramping up
the power in the lattice beams in 100 ms. The wavelength
of the lattice beams was � ¼ 842 nm, leading to a sinu-
soidal potential with lattice constant dL ¼ �=2. A small
variable frequency offset between the two beams intro-
duced through the acousto-optic modulators in the setup
allowed us to accelerate the lattice in a controlled fashion.
The time-resolved measurement of LZ tunneling was

done [see Fig. 1(a)] by first loading the BEC into the
ground state energy band of an optical lattice of depth
V0. The lattice was then accelerated with acceleration
aLZ for a time tLZ to a final velocity v ¼ aLZtLZ, resulting
in a force FLZ on the atoms in the lattice rest frame [19].
During tLZ the quasimomentum of the BEC swept the
Brillouin zone, and at multiples of half the Bloch time
TB ¼ 2�@ðMaLZdLÞ�1 (where M is the atomic mass), i.e.,
at times t ¼ ðnþ 1=2ÞTB (n ¼ 0; 1; 2; . . . ) when the sys-
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tem was close to the Brillouin zone edge, tunneling to the
upper band became increasingly likely. At t ¼ tLZ the
acceleration was abruptly reduced to asep � aLZ and the

lattice depth was increased to Vsep in a time tramp � TB.

These values were chosen in such a way that at t ¼ tLZ the
probability for LZ tunneling from the lowest to the first
excited energy band dropped from between � 0:1–0:9
(depending on the initial parameters chosen) to less than
� 0:01, while the tunneling probability from the first ex-
cited to the second excited band remained high at about
0.95. This meant that at t ¼ tLZ the tunneling process was
effectively interrupted and for t > tLZ the measured sur-
vival probability PðtÞ ¼ N0=Ntot (calculated from the num-
ber of atoms N0 in the lowest band and the total number of
atoms Ntot) reflected the instantaneous value Pðt ¼ tLZÞ.

The lattice was then further accelerated for a time tsep
such that aseptsep � 2nprec=M (typically n ¼ 2 or 3). In

this way, atoms in the lowest band were accelerated to a
final velocity v � 2nprec=M, while atoms that had tun-
neled to the first excited band before t ¼ tLZ tunneled to

higher bands with a probability>0:95 and were, therefore,
no longer accelerated. At tsep the lattice and dipole trap

beams were suddenly switched off and the expanded
atomic cloud was imaged after 23 ms. In these time-of-
flight images the two velocity classes 0 and 2nprec=M were
well separated, from which N0 and Ntot could be measured
directly. Since the populations were ‘‘frozen’’ inside the
energy bands of the lattice, which represent the adiabatic
eigenstates of the system’s Hamiltonian, this experiment
effectively measured the time dependence of Pa in the
adiabatic basis. A typical result is shown in Fig. 1(b).
One clearly sees two ‘‘steps’’ at times t ¼ 0:5TB and t ¼
1:5TB, which correspond to the instants at which the atoms
cross the Brillouin zone edges, where the lowest and first
excited energy bands exhibit avoided crossings. For com-
parison, the result of a numerical simulation (integrating
the linear Schrödinger equation for the experimental pro-
tocol) as well as an exponential decay as predicted by LZ
theory are also shown.
The LZ tunneling probability can be calculated by con-

sidering a two-level system with the adiabatic Hamiltonian

Ha ¼ Hd þ V ¼ �t�z þ�E

2
�x; (1)

where �i are the Pauli matrices. The eigenstates of the
diabatic Hamiltonian Hd, whose eigenenergies vary line-
arly in time, are mixed by the potential V characterized by
the energy gap �E. Applying the Zener model [8] to our
case of a BEC crossing the Brillouin zone edge leads to a
band gap �E ¼ V0=2 and to � ¼ 2vrecMaLZ ¼
2F0E

2
rec=ð�@Þ, with Erec ¼ @

2�2=ð2Md2LÞ the recoil energy
and F0 ¼ MaLZdL=Erec the dimensionless force. The
limiting value of the adiabatic and diabatic LZ survival
probabilities (for t going from �1 to þ1) in the eigen-
states of Ha and Hd, respectively, is

Paðt ! þ1Þ ¼ 1� Pdðt ! þ1Þ ¼ 1� PLZ; (2)

where the standard LZ tunneling probability is

PLZ ¼ e��=� (3)

with the adiabaticity parameter � ¼ 4@�ð�EÞ�2 [20].
Figure 2(a) shows the first LZ tunneling step for differ-

ent lattice depths V0, measured in units of Erec at a given
acceleration. The steps can be well fitted with a sigmoid
function

PaðtÞ ¼ 1� h

1þ exp½ðt0 � tÞ=�tLZ� ; (4)

where t0 is the position of the step (which can deviate
slightly from the expected value of 0:5TB, e.g., due to a
nonzero initial momentum of the condensate), h is the step
height, and �tLZ represents the width of the step.
Equations (2) and (3) correctly predict the height h of the
step, as tested in the experiment for a variety of values of
V0 and F0 [see Fig. 2(b)].
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FIG. 1. Time-resolved measurement of LZ tunneling.
(a) Experimental protocol [shown in the band-structure repre-
sentation of energy EðqÞ versus quasimomentum q]. Left: The
lattice is accelerated, (partial) tunneling occurs. Right: The
acceleration is then suddenly reduced and the lattice depth
increased so as to freeze the instantaneous populations in the
lowest two bands; finally, further acceleration is used to separate,
and measure, these populations in momentum space. (b) Experi-
mental results for V0 ¼ 1Erec and F0 ¼ 0:383 (aLZ ¼
13:52 ms�2), giving TB ¼ 0:826 ms. The solid and dashed lines
are a numerical simulation of our experimental protocol and an
exponential decay curve for our system’s parameters, respec-
tively.
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While the experimental protocol described above mea-
sures the LZ tunneling probability in the adiabatic basis, it
is possible to make analogous measurements in the dia-
batic basis of the unperturbed free-particle wave functions
(plane waves with a quadratic energy-momentum disper-
sion relation) by abruptly switching off the lattice and the
dipole trap after the first acceleration step (with the BEC
initially prepared in the adiabatic basis, which, far away
from the band gap, is almost equal to the diabatic basis). In
this case, after a time-of-flight the number of atoms in the
v ¼ 0 and v ¼ 2prec=M velocity classes are measured and
from these the survival probability in the v ¼ 0 velocity
class is calculated. The inset of Fig. 2(a) (filled triangles)
shows such a measurement. Again, a step around t ¼
0:5TB is clearly seen, as well as strong oscillations for t >

0:5TB. While weaker oscillations are also seen in the
adiabatic basis [see Fig. 2(a) with V0 ¼ 2:3Erec], they are
much stronger and visible for a wider range of parameters
in the diabatic basis [6]. These oscillations, also known as
the Stokes phenomenon, are due to the discrepancy be-
tween the diabatic basis in which we measure the tunneling
event and the ideal superadiabatic basis in which they are
absent and the tunneling time is minimized [12]. They
were also predicted for LZ tunneling in atomic Rydberg
states [21] and experimentally observed in a wave-optical
two-level system [22].
The widths �tLZ of the steps shown in Fig. 2(a) reflect

the ‘‘jump time’’ for LZ tunneling �tLZ ¼ �vLZ=aLZ dur-
ing which the probability of finding the atoms in the lowest
energy band goes from Paðt ¼ 0Þ ¼ 1 to its asymptotic LZ
value 1� PLZ. Vitanov [6] defines the jump time in the
adiabatic basis as

�
jump
a ¼ Paðt ¼ þ1Þ

P0
aðt ¼ t0Þ ; (5)

where P0
aðt ¼ t0Þ denotes the time derivative of the tunnel-

ing probability PaðtÞ evaluated at the crossing point of Ha.

A sigmoidal function for PaðtÞ leads to �jump
a ¼ 4�tLZ. For

large values of �, which is the regime of our experiments,
the theoretical jump time is given by

�jump
a � TB

�E

4Erec

: (6)

This time, which coincides with the LZ traversal time of
[10], is taken by the force to transfer the barrier energy to
the system. It increases with �E and decreases with F0.

From our sigmoidal fits we retrieve �jump
a =TB �

0:15–0:35 (corresponding to absolute jump times between
50 and 200 �s), whereas the theoretical values for our
experimental parameters are in the region of 0.1–0.15.
This discrepancy is due to the fact that in our experiment
the condensate does not occupy one single quasimomen-
tum but is represented by a momentum distribution of
width �p=pB * 0:1 due to the finite number of lattice
sites (around 50) it occupies and the effects of atom-atom
interactions.
In order to test the dependence of �tLZ on �p we

created initial distributions of different widths using a
dynamical instability [23]. The condensate was loaded
into a lattice moving at a finite velocity corresponding to
quasimomentum q ¼ �0:3pB and held there for up to
3 ms. During this time the dynamical instability associated
with the negative effective mass at that q led to an increase
in �p. After this preparatory stage, the LZ dynamics was
measured as described above and �tLZ was extracted [see
Fig. 3(a)]. As expected,�tLZ increases with�p [Fig. 3(b)].
This was confirmed by a numerical integration of the
Schrödinger equation in which�p was varied by changing
the initial trap frequency. The simulation also showed that
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FIG. 2. (a) LZ survival probability in the adiabatic basis for a
fixed force F0 ¼ 1:197 (aLZ ¼ 42:25 ms�2) and different lattice
depths (filled squares: V0 ¼ 2:3Erec; open circles: V0 ¼ 1:8Erec;
open squares: V0 ¼ 1Erec; filled circles: V0 ¼ 0:6Erec). The
dashed lines are sigmoid fits to the experimental data. Inset:
Survival probability in both the adiabatic (open squares) and
diabatic (filled triangles) bases for V0 ¼ 1Erec and F0 ¼ 1:197.
(b) Step height h as a function of the inverse adiabaticity
parameter 1=� for varying lattice depth and F0 ¼ 1:197 (open
symbols), and for varying force with fixed V0 ¼ 1:8Erec (filled
symbols). The dashed line is the prediction of Eq. (3) for the LZ
tunneling probability.
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for �p ! 0, �tLZ remains finite and in that limit directly
reflects the jump time given by Eq. (6).

In summary, we have measured the LZ dynamics of
matter waves in an accelerated optical lattice in the adia-
batic and diabatic bases. In both bases the steplike behavior
as well as oscillations of the survival probability were
clearly seen and agree with theoretical predictions. In
future investigations one could reduce the initial momen-
tum width, which currently limits the resolution of our
experiment, by using, e.g., appropriate trap geometries or
by controlling the nonlinearity through Feshbach reso-
nances. This would enable a comparison with theoretical
results related to the minimum time for a single LZ cross-
ing limited by fundamental quantum (or wave, see [22])
mechanical properties [24]. Also, clearer observations of
the short-time oscillations as seen in Fig. 2(a) should be

possible in this way. Our method can also be used to study
multiple LZ crossings, e.g., in order to observe Stückelberg
oscillations.
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FIG. 3. LZ transition for different momentum widths of the
condensate. (a) Survival probability for �p=pB ¼ 0:2 (filled
squares) and �p=pB ¼ 0:6 (open squares). The solid and dashed
lines are the results of a numerical simulation and of a sigmoid
fit, respectively. (b) Step width �tLZ as a function of �p. The
open symbols (connected by a solid line for clarity) are the
results of a numerical simulation.
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We discuss dynamical enhancement of entanglement in a driven Bose-Hubbard model and find
an enhancement of two orders of magnitude which is robust against fluctuations in experimental
parameters.

Quantum coherence is often thought to be found only
in very small systems or under artificial lab-conditions,
since otherwise unavoidable environment coupling results
in rapid loss of coherence. Whereas this holds quite gen-
erally, it holds in particular for many-body coherence,
synonymous for entanglement. As recent experimental
[1] and theoretical [2] evidence suggests, however, excep-
tions to this general rule exist. In particular coherent
driving can compensate for the environment-induced loss
of coherence and, thereby stabilize entanglement under
conditions under which a static system would be com-
pletely separable [3, 4].

Such dynamically induced entanglement does not only
hold the potential to influence macroscopically observ-
able properties [5], but certainly also opens up new paths
towards scalable quantum information processing which
otherwise is limited through the unfavourably scaling de-
phasing times with the system size [6, 7]. However, our
current understanding of dynamical enhancement of en-
tanglement is still in its infancy.

In this Letter, we investigate the dynamical enhance-
ment of entanglement between ultracold bosonic atoms
stored in an optical lattice that gives rise to a spatially pe-
riodic potential created by two counterpropagating laser
beams of wavelength λ and amplitute V0 in one direction.
A tight perpendicular confinement of strength V⊥ in the
other two directions restricts the motion of the atoms to
one dimension. In the deep lattice limit V0 ≫ ER, where
ER = h̄2k2/2m (with k = 2π/λ) is the recoil energy, and
at sufficiently low temperatures, this system can be well
described [8] in terms of the Bose-Hubbard Hamiltonian

Ĥ = −J
L−1∑

l=1

(â†
l âl+1 + â†

l+1âl) +
U

2

L∑

l=1

n̂l(n̂l − 1)(1)

where the creation operator â†
l creates and the annihi-

lation operator âl annihilates a boson at lattice site l.
The tunneling parameter J and the on-site interaction U
depend on the lattice parameters approximately [9] via

J/ER =
4√
π

(V0/ER)
3
4 e−2

√
V0/ER , and (2)

U/ER =

√
8

π
kas(V0V

2
⊥/E

3
R)

1
4 . (3)

Whereas the lattice depth V0 is typically time-
independent, we will compare here the dynamics of such
an autonomous system with its driven version [10], where
V0 is modulated temporally

V0(t) = V
(
1 + dV sin(ωt)

)
. (4)

As we will show, the temporal modulation of the tunnel-
ing parameter J and the on-site interaction U that results
from this lattice depth modulation drives the atoms into
a spatially strongly correlated, i.e. entangled state. For
the verification of the entanglement properties, we envi-
sion a rapid separation of the few-body system into two
parts, what can be realized by ramping up a potential
barrier as depicted in Fig. 1.

a) b)

J
U

J
U

FIG. 1: (color online) a) The system is prepared in an en-
tangled state. b) The system is split into two halves by raising
the intermediate barrier. J is the kinetic term and U the on-
site interaction in the Bose-Hubbard model (1).

This spatial separation effectively switches off the in-
teraction between the two subsystems what freezes the
entanglement dynamics. However, it also entails that
each subsystem will typically not have a well-defined
particle number. Whereas correlations in the particle
number formally may imply entanglement, its experi-
mental verification will be technically impossible because
this would require the measurement of coherent super-
positions of states with different numbers of massive par-
ticles [11]. Therefore, we will postselect [12] states with
well-defined local particle number. We will focus in par-
ticular on those cases in which particles are split evenly
between the two subsystems, since this is the case that
occurs with highest probability, and this is also the case
in which the highest entanglement can be achieved. Do-
ing so, we obtain a clean notion of entanglement between
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the two separated halves of the optical lattice where each
half is filled with a fixed number of particles and can be
addressed individually.

In the following we quantify the entanglement of the
postselected states with the entropy of entanglement
[6, 13] in the case of pure states and the negativity [14]
in the case of mixed states. The entropy of entangle-
ment is given by the von Neumann entropy of the re-
duced density matrix ̺r that is obtained through the
partial trace over one subsystem of the entire many-
body state, i.e. E(Ψ) = −Tr̺r log2 ̺r. The negativity
N(ρ) = (||ρPT || − 1)/2 of a mixed state ̺ is defined in
terms of the trace norm of the partially transposited den-
sity matrix ρPT .
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FIG. 2: (color online) a) Entropy of entanglement E and
probability for successful postselection of evenly distributed
number of bosons between the right and the left part of a
L = 6 well Bose-Hubbard system. The overall particle num-
ber is N = 6 (solid blue), N = 3 (dashed red) and N = 2
(dash-dotted green). b) Negativity for the thermal state at
temperature T = 0 nK (solid blue), T = 40 nK (dashed red)
and T = 80 nK (dash-dotted green) for N = 6 particles.

Fig. 2a) depicts the ground state entanglement proper-
ties for the exemplary case of L = 6 wells filled with
N = 6, 3 and 2 bosons, respectively. In all these cases
the system features extremely low entanglement, which is
also observed for different system sizes and particle num-
bers. The qualitative dependence of E on the parameter
U/J is as expected: If the tunneling dominates the sys-
tem dynamics, i.e. if U/J ≃ 0, the bosons populate the
same single-particle states such that after postselection of
local particle number the system is separable. For finite
interaction U the bosons repel each other and establish
correlations; therefore, E typically increases with U/J .
There are, however, exceptions, like the case of unit fill-
ing (depicted in blue), where a separable, perfect Mott
insulator [8, 9] develops for U/J → ∞. This is also re-
flected in the fact that in this limit the bosons will always
be separated in a balanced fashion between the left and
right half of the system, whereas typically the probability

for this is smaller than unity.
Fig. 2 shows data for rather small fillings, but also the

entanglement properties of the ground state for larger
filling N/L > 1 can be inferred from this data since sys-
tems with N +mL bosons (with integer m) behave qual-
itatively similar as the system with N bosons. That is,
the maximal amount of entanglement in the ground state
does typically not exceed the value of E ≈ 0.05.

Assuming perfect ground state cooling is certainly
a theoretical idealization, but also thermal excita-
tion cannot enhance the entanglement as shown in
Fig. 2b), where the negativity of the thermal state

ρth = exp( −Ĥ
kBT )/Z is shown. The probability to find the

bosons split evenly into left and right half decreases with
increasing temperature, and the entanglement is even
lower than for T = 0.

As we will see in the following, this is strongly con-
trasted by the behavior of the driven system. To
be specific, we consider the experimental parameters:
V = 10 ER and V⊥ = 30 ER as lattice depths, dV = 0.2 as
lattice depth modulation, λ = 842 nm as the wave length
of the laser, as = 5.45 nm as the scattering length and
m = 86.909 u as the mass of rubidium-87 [15]. As driv-
ing frequency, we chose ω = U/h̄ = 12862 Hz, what corre-
sponds to resonant driving in the Mott-insulating regime.
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FIG. 3: (color online) Entropy of entanglement E and proba-
bility of successful postselection for the driven Bose-Hubbard
Hamiltonian (4) with L = 8 = N (solid blue), L = 6 = N
(dashed red), L = 4 = N (dash-dotted green), L = 6 and
N = 5 (thin dash-double-dotted orange), and L = 6 and
N = 7 (thin dotted turquoise). At t = 100 ms the driving is
stopped and at t = 150 ms the lattice depth is increased in
order to freeze the entanglement dynamics.

Fig. 3 shows the dynamical enhancement of entangle-
ment caused by the driving. We start with the ground
state of the static system. After 100 ms the driving is
switched off and after t = 150 ms the lattice depth is in-
creased to V0 = 30 ER in order to freeze the entanglement
dynamics completely. Apparently, entanglement grows
rather quickly once the driving is switched on. After
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about 10 to 20 ms the increase slows down a bit, until
entanglement saturates after t ≈ 50 ms. From that time
on, entanglement fluctuates around an average value due
to the finite interactions in the system. Fig. 3 shows
how these remaining fluctuations smooth out with grow-
ing system size. Whereas the saturation time turns out
to depend crucially on the lattice depth modulation dV ,
the final values of entanglement seem not to. Thus, a
larger modulation of the lattice depth can accelerate the
entanglement generation; however, even very weak driv-
ing can yield the same enhancement of entanglement as
strong driving.

Once entanglement is saturated, it can be preserved
with the help of a potential barrier that separates the
two entangled atomic ensembles as depicted in Fig. 1
and effectively switches off their mutual interaction. The
small fluctuations around the average entanglement that
persist for t > 100 ms can be stopped with an increase of
the lattice depth, here at t = 150 ms.

As it can be seen in Fig. 3a) the attainable entangle-
ment grows with increasing system size. This is as ex-
pected since larger systems can carry more entanglement.
A concern, however, is that with increasing number of
atoms, also the number of possible distributions of atoms
between the two subsystems is growing, so that the prob-
ability to find an even distribution might decrease. This
decrease is apparent in Fig. 3b), where the probability of
an even distribution drops from p = 0.33 for 4 atoms to
p = 0.27 for 5, 7 and 8 atoms. It also becomes apparent,
however, that this decrease occurs in small systems, and
that these probabilities become largely independent of
the particle number for large N . Thus, one should expect
to find evenly distributed particle numbers with substan-
tial probability also in an experiment with significantly
more bosons than a numerical simulation can handle.

In an experiment, certainly also the timing will be cru-
cial. As Fig. 3 shows, the system evolves rapidly, and
fluctuations in the durations of driving or ramping up the
barrier that are comparable to system time scales will re-
sult in the generation of a mixed state which typically has
reduced entanglement. The relevant time scale can be
obtained from the fidelity f(t,∆t) = |〈ψ(t)|ψ(t + ∆t)〉|2,
where |ψ(t)〉 is the postselected system state after driv-
ing of duration t. The fidelity f is depicted in Fig. 4
for the exemplary case of N = 6 particles in a L = 6
site lattice. The width of the central peak (full width
at half maximum) that determines the minimal required
experimental precision reads in this case ∆tm = 0.1 ms.
In a similar fashion, we can also estimate the required
precision for all other experimental parameters, such as
the potential V (∆Vm = 0.08 ER), the perpendicular con-
finement V⊥ (∆V⊥,m = 0.12 ER), the amplitude of the
driving dV (∆dVm = 0.016) and the driving frequency ω
(∆ωm = 14.5 Hz).

To estimate the impact of fluctuations of these para-
meters on the attainable entanglement, we have to con-
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FIG. 4: a) Fidelity f(t, ∆t) at t = 100 ms for state preparation
with imperfect timing. b) Negativity N of the mixed state (5)
resulting from the measurement of the driven Bose-Hubbard
Hamiltonian with L = 6 = N at t0 = 100 ms.

sider the mixed state that is obtained with many repe-
titions of the experiment with the fluctuating parameter
taking different values at each repetition. To be specific,
we focus on the inaccuracy in the duration of driving,
and we assume that these durations are distributed ac-
cording to a Gaussian centered around t0 = 100 ms with
a standard deviation τ . This gives rise to the mixed state

ρ(τ) =
1

τ
√

2π

∫ ∞

−∞
dt e− (t−t0)2

2τ2 |ψ(t)〉〈ψ(t)| . (5)

The negativity of this mixed state is depicted in Fig. 4b)
as function of the inaccuracy τ of the duration of driving.
For τ = 0 ms, the situation reduces to the case of pure
state entanglement as discussed above; but for finite τ en-
tanglement is reduced significantly what is a very generic
feature of mixed states. Besides this expected behavior,
there are two features that should be stressed:

First, at τ = 0 ms the first derivative of N(τ) van-
ishes, so that entanglement turns out to be insensi-
tive to small timing errors. The second-order Tay-
lor expansion reads N(τ) ≈ 3.064 − 900(τ/ms)2.
That is, timing errors below 0.01 ms imply a change
in negativity of less than 3 %.

Second, even in the presence of significantly larger
timing errors there is still rather strong entangle-
ment with N(τ) ≃ 1, i.e. a value attained for a
maximally entangled Bell pair!

In particular, this astonishing robustness against experi-
mental fluctuations underpins that potential that driving
offers as means to create entanglement as compared to
engineered interactions.

As recent investigations on driven spin-systems suggest
[4], the feature of dynamical enhancement of entangle-
ment is not particular for the Bose-Hubbard system, but
a rather generic feature, that is largely independent of
detailed system properties. An advantage of the present
bosonic system as compared to many spin-systems is that
particle numbers can easily be varied in an experiment,
what provides the means to study the generation of en-
tanglement in the entire regime from rather small systems
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through the mesoscopic domain, up to the semi-classical
regime. In particular, observing the rise and decay of en-
tanglement with increasing particle number will provide
us with valuable insight in the emergence of classical be-
havior in large quantum systems.
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We show how the evolution of atoms in a tilted lattice can be changed and controlled by phase
noise on the lattice. Dependent on the characteristic parameters of the noise, the interband transport
can either be suppressed or enhanced, which is of interest for high precision control in experimental
realization with Bose-Einstein condensates. The effect of the noise on the interband coupling is
summarized in a scaling plot stressing the universality of our results.

PACS numbers: 03.75.Lm, 37.10.Jk, 05.40.-a, 02.50.Ey

Ultracold atoms in optical lattices have opened a possi-
bility to investigate effects which were not previously ob-
servable on ordinary matter crystals, at least not in such
a controlled way, like Bloch oscillations, Wannier-Stark
ladders, and Landau–Zener tunneling [1–7]. Loading
Bose–Einstein condensates (BEC) into optical lattices
provides an optimal control on different system parame-
ters by optical means. More complicated potentials can
be realized by adding further lattice beams [8, 9]. In fact,
by superimposing laser beams from different directions
and with different frequencies, it is possible to generate
various lattice geometries [3, 9–11]. The question arises
how to control the dynamics of particles by quasi-periodic
potentials (possibly time-dependent or even stochastic
ones). From the theoretical point of view, a variety of
phenomena is expected to occur in these systems, such
as Anderson localization [10, 12] and the quantum transi-
tion to the Bose glass phase originating from the interplay
of interaction and spatial, but static disorder [11, 13].

In this Letter, we investigate the Landau–Zener tun-
neling of a BEC from the ground band of a lattice into
higher bands and, finally, into the energetic continuum.
We show that control on the interband coupling is not
only achieved by varying the lattice parameters or the
initial conditions [4, 6, 14], but also by additional noise
which produces a time-dependent disordered potential.
More specifically, we study the time evolution of the sur-
vival probability of a BEC loaded into a quasi-1D ge-
ometry built of a stochastic potential and a static Stark
force. Our predictions demonstrate that stochastic noise
can be used to engineer the interband transport without
changing system intrinsic parameters.

We focus on the dynamics of a sufficiently dilute non-
interacting BEC. In the absence of atom-atom inter-
actions, the temporal evolution of a BEC in a tilted
one-dimensional lattice is described by the single-particle
Hamiltonian

H = − h̄2

2M

d2

dx2
+ Vs (x, t) + Fx , (1)

where M is the atomic mass and F the Stark force.
Vs (x, t) is a stochastic potential given by the following

time-dependent bichromatic lattice

Vs (x, t) = αV

{
sin2

(
πx

dL

)
+ sin2

(
πx

d
′
L

+ φ(t)

)}
. (2)

It consists of two spatially periodic potentials with in-
commensurate spacings, dL for the “reference” lattice
and d

′
L = dL(

√
5 − 1)/2 for the secondary lattice. The

time-dependence of the second lattice arises because of
the time-dependent stochastic phase φ(t). For constant
φ, this is the system with a quasi-disordered lattice which
was realized and described by Roati et al. [10]. The
depths of the two lattices are considered to be compara-
ble and for convenience equal amplitudes αV are chosen,
where V is the lattice depth of the reference lattice and α
is a renormalization factor (which will be defined below).
The recoil energy Erec = p2

rec/2M , with prec = πh̄/d2
L,

is the characteristic energy scale of the optical reference
lattice [3], and V0 = V/Erec and F0 = FdL/Erec are di-
mensionless quantities in this energy unit. We assume
a typical experimental situation [3, 4, 6], for which the
initial state is a condensate’s wave function relaxed in a
harmonic trap and then loaded adiabatically into the lat-
tice given by Vs(x, t = 0). The trap is shallow such that
many lattice sites are initially populated by the conden-
sate. It is turned off for the further time evolution.

For the original Wannier-Stark problem including just
the first term on the r.h.s. of Eq. (2), the wave packet
prepared in the ground band oscillates periodically in
time with the Bloch period TB = 2πh̄/(F0Erec) and fre-
quency ωB = 2π/TB [15, 16]. However, for sufficiently
large F , the BEC undergoes Landau–Zener tunneling af-
ter each Bloch period at the band edge, where the band
gap has its smallest value [3, 17]. Such a phenomenon
gives rise to a step-like structure in the time-resolved sur-
vival probability Psur(t) of the atoms in the ground band
[6]. Following [4, 6, 17], we calculate Psur(t) in momen-
tum space by projecting onto the support of the initial
state: Psur(t) =

∫ ∞
−pc

dpx|ψ(px, t)|2. The upper bound

can be safely extended to infinity since the tunneled wave
packet moves into the direction of negative momenta [17].
The lower bound is given by the parameter pc, which can
be adapted to stabilize the results with respect to tem-
poral fluctuations. While the true decay starts after a

72 KAPITEL 3. WISSENSCHAFTLICHE KURZARTIKEL (LETTERS)



2

traversal of half the Brillouin zone (the Brillouin zone
has a width of 2prec), we choose either pc = 3prec or
pc = 5prec, which effectively means that we measure the
decay with a delay of TB or 2TB respectively. As long as
the mean momentum evolves linearly in time with a vari-
ance significantly smaller than the width of the Brillouin
zone, we can resort to the acceleration theorem [1, 16]
to relate both ways of measuring. In the following, we
introduce the type of stochastic process we use to gen-
erate φ(t) and show universal properties of the survival
probability as a function of rescaled parameters.

In general, colored noise can be defined by a suitable
spectral distribution. The simplest type can be produced
by a harmonic oscillator of angular frequency ω0 and
damping rate Γ, driven by Gaussian white noise. The
result is harmonic noise [18], which is represented by a
two dimensional Gauss-Markov process taking the form
of the following stochastic differential equations for φ(t):

φ̇ = ν (3a)

ν̇ = −2Γν − ω2
0φ+ ξ(t) . (3b)

ξ(t) is Gaussian white noise with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 =
4ΓTδ(t − s), and T measures the strength of the noise.
Γ and ω0 have the units of T−1

B and ωB respectively.
For notational reasons, we express both of them in the
unit of T−1

B . The variance of the noise is given by
〈φ2(t)〉 = T/ω2

0, where 〈·〉 is a time average over a suffi-
ciently large interval (in our simulations ≈ 20TB). The
spectral distribution for the harmonic noise is

S (ω) =
2ΓT

π(4Γ2ω2 + (ω2 − ω2
0)

2)
. (4)

This distribution incorporates two important regimes:
(i) slowly-varying noise when the oscillation frequency is
much less than the damping rate, i.e., 2Γ2 ≫ ω2

0 , and (ii)
fast noise, when 2Γ2 ≪ ω2

0 . The spectral distributions
corresponding to these limits are shown in the insets of
Fig. 1. In the regime (i), the noise recovers the expo-
nentially correlated noise [18, 19] with a Lorentzian-like
distribution peaked around zero frequency (see Fig. 1(a)).
The spectral distribution in the regime of fast noise (see

Fig. 1(b)) peaks at ω̃0 =
√
ω2

0 − 2Γ2 with a finite width

∆ω̃0 ≈ 2
√

Γ
√
ω2

0 − Γ2. To control the evolution in the

potential of Eq. (2) the most relevant noise realization is
this latter regime (ii), for which the above mentioned en-
ergy scales can be matched with the scales of the original
Wannier-Stark system.

For very fast noise, the particle effectively averages
over the time-dependent potential. Assuming a Gaus-
sian distribution of the fast varying phase with variance
〈φ2〉 and integrating over the phase as random variable,
an effective potential is calculated as

Veff (x) = αV

{
sin2

(
π
x

dL

)
+ β sin2

(
π
x

d
′
L

)}
, (5)

where β = exp
(
−2〈φ2〉

)
. The effect of fast noise is hence

to renormalize the amplitude of the second lattice by a

factor β. The parameter α is introduced to be able to
compare better the dynamics in the potential given by
Eq. (2) with the dynamics in the reference system, in
which just V (x) = V sin2 (πx/dL) is present. For this, α
is chosen such that the following spatial standard devia-
tions are equal: σ (V (x)) = σ (Veff(x)), cf. ref. [14].

We study the temporal behavior of the survival prob-
ability Psur(t) in a broad range of noise parameters. We
use a reference system with typical experimental values
of V0 = 2.5 (giving an average band gap ∆E ≈ 2.5Erec)
and F0 = 1.5 [4, 6]. ω0 and Γ, are chosen in the range of
0.01/TB and 300/TB, which covers both regimes of fast
and slow noise. The stochastic nature makes it necessary
to average the results over a sufficient number of statis-
tical realizations. For the parameters investigated here,
20 realizations for fixed noise parameters turned out to
well stabilize statistical fluctuations. The lattice param-
eters V0 and F0 can be adapted to fulfill the condition
of resonantly enhanced tunneling (RET) in the reference
system, i.e., F0 ≈ n∆E/Erec, with an integer n [4, 15, 17],
or away from this special condition (non-RET). Since at
RET the transport from the ground band to higher bands
is already enhanced by energetic quasi degeneracies [15],
and the noise is likely to drive the system out of RET
conditions, the decay probability is expected to degrade
for typical parameters in this case [14]. For our non-
RET conditions V0 = 2.5 and F0 = 1.5, it is shown in
the following that a faster decay can be easily induced
by harmonic noise, since there is no competition between
the two effects (enhancement by RET and noise).

The stochastic potential Vs (x, t) is determined by the
spectral distributions S(ω) of the noise, which are de-
picted in the insets of Fig. 1(a) and (b) for the two dif-
ferent regimes of noise, respectively. For a small oscilla-
tion frequency ω0 = 0.1/TB compared with the damping
rate Γ = 5/TB, S(ω) has a very narrow peak at zero fre-
quency. The phase itself is slowly varying with time in
case (a), whilst it shows much faster fluctuations in case
(b). The effect of the noise on the temporal evolution
of Psur(t) is compared in Figs. 1(a) and (b) to the one
for the noise-free reference system with its characteristic
step-like structure (solid lines) [6, 17]. As seen, the har-
monic noise tends to wash out the step structure after a
few Bloch oscillations. Moreover, it leads to a systematic
enhancement of the tunneling rate for the largest noise
amplitude T in both cases (a,b). In the regime of fast
noise (Fig. 1(b)) the tunneling rate is always enhanced
with respect to the reference system, and here it is essen-
tially independent of T (see also Fig. 3 below).

We find that, for a broad range of noise parameters,
our main observable, the survival probability Psur(t0) at
fixed time t0, obeys a scaling relation as a function of all
parameters. Our results are similar for various choices of
t0 >∼ 4TB, and we stick in the following to t0 ≈ 6TB, a
typical experimental observation time reported, e.g., in
[3]. In Fig. 2, the noise frequency ω0 is varied by keep-
ing the variance of the noise fixed. Rescaling now ω0 by
2ωB and by the standard deviation of the noise

√
〈φ2〉,
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FIG. 1: (color online) Psur(t) V0 = 2.5, F0 = 1.5 in the
presence of harmonic noise with Γ = 5/TB, and ω0 = 0.1/TB

(a) or ω0 = 10/TB (b) and for T = 0.01/T 2
B (green dashed

lines), T = 1/T 2
B (blue dot-dashed lines), T = 10/T 2

B (red
dot-dot-dashed lines), and T = 100/T 2

B (dotted lines). The
result for the reference system is shown by the thick solid
lines. The corresponding noise spectra S(ω) are given in the
insets for the case of T = 10/T 2

B.
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FIG. 2: (color online) Psur(t0 ≈ 6 TB) for V0 = 2.5,
F0 = 1.5, Γ = 5/TB, for various (fixed) variances of the
noise 〈φ2〉 = 0.25 (corresponding to α ≈ 0.85, open circles),
1 (α ≈ 0.99, filled squares), and 10 (α ≈ 1, open squares).
For comparison we show Psur(t0) for the respective effective
models by the dashed, dash-dash-dotted, dot-dot-dashed, and
dot-dashed lines (in the same order and color of the symbols),
for the reference system (thick solid line), and calculated us-
ing a deterministically oscillating phase (described at the end
of this Letter) with A2

d/2 ≡ T/ω2
0 = 1 and A2

d/2 ≡ T/ω2
0 = 10

for two values of ωd ≡ ω̃0 (large orange stars and green crosses
respectively.

all the results of Fig. 2 show a similar behavior with a
dip at around ω0

√
〈φ2〉 ≈ 2ωB = 2F0Erec/h̄. First of

all, this value of energy lies just above the average band
gap, i.e., 2h̄ωB

>∼ ∆E ≈ 2.5Erec, which turned out to
be a necessary condition to observe the dip. Secondly, it
implies that the optimal time scale of the noise is TB/2
for observing an enhancement of the decay (i.e., a dip in
Fig. 2). Intuitively, we expect such a dip for noise histo-
ries which facilitate the motion of the wave packet from
the center of the Brillouin zone to the band edge. Once
the wave packet has reached the band edge, it will easily
fall into the next minimum along the band even in the
absence of further activation; for a similar argument in
noise-driven systems see, e.g., [20]. Dynamically speak-
ing, TB/2 is the time taken by the initial wave packet in
the reference lattice, prepared at the center of the Bril-
louin zone, to reach the band edge. Hence the noise is
most effective when its typical time scales are of the same
order as TB/2. Faster noise is less efficient again since it
leads to the regime where the effective model applies,
which has been introduced above. Indeed at very large
ω0, Psur(t0) lies in the vicinity of the corresponding value
(shown by horizontal lines) calculated using the effective
potential. The observed scaling relation drastically re-
duces the parameter dependence of the system. It helps
predict and control the behavior of the survival proba-
bility by a simple choice of right combinations of the a
priori many parameters (F0, V0, ω0,Γ, T ).

Deviations from the scaling are expected when the
noise frequency ω0 becomes comparable with its spectral
width, which is determined by Γ. This implies a crossover
from the spectral distribution shown in Fig. 1(b) to the
case of Fig. 1(a). Then the noisy phase changes slowly
in time, and for T <∼ 10/T 2

B cannot assist the tunneling

anymore, as observed in Fig. 1(a). Here ω0

√
〈φ2〉 < ωB

and the interband tunneling depends very much on the
strength T of the noise, cf. Fig. 2. To better understand
the regime where the scaling breaks down, it is helpful to
study more explicitly the dependence on 〈φ2〉, which is
done in Fig. 3. Here we distinguish two cases: in (a) the
data is produced as previously described by adapting α
to compare with the reference system (α is calculated as
a function of β = exp(−2〈φ2〉)); in (b) we keep α fixed
to understand the effect of the absolute value of the lat-
tice depth (loosing, of course, the meaning of a reference
system). The data collapses on a single curve described
by the effective fast noise model of Eq. (5) (dashed lines
in Fig. 3) for large frequencies ω2

0/T
>∼ 100. The behav-

ior of the various curves in (a) is similar (approximate
scaling) for 1 < ω2

0/T < 100, provided that T <∼ 1/T 2
B.

As shown also in Fig. 1(a), for a large T ≥ 100/T 2
B even

the slowly varying noise is strong enough to enhance the
decay below the value predicted for the static reference
system. For the latter case, the scaling relation obviously
is bound to fail. In Fig. 3(b), where we do not correct for
the change in the relative height of the lattice amplitudes,
the just described trends in (a) are shifted and the scal-
ing is harder to appreciate (except for the very fast noise

74 KAPITEL 3. WISSENSCHAFTLICHE KURZARTIKEL (LETTERS)



4

0.01 0.1 1 10 100 1000 10000

ω
0

2
/ T

0.2

0.3

0.4

0.5

0.6

P
su

r(t
0)

0.01 0.1 1 10 100 1000 10000

ω
0

2
/T

(a) (b)

FIG. 3: (color online) Psur(t0 ≈ 6 TB) for V0 = 2.5, F0 = 1.5
vs. 〈φ2〉−1 = ω2

0/T : (a) adapted α 6= 1; (b) fixed α = 1.
Other parameters: Γ = 5/TB, and T = 0.001/T 2

B (filled cir-
cles), T = 0.01/T 2

B (open circles), T = 0.1/T 2
B (filled squares),

T = 1/T 2
B (open squares), T = 10/T 2

B (filled triangles) and
T = 100/T 2

B (open triangles). Psur(t0) of the corresponding
static reference system is shown by the solid line in (a) and
for the effective model with β = 1 by the dashed lines in (a,b).

again, where our data always follows the expectation of
the effective static model).

As a final benchmark for our calculations, we compare
to a periodically oscillatory phase φ(t) = Ad cos(ωdt+ϕ),
with Ad being its amplitude and ωd its oscillation fre-
quency. To model random noise fluctuations the data are
averaged over the parameter ϕ (picked randomly from a
flat distribution). The spectral distribution of this func-

tion is given by Sd (ω) = A2

4π {δ(ω − ωd) + δ(ω + ωd)}.
Practically, the delta functions gain a finite width
∆ωmin = 2π

Ttot
, where Ttot is the total numerical inte-

gration time. The spectral distribution of the harmonic
noise in the fast noise regime, which very much peaks
at ω̃0, is then comparable to the delta-like spectral dis-
tribution around ωd of the oscillating noise. Therefore,
for ωd ≈ ω̃0 and Ad =

√
2T/ω2

0, the periodic phase (av-
eraged over ϕ) has a similar effect as harmonic noise.
Exemplary results are shown by the stars and crosses in
Fig. 2 for A2

d/2 = 1 and A2
d/2 = 10, respectively. As

expected, for large ω0, the star and the cross lie again on
top of the prediction of the effective model.

a. Summary. We investigated the impact of noise
on the Landau–Zener tunneling in a one-dimensional
Wannier-Stark system. We motivated and derived an
effective model (cf., Eq. (5)) which can be used as a
benchmark to describe our results in the regime of fast
oscillating noise. By a proper scaling of the data with
parameters, we can universally characterize the effect of
the noise. Our results show that time-dependent noise in
a bichromatic lattice provides a further handle to control
the transport to higher energy bands. We describe a first
step towards the idea to push investigations of static into
the realm of dynamical disorder [21]. A natural extension
would be to study the case of the simultaneous presence
of noise and atom-atom interactions, as done in Ref. [22]
for a flat non-tilted potential, in our Wannier-Stark sys-
tem.
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We analyze the effects of a nonlinear cubic perturbation on thed-kicked rotor. We consider two different
models, in which the nonlinear term acts either in the position or in the momentum representation. We
numerically investigate the modifications induced by the nonlinearity in the quantum transport in both local-
ized and resonant regimes and a comparison between the results for the two models is presented. Analyzing the
momentum distributions and the increase of the mean square momentum, we find that the quantum resonances
asymptotically are very stable with respect to nonlinear perturbation of the rotor’s phase evolution. For an
intermittent time regime, the nonlinearity even enhances the resonant quantum transport, leading to superbal-
listic motion.

DOI: 10.1103/PhysRevE.71.036220 PACS numberssd: 05.45.2a, 03.65.Ta, 42.50.Vk

I. INTRODUCTION

Recent and ongoing experimentsf1g have started to inves-
tigate the interplay between the many-body induced self-
interaction in an ultracold atomic gas and an external driving
induced by time-dependent optical potentials. The natural
setup is to use a Bose-Einstein condensate of alkali-metal
atoms, where the nonlinearity parameter can be tunedf2,3g,
and pulsed optical lattices can be used to impart momentum
kicks to the atoms. For such a setup, the Gross-Pitaevskii
sGPd equationf2,3g provides a good description of the sys-
tem, as long as the nonlinearity is not too large, as a study of
the stability of linearized excitations around the GP solution
has shownf4,5g.

In this paper, we analyze the evolution of a cubic nonlin-
ear Schrödinger equation, as present in the GP model, under
the perturbation of time-periodicd kicks,

i
]c

]t8
= F−

1

2

]2

]q2 − uucu2 + k cossqdo
t=0

+`

dst8 − ttdGc, s1d

whereq andn=−i] /]q are the position and the conjugated
momentum of the system; we chose units such that"=1 and
the motion is considered on a ring with periodic boundary
conditionscsq+2pd=csqd. The parametersu andk are the
nonlinearity coupling and the kicking strength, respectively.

In atom optics experiments, thed-kicked rotor has been
realized with an ensemble of laser-cooled, cold atomsf6g, or
recently also with an ultracold Bose-Einstein condensatef1g,
periodically driven with a standing wave of laser light. With
the wave number of the laserkL, the experimental variables
are easily expressed in our units by noting that momentum is
usually measured in two photon recoilss2"kLd, and position
in units of the inverse wave number of the standing wave
s1/2kLd. Hence, the scaled variablesq ,n and the physical
onesq8 ,p8 are related byq=2kLq8 and n=p8 /2kL" f7–9g.

Our choice of units makes all the relevant quantitiessinclud-
ing the ones plotted in figuresd dimensionless.

Owing to the periodicity of thed-kick perturbation, the
time t is measured in number of periodst and the evolution
of the wave function of the system over a time intervalt is

described by the operatorÛstd.
A cubic modification of linear Schrödinger dynamics for

the d-kicked rotor may be accomplished by two different
models, both considered in the present paper. The correct
way to approximate the evolution of the nonlinear
Schrödinger equation is to evaluate the nonlinear term in the
position representationf10g. In the following we will refer to
this first model as model 1sM1d.

Since the Hamiltonian operator presents a time-dependent
nonlinear partuucu2c, in the numerical integration of Eq.s1d,
the lowest order split methodf11g is used andÛ is approxi-
mated by the time-ordered product of evolution operators
sTrotter-Kato discretizationf12gd on small time stepst /L
swith L integerd:

Ûs1dstd = K̂R̂s1dstd < e−ik cossq̂dp
l=1

L

e−itn̂2/L2eiust/Lducsq̂,lt/Ldu2.

s2d

In the numerical simulations, we use a finite Fourier basis of
dimensionN: the discrete momentum eigenvalues lie on the
lattice p=sm−N/2d and the continuous angle variable is ap-
proximated by q=s2p /Ndsm−1d with mPZ ,1ømøN.
Shifting between the coordinate and momentum representa-

tions, in the evaluation of the operatorR̂s1dstd, requires 2L
fast Fourier transforms ofN-dimensional vectors for each
kick. In order to get stable numerical results, the splitting
intervalt /L has to be reduced when increasing the nonlinear
coupling constantu; typical values of the number of steps
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per period range betweenL=80 000 and 5 000 000. There-
fore, investigating either the effects of strong nonlinearities
or the dynamics of the system over long times is computa-
tionally quite expensive with M1.

A second modelfknown as the kicked nonlinear rotator
and called in the following model 2sM2dg was introduced in
f13g. This model, being a much simpler variant of the kicked
rotator sKRd model f14g, allows one to perform faster and
more efficient numerical computations.

The evolution operator over one periodt for M2 is given
by

Ûs2dstd = K̂R̂s2dstd < e−ik cossq̂de−itn̂2/2eiũtuĉnu2, s3d

whereĉn indicates thenth component of the wave function
of the system in the momentum representation. The change

in the phase of each componentĉn of the state vector, intro-
duced by the nonlinear term between two kicks, is propor-
tional to the amplitude of the component. In M1 instead, the
phase acquired at each instant by the wave function involves
all the Fourier components and the phase factor has as the

nth Fourier componentsu/2pdomĉm+n
* ĉm. The two models

coincide only if the wave function of the system is a plane
wave of fixed momentum; in this case, the relation between
the nonlinear coupling constants in M1 and M2 isũ=u/2p.

Both models M1 and M2 are nonlinear generalizations of
the KR and reduce to the KR in the limitu→0. Depending
on the commensurability of the periodt of the d-kick per-
turbation with 4p, the KR displays different regimes, deeply
studied both theoreticallyf14–16g and experimentallyf6,8g.
The quantum resonant regime, corresponding to values oft
being rational multiples of 4p, is characterized by a ballistic
transport: the mean energy of the system grows according to
a parabolic lawf15,17g. For generic irrational values oft, the
average energy grows linearly in time only within a charac-
teristic timesbreak timed, after which dynamical localization
sets in and the diffusion is suppressedf16g.

In this paper, we analyze in detail how the presence of the
nonlinearity affects the general properties of transport in re-
gimes that correspond to the localizedsSec. II, which is es-
sentially a warm up exercise in which the results off13g are
reproduced and additional numerical results about prefactor
scaling are presentedd and resonantsSec. IIId ones of the KR.
We focus our attention on the growth exponent of the mean
energy and on how the diffusion coefficient or the rate of
ballistic transport depends on the strength of the nonlinear
coupling constantu. While in Secs. II and III we are dealing
with the evolution of an initial state with fixed momentum,

chosen atn=0, i.e., ĉns0d=ds0d, Sec. IV is devoted to the
effects of a finite spread of initial conditions as strongly sug-
gested by state-of-the-art experiments using ultracold atoms
f1,19g.

The quantity we typically compute is the width of the

momentum distribution of the systemkp2stdl=on=−`
+` n2uĉnu2,

which gives the spreading of the wave packet over unper-
turbed levels or equivalently—apart from a constant factor
2—the expectation value of the energy. The time-averaged
spreadingP2sTd=s1/Tdot=1

T kp2stdl of the second moment has

been frequently usedssee, e.g.,f18gd, as it preserves the ex-
ponent of the power-law growth, while smoothing out oscil-
lations.

As pointed out inf13g the nonlinear shift is essential in
determining dynamical featuressproviding for instance a
mechanism for delocalization of the generic, irrational cased,
but when we deal with delocalized states it is typically quite
small se.g., for M2 the shift is proportional toû/Dn, where
Dn is the width of the distribution over unperturbed statesd.
So in general we may expect that, for moderate nonlineari-
ties, the precise form of the shift does not alter in an essential
way the nature of the asymptotic motion.

II. LOCALIZED REGIME

In this section, we consider the regime where the value of
the period of thed-kick perturbation is incommensurate with
4p. For better comparison we fixt=1 for all numerical com-
putations shown in the following. The corresponding system
in the u→0 limit is characterized by the phenomenon of
dynamical localizationf16g caused by quantum interference
effects. Previous theoretical predictions and numerical simu-
lations f13,20g indicate that, above a critical borderuc,2p
for the nonlinear coupling constant, dynamical localization is
destroyed. The delocalization takes place in the form of
anomalous subdiffusion with an exponent of 2/5: inf13g an
asymptotic lawkp2stdl,csudt2/5 fwhere csud,u4/5g is pre-
dicted for both models; this is confirmed for both models by
the data reported in Fig. 1. In Fig. 1sad a bilogarithmic plot of
the time-averaged second moment vs time is shown for in-
creasing values of the nonlinear coupling constantu. In spite
of large oscillations, both models fit the predicted asymptotic
behavior with a power-law exponent equal to 2/5. For non-
linear coupling larger than the critical borderuc, marked by
the vertical line, the dependence ofcsud vs u is confirmed for
both models by Fig. 1sbd. Log10fcsudg is obtained by a one-
parameter linear fitting of the logarithm of the second mo-
ment, once an anomalous diffusion exponent equal to 2/5 is
assumed.

The results obtained by calculating the evolution of the
system with either M1 or M2, starting from the same state

ĉns0d=ds0d and parameters, appear to be different on short
time scales; nevertheless the two models share the same
asymptotic behavior of the time evolution of the second mo-
ment and of the dependence ofcsud vs u. The effect of the
nonlinearity is the same for both models only att=1, because
of the common initial state. As explained in the Introduction,
the way nonlinearity acts on the wave function is essentially
different for M1 and M2, at least before the state becomes
delocalized: so deviations are qualitatively expected for in-
termediate times, while we expect a closer analogy in the
models’ behavior in the asymptotic regime. Actually the
close behavior exhibited by both models in Fig. 1 after a few
time steps extends to more general features than the second
moment: in Fig. 2 we provide a comparison between full
distributions over momentum states foru=10.

We remark that nonlinearity-induced delocalization has
recently been explored also in studying survival probability
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on a finite momentum samplef21g: while the authors use M2
to cope with computational difficulties, our findings suggest
that their results are probably relevant for true nonlinear
Schrödinger equation dynamics too.

III. RESONANT REGIME

In this section, we examine in detail the response of the
system to nonlinear perturbation in the resonant regime of
the KR st=4pr /q with r ,q relatively prime integersd, char-
acterized by a parabolic growth in time of the variance of the
momentum distributionf15,17g. The value oft is chosen
equal to 4p, corresponding to the first fundamental quantum
resonance of the KR.

In Fig. 3sad a bilogarithmic plot of the time-averaged sec-
ond moment of the momentum distribution for different val-
ues of the nonlinearity is shown. The nonlinear coupling con-
stant u varies from 1 to 400. As already noticedf20g, the
resonant behavior survives even in the presence of nonlin-
earity, although generically the spreading is slowed with re-
spect to the linear case. On asymptotically long time scales,
resonant growth with a quadratic exponent is reached even
for strong nonlinear perturbations, though we observe that
the time needed to reach the asymptotic regime grows with

u. The results in Fig. 3sad obtained from M2, shown in full
lines, allow us now a more detailed analysis of the behavior
of the system at quite long times. It can also be seen in Fig.
3sad that the time evolution of the second moment of M1,
shown with circle symbols, approaches the same asymptotic
growth, even if some differences between the two models
appear especially for large nonlinearitysu*50d.

The persistence of the resonant behavior in the presence
of nonlinearity can be explained intuitively as follows. In the
linear si.e., u=0d resonant case the width of the momentum
distribution increases linearly in time. Therefore, from the
normalization condition, the probability amplitude to find the

system in a momentum eigenstaten decays asuĉnu2,1/Dn

,1/spktd f7,13g. The nonlinear phase shifttuuĉnu2 decreases
with the same rate and its effects become irrelevant on long
time scales, i.e.,t@ su/pkdt.

Nevertheless, the nonlinearity affects the evolution of the
second moment on smaller time scalest& su/pkdt and intro-
duces au dependence in the prefactor of the parabolic
growth law kp2stdl,asudt2. Increasing nonlinear coupling
manifests in a slower quadratic growth. In Fig. 3sbd the func-
tion Dsūdstd=fkp2stdlsũd−kp2stdls0dg / t2 is plotted for different
values of the nonlinearity. Increasing asymptotic absolute
values ofDstmaxd give an estimate of the modifications in the
transport induced by the nonlinearity. The coefficientsaD,
calculated from the functionDst= tmaxd with tmax=20 000, are
shown in the inset of Fig. 4.

A detailed analysis of the dependence of the coefficient
asud of kp2stdl is presented in Fig. 4. The numerical calcula-
tion of log10fasudg is obtained by a one-parameter linear fit-
ting of the logarithm of the second moment vs the logarithm
of time with a straight line of fixed slope 2. The fitting is
performed on a time intervalDt=200; this rather small time
interval was chosen in order to make a comparison between

FIG. 1. sColor onlined sad Bilogarthmic plot of the time-
averaged second moment vs time in the localized regime. Time is
measured in number of periods. The dashed and full lines refer to
M2 with N=217 and M1, withN=29 and L=80 000, respectively.
Values of u=8,10,12,14,16,20 areconsidered; generally higher
nonlinearity values yield bigger spreading. The dashed line has the
theoretically predicted slope 2/5. The values of the parameters are

t=1 andk=2.5; the initial state isĉns0d=ds0d. sbd The logarithm of
the coefficient of the sub-diffusion as a function of log10sud, for the
second momentscirclesd and its time averagessquaresd. Empty and
full symbols refer, respectively, to M1 and M2. The dashed lines
show the predicted dependence,u4/5.

FIG. 2. Comparison between the momentum distributions for
M1, circles, and M2, full line, aftert=10 sad, 100 sbd, and 1000scd
kicks. The parameters are the same as in Fig. 1; the nonlinear cou-
pling is fixed to the valueu=10.
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the results from both modelssempty and full symbols refer
to M1 and M2, respectivelyd. The accordance between the
two models is satisfying up tou&50. Foru.50 the lowest
order split methodf11g to evaluate the Floquet operator in
M1 becomes less stable and the numerical errors around the
borders of the finite basis propagate faster.

Numerical data are compatible with an algebraic law
asud.k2/ f2s1+u/cdgg, whereg is 4/5 andc is a constant of
the order of 10sfor the time-averaged moment the constant
k2/2 is substituted byk2/6d. This law has the required
asymptotic behavior foru→0: in this limit asud tends to the
well-known value of the coefficient of the resonant KR, i.e.,
as0d=k2/2. In Fig. 4 the values ofas0d are marked by ar-
rows. For large values ofu, asud decreases for increasing
nonlinearity with the inverse power law,u−4/5. At the mo-
ment we have no explanation for the minimum observed in
the intermediate regionslog10 u,0.85d.

Up to now, we discussed only the case of attractive inter-
actions, i.e.,u.0. It turns out that the fundamental quantum
resonance att=4p is insensitive to the sign of the nonlin-
earity as can be seen in the inset of Fig. 5. The same is true
for the momentum distributions, which are not presented
here. On the other hand, the next order resonance att=3p is
sensitive to the sign ofu. For u,0 in Fig. 6sbd, the momen-

tum distribution is slightly different fromu.0. Asymptoti-
cally, however, the same ballistic growth of the mean square
momentum is obtained. This means that the details of the
effect of nonlinearity depend on the resonance type as far as
the sign ofu is concerned. This originates from the fact that
while at the fundamental quantum resonancest=4pm sm
.0 integerd the free evolution phase in the linear rotor is

FIG. 3. sColor onlined sad Resonant growth of the time-averaged
second moment vs time in the presence of nonlinearity, fort=4p

and k=2.5. The initial momentum distribution isĉns0d=ds0d. The
symbols and the full lines refer to M2 withN=217 and M1 with
N=210 and L=5 000 000, respectively. The straight black line
shows the resonant asymptotic behaviort2. The values of the non-
linear parameter areu=1,5,10,20,50,100,400. The inset is a
magnification foru=1 and 50slower partd. A slight deviation be-
tween the two models can be seen foru=50. sbd The function
Dsũdstd vs time for M2. Starting from above in the lowt,5000
region, the values of the nonlinear parameter areũ
=0.1,5,10,20,30,40,50,60,70,80,100,400.

FIG. 4. sColor onlined Bilogarithmic plot of the coefficientasud
of the quadratic growth of the second momentscirclesd and its time
averagessquaresd as a function of the nonlinear parameteru. Empty
and full symbols refer to M1 and M2, respectively. The dashed lines
show the algebraic behavior ofasud for large u with an exponent
equal to −4/5. Notice that foruø1 the coefficients approach the
theoretical values of the KR model, marked by arrows. In the inset
the empty symbols refer toaD calculated using the functionDst
= tmaxd with tmax=20 000.

FIG. 5. Kinetic energy at the fundamental quantum resonance
t=4p, k=p, pinitial =0, and nonlinearitiesũ=0 ssolidd, −0.2 sdia-
mondsd, −1 sdashedd, −10 sdottedd, and −100sdash-dottedd. The
short dashed line shows a superballistic increase proportional tot2.6

for the caseũ=−10. The inset presents the results forũ=0.2,1,10,
and the case ofũ=−10 sthin solid lined for better comparison.
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exactly 1, at higher order resonances there is a nontrivial
phase evolution between two successive kicks. The inset of
Fig. 6sad highlights thatkp2l /2 either decreases or increases
with respect to the caseu=0 at the second and fourth kicks.
This is related to the fact that att=3p the rephasing in
momentum space occurs only every second kick, not be-
tween two successsive kicks as att=4p.

In Figs. 5 and 6 the time scales relevant for experiments
st&500d are investigatedsresults refer to M2d. In Fig. 5, we
generically observe three regimes.sid There is an initial
stage, where the mean square momentum increases much
more slowly than in the caseu=0. This stage is followed by
stagesii d where the increase can be faster than ballistic, and
the mean square momentum can even be larger for larger
nonlinearitysseeuũu=10 as compared touũu=1 in Fig. 5d.

The observed superballistic growth of the second moment
of the momentum distribution is quite surprising, in particu-
lar, having in mind that such a growth is forbidden in the
usual KRsi.e., u=0d f22g. The results in Fig. 5 are reminis-
cent of the observed superballistic spreading in one-
dimensional tight-binding modelsf23g; however, here the su-
perballistic behavior is caused by thenonlinear term in the
time evolution, in contrast to the linear Hamiltonian models
in f23g. In terms of the model studied inf23g, the nonlinear-
ity u would act as a finite size trapping regionscf. alsof21gd,
outside of which the motion is ballisticswe already showed
how nonlinearity does not essentially modify highn compo-
nentsd.

The final stagesiii d we call the asymptotic regime, be-
cause there the growth exponent approaches the one for van-
ishing nonlinearitysonly for ũ=−100 is this stage not yet
reached in Fig. 5d.

In Fig. 6sbd we notice distinct peaks close to the very edge
of the momentum distribution forũ=0.2. Such peaks have
been found for sufficiently large kicking strengthk*2.5 and
correspondinguũskdu=0.2, . . . ,2, and it turns out than they
can be up to one order of magnitude higher than the maxi-
mum of the momentum distribution for the linear KR at the
resonancest=4p and 3p. Figure 7 compares the momentum
distribution uĉnu2 at the fundamental quantum resonancet
=4p, and at the resonancet=3p for small nonlinearityũ
=−0.2 with the case of the linear KR. The distributions are
shown after 50 and 200 kicks, respectively, to stress their
evolution in time. For both resonances, we observe a very
interesting feature, namely, the small nonlinearity sharpens
the edge peaks, which move ballistically, i.e., with a speed
that is proportional to the number of kickst fwe recall that
whenu=0 the distribution is characterized by a largest mo-
mentum component also moving according to a linear law
nmaxstd.ktp /2 f7gg. The peaks are more pronounced than in
the linear case, and are remarkably stable, i.e., their height
decreases very slowly with increasing number of kicks in
Fig. 7scd, or even increases initially as in Fig. 7sad. While we
focused our discussion on the model M2, the structure of the
probability distribution is quite similar for M1ssee Fig. 8d.

The intermediate time scaling properties look in this case
more complex than in the kicked rotator dynamics in the
presence of sticking accelerator modes, where the same ex-
ponent appears both in the classical and in the quantum cases
swhere a new modulation appearsd. Work is in progress to
see whether there exist classical mappings that reproduce the
peak dynamics we observe in the intermediate time quantum
behaviorf24g.

IV. MOMENTUM DIFFUSION IN THE RESONANT
REGIME

All the above results have been obtained for an initial
state in the form of a plane wave of null momentum. In a

FIG. 6. sad Kinetic energy as a function of the number of kicks,
andsbd the corresponding momentum distributions after 200 kicks,
for the quantum resonancet=3p. Same parameters as in Fig. 5,
apart from the nonlinearity, which isũ=−0.2 sdiamondsd and 0.2
fsad dotted,sbd solidg. In sad we show also data foru=0 sdashedd for
comparison, and the inset illustrates the opposite effect of the sec-
ond and fourth kickssthe rephasing in momentum space occurs for
the u=0 case only every second kick att=3pd depending on the
sign of ũ.

FIG. 7. Momentum distributions for zero initial momentum,k
=p, ũ=−0.2 sad,scd and u=0 sbd,sdd, and t=4p sad,sbd, t=3p
scd,sdd. Note the stable peaks at the largest momenta in the case
with small nonlinearity. The distribution are shown after 50sdottedd
and 200ssolid lined kicks in each panel.
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typical experiment, one can create a Bose condensate with an
initial spread of momentum which is much less than two
photon recoilsswhich can be imparted as momentum kicks
to the atoms by the kicking laserd. We ask ourselves what
happens if such a spread is taken into account. The momen-
tum variablep, varying on a discrete lattice in the case of a
single rotor, becomes a continuous variable. For the linear
KR, the eigenvalues ofp̂ can be written, distinguishing the
integer and fractional partssquasimomentumd, as p=fpg
+hpj=n+b. Owing to the conservation of quasimomentum
b, the system dynamics can be decomposed into a bundle of
rotors f26g scalled in the followingb rotorsd, each param-
etrized by a value of the quasimomentum, evolving incoher-
ently with operators with the same functional form as Eqs.

s2d ands3d, in which n̂ is substituted byn̂+b̂. Such a decom-
position is not easily accomplished when we introduce a
nonlinear term in the dynamics. The general task we have to
face becomes the study of a nonlinear evolution equation
with periodic coefficients. This is a quite a complex problem
that cannot be tackled in full generality, even though differ-
ent approximation schemes have been proposed, e.g., by
mapping the problem into a discrete lattice, which turns out
to be useful if the wave function is expanded in a suitable set
of localized functions related to the linear problemf27g. We
generalize M2 in such a way that its linear limit is the evo-
lution operator corresponding to a quasimomentumb sas for-
merly specifiedd, and assumethat eachnonlinear b rotor
evolves independently. In this way we study the influence of
nonlinearity onrealistic initial conditions in a highly simpli-
fied way, by means of ageneralizedM2 model: further work
is obviously needed to check whether our findings extend to
a full GP dynamicsf28g.

The quantum resonance phenomenon in the KR is
strongly sensitive to the values of the parameters of the sys-

tem. The linear KR rotorsu=0d exhibits the quantum reso-
nance only for a finite set of quasimomenta, i.e.,b=bR

=m/2p with m,2p f7,15,26g. A slight deviation of the qua-
simomentum frombR changes the evolution of the system
completely. For values ofbÞbR, after a transient regime,
the suppression of the resonant growth of the energy of the
linearb rotor through dynamical localization occurs; at fixed
time t, only quasimomenta within an interval,1/t of bR

mimic the ballistic behavior proportional tot2 and a rough
estimate of the time up to which the quadratic growth of the
b-rotor energy persists ist̄,1/Db, where Db= ub−bRu
f7,25g.

In the following, we investigate the mean square momen-
tum distribution of the generalized M2 model, firstsad for a
singleb rotor with fixed quasimomentum, and thensbd for an
incoherent ensemble ofb rotors whose initial state in mo-
mentum space is a Gaussian distribution with zero mean and
rms spreadingDb=s=0.01. We chooset=4p, and the reso-
nance condition is then met forbR=0 andbR=1/2. Thecase
with bR=0 fixed was considered in Sec. III. As in the local-
ized regime, considered in Sec. II, the introduction of the
nonlinearity causes a delocalization in the system with a non-
resonant value of the quasimomentumsbÞbRd. For small
nonlinearities, the appearance of an anomalous asymptotic
diffusion with an exponent of 2/5, after the initial ballistic
behavior, is confirmed by data of Fig. 9sad for a b rotor with
b<0.009. On the contrary, greater nonlinear couplingssu
ù50d introduce an excitation of diffusive type, starting from
the first kicks. In Fig. 9sbd the quasimomentum of theb rotor
is varied andu is kept fixed. The arrows mark the timest̄,
depending on the value ofb, approximately bounding the
region of the ballistic growth.

We then consider the dynamics of an incoherent ensemble
of b rotors. The mean square displacement of the distribution
is kp2stdlb=edbkpb

2stdl. The average overb has been calcu-
lated using 5000 quasimomenta. In Fig. 10 the time evolu-
tion of the averaged second moment of the initially Gaussian
wave packet is shown for M2. The behavior in the corre-
sponding linear case of the KR is theoretically knownssee
Appendix A of f26gd: for u=0, the kinetic energy of the sys-
tem increases diffusively in time with a coefficient propor-
tional to k2/4, and dependent on the initial distribution of
quasimomentaf7g. The presence of the nonlinearity mani-
fests itself in a faster than linear growth, at least on short
time intervals. After this transient regime, the asymptotic
growth is expected to become approximately linear. The
black straight line is drawn for better comparison. At fixed
time t and assuming a uniform distribution of the quasimo-
menta, the resonant rotors whose quasimomenta lie within
the intervalDb, enter in the average ofkp2lb with a contri-
bution of ,ta and a weightw,1/t, while the nonresonant
rotors give a contribution ofs1−wdtg. The exponents of the
transport in the limitt→ +` reach the valuesas`d=2 and
2/5øgø1. Therefore, asymptotically in time, the global
transport exponent reaches the value 1. In the inset of Fig. 10
the exponents of the algebraic growth of the second moment
are plotted as a function of the nonlinear coupling constantũ.
The fitting time interval is 1000 kicks. Full and open circles
refer to 5000 and 500 quasimomenta of the initial Gaussian

FIG. 8. sad Momentum distribution aftert=50 kicks, andsbd
mean square momentum forpinitial =0, u=−0.2, t=4p, and k=p.
Shown are the evolutions induced by M2sdiamondsd and by M1
sfull linesd.
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distribution: a slight rise in the exponents can be noted on
increasing the number of quasimomenta, because a greater
number of them approach the valuebR=0, yielding the qua-
dratic growth of theb-rotor energy. Note that the exponent
approches faster the value 1 for a uniform initial distribution
of quasimomentasstarsd, confirming the previous argument.

Figure 11 presents a closer look at the dynamics on a
shorter time scale: the results refer to the case in which we
found stable momentum peaks in Fig. 7. Part of the peak is
still preserved for the used spreadDb.0.01, which can be
realized in state-of-the-art experimentsf1,19g. After about 15
kicks, more weight lies, however, now in the center of the
distribution made up of rotors which do not exactly satisfy
the rephasing condition due to nonzero quasimomenta. Also
the increase of the mean square momentum, which is aver-
aged incoherently over all the independently evolved initial
conditions, is then not any more quadratic but closer to linear
ssee inset in Fig. 11d, as was found in the case of a uniform
initial distribution of quasimomenta for theu=0 casef7,25g.
The mean square momentum still increases much faster than
for nonresonant values of the kicking periodt, where dy-
namical localization occurs. The latter may be destroyed by
the nonlinearity but the above observed growth ofkp2l /2
~ t2/5 scf. Sec. IId is much slower than linear. On short time
scales thus quantum resonance is very robust with respect to
nonlinear perturbations. If our incoherent superposition

model is correct after some initial stage, the ballistic motion
should cease but the dynamics will show the influence of the
ballistic quantum resonant transport.

FIG. 9. sColor onlined sad Bilogarithmic plot of the second mo-
ment of a singleb rotor with a fixed quasimomentum for increasing
nonlinear couplingsfrom below, referring to hight values, ũ
=0,1,5,10,50,100d. The two lines have slope 2 and 2/5. Note that
in the KR casesu=0d, the localization occurs for timet*1/b. The
parameters aret=4p, k=2.5, andN=217. The initial state is an
eigenfunction of the momentum withn=0 andb=0.009 465 56. In
the inset the calculations are prolonged ten times. The unbounded
growth for ũ=50,100 can be clearly seen.sbd The same assad with
u fixed sũ=5d and variableb sfrom above, referring to hight val-
ues,b=0.0001, 0.001, 0.01, and 0.1d. The arrows mark the times
1/b.

FIG. 10. sColor onlined Average over 5000 quasimomenta of the
second moment of the distribution vs time for M2;t=4p and k
=2.5. Starting from below sreferring to high t valuesd ũ
=200,100,60,40,20,0,1,5,10; theinitial wave packet in Fourier
space is a Gaussian distribution centered atn=0 with rmss=0.01.
The inset shows the power-law exponents of the second moment as
a function of ũ. The fitting is performed on time intervalsDt
=1000 scirclesd and 6000ssquaresd. Open symbols refer to 500
quasimomenta. Stars refer to a uniform distribution of
quasimomenta.

FIG. 11. Momentum distribution aftert=10 ssolidd, 30 sdashedd,
and 50 kickssdash-dottedd, for the same parameters as in Fig. 7sad,
but incoherently averaged over independently evolved initial condi-
tions sGaussian initial momentum distribution with rmss=0.01
centred aroundn=0d. The inset shows the correspondingkp2lb /2 as
a function of the number of kicks forũ=−0.2 ssolidd and u=0
sdashedd.
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V. CONCLUSIONS

In summary, we have numerically analyzed in great detail
the quantum transport occurring in two nonlinear generaliza-
tions of the famousd-kicked rotor model, with a cubic non-
linearity as present in the Gross-Pitaevskii equation. We con-
firm previous results in the regime of localized transport, and
show the validity of the predictions off13g for a wide range
of nonlinear coupling strengths. In addition, we found that
the quantum resonances of the kicked rotor are very stable
with respect to the nonlinear phase perturbation, which loses
its effect in the asymptotic limit of large interaction times
with periodic driving. Surprising phenomena like pro-
nounced peaks in the momentum distributions at quantum
resonance and superballistic intermittent growth of the mean
square momentum have been found. Both phenomena are
caused by cubic nonlinearity in the evolution, which shows
that the analyzed models bear a rich dynamical behavior in
parameter space.

Experimental work on the kicked rotor using a Bose-
Einstein condensatef1g has mostly concentrated on the short
time behavior at quantum resonance or on the so-called an-
tiresonance, where the motion is exactly periodic in the case
u=0. But an experimental observation of the ballistic quan-
tum resonance dynamics up to 10,…,30 kicks seems possible

f28g, for small enough kicking strengthk so as to avoid a too
fast spread in momentum space which cannot be monitored
by standard time-of-flight detectionf7,8g. Our results are
fully consistent with the few published experimental data,
which show that both resonant and antiresonant dynamics
essentially survive the presence of small nonlinearities, apart
from other effects which damp, for instance, the periodic
oscillations at the antiresonance. Such effects are, e.g., the
uncertainty of the center of the initial momentum distribu-
tion, and fluctuations in the experimental kicking strength
f1g.
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Experimental verification of a one-parameter scaling law for the quantum
and “classical” resonances of the atom-optics kicked rotor
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We present experimental measurements of the mean energy in the vicinity of the first and second quantum
resonances of the atom-optics kicked rotor for a number of different experimental parameters. Our data are
rescaled and compared with the one-parametersed classical scaling function developed to describe the quantum
resonance peaks. Additionally, experimental data are presented for the “classical” resonance which occurs in
the limit as the kicking period goes to zero. This resonance is found to be analogous to the quantum reso-
nances, and a similar one-parameter classical scaling function is derived, and found to match our experimental
results. The widths of the quantum and classical resonance peaks are compared, and their sub-Fourier nature
examined.
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I. INTRODUCTION

The heart of experimentally testing and controlling clas-
sical and quantum systems often lies in the introduction of an
external periodic driving forcef1–3g. The driving probes
system-specific properties, the knowledge of which allows
one, in turn, to understand and to optimally control the sys-
tem at hand. In particular, driven systems often exhibit reso-
nancelike behavior if the external driving frequency matches
the natural frequency of the unperturbed system.

Typical nonlinear classical systems are resonant for only a
finite interaction time since the driving itself forces the sys-
tem to gain energy and hence drift out of resonance. Only if
the natural frequencies are independent of the energy, as for
the linearsharmonicd oscillator, the system can absorb en-
ergy on resonance indefinitely. In the quantum world, the
situation may be different by virtue of the unperturbed sys-
tem possibly having a discrete energy spectrum. If this spec-
trum shows an appropriate scaling in the excitation quantum
number, resonant motion can persist forever.

A simple example of such a system is provided by the free
rotor, whose energy spectrum scales quadratically in the ex-
citation quantum numbersdue to periodic boundary condi-
tions for the motion on the circled. Kicking the rotor periodi-
cally in time with a frequency commensurable with the
energy difference of two neighboring levels leads to per-
fectly resonant driving. These so-called quantum resonances
of the well-studied kicked rotorsKRd f4g have been known
theoretically for some timef5g, but the first traces of this
example of frequency-matched driving have only recently
come to light in experiments with cold atomsf6,7g. Such
experimentsf7g and theoretical studiesf8,9g have also shown
the surprisingly robust nature of these resonances in the pres-
ence of noise and perturbations.

Experimentally, the quantum resonances of the KR are
hard to detect for two principal reasons. First, only a rela-
tively small proportion of atoms are kicked resonantly for the
following reason: ideally, the atomic motion is along a line,
which introduces an additional parameter, namely, the non-

integer part of the atomic momentum, i.e., the atom’s quasi-
momentum. Treating the atoms independently, their motion
can be mapped onto the circle owing to the spatial periodic-
ity of the standing wave, which makes the quasimomentum a
constant of the motion. However, only some values of qua-
simomentum allow resonant driving to occurf5g. All other
values induce a dephasing in the evolution which hinders the
resonant kicking of the atomsssee Sec. III for detailsd. Sec-
ond, if an atom is kicked resonantly it moves extremely
quickly; in fact its energy grows quadratically in timesso-
called ballistic propagationd. These fast atoms quickly escape
any fixed experimental detection window after a sufficiently
large number of kicksf6,7g.

In this paper, we report experimental data which show the
behavior of a typical experimental ensemble of cold atoms
under resonant driving. Our main observable is the mean
energy of the atomic ensemble measured after a fixed num-
ber of kicks and scanned over the resonant kicking frequency
or period. We verify a recently derived single-parameter scal-
ing law of the resonant peak seen when scanning the energy
vs the periodf8,10,11g. The scaling law allows us to clearly
resolve the resonance peak structure because it reduces the
dynamics to astationaryand experimentally robust signature
of the quantum resonant motion.

After a short review of our experimental setup in Sec. II
and the theoretical treatment of the atom-optics kicked rotor
close to quantum resonance in Sec. III, we present experi-
mental data for the mean energies around the first two fun-
damental quantum resonances of the kicked atom. From
these data, we extract the afore mentioned scaling law in Sec.
IV. The effect of the quasimomentumsas a typical quantum
variabled on the motion disappears in the classical limit of
the kicked rotor, when the kicking period approaches zero
f5,12g. In the latter case, the rotor is constantly driven, and a
ballistic motion occurs forall members of the atomic en-
semblef13g. Both phenomena, the quantum and the “classi-
cal” sfor vanishing kicking periodd resonance, are related to
one another by a purely classical theory developed previ-
ously for the quantum resonance peaksf8,10,11g.
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In Sec. V we focus on the first direct comparison of the
behavior of the ensemble averaged energies in the case of the
“classical” and the quantum resonance. In particular, the sub-
Fourier scaling of the resonance peaks in the mean energy as
a function of the kick number is discussed. The latter makes
both types of resonances studied here a potential source of
high-precision measurements of system-specific parameters.

II. EXPERIMENTAL SETUP

Our experimental system is a realization of the paradig-
matic kicked rotor modelf14,15g, whose relevance lies in the
fact that it shows the basic features of a complex dynamical
system, and it may be used to locallysin energyd approxi-
mate much more complicated systems, such as microwave-
driven Rydberg atomsf16g, or an ion in a particle accelerator
f1,17g.

Our experiments utilize a cloud of about 105 cold cesium
atoms, provided by a standard six beam magneto-optical trap
sMOTd f18g. The typical momentum spread of the atomic
sample lies between four and eight two-photon recoils. The
shape of the initial momentum distribution is well approxi-
mated by a Gaussian with standard deviationsp.s4–8d
32"kL, centered at zero momentumf19g, although signifi-
cant non-Gaussian tails can existf13g. The width is measured
in units of two-photon recoils, corresponding to the wave-
length of the kicking laserlL=2p /kL. The fractional parts in
these units of the initial momenta, i.e., the quasimomentum
discussed below, are practically uniformly distributed in the
fundamental Brillouin zone defined by the periodic kick po-
tential f10g.

As shown in Fig. 1, the atoms interact with a pulsed,
far-detuned optical standing wave which is created by ret-
roreflecting the light from a 150 mWsslaved diode laser
which is injection locked to a lower-powersmasterd diode
laser at a wavelength oflL=852 nm. Power fluctuations
were minimal during the experiments performed here
s,1%d although larger drifts occurred over the course of
many experimental runs. Accurate pulse timing is achieved
using a custom-built programmable pulse generatorsPPGd to
gate an acousto-optic modulator. The PPG is programmed by
a computer running theRTLINUX™ operating system kernel
f20g which controls the timing of the experimental sequence
saside from the pulse train itselfd. Experimentally, we ap-
proximated kicks by pulses of widthtp which are approxi-
mately rectangular in shape. The lowest value oftp used in
our experiments was 240 ns and the highest was 480 ns. For
the experiments reported here, the effect of the finite width
of the kicking pulsesf19,22g turns out to be negligible, since
fairly small numbers of kickssfewer than 20d and low kick-
ing strengths are used. In the case where thet→0 limit is
being investigated experimentally, thed-kick assumption is
clearly not validf13,21g. This restricts us to a minimum pe-
riod t=320 ns, fortp=240 ns, in our study of the “classical”
resonance peaks.

In a typical experimental run, the cooled atoms were re-
leased from the MOT and subjected to up to 16 standing
wave pulses, then allowed to expand for an additional free
drift time in order to resolve the atomic momenta. After this

expansion time, the trapping beam is switched on and the
atoms are frozen in space by optical mollases. A charge-
coupled device image of the resulting fluorescence is re-
corded and used to infer the momentum distribution of the
atoms using standard time-of-flight techniquesf6g. The mean
energy of the atomic ensemble may then be inferred by cal-
culating the second moment of the experimental momentum
distribution.

Kicking laser powers of up to 30 mW were employed, and
detunings from the 6S1/2sF=4d→6P3/2sF8=5d transition of
cesium of 500 MHz and 1 GHz were used for the classical
and quantum resonance scans, respectively. These param-
eters produced spontaneous emission rates of,0.5% per
kick for the quantum resonance scans, which was low
enough to ensure that the structure of the peaks was not
affected for the low kick numbers used here.

III. e CLASSICAL DYNAMICS NEAR
THE FUNDAMENTAL QUANTUM RESONANCES

We now consider the theoretical treatment of the atom-
optics kicked rotor near quantum resonance. The Hamil-
tonian that generates the time evolution of the atomic wave
function is sin dimensionless formd f6,14g

Hst8d =
p2

2
+ k cosszdo

t=0

N

dst8 − ttd, s1d

wherep is the atomic momentum in units of 2"kL si.e., of
two-photon recoilsd, z is the atomic position in units of 2kL,
t8 is time, andt is an integer that counts the kicks. In our

FIG. 1. Schematic diagram of our experimental setup. A stan-
dard six-beam magneto-optical trapsMOTd of about 105 Cs atoms
is formed inside a vacuum cell at the intersection of three retrore-
flected “trapping” beamsfvertical beams andsanti-dHelmholtz coils
are not showng. A standing wave is formed across the cloud of
atoms by retroreflecting light from a “kicking laser,” which is trans-
ported to the MOT by means of a single-mode fibersSMFd. This
light is pulsed on and off by an acousto-optic modulatorsAOMd
which is gated by a programmable pulse generatorsPPGd. The
PPG’s pulse train is uploaded from a computer, which also controls
the timing of the experimentse.g., when the trapping AOM and
anti-Helmholtz coils are turned on and offd.
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units, the kicking periodt may also be viewed as a scaled
Planck constant as defined by the equationt=8ERT/",
whereER="2kL

2 /2M is the recoil energysassociated with the
energy change of a cesium atom of massM after emission of
a photon of wavelengthlL=2p /kL=852 nmd. The dimen-
sionless parameterk is the kicking strength of the system and
is proportional to the kicking laser intensity.

An atom periodically kicked in space and time is de-
scribed by a wave packetcszd decomposed into 2p-periodic
Bloch statescbszd, that is,

cszd =E
0

1

db expsibzdcbszd, s2d

whereb is the quasimomentumsi.e., the fractional part of the
momentumpd. Quasimomentum is conserved in the evolu-
tion generated by Eq.s1d, so the different Bloch states in Eq.
s2d evolve independently of each other, whereby their mo-
menta can change only by integers by virtue of the kicks. For
any given quasimomentum, the dynamics is formally equiva-
lent to that of a rotorsmoving on a circled whose one-period
Floquet operator is given by

Ûb = e−ik cossûde−itsN̂ + bd2/2, s3d

whereu=zmods2pd, andN̂=−id /du is the angular momen-
tum operator. From Eq.s3d we can immediately derive the
two necessary conditions for quantum resonant motion: ift
=2pr /q sr ,q integersd then the atomic motion may show
asymptotic quadratic growth in energy so long asb=m/2r,
0ømø2r, m integer at the same time. Under these condi-
tions the Floquet operators3d is also periodic in momentum
space, with the integer periodq. As in previous experimental
studiesf6g, we focus on the first two fundamental quantum
resonancesq=1, 2, for which the amplitudes of Bloch waves
with b=1/2 for q=2, andb=0,1/2 forq=1 at momentum
states separated byq32"kL exactly rephase after each kick.
The rephasing condition enforces ballistic propagation of the
corresponding states in momentum space, so their energy
grows quadratically in time. The remaining Bloch compo-
nents of the original wave packets2d, with b not in the reso-
nant class, exchange energy with the kicking laser in a qua-
siperiodic manner. The competition between the resonant and
the nonresonant subclasses of Bloch statessbetween ballistic
and quasiperiodic propagationd leads tolinear growth of the
total mean energyE<k2t /4 obtained by incoherently aver-
aging over the continuous set of quasimomenta which con-
stitute the atomic ensemblef8,10,11g.

For q=1, 2, we writet=2p,+e, where e denotes the
detuning from the exact resonance and,=1, 2. As shown in
f10,11g, the Floquet operators3d, can then be rewritten as

Ûbstd = e−ik̃ cossûd/ueue−iĤb/ueu, s4d

with k̃=kueu, Î = ueuN̂ as rescaled momentum, and

ĤbsÎ,td =
1

2
sgnsedÎ2 + Îsp, + tbd. s5d

Introducing the new variablesJ= ± I +p,+tb, q=u+pf1
−sgnsedg /2, where ± denotes the sign ofe=sgnsed, the quan-

tum evolution can be approximated by thee classical stan-
dard map derived inf10,11,23g:

Jt+1 = Jt + k̃ sinsqt+1d, qt+1 = qt + Jt s6d

for k̃!1. Jt implicitly contains the quasimomentumb, which
defines the initial conditions in momentum in the phase
space generated by the maps6d f8g.

For smallueu, thee classical dynamics is quasi-integrable,
and the growth of the energy is dominated by the principale
classical resonant island aroundJ=2p f1g. The latter island
is populated only by the values ofb that are close to the
resonant ones, while the nonresonant quasimomenta corre-
spond to initial conditions outside the nonlinear resonance
island f8,10,11g. Moreover, at any timet, the ratio between
the energy and its value ate=0 is a scaling function of the
singlevariable

x = tÎkueu. s7d

The scaling functionswhich was explicitly derived in
f8,10,11gd is

kEt,el
kEt,0l

< Rsxd ; 1 − C0sxd +
4

px
Gsxd, s8d

with the functions

F0sxd ;
2

p
E

0

x

ds
sin2ssd

s2 ,

and

Gsxd <
1

8p
E

0

2p

du0E
−2

2

dJ0J̄sx,u0,J0d2.

J̄;J/Îk̃ is the momentum of the pendulum approximation
to the dynamics generated around the stable fixed point of
s6d, rescaled to unit coupling parameterssee f8,10,11g for
detailsd.

The one-parameter scaling laws8d allows us to deduce the
shape and the parameter dependence of the resonance peaks
elegantly from the experimental data, which in the unscaled
form is shown in Figs. 2 and 3 fort=2p and 4p, respec-
tively.

IV. EXPERIMENTAL VERIFICATION OF THE SCALING
LAW AT QUANTUM RESONANCE

We have used the data obtained for various scans of the
mean energy vs the kicking period around the quantum reso-
nancest=2p and 4p, and for kick numberst=5, 10, 15 to
extract the ratiokEt,el / kEt,0l. We subtract from the numerator
the initial energy of the atomic ensemble with the character-
istic width in momentum spacesp. The contribution ofsp

2/2
to the energy must be subtracted because the derivation of
the scaling functionRsxd assumed an initial atomic momen-
tum distribution in the unit intervalf0, 1d f10g, corresponding
to a uniform distribution of quasimomentab;p0P f0,1d.
Since the maximum of the resonance peakkEt,e=0l is experi-
mentally the most unstable parametersdue to the early loss
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of the fastest resonant atoms from the experimental detection
window f6–8gd, we use the theoretical valuekEt,0l−sp

2/2
=k2t /4 to rescale our experimental data, rather than the
height of the experimental peak itself. Results are presented
in Figs. 4 and 5 fort=2p and 4p respectively. We see very
good agreement between the theoretical scaling function
Rsxd from Eq. s8d and our experimental data. Despite the
relatively large experimental errors due to the uncertainty in
the determination ofsp ssee discussion belowd, the data
show the characteristic structure, and also the oscillations
arising from the contribution of the functionGsxd at large
xù8. These oscillations arise from the averaged contribu-

tions of the initial conditionsJ̄0P s−2,2d within the principal
nonlinear resonance island, which evolve with different fre-
quencies around the corresponding elliptic fixed point of the
map s6d. The quasimomentum classes contributing toGsxd
are thus the near-resonant values, while the nonresonant val-
ues contribute to the function 1−F0sxd, which saturates to a
constant for largex f8,10,11g.

We fittedk and sp for each data set and then used these
fitted parameters to scale our data. In the case of thet=2p
data, the best-fit value ofk was found to be 4.5 compared to
the independently measured value ofk=4.1±0.6. For thet
=4p data, the best fit value ofk was 5.2 compared with a
measured value ofk=5±0.5. The corresponding fitted values
of sp were 5 and 5.2 two-photon recoils, respectively, which
differ from the measured values of 4.53±0.02 and 4.3±0.2.
This difference is due to the systematic error involved in
determiningsp from the experimental initial momentum dis-
tribution sas discussed inf13gd. In particular this distribution
may have noisy exponential wingsf19g which must be trun-
cated in order to reliably extract the second moment leading
to an underestimation of the true initial momentum spread.

It is interesting to note that in Figs. 2 and 3, there is
noticeable asymmetry in the resonance peaks. This degree of
asymmetry is not predicted by the standarde classical theory
and its precise cause has not yet been ascertained. However,
the asymmetry most likely stems from one or more system-
atic experimental effects, including the effect of small

FIG. 2. Experimentally measured mean ener-
gies around the first quantum resonance att
=2p after sad 5, sbd 10, andscd 15 kicks. Error
bars show an average over three independent ex-
periments. The kicking strength and initial mo-
mentum standard deviation were measured to be
k=4.1±0.6 andsp=5.9±0.2, respectively. Note
that the estimated errors in these parameters do
not take into account systematic drifts which take
place over the course of experimental runs. The
solid line joins the experimental points to aid the
eye.

FIG. 3. Experimentally measured mean ener-
gies around the second quantum resonance att
=4p for sad 5; sbd 10, andscd 15 kicks. The kick-
ing strength and initial momentum standard de-
viation were measured to bek=5.0±0.5 andsp

=6.3±0.1, respectively. Error bars as in Fig. 2.
We note both in this figure and in Fig. 2 that the
resonances exhibit some asymmetry, which is
thought to be of purely experimental originssee
the discussion in Sec. IVd.
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amounts of spontaneous emissions,0.5% chance per kick
for the quantum resonance scansd and also from the slightly
lesser time of flight experienced by atoms for positive as
opposed to negativee. Asymmetry of the peaks has also been
noted in other experiments probing the structure of the quan-
tum resonancesf24g. In any case, this asymmetry does not
prevent us from observing the structure of the quantum reso-
nances, but leads to a slightly enhanced scatter of the experi-
mental data points in Figs. 4 and 5.

V. CLASSICAL LIMIT OF VANISHING KICKING PERIOD

In spite of the intrinsically quantum nature of the quantum
resonances as an example of perfectly frequency-matched
driving, the method reviewed in Sec. III allows us to map the

quantum dynamics onto a purely classical map given bys6d.
The latter map is formally equivalent to the usual standard
map, which describes the classical limit of the quantum KR
when the kicking period tends to zerof12g:

Jt+1 = Jt + k̃ sinsut+1d, ut+1 = ut + Jt, s9d

now with J=tp=tsn+bd and k̃=kt. Because of the analogy
between the mapss6d ands9d, we expect a scaling law for the
mean energy also in the limitt→0. Sincet→0, all quasi-
momentum subclasses contribute now similarly to the energy
growth, and the averaged energy is given only by the initial
conditions within the principal nonlinear resonance island
sseef13g for detailsd

kEt,tl < t−2ksJtd2l/2 < k/2tGclsxd, s10d

with

Gclsxd ;
Îk

2pÎt
E

0

2p

du0E
0

Ît/k

dJ0J̄sx,u0,J0d2

<
1

2p
E

0

2p

du0J̄sx,u0,J0 = 0d2, s11d

which depends on the variablex= tsktd1/2 fwhich, given that
t=e for the classical resonance, is the same as the scaling
variable given in Eq.s7dg and weakly onk andt, in contrast
to the quantum resonant case studied in Sec. III. The depen-
dence ofGcl on t is negligibly small fort&1/k, so that in
practiceGcl can be viewed as a function of the scaling pa-
rameterx alone.

For the ratiokEt,tl / kEt,0l we then arrive at the scaling
function

kEt,tl
kEt,0l

< Rclsxd ;
2

x2Gclsxd, s12d

which in the limit of vanishingt tends to unity, since
Gclsxd<x2/2 for small x f8,13g. Our results10d describes
quadratic growth in mean energy ast→0. We note again
that in the case of quantum resonances,e classical theory
predicts onlylinear mean energy growth with kick number at
quantum resonancef10,11g. This linear increase is induced
by the contribution of most quasimomentum classes which
lie outsidethe classical resonance island. Fort→0, almost
all initial conditionssor quasimomentad lie within the princi-
pal resonance island, which leads to the ballistic growth for
the averagedensemble energys10d.

For finite t.0 andt2k@1/t, we obtain froms10d

kEt,t.0l <
k

2t
a, s13d

sinceGcl saturates to the valuea.0.7 for largex. Within the
stated parameter range, this result implies dynamical
freezing—the ensemble’s mean energy is independent of
kick number. This phenomenon is a classical effect in a sys-
tem with a regular phase space, and was observed inf13g for
the first time. It is distinct from dynamical localization which
is the quantum suppression of momentum diffusion for a
chaotic phase spacef4,12g. Experimentally, the freezing ef-

FIG. 4. Experimental mean energies aroundt=2p taken from
Fig. 2 and rescaled asskEt,el−sp

2/2d / stk2/4d. Triangles are fort
=5, squares fort=10, and circles fort=15. Error bars represent
statistical fluctuations over three experiments, and do not take into
account fluctuations ink or sp. The solid line shows the numeri-
cally evaluated scaling functionRsxd of Eq. s8d. We note that, for 10
and 15 kicks, data forueu,0.03 have been omitted due to our in-
ability to accurately resolve atomic energies for fast atoms this
close to resonance. Experimental data for both positive and negative
values ofe are plotted. We would like to note the good correspon-
dence between thee classical prediction and the experimental data
for over one order of magnitude in the scaling variablex.

FIG. 5. Scaled experimental mean energies aroundt=4p taken
from Fig. 3; triangles are fort=5, squares fort=10, and circles for
t=15 kicks. The solid line shows the scaling functionRsxd from Eq.
s8d. Again, for 10 and 15 kicks, data too close to resonance, i.e., for
ueu,0.03, have been omitted.
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fect corresponds to the cessation of energy absorption from
the kicks, similarsbut different in origind to that which oc-
curs at dynamical localization. The freezing may be ex-
plained as the averaging over all trajectories which start at
momenta close to zero, and move with different frequencies
about the principal elliptic fixed point of the maps9d.

From Eq.s12d, we immediately see that for the “classical”
resonancet→0, the resonant peak width scales in time like
skt2d−1, as at the quantum resonances studied in Secs. III and
IV. However, the tails of the classical resonance peak decay
faster sproportionally to 1/x2d than those at quantum reso-
nance fproportionally to 1/x; cf. Eq. s8dg. This very fast
shrinking of both types of resonance peaks is compared in
Figs. 6 and 7.

Both types of these sensitive resonance peaks may serve
as an experimental tool for determining or calibrating param-
eters in a very precise manner. Additionally, we note that the
quadratic scaling in time at the quantum resonances and the
“classical” resonance, respectively, is much faster and hence
much more sensitive than the sub-Fourier resonances de-
tected in a similar context by Szriftgizer and co-workers
f25g. A detailed study of the quantum energy spectrum of the
kicked atoms close to the two types of resonances is under
way to clarify the origin of the observed sub-Fourier scaling
of the resonance peaks.

Finally, we have plotted rescaled experimental data for the
t→0 resonance against the scaling function of Eq.s12d, as
seen in Fig. 8. The scaling was performed using the fitted
parameters as given in Figs. 6 and 7. We note that it is more
difficult to extract the scaling from experimental data in the
classical case, as opposed to the quantum case, because the
peak of the extremely narrow resonance is difficult to probe.
This leads to a larger uncertainty in the scaled energy and the
points appear somewhat more scattered than those in Figs. 4
and 5. However, the points clearly agree much better with

the classical scaling function froms12d than thee classical
scaling functions8d which is shown in Fig. 8 as a dash-
dotted line. The clearly different scaling of the quantum and
the “classical” resonant peaks goes along with the same rates
at which the peaks become narrower with time in a sub-
Fourier manner.

VI. CONCLUSIONS

In summary, we have experimentally confirmed a theo-
retically predicted one-parameter scaling law for the reso-
nance peaks in the mean energy of a periodically kicked cold

FIG. 6. sad Circles show experimentally measured mean ener-
gies ast→0 after 5 kicks. The measured value ofk is 4.9±0.2. The
solid line is classical data fork=4.9, as generated by the maps9d,
using practically the same initial momentum distribution as in the
experiment. The thermal energysp

2/2 has been subtracted to facili-
tate comparison with the quantum resonance curve insbd. In sbd,
circles show experimental data after 5 kicks near the second quan-
tum resonance for positivee=t−4p and the experimental param-
eters are as given for Fig. 3. The thermal energysp

2/2 has been
subtracted. The solid line showse classical data as generated by the
map s6d.

FIG. 7. sad Circles show experimental data ast→0 for 10 kicks.
The other experimental parameters are the same as those given for
Fig. 6sad. The circles insbd show experimental data once again for
the second quantum resonance after 10 kicks this time. Other ex-
perimental parameters are the same as those given for Fig. 6sbd. We
note that for the quantum resonance insbd, the simulation and ex-
perimental results differ most markedly near the resonance peak. In
this regionse&0.03d, some fast, resonant atoms are being lost from
the experimental viewing area leading to a lower energy growth rate
than predicted theoreticallyssee discussion in Secs. I and IId. Note
that in sad it is not possible to probe low values oft=e due to the
finite width of the pulses.

FIG. 8. Rescaled experimental mean energies fort
=0.033–0.284scorresponding to 0.32–2.75msd. The data are for
k=4.9 with t=3 scirclesd, 7 sdiamondsd, and 16sstarsd. Error bars
indicate statistical fluctuations over three experiments, and do not
include variations ink or sp. The solid line shows the classical
scaling function of Eq.s12d. The dash-dotted line shows the scaling
function from Eq. s8d svalid for the quantum resonancesd for
comparison.
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atomic ensemble. This scaling of the resonant peaks is uni-
versal, in the sense that it reduces the dependence from all
the system’s parameters to just one combination of such vari-
ables. Furthermore, the scaling theory works in principle for
arbitrary initial momentum distributions. In particular, it is
valid for the experimentally relevant uniformly distributed
quasimomenta at the fundamental quantum resonances of the
kicked atoms. In the classical limit of vanishing kicking pe-
riod, the dependence on quasimomentum, as an intrinsic
quantum variable, disappears entirely, leading to a simpler
version of the scaling law. The discussed scaling of the ex-
perimental data offers one the possibility to clearly observe
the quantum and “classical” resonant peak structures over
more than one order of magnitude in the scaling variable.
Furthermore, its sensitive dependence on the system’s pa-
rameters may be useful for high-precision calibration and
measurements.

It will be of great interest to clarify whether a similar
universal scaling law can be found for other time-dependent
systems, such as the close-to-resonant dynamics of the
kicked harmonic oscillatorf26g, or the driven Harper model
f27,28g. As with the atom-optics kicked rotor, both of the
latter systems may be readily realized in laboratory experi-
mentsf29,30g.
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Abstract
We examine the effect of the initial atomic momentum distribution on the
dynamics of the atom-optical realization of the quantum kicked rotor. The
atoms are kicked by a pulsed optical lattice, the periodicity of which implies
that quasi-momentum is conserved in the transport problem. We study and
compare experimentally and theoretically two resonant limits of the kicked
rotor: in the vicinity of the quantum resonances and in the semiclassical limit
of the vanishing kicking period. It is found that for the same experimental
distribution of quasi-momenta, significant deviations from the kicked rotor
model are induced close to quantum resonance, while close to the classical
resonance (i.e. for a small kicking period) the effect of the quasi-momentum
vanishes.

PACS numbers: 42.50.Vk, 32.80.Qk, 05.45.Mt, 05.60.−k

1. Introduction

The past decade has brought fascinating advances in the preparation and control of single
particles [1]. Atoms can now be cooled down to a level where the effect of a single photon
recoil can be measured experimentally [2]. Single atom dynamics can thus be controlled with
a high precision by introducing an external field in the form of an optical potential [3, 4].

A particular example of such a system, the atom-optics kicked rotor, has shed light
on interesting and paradigmatic quantum effects including dynamical localization [3] and
quantum resonance [5–8]. In all such experiments, control of the initial conditions in phase
space is essential. In particular, the impact of different momentum classes on the dynamics
near quantum resonance was explained recently [9, 10]. The atoms are kicked by a spatially
periodic potential which is pulsed on at a certain frequency. As dictated by the standard
Bloch theory, the spatial periodicity implies that the quasi-momentum for the centre-of-mass
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motion of each atom is conserved during the evolution. Quasi-momentum is an intrinsically
quantum variable which arises due to the translational symmetry of the problem [11]. Since
experiments with cold atoms typically use a broad, continuous distribution of quasi-momenta,
the experimental data represent a result averaged over this initial distribution [9, 10, 12, 13].

The averaging over different momentum classes leads to significant deviations from the
standard δ-kicked rotor model [14, 15] which typically does not consider the additional control
parameter introduced by the quasi-momentum. Such deviations have been experimentally
observed, in particular at quantum resonance [9] and have been explained theoretically by
means of a new pseudo-classical model introduced in [16] and applied to the usual δ-kicked
rotor in [10, 17].

In this paper, we use the same theoretical formalism to expose the innate similarities
and surprising differences between the limit in which the exact quantum resonant driving is
approached and the limit of vanishing kicking period. The former limit can be described using
the pseudo-classical model from [10, 17] (with an effective Planck constant defined by the
detuning from exact resonance), whilst the latter limit is the usual classical limit of the kicked
rotor (with the scaled kicking period as the effective Planck constant). Our theoretical analysis
of the experimental data focuses on the role of the quasi-momentum, which proves to be quite
different in the two ‘classical’ limits studied here.

2. The atom-optics kicked rotor

We consider a system of caesium atoms in an optical standing wave (with wave number kL)
which is δ-pulsed with period τ . For sufficiently large detuning from the atomic absorption
line, the Hamiltonian for an atom is given by [18]

H(t ′) = p2

2
+ k cos(z)

N∑
t=0

δ(t ′ − tτ ), (1)

where p is the atomic momentum in units of 2h̄kL (i.e., in units of two-photon recoils), z is
the atomic position in units of 2kL, t ′ is time and t is the kick number. The scaled kicking
period τ is defined by the equation τ = 8ERT/h̄, where ER = h̄2k2

L

/
2M is the recoil energy

(associated with the energy change of a caesium atom of mass M after emission of a photon
of wavelength λL = 2π/kL = 852 nm). The kicking strength of the system is given by
k = V0τ/h̄ where V0 is the maximum potential depth created by the optical standing wave
[3, 18].

Experimentally, momentum kicks are delivered to the atoms by an optical lattice which
is created by a 150 mW diode laser injection locked to a lower power feedback stabilized
source at 852 nm. Kicking laser powers of up to 30 mW were employed for detunings of
500 MHz from the 6S1/2(F = 4) → 6P3/2(F

′ = 5) transition of caesium. For the
experimental results presented in this paper, the average energy of the atomic ensemble
was measured after up to 20 kicks. To control the pulse timing, a custom-built programmable
pulse generator was employed to gate an acousto-optic modulator which controlled the amount
of kicking light reaching the atomic sample. Timing of the experiment was controlled by a
real-time, software based computer system with a latency on the order of 10 µs.

For the classical resonance experiments reported here, the kicking pulse width was 320 ns,
whilst for the quantum resonance results, a 480 ns pulse width was used. In the classical limit
of vanishing kicking period, the δ-kick approximation is violated in the experiment (although
for the small kick numbers and kicking strengths used here, our results do not show deviations
from the δ-kick theory [19–21]). As a consequence, it is possible to probe the dynamics at
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exact quantum resonance, but not at the exact classical limit, since the pulse period τ should
always exceed the pulse width to ensure a reliable approximation to δ-pulses.

The experimental sequence ran as follows: atoms were released from the magneto-optical
trap [2] and then kicked by a series of light pulses. A free expansion time of 12 ms was then
allowed followed by ‘freezing’ of the atomic motion in optical molasses and subsequent CCD
imaging of the resultant atomic cloud [8]. Mean energies are extracted from the raw data by
calculating the second moment of the experimentally measured momentum distribution of the
atoms’ centre-of-mass motion.

By exploiting the spatial periodicity of the Hamiltonian (1), the atomic dynamics along
the z-axis can be reduced to that of a rotor on a circle by Bloch’s theorem [10]. This introduces
the additional parameter β ∈ [0, 1) which represents the atomic quasi-momentum—a constant
of the motion by Bloch’s theorem. The fractional part of the physical momentum p in the units
given above corresponds to the quasi-momentum which is practically uniformly distributed
in the fundamental Brillouin zone defined by the periodic kick potential [10]. The one-kick
propagation operator for a given atom is [10]

Ûβ = e−ik cos(θ̂ )e−iτ(N̂ +β)2/2, (2)

where θ = x mod(2π), and N̂ = −id/dθ is the angular momentum operator with periodic
boundary conditions.

3. Unifying classical description of quantum and classical resonance

The quantum dynamics in the two semiclassical limits studied here is approximated by the
following map [12, 17]:

It+1 = It + k̃ sin(θt+1), θt+1 = θt ± It + �π + τβ mod(2π), (3)

where τ = 2π� + ε and k̃ = k|ε|, and � = 0, 1, 2 (± is the sign of ε, and for � = 0 only
+ is allowed). The above map is similar to the well-studied standard map [22] augmented
by the term τβ which accounts for the experimental quasi-momentum distribution. Changing
variables to J = ±I + �π + τβ, ϑ = θ + π(1 − sign(ε))/2 formally gives the true standard
map

Jt+1 = Jt + k̃ sin(ϑt+1), ϑt+1 = ϑt + Jt . (4)

The mean energy is calculated using the formula

〈Et,ε〉 = ε−2
〈
I 2
t

〉 /
2 = ε−2

〈
δJ 2

t

〉 /
2, δJt = Jt − J0. (5)

Although the map (4) is not explicitly dependent on the additional β-dependent term, we note
that the initial conditions in momentum space are given by J0 = ±I0 + π� + τβ, i.e., they are
defined by the initial choice of quasi-momentum β.

Two a priori quite different regimes are described by either of the two maps (3) or (4):
firstly that for � = 0 and τ → 0, and secondly that for � > 0, τ → 2π�, for the integer �. In
the case where � = 0 we have ε = τ and J = τp, with the physical momentum p in units
of two-photon recoils [12]. For the integer � > 0, the map in (4) approximates the dynamics
near the fundamental quantum resonances occurring at τ = 2π�. As shown in [10, 17], the
one-kick propagator (2) may be rewritten in the form

Ûβ(t) = e−ik̃ cos(θ̂ )/|ε| e−iĤβ/|ε|, (6)

where ε = τ − 2π�, k̃ = |ε| k, Î = |ε| N̂ and Ĥ β = 1
2 sign(ε)Î 2 + Î (π� + τβ). Considering

|ε| to be an effective Planck constant, we see that the map given in equation (3) approximates
the dynamics induced by (2) in both classical limits for ε → 0.
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Figure 1. A phase-space portrait generated by the map (4) for k = 2.5 and ε = 0.05. The initial
angles θ0 were uniformly distributed in [0, 2π) whilst the initial momenta J0 were taken from
uniform distributions on the two different intervals [0, ε) (a) and [π, 3π + ε) (b) as shown by the
arrows in both figures. Note that the phase space is 2π -periodic along the J -axis.

Figure 1 demonstrates the essential difference between the two semiclassical limits studied
here. In the case where � = 0 (see figure 1(a)), a uniform quasi-momentum distribution on
[0, 1) leads to the initial momenta J0 being uniformly distributed on the interval [0, σpε),
where σp is the characteristic width of the initial atomic momentum distribution in units of
two-photon recoils. Therefore, for σp ∼ 1, the initial momenta lie entirely within the region
of phase space dominated by the nonlinear resonance island of the standard map. For � = 1
(see figure 1(b)), and the same uniform quasi-momentum distribution, the initial momenta
populate the full unit cell [π, 3π) in the periodic phase space which encompasses not only the
nonlinear resonance island at J = 2π , but also regular ‘rotation’ motion beyond it. Therefore
the same experimental quasi-momentum distribution leads to different behaviour of the atomic
ensemble in the two limits of � = 0 and � �= 0.

On the basis of the maps (3) and (4), useful results were previously derived for the
analysis of experimental data [12, 17]. These results may be summarized by the following
single-parameter scaling functions which differ for the two limits of interest here. For � = 0,
the scaling function of the mean energy close to ε = τ = 0 is given by

〈Et,τ 〉
〈Et,0〉 ≈ Rcl(x) ≡ 2

x2
Gcl(x), (7)

with x = t
√

k |ε| and the function Gcl defined by

Gcl(x) ≈ 1

2π

∫ 2π

0
dθ0 J (x, θ0, J0 = 0)2, (8)

where J ≡ J/
√

k̃ is the momentum of the pendulum approximation to the dynamics generated
by the map of equation (3) as defined previously in [10, 17].

For � > 0, we have instead close to ε = 0

〈Et,ε〉
〈Et,0〉 ≈ Rq(x) ≡ 1 − �0(x) +

4

πx
Gq(x), (9)
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Figure 2. The ratio Gcl/Gq (solid line) is shown along with the functions Gcl (dashed line) and
Gq (dotted line) themselves. The ratio saturates to a constant for a large x after initial oscillations,
as the classical and quantum resonance peaks decay at the same rate. The differences between the
two scaling functions arise due to the different initial conditions in phase space in the classical and
ε-classical limits (see figure 1).

with different functions �0 and Gq . In this case, we have

Gq(x) ≈ 1

8π

∫ 2π

0
dθ0

∫ 2

−2
dJ0 J (x, θ0, J0)

2. (10)

The difference between the two scaling functions Gcl and Gq may be seen in figure 2 where
the ratio of the two functions is plotted along with the functions themselves. Although the
functions have the same slope for small x, their forms differ in general and for a large x, the
ratio saturates to a constant less than 1. The difference in the saturation values of the two G
functions arises from the different initial conditions in the phase space of map (3) which apply
in the classical and ε-classical limits.

In the following section, we compare experimental data for the two different cases � = 0
and � = 1, 2 guided by the theoretical results reviewed in the present section.

4. Experimental versus theoretical results

In figure 3, experimentally measured energies close to the classical and quantum resonances
are plotted against the kick number. In both plots of this figure, the observed oscillatory
behaviour may be understood in terms of the pendulum approximation to the dynamics of the
map (4) as embodied by the functions Gcl(x) or Gq(x) [10, 12, 17, 23]. For small times (t < 5
for the data in figure 3(a)), the energy growth near the classical resonance is ballistic, i.e., the
energy grows quadratically in time.

We note that ballistic motion is also predicted to occur at quantum resonance for an
atomic ensemble with a very narrow initial momentum distribution [24, 25]. But the broad
initial momentum distribution present in cold atom experiments as discussed here, typically
leads to a uniform distribution of all possible values of quasi-momentum [9, 10]. In terms
of the classical model reviewed in the previous section, these experimental initial conditions
correspond to initial momenta distributed over the full phase-space cell, as shown in figure 1(b).
The majority of the atoms obey rotational motion with almost constant energies (see
figure 1(b)), whilst only a small sub-class follows the motion inside the nonlinear resonance
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Figure 3. Experimental measurements of the mean energy as a function of kick number for k ≈ 5,
taken for small values of the detuning ε in the limits τ → 0 (a) and ε → 0 for � = 1 (b). In
particular, we have (a) ε = 0.033 (circles) and ε ≈ 0.08 (squares), and (b) |ε| � 0.005 (circles)
and ε ≈ 0.08 (squares), along with classical simulations using the map (4) (dashed lines). We
note the oscillatory nature of the energy curve for finite detuning ε, which may be viewed as a
consequence of the dynamics represented by the phase spaces in figure 1. The inset in (a) shows
a detailed experimental scan of the classical resonance peak as τ = ε → 0, for k ≈ 2.5 and after
t = 5 kicks.

island, which for a finite time (depending on the detuning ε) supports ballistic energy growth
[10, 17].

The connection between the dynamics in the classical limit and that for a quantum particle
starting from a momentum eigenstate is found in the term τβ in the map (3). We see that this
term may become zero in either of the following limits: τ → 0 or β → 0. In both cases, the
effect is to regain ballistic energy growth. The inset in figure 3(a) shows a detailed scan of
the mean energy near the classical resonance as τ → 0 which emphasizes the rapid energy
growth seen in this regime associated with the ballistic classical resonance.

Figure 3(b) shows mean-energy measurements at exact quantum resonance (circles)
and for ε ≈ 0.08 along with ε-classical simulation results (dashed lines). For the same
experimental momentum distribution, only linear mean-energy growth is predicted to occur at
exact quantum resonance. Additionally, the data shown here demonstrate a practical problem
which arises from the uniform distribution of quasi-momenta over the first Brillouin zone.
Because only the quasi-momentum classes β ≈ 1/2 (for � = 1) and β ≈ 0, 1/2 (for � = 2)
experience quantum resonant dynamics [9, 10, 15], only a small number of resonant atoms are
responsible for the linear growth of the ensemble mean energy. The measurement of the mean
energy at exact quantum resonance is therefore experimentally very challenging since the
signal-to-noise ratio is low for the small population of resonant atoms [5, 7, 9, 10]. This is the
most likely cause of the apparent saturation of energy growth in the quantum resonance case as
seen in figure 3(b) where the experimental mean energy (circles) noticeably deviates from the
expected linear growth (dashed line). Indeed, an inspection of the experimental momentum
distributions for the on-resonance data reveals that the characteristic ballistic wings associated
with resonant atoms [9] are not resolved for kick numbers greater than about 6 in these
experiments.

By comparison with the data in figure 3(a) for the classical resonance, we see that, even
though the maximum energy is much larger than that measured at quantum resonance for the
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Figure 4. Rescaled experimental mean energies near classical resonance (circles), and the quantum
resonances at τ = 2π and 4π (squares). In particular, the circles for x � 3 are rescaled data from
the inset of figure 3(a). The mean energies have been scaled by the theoretical peak height of the
resonances, i.e., by k2t2/4 for the classical resonance [12] and k2t/4 for the quantum resonance
data [10, 17]. The scaling functions for the classical (7) and quantum resonances (9) are shown as
a solid line and a dashed line, respectively. The narrower width of the classical resonance peak is
immediately apparent. This figure also shows the utility of the scaling function in the comparison
of data which is meaningful in the scaled units even for a wide range of the three parameters: here
for k ≈ 2.5 and k ≈ 5 (� = 0) and k = 5 (� = 1, 2), 0.033 � ε � 0.1 (� = 0) and 0.03 � ε < 0.3
(� = 1, 2) and 3 � t � 16. Error bars represent statistical fluctuations over three independent
experiments.

same number of kicks, the initial quadratic mean-energy growth can easily be resolved since
practically the entire atomic ensemble experiences resonant energy growth in this regime. This
is precisely because as τ tends to zero, the β dependence of the map (3) is removed as the
term τβ vanishes at the same rate as τ .

Finally, figure 4 shows rescaled data from experimental measurements for various
experimental parameters with � = 0 (circles) and � = 1, 2 (squares). The data taken in the
classical case (� = 0) fall on or close to the classical scaling function (solid line in figure 3)
and that, likewise, the data taken for � = 1, 2 falls on or near the quantum scaling curve
(dash-dotted line). The narrower nature of the classical resonance peak is emphasized by this
plot. The dense set of points (circles) shown for x � 3 in the classical case come from the data
shown in the inset of figure 3(a). These data provide a detailed confirmation of the classical
scaling function’s validity for smaller values of x than previously observed experimentally
[23]. Somewhat surprisingly, it is found that the δ-kicked rotor theory holds even in a regime
of x for which the spacing between kicking pulses is comparable to the width of the pulses
themselves [12]. The smallest value of the kicking period τ for which the δ-kicked model
remained valid in these experiments was τ = 0.033 which, for a kicking strength k ≈ 5 and
t = 5, corresponds to x ≈ 2. For the larger x, the data points show more scatter because of
systematic fluctuations in the initial momentum spread and the difficulty in observing the peak
very close to resonance for a larger number of kicks [23].

5. Conclusion

We have demonstrated the effect of averaging over a uniform quasi-momentum distribution in
two different semiclassical limits of the atom-optics kicked rotor. For the same experimental
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quasi-momentum distribution, the true classical limit gives rise to ballistic energy growth
whereas in the pseudo-classical limit approximating quantum resonance only linear growth
occurs.

This difference is explained by considering the inclusion of the quasi-momentum-
dependent term τβ in the theoretical description. If this term approaches zero, which may be
accomplished either by performing the classical limit τ → 0 or starting with a very narrow
momentum distribution such as that provided by a Bose–Einstein condensate [25], ballistic
energy growth is recovered. However, for standard atom-optics kicked rotor experiments
using cold atoms only linear energy growth is predicted at quantum resonance since the
quasi-momentum β is uniformly distributed in the entire Brillouin zone.

The classical theory of section 3 of the near resonant dynamics thus unifies the description
of quantum and classical resonance behaviour of the atom-optics kicked rotor, and is elegantly
summarized by two classical one-parameter scaling laws for the classical and quantum
resonance peaks. These laws are very useful for a detailed analysis of experimental results in
regimes in which measurements are limited by the signal-to-noise ratio.
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We present detailed numerical results on the dynamics of a Bose-Einstein condensate in a tilted periodic
optical lattice over many Bloch periods. We show that an increasing atom-atom interaction systematically
affects coherent tunneling, and eventually destroys the resonant tunneling peaks.

DOI: 10.1103/PhysRevA.72.063610 PACS number�s�: 03.75.Lm, 03.65.Xp, 05.60.Gg

Experiments with cold and ultracold atoms made it pos-
sible in the last decade to prepare and control the center-of-
mass motion of atoms with unprecedented precision. Many
toy models of either many-body solid state physics �1–5� or
of simple Hamiltonian systems, whose complexity arises
from an external driving force �6�, were realized with the
exceptional control offered by static or time-dependent opti-
cal potentials.

Particularly Bose-Einstein condensates �BECs� whose ini-
tial momentum spread can be adjusted in width and absolute
position have proved to be an extremely helpful experimen-
tal tool �3,4,7–9�. In addition, a BEC offers interesting new
features originating from the intrinsic interactions between
the atoms. Examples of such effects are new quantum phases
�10�, solitonlike motion �11�, the occurrence of energetic or
dynamical instabilities in condensates �7,9,12,13�, or the de-
cay and subsequent revival of Bloch oscillations �BOs� �14�.

We focus on the evolution of a BEC loaded into a one-
dimensional lattice and subjected to an additional static force
F, which is most easily realized and controlled by accelerat-
ing the optical lattice �1,3�. In previous experiments, a BEC
was accelerated to allow for a single crossing of the Brillouin
zone �BZ�, and two effects were observed: for large accel-
erations, an enhanced tunneling probability from the ground
state band to the first excited band due to the atom-atom
interaction was measured �3,8�. Secondly, for smaller accel-
erations �where tunneling is negligible� signatures of a dy-
namical instability in the BEC were observed �9,15�. By con-
trast, here we investigate the dynamics of a BEC performing
many Bloch oscillations �BO�, and we ask ourselves how the
atom-atom interaction affects tunneling for a sequence of BZ
crossings. In particular, we scan F to study the impact of the
atom-atom interaction on resonantly enhanced tunneling
�RET�, for which the standard Landau-Zener prediction is
modified even in the absence of interactions �16�. The RET
leads to a faster decay of the Wannier states trapped in the
potential wells. With the survival probability and the recur-
rence probability �see Eqs. �4� and �6� below� we present two
consistent measures for the nonlinear RET which define clear
experimental signatures of the destruction of the coherent
tunneling process inside the periodic potential.

If we neglect interactions for a moment, our system will
be described by the Hamiltonian

H = −
�2

2M

d2

dx2 + V sin2��x

dL
� + Fx . �1�

Here dL is the spatial period of the optical lattice with maxi-
mal amplitude V, and M the atomic mass. Equation �1� de-
fines the well-known Wannier-Stark problem, which gives
rise to BO with period TBloch=h /dLF �h is Planck’s constant�.
If tunneling is small, we can view the system as moving at a
constant speed in momentum space within the fundamental
BZ. At the zone edge, most of the wave packet is reflected
�giving rise to BO� while a small part can tunnel across the
first band gap to the next higher-lying energy band and then
escape quickly by successive tunneling events across the
smaller �higher� band gaps. Landau-Zener theory predicts a
decay rate �16�

��F� � Fe−b/F, �2�

where b is proportional to the square of the energy gaps.
Equation �2� is modified by RET which occurs when two
Wannier-Stark levels in neighboring potential wells are
coupled strongly due to their accidental degeneracy. The
RET results in pronounced peaks in the tunneling rates, e.g.,
as a function of 1/F, on top of the global exponential decay
described by Eq. �2� �16�. In this paper we investigate the
impact of the effective shift of the Wannier-Stark levels by a
nonlinear interaction term.

For the linear problem �1�, the decay rates have been mea-
sured previously in the regime of short lifetimes in the
ground state band �of the order of 100 �s�, where ��F� is
essentially smooth �17�. Since RET is a coherent quantum
effect, the peaks should be sensitively affected by the atom-
atom interaction, which can be varied experimentally by
changing either the density of the BEC or through the atom-
atom scattering potential via a Feshbach resonance �18�. Our
results are a consequence of many sequential Landau-Zener
events, and they show the destruction of a RET peak with
increasing interaction strength, in a regime which is experi-
mentally accessible.

We use a fully 3D Gross-Pitaevskii equation �GPE� �19�
to describe the temporal evolution of a BEC which is subject
to realistic potentials
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i�
�

�t
��r�,t� = �−

�2

2M
�2 +

1

2
M��x

2x2 + �r
2�2� + V sin2��x

dL
�

+ Fx + gN���r�,t��2	��r�,t� . �3�

��r� , t� represents the condensate wave function, and the fre-
quencies �x and �r characterize the longitudinal and trans-
verse harmonic confinement �here with cylindrical symmetry
�=
y2+z2�. We fixed dL=1.56 �m and V /ER=5 for our
computations, with the recoil energy ER= pR

2 /2M for
pR=�� /dL, and the recoil period TR=h /ER. The above val-
ues for dL and V were realized in the experiments reported in
Refs. �3,8,9� based on two laser beams propagating at an
angle different from �. In Eq. �3�, the nonlinear coupling
constant is given by g=4��2as /M, where as is the s-wave
scattering length and N the number of atoms in the BEC
�19,20�. The dimensionless nonlinearity C=gn0 / �8ER� is
computed from the peak density of the initial state of the
condensate, with C=0.027–0.31 for the experimentally in-
vestigated range of Ref. �3�, and with C=0.5 reached in Ref.
�21�. Here we focus on C	0, but report briefly also on at-
tractive interactions with C
0. The latter case leads to a
fundamentally different behavior of the system because
the collapse of the condensate introduces an additional time
scale, which for experimentally relevant parameters is of
the order of 10 msec �18,22� �slightly longer than
TBloch=1.8–3.0 msec here�.

The GPE �3� is numerically integrated using finite differ-
ence propagation, adapted by a predictor-corrector estimate
to reliably evaluate the nonlinear interaction �19�. Since our
system is essentially the problem of a constantly accelerated
particle for the part of the wave function which has tunneled
out of the first BZ already, one must be careful with the
application of absorbing boundary conditions or complex co-
ordinate methods �23,24�. To avoid any spurious effects due
to the fast spreading, we use a large numerical basis. In this
way, we fully cover the 3D expansion of the entire wave
packet, including its tunneled tail, without the use of non-
Hermitian potentials. The initial state propagated by Eq. �3�
is the relaxed condensate wave function, adiabatically loaded
into the confining potential given by the harmonic trap and
the optical lattice �with F=0�. Approximate analytic forms of
the relaxed state are found, e.g., in Ref. �25�, but we used an
imaginary time propagation to reliably compute the initial
state for C	0.

The linear decay rates for noninteracting atoms in the op-
tical lattice are computed from the spectrum of the 1D
Wannier-Stark problem of Eq. �1� using, e.g., the method of
Ref. �16�. Those linear rates are plotted in Fig. 1. The
maxima in the rates occur when FdLm �with m integer� is
close to the difference between the first two energy bands
�averaged over the BZ� of the F=0 problem �16�. The actual
peaks are slightly shifted with respect to the above estimate
�marked by arrows in the inset of Fig. 1�, owing to a field-
induced level shift �16�.

Experimentally, the most easily measurable quantity is the
momentum distribution of the BEC obtained from a free ex-
pansion after the evolution inside the lattice. From the mo-

mentum distribution we determine the survival probability
by projection of the evolved state ��p� , t� onto the support of
the initial state

Psur�t� � �
−pc

pc

dpx�� dpydpz���p� ,t��2� , �4�

where pc�3pR is a good choice since three momentum
peaks are initially significantly populated, corresponding to
−2pR, 0, 2pR �3,25�.

Figure 2 shows the initial population in momentum space
�inset in �a�� as compared with the population after 10 BO
periods, for both the linear and the nonlinear case. The in-
crease of C	0 has two effects: firstly, it enhances the tun-
neling for the first few crossings of the BZ. Secondly, it
scrambles the out-coupled part of the wave function �see Fig.
2 and its complement in Fig. 4 below�, as previously ob-
served in Refs. �2,3,5�. The change in the momentum distri-
butions after various Landau-Zener events is a manifestation
of the intrinsic instability of the nonlinear GPE dynamics
�9,12�.

Instead of studying the details of the distributions shown
in Fig. 2, we will focus on the temporal decay of the survival
probability in the following. Figure 3 presents Psur�t�, which
for the linear case has an exponential form �apart from the
t→0 limit �26��

Psur�t�  e−t�/�, �5�

with the characteristic exponent �. The temporal behavior of
Psur depends significantly on C. For C= ±0.31, we observe
clear deviations from a purely exponential decay, as present
for small C. A repulsive nonlinearity initially enhances the
tunneling more than after about five crossings of the BZ �see

FIG. 1. �Color online� Tunneling rates obtained by exponential
fits to data of Psur�t� as the solid-line fits in Fig. 3. Here the peak in
the box in the inset is scanned locally, while globally the rates
follow an exponential law �dashed line in the inset�. C=−0.31 �dia-
monds�, C=−0.065 �crosses�, C=0 �solid line�, C=0.027 �pyra-
mids�, C=0.065 �stars�, C=0.12 �circles�, C=0.31 �squares�. The
“error” bars interpolate different exponential fits such as the dot-
dashed ones in Fig. 3. The arrows in the inset mark the peak posi-
tions as predicted by the simple argument stated in the text.
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fits to data in Fig. 3�. This deviation from the monoexponen-
tial behavior means that the tunneling events occurring at
different integer multiples of the Bloch period are correlated
by the presence of the nonlinearity. Since the remaining den-
sity becomes smaller, the impact of the nonlinearity becomes
less. The result is that the rate � is defined only locally in
time, and its value systematically decreases as time in-
creases.

An attractive interaction can stabilize the system at
the RET peak, which is shown for C=−0.31 in Fig. 3�b�.
For optimal comparison, we chose the same initial state
�for C= +0.31� which then was evolved for F�0 with
C=−0.31. Such a scenario could be realized by a sudden

change of the sign of the scattering length through a Fesh-
bach resonance �18�. This result is consistent with studies of
simpler models, where a resonance state can be stabilized at
system-specific strengths of the nonlinearity �24,27�.

The impact of the nonlinearity on the dynamical evolution
of the “closed” system confined to the fundamental BZ can
be studied with the help of the recurrence probability �17�,
defined by the autocorrelation

Prec�t� � ����t����t = 0���2. �6�

The BO manifest themselves as the periodic oscillations in
Prec�t� plotted in Fig. 4. These oscillations are less and less
pronounced with increasing C, in much the same way as the
momentum peaks are washed out when the band edge is
crossed in the regime of instability �9�. In contrast to the
survival probability, Prec is a phase sensitive measure, and
therefore it shows—in addition to the temporal decay—the
dephasing of the BO due to the nonlinearity. For C=0, the
recurrence maxima decay in time with the same rate as
Psur�t�, which offers an alternative method for extracting �.
For C�0, Prec can be integrated over time, and the rates are
extractable by the approximate proportionality between the
integrated area and the inverse decay rate �recalling that
�dtf�t�exp�−t��1/� to leading order, for a periodic func-
tion f�t��. The latter approach works because we can deter-
mine the linear rate from a direct fit to Prec and then compare
the ratio of the linear and the nonlinear area �denoted by A0
and AC�. This rough estimate �C�0A0 /AC agrees within
25% with the rate extracted from the fits to the data of Fig. 3.
The estimate could be improved if we knew the analytic
form of the function f�t�, and it breaks down for large C,
when the periodic oscillations in Prec are destroyed.

Having introduced two methods to extract the tunneling
rates, we scan the parameter F across a RET peak of the
globally exponential curve ��1/F� �see Fig. 1�. The scanned
range in F corresponds to values of lattice accelerations be-
tween 0.99 and 1.65 ms−2, which are standard in experiments
�3,9�.

FIG. 2. Momentum distributions after 10 BOs, for
TR /TBloch=1.428. C=0 �dotted� compared with �a� C=0.027 �full
line; the inset shows the corresponding t=0 distribution�, �b�
C=0.065, �c� C=0.12, and �d� C=0.31.

FIG. 3. �Color online� Psur�t� for �a� TR /TBloch=1.428 and �b�
1.613 �the peak maximum in Fig. 1�. C is scanned from −0.31
�diamonds in �b� only�, 0 �solid line�, 0.027 �dotted line�, 0.065
�dashed line�, 0.12 �circles�, to 0.31 �squares�. The gray/red solid
lines show global exponential fits to the C=0.31 data, while the
dot-dashed lines show exponential fits for small and large t, respec-
tively. From those fits, the rates in Fig. 1 and their systematical
variation in time are obtained. The step-like structures reflect the
periodic BO and are correlated with the dephased oscillations in
Fig. 4.

FIG. 4. �Color online� Prec�t� for the data shown in Fig. 3�b�
with C=0 �circles�, 0.027 �dashed�, 0.12 �thin line�, and 0.31 �thick
line�. The dot-dashed line presents an exponential fit to the maxima
of the C=0 data.
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A repulsive nonlinearity particularly affects the wings of
the peak and, for small C, much less the peak maximum. The
global increase of � with increasing C is qualitatively pre-
dicted in Ref. �28�, with enhanced single Landau-Zener
crossing probabilities induced by the effective reduction of
the energy gap due to the nonlinearity. The left and right-
most points in Fig. 1 are in the regime where an amended
version of Eq. �2� indeed applies �28�, and here � /F is ap-
proximately proportional to C. However, near the peak, the
rates do not follow a simple scaling law as a function of C,
and the argumentation of Ref. �28� does not apply.

For C
0 we also observe the destruction of the RET
peak. For C=−0.065, the BEC clearly stabilizes in the po-
tential wells, whilst for C=−0.31 the situation is more com-
plicated �see Fig. 1�. The precise dynamics of the system is
governed by the two separate time scales for tunneling and
collapse, which strongly depend on parameters in the sensi-
tive RET regime.

In an experiment, �x can either be set to zero or decreased
to �x /2��1 Hz to realize a quasi-1D nonlinear Wannier-
Stark problem. We verified that letting �x tend to zero for the
evolution with F�0, or applying a small finite �x gives the
same results for the BO cycles studied here. Furthermore, for
0
C�0.05, using the renormalized nonlinearity of Ref.
�20� we observed that a 1D version of Eq. �3� reproduces
well the 3D data. If �C� is larger, the nonlinearity couples the

longitudinal and transverse degrees of freedom, which af-
fects the dynamics of a real BEC in a nontrivial way �19�.
The 1D computations are feasible up to 100 Bloch periods,
and this would allow one to extract the tunneling rates more
reliably. The effect of the nonlinearity is, however, hardly
visible for 0
C
0.05, and quantitative predictions for a
broad range of C relied on 3D computations.

To summarize, we observed and quantified the deforma-
tion and destruction of the RET peaks due to interactions in
a BEC in an accelerated optical lattice. Our results comple-
ment ongoing studies of interaction-induced processes such
as dynamical instabilities or the decay and subsequent re-
vival of BO. In the regime of small nonlinearity, where dy-
namical instabilities are not fully developed, the survival and
recurrence probabilities experience an exponential decay
modified by the condensate nonlinearity. The temporal decay
of these observables remains a useful indicator also for large
nonlinearity, even if the resonant structure in the tunneling
rate is washed out.
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Abstract

We investigate the parametric fluctuations in the quantum survival probability

of an open version of the δ-kicked rotor model in the deep quantum regime.

Spectral arguments (Guarneri I and Terraneo M 2001 Phys. Rev. E 65

015203(R)) predict the existence of parametric fractal fluctuations owing to

the strong dynamical localization of the eigenstates of the kicked rotor. We

discuss the possibility of observing such dynamically-induced fractality in

the quantum survival probability as a function of the kicking period for the

atom-optics realization of the kicked rotor. The influence of the atoms’ initial

momentum distribution is studied as well as the dependence of the expected

fractal dimension onfinite-size effects of the experiment, such as finite detection

windows and short measurement times. Our results show that clear signatures

of fractality could be observed in experiments with cold atoms subjected

to periodically flashed optical lattices, which offer an excellent control on

interaction times and the initial atomic ensemble.

PACS numbers: 05.45.Mt, 42.50.Vk, 05.60.Gg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Experimentswith cold atoms nowadays offer unique possibilities for the study of single particle

motion and collective particle dynamics in tailored optical or magnetic potentials. The atomic

centre-of-mass motion can be prepared and controlled with unprecedented precision, what

allows experimentalists to realize and study many toy models of condensed matter physics

[1]. Since in experiments with cold atomic gases noise and perturbations can be driven to a

0305-4470/06/102477+15$30.00 © 2006 IOP Publishing Ltd Printed in the UK 2477
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minimum, which often is indeed negligible, such set-ups offer a great advantage with respect

to solid-state realizations.

In this paper, we discuss the possibility of observing sensitive quantum effects which

manifest in a fractal variation of a transport function with respect to a well-tunable control

parameter. Similar fractal fluctuations of the transmission probability across solid-state

samples have been measured recently [2] in systems whose underlying classical phase space

typically contains mixed regular-chaotic structures. Most features of these experiments can be

understood semiclassically as a consequence of the phase space topology [3–5]. However, the

precise origin of the observed fractal conductance fluctuations in these experiments is not yet

fully understood [6], and, in fact, various theoretical models [7, 8] predict fractal conductance

fluctuations for mesoscopic devices. Our aim is to design a concrete experimental scenario

in which parametric fractal fluctuations could be measured with high precision cold-atom

set-ups. In such experiments the cross-over between mixed and completely chaotic classical

dynamics can be scanned easily [9–11], and hence fractal transmission probabilities could be

measured in a regime where classical or semiclassical arguments do not apply.

As was shown by Guarneri and Terraneo [7], fractal fluctuations in the transmission

probability of a quantum scattering problem arise naturally as a consequence of the spectral

properties of the system. The two essential conditions on the spectrum are (i) a power-law

distribution of decay widths and (ii) uncorrelated real parts of the energy spectrum. Moreover,

various eigenstates have to contribute together to the decay, a fact which is expressed formally

by requiring that (iii) the average decay width is much larger than the mean level spacing.

Based on these conditions, the theory of [7] explained the occurrence of quantum fractal

fluctuations in the δ-kicked rotor model in the deep quantum realm [12], where semiclassical

arguments cannot explain the occurrence of fractality.

In this paper we study a similar dynamical situation as in [12], yet with important

modifications which fully account for the actual experimental realization of the kicked rotor.

Using either cold or ultracold atomic gases, the kicked rotor is realized by preparing a cloud

of atoms with a small spread of initial momenta, which is then subjected to a one-dimensional

optical lattice potential, flashed periodically in time [13]. Let us call kL the wave number

of the optical lattice, τ̃ the flashing period (‘kicking’ period), p̃ the momentum of the single

atom, x̃ its centre-of-mass position, V0 the maximum potential depth, and M is the atomic

mass. It is convenient to adopt rescaled units by noting that pR = h̄kL is the photon

recoil momentum and ER = (h̄kL)2/2M is the recoil energy [9, 11, 14]. So we define

p = p̃/2pR, x = x̃ · 2kL, τ = τ̃ · 8ER/h̄. The kicking strength of the lattice is expressed by

k = V0/(8ER). The Hamiltonian now reads in dimensionless units [15]

Ĥ (t ′) =
p2

2
+ k cos x

∞∑

t=1

δ(t ′ − tτ ). (1)

Owing to the δ-interaction of the potential with the atoms, the time evolution operator

between kicks can be explicitly written in a factorized form, extremely convenient for numeric

simulations. The derivation of the one-period evolution operator exploits the spatial periodicity

of the potential by Bloch’s theorem [11, 16]. This defines the quasimomentum β as a

constant of the motion, the value of which is the fractional part of the physical momentum

p in dimensionless units p = n + β(n ∈ N). Since β is a conserved quantum number,

p can be labelled using its integer part n only. The spatial coordinate is then substituted

by θ = xmod (2π) and the momentum operator by N̂ = −i∂/∂θ with periodic boundary

conditions. The one-kick propagation operator for a fixed quasimomentum β is thus given

by [16]

Ûβ = e−ik cos(θ̂ ) e−iτ(N̂+β)2/2. (2)
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In close analogy to the transport problem across a solid-state sample, we follow [12] to

define the quantum survival probability as the fraction of the atomic ensemble which stays

within a specified region of momenta while applying absorbing boundary conditions at the

‘sample’ edges. If we call ψ(n) the wave function in momentum space and n1 < n2 the edges

of the system, absorbing boundary conditions are implemented by the prescription ψ(n) ≡ 0

if n 6 n1 or n > n2. This truncation is carried out after each kick. This procedure mimics

the escape of atoms out of the spatial region where the dynamics induced by the Hamiltonian

(1) takes place. If we denote by P̂ the projection operator on the interval ]n1, n2[ the survival

probability after t kicks is

Psurv(τ ; t) = ‖(P̂Ûβ)tψ(n, 0; τ)‖2. (3)

We will show in the following that signatures of fractality in the survival probability could

be observed in modern atom-optical experiments, where the initial atomic ensemble has a

finite, non-zero width in momentum space. In contrast to the work of [12], where the initial

quasimomentum is scanned to arrive at the parametric observable Psurv(β), we investigate

the behaviour of Psurv(τ ) as a function of the best controllable parameter in the experiment,

namely the time τ which elapses between two successive kicks [10, 14, 17, 18].

After a brief review of the results of Guarneri and Terraneo [7] applied to the dynamically

localized kicked rotor (section 2), we discuss in section 3 our choices of the system parameters,

which are guided by the experimental possibilities as well as the conditions stated in [7]. Our

central results on the occurrence of fractal survival probabilities are presented for the limit of

long-interaction times (section 4) as well as for experimentally accessible initial momentum

distribution and interaction times (section 5). Section 6 finally concludes the paper.

2. Conditions for fractal fluctuations of the survival probability

Without a priori assumptions on the integrability or chaoticity properties of the classical

analogue of the quantum system of interest, Guarneri and Terraneo [7] showed that fractal

conductance fluctuations occur if certain conditions on the quantum spectrum of the open

system are fulfilled.

The first condition, (i) a power-law distribution of the decay widths, is indeed present in

the weakly opened quantum kicked rotor [19]. We verified this by diagonalizing the one-kick

evolution operator Ûβ , after representing it in the basis of momentum states. The matrix was

cut at the positions n1 and n2 to mimic the required absorbing boundary conditions.

If either of the two cut-offs (n1 or n2) is chosen sufficiently large, the shape of the wave

function in momentum space supports an exponential tail, independent of the evolution time

(after a short transit time ∝k2 at which dynamical localization has fully developed [20, 21]).

For such a situation in the localized regime, the probability density of decay widths was found

to be ρ(Ŵ) ∝ Ŵ−1 over more than 10 orders of magnitude in Ŵ, consistent with previous

studies [5, 19, 22–24]. If, on the other hand, n1 and n2 were decreased, dynamical localization

is gradually destroyed and the distribution deforms continuously, giving more weight to larger

widths and less to the very small ones. Such a deformation was observed in the analogous

context of ionization rates of microwave-driven hydrogen Rydberg atoms [24]. Our choice

of n1 and n2 represents a compromise between the maximum width of typical experimental

detection windows in momentum space and a guaranteed dynamically localized momentum

distribution over a substantial interval of momenta. In the next section, we state the precise

values of n1 and n2 which we investigated in this paper.

In the regime of strong dynamical localization, the quasienergy spectrum of the δ-kicked

rotor has a Poisson-like statistics [25]. Under the same conditions as stated above on the
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cut-off values n1 and n2, this property of the real parts of the quasienergy spectrum remains

even when the system is opened [22, 26]. Hence, also the second requirement for fractality

of [7], that (ii) the energy spectrum consists of uncorrelated sequences, is fulfilled in good

approximation for the opened δ-kicked rotor in the presence of dynamical localization.

The third condition stated in [7] is that the opening of the system is weak, but still sufficient

to guarantee that (iii) the average decay width is much larger than the mean level spacing.

For our choice of parameters and cut-off values n1 and n2, also this condition of overlapping

‘resonance peaks’ is fulfilled, as we verified numerically from the quasienergy spectrum of

the truncated matrix representation of Ûβ .

As exercised in [7], the conditions (i)–(iii) are sufficient to guarantee self-affine

fluctuations in the quantum survival probability, with a predicted fractal dimension Df which

is related to the exponent of the width distribution ρ(Ŵ) ∝ Ŵ−α by the following general

formula Df = 1 + α/2 ≈ 1.5 for α ≈ 1.

We repeat that parametric fractal fluctuations in the survival probability of dynamically

localized kicked rotor have already been found in [12], before their origin could be explained

in [7]. In this work, however, we scan a different parameter than the one used in [12], which

corresponded to quasimomentum. Here we use the kicking period τ as control parameter,

which can be much better controlled in state-of-the-art experiments [10, 14, 17, 18] than the

initial value of momentum [11, 18, 27–29]. On the other hand, the use of τ confronts us with

a new problem which is discussed in the following section.

3. Choice of parameters

3.1. Dynamical localization and classical chaos

For our analysis the value of the kicking strength k was chosen in the range 2–6, or

kτ = 2.8–8.4, going along with the transition from local to global chaos with increasing

k in this range [20, 21]. For our choice of kicking periods τ ≡ h̄eff > 1 [20, 21], classical

trajectories wandering about hierarchical structures of the classical phase space will not have a

quantum analogue because those structures are too small to be resolved by the wave function.

This means that the observed fluctuations indeed arise from quantum localization effects and

not from a semiclassical diffusion process.

3.2. The kicking period as control parameter

As reviewed in section 2, the sufficient conditions for the occurrence of fractal fluctuations

are fulfilled for choices of τ for which the δ-kicked rotor exhibits dynamically localized

behaviour. However, besides dynamical localization the quantum δ-kicked rotor supports

‘quantum resonant’ motion for specific values of τ and quasimomentum β [20, 30]. Our goal

is to avoid as much as possible the impact of the quantum resonances on the dynamics, such

that we can clearly identify the origin of the fractality of the survival probabilities. Since

the parameter we scanned is the kicking period τ , we verified that no signatures of quantum

resonances are found in the analysed small range of τ and for the applied, finite kick numbers.

The quantum kicked rotor shows ballistic growth of momentum, shortly a quantum

resonance, if

τ ∈ {4πs/q; s, q ∈ N}, β ∈ {m/2s, 0 6 m < s;m, s ∈ N}, (4)

and in these cases the time dependence of energy on the number of kicks is [20, 30]

E(t; τ) = ηt2 +O(t), with η ≃ (k/q)2q . (5)
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The denominator q in the rational factor of τ is called the order of the resonance. The set

containing all the resonances has zero Lebesgue measure in any interval of kicking periods,

but we do care about it because the dependence on τ of the survival probability Psurv(τ ; t) is

continuous for a fixed, finite number of kicks and the fluctuations we want to observe should

be caused by dynamical localization and not by quantum resonances. The preceding growth

estimate (5) establishes that a resonance is suppressed for a time that increases more than

exponentially with its order. One way to avoid contributions from the resonances is to use

a judicious choice of the range of τ and sampling grid G used for numerical simulations or

experiments. We chose

G = {τi = τ0 + i · δτ, i ∈ {0, . . . , m − 1}}, with m = 104, (6)

where the value of τ0/4π is a fraction of the golden mean:

τ0

4π
=
14

10

s

q
(
√
5− 1), s = 6142, q = 95 403,

s

q
−

1

4π(
√
5− 1)

< 10−11. (7)

For δτ = 9.98 × 10−7, also all other grid points in G are incommensurable to 4π up

to the used significant digits. We verified that the lowest order resonance in the range

[τmin, τmax] ≈ [1.4, 1.41] has q = 107 and that there is no crowding of resonances of order

q 6 2000 anywhere in this interval. Since we are not going to use times longer than 104

kicks in our simulations, and kicking strength of order unity, the quadratic term is suppressed

dramatically by the coefficient η in (5), for all occurring resonances q > 107. Finally, we

explicitly checked throughout the simulations that localization is at work by inspecting the

average energy and, for selected values of τ , the shape of the wave function in momentum

space, which shows a characteristic exponential decrease as explained below in section 3.3.

We also tried a quantitative approach for the choice of the grid along the τ axis. If some

resonance were important, any numerical selection method could detect it and prefer grids

with points away from the quantum resonances. Our method is based on the maximization in

the ‘grids space’ of a function F(G(τ0, δτ )) that adds a contribution from each resonance, up

to a maximum order, within a given interval, and this contribution is the larger the farther the

resonance position in τ (see equation (4)) is from the nearest point of the grid. This means that

a ‘higher mark’ is achieved by the grids whose points are away from the resonances. Formally

we defined

S = {4πs/q} ∩ {q 6 qmax} ∩ [τmin, τmax]
F(G(τ0, δτ )) =

∑

τr∈S

fr(min{|τr − τg|; τg ∈ G}),

f (0)
r (1τ) = 1τ ; f (1)

r (1τ) = 1τ 2; f (3)
r (1τ) = 1τ/qr .

Different definitions of the weight function fr(1τ) allow us to give more weight to resonances

with smaller q & 107 (i.e., to thosewhich influence the time evolution of awider neighbourhood
along the τ axis). Of course, this programme requires detailed knowledge of the dynamics near

the high-order resonances of q > 107, but this goal has not been theoretically accomplished

yet. None of our weight functions could resolve the presence of a resonance by a sharp

minimum when applied to a specific grid.

As a consequence of our choice of the interval of kicking periods and grid points in this

interval, no signatures of quantum resonances are expected to manifest for interaction times

of up to 104 kicks.
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3.3. The opening of the system

The probability decay arises from the open geometry of our system, which is implemented

mathematically by imposing absorbing boundary conditions in momentum space [12]. This

means that

ψ(n) ≡ 0 if n 6 n1 < 0 or n > n2 > 0.

The requirement on the boundaries is that they must guarantee dynamical localization (see

section 2). This happens if the wave function on the boundaries is ‘so’ small that the kicking

potential cannot spread a ‘substantial’ part of the wave function out of the boundaries.

The compatibility of the values of the parameters involved—t, k, n1, n2—is checked using

a consequence of the conditions that grant a fractional dimension of the graph of the survival

probability (see section 2). This consequence is that the square of the wave function decreases

with time keeping its shape constant, in the limited momentum lattice representing the open

system.

Let us recall that the typical shape of a one-dimensional localized wave function is

exponential, extending in a region intermediate between the support of the initial state in

momentum space and the absorbing boundary. In a linear-logarithmic plot the wave function

is (apart from erratic fluctuations around its mean decrease) a line in this intermediate region;

constancy of the shape means constancy of the steepness of the line. This criterion, which is in

fact a localization criterion, was used as a prerequisite for all our simulations. If the boundaries

are too far away from the initial state, the decay is extremely slow (a consequence of strong

dynamical localization). To avoid long waiting times (which are hard to reach experimentally),

asymmetric boundaries have been used, with 1 ≈ |n1| ≪ |n2|, and a statistical initial ensemble
of orbits at t = 0 with p = 0 and randomly distributed phases θ , i.e., ψ(n; t = 0) ≡ δn,0.

The wave function in momentum space ψ(n; t) then evolves to a shape which is asymmetric

with respect to n = 0. On the side where the cut-off is closer to the origin, the wave function

does not decrease exponentially, and in a linear-logarithmic plot the momentum distribution

shows a broad and smooth maximum, while at n = 0 a sharp peak would be present if we

choose 1 ≫ |n1| ≈ |n2|. Although the exponential decrease on the side of the larger cut-off
n2 is influenced by the opening at n1, the shape indeed remains constant for a sufficiently large

number of kicks in a range [n̄, n2[, where the precise value of n̄ ≈ 50, . . . , 100 depends on

the choice of n1.

4. Numerical results for fixed quasimomentum

The central result of this paper is the computation and fractal analysis of the survival probability

Psurv(τ ; t, β, k, n1, n2) as a function of τ , while the other parameters are fixed for each curve.

Our fractal analysis comprehends the computation of (a) the box-counting dimension [7, 31],

(b) a variational algorithm dimension [31], together with the calculation of the (c) correlations,

and (d) variances of the graph Psurv(τ ). Several curves are computed with different choices

of parameters. Our results are essentially independent of quasimomentum β and the applied

boundaries n1 and n2, whose choice is guided by the considerations stated in section 3.3.

Numerical algorithms, of course, do not distinguish the origin of the irregular profile of

a fractal graph. To make sure that the observed fractality is actually produced by quantum

effects, we verified that the increase of k in the range 2–6 (for τ & 1.4) is accompanied

by a monotonic increase of the fractal dimension. This is a signature of fractality owing to

dynamical localization of a weakly open quantum system. As k reaches a certain saturation

value ksat ≈ 4.5 (where kτ > 5 exceeds the global chaos border [20, 21] and quantum chaos is
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Figure 1. The survival probability as a function of τ for k = 5, β = 0, n1 = −1, n2 = 200 and

different kick numbers t. The magnification in the lower panel shows that, as t increases, self-affine

fluctuations occur on finer and finer scales in τ .

fully developed) we verified that the fractal dimension ceases its substantial growth observed

in the range k = 2–4.5.

At fixed kick number t, the survival probability is in principle a smooth function of τ on

a sufficiently small scale δτ . After a grid in τ is chosen, fractality is expected to increase

as t increases due to the appearance of fluctuations on finer and finer scales. A finer grid

requires a longer time to yield a ‘fractal graph’ down to finer scales, because it takes longer

for the fluctuations to appear on a scale smaller than the grid resolution. This scenario, where

fractality is generated by ‘dynamical intrusion’, is exemplified in figure 1 where the survival

probability in the localized regime is shown after various interaction times. The calculation

of the fractal dimension as a function of time shows a monotonic increase from unity up to a

value between 1.6 and 1.7.

We computed the survival probability Psurv(τ ) for various interaction times of up to 104

kicks. The latter value is much larger than the kick numbers of the order 100 typically realized

in state-of-the-art experiments [9, 32]. Nevertheless, the monotonic behaviour in time can

itself be used as an important signature of fractality. In figure 2(a)–(c) the profile of Psurv(τ ; t)

is shown along with a small, yet representative part of three successive magnifications over

two orders of magnitude in the kicking period τ . The real parts of the quasienergy spectrum

are presented in figure 2(d)–(f ) in the same ranges of τ . The visibly avoided crossings are a

consequence of quantum chaotic dynamics and their ubiquitous presence on different scales in

τ naturally compares to the self-affine fluctuations of the survival probability. This comparison

highlights the fact that the observed fractality is indeed a consequence of quantum chaos.

The box-counting plot in figure 3(a) shows the number of adjacent squaresN(δ) of width

δ along the τ axis necessary to box all points of the curve from figure 2(a). The scaling

law N(δ) ∼ δ−Df thus determines the fractal dimension Df . The variational method (b) is a

substantial refinement of the box-counting which typically gives more reliable results [31]. It

involves the division of the fully analysed τ interval in R subintervals, and the total variation of

the curve on groups of 2l adjacent subintervals is computed. The average of these quantities is

called VR(l) and the value of R which gives the best scaling of the form VR(l) ∼ l−Df is used.

In addition to the direct fractal analysis of Psurv(τ ), we computed the autocorrelations and the
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Figure 2. (a), (b), (c) show the survival probability of figure 1 after t = 104 kicks at different

magnifications. For the same parameters, (d), (e), (f ) show the real parts of the quasienergies as a

function of τ (obtained as the eigenphases of the evolution operator (2), which was represented in

the basis ofmomentum states as a finitematrix in the range n ∈ ]n1, n2[ and then diagonalized). We
see that the fluctuations on finer and finer scales are accompanied by ubiquitous avoided crossings

in the eigenvalue spectrum (note that for better visibility in (d)–(f ) only a small part of the full

spectral range [−π, π ] is shown).
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Figure 3. Fractal analysis of the survival probability from figure 2(a) using the following methods:

(a) box counting, (b) variational method, (c) correlations, (d) variances. The exponents of the fits

(solid lines) are Df = 1.6 (a) and 1.7 (b), acorr = 0.8 (c) and avar = 0.8 (d).

variances of the fluctuating graphs. The correlations C(1τ) = 〈Psurv(τ ) · Psurv(τ +1τ)〉τ are
shown in figure 3(c), the variances V (1τ) = 〈|Psurv(τ + 1τ) − Psurv(τ )|2〉τ in figure 3(d).
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Table 1. Fractal analysis of the survival probabilities after 104 kicks. Df,bc states to box counting

dimension, while Df,v is obtained via the variational method. acorr and avar are the exponents of

the fits to the correlations and variances, respectively. The estimated uncertainty derived from our

fits (over finite ranges between one and two orders of magnitude of the power-law scaling, as e.g.

in figure 3) is ±0.1 for the fractal dimensions as well as the exponents.

k β n1 n2 Df,bc Df,v acorr avar

2.0 0.0 −1 200 1.1 1.2 1.5 1.6

3.5 0.0 −1 200 1.3 1.4 1.0 1.0

4.0 0.0 −1 200 1.4 1.5 0.8 0.8

4.5 0.0 −1 200 1.5 1.6 0.8 0.8

5.0 0.0 −1 200 1.6 1.7 0.8 0.8

5.0 0.33 −1 200 1.6 1.7 0.8 0.8

5.0 0.38 −1 200 1.6 1.7 0.8 0.8

5.0 0.0 −1 250 1.6 1.7 0.8 0.7

5.0 0.0 −1 300 1.6 1.7 0.8 0.7

6.0 0.0 −1 300 1.6 1.7 0.8 0.7

Recalling the power-law scaling of ρ(Ŵ) (see section 2), we can check the following set of

relations:

ρ(Ŵ) ∼ Ŵ−α ⇒ Df ≈ 1 + α/2, (8)

and

C(1τ) − C(0) ∼ 1τ a, V (1τ) ∼ 1τ a with Df = 2− a/2,

in the presence of the numerically confirmed identity between the temporal decay exponent

of Psurv(t) ∝ t−a and the exponent of the correlations [12, 22]. These relations can be used

as alternative and independent routes to the determination of the fractal dimension Df . This

follows from the fractional Brownian motion nature of Psurv(τ ), which itself originates from

the spectral properties of the opened δ-kicked rotor [7], and which determines the 1τ → 0

properties of statistical quantities such as correlations and variances [33].

Table 1 reports the fractal dimensions which were obtained by the above four methods.

Df,bc and Df,v are the box counting and the variational dimension, respectively, while the

exponents of the correlations and variances are denoted as acorr and avar. The table highlights

the features already mentioned, i.e., the increase of Df for increasing the kicking strength k

and its basic independence of quasimomentum and the chosen cutoffs. The fractal dimension

saturates for k > ksat ' 4.5. We verified this saturation with a series of simulations conducted

for 13 values of k ∈ [2, 6] (not all shown in table 1).
The obtained four independentmethods of our fractal analysis (summarized in table 1) give

fairly consistent results with each other, with an estimated precision of ±0.1. A systematical
underestimation by box-counting method is observed, but also expected [31] when applying

it to curves with D ' 1.5.

For our choice of the grid in τ (see equation (6)) we noticed by inspecting the correlations

and variances that, for k ' 5, not all the fluctuations of the true curve are resolved by our

grid. This yielded systematically smaller and meaningless values for a, a problem which

does not affect the box counting and variational method that do not depend so critically upon

the values of neighbouring points of the analysed graph. Augmenting the resolution of our

grid in τ on a test interval [τ0, τ0 + 10
3δτ ] (cf equation (7) for the definition of τ0 and δτ )

we nevertheless were able to estimate the exponents of the correlations and the variances for

k > 5 and n2 > 250 shown in table 1.
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As a final test of our hypothesis that no trace of quantum resonances can be observed for

the chosen interval in τ and ourmaximal interaction time of 104 kicks, we analysed the survival

probability for k = 5 for two different quasimomenta β ≈ 1/3 and β = 0.378 942 469 767 714

(stated as 0.33 and 0.38, respectively, in table 1). The latter value was chosen as a fraction

of the golden mean to avoid any resonance condition in β (see equation (4)). As can be seen

from table 1, no dependence on quasimomentum is found for the dynamically localized regime

(k = 5).

In this section we presented a full-featured analysis of the fractal dimension of the survival

probability Psurv(τ ), studied the dependence on the parameters t and k and observed how these

dependences provide systematical signatures of fractality caused by quantum effects. We

found that Psurv(τ ) is indeed fractal over a substantial range of scales, and its dimension

can be estimated between 1.6 and 1.7. These numbers are stable when varying the initial

quasimomentum (which is a constant of the motion) and the selected locations of the cut-offs

n1 and n2. Having in mind that the numerical determination of the fractal dimension of a

graph bears some finite error (with estimated absolute uncertainty of about ±0.1 for the data
in table 1), our results are consistent with the fractal dimension 1.5 found for fixed τ = 1.4 in

the scan of quasimomentum [12] (figure 4 in [12] indeed seems to imply a similar systematic

error as our data for the fractal dimension). Even if we scanned a different parameter than

used in [12], the theory of [7] is independent of the chosen scanning variable, as long as the

spectral premises reviewed in section 2 are fulfilled. The tendency towards a slightly larger

fractal dimension in our data could, however, be related to the distribution of decay widths,

whose precise form is sensitive to the chosen values of n1 and n2 (see [24] and discussion in

section 2). Hence a slight deviation of our results from those of [12] is not surprising, since

the finite-size effect of the boundary conditions may be different depending on whether τ or

β is used as a scanning parameter [12].

5. Signatures of fractality for realistic experimental conditions

5.1. Experimental control of parameters

To realize an experiment where the fractal dimension of the survival probability, as studied in

the preceding section, can be measured, it is necessary to address some principal problems of

atom-optics kicked rotor experiments.

Control over the kicking strength k is granted with a precision of a few per cent [11, 14].

Anyway, table 1 tells us that a variation of k of the order up to 25% is not crucial. Time is one

of the best controlled experimental parameters, and this feature makes it an ideal candidate

for implementing an experiment to search for fractal fluctuations. Kicking periods between

about hundred nanoseconds and a few hundred microseconds are available, with a maximal

precision of a few nanoseconds [10, 14, 17, 18]. For caesium atoms, this range corresponds

to dimensionless kicking periods (see section 1) τ ≈ 10−2 . . . 18, and a maximal precision of

δτ & 10−4. This precision implies that about 100 points could be scanned in our analysed

interval in τ , which would be sufficient for a rough, qualitative verification of our predictions.

Any experiment will have a finite detection window of observable momentum classes.

The actual width of this window is typically determined by the imaging resolution and by the

minimal signal-to-noise ratio of themeasurement device [9, 14, 27]. The detectionwindowalso

determines a maximum interaction time after which the detection of a constantly decreasing

atomic ensemble (due to the open boundary conditions) becomes meaningless. In other words,

themaximum number of kicks is limited by the precision disposable in the determination of the

final momentum distribution. Correspondingly, in our results reported below we choose the
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minimal kicking strength k = 4.5 where the fractal dimension starts to saturate (see section 4)

and a maximum interaction time of 500 kicks. The latter implies that we can choose a wider

grid in τ because very fine structures do not develop for interaction times t 6 500. We used

δτ ′ = 10δτ, τ ′
0 = τ0 and m′ = m/10 (cf equation (7)). A problem will certainly be the

realization of our idealized absorbing boundary conditions at specific momentum classes of

the atoms. Here methods using, for instance, external cutting potentials—such as so-called

radio-frequency knives [34] or equally operating additional lasers—could be thought of.

5.2. The experimental initial ensemble

To approach real experimental scenarios, we shall analyse the survival probability for a smaller

number of kicks of order 100 [9, 32] and take into account an initial spread of quasimomentum

among the ensemble of cold atoms [16, 27].

For a typical ensemble of cold atoms, the momentum distribution is Gaussian-like, with a

width exceeding that of the Brillouin zone 2h̄kL, equal to 1 in our dimensionless units [9–11,

14, 27, 28, 32]. Folding produces approximately a uniform distribution in the entire Brillouin

zone, i.e., a uniform distribution of quasimomenta with a width of 1β = 1 [16]. Using

atoms in the Bose–Einstein condensate phase as initial ensemble allows the experimentalist

a much better control over the width of the quasimomentum distribution [35]. Values of

1β / 0.05 have been realized in this context [18, 29, 36]. Letting the condensate expand

a little before the actual kicking evolution, allows one to reduce the atom–atom interactions

to negligible values, with only slight changes in 1β [36]. As a consequence, the survival

probability, experimentally measured by counting the number of atoms contained within the

finite detection window, would be the result of an average of many independent survival

probabilities with different values of quasimomentum. The independence of probabilities

follows from the independent dynamics of the atoms [9–11, 14, 27, 28, 36], while the coherent

evolution of a single atoms is still essential for the observed behaviour.

We computed Psurv(τ ;β) for different ranges of β, and then averaged the resulting curves

to arrive at 〈Psurv(τ ;β)〉β . Figure 4 investigates the effect of averaging over β on the fractal

dimension. The survival probabilities for two fixed β are shown, together with the average for

a uniform distribution of 103 values of β ∈ [0, 0.01]. Figure 4(a) shows that the average curve
is quite smooth on large scales, but nevertheless presents fluctuations on finer resolutions,

with a fractal dimension substantially larger than unity. We verified that, by decreasing the

number of atoms in the ensemble, the dimension steadily increases. We encounter a signature

of fractality, which experiments could detect even far from the idealized limit of the one-atom

dynamics. That is, the fluctuating behaviours of the averaged curves is a direct consequence

of fluctuations of single β curves.

Figures 5(a) and (b) show the average survival probability for ensembles with the same

number of β values but with different, larger widths 1β of the initial quasimomentum

distribution. Wider distributions are smoother on large scales and are not drawn in figure 5(a)

because they could not be appreciated by eye when compared to curves for 1β = 0.010

and 0.025. The magnification in (b) shows that the fluctuations exhibit smaller excursions.

A fractal analysis (see figure 5(c)) by the variational method shows that the dimension Df

remains in all cases larger than unity and, moreover, does not vary monotonically as 1β is

increased.

We interpret our results for finite1β in the following way: while a small range1β tends

to wash out the fractal behaviour of the curves with one fixed β, an average over larger ranges

1β tends to lift the fractal dimension again. This line follows nicely from the prediction
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Figure 4. (a) shows two survival probabilities for fixed β ≈ 0.006 554 and β ≈ 0.002 009 together

with an average of 103β values equally distributed in [0, 0.01] at t = 500, k = 4.5, n1 = −1, n2 =
200. The average curve (thick) is smoother but its fractional dimension is nevertheless greater

than unity. (b) shows the fractal analysis by the variational method for β ≈ 0.006 554 (circles)

that yields Df ≈ 1.6, for the average of 103β ∈ [0, 0.01] (diamonds) with Df ≈ 1.2, and for the

average of only 10 values of β in the same interval (squares) that gives the intermediate value

of Df ≈ 1.4.
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Figure 5. (a) average of the survival probability (for k = 4.5 and after 500 kicks) over 103 values

of β uniformly distributed in [0, 0.01] (solid) and [0, 0.025] (dotted) together with a survival

probability for a fixed value β ≈ 0.65. (b) Same as (a) for 103 values of β uniformly distributed

in the shown intervals. (c) Fractal analysis by the variational method for the survival probabilities

shown in (a), (b). The fractal dimensions are obtained by linear fits (shown only for 1β = 1)

through the symbols Df ≈ 1.6 (inverse pyramids, β ≈ 0.65), 1.2 (circles, β ∈ [0, 0.01]), 1.2

(squares, β ∈ [0, 0.025]), 1.3 (diamonds, β ∈ [0, 0.05]), 1.4 (pyramids, β ∈ [0, 0.1]), and 1.5 (left
triangles, β ∈ [0, 1]).

4.5. 121



Can quantum fractal fluctuations be observed in an atom-optics kicked rotor experiment? 2489

1.4 1.405 1.41

τ

0.039

0.04

0.041

0.042

0.043

P
su
rv
(τ

)

-1.4 -1.05 -0.7 -0.35 0

Log
10
[1/l]

-1.5
-1
-0.5
0
0.5
1
1.5

L
o
g
1
0
[V
R
(l
)]

1.4 1.405 1.41

τ

0.0212

0.0216

0.022

0.0224

0.0228

0.0232

P
su
rv
(τ

)

-1.4 -1.05 -0.7 -0.35 0

Log
10
[1/l] 

-2
-1.5
-1
-0.5
0
0.5
1
1.5

L
o
g
1
0
[V
R
(l
)]

[0,0.1]

[0,1]

[0,0.1]

[0,1]

(a)

(c)

(b)

(d)

Figure 6. (a), (c) average of the survival probability over 103 values of β uniformly distributed in

[0, 0.1] and [0, 1], after (a) 100 and (c) 200 kicks and for k = 4.5. The enhancement of self-affine

fluctuations with time is clearly visible. (b) and (d) show the fractal analysis by the variational

method for (a) and (b), respectively, corresponding to β ≈ 0.65 (inverse pyramids), or 103 values

of β uniformly distributed in [0.01] (circles), [0.025] (squares), [0, 0.05] (diamonds), [0, 0.1]

(pyramids), [0, 1] (left triangles). The fractal dimensions are Df ≈ 1.5, 1.2, 1.1, 1.2, 1.2, 1.4 in

(b) and 1.6, 1.2, 1.1, 1.2, 1.3, 1.5 in (d) for increasing width of the β distribution.
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Figure 7. On the left panel the survival probability as a function of β and τ is shown after

500 kicks, for k = 4.5, n1 = −1 and n2 = 200. Slices of the graph Psurv(β, τ ) are shown on the

right panel. The thick lines represent the survival probability as a function of τ that is analysed

in section 4 (we have used 103 similar curves to compute the incoherent average which is the

experimental observable, as explained in section 5.2). The thin curve lying in the plane orthogonal

to the τ axis is the survival probability Psurv(β) as a function of the quasimomentum β such as

studied in [12].

of [7] where it is argued that fractality can arise from superimposing non-fractal patterns on

appropriate scales of the scanned variable [22, 26].

Figure 6 repeats the analysis of figure 5 for t = 100 (a), (b) and t = 200 (c), (d). The

fractal dimension of each average survival probability for a definite value of 1β is seen to be

a monotonic function of time, what points out once more the dynamical origin of the analysed

fluctuations. This contrasts the dependence of the fractal dimension on 1β at a fixed time,

which is non-monotonic, because averaging both washes out the fluctuations of the single

curves for small 1β / 0.1, while it creates new ones by superimposition for 1β ' 0.1.
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From a more general perspective, the survival probability Psurv(β, τ ) can be seen as a

surface lying over the plane spanned by the two variables τ and β. In [12] Psurv(β, τ ) was

analysed at fixed τ using β as a scanning parameter, i.e., a slice of the surface parallel to the

β axis was analysed. In section 4 we studied the ‘orthogonal’ problem of fixed β, using τ as a

scanning variable. Averaging over β can be interpreted as a ‘column density’, i.e., Psurv(β, τ )

integrated over the β degree of freedom. The resulting averaged curve is the observable

experimentally accessible as discussed in this section. Looking at figure 7, our results can

thus be interpreted geometrically: the fractal behaviour of the slices Psurv(τ ;β = constant) is

to a large extent preserved by the average over a typical experimental spread in β.

6. Conclusions

We considered the quantum kicked rotor, a paradigmatic model of quantum chaos, which

describes the time evolution of noninteracting cold atoms in periodically flashed optical

lattices. Imposing absorbing boundary conditions allows one to probe the transport properties

of the system, and in particular to define the survival probability of atoms on a finite region

in momentum space. For fixed kick numbers, the quantum survival probability depends

sensitively on the parameters of the system, and a self-affine structure of the survival probability

Psurv is predicted, as either the kicking period or quasimomentum is scanned.

Instead of using the initial quasimomentum β as control parameter, as done in the

numerical simulations of [12], we used the kicking period τ as scan parameter, which is much

better controllable experimentally. We verified the fractal nature of the graph of the survival

probability Psurv(τ ) in the dynamically localized regime, and obtained a fractal dimension

Df ≈ 1.6 ± 0.1 for large but finite interaction times, for which quantum resonances do not

manifest.

Any experimental set-up prepares cold atoms with a finite spread in quasimomentum.

The experimental observable is then the average of the survival probabilities over the

quasimomentum distribution. We reproduced this observable by computing the incoherent

average 〈Psurv(τ )〉β , and found that the fractal dimension of the average remains substantially
larger than unity, even for shorter interaction times of a few hundred kicks.

We conclude that the fractality in the survival probability induced by quantum chaos is

an unexpectedly robust feature and in spite of many challenging aspects (see section 5) could

be observed in a future atom-optics experiment. Apart from the experimental verification of

fractal fluctuations of purely quantum origin, a remaining open problem is whether a universal

scaling law for the fractal dimension could be found as a function of both parameters τ and β,

including quantitative predictions for the here computed averages 〈Psurv(τ, β)〉β over a finite
range of β.
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[23] Titov M and Fyodorov Y 2000 Phys. Rev. B 61 2444

Terraneo M and Guarneri I 2000 Eur. Phys. J. B 18 303

Steinbach F, Ossipov A, Kottos T and Geisel T 2000 Phys. Rev. Lett. 85 4426

[24] Wimberger S, Krug A and Buchleitner A 2002 Phys. Rev. Lett. 89 263601

[25] Feingold M, Fishman S, Grempel D R and Prange R 1985 Phys. Rev. B 31 6852

[26] Guarneri I, Terraneo M and Wimberger S unpublished

[27] d’Arcy M B, Godun RM, Summy G S, Guarneri I, Wimberger S, Fishman S and Buchleitner A 2004 Phys. Rev.

E 69 027201

[28] Wimberger S, Sadgrove M, Parkins S and Leonhardt R 2005 Phys. Rev. A 71 053404

Wimberger S and Sadgrove M 2005 J. Phys. A: Math. Gen. 38 10549

[29] Duffy G J, Mellish A S, Challis K J and Wilson A C 2004 Phys. Rev. A 70 R041602

[30] Izrailev F M and Shepelyansky D L 1980 Theor. Math. Phys. 43 353

[31] Dubuc B, Quiniou J F, Roques-Carmes C, Tricot C and Zucker S W 1989 Phys. Rev. A 39 1500

[32] Schlunk S, d’Arcy M B, Gardiner S A and Summy G S 2003 Phys. Rev. Lett. 90 124102

[33] Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)

[34] Stock S, Hadzibabic Z, Battelier B, Cheneau M and Dalibard J 2005 Phys. Rev. Lett. 95 190403 and references

therein

[35] Wimberger S, Mannella R, Morsch O and Arimondo E 2005 Phys. Rev. Lett. 94 130404

[36] Duffy G J, Parkins S, Muller T, Sadgrove M, Leonhardt R and Wilson A C 2004 Phys. Rev. E 70 056206

124 KAPITEL 4. WISSENSCHAFTLICHE ARTIKEL



INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 729–740 doi:10.1088/0953-4075/39/3/024

Tunnelling rates for the nonlinear Wannier–Stark
problem

Sandro Wimberger1, Peter Schlagheck2 and Riccardo Mannella1

1 Dipartimento di Fisica Enrico Fermi and CNR-INFM, Università degli Studi di Pisa,
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Abstract
We present a method to numerically compute accurate tunnelling rates for a
Bose–Einstein condensate which is described by the nonlinear Gross–Pitaevskii
equation. Our method is based on a sophisticated real-time integration of the
complex-scaled Gross–Pitaevskii equation, and it is capable of finding the
stationary eigenvalues for the Wannier–Stark problem. We show that even
weak nonlinearities have significant effects in the vicinity of very sensitive
resonant tunnelling peaks, which occur in the rates as a function of the Stark
field amplitude. The mean-field interaction induces a broadening and a shift of
the peaks, and the latter is explained by an analytic perturbation theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dynamics often is intriguing and counter-intuitive. A prominent example thereof is
the localization of a wave packet in a spatially periodic lattice induced by an additional static
force: the force can turn an extended Bloch wave (which is a solution of the Schrödinger
equation with a periodic potential [1]) to a wave packet which oscillates periodically in
(momentum) space [1]. While conceptionally simple, this well-known Wannier–Stark
problem is complicated from the mathematical point of view because the system is open,
i.e., unbounded, and any initially prepared state will, in the course of time evolution, decay
via tunnelling out of the periodic potential wells [2, 3].

Starting from the Bloch bands of the unperturbed problem (i.e., without the static field
F = 0), the decay can be attributed to tunnelling from the ground-state band to the first excited
energy band. The celebrated Landau–Zener theory predicts an exponential decay rate (see,
for instance, [4, 5] for introductory reviews):

�(F) ∝ F e− b
F , (1)

0953-4075/06/030729+12$30.00 © 2006 IOP Publishing Ltd Printed in the UK 729
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Figure 1. (a) Schematic sketch of nearly degenerate Wannier–Stark levels (thin line: ground-
state levels; thick line: first excited levels in each well) in a potential of the form V (x) =
V0 sin2(x/2) + Fx. (b) Tunnelling rates � for V0 = 2 as a function of the inverse Stark field
amplitude 1/F . The resonant tunnelling leads to the pronounced peaks, which lie approximately at
F ≈ 〈E1 − E0〉/(2πm) (with the integer m). These estimates (marked by the arrows) are slightly
modified by field-induced level shifts.

where b is proportional to the square of the energy gap between the two lowest energy bands.
For experiments with cold atoms, i.e., the scenario on which we focus in this paper, the wave
packet decays very quickly by successive tunnelling events, once it has tunnelled across the
first band gap. This is due to the much smaller gaps of the higher energy bands in a sinusoidal
potential [6, 7]. The Landau–Zener formula (1) cannot account for the interaction of the
Wannier–Stark levels at adjacent potential wells. Between such adjacent lattice sites nearly
degenerate Wannier–Stark levels repel each other, which leads to a strong enhancement of the
tunnelling decay. These resonant tunnelling events result in pronounced peaks in the rates as
a function of the inverse field amplitude 1/F , on top of the of the global exponential decay
described by (1) [5, 8].

Figure 1(a) shows two Wannier–Stark levels on each lattice site. The levels within either
of the two ladders are separated by mFdL in energy, where dL ≡ 2π denotes the lattice
period and the integer m counts the number of sites in between two energy levels of the
same ladder [1, 2]. The decay rates for non-interacting particles in the periodic potential
V (x) = V0 sin2(x/2) + Fx can be computed from the Wannier–Stark spectrum, e.g., by using
the numerical method described in [5]. Figure 1(b) presents the rate � as a function of 1/F .
The maxima occur when mFdL is close to the difference in energy 〈E1 − E0〉 between the
first two energy bands (averaged over the fundamental Brillouin zone in momentum space) of
the unperturbed (F = 0) problem [5, 9]. The actual peak positions are slightly shifted with
respect to this simplified estimate (marked by arrows in figure 1(b)), owing to a field-induced
level shift close to the avoided crossings of the levels [8].

Exceptional experimental control is possible nowadays with Bose–Einstein condensates
(BEC) whose initial conditions in coordinate and momentum space can be adjusted with
unprecedented precision. With the help of a BEC, sensitive tunnelling phenomena were
studied in time-dependent systems [10], as well as in static potentials [11]. Here we are
interested in tunnelling in the Wannier–Stark problem where the impact of the intrinsic atom–
atom interactions in the BEC has been studied in several recent experiments [7, 12–14].

126 KAPITEL 4. WISSENSCHAFTLICHE ARTIKEL



Tunnelling rates for the nonlinear Wannier–Stark problem 731

In those experiments, the difficulty in understanding quantum transport processes, such as
coherent tunnelling, originates from the complex interplay between classical transport in the
underlying phase space, quantum interference effects and the many-particle interactions.

In a typical experiment with a BEC, where the number of atoms in the condensate is large
and the atom–atom interaction is rather small, the Gross–Pitaevskii equation (GPE) describes
the condensate in very good approximation [15]. Recently, some of us proposed a concrete
experimental scenario to measure the impact of a mean-field interaction potential (which
in the GPE takes into account of the atomic collisions) on the tunnelling in the Wannier–
Stark problem [16]. More specifically, the interaction-induced modification of the resonant
tunnelling peaks was studied, and it was found that the peaks (such as those in figure 1(b))
are washed out for a large enough—but still experimentally feasible—interaction strength.
As discussed in [16], for a finite mean-field nonlinearity, the concept of decay rates is not as
well defined as in the case of non-interacting particles. The reason is that the weight of the
nonlinear term, which is proportional to the condensate density, varies in time. Hence, the
probability that an initially prepared state will stay in the preparation region does not follow a
simple exponential law. In other words, the nonlinear interaction decreases as the condensate
escapes via tunnelling and, as a consequence, the decay rates can be defined only locally in
time.

In this paper, we want to discuss how the problem of defining proper decay rates can
be solved. One way to define a time-independent, global tunnelling rate is to renormalize
the density of the condensate in the preparation region (e.g., in the central potential well
of the periodic lattice) continuously, such that the average density remains constant in time.
For experimentally realizable nonlinearities [7, 12, 13, 17], this approach results in a mono-
exponential decay of the survival probability, and in consequence in a reasonable definition
of the decay rate. The corresponding resonance states are characterized by their stationary
asymptotics, much in the same way as the stationary solutions of a linear scattering problem
(i.e, described by the linear Schrödinger equation) [5]. We solve numerically the well-posed
problem of finding the resonance states, using the method of complex scaling. The theoretical
background to treat the nonlinear interaction in the GPE in a consistent way was recently laid
in [18]. We use a modified version of this method, with crucial extensions on the algorithmic
side, which proved necessary to stabilize the computations for more complicated potentials
than the single-well potential exemplarily treated in [18].

We review the defining equations of the nonlinear Wannier–Stark problem and the
complex-scaling technique of [18] in the following section 2, where we also describe our
numerical algorithm in detail (cf subsection 2.2). Section 3 presents our central results on
the decay rates in the vicinity of the resonant tunnelling peaks for experimentally relevant
nonlinearities. Section 4 finally concludes the paper.

2. The nonlinear Wannier–Stark problem

We use the one-dimensional GPE to model the temporal evolution of a BEC loaded into a
spatially periodic optical lattice potential and subjected to an additional static force F:

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+ V0 sin2

(x

2

)
+ Fx + g|ψ(x, t)|2

]
ψ(x, t). (2)

ψ(x, t) represents the condensate wavefunction, and we used the dimensionless quantities
V0 = VSI/EB, F = FSIdL/(2πEB), g = gSIdLN/(2πEB). The characteristic length scale
is the lattice period dL, i.e., x = xSI2π/dL, the Bloch energy is EB = (πh̄/dL)2/M , with
atomic mass M, the number of atoms N and the (from three to one spatial dimensions) rescaled
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nonlinearity parameter gSI (see [19] for a definition of gSI, where also the regime of validity
of the one-dimensional approximation is discussed in detail).

Since V (x) = V0 sin2(x/2)+Fx → −∞ for x → −∞, any state initially prepared in the
optical lattice will escape via tunnelling. We search for the resonance state ψg which solves
the stationary version of equation (2)

H [ψg]ψg = Egψg, (3)

for the eigenvalue Eg = µg − i�g/2, and the Hamiltonian

H [ψ] = −1

2

∂2

∂x2
+ V (x) + g|ψ(x)|2. (4)

To render the problem posed by equation (3) meaningful, we demand that the condensate
wavefunction remains normalized around the initially prepared state, i.e., around x ≈ 0:∫ xn

−xn

dx|ψg(x)|2 = 1. (5)

The boundaries xn must be chosen in a reasonable way, and we chose xn = π (so the probability
to stay in the central well around x = 0 remains one [20]). We verified that slightly different
choices of the boundary π � xn < 3π/2 led to eigenvalues which did not change on the
significant digits given in section 3.

We discuss now the renormalization condition (5) and its consequences. In practice
such a condition may be realized by the presence of a source term which constantly supplies
a condensate flow [21]. Experimentally such a scenario could be achieved by constantly
reloading the central well with coherent BEC matter. Transport experiments of such kind could
be realized with the help of optical tweezers [22], atomic conveyer belts [23] or microscopic
guides for ultracold atoms [24]. Any realization may introduce additional modifications in
the temporal evolution of the decaying system, which go beyond our simplified assumption
of renormalization. Such modifications, e.g., the relaxation of added particles in the periodic
lattice potential, depend on the specific realization. We expect, however, that the asymptotic
decay will be hardly affected by such processes, the time scales of which should be relatively
short and of the order of the period of oscillations in the potential wells.

On the other hand, if the condensate wavefunction tunnels out of the central well without
sudden changes of its shape, the time-dependent atomic population N(t) inside the well decays
according to the relation [18, 25]

dN(t)

dt
= −�g(t)N(t). (6)

Assuming that the decay rate adiabatically adjusts itself to the time-dependent value �g(t),
with g(t) ∝ N(t), equation (6) can be solved for a given initial number of atoms N(0) in the
condensate. Knowing the ‘local’ rates �g(t) for 0 � |g| � |g(0)| allows us then to compute
the actual survival probability in the central well, which in [16] was obtained differently by a
brute force integration of the time-dependent GPE (2).

We emphasize that the setup studied in [16] bears some crucial differences to the problem
posed here, which is based on condition (5). In [16], the short-time behaviour of the relaxed
ground state (for F = 0 in the periodic potential and in the presence of additional harmonic
confinements) was predicted for the three-dimensional Wannier–Stark problem. The approach
presented here is capable of determining, via equation (6), the decay only for single resonance
states according to the above arguments. Although such resonance states are typically
distributed over many lattice sites, they do not provide a prediction for the decay of a general
initial state (which could be composed of contributions from many adjacent wells), simply
because the superposition principle does not apply for the nonlinear GPE (2).
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In this paper, we want to compute directly the precise decay rates �g of a single resonance
state using the complex-scaling method, which is described in the following subsection.

2.1. Complex scaling

For the linear problem with g = 0, one of the standard techniques to compute resonance states
numerically is the complex-scaling method (which goes back to [26], and is reviewed, for
instance, in [27]). Applying the renormalization condition (5) allows us to use this method to
find the stationary eigenstates and the corresponding eigenvalues; see equation (3). Without
this condition, the nonlinear interaction term would vary in time, and a stationary state would
not exist because of the tunnelling decay.

An additional problem when dealing with the nonlinear term in the GPE arises from the
method of complex scaling itself. The problem of defining the complex conjugate of the
wavefunction ψ(x) is described in [18, 28], and was solved in [18]. Usually, the scaling
transformation is defined as follows:

ψ(x) → ψθ(x) ≡ R̂(θ)ψ(x) ≡ eiθ/2ψ(x eiθ ), (7)

where the pre-factor is just a phase depending on the dimensionality of the problem (here we
treat only the one-dimensional case). θ is a real rotation angle, and the eigenvalues should
not depend on it [26, 27], which is a useful fact for testing convergence. To evaluate the
nonlinear term |ψ |2 = ψ∗ψ away from the real coordinate (or x) axis, we need to define a
generalized complex conjugate ψ which reduces to ψ(x) = ψ(x)∗ for x ∈ R. Applying the
complex-scaling transformation to ψ

ψ(x) → ψθ(x) ≡ R̂(θ)ψ(x) ≡ eiθ/2ψ(x eiθ ), (8)

we see that ψθ can be obtained from ψθ via the relation:

ψθ(x) = R̂(θ)(R̂(−θ)ψθ)∗(x). (9)

The analytic continuation of equation (3) to the complex domain can now be stated as

Hθ
[
ψθ

g

]
ψθ

g = Egψ
θ
g , (10)

with

Hθ
[
ψθ

g

] = −1

2

∂2

∂x2
e−i2θ + V (x eiθ ) + gθψ

θ
g(x)ψθ

g (x). (11)

The nonlinear interaction strength is defined here as gθ = g e−iθ to compensate for the two
identical phase factors eiθ/2 of ψθ and ψθ .

2.2. Numerical solution and propagation algorithm

In the linear case with g = 0, the complex eigenvalue problem of the form (10) is usually
solved by representing the complex-scaled Hamiltonian in a suitable basis and final matrix
diagonalization [29]. For g 
= 0, the corresponding problem to find the eigenvalues can be
solved only by implicit methods, since Hθ [ψθ ] explicitly depends on the wavefunction.

We solved equation (10) by searching for the ground-state solution in a self-consistent
manner. Starting with an initial guess for the wavefunction ψθ(x, t = 0), we evolved in real
time the grid representation of ψθ(x, t), i.e.,

ψθ(x, t) =
n∑

j=−n

cj (t)χj (x), (12)
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with the box functions

χj (x) =
{

1/�x, |x/�x − j | < 1/2
0, otherwise,

(13)

and a suitable grid spacing �x .
The time propagation was performed by a sequential application of two different

integration methods. First, we used a sequence of Crank–Nicholson steps [30], i.e.,

(1 + iHθ�t/2)ψθ (x, t + �t/2) = (1 − iHθ�t/2)ψθ (x, t − �t/2). (14)

The Crank–Nicholson method has the advantage of preserving the norm of the wavefunction,
but the disadvantage is that it treats all modes equally. Since we are interested in the ground
state, we iterated in a second stage the explicit relation

ψθ(x, t + �t) = (1 − iHθ [ψθ ]�t)ψθ(x, t). (15)

The latter method, which still corresponds to a real-time integration of the complex scaled
Gross–Pitaevskii equation, tends to suppress the higher modes [30] and leads to a faster
stabilization of the numerical solution of equation (10) in comparison with the Crank–
Nicholson method (14). For each time step t �→ t + �t , we self-consistently solved
equation (15) by using the left-hand side of equation (15) to approximate the nonlinear
term gθψ

θψθ . Three to five such self-consistent iterations proved sufficient for a stable and
reliable time propagation. The second derivative appearing in Hθ was approximated by a
finite difference representation (in other words we applied the ‘forward time centred space’
representation [30] to solve the GPE). This leads to a tridiagonal Hamiltonian matrix, which
significantly simplifies the implementation of both propagators (14) and (15).

For evaluating ψθ(x, t), we used the method described in detail in [18], which produced
reliable numerical results also for our Wannier–Stark problem. Briefly speaking, we represent
ψθ(x, t) in a basis set of Gaussians with increasing variance for increasing |x|. The Gaussian
basis is thus well behaved at the boundaries of our grid, which allows us a numerically stable
back-rotation to the real domain in x. At the end, ψθ(x, t) is re-expressed again in the grid
basis. The necessary matrix–vector multiplications are fast since the number of vectors in the
Gaussian set can typically be chosen much smaller than the number of grid points in the spatial
domain. Furthermore, the transformation matrices are effectively banded, which reduces the
numerical effort (note that we computed ψθ(x, t) from ψθ(x, t) for each time step t �→ t +�t

to ensure stable convergence).

3. Results and discussion

In the following, we present our results on the tunnelling rates of resonance states (cf
equation (10)) in the Wannier–Stark problem as sketched in figure 1(a). Without loss of
generality we kept fixed the potential depth V0 = 2 in equation (2), which corresponds to
an optical lattice with a maximal amplitude of 16 photon recoil energies [6, 7]. We were
particularly interested in studying the impact of the nonlinear term in equation (2) on the
resonant tunnelling peaks of figure 1(b). Using the method described in the previous section
we chose θ = 0.01, . . . , 0.02 (where we found stable eigenvalues which are not dependent
on θ in this range), and a grid spacing �x = 0.02, . . . , 0.05 for −100 � x � 100. The
integration time step was �t = 2.5 × 10−3 for |g| < 0.2 and reduced to �t = 2 × 10−3 for
larger |g| � 0.2 and the region of small F < 0.2, while the maximal integration time for
finding one eigenvalue was tmax = 300.

As expected, it is very difficult to find the correct eigenvalue close to a resonant tunnelling
peak because of two reasons: (i) the rates � vary dramatically around the peak due to the close
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Figure 2. Comparison between the tunnelling rates around the first resonant tunnelling peak from
figure 1(b), obtained for g = 0 by direct diagonalization of the problem (solid line) and by our
complex-scaling algorithm (circles).

degeneracy of the Wannier–Stark levels in adjacent wells, and (ii) the rates are rather small
10−13 < � � 2 × 10−3 at small fields 0.05 < F < 0.2.

Therefore, we focused on the first (i.e., with m = 1) peak in figure 1(b), where the rates
remain � � 10−5. Moreover, we improved the stability of the integration by starting with
parameters in a stable regime (where we easily found stable, fast converging eigenvalues) and
adiabatically changing the two parameters F and g into less stable parameter regimes. In our
case, for V0 = 2, the stable regime is above F > 0.25 for not too large nonlinearities |g| � 0.5
(with optimal stability properties for g = 0).

We tested our results in three different and independent ways. First, we compared them
for g = 0 with the spectra of the linear Wannier–Stark problem, which can be computed by
a standard diagonalization of Hθ

g=0 [5, 29]. Figure 2 shows the good agreement between the
data set obtained by our integration of the complex scaled, linear version of equation (2) and
the data presented already in figure 1(b).

Secondly, for moderate nonlinearities |g| � 0.5, we computed for the unscaled problem
(2) the survival probability

Psur(t) ≡
∫ ∞

−pc

dp|ψ̂(p, t)|2 ≈ N(t), (16)

with pc � 3 photon recoils (such as to cover the support in momentum space of the initial state
prepared in the spatially periodic lattice potential). Psur(t) was introduced for the Wannier–
Stark problem in [16] and characterizes the out-coupled loss in momentum space, which
corresponds to the part of the condensate which has tunnelled through the potential. We
integrated equation (2) constantly applying the renormalization condition (5) and computed
the survival probability (16) with the wavefunction

ψ̂(p, t) ≈ ψ̂ renorm(p, t)∏K
j=1

∫ π

−π
dx|ψ(x, j t/K)|2 ,

for the discretized times j t/K (j = 1, 2, . . . , K) and large K ∈ N. Here ψ(x, j t/K) denotes
the propagated wavefunction immediately before applying the renormalization (ψ(x, j t/K)

is renormalized afterwards and propagated up to time (j +1)t/K). ψ̂ renorm(p, t) represents the
Fourier transform of the renormalized wavefunction at the end of the complete propagation.
The decay rates �fit were obtained by a direct mono-exponential fit to the temporal decay of
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Table 1. Comparison between the tunnelling rates for V0 = 2 obtained by the complex-scaling
method (�CS) and by the integration of the GPE (�fit; integration time up to 100 Bloch periods;
the integration was performed on a large grid that covered the full extension of the tunnelled and
subsequently accelerated part of the wavefunction, without the use of any cutoff or absorbing
boundary conditions). Because of the restriction in the integration time, �fit carries the shown
error, whilst the complex-scaling method allows us to compute the rates �CS with an absolute
accuracy of at least 10−6 for F � 0.15, and 10−5 for F down to �0.12.

g F �fit �CS

0 0.5 1.94 ± 0.01 × 10−2 1.941 × 10−2

0.1 0.5 2.18 ± 0.01 × 10−2 2.180 × 10−2

0 0.25 7.2 ± 0.1 × 10−4 7.2 × 10−4

0.1 0.25 8.4 ± 0.1 × 10−4 8.4 × 10−4

0.2 0.25 9.7 ± 0.1 × 10−4 9.7 × 10−4

0.25 0.25 1.04 ± 0.02 × 10−3 1.04 × 10−3

0.5 0.25 1.45 ± 0.03 × 10−3 1.48 × 10−3

0.2 0.15 3.0 ± 0.2 × 10−5 2.9 × 10−5

0.2 0.131 25 5.7 ± 0.3 × 10−5 5.7 × 10−5

Psur(t). Table 1 highlights the good agreement with the rates computed by the complex-scaling
method.

As a final test of our results, we constantly monitored the quality of the computed
eigenvalues by evaluating |(Hθ [ψθ ] − E)ψθ |, which in all cases had to be �10−8 for not
rejecting the eigenvalue. This boundary was chosen such as to be more than two orders of
magnitude smaller than the smallest tunnelling rates which we computed.

Our central results are reported now in figure 3. There we observe two effects which are
induced by the presence of the nonlinear interaction term in equation (2): (I) the resonant
tunnelling peak shifts systematically with increasing g as a function of the Stark field amplitude
F; (II) the peak width slightly increases as |g| increases away from zero.

The slight broadening goes along with a small increase in the height of the peaks with
increasing nonlinearity g. Such a destabilization of the condensate for g > 0, more precisely
of the decay in the survival probability Psur(t), has already been observed in [16]. The
ratio of the difference in the height and the difference in the peak width (measured at the
half of the peak height, see figure 3) is roughly constant as a function of the nonlinearity
0 < g � 0.25. The broadening and the change in height of the peak are caused by two
different but simultaneously acting mechanisms. The nonlinear mean-field term in equation (2)
partially lifts the degeneracy of the Wannier–Stark levels (as sketched in figure 1(a)) by
smearing them out. This qualitatively explains the slight broadening of the peak with
increasing |g|. In addition, the peak maximum becomes systematically larger as g increases in
figure 3 because the condensate is destabilized (stabilized) by an increasingly repulsive
(attractive) nonlinearity.

The shift of the peak maximum can be estimated by first-order perturbation theory,
which predicts the following shift in energy of the levels with respect to the linear case with
g = 0:

�E ≈ g

∫ xc

−xc

dx|ψg|2|ψg=0|2. (17)

For the moderate nonlinearities realized in experiments [7, 17, 31], i.e., |g| � 0.5,
the overlap integral is nearly independent of g, and the major contribution comes from the
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Figure 3. Decay rates � obtained for V0 = 2 and the range of nonlinearities −0.25 � g � 0.25
as a function of the Stark field amplitude F ((a) logarithmic and (b) linear scale on the y-axis):
g = −0.25 (crosses), g = −0.2 (squares), −0.1 (circles), 0 (solid line), 0.1 (pyramids), 0.2
(diamonds; only in (b)) and 0.25 (inverse pyramids; only in (b)). The nonlinearity systematically
shifts the peak centres and slightly broadens the peaks. Their width we defined as the full peak
width at half maximum, which is marked by the arrows in (b) for the g = 0 peak. The dot-dashed
line in (a) shows the lower bound for converged � � 10−5 on the left-hand side of the resonant
tunnelling peaks, i.e., for very small F � 0.12, where convergence is very hard to achieve even
at small g � 0.1 (in this parameter range, i.e., at the left-hand side of the peaks where � changes
abruptly by about two orders of magnitude, the propagation according to equations (14) and (15)
becomes unstable).

central potential well where the condensate is localized initially. Hence, we approximate
further

�E ≈ g

∫ π

−π

dx|ψg=0|4, (18)

which in turn leads to a shift in the position on the F-axis corresponding to �E ≈ 2π�F .
Taking into consideration that the probability in the central well remains normalized (condition
from equation (5)), equation (18) corresponds to the energy shift induced by the nonlinearity
which was baptized ‘frequency pulling’ in [32], because it leads to a phase dispersion of the
Bloch oscillations in the wells. With (18) we arrive at the general result that the following
ratio is approximately constant:

2π�F

|g| ≈
∫ π

−π

dx|ψg=0|4 ≈ 0.37. (19)

This estimate proved to be valid with a maximal relative deviation of less than 18% with
respect to the shifts observed in figure 3. Since the integral

∫ π

−π
dx|ψg|4 is constant up to the

third digit for all |g| � 0.25, we conclude that the first-order perturbation correction is not
enough to describe the shifts more quantitatively.

While a repulsive mean field (g > 0) enhances the tunnelling rate far away from the
g = 0 peak, an attractive interaction (g < 0) stabilizes the decay sufficiently far away from all
the peaks. This is the case, e.g., for F > 0.16 in figure 3(a), where � systematically decreases
with decreasing g. The symmetric displacement of the peak with respect to the sign of g

reflects the symmetry of the Bloch band model, in which tunnelling from the first excited band

4.6. 133



738 S Wimberger et al

back to the ground band can be interpreted as the converse process but with a sign change in g

[13]. The same qualitative behaviour of enhancement (g > 0) and stabilization (g < 0) was
observed in the short-time evolution of the three-dimensional Wannier–Stark problem [16].
Apart from the conceptional difficulty of decomposing a solution of the nonlinear GPE (2) into
contributions from many adjacent wells (see discussion in section 2), the observed washing
out of the peak structure in [16] is a direct consequence of an effectively moving peak as |g|
diminishes monotonously (cf figure 3) with decreasing density in the wells.

To conclude this section, we briefly compare our results to other recent works which
investigated the impact of a mean-field interaction of the GPE type on quantum mechanical
decay processes. We emphasize, however, that such a comparison can only be qualitative,
since such works [25, 28, 33, 34] typically treat much simpler model potentials than our
Wannier–Stark problem with close level degeneracies. The common feature of our work and
the results presented in [25, 28, 33, 34] is that an increasing nonlinearity typically enhances
the decay in the one-dimensional problem. Systematical shifts in the chemical potential of
resonance states (induced by the interaction term) were analytically studied in [34] for a
delta-shell potential. Such shifts correspond to our perturbative estimate in equations (18)
and (19).

Particularly, we compared the results obtained from our method (see section 2) with the
description of [28] where a nonlinear equation was introduced which differs from ours (see
equation (11)) in the treatment of the nonlinear term. In [28], the nonlinearity is of the form
gθ (ψ

θ)3, and we found that such a nonlinear term leads to different decay rates than those
we computed from either our complex-scaling method or from the real-time integration of
the unscaled GPE (2) and subsequent fits to Psur(t). We conclude that a treatment based
on complex scaling—for a condensate within the standard GPE description and generally
complex-valued wavefunctions—makes it necessary to use the explicit form of ψθ as presented
in section 2.

There is a growing literature of works on Landau–Zener tunnelling in the presence of a
mean-field nonlinearity and its impact on the Bloch oscillation problem; see, e.g., [13, 35].
In such works, a similar systematical stabilization (for g < 0) or destabilization (for g > 0)
was predicted (and also measured, see [13]) for a single Landau–Zener tunnelling event
with various approximative models. This corresponds to our results on the decay rates which
describe directly the initial decay of the condensate via tunnelling, i.e., the behaviour of Psur(t)

at short times that are not much larger than one Bloch period. At and close to the resonant
tunnelling peaks the problem is, however, more subtle because of the strong interaction of
Wannier–Stark levels (see figure 1(a)), and such a case was not treated in [13, 35].

4. Conclusion

To summarize, we presented a method to numerically compute precise decay rates for
tunnelling problems within the framework of the Gross–Pitaevskii equation. We adapted and
improved the technique developed by one of us in [18] for the more complicated scenario of
resonant tunnelling in the Wannier–Stark problem. We showed that the mean-field nonlinearity
leads to experimentally observable modifications in the tunnelling of resonance states from
the periodical potential wells, even in a regime where the kinetic and the periodic potential
terms still dominate the dynamics. The broadening and the shift of the resonant tunnelling
peaks define clear signatures for nonlinearity-induced effects.

Our method can be extended—with further system-specific improvements in the
propagation algorithm—to treat even more complicated problems appearing in experiments
with Bose condensates, e.g., the transport of coherent matter within atomic wave guides.
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Finally, we can readily extend the proposed method to three spatial dimensions, with the only
drawback of much larger numerical effort.
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We present a very simple model for realizing directed transport with cold atoms in a pair of periodically
flashed optical lattices. The origin of this ratchet effect is explained and its robustness demonstrated under
imperfections typical of cold atom experiments. We conclude that our model offers a clear-cut way to imple-
ment directed transport in an atom optical experiment.
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I. INTRODUCTION

The atom optics realization of the paradigmatic kicked
rotor �KR� �1� presents the possibility to study experimen-
tally unique quantum mechanical aspects of a fundamental,
classically nonlinear system. Dynamical Localization is per-
haps the most celebrated quantum phenomenon observed in
the quantum KR �1,2�, but many other interesting features of
the KR have been studied theoretically and experimentally
�3,4�. Very recently, applications of modified KR models
have been designed which allow for a controlled, directed
motion of particles in momentum space �5,6�.

The atom-optics kicked rotor �AOKR� is realized by sub-
jecting cold atoms �3,4� or a Bose condensate �7–10� to a far
detuned standing wave with spatial period � /kL �kL being the
wave number of the kicking laser� and pulsed with period �.
The AOKR is described, in dimensionless units, by the
Hamiltonian �11�

H�t� =
p2

2
+ k cos�x��

n=0

�

��t − nT� , �1�

where p is the atomic momentum in units of 2�kL �i.e., of
two-photon recoil momenta�, x is the atomic position divided
by 2kL, t is time, and n is an integer which counts the kicks.
Experimentally, � kicks are approximated by pulses of width
�p which are approximately rectangular in shape. We also
define an effective Planck’s constant �eff=T=8ER� /�, where
ER= ��kL�2 /2M is the recoil energy �acquired by an atom
after emission of a photon with wave number kL�. The di-
mensionless parameter k�V0�p /� is the kicking strength of
the system �with V0 the height of the optical lattice creating
the kicking potential�.

In this paper, we propose a ratchet which could be real-
ized experimentally by adding to the standard AOKR dy-
namics defined by Eq. �1� a second kicking potential �applied
in a synchronized way with respect to the first one�. The
application of a second kicking potential to the atom has
some analogy with the double AOKR investigated in Ref.
�12�, because in both cases a sequence of two kicks is ap-
plied to the atoms. In the present investigation a spatial shift

of the second kick potential is also included. We show that
this is sufficient to produce the ratchet effect. Moreover, we
consider the effects of a particle escape mechanism similar to
evaporative cooling �13�. More precisely, we study an open
system with absorbing boundary conditions. If ��p� is the
wave function in momentum space, absorbing boundary con-
ditions are implemented by the prescription ��p��0 if p�
−pc or p� pc. Such absorbing boundary conditions could be
realized experimentally using, e.g., velocity selective Raman
transitions, which change the internal states of the atoms, and
hence let them escape from the states of interest �14�, or by
other state selective methods �15�. Such a scenario of loosing
the faster atoms with momenta exceeding pc, is analogous to
evaporative cooling of cold atoms �13�. The time scale of the
applied absorption mechanism should be of the order of the
kicking period T to allow for a steady loss of atoms during
the system’s evolution.

We point out that, as shown below, in our model the
ratchet phenomenon is also present in the Hamiltonian limit
without escape of particles. On the other hand, it is interest-
ing to investigate the particle escape mechanism because it
models the evaporative cooling process natural in cold atoms
experiments. Moreover, its introduction is relevant in order
to analyze the stability of our proposed ratchet mechanism
after that atoms excited to higher and higher velocities by
chaotic diffusion are eventually lost. Finally, particle escape
may allow the unprecedented experimental observation of a
quantum phase space distribution located on an underlying
classical fractal set.

In state-of-the-art atom optics experiments, control over
the kicking strength k �or, equivalently over the laser power
delivered to the atoms� is achieved with a precision of a few
percent �4�. Kicking strengths in the range 1–7 correspond to
standing wave amplitudes of about 80–600 ER for rubidium
atoms �and assuming a rectangular pulse shape with a width
of 500 ns�. Below we will be interested in the parameter
region of small kicking periods T	1, and hence it is impor-
tant to note that time is one of the best controlled experimen-
tal parameters, and kicking periods between about one hun-
dred nanoseconds and a few hundred microseconds are
available, with a maximal precision of a few tens of nano-
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seconds �4,16,17�. For cesium atoms, this range corresponds
to dimensionless kicking periods T�10−2–20, and a maxi-
mal precision of �T
10−3 �17�. Atom optics experiments
may be performed on two different atomic samples: laser
cooled atoms and Bose-Einstein condensates. The main dif-
ference is the initial width �p0 in momentum. For laser
cooled atoms and in the best conditions, the initial width in
momentum corresponds to a few two-photon recoils units.
For Bose-Einstein condensates �p0 between 0.01 and 0.05
can be realized �7,8,10,18�. Bose-Einstein condensates expe-
rience a nonlinear potential associated with the atom-atom
interaction. However, letting the condensate expand a little
before the actual kicking evolution allows one to reduce the
atom-atom interactions to negligible values, with only slight
changes in �p0 �7�. The present analysis focuses on a sample
of laser cooled atoms with a large initial momentum distri-
bution. In fact, this condition is more favorable for the real-
ization of the ratchet discussed in this paper, because the
sample explores a larger region of the classical phase space
and therefore exploits the structure of phase space �a strange
repeller, in the classical limit� induced by the evaporative
cooling process.

The paper is organized as follows. Section II analyzes the
AOKR model and its evolution in phase space under the
double kicking perturbation. Section III investigates different
imperfections associated with the experimental realization.
For instance, a deep optical potential is required for laser-
cooled atoms, and in such conditions spontaneous emissions
become a non-negligible issue. In addition, fluctuations in
the laser power and other sources of noise are included in the
analysis. The final Sec. IV concludes with an outlook dis-
cussing the role of nonlinearity as present in experiments
using a Bose-Einstein condensate.

II. MODEL AND PROPERTIES

In this section we introduce a kicked system that shows
directed transport and in which the direction of the current
can be controlled. This is done in a very simple way, we just
have to duplicate the series of kicks in Eq. �1� in a conve-
nient fashion. This simplicity is essential for an efficient ex-
perimental implementation with cold atoms.

We consider a particle moving in one dimension
�x� �−� , +��� in a periodically kicked potential. The
Hamiltonian reads

H2�t� =
p2

2
+ V�,�x,t� ,

V�, = k �
n=−�

+�

���t − nT�cos�x� + ��t − nT − �cos�x − ��� ,

�2�

where T is the kicking period. In fact, we propose an asym-
metric kicking sequence. This is made out of two series of
kicks with the same spatial and temporal periods, 2� and
T=2� /�, but shifted by a phase � �0���2�� and a time 

�0��T�. Due to the spatial periodicity of the kicking po-
tential V�,, the one-cycle evolution �Floquet� operator

Û = e−i�T−�p̂2/2e−ik cos�x̂−��e−ip̂2/2e−ik cos�x̂� �3�

induced by the Hamiltonian of Eq. �2� commutes with spatial
translations by multiples of 2�. As is well known from
Bloch theory, this implies conservation of the quasimomen-
tum �, defined as the fractional part of the momentum p �0
���1� �19�. For a given value of the quasimomentum, the
wave function of the system is a Bloch wave, of the form
ei�x���x�, where ���x� is a function of period 2�. A generic
wave function can then be written as a superposition of
Bloch waves ��x�=�0

1d�ei�x���x�.
Introducing the rescaled momentum variable I=Tp, one

can see that classical dynamics of model �2� depends on the
scaling parameter K=kT �not on k and T separately�. The
classical limit corresponds to �eff=T→0, while keeping K
=�effk constant.

In order to simulate the evaporative cooling process in the
quantum model we consider the projection over a subspace
corresponding to the quantum levels that are below pc �in
absolute value�. In practice, this is implemented at each kick:

if we denote by P̂ the projection operator on the interval
�− pc , pc�, the wave function after n kicks is then given by

��p,n� = �P̂Û�n��p,0� . �4�

Note that quasimomentum is still a conserved quantity. In the
classical case, we consider lost the particles that reach mo-
mentum p such that 	p	� pc.

We have checked in our numerical simulations that the
dependence of the ratchet current on the cutoff value pc is
weak, provided that pc�k. Therefore, the ratchet current in
this regime turns out to be close to the current obtained in the
Hamiltonian limit pc→�. On the other hand, the particle
escape mechanism strongly affects the phase space structure,
leading, in the classical limit, to the setting in of a strange
repeller.

In the numerical simulations reported in this paper, we fix
K=7, corresponding to the classically chaotic regime, 
=T /3, and pc�eff=15.2. The initial state is given by a uni-
form mixture of the momentum states inside the interval
p�eff� �−1,1�. Once the quasi-momentum is fixed, the num-
ber of momentum states in this interval is �1/�eff. Moreover,
we average numerical data over 103 randomly chosen quasi-
momenta. Classical averages are constructed from 107 initial
conditions randomly and uniformly distributed inside the re-
gion x� �0,2��, I= pT� �−1,1�. Note that with these initial
conditions and the above parameter values we are left with
approximately 35% of the initial number of particles at time
n= t /T=10 and 10% at n=20.

The appearance of a strange repeller in our model in the
classical limit is shown in the phase space portrait of Fig. 1
�a�, obtained for �=� /2 at n=20. The three panels of Fig. 1
correspond, from �a� to �c�, to the classical Poincaré section
and the quantum Husimi function at �eff
0.16 and �eff
1.
We can see a good agreement between the classical and the
quantum phase space portraits. Quantum fluctuations smooth
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the fractal structure of the classical repeller on the scale of
Planck’s cell �20�. In the quantum case the values of �eff

0.16 and �eff
1 considered here �and suitable for a real-
istic experimental implementation� are not sufficiently small
to resolve the fractal structure at small scales. However, the
Husimi function shows clear similarities with the underlying
classical probability distribution. Even for �eff=T
1 the
major features of the classical repeller �i.e., width in phase
space and asymmetry� are visible. Parameter values and evo-

lution time are suitable for the experimental measurement of
the quantum probability distribution located on the underly-
ing classical strange repeller. This is important because the
appearance of strange sets �attractors or repellers� is a dis-
tinctive feature of open chaotic systems.

The repeller in Fig. 1 is strongly asymmetric, suggesting
directed transport, that is, �p��0. This is confirmed by the
numerical data of Fig. 2, where �p� is shown as a function of
the time n.

(a)

(c)

(b)

FIG. 1. Phase space pictures for �=� /2, at n=20: classical Poincaré sections �a� and quantum Husimi functions at �eff
0.16 �b� and
�eff
1 �c�. The displayed region is given by I= pT� �−20,20� �vertical axis� and x� �0,2�� �horizontal axis�. Note that, to draw the
attractor, x is taken modulus 2�. The brightness is inversely proportional to the density: black �white� regions correspond to maximal �zero�
density.
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We can explain the origin of the directed current present
in our system by following the approach developed in Ref.
�21�. We have a classical time evolution given by

ẍ + f�,�x,t� = 0, �5�

where f�,�x , t�=�V�,�x , t� /�x. To this equation we add a
particle escape process consisting of cutting out the orbits
that exceed a given value of the momentum p= ẋ. We are
interested in symmetry transformations that leave Eq. �5� in-
variant but change the sign of p. In fact, if we assume that
our system is chaotic we can generate for each orbit its
p-reversed partner, which will explore the whole region em-
bedding the chaotic trajectories. This amounts to saying that,
being essentially equivalent, both orbits �and all of them�
should have zero average momentum. If these symmetries
are absent it is natural to conclude that a net p �i.e., different
from zero� can be generated. Thus, breaking all possible
symmetries of this kind constitutes a good method to engi-
neer ratchet systems. As the particle escape process intro-
duced above is symmetrical with respect to p, we can neglect
it in the following reasoning. It is worth mentioning that all
the symmetry considerations developed in this section trans-
late almost immediately to the quantum case.

There are two general ways to change the sign of p:

�I� x → − x + �, t → t + �

and

�II� x → x + �, t → − t + � .

In order to leave Eq. �5� unchanged we need that f�,�x , t�
=−f�,�−x+� , t+�� holds for �I�, since ẍ→−ẍ under this
transformation. If we apply twice transformation �I� we ob-
tain f�,�x+� /2 , t�= f�,�x+� /2 , t+2��. Since f�,�x , t� is as-
sumed to be bounded and periodic with zero mean, both in x
and t, � can only be an integer multiple of T /2 �including the

�=0 case�. In turn, there are no restrictions on �. On the
other hand, for �II� we need f�,�x , t�= + f�,�x+� ,−t+��
�with a plus sign since now ẍ keeps its original sign�. By
applying twice transformation �II� we obtain f�,�x , t+� /2�
= f�,�x+2� , t+� /2�. Following the same reasoning as be-
fore, � is fixed to integer multiples of � �including �=0�
while there are no restrictions on �. Note that �I� and �II� are
the only two symmetries that should be broken in order to
find directed transport. Our choice of the potential �2� guar-
antees the possibility to break both of them.

In fact, we have that f�,�x , t�=k�−�
+��−��t−nT�sin�x�

−��t−nT−�sin�x−���, and in the case of symmetry �I� we
require that f�,�x , t�=−f�,�−x+� , t+��. We can take �=0
without loss of generality since we only have a sum of delta
functions in t, i.e., the sign change of f induced by symmetry
�I� can only come from the first part of the transformation
�x→−x+��. Therefore, we arrive at the conditions sin�−x
+��=−sin�x� and sin�−x+�−��=−sin�x−��. These two
conditions lead to �= l2� and �= l�2�+2�, with l and l�
integers, and cannot be fulfilled together, except for �=0 or
�=�. Therefore, symmetry �I� is broken when ��0,�.

In the case of symmetry �II�, if we take � an odd multiple
of � then the sign of f�, changes. Then, we are only left
with � being an even multiple of �, i.e., we can take �=0
without loss of generality. Moreover, we notice that if �=0
and �=0 both kicks become the same in x and therefore
symmetry �II� holds for any , taking �=. On the
other hand, considering ��0 we arrive at the conditions
�n=−�

+� ��−t+�−nT�=�n=−�
+� ��t−nT� and �n=−�

+� ��−t+�−nT
−�=�n=−�

+� ��t−�, which imply �= lT and �= l�T+2, with l
and l� integers. We conclude that, if ��0, symmetry �II� is
broken when �0,T /2.

In summary, both symmetries �I� and �II� are broken for
��0,� and �0,T /2. Hence two series of kicks are suffi-
cient to observe the ratchet effect, provided that these kicks
are shifted both in space and in time, the shift in space being
different from half wavelength and the shift in time being
different from half period.

It is interesting to remark that current reversal can be
engineered in a very simple way, by taking �̃=−� instead of
� in Eq. �2�. Indeed, Eq. �5� is left unchanged when x→
−x, t→ t, and �→ �̃=−�, while this transformation changes
the sign of p. We can see current inversion in Fig. 3, both in
the classical and in the quantum case, when �=� /2→ �̃=
−� /2. Note that �p�=0 at �=0, in agreement with the above
symmetry considerations.

III. STABILITY OF THE RATCHET EFFECT
UNDER IMPERFECTIONS

The purpose of this section is to study the robustness of
the ratchet effect introduced in this paper in the presence of
typical sources of noise in cold-atom experiments. For the
large kicking strengths needed to guarantee clear signatures
of a chaotic repeller, spontaneous emission during the flash-
ing of the optical lattice cannot be ruled out �3�. Spontaneous
emission can be effectively modeled by random jumps in
quasimomentum �19�. We test the influence of such random

0 10 20 30 40 50
n

0

1

2

<I
>

FIG. 2. Average rescaled momentum �I�= �p�T as a function of
the discrete time n, for the same parameter values as in Fig. 1. The
solid curve corresponds to the classical case, while the dashed curve
corresponds to quantum results for �eff
0.16 and the dot-dashed
one to �eff
1.
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changes in quasimomentum on the results presented in the
previous section. That is to say, we repeat the previous cal-
culations but letting at any kick the quasimomentum ran-
domly change with a probability of 0, 0.2, and 0.5 �see Fig.
4�. In practice, it may jump to any possible value in the
Brillouin zone with those probabilities. As can be seen, this
additional randomness even helps to reduce fluctuations, and
when the jump probability is different from zero there is a
better convergence towards the classical result.

We now investigate how different kind of errors affect the
value of the ratchet current. More precisely, we compute the
average current �p�av, obtained after averaging �p� in the time
interval 10�n�20, as a function of the noise strengths as-
sociated to different noise sources.

First of all, we consider the effects of fluctuations in the
kicking strength. This is simulated by memoryless random
errors of size �K in the value of K: the kicking strength Kn at
time n is given by Kn=K+ ��K�n where the noise value ��K�n

is randomly drawn from a uniform distribution in the interval
�−�K ,�K�. It can be seen in Fig. 5 that the ratchet effect is
stable up to approximately �K
2, corresponding to a rela-
tive amplitude noise of �K /K
0.3.

Since the ratchet mechanism described in the previous
section works the better the smaller we choose �eff=T, we
consider possible fluctuations in the kicking period �16� aris-
ing from the problem of controlling strong but narrow pulses
in time with a high repetition rate. We model these imperfec-
tions as random and memoryless fluctuations in the period
between consecutive kicks. This takes into account the fact
that the timing of the kicks can suffer from uncontrollable
variations. As we can see from Fig. 6, stability is quite sat-

0 10 20 30 40 50
n

−2.5

−1.5

−0.5

0.5

1.5

2.5

<p
>

FIG. 3. Average momentum �p� as a function of n, for �
=� /2 �positive values�, �=0 �zero values�, and �=−� /2 �negative
values�. Both the classical �solid curves� and the quantum case �dot-
dashed curves, �eff
1� are shown. Note that at �=0 quantum and
classical curves are almost superimposed.

0 10 20 30 40 50

n

0

1

2

<p
>

FIG. 4. Average momentum �p� as a function of the discrete
time n, for the same parameters as in Fig. 2, at �eff
1. At each
kick, the quasimomentum can jump to any other possible value with
probabilities 0 �dot-dashed curve�, 0.2 �dashed curve�, and 0.5 �long
dashed curve�. The solid curve corresponds to the classical case.

0 2 4 6 8 10
δK

−0.25

0.25

0.75

1.25

1.75

<p
> av

FIG. 5. Average current �p�av as a function of the noise �K in
the kick strength K, for parameter values as in Fig. 2, at �eff
1.
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δ T/T
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FIG. 6. Average current �p�av as a function of the relative error
�T /T in the kicking period T, for parameter values as in Fig. 5.
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isfactory when �T /T	0.5, where �T is the size of the fluc-
tuations and T
1.

Finally, we consider the effect of an imprecision in the pc
selection. This is modeled by random memoryless variations
of the cutoff value �pc�n used at time n: �pc�n= pc+ ��pc�n,
with ��pc�n� �−�pc ,�pc�. Again the ratchet effect proves to
be robust, as can be deduced from Fig. 7. The results of this

figure are in agreement with the previous observation that the
dependence of the ratchet current �p� on the cutoff value pc

is weak �under the condition pc�k�.

IV. CONCLUSIONS

Considering a realistic experimental scenario, we showed
that a ratchet effect—induced by a combination of a two-
kick sequence as applied to an open system—is observable
in an atom-optics kicked rotor experiment. We also checked
the robustness of the ratcheted atomic evolution under rea-
sonable noise conditions.

An interesting perspective would be to study the ratchet
dynamics in a kicked Bose-Einstein condensate. Strong kicks
may, however, lead to thermal excitations out of equilibrium
and destroy the condensate, rendering the description by the
usually applied Gross-Pitaevskii equation meaningless �22�.
We have verified that the ratchet evolution is preserved in the
presence of typical experimental nonlinearities. However, a
full treatment of a strongly kicked Bose-Einstein condensate
remains a challenge for future work.
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Bose-Einstein condensates in accelerated double-periodic optical lattices:
Coupling and crossing of resonances
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We study the properties of coupled linear and nonlinear resonances. The fundamental phenomena and the
level crossing scenarios are introduced for a nonlinear two-level system with one decaying state, describing the
dynamics of a Bose-Einstein condensate in a mean-field approximation �Gross-Pitaevskii or nonlinear
Schrödinger equation�. An important application of the discussed concepts is the dynamics of a condensate in
tilted optical lattices. In particular the properties of resonance eigenstates in double-periodic lattices are dis-
cussed, in the linear case as well as within mean-field theory. The decay is strongly altered, if an additional
period-doubled lattice is introduced. Our analytic study is supported by numerical computations of nonlinear
resonance states, and future applications of our findings for experiments with ultracold atoms are discussed.

DOI: 10.1103/PhysRevA.75.013617 PACS number�s�: 03.75.Lm, 03.65.Nk, 03.65.Xp

I. INTRODUCTION

In the last decade, the advance of atom and quantum op-
tics has made it possible to realize and to study the evolution
of the center-of-mass motion on scales ranging from the mi-
croscopic �single particle� to the macroscopic �many-
particle� realm �1,2�. In a typical experiment with ultracold
atoms, interactions can either be made negligibly small or
reduced to a mean-field effect on the evolution of the mac-
roscopic order parameter of a Bose-Einstein condensate �see,
e.g., �2,3� and references therein�. The latter approach results
in an effective nonlinear Schrödinger equation, the following
Gross-Pitaevskii equation:

�−
�2

2m

�2

�x2 + V�x� + g���x,t��2���x,t� = i �
���x,t�

�t
, �1�

that describes the dynamics of the macroscopic wave func-
tion �or of the order parameter� of a Bose-Einstein conden-
sate �BEC� for zero temperature �3�. This mean-field descrip-
tion has proved to be extremely successful and reliable for
most recent experiments. The nonlinearity of the equation
leads to a variety of surprising phenomena, which are present
even in a simple nonlinear two-level system. Self-trapping of
a BEC in a double-well trap was observed experimentally
only recently �4�. The self-trapping transition manifests itself
in the appearance of novel nonlinear eigenstates �5�. The
appearance and disappearance of nonlinear eigenstates may
also lead to a breakdown of adiabaticity and nonlinear Zener
tunneling �6–8�.

In the present paper, we investigate nonlinear quantum
dynamics in decaying systems. Up to now, only relatively
few papers have studied nonlinear and non-Hermitian quan-
tum dynamics, discussing self-stabilizing, shifting, and
broadening of nonlinear resonances �9–13�. Here we focus
on the coupling of nonlinear resonances in nonlinear, non-

Hermitian level crossing scenarios. Our first object of inves-
tigation, the nonlinear two-level system with one decaying
level, offers analytic access to this subject. The eigenvalues
and eigenstates of its linear counterpart show some interest-
ing features, such as exceptional crossing scenarios �14�.

A very natural experimental setup leading to nonlinear
dynamics and decay is the dynamics of a Bose-Einstein con-
densate in a tilted or accelerated optical lattice, correspond-
ing to the Wannier-Stark scenario of solid-state physics �16�.

The decay dynamics in a nonlinear Wannier-Stark system
was recently discussed in �12,13�. It was shown that a non-
linear mean-field interaction can destroy resonant tunneling.
In this paper, we extend these studies to a double-periodic
optical lattice. The decay dynamics in this system shows
some interesting features even in the linear case, such as a
splitting of resonant tunneling peaks. The different types of
non-Hermitian crossing scenarios can be observed in depen-
dence on the system parameters.

The paper is organized as follows: first of all we review
some important results about the crossing scenarios in the
non-Hermitian two-level system in the linear �Sec. II� and
the nonlinear �Sec. III� case. The double-periodic Wannier-
Stark system is introduced and analyzed in Sec. IV. Nonlin-
ear Wannier-Stark resonances for a doubly periodic lattice
are presented in Sec. V. A discussion of interesting experi-
mental applications of our findings follows in Sec. VI.

II. CROSSING SCENARIOS OF RESONANCES
IN LINEAR QUANTUM MECHANICS

We prepare for the full discussion of nonlinear resonance
states as solutions of Eq. �1� by reviewing some essential
properties of the simpler linear case. First of all, we want to
illustrate the different types of possible curve crossing sce-
narios for non-Hermitian systems. To start with, we briefly
review a simple and instructive model system, a two-level
Hamiltonian with one decaying level �14,15�:*Electronic address: witthaut@physik.uni-kl.de
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H2 = �+ � − 2i� v

v − �
� �2�

with �, v, ��R, and ��0. In this approach it is assumed
that one of the bare states decays with rate �, while the decay
is negligible for the other one. The mean energy of the two
bare states is set to zero, the energy difference is given by 2�.
The two states are coupled with strength v. A different, non-
Hermitian two-level Hamiltonian was previously discussed
by Berry �17�.

The eigenvalues of the non-Hermitian Hamiltonian �2� are
given by

E± = − i� ± ��� − i��2 + v2 = E± − i�±/2. �3�

Both real and imaginary part of the eigenvalues are different
for ��0. �Anti�crossings of the real and imaginary part are
found only in the critical plane �=0. The exceptional line
v= ±� separates the critical plane into different regions: �i�
For �v � �� the imaginary parts of the eigenvalues coincide,
�+=�−=2�, while the real parts differ. This case is denoted
as a type-I crossing. �ii� For �v � �� the real parts of the
eigenvalues coincide, E+=E−=0, while the imaginary parts
differ. This case is denoted as a type-II crossing. �iii� The
eigenvalues are fully degenerate, E+=E−, along the critical
lines v= ±�.

The two different crossing types are illustrated in Fig. 1.
For a type-I crossing, i.e., �v � ��, the imaginary parts of the
eigenvalues cross while the real parts anticross. For a type-II
crossing, i.e., �v � ��, it is the other way around. Physically
this crossing describes a resonantly enhanced tunneling
�RET� effect: the decay rate of the lower state increases sig-
nificantly if this state is energetically close or equal to the
decaying upper level.

In view of the discussion of Wannier-Stark resonances in
period-doubled lattices in the following sections we want to
introduce another model system. We assume that the bare
states split up into two states, where the energies of the stable
bare states differ slightly by 2	. Each stable state mainly
couples to one of the decaying states, while all other cou-
plings are assumed to be weak. We consider the Hamiltonian

H4 = �H2 + A W

W H2 − A ,
� �4�

with the two-level Hamiltonian H2 defined in Eq. �2� and

A = 	�0 0

0 1
�, W = w�1 1

1 1
� . �5�

Figure 2 shows the eigenvalues of this Hamiltonian in de-
pendence of the on-site energies �. One observes that the
resonance peak splits up into two peaks. Two possibilities for
resonant tunneling, i.e., two type-II crossings, are found in-
stead of just one. This crossing scenario is robust against
small variations of the coupling w as long as w�v is ful-
filled. A nonvanishing coupling w causes a slight asymmetry
of the two crossings. For v�� one has two type-I crossings
instead, i.e., the imaginary parts of the eigenvalues cross
while the real parts anticross.

The change of a system parameter, e.g., the strength of the
Stark field F in the Wannier-Stark system discussed in Sec.
IV, will typically affect the bare state energies � as well as
the decay rate � and the coupling strengths. Therefore we
consider a variety of the four-level Hamiltonian �4�, the pa-
rameters of which are functions of the external field F:

� = − F/2 + 0.1,

� = Fe−1/F,

v = 0.05Fe−1/2F,

w = 0.01Fe−1/2F. �6�

The exponential scaling of the decay rate � is well known
from standard Landau-Zener theory �see, e.g., �18��. The de-
pendence of the bare state energies and the coupling coeffi-
cients on F were analyzed in detail for a two-ladder system
in �19�. It was shown that the Wannier-Stark spectrum is
accurately described assuming that the parameters scale as in
Eq. �6�. The actual values of coefficients in Eq. �6� are cho-
sen in an ad hoc manner for illustration only. The resulting
decay rates are illustrated in Fig. 3. For 	=0.02, we find two
type-II crossings. With increasing 	, the crossing on the right
changes its form and becomes a type-I crossing. Such a
crossing scenario is naturally realized for Wannier-Stark
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FIG. 1. Real �left� and imaginary �right� part of the eigenvalues
�3� as a function of � for �=1. A type-I crossing is found for v
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�� �lower figures�.
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resonances in double-periodic lattices, as will be shown in
Fig. 9 below.

III. NONLINEAR NON-HERMITIAN
CROSSING SCENARIOS

The linear non-Hermitian two-level system described in
Sec. II neglects any particle interaction. Including this inter-
action in a mean-field description according to the Gross-
Pitaevskii equation �1� yields a nonlinear non-Hermitian
two-level system �20�, described by the Hamiltonian

Hmf = �� + 2c��1�2 − 2i� v

v − � + 2c��2�2
� , �7�

where the nonlinearity parameter c is proportional to the pa-
rameter g in the Gross-Pitaevskii equation �1�. The nonlinear
eigenstates are then defined as the self-consistent solutions of
the time-independent Gross-Pitaevskii equation

Hmf��1

�2
� = 
��1

�2
� . �8�

The nonlinear eigenstates crucially depend on the normaliza-
tion of the state vector, which is fixed as ��1�2+ ��2�2=1
throughout this section. For convenience we symmetrize the
nonlinear Hamiltonian �7� by substracting a constant energy
term c���1�2+ ��2�2�. The Gross-Pitaevskii equation �8� then
reads

�� + c� − 2i� v

v − � − c�
� ��1

�2
� = 
��1

�2
� �9�

with �= ��1�2− ��2�2. The self-consistent solutions of this non-
linear equation define the nonlinear eigenstates and eigenval-
ues.

Note that the nonlinear eigenstates are not connected to
stationary solutions of the time-dependent system, if the
chemical potential turns out to be complex, since the dynam-
ics depends crucially on the normalization of the state vector,
which is not constant for a complex valued chemical poten-
tial. After some algebraic manipulation one can show that the
nonlinear eigenstates, i.e., the solutions of Eq. �9�, are given
by the real roots of the equation

�c2 + �2��4 + 2c��3 + �v2 + �2 − �2 − c2��2 − 2c�� − �2 = 0.

�10�

Depending on the parameters, there are two or four real roots
and each of them is connected to a complex eigenvalue by


 = c + �/� − i��1 + �� = M − i�/2. �11�

For �→ ±�, the linear term dominates and one has only two
eigenvalues. For �=0, �=0 is a double degenerate solution
of Eq. �10�. For ��v these states are connected to the com-
mon linear �anti�symmetric eigenstates, while this is not the
case for ��v. In the following we consider the crossing
scenario of the eigenvalues in dependence on � for different
fixed values of the other parameters.

The nonlinear eigenstates of a two-level system are well
known for the Hermitian case �=0 �6,7,21�. Novel eigen-
states emerge with broken symmetry if the nonlinearity ex-
ceeds a critical value, �c � �ccr=v, which is given by the
coupling strength v which corresponds to half of the gap
between the linear levels at �=0. The levels show looped
structures around �=0 with a width �� �  �c2/3−v2/3�3/2.

Let us first discuss the effect of a weak nonlinearity. Fig-
ure 4 shows the eigenvalues for a relatively weak nonlinear-
ity in comparison with the linear case c=0. The size of the
gaps is not altered by the nonlinearity, which leads to the
important fact that the nonlinearity does not influence the
crossing type. Nevertheless, it changes the shape of the lev-
els. For a type-I crossing, the real part of the upper level is
sharpened while the one of the lower level is flattened, which
is well known for �=0 �6�. For a type-II crossing the effect is
basically the same, but is accompanied by a shift of the
crossing point from 
=0 to 
=c and the lower level is
stretched to this point. The imaginary parts bend slightly to
the left. At the exceptional point additional eigenvalues
emerge in a narrow interval around �=0
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FIG. 3. Imaginary part of the eigenvalues of the four-level
Hamiltonian �4� as a function of 1/F and 	=0.02 �left� and 	
=0.05 �right�. See text for details.
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The linear levels �c=0� are plotted as dotted lines for comparison.

BOSE-EINSTEIN CONDENSATES IN ACCELERATED… PHYSICAL REVIEW A 75, 013617 �2007�

013617-3

146 KAPITEL 4. WISSENSCHAFTLICHE ARTIKEL



.
In general, the presence of moderate decay facilitates

the formation of novel eigenstates. Figure 5 shows the non-
linear levels for c=0.9, which is slightly below the critical
value ccr=v for �=0. For a type-I crossing, v��, the real
parts show a familiar loop. The imaginary parts cross as
usual, showing an additional S-shaped structure. In fact, the
critical nonlinearity for the emergence of looped levels is
decreased to

ccr = �v2 − �2, �12�

which can be seen by analyzing the behavior of the polyno-
mial �10� for �=0. At the exceptional point v=�, the critical
nonlinearity tends to zero and there are additional eigenstates
even in the case of arbitrary weak nonlinearity. For a type-II
crossing, v��, the imaginary parts anticross and the real
parts cross in a manner which can be understood as a de-
struction of the loop at its lower edge. The crossing appears
at the former crossing point of the loop at �=0 and 
=c
�0. In the nondecaying case, �=0, novel eigenstates first
emerge at the point of the avoided crossing at �=0. This
remains true for a type-I crossing, v��. For a type-II cross-
ing, v��, however, novel eigenvalues emerge, again in an
S-shaped structure around some nonzero value of �.

Concluding this section, a weak nonlinearity does not al-
ter the crossing type, however, it deforms the levels in a
characteristic manner. For a type-II crossing the real parts
cross at 
=c�0. At the exceptional point novel eigenstates
emerge, even for small nonlinearities. The presence of decay
facilitates the formation of novel eigenstates for stronger
nonlinearities. For type-I crossings, loops appear if �c � �ccr
=�v2−�2. For a type-II crossing the additional eigenstates
emerge around some nonzero value of � forming a double-S
structure. If the sign of the nonlinearity is changed, the levels
interchange their behavior, i.e., the real parts are mirrored at
the � axis, the imaginary parts at the � axis.

IV. WANNIER-STARK RESONANCES
IN DOUBLE-PERIODIC LATTICES

A. Fundamentals of the linear Wannier-Stark system

A prime example for resonances and resonant tunneling is
the �linear� Wannier-Stark problem described by the Hamil-
tonian

HWS = −
1

2

�2

�x2 + V�x� + Fx �13�

with a periodic potential V�x+d�=V�x�. We use rescaled
units in which �=M =1. The Wannier-Stark problem was
already discussed in the early days of quantum mechanics in
the context of electrons in solids under the influence of an
external electric field �22�. Coherent dynamics of electrons in
semiconductor superlattices were observed not until the
1990s. Experiments showed Bloch oscillations for “weak”
electric fields and decay for stronger fields �23,24�. The
Wannier-Stark system is furthermore realized for the propa-
gation of light pulses in thermo-optically biased coupled
waveguides. Bloch oscillations as well as decay could thus
be observed directly in real space �25�. On the other hand,
recent experiments with cold atoms and Bose-Einstein con-
densates in optical lattices offer some considerable advan-
tages �2,26–28�. Scattering by lattice defects or impurities is
absent and experimental parameters can be tuned in a wide
range. The periodic potential is generated by a standing laser
beam and thus simply cosine shaped.

Let us briefly review some fundamentals of Wannier-
Stark resonances, which are defined by the eigenvalue equa-
tion

HWS��,n�x� = E�,n��,n�x� . �14�

Here, � is the ladder index and n�Z labels the lattice sites.
The Wannier-Stark Hamiltonian �13� is non-Hermitian due to
the boundary condition: A wave packet will eventually decay
towards x→−�. In fact, it has been shown that the spectrum
of the Hamiltonian is continuous with embedded resonances
�29�. Thus the resonance eigenenergies are complex, E�,n
=E�,n−i�� /2, where the imaginary part � gives the decay
rate. The Wannier-Stark Hamiltonian has one important sym-
metry, it is invariant under a simultaneous spatial translation
over a lattice period d and an energy shift dF. This symmetry
is expressed by the commutation relation

�HWS,Tm� = − mdFTm, �15�

where Tm is the translation operator over m lattice periods.
Now it is easy to see that the Wannier-Stark resonances from
one ladder � are related by a simple translation,

HWSTm��,n�x� = TmHWS��,n�x� + �HWS,Tm���,n�x�

= �E�,n − mdF�Tm��,n�x� . �16�

Thus the discrete spectrum is arranged in the form of the
so-called Wannier-Stark ladders,

��,n�x� = ��,0�x − nd� ,
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FIG. 5. Real �left� and imaginary �right� part of the eigenvalues
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E�,n = E�,0 + ndF − i��/2. �17�

The different ladders are labeled by �=0,1 ,2 , . . . . An effi-
cient method to calculate the resonance eigenstates was in-
troduced in �30�, a recent review can be found in �31�.

The decay rate �� is the same for all resonances in
one ladder. In general, the decay rate scales as �
	F exp�−��E2 /F�, where �E is the energy gap between
the Bloch bands of the periodic potential. This result can be
deduced from Landau-Zener theory �18,19�. However, one
observes peaks of the decay rate on top due to resonant tun-
neling. For example, the decay rate of the two most stable
resonances for the periodic potential V�x�=cos x is plotted as
a function of the inverse field strength 1/F in Fig. 6. RET
takes place when a state of a lower ladder with energy E�,n
gets in resonance with a state of a higher ladder at a different
site, i.e., E�,n=E��,n�. The decay rate of the lower ladder is
significantly increased as it couples resonantly to a higher
ladder with a higher decay rate. For example, the pronounced
peak in the ground ladder decay rate �i.e., �=0� at F
1/7
corresponds to the resonance �=0↔��=1 and n�=n−1.

B. Double-periodic lattices

Now we turn to the main subject of the present paper. We
consider a double-periodic potential V�x� consisting of a ma-
jor optical lattice of period d plus an additional shallow lat-
tice of double period,

V�x� = V0�sin2��x/d� + 	 sin2��x/2d + �/2�� . �18�

Rescaling the spatial coordinate as x�=2�x /d and neglecting
a constant potential offset, we can rewrite the periodic po-
tential as

V�x� = −
V0

2
�cos�x� + 	 cos�x/2 + ��� . �19�

The relative phase of the two lattices is denoted by �.
Due to the additional lattice each Bloch band splits up

into two minibands �34�, and each Wannier-Stark ladder
splits up into two miniladders, as proved in the following.
The symmetries of the Hamiltonian are given by the commu-
tation relations

�H,T2m� = − 2mdFT2m,

�H,T2m+1G� = − �2m + 1�dFT2m+1, �20�

where Tm is the translation operator over m lattice periods
and the operator G inverts the sign of 	 in all following
terms. Then it is easy to see that the Wannier-Stark states of
one ladder are related by a translation over an even number
of lattice periods, or by a translation over an odd number of
lattice periods plus an inversion of the sign of 	,

HT2m��,n�x� = �E�,n�	� − 2mdF�T2m��,n�x� ,

HT2m+1G��,n�x� = �E�,n�− 	� − �2m + 1�dF�T2m+1G��,n�x� .

�21�

Furthermore, it can be shown that the energy offset E�,0 is
antisymmetric in 	,

E�,0�− 	� = − E�,0�	� . �22�

Thus the Wannier-Stark ladders split up into two minilad-
ders, each with an energy offset 2E��	�:

E�,2n = E��	� + 2ndF ,

E�,2n+1 = − E��	� + �2n + 1�dF . �23�

A similar proof is given in �32� within the tight-binding ap-
proximation.

The decay of the Wannier-Stark resonances is seriously
influenced by the additional period-doubled potential. Figure
7 shows the decay rate � as a function of the inverse field
strength 1/F for V0=2, �=0, 	=0.05, and 	=0.1, respec-
tively. The decay rate of the single-periodic lattice 	=0 is
also plotted for comparison. As all Wannier-Stark ladders
split up into two miniladders, so does the decay rate �. The
general scaling of � with F remains the same for both
miniladders, while the RET peaks are seriously altered. The
peaks split up into two, where the height of the subpeaks
increases significantly. This effect is mostly pronounced for
the major resonance at F
1/7. The explanation of the split-
ting is straightforward: In Fig. 8, the thick blue lines repre-
sent the energy levels of the two most stable Wannier-Stark
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FIG. 6. Eigenenergies �upper panel� and decay rates �lower
panel� of the two most stable Wannier-Stark ladders for the poten-
tial V�x�=cos x.
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Wannier-Stark system. Decay rates of the four most stable reso-
nance for V0=2, �=0, and 	=0 �dashed black line�, 	=0.05 �thin
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ladders. Due to the period-doubled potential they are alter-
nately shifted up or down with respect to the unperturbed
level �	=0, dash-dotted lines�. The decay rate � is resonantly
enhanced when two energy levels of different ladders are
degenerate, as indicated by the solid red arrow. However, for
	�0, the two miniladders are in resonance with higher lad-
ders for different values of the field strength F due to the
alternating energy shift. In Fig. 8, for example, one of the
miniladders is off resonance �indicated by the broken arrow�
while the other one is in resonance �solid arrow�. If the field
strength is lowered, the off-resonant ladder will get into reso-
nance at another value of F.

With increasing amplitude 	 of the second double-
periodic lattice, the splitting of the resonant tunneling peaks
clearly becomes more pronounced as one can see in Fig. 7.
Another �not so intuitive� effect is that the additional lattice
can also alter the crossing type. For 	=0.1 one observes a
crossing of the decay rates at F
1/9.5 due to resonant tun-
neling instead of an anticrossing. This effect is further illus-
trated in Fig. 9. The real and the imaginary part of the reso-
nance eigenenergies are plotted in the vicinity of one of the
RET peaks �cf. Fig. 7�. For 	=0.075, one observes a familiar
RET peak, i.e., a type-II curve crossing. For 	=0.08, how-
ever, the crossing type is altered from type II to type I. The
decay rate of one miniladder crosses the decay rate of one
excited miniladder. Correspondingly, the real parts anticross.
A diabolic point, where real and imaginary part are degener-

ate, is found at 	=0.0772 and F=1/8.937 for �=0. If we
consider the relative phase � as another free parameter, the
set of diabolic points is a one-dimensional subset of the
three-dimensional parameter space �	 ,F ,��; the diabolic
crossing has co-dimension 1.

C. Output control by the relative phase

Up to now, we have shown that the RET peaks split up,
whereby the splitting increases with the amplitude 	 of the
additional lattice. Furthermore, the decay depends crucially
on the relative phase � of the lattices. Figure 10 shows the
decay rate of the two lowest miniladders in dependence of
the relative phase � and the inverse field strength 1/F for
V0=2 and 	=0.05. The splitting of the RET peaks is maxi-
mal for �=0. It becomes zero for �
0.55�, where the de-
cay rates of the two miniladders degenerate again.

Despite the fact that the additional lattice is much weaker
than the single-periodic one �	=0.05�, it can seriously affect
the decay properties. Changing the relative phase � of the
two lattices, the decay rate of the two lowest miniladders
may vary over several orders of magnitude. This is further
illustrated in the lower panel of Fig. 10, where the decay rate
is plotted for a fixed value of F=0.12. The decay rate for the
single-periodic case 	=0 is also plotted for comparison. This
strong effect is caused by the shift of the RET peak position
Fres in dependence of � shown in the upper panel of Fig. 10.
Fixing the field strength F at an appropriate value, one can
tune the system in and out of resonance solely by a variation
of the phase �. In the example in Fig. 10, we have chosen
the field strength so that F=0.12
Fres for �=0. Changing
the phase to �=0.55� shifts the RET peak to Fres=0.134. As
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FIG. 8. �Color online� Explanation of resonantly enhanced tun-
neling �RET�. See text for details.
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the field strength F remains fixed, the system is tuned out of
resonance and the decay rate drops by orders of magnitude.
The decay rate as a function of the phase, ����, is � peri-
odic. This can be seen as follows: Shifting the phase by an
amount of � and the position by 2� leaves the Wannier-
Stark Hamiltonian �13� with the potential �19� invariant up to
a real constant. Since a spatial translation by 2� just ex-
changes the two miniladders as shown above, so does a
phase shift by �.

The sensitive dependence on the relative phase � might
be very useful for the design and control of future experi-
ments with double-periodic optical lattices. A complete sta-
bilization of the relative phase of the two lattices will be hard
to achieve and fluctuations will play an important role. Yet,
Ritt et al. have realized a new technique based on Fourier
synthesis to control two �or even more� optical lattices with
different spatial harmonics �33�. In the following, we will
discuss the effects on the decay rates of the Wannier-Stark
resonance in some detail. The strongest effects are found in
the vicinity of the RET peaks, on which we focus in our
present discussion.

Figure 11�a� again presents the decay rate as a function of
the inverse field strength 1/F for V0=2 and a weak addi-
tional lattice with 	=0.05 and �=0. For the given param-
eters, we find RET peaks at F1
1/6.9 and F2
1/8.4. Fig-
ure 11�b� shows the position F1,2 of the two resonant
tunneling peaks in dependence of the relative phase �. The
positions vary in an interval of width �F
1/40.

In a real-life experiment, it is difficult to exactly control
the relative phase of two independent standing waves. There-
fore we study also the influence of random-phase fluctua-
tions. If we assume that the phase � fluctuates in an interval
of width �� around the desired value �0, �� ��0

−�� /2 ,�0+�� /2�, the positions of the resonant tunneling
peaks will also fluctuate in an interval of width �F. Figure
11�c� shows how the width �F depends on the strength of
the phase fluctuations �� for �0=0 and �0=� /2. The fluc-
tuations are rather weak for �0=0, where the RET peaks
have maximum distance. For a given value of the external
field F, the decay rates � fluctuate in an interval of width
��. Figure 11�d� shows the relative strength of the fluctua-
tion, �� /�0 vs the phase fluctuations �� for the most stable
resonance for an external field F=1/8 and �0=0 or �0
=� /2, respectively. The relative uncertainty of the decay rate
becomes greater than unity already for small fluctuations of
the phase �. Nevertheless, the noise induced shift and
change in height of the RET peaks is small considering the
absolute change of the decay rates around the RET peaks of
about two orders of magnitude.

However, it is also possible to exploit the sensitive depen-
dence on the phase �, if it can be accurately controlled. For
instance, it could be possible to rapidly tune the output of a
pulsed atom laser. An example will be discussed in detail in
Sec. VI.

V. NONLINEAR WANNIER-STARK RESONANCES
IN DOUBLE-PERIODIC OPTICAL LATTICES

A method to obtain accurate, nonlinear Wannier-Stark
resonances was proposed recently in �13�, and we use a simi-
lar approach to numerically compute decay rates of the non-
linear version of the Wannier-Stark introduced in Sec. IV B
above. In contrast to the case studied in �13�, the computa-
tions based on the Gross-Pitaevskii equation �1� in the pres-
ence of a two-period optical lattice are more difficult, since
the algorithm needs to discriminate between the two mini-
band solutions which are quite close in energy �cf. Figs. 6
and 7�. In particular, for very small Stark fields, it is hard to
obtain convergence. In the following, we concentrate there-
fore on RET peaks at fields as large as possible, and one trick
to shift the peaks to such values is to use attractive interac-
tions, i.e., negative nonlinearities �g�0�. Figure 12 presents
a set of RET peaks for different values of the nonlinearity g.

The nonlinearity induced a shift of both RET peaks �cor-
responding to the two minibands� and also a systematic sta-
bilization �i.e., smaller heights� can be observed, as predicted
by similar results for the usual, one-band Wannier-Stark sys-
tem �13�. This is analyzed in more detail in Fig. 13, where
the peak positions Fres and the height of the peaks �res are
plotted in dependence of g.

The stabilization of the Wannier-Stark states by an attrac-
tive nonlinearity is shown in the upper panel. An asymmetry
of the two peaks is observed already in the linear case g=0:
The left peak is slightly higher than the right one, i.e., the
peak decay rate is larger for smaller external fields F. This
phenomenon becomes even more pronounced in the nonlin-
ear case g�0. The stabilization by an attractive nonlinearity
�cf. �13�� is stronger for the right peak.
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The peak positions shown in the lower panel of Fig. 13
vary linearly with g, which can be derived in a perturbative
approach. As discussed above, resonant tunneling is ob-
served when a state of a lower ladder get in resonance with a
state in a higher ladder at a different site, E�,n=E��,n�. Here
we consider only the states in the ground ladder, which are
localized in a single potential well. First-order perturbation
theory with respect to the linear case g=0 predicts that their
energy is shifted by the amount �13�

�E0,0 
 g�
−�

+�

��0,0
�0��x��4dx , �24�

where the superscript �0� refers to the linear case g=0. The
shift �F of the RET peaks then follows from the modified
resonance condition

E0,n
�0� + �E0,n = E��,n�

�0� + n�d�F . �25�

Evaluating the integral in Eq. �24� and setting n�=n−1 one
finds

�F = −
0.36

2�
g �26�

for the peak shift plotted in Fig. 13. Both peaks are shifted
equally, so that the distance of the peaks remains constant.

Furthermore, the shape of the RET peaks becomes asym-
metric in the nonlinear case. This is shown in Fig. 14, where
we have plotted a magnification of the decay rate ��F�
around the respective positions of the RET peaks for
g=−0.3 and g=0. In comparison to the linear case, the peak
is bent to the left for an attractive nonlinearity. This asym-
metry is a general feature of nonlinear eigenstates in open
systems. It is already present for the nonlinear two-level sys-
tem as shown in Fig. 4. A similar incline of resonant curves
is also important for nonlinear resonant transport. The curves
can even bend over for strong nonlinearities leading to a
bistable behavior as shown in �35�.

VI. DYNAMICS

In this section, we discuss the dynamics of an initially
localized matter wave, e.g., a Gaussian wave packet in the
tilted double-periodic optical lattice �19�. In one of the first
experiments on the macroscopic dynamics of BECs in opti-
cal lattices it was shown that such a system shows a coherent
pulsed output �28�. An explanation in terms of truncated
Wannier-Stark resonances can be found in �36�. The ampli-
tude of the pulsed output is given by the decay rate of the
Wannier-Stark resonances.

First of all, we illustrate how the sensitive dependence on
the phase can be used to tune a pulsed atom laser. As a proof
of principle, we just consider the linear �g=0� evolution. In
contrast to the previous sections we consider a weaker po-
tential, V0=0.8, so that decay is generally stronger. We nu-
merically integrate the Schrödinger equation for an initially
Gaussian wave packet

��x,t = 0� =
1

�2��1/4�1/2 exp�− �x − x0�2/4�2� �27�

with width �=5�. Figure 15 shows the density ���x , t��2 in a
grey-scale plot for a single periodic lattice �	=0�. A pulsed
output forms due to the external field. The pulses are accel-
erated just as classical particles. The first three strong pulses
emerge from excited ladders. The output strength of the other
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FIG. 12. �Color online� Decay rates of nonlinear Wannier-Stark
resonances in double periodic optical lattices with V0=2, 	=0.05,
�=0, and g=0 �dashed black line�, g=−0.1 �dotted green line�, g
=−0.2 �dash-dotted red line�, and g=−0.3 �solid blue line�,
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pulses from the ground ladder can be controlled to a large
extent in the double-periodic case by the relative phase �. As
already shown in Fig. 10, the decay rate varies strongly with
the relative phase of the two lattices. The effect on the pulsed
output is shown in Fig. 16, where the density is plotted for
t=14TB for three different lattice setups.

For 	=0.2 and �=0, a RET peak of type I is found in the
second miniladder at F=1/18. Thus decay from this minilad-
der is strongly enhanced in comparison to the single-periodic
lattice 	=0. Note that the pulsed output will stop as soon as
the population in the second miniladder has decayed. In con-
trast, the pulsed output is strongly suppressed for a relative
phase �=� /2, where RET does not play a role for the given
field strength.

In order to measure the performance of this output switch
more qualitatively, we define the fidelity

f =
Pout��0 = 0�

Pout��0 = �/2�
, �28�

where Pout measures the integrated density of the pulsed out-
put for a certain value �0 of the relative phase of the two
optical lattices. The output is switched on for �0=0 and it is
switched off for �0=� /2. We measure the output density
Pout at t=14TB, where we neglect the first three strong pulses

as they are due to the initial population of excited Bloch
bands. Then one has

P = �
−230d

−30d

���x��2dx . �29�

For the parameters used in Fig. 16, we find a fidelity of F
=7.4, i.e., the output for �0=0 is enhanced by a factor of 7.4
in comparison to �0=� /2.

However, in a real experimental setup the phase � will
fluctuate around the desired value. This is mainly due to
mechanical perturbations, thus fluctuations with very high
frequencies are unlikely, while fluctuations with small fre-
quencies up to some kHz can be controlled by an active
stabilization. Thus we assume that the power spectrum of the
phase fluctuations has a maximum at intermediate values in
the kHz regime. This is comparable to the Bloch frequency
�B=2� /TB, as the Bloch period is about one millisecond in
a typical experiment �28�. Exemplarly, we consider fluctua-
tions with a Gaussian power spectrum with mean �B and
width �B /4. In the following we analyze the pulsed output in
dependence of the strength of the fluctuations. Figure 17
shows the fidelity of the output in dependence of the stan-
dard deviation ��= ����−�0�2�1/2 of the fluctuations for the
same parameters as in Fig. 16. One observes that the fidelity
drops to 1 �no switching effect� for a standard deviation of
��
0.6�. A reduction of the fluctuations below this value
is in principle possible today, however, only with a great
technical effort. As a consequence, an output switching
seems feasible in double periodic lattices.

VII. CONCLUSION AND OUTLOOK

In the present paper we have studied the interplay be-
tween decay and a nonlinear mean-field potential describing
the atom-atom interactions in a dilute Bose-Einstein conden-
sate.

As an illustrative model we have investigated a two-level
systems with one decaying level, which can be treated ana-
lytically. In the linear case, one has to distinguish two types
of level crossings, either the real parts anticross while the
imaginary parts of the eigenvalues cross �type I� or the other
way around �type II�. Both real and imaginary parts are de-
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FIG. 15. Pulsed output from a tilted optical lattice for V0=0.8,
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grey-scale plot.
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generate at the exceptional point, where the bare state decay
rate equals the coupling strength. A weak nonlinearity does
not alter the crossing type, however, it deforms the levels in
a characteristic manner. For example, it leads to a bending of
the peaks in the decay rates. Novel nonlinear eigenstates
emerge for a stronger nonlinearity, where the critical nonlin-
earity is decreased in the presence of decay. Looped levels
appear for type-I crossings, while the additional eigenstates
emerge in a double-S structure for a type-II crossing. At the
exceptional point novel eigenstates emerge, even for small
nonlinearities.

An experimental setup where both decay and nonlinearity
play an important role is the dynamics of Bose-Einstein con-
densates in accelerated optical lattices. In particular, we have
analyzed the decay in a double-periodic lattice, where a weak
period-doubled potential is superimposed onto the funda-
mental lattice. These results will be of interest for controlling
transport of ultracold atoms in future and ongoing experi-
ments �37�.

The decay rate in a double-periodic Wannier-Stark system
depends sensitively on the system parameters, such as the
relative amplitudes of the lattices and the relative phase,
which can be varied over a wide range. In particular, the
resonant tunneling peaks of the decay rate ��F� split up into

two subpeaks. Varying the system parameters one can tune
these peaks and even achieve a crossover from a type-II
crossing to a type-I crossing. This could be crucial for future
experiments since a robust control of the relative phase is
hard to realize. One can, however, also exploit this sensitive
dependence in order to implement a fast output switch for a
pulsed atom laser. A weak nonlinear mean-field potential de-
scribing the atom-atom interactions in a Bose-Einstein con-
densate of ultracold atoms has two major effects: The reso-
nant tunneling peaks are shifted. This shift can lead to a
stabilization against decay. Furthermore, it leads to a bending
of the peaks as predicted by the nonlinear non-Hermitian
two-level system.
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ABSTRACT We study the decay dynamics of an interacting
Bose–Einstein condensate in the presence of a metastable trap-
ping potential from which the condensate can escape via tunnel-
ing through finite barriers. The time-dependent decay process
is reproduced by means of the instantaneous decay rates of the
condensate at a given population of the quasi-bound state, which
are calculated with the method of complex scaling. Both for
the case of a double-barrier potential as well as for the case of
a tilted periodic potential, we find pronounced deviations from
a monoexponential decay behavior, which would generally be
expected in the absence of the atom–atom interaction.

PACS 03.75.Lm; 03.65.Xp; 03.75.Kk

1 Introduction

With the advent of optical lattices [1–3] and ‘atom
chips’ [4, 5], it became possible to probe the transport proper-
ties of a Bose–Einstein condensate in the mesoscopic regime.
The unprecedented degree of experimental control in these
systems led to the observation of Bloch oscillations [6, 7], the
guided and free propagation of condensates through wave-
guide structures [8, 9], the transport of condensates with ‘op-
tical tweezers’ [10], as well as the realization of Josephson
junctions [11] and matter-wave interferometry [12], to men-
tion just a few examples. Those experiments typically involve
rather small trapping potentials, with length scales that can
be of the order of a few microns. In such geometries, decay
mechanisms of the condensate become a relevant issue. On
the one hand, the condensed state is, at finite atom densities,
subject to depletion, which is caused by the interaction with
the thermal cloud and by three-body collisions. On the other
hand, the condensate can escape from the trapping potential
by tunneling though its barriers if the chemical potential of the
condensed atoms exceeds the background potential in the free
space outside the trap. In that case, the self-consistent mean-

� Fax: +49 941 943 4382,
E-mail: peter.schlagheck@physik.uni-regensburg.de

field state of the condensate is no longer bound, but rather
corresponds to a metastable ‘resonance’ state, in a similar way
as, for example, doubly excited electronic states in the helium
atom [13].

From the theoretical point of view, various methods were
used [14–19] to tackle the problem of how to treat ‘reso-
nances’, i.e. stationary states that describe the escape of pop-
ulation from an open confinement potential, in the context
of Bose–Einstein condensates. For linear systems, it is well
known that this task is most conveniently accomplished by
applying the method of ‘complex scaling’ (or ‘complex ro-
tation’) [20–23]. This technique essentially amounts to the
complex dilations r �→ reiθ and −i∇ �→ −i∇ e−iθ of the pos-
ition and momentum operators in the Hamiltonian that de-
scribes the quantum system under study. This transform-
ation leads to a non-Hermitean Hamiltonian with a com-
plex eigenvalue spectrum the continuous part of which is
rotated to the lower half of the complex energy plane. Res-
onances, i.e. decaying states with eigenvalues correspond-
ing to poles of the resolvent below the real energy axis, are
thereby uncovered and can be calculated using standard diag-
onalization techniques for complex matrices. This approach
is essentially exact, in the sense that no a priori approxi-
mations are introduced in the complex dilation procedure.
Positions and widths of resonances can therefore be calcu-
lated with high precision by means of the complex scaling
procedure [22, 23].

The generalization of this approach to Bose–Einstein con-
densates was recently accomplished in our previous stud-
ies [18, 19], where we applied the complex scaling trans-
formation to the nonlinear Gross–Pitaevskii equation that de-
scribes the mean-field dynamics of the condensate. In con-
trast to an alternative approach proposed by Moiseyev and
Cederbaum [17], we explicitly took into account the com-
plex nature of the wavefunction of the resonance state, which
leads to a considerable complication of the problem due to the
resulting nonanalyticity of the interaction term in the Gross–
Pitaevskii equation. We showed in [18] how this complication
can be tackled and how quasi-bound resonance states of the
condensate can be calculated by means of a real-time propaga-
tion approach based on the complex scaled Gross–Pitaevskii
Hamiltonian.
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In this paper, we apply this method in order to calcu-
late specific time-dependent decay processes of the conden-
sate. Instead of a direct numerical integration of the time-
dependent Gross–Pitaevskii equation (which is rather con-
sumptive in CPU time for the evolution time scales under
consideration), we compute, with complex scaling, the de-
cay rates of the quasi-bound state of the condensate at vari-
ous values for the effective interaction strength (which would
be proportional to the number of atoms that are populat-
ing this quasi-bound state at a given instance of time). Then
we integrate, on the basis of this information, a simple rate
equation that directly describes the decay of the quasi-bound
population. This approach is comparatively efficient, avoids
the introduction of artificial complex potentials at the grid
boundaries in order to absorb the outgoing population (see
e.g. [14]), and provides physical insight that could be used
to control the decay process in a similar way as for macro-
scopic tunneling of condensates in double-well potentials
(e.g. [24, 25]).

The paper is organized as follows. In Sect. 2, we es-
tablish the general relation between resonance states of the
stationary Gross–Pitaevskii equation and the actual time-
dependent decay process of the condensate. We furthermore
discuss how such resonance states can be calculated by the
method of complex scaling, as was described in more de-
tail in [18]. Section 3 contains the numerical results that
we obtain for two paradigmatic examples of metastable con-
finement configurations: a harmonic trapping potential with
Gaussian envelopes, and a tilted periodic lattice. We calcu-
late the time-dependent decay of the condensate, which is,
in both cases, characterized by a pronounced nonexponential
nature.

2 The nonlinear complex scaling approach

We consider a Bose–Einstein condensate that is
confined within a cylindrical matter-wave guide with trans-
verse frequency ω⊥ and evolves in the presence of a lon-
gitudinal potential V(x). In the ‘one-dimensional mean-field
regime’ [26] (where the confinement is strong enough to in-
hibit transverse excitations within the waveguide, but not as
strong as to enter the Tonks–Girardeau regime [27]), the dy-
namics of the condensate is described by the one-dimensional
time-dependent Gross–Pitaevskii equation

i
∂

∂t
ψ(x, t) =

(
−1

2

∂2

∂x2
+ V(x)+ g0|ψ(x, t)|2

)
ψ(x, t) , (1)

where x denotes the coordinate along the waveguide. The
longitudinal potential V(x) is assumed to provide a local har-
monic confinement with trapping frequency ω‖, from which
the condensate can escape via tunneling through finite bar-
riers. Dimensionless variables, defined by setting h = m =
ω‖ = 1, are used throughout this paper. This means that we ex-
press all length scales (including the coordinate x) in units of
a‖ = √

h/(mω‖), all energy scales in units of hω‖, and all time
scales in units of ω−1

‖ . The effective one-dimensional interac-
tion strength is, in these units, given by g0 = 2asω⊥, where as

denotes the s-wave scattering length of the atoms [27].

For the description of our theoretical approach, we specif-
ically focus in the following on the double-barrier potential

V(x) = 1

2
x2 exp(−αx2) , (2)

with α = 0.1, which could be experimentally realized, e.g.
with red- and blue-detuned laser beams that are tightly fo-
cused onto the waveguide. Obviously, V(x) does not exhibit
any bound state, and the eigenspectrum of the linear (noninter-
acting) Hamiltonian operator is fully continuous. There exist,
however, quasi-bound states which are localized in the well
around x = 0 and which give rise to resonances in the energy
spectrum (corresponding to complex poles of the scattering
matrix). In the case of noninteracting atoms (g0 = 0), such res-
onance states are described by time-dependent wavefunctions
of the form ψ(x, t) = ψ(x) exp(−iEt), where ψ(x) satisfies
the stationary Schrödinger equation for the complex eigen-
value E = µ− iΓ/2 and exhibits outgoing (Siegert) bound-
ary conditions [28] ψ(x) −→ ψ0 exp(ik|x|), with Re(k) > 0
for x → ±∞. This latter property expresses the fact that the
wavefunction of the decaying state is characterized by a finite
current of atoms that propagate away from the well.

As a consequence, the atomic population inside the well
decays exponentially according to ∝ exp(−Γt) if the system is
initially prepared in the energetically lowest resonance state.
It is quite obvious that this is no longer true in the nonlinear
case of interacting atoms (g0 �= 0). There, the tunnel coupling
through the barriers explicitly depends, via the nonlinear term
in the Gross–Pitaevskii equation, on the local atomic density,
which in turn induces a temporal variation of the decay rate Γ .
We therefore naturally obtain, as was also pointed out in [29],
a nonexponential decay of the atomic density, the reproduc-
tion of which is the central aim of this paper.

Despite this complication, a description of the decay pro-
cess of the interacting condensate in terms of instantaneous
quasi-bound states can nevertheless be justified if the rate Γ

characterizing the temporal variation of the density inside the
well is rather small compared to the chemical potential (which
should generally be the case if the condensate escapes via
tunneling through finite barriers). In such a quasi-stationary
situation, we can employ an adiabatic ansatz where the con-
densate is assumed to remain always in the energetically low-
est (and most stable) resonance state associated with a given
instantaneous density |ψ(x, t)|2. This resonance state is for-
mally defined, together with its associated complex eigen-
value Eg = µg − iΓg/2, by the self-consistent solution of the
nonlinear stationary equation

H(ψg)ψg(x) = Egψg(x) , (3)

with

H(ψ) ≡ −1

2

∂2

∂x2
+ V(x)+ g|ψ(x)|2 . (4)

ψg(x) is normalized according to the condition

N [ψg] ≡
∞∫

−∞
|ψg(x)|2w(x)dx = 1 . (5)
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Here w(x) represents a weight function that measures the pop-
ulation inside the well. For the double-barrier potential (2),
a natural choice for this weight function would be w(x) =
θ(a − x)θ(x +a), where a ≡ 1/

√
α corresponds to the max-

imum of the potential and θ(x) denotes the Heaviside step
function.

In addition, ψg(x) should also satisfy outgoing bound-
ary conditions, which would imply an asymptotic behavior
of the form ψg(x) ∝ exp[i ∫ x k(x ′)dx ′] for large x → ∞ (and
a similar one for x → −∞), where the spatial dependence of
the effective wavenumber k(x) accounts for the smooth vari-
ation of the self-consistent potential in (4). It was pointed out
in [18] that this condition can only be fulfilled in an approxi-
mate way up to a given maximum spatial distance xc at which
the interaction energy g|ψg(x)|2 starts to exceed the chemical
potential µ. For x > xc, the self-consistent quasi-bound state
would formally encounter a singularity, which reflects the fact
that explicit time dependence is expected beyond that critical
distance.

On the basis of these resonance states, we can now formu-
late the adiabatic ansatz for ψ(x, t) as

ψ(x, t) = √
N0ψg(t)(x) exp

⎛
⎝−i

t∫
0

Eg(t′)dt ′
⎞
⎠ . (6)

Here the effective time-dependent interaction strength is
given by g(t) ≡ g0N(t), where N(t) denotes the time-dependent
population inside the well, defined by

N(t) ≡
∞∫

−∞
|ψ(x, t)|2w(x)dx . (7)

Using the normalization condition (5) of the resonance state
and taking into account the fact that its eigenvalue Eg = µg −
iΓg/2 is complex, one can straightforwardly derive the im-
plicit expression

N(t) = N0 exp

⎛
⎝−

t∫
0

Γg(t′)dt ′
⎞
⎠ (8)

for the quasi-bound population of the condensate, which can
also be formulated in terms of the ordinary differential equa-
tion

dN

dt
= −Γg(t)N(t) , (9)

with the initial condition N(0) = N0. The time-dependent de-
cay process of the condensate can therefore be entirely repro-
duced with comparatively little numerical effort if the decay
rates Γg(t) of the instantaneous quasi-bound states ψg(t)(x) are
known.

As was described in detail in [18], the calculation of the
decay rates can be achieved by the method of complex scal-
ing. This technique essentially amounts to the application of
the nonunitary mapping

ψ(x) �→ ψ(θ)(x) ≡ Rθψ(x) = eiθ/2ψ(x eiθ) (10)

to the wavefunction ψ(x), which corresponds to the com-
plex dilation x �→ x eiθ of the position operator. Applying
this transformation to the linear stationary Schrödinger equa-
tion H0ψ = Eψ – with H0 being defined through (4) via
H0 ≡ H(ψ = 0) – yields the complex stationary equation

H(θ)
0 ψ(θ)(x) = Eψ(θ)(x) , (11)

with the complex scaled Hamiltonian

H(θ)
0 ≡ RθH0 R−1

θ = −1

2
e−2iθ ∂2

∂x2
+ V(x eiθ) . (12)

The spectral properties of this non-Hermitean Hamiltonian
are widely discussed in the literature on complex scal-
ing [20–23]: while bound states of the original Hamiltonian
H0 (which are absent in our particular case) remain bound
after the complex dilation (as long as |θ| < π/4), the con-
tinuum states are ‘rotated’ in the complex energy plane,
in such a way that their eigenvalues are located along the
axis E = εe−2iθ with real positive ε. This rotation uncovers
the spectral resonances of the system, which correspond to
the poles of the analytical continuation of the Green func-
tion G = (E − H0 + iδ)−1 to the lower half of the complex
energy plane. Those resonances turn into discrete complex
eigenvalues En = µn − iΓn/2 under complex dilation, and
are represented by normalizable eigenfunctions that can be
straightforwardly calculated by diagonalizing H(θ)

0 in any nu-
merical basis.

The generalization of this approach to the nonlinear case
would be comparatively straightforward if the replacement
|ψ(x)|2 → [ψ(x)]2 in the nonlinear Gross–Pitaevskii Hamil-
tonian (4) could be justified. For this particular case, the im-
plementation of the complex scaling technique was explained
in detail in [17]. In reality, however, the wavefunction of the
resonance state is intrinsically complex due to the outgoing
boundary conditions (i.e. ψ(x) ∝ exp(ik|x|) for |x| → ∞),
and the resulting nonanalyticity in the Hamiltonian (4) intro-
duces a major complication of the problem. Formally, a sec-
ond analytic wavefunction ψ needs to be introduced, which
coincides with the complex conjugate of ψ on the real axis, i.e.

ψ(x) ≡ ψ∗(x) for real x , (13)

and which is independently transformed under the nonunitary
dilation operator Rθ , i.e.

ψ(x) �→ ψ
(θ)

(x) ≡ Rθψ(x) = eiθ/2ψ(x eiθ) . (14)

The analytic continuation of the stationary Gross–Pitaevskii
equation to the complex domain then yields

H (θ)(ψ)ψ(θ)(x) = Eψ(θ)(x) , (15)

where the complex scaled nonlinear Hamiltonian is given by

H (θ)(ψ) = H(θ)
0 + ge−iθψ

(θ)
(x)ψ(θ)(x) . (16)

The lowest resonance state of the condensate can be calcu-
lated by a real-time propagation approach [18], i.e. by numer-
ically propagating ψ(θ) under the time-dependent Gross–Pita-
evskii equation

i
∂

∂τ
ψ(θ)

τ (x) = H (θ)(ψτ)ψ
(θ)
τ (x) , (17)
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in the complex scaled system, where τ represents a ficti-
tious numerical ‘time’ parameter (which is unrelated to the
physical time evolution in the actual decay process). In prac-
tice, ψ(θ)

τ (x) is expanded on a spatial grid, and an implicit
finite-difference scheme is employed to carry out the mapping
ψ(θ)

τ �→ ψ
(θ)
τ+δτ for small time steps δτ . If ψ(θ)

τ is renormalized
after each propagation step in order to satisfy the condition
(5), the integration of (17) necessarily converges to the most
stable resonance state of the complex scaled Hamiltonian,
which corresponds to the quasi-bound state with the smallest
decay rate [30].

The major numerical difficulty in this approach lies in the
evaluation of the nonlinear term in the complex scaled Hamil-
tonian (16). Indeed, ψ

(θ)
(x) is not identical to [ψ(θ)(x)]∗, the

complex conjugate of ψ(θ)(x), and needs to be evaluated ac-
cording to the relation

ψ
(θ)

(x) = Rθ

(
R−θψ(θ)

)
(x) , (18)

which requires explicit backward and forward rotations of the
complex scaled condensate wavefunction. In practice, these
rotations (which are also used to evaluate the normalization
condition (5)) are numerically performed by mapping the grid
representation of the wavefunction into a nonorthogonal set of
analytic Gaussian orbitals φν(x) that are centered around dif-
ferent positions along the grid, and by using a transformation
matrix that contains the overlap integrals

∫
φν(x eiθ)φν′(x)dx

as elements (see [18] for more details). Such an operation,
however, is known to be potentially unstable [31] and requires
great care in the numerical implementation. It is therefore not
obvious to which extent unlimited precision in the decay rates
of the quasi-bound states can be achieved within this nonlin-
ear complex scaling approach.

3 Calculation of time-dependent decay processes

3.1 Double-barrier potential

Despite this latter complication, we find that the
chemical potentials and decay rates of the self-consistent
quasi-bound states of the double-barrier potential (2) can be
calculated in this way with rather good accuracy, even in the
case of very strong nonlinearities where the resonance level
lies close the barrier height of V(x). This was explicitly veri-
fied in [18] by comparing the resulting values for µg and Γg

with the ones that are obtained from an alternative approach,
which was based on the real-time propagation of the original
(i.e. unscaled) Gross–Pitaevskii equation in the presence of
absorbing boundaries. Good agreement was generally found
between the two approaches [18].

The chemical potentials and decay rates of the lowest res-
onance state are plotted in Fig. 1 as a function of the effective
interaction strength g. Quite intuitively µg increases with in-
creasing g due to the presence of the mean-field interaction
energy in the nonlinear Gross–Pitaevskii Hamiltonian. This
increase of the chemical potential results in a dramatic en-
hancement of the decay rate Γg, which can be explained by the
fact that the effective imaginary action integral that semiclas-
sically determines the tunneling rate through the barriers is ap-
preciably reduced with increasing energy. It was pointed out

FIGURE 1 Decay of a Bose–Einstein condensate in the double-barrier po-
tential. The upper panel shows the potential (2) together with the chemical
potential of the initial quasi-bound state of the condensate (thick horizontal
line), which corresponds to the initial value g(t = 0) ≡ g0 N(t = 0) = 4 of
the effective interaction strength. During the decay process, the chemical
potential decreases with time, due to the reduced interaction energy, and ap-
proaches the level of the noninteracting quasi-bound state (thin horizontal
line in the upper panel). This decrease of µ is accompanied by a strong reduc-
tion of the decay rate Γ , which can be seen in the two middle panels where
µ and Γ are plotted as a function of g. As a consequence, a pronouncedly
nonexponential decay for the quasi-bound population P(t) ≡ N(t)/N(t = 0)
is obtained from integrating the equation dN/dt = −Γ(N)N, which is dis-
played in the two lower panels (where P is plotted vs. t on a linear and a
logarithmic scale, respectively)

in [14, 16, 18] that an attractive interaction between the atoms
leads to a stabilization of the resonance state, i.e. to a reduc-
tion of the chemical potential to values below µ = 0, where
the associated decay rate would vanish. For the double-barrier
potential under consideration, this stabilization process would
occur at g  −1.1.

With this information, we can now quantitatively repro-
duce the time-dependent decay process of the condensate by
means of the integration of the rate equation (9). For this pur-
pose, we use the values of the decay rates that are calculated
with the complex scaling method at the equidistant interaction
strengths g = 0, 0.1, 0.2, ..., and employ a cubic interpolation
to obtain intermediate values of Γ . As initial value of the ef-
fective interaction strength, we consider g(t = 0) = 4, where
the chemical potential of the quasi-bound state lies already
rather close to the barrier height of the potential. In the specific
case of a condensate of 87Rb atoms that encounters the lon-
gitudinal and transverse confinement frequencies ω‖ = ω⊥ =
2π ×103 Hz, this would imply that about N(0) = 4/g0  100
atoms are initially localized in the single well [32].

The result of the integration is displayed in the two lower
panels of Fig. 1. We see a clearly nonexponential decay of the
bound population, which reflects the fact that the decay rate
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decreases with decreasing interaction strength g. As a conse-
quence, a rather large number of atoms leave the trap during
the first 1000 units of the evolution time, while the remain-
ing part of the condensate becomes stabilized and decays,
for asymptotically large times, with the rate Γ0  2 × 10−6

of the noninteracting quasi-bound state. In the example of
a 87Rb condensate in a confinement with trapping frequency
ω‖ = 2π ×103 Hz, the above characteristic time scale of the
nonexponential behavior would correspond to t ∼ 100 ms,
which is of experimental relevance.

3.2 Tilted periodic potential

Nonexponential features can also be observed in
the presence of relatively small interaction strengths, namely
if the confinement potential permits the possibility of resonant
tunneling. This is, for instance, the case for the tilted periodic
potential

V(x) = sin2(x/2)+ Fx (19)

that is experimentally realized with optical lattices [1–3] or,
within the atom chip context, by means of periodic sequences
of microfabricated wires [33]. In this nonlinear Wannier–
Stark system, the possibility of resonant tunneling arises if the
local ground state of one of the wells is nearly degenerate with
the first excited state of the adjacent well. As was pointed out
in [29], this near-degeneracy would give rise to a significant
enhancement of the condensate’s decay rate.

As in our previous study [19], we assume that the conden-
sate is initially confined within a single well of the lattice. The
method of complex scaling can again be used to calculate the
chemical potential and decay rate of the self-consistent quasi-
bound state in the presence of the interaction, even though the
tilted potential (19) leads to an asymptotic spatial behavior of
the continuum states that is substantially different from the
previous double-barrier problem. As was described in detail
in [19], additional complications arise in this potential (such
as the existence of many different self-consistent resonance
states with identical decay rates) and technical modifications
need to be implemented in order to achieve good conver-
gence of the real-time propagation method. In analogy with
the double-barrier potential, the weight function that charac-
terizes the bound population inside the well according to (5) is
given by w(x) = θ(π − x)θ(x +π).

The resonance-enhanced decay process of the conden-
sate in this tilted lattice is displayed in Fig. 2, for the tilt
strength F = 0.1412 at which the level of the noninteract-
ing local ground state in each well lies slightly above the
level of the first excited state in the adjacent well on the left-
hand side. As initial value for the nonlinearity, we consider
g(t = 0) = −0.25, which would correspond to an attractive
interaction between the atoms (which could be realized, for
example, by using condensates with 7Li atoms or by apply-
ing Feshbach tuning techniques [34]). This attractive non-
linearity lowers the chemical potential of the self-consistent
quasi-bound state in such a way that is becomes shifted be-
low the level of the first excited (noninteracting) state in the
adjacent well. During the time evolution, the loss of popu-
lation leads to an increase of the chemical potential, which,
at about t  2500 time units, approaches the resonance. At

FIGURE 2 Decay of a Bose–Einstein condensate in the tilted periodic po-
tential (19) with F = 0.1412. The atomic cloud is assumed to be entirely
localized within a single well of the lattice, and decays via tunneling through
the barrier on the left-hand side of the well. This decay process can be sub-
stantially accelerated in the case of resonant tunneling, i.e. if the chemical
potential of the condensate matches the energy of the first excited (nonin-
teracting) state of the adjacent well (dashed horizontal lines; the thin solid
lines mark the noninteracting ground levels of the wells). In contrast to the
case of the double-barrier potential, we consider here a relatively weak and
attractive initial interaction strength, g(0) = −0.25, which leads to an initial
chemical potential that lies slightly below the level of this excited state (thick
horizontal line in the upper panel). The time evolution of the quasi-bound
population P(t) = N(t)/N(0), shown in the two lower panels, clearly displays
the characteristic signature of an intermediate resonant tunneling process.
Note that the wiggles in the decay rates at large |g| (middle right panel),
which arise from numerical inaccuracies, do not leave significant traces in the
time evolution of P(t)

that point, the decay rate becomes drastically increased re-
sulting in a significant escape of atoms from the well. As
a consequence, the chemical potential of the quasi-bound state
quickly moves out of resonance, and the decay rate again be-
comes reduced.

The time evolution of the condensate was again calcu-
lated by integrating the rate equation (9), using decay rates
that were calculated with the complex scaling method at the
equidistant values g = 0, −0.0025, −0.005, ... of the inter-
action strength. The accuracy with which these decay rates
could be calculated was not as good as in the case of the
double-barrier potential [18], which is clearly reflected by the
appearance of wiggles on the left-hand side in the middle right
panel of Fig. 2. These artificial fluctuations of Γ , however,
leave no significant traces in the actual time-dependent decay
process, as is clearly seen in the lower two panels of Fig. 2.

This intermediate ‘burst’ of atoms should be readily ob-
servable within existing experimental setups based on optical
lattices or atom chips. By imposing a rather weak transverse
confinement, the one-dimensional interaction strength (given
by g0 = 2ashω⊥ [27]) can be appreciably reduced, which
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should allow one to suppress effects beyond the mean-field
description of the condensate, and additional longitudinal po-
tentials can, as in the experiment on tunneling in a double
well potential [35], be employed to prepare the condensate
in a single well of the lattice. Obviously, the attractive in-
teraction between the atoms is not a necessary condition for
this nonexponential decay phenomenon: indeed, the same ef-
fect could be induced with a repulsively interacting species
at slightly weaker tilt strengths F, where the noninteract-
ing ground state of the well lies slightly below the first ex-
cited level of the adjacent well. In both cases of attractive
and repulsive interaction, the intermediate enhancement of
the decay rate should clearly manifest in the time-of-flight
image of the condensate after the decay process, which would
display a pronounced peak due to the effect of resonant
tunneling.

4 Conclusion

In summary, we studied the time-dependent decay
of Bose–Einstein condensates in mesoscopic trapping poten-
tials that permit escape by tunneling through finite barriers.
The decay process of the condensate was reproduced by in-
tegrating a simple rate equation for the quasi-bound popu-
lation, using instantaneous decay rates that were computed
by means of the method of complex scaling. This approach
is rather efficient as compared to a direct numerical integra-
tion of the time-dependent Gross–Pitaevskii equation, and
provides additional insight into the mechanisms that underly
the decay of the condensate. Though only applied to one-
dimensional configurations, the complex scaling approach
can be straightforwardly generalized to three-dimensional de-
cay problems, and might furthermore represent a convenient
conceptual framework for treating resonances of the nonlin-
ear Gross–Pitaevskii equation from the mathematical point of
view.

With this approach, we calculated the decay of a Bose–
Einstein condensate in a double-barrier potential [14, 16, 18]
as well as in a tilted periodic potential [19, 29]. For this lat-
ter case, we found a strong intermediate enhancement of the
tunneling rate, which arises due to a near-degeneracy with
a quasi-bound state in another well of the periodic potential.
This enhancement leads to a pronounced deviation from an
exponential behavior of the condensate’s escape dynamics,
which could be controlled by suitable time-dependent varia-
tions of the tilt field, in a similar way as for macroscopic tun-
neling in double-well potentials [24, 25] and for nonlinear res-
onant transport through atomic quantum dots [36]. Such non-
exponential effects should be readily observable in present-
day state-of-the-art experiments on interacting matter waves
in mesoscopic trapping potentials [3, 11, 12, 33, 35, 37].
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Abstract

We predict a multifractal behavior of transport in the deep quantum regime for the opened d-kicked rotor model. Our

analysis focuses on intermediate and large scale correlations in the transport signal and generalizes previously found

parametric mono-fractal fluctuations in the quantum survival probability on small scales.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Quantum transport; Fractals; Time series analysis; Multifractals

1. Introduction

Multifractal analysis of fluctuating signals is a widely applied method to characterize complexity on many
scales in classical dynamics [1], or in the analysis of a given time series (without any a priori knowledge on the
underlying dynamical system which generated the series) [2].

On the quantum level, multifractal behavior was found in the scaling of eigenfunctions in solid-state
transport problems [3]. As far as we know, there have been, however, very few attempts to use the method of
multifractal analysis to directly characterize transport properties such as conductance (across a solid state
sample) or the survival probability (in open, decaying systems). Often it is indirectly argued that the
multifractal structure of the wave functions at critical points (at the crossover between the localized and the
extended regime) imprints itself on the scaling of transport coefficients [4]. Other works found a fractal scaling
of local transport quantities, such as hopping amplitudes [5] or two-point correlations [6]. At criticality [6]
predicts, e.g., a multifractal scaling of the two-point conductance between two small interior probes within the
transporting sample.

In this paper, we directly study the fluctuations properties of a global conductance like quantity in a regime
of strong localization (Anderson or dynamical localization in our context of quantum dynamical systems). The
studied quantity is the survival probability of an open, classically chaotic system, which in the deep quantum
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realm was found to obey a monofractal scaling if certain conditions on the quantum eigenvalue spectrum are
fulfilled [7,8]. In particular, the distribution of decay rates of the weakly opened system needs to obey a power-
law with an exponent g�� 1, which translates into an analytic prediction for the corresponding box counting
dimension (of the survival probability as a function of a proper scan parameter): DBC ’ 2� jgj=2.

A more detailed, yet preliminary numerical analysis of the decay rate distribution for our model system (to
be introduced below) has found that two scaling regions can be identified [9]. While for small rates the
probability density function rðGÞ scales as G�1, at larger scales it turns to G�3=2—which is expected for
strongly transmitting channels from various models for transport through disordered systems [10]. Here, we
ask ourselves whether this prediction of a smooth variation in the scaling of the monofractal behavior
(induced by the smoothly changing exponent g) can be generalized to characterize the fluctuations on many
scales using from the very beginning the technique of multifractal analysis. Before we present our findings on
the multifractal scaling of the parametric fluctuations of the survival probability, we introduce the kicked
rotor system and our numerical algorithm for the multifractal analysis in the subsequent two sections.

2. Our transport model and the central observable

The d-kicked rotor is a widely studied, paradigmatic toy model of classical and quantum dynamical theory
[12,13]. Using either cold or ultracold atomic gases, the kicked rotor is realised experimentally by preparing a
cloud of atoms with a small spread of initial momenta, which is then subjected to a one-dimensional optical
lattice potential, flashed periodically in time [14]. In good approximation, the Hamiltonian for the
experimental realization of the rotor on the line (in one spatial dimension) reads in dimensionless units [14]

Ĥðt0Þ ¼
p2

2
þ k cos x

X1
t¼1

dðt0 � ttÞ. (1)

The derivation of the one-period quantum evolution operator exploits the spatial periodicity of the potential
by Bloch’s theorem [15]. This defines quasimomentum b as a constant of the motion, the value of which is the
fractional part of the physical momentum p in dimensionless units p ¼ nþ b ðn 2 NÞ. Since b is a conserved
quantum number, p can be labelled using its integer part n only. The spatial coordinate is then substituted by
y ¼ xmod ð2pÞ and the quantum momentum operator by N̂ ¼ �iq=qy with periodic boundary conditions.
The one-kick quantum propagation operator for a fixed b is thus given by [15]

Ûb ¼ e�ik cosðŷÞe�itðN̂þbÞ
2=2. (2)

In close analogy to the transport problem across a solid-state sample, we follow [8,11] to define the quantum
survival probability as the fraction of the atomic ensemble which stays within a specified region of momenta
while applying absorbing boundary conditions at the ‘‘sample’’ edges. If we call cðnÞ the wave function in
momentum space and n1on2 the edges of the system, absorbing boundary conditions are implemented by
setting cðnÞ � 0 if npn1 � �1 or nXn2 � 251. This truncation is carried out after each kick, and it mimics the
escape of atoms out of the spatial region where the dynamics induced by the Hamiltonian (1) takes place. If we
denote by P̂ the projection operator on the interval �n1; n2½ the survival probability after t kicks is

PsurðtÞ ¼ kðP̂ÛbÞ
tcðn; 0Þk2. (3)

The early studies of the fluctuation properties of Psur focused on its parametric dependence on the
quasimomentum b [9,11]. While b is hard to control experimentally on a range of many scales (with a typical
uncertainty of 0.1 in experiments with an initial ensemble of ultra-cold atoms [16]), some of us recently
proposed to investigate the parametric fluctuations as a function of the kicking period t (see Eq. (1)), which
can be easily controlled on many scales in the experimental realization of the model even with laser-cooled
(just ‘‘cold’’) atoms [8].

In Fig. 1 we present the survival probability Psur of the opened kicked rotor in the deep quantum regime
(i.e., at kicking periods t � _eff41 [13]) as a function of the two different scan parameters b and t. The global
oscillation with a period of the order 1 in Fig. 1(a) originates from the b-dependent phase term Nb in the
evolution operator (2), and can be understood qualitatively by remembering the Bloch band structure of the
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corresponding quasienergy spectrum as a function of b [13]. No such oscillating trend is found for the graph as
a function of the kicking period. Nonetheless, in the following, we use a well developed variation of the
standard multifractal algorithm, which intrinsically takes account of such global, yet irrelevant trends in the
signal function Psur. The basic features of the MultiFractal Detrended Fluctuation Analysis (MF-DFA) [18] are
now explained before we present our central results which indicate the multifractal scaling of data sets as the
ones shown in Fig. 1.

3. Multifractal detrended fluctuation analysis

The MF-DFA is a generalization of the DFA method originally proposed by Ref. [17], and it is extensively
described in Ref. [18]. In the recent years it was used, for instance, to investigate the nonlinear properties of
nonstationary series of wind speed records [19], electro-cardiograms [20], and financial time series [21].
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The method consists of five steps. First the series fxig
N
i¼1 is integrated to give the profile function

yðkÞ ¼
Xk

i¼1

ðxi � x̄Þ, (4)

where x̄ is the average value of xi. The profile can be considered as a random walk, which makes a jump to the
right if xi � x̄ is positive or to the left side if xi � x̄ is negative. In order to analyze the fluctuations, the profile
is divided into Ns ¼ intðN=sÞ nonoverlapping segments of length s, and, since usually N is not an integer
multiple of s, to avoid the cutting of the last part of the series, the procedure is repeated backwards starting
from the end to the beginning of the data set. In each segment n we subtract the local polynomial trend of
order k and we compute the variance

F2ðn; sÞ ¼
1

s

Xs

i¼1

fy½ðn� 1Þsþ i� � yk
n ðiÞg

2 (5)

for n ¼ 1; . . . ;Ns, and

F2ðn; sÞ ¼
1

s

Xs

i¼1

fy½N � ðn�NsÞsþ i� � yk
n ðiÞg

2, (6)

with n ¼ Ns þ 1; . . . ; 2Ns for the backward direction. The order of the polynomial defines the order of the MF-
DFA too, therefore we may speak about MF-DFA(1), MF-DFA(2); . . . ;MF-DFA(k).

The fourth step consists on the averaging of all segments to obtain the qth order fluctuation function for
segments of size s

FqðsÞ ¼
1

2Ns

X2Ns

n¼1

½F 2ðn; sÞ�q=2
( )1=q

. (7)

In the last step we determine the scaling behavior of the fluctuation function by analyzing the log–log plots
of F qðsÞ versus s for each value of q. If the series is long-range correlated F qðsÞ increases for large s as a power
law

FqðsÞ�shðqÞ. (8)

Since the number of segments becomes too small for very large scales (s4Ns=4), we usually exclude these
scales for the fitting procedure to determine hðqÞ. The MF-DFA reduces to the standard DFA for q ¼ 2, while
the scaling exponent hðqÞ can be related to the standard multifractal analysis considering stationary time series,
in which hð2Þ is identical to the Hurst exponent H, therefore, hðqÞ can be considered a generalized Hurst
exponent. Monofractal series indeed show a very weak or no dependence of hðqÞ on q. By example, for
monofractal series as white noise, the generalized Hurst exponent is H ¼ 1

2
for all q. On the contrary, for

multifractal time series, hðqÞ is a function of q and this dependence influences the multifractality of the process.
Referring to the formalism of the partition function

ZqðsÞ ¼
XNs

n¼1

jyns � yðn�1Þsj
q�stðqÞ (9)

where tðqÞ is the Renyi exponent, to which the hðqÞ is related by

tðqÞ ¼ 1� qhðqÞ. (10)

Now we are able to use the formalism of the multifractal spectrum [22] f ðaÞ to characterize the data set

a ¼
dtðqÞ
dq
¼ hðqÞ þ q

dhðqÞ

dq
,

f ðaÞ ¼ qa� tðqÞ ¼ q½a� hðqÞ� þ 1. ð11Þ
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The generalized dimensions are expressed as a function of tðqÞ or hðqÞ [23]

Dq ¼
tðqÞ

q� 1
¼

qhðqÞ � 1

q� 1
, (12)

which cannot be straightforwardly defined for q ¼ 0 and q ¼ 1.
If the signal is multifractal, the spectrum f ðaÞ has approximately the form of an inverted parabola. As

significative parameters for its characterization we considered the point aM corresponding to the maximum of
f ðaÞ, and its width W a considered for a fixed q interval. In other words, aM represents the a value at which is
situated the ‘‘statistically most significant part’’ of the time series (i.e, the subsets with maximum fractal
dimension among all subsets of the series). The width W a is related to the dependence on hðqÞ from q. The
stronger this dependence, the wider is the fractal spectrum (cf., Eq. (11)).

4. Results

We performed a MF-DFA of order k ¼ 1 on data sets produced by scanning the b or t parameter,
respectively, over 105 data points, and considering different interaction times from t ¼ 250 to t ¼ 10 000 kicks.
The analysis performed with higher order (k ¼ 2 and 3) polynomial detrending for some of the series produced
basically the same results. Furthermore, we tested our numerical algorithm on a monofractal time series (white
noise) and a well known multifractal process (binomial multifractal model [24]). For these two test series we
reproduce the known analytical results, with a precision better than 1%.

A full analysis for t ¼ 6000 (see Fig. 1) is shown in Figs. 2 and 3 for the b and t scanned series, respectively.
Tables 1 and 2 collect the multifractal parameters aM and W a, which were computed for t ¼ 250 . . . 10 000.
Analogously to Ref. [25], we defined W a as the width of the parabolic form of f ðaÞ between the points
corresponding to q ¼ �3 and q ¼ 3.

Fig. 2(a) shows the scaling behavior of the fluctuation function FqðsÞ, with q 2 ½�5; 5�. Here, s represents the
index of the scanning parameter b, while the fit was performed in the zone logðsÞ 2 ½1:6; 2:7� (corresponding to
s 2 ½40; 500�). In Fig. 2(b) we report the dependence of hðqÞ on q, revealing the multifractal nature of the data
set. In order to better characterize the multifractality and to highlight how it changes among the different
analyzed series, we have computed the MF spectrum f ðaÞ (cf. Fig. 2(c)). Fig. 2(d) shows the variation of the
multifractal parameters for the different interaction times considered. After a fast decrease, both the
parameters tend to converge around the values aM ¼ 1:29 and W a ¼ 0:2 (see also Table 1). Very similar results
were obtained for the t scanned series (cf., Fig. 3 and Table 2). Comparing the values of Tables 1 and 2 we can
say that both the t and the b scanned series have essentially the same multifractality.

Even if we cannot a priori predict the asymptotic similarity between the two series of t and b, we can a
posteriori interpret this result: both parameters enter not equally yet similarly in the phase of the second factor
on the right of Eq. (2). As a consequence, the restriction of b to the unit interval does make no difference to
the, in principle, unboundedness of t (in fact, to avoid different dynamical properties of the system, t was
chosen in a restricted window too, cf. Ref. [8]).

In general, two types of multifractality can be distinguished, and both of them require different scaling
exponents for small and large fluctuations. (I) The multifractality can be due to the broad probability density
function for the values, and (II) it can also be due to different long-range correlations for small and large
fluctuations. The simplest way to distinguish between the mentioned two cases is to perform the analysis on a
randomly reshuffled series. The shuffling destroys all the correlations, and the series with multifractals of type
(II) will exhibit a monofractal behavior with hshuf ðqÞ ¼ 0:5 and W a ¼ 0. On the contrary, multifractality of
type (I) is not affected by the shuffling procedure. If both (I) and (II) are present the series will show a weaker
multifractality than the original one.

We applied the shuffling procedure to the series showed in Fig. 1. The procedure destroyed the
multifractality of both series since for both the sequences we obtained hðqÞ ¼ 0:51� 0:01 for q 2 ½�5; 5�. The
dependence on q was so weak that we were not able to compute any reliable f ðaÞ spectrum, which, in this case,
can be considered singular, i.e., with W a � 0.
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5. Conclusions

We studied the quantum kicked rotor, a paradigmatic model of quantum chaos, which describes the time
evolution of cold atoms in periodically flashed optical lattices. Imposing absorbing boundary conditions
allows one to probe the transport properties of the system, here expressed by the survival probability on a
finite region in momentum space. For a fixed interaction time, the quantum survival probability depends
sensitively on the parameters of the system, and our application of the detrended multifractal method shows
that clear signatures of a multifractal scaling of the survival probability are found, as either the kicking period or
quasimomentum is scanned. Our results generalize the previously predicted mono-fractal structure of the
signal [7,8,11], by characterizing long-range correlations in the parametric fluctuations. In agreement with the
monotonic increase of the box counting dimension with the interaction time t and its saturation after t\5000
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Table 1

Multifractal parameters of the b-scanned data sets for different interaction times

aM W a

t ¼ 250 1.63 1.19

t ¼ 500 1.45 0.85

t ¼ 1000 1.34 0.58

t ¼ 2000 1.32 0.37

t ¼ 4000 1.30 0.46

t ¼ 6000 1.29 0.39

t ¼ 8000 1.29 0.26

t ¼ 10 000 1.29 0.20

The estimated error due to the fitting procedure described in Section 3 is about �0:02 for aM and �0:05 for W a.
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observed in Ref. [8], we found a systematically decreasing value for the maximum aM of the MF spectrum and
of its widths W M . Both of these two values also tend to saturate for t\5000.

Future work along the lines of Ref. [8] will be devoted to check in detail whether traces of the here predicted
multifractality could be observed under real-life experimental conditions (e.g., for short interaction times and
finite resolutions in the scanning parameter [8]).
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We study a model for ultracold, spinless atoms in quasi-one-dimensional optical lattices and subjected to a
tunable tilting force. Statistical tests are employed to quantitatively characterize the spectrum of the Floquet-
Bloch operator of the system along the transition from the regular to the quantum chaotic regime. Moreover,
we perturbatively include the coupling of the one-band model to the second energy band. This allows us to
study the Landau-Zener interband tunneling within a truly many-body description of ultracold atoms. The
distributions of the computed tunneling rates provide an independent and experimentally accessible signature
of the regular-chaotic transition.
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I. INTRODUCTION

Bose-Einstein condensates loaded into optical lattices,
which perfectly realize spatially periodic potentials, repre-
sent an exciting field of research in the sense that many sim-
plified toy models of condensed matter physics can be stud-
ied in an exceptionally clean manner �1�. This is achieved by
modern means of atom and quantum optics that allow the
experimentalist an unprecedented control of initial condi-
tions in coordinate and momentum space and also of the
desired dynamics �1,2�.

A paradigm of quantum transport on the microscopic
scale is the Wannier-Stark �WS� problem, where particles
move in a tilted, but otherwise spatially periodic potential.
The famous Bloch oscillations and related phenomena, such
as interband tunneling, were observed in experiments with
quasiparticles in superlattices �3�, with light in optical non-
linear media �4�, and in great detail also with ultracold atoms
moving in optical lattices �1,5–8�. All experimental studies
based on the latter realization were performed in a regime
where atom-atom interactions are either negligible �5� or
they reduce to a perturbative mean-field effect �6–8�.

The regime of strong correlations in the WS system, in
which interactions cannot be reduced to a mean-field model
or even dominate the evolution has been addressed only
theoretically up to now �9–12�. State-of-the-art experiments
are, however, capable of getting into a regime of filling fac-
tors �i.e., of atoms per lattice site� of the order one, where
interaction-induced correlations are crucial �13,14�.

Motivated by the experimental progress, we extend previ-
ous studies of the asymmetric triple well �15� and of the WS
problem �9–11�. In the present work we give a more com-
prehensive and quantitative account of our findings briefly
reported in �16�. In Sec. II we introduce our two-bands Bose-
Hubbard �BH� model and focus on the dynamics within the
first band of the optical lattice. In contrast to the vast litera-
ture which focuses on regimes around Mott-insulator-like
phase transitions in the absence of an additional Stark force,

see, e.g., �17–22�, we concentrate on the BH model in the
superfluid realm and in the presence of a static tilt. We char-
acterize the transition between the regular and the chaotic
realm of the quantum spectra by a quantitative and system-
atical analysis based on statistical tests. In Sec. III we per-
turbatively include the decay to the second band via Landau-
Zener-like tunneling processes. The quantum spectrum of the
latter, nonunitary problem is analyzed in Sec. IV and found
to essentially reproduce the properties of the purely one-band
approximation down to rather small lattice depths. The re-
sulting decay rates for the interband tunneling strongly de-
pend on the many-particle nature of the problem and are
found to correlate with the transition to the quantum chaotic
regime. As a consequence, signatures of many-body quantum
chaos are predicted to be accessible to experiments with ul-
tracold atoms over a broad range of parameters, in both
“horizontal” transport along the lattice and in interband “ver-
tical” transport. Our results are finally summarized in Sec. V.

II. SPECTRAL ANALYSIS OF THE ONE-BAND BOSE-
HUBBARD MODEL

We briefly review the general Hamiltonian for a system of
spinless, interacting atoms in a quasi-one-dimensional opti-
cal lattice subjected to a tunable tilting force F. We start out
with the purely periodic problem, F=0, in an optical poten-
tial of spacing a, recoil momentum kL=� /a, and typical ki-
netic energy ER=kL /2m. The optical potential and the kinetic
energy form the single-particle Bloch Hamiltonian,

H1�x� = −
�

2m
− V cos�2�x

a
� . �1�

The eigenfunctions are the Bloch waves �, labeled by the
quasimomentum k and the band index � �23�, with disper-
sion law Ek,�. In Appendix A we explain how to use the
single-particle solutions �k,� to build a set of localized orbit-
als ��,� called Wannier functions �WF�. In the limit of deep
lattices, the orbital ��,� goes to the wave function of the �th
excited level for an harmonic potential centered on the
�-lattice site. We use the WF to expand the field of the ul-
tracold bosons,*s.wimberger@thphys.uni-heidelberg.de
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�̂�x� = �
�

�
�

��,��x�â��. �2�

Then we introduce a Stark force F that tilts the optical po-
tential and a zero-range interaction between the atoms, pa-
rametrized by the scattering length aS. In a quasi-one-
dimensional optical lattice—as realizable in experiments
�14�—the scattering length is derived from the true three-
dimensional scattering length via a renormalization that ac-
counts for the transverse confinement of the atomic wave
functions �14� and the physical dimension is then �aS�=L−1.
The Hamiltonian in the second quantization is written as

Ĥ =� �̂†�x��Hone�x� + Fx��̂�x�dx

+
1

2

4�aS

m
� �̂†�x��̂†�x��̂�x��̂�x�dx . �3�

Substituting the expansion equation �2� into Eq. �3� we ob-
tain the Hamiltonian in terms of the creation and annihilation
operators â�,�

† , â�,�, for a particle in the �th site and the �th
energy band of the lattice. The number operator is n̂�,�
= â�,�

† â�,�. We restrict the analysis to the first two bands,
which can be addressed by experiments �24� and that can be
handled numerically without great difficulties. The coeffi-
cients of the Hamiltonian are given by integrals involving the
WF: the exact computation of the WF outlined in Appendix
A motivates the selection of the operators that are most rel-
evant for V�ER. We are left with the on-site energy â�,�

† â�,�,
the kinetic energy â�+1,�

† â�,�, and the on-site interaction be-
tween atoms in the same band n̂�,��n̂�,�−1� �25�, for
�� 	1,2
. Moreover, we have on-site interaction between
atoms in different bands n̂�,1n̂�,2 and two transition operators
â�,2

† â�,1, â�,1
† â�,1

† â�,2â�,2 that are the subject of a detailed
analysis in Sec. III.

The dimension DH of the Hilbert space spanned by the
Fock states �n�� �defined in Appendix B�, for a system of N
bosons distributed over L lattice sites, occupying up to the
second band of the periodic potential, is given by the com-
binatorial formula DH= �N+2L−1� ! /N ! �2L−1�!. The typi-
cal number of lattice sites in experiments is L	100 and the
filling factor N /L is of order unity �13,14�, such that the
exponential increase of DH with the system size limits any
exact numerical approach to smaller systems, where we im-
pose the cyclic boundary conditions âL,�= â0,�. The imple-
mentation of these conditions requires the system to be trans-
lationally invariant. The Stark potential Fx, however, spoils
the periodicity of the Bloch Hamiltonian equation �1� and
produces localized WS eigenstates instead of traveling Bloch
waves �23�. We follow �10� and proceed to eliminate the
Stark potential from the Hamiltonian by changing to the in-

teraction representation �IR� with respect to ĤS=F�̂†x�̂dx

=aF��=1
L ���n̂�,�. The Hamiltonian in the IR, Ĥ�t�

=e−iĤStĤe+iĤSt, is time dependent, and the problem becomes
conceptually more complicated.

We rescale the energies by ER, the lengths by a, the mo-
menta by kL, and we make the substitutions F←FER /a, �
←� /�a. The on-site energies 
� and the hopping amplitudes

J� are given in Eq. �A3�. The interaction coefficients W�,
W�, are proportional to the coupling constant W
=4�aS /amER and are given in Eq. �A5�. The “dipole” coef-
ficient dF is given in Eq. �A6�. The Hamiltonian of Eq. �3�,
restricted to the first two bands of the lattice, finally reads, in
the IR, as

Ĥ�t� = �
�=1

L �
1n̂�,1 −
1

2
J1eiFtâ�+1,1

† â�,1 + H.c.

+
1

2
W1n̂�,1�n̂�,1 − 1� + �1 → 2� + 2W�n̂�,1n̂�,2

+ FdF�â�,2
† â�,1 + H.c.� +

1

2
W��â�,1

† â�,1
† â�,2â�,2 + H.c.�� .

�4�

In the IR the Hamiltonian is again symmetric for discrete
translations in space and it has lost the time independence
but it is periodic with the Bloch period TB=2� /F. We as-
sume that the initial state, for F=0, is superfluid, character-
ized by the delocalization of the atoms over the entire lattice.
The critical conditions on the parameters, that enforce the
superfluid phase in the present context �17� is W1 /J1�5.8.
Following �9�, in the present section we set the lattice depth
V�5, which gives J1�0.038 and the interaction coefficient
W�0.016, with W1�0.032.

The object of the subsequent study is the evolution opera-

tor up to the Bloch period ÛFB=exp̂�−0
TBiĤ�t�dt�, called

Floquet-Bloch �FB� operator �10�. The caret over exp indi-
cates that it is time ordered. The results presented in the
following confirm and extend the results of �10�. The discrete
translational symmetry of the Hamiltonian entails that the FB
operator is a block-diagonal matrix in the basis of Eq. �B2�,
labeled by a many-body quasimomentum . The dynamics of
the atoms in the lattice is complex because many vectors
take part in the time evolution of an arbitrary initial state.
The strong mixing of the basis vectors in time means that the
evolution of a state is not bound to a small subspace of the
total Hilbert space �contrary to �18��, but, after a Bloch pe-
riod, the initial state spreads over the entire Hilbert subspace
with definite quasimomentum �e.g., =0�. This is evidenced
by the dependence on F of the quasienergies Ej, obtained
from the eigenvalues exp�−iEjTB� of the FB operator.

In Fig. 1 we show the quasienergy spectrum as the “con-
trol parameter” F is varied. In the limit F→0, we recover the
standard BH model �the analysis of the FB spectrum is here,
however, not useful since the Bloch period tends to infinity�.
In the regime where the atomic interactions are negligible
with respect to the lattice potential, the single particle Bloch
picture is adequate and the spectrum is simply a finite band.
For F�0.1 the single-particle WS ladder is found, i.e., a fan
of energy levels Em�F��2�mF, m integer. Since the inter-
actions are nonzero, the levels are split up and the first-order
perturbative effect on the ladder was computed in �11�. The
central WS rung is split into levels which are proportional to
the interaction energies of many atoms in a site, W1n�n−1�,
n=1, . . . ,4. Since the level splittings have the common fac-
tor W1, a collapse and revival of quasimomentum oscillations
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�the Fock space version of the single-particle Bloch oscilla-
tions� was predicted for this parameter range in �11�. On the
contrary, an irreversible decay of the quasimomentum oscil-
lations was found in the range F�W1 �9�, where avoided
crossings dominate the spectrum. These are directly, experi-
mentally observable consequences of the complex level
structure presented in Fig. 1. The presence of avoided cross-
ings means that a strong mixing of the Fock states is neces-
sary to build the eigenstates of the system, and no set of
quantum numbers can be assigned to individual levels as F
varies. In the region of parameters where the energy scales of
the system are comparable in magnitude, we can characterize
the spectrum in terms of the statistical distribution of the
quasienergy spacing and by statistical measures for the
eigenfunctions. The latter have been intensively studied in
�26�. In the following, we concentrate on the statistical be-
havior of the quasienergies, which is closely linked to the
behavior of the open system studied in Sec. III.

The probability P�s�ds that the magnitude of a given in-
terval spacing sj =�Ej / ��Ej� j is in �s ,s+ds� is given by the
Poisson distribution P�s�=exp�−s� �27� for an uncorrelated
spectrum in the regular regime. Strongly correlated quantum
spectra, corresponding to the chaotic regime in our many-
particle model, are well modeled by the Wigner-Dyson �WD�
distribution for a circular orthogonal ensemble of random
matrices �27�, P�s�=�s exp�−�s2 /4� /2. In Fig. 2 the prob-
ability distribution and the cumulative distribution function
�CDF� of the quasienergy spacing are shown for two para-
digmatic values of F. The presence of avoided crossings in
the chaotic case log10�2� /F��2.4 shows up as a depletion
of small quasienergy spacing, and the probability to find a
level crossing vanishes.

We improved the statistical description of the quasienergy
spectrum with further analyses, shown in Fig. 3. In the panel

�a� we quantify the convergence of the quasienergy spacing
distribution to the WD profile, thus filling the gap between
the two pictures of Fig. 2. We computed the FB operator for
several values of F and confronted each spectrum with the
WD distribution using a modified �2 test, computed as fol-
lows. Each sequence of levels spacing’s was algorithmically
binned to leave 5�Ob�10 “observed” spacing in each bin
b=1, . . . ,Nb �28�. The “expected” values Eb are the integrals
of the theoretical distributions over the bins and the sum Q
=�b�Ob−Eb�2 /Eb was calculated. The values of Q are dis-
tributed according to a �2 distribution with Nb−1 degrees of
freedom and mean Nb−1. The renormalized variable

�2 = log10�Q/�Nb − 1�� �5�

is thus appropriate to compare several data sets, each binned
optimally and independently, For F	0.025, �2 is in the
range �−0.5,0.5� �in the bulk of the original �2 distributions
before the transformation of Eq. �5� was performed�, and the

FIG. 1. The quasienergy levels E of the FB operator for a sys-
tem with N=4, L=5, in the subspace with =0. The WS ladder is
seen on the left-hand panel, the perturbative splitting of the first
rung is magnified in the lower panel. In the upper panel a single
linear function of 1 /F is added to 2E /F to eliminate an overall
winding trend, and allow a better visibility of the avoided crossings.
The parameters of the Hamiltonian are J1=0.038, W1=0.032, as
used also in the subsequent figures.
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FIG. 2. The distribution P�s� and the CDF �insets� for the
quasienergy spacing �stairs�, the WD �solid�, and the Poisson dis-
tribution �dashed�. The parameters are N=5, L=8, log10�2� /F�
�2.0 �left-hand side, regular� and 2.4 �right-hand side, chaotic�.
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FIG. 3. Statistical tests applied to the system of Fig. 2. �a�
�2-like test of Eq. �5�. �b� T test, and �c� variance of number of
levels �with mean spacing normalized to 1�, for the chaotic �circles�
and the regular �pyramids� case. In both panels the solid and dotted-
dashed lines are the theoretical predictions for the WD and Poisson
statistics of energy levels, respectively.
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correspondent distribution of the spacing is well described
by a WD profile. As the external force increases and the
parameter 2� /F diminishes, the larger values of �2 �lying in
the tails of the original �2 distributions� indicate that the
spectrum is not well characterized by a WD distribution. The
condition for the regular-chaotic transition can be directly
read off from the quantitative statistical test results and cor-
responds, e.g., to log10�2� /F��2.3.

We found that the profile of the quasienergy spacing dis-
tribution changes smoothly, but we used two statistical tests
introduced in �29� �Eqs. �27� and �29� therein� to show that
the Poisson and WD statistics are clearly identified at the
borders of the transition. Figure 3�b� shows the explicit re-
sults for the T function of �29� whose predicted linear scaling
T� ln s for the Poisson and T�2 ln s for the WD expecta-
tion is confirmed. In Fig. 3�c� we show the variance �2�dE�
�30� of the number of levels N�E ,E+dE� found in a finite
energy interval dE:

�2�dE� � ��N�E,E + dE� − N̄dE�2�E, �6�

where the average is taken over all the energies and we res-
caled the spectrum so that the average number of levels per

unit of energy N̄ is equal to unity. A linear and logarithmic
scaling is predicted for a Poisson and WD-like spectra, re-
spectively. The logarithmic behavior clearly prevails over all
energy ranges for the chaotic spectrum, only apart from os-
cillations which are indeed typical for samples of finite size
�see �30� for details�.

III. INTERBAND COUPLING IN THE MANY-BODY
REGIME

We develop a perturbative analysis of the two-bands sys-
tem of Eq. �4�. We consider the many-body dynamics within
the ground band and the perturbative action of the operators
that couple the Fock states of the ground band to states in the
second band. As a consequence of the interband terms each
Fock state �n�� �see Appendix B� suffers an energy shift
�E�n��− i�F�n�� /2, where �F�n�� is its decay width. The Hamil-
tonian is modified accordingly and becomes a non-Hermitian
effective Hamiltonian for the ground band, that yields a non-
unitary FB operator. In the following, we compute the set of
decay widths. In the next section we then study the spectrum
of this new FB operator.

We first define a basis of unperturbed states. We choose to
neglect the hopping in the lower band, where the WF are
more strongly localized, so an unperturbed state projected on
the Hilbert space of N particles in the ground band is a Fock
state �n� ;N�. In the second band we neglect the interactions,
since in the perturbative approach only a few particles �one
or two in the following� populate the excited levels. So an
unperturbed state projected on the second band is the solu-
tion of the one-particle WS problem �18,23�, i.e., a localized
wave function centered at site w, written with the Bessel
function Jm�x� as

�w� = �
�=−�

+�

J�−w�− J2/F�â�,2�vac� . �7�

We approximate the Hilbert space of the system as the tensor
product of the spaces of the two bands and the entanglement
between the ground and the excited particles is neglected.
Then an unperturbed state with one or two promoted par-
ticles is of the form �n� ;N−1� � �w� or �n� ;N−2� � �w ,w��, re-
spectively. In the following, the occupation number n�,1 for
the �th site in the ground band is written as n�.

The Hamiltonian equation �4� contains two mechanisms
that promote particles to the second band. The first is a
single-particle effect, a consequence of the external force,
proportional to the dipole coupling dF between the WF of
different bands. The Hamiltonian of the perturbation is

Ĥ1 = FdF�
�

�â�,2
† â�,1 + â�,1

† â�,2� . �8�

The second perturbation is a many-body effect, describing
two particles of the first band that collide and transform their
interaction energy into kinetic energy, entering the second
band together,

Ĥ2 =
1

2
W��

�=1

L

�â�,2
† â�,2

† â�,1â�,1 + H.c.� . �9�

The expectation value of Ĥ1, Ĥ2 on the unperturbed states,
equal to the first-order energy shift −i�F��� /2, is zero be-
cause the operators do not conserve the number of particles
n� within the bands.

Let us focus on Ĥ1 and compute its matrix element for the
channel,

�n� ;N� � �vac� → �n��;N − 1� � �w�, nh� = nh − 1. �10�

The decay width at first order is given by Fermi’s golden rule
and only the first term in Eq. �8� gives nonzero contribution
for the channel of Eq. �10�. Our result for the matrix element
is

�k��n����
�=1

L

�â�,2
† â�,1��n���vac�

= �
�=1

L

J�−w�− J2/F���n��,n� − 1��n� �
m��

��nm� ,nm� .

�11�

The Kronecker ��¯ ,¯� functions act as a selection rule for
the Fock states that are coupled by the perturbation. The
tunneling mechanism does not include any income of energy
from an external source, so the initial and final energies,

E0�n�� = �vac��n� �Ĥ0�n���vac� ,

E0�n��,w� = �w��n���Ĥ0�n����w� , �12�

must be equal as required by the golden rule. The condition
on the energy conservation is relaxed to account for the un-
certainty �E�n�� of the unperturbed energy levels of the initial

TOMADIN, MANNELLA, AND WIMBERGER PHYSICAL REVIEW A 77, 013606 �2008�

013606-4

4.11. 173



and final states. The energy uncertainty and the level density
function ��E ,n�� are derived from the perturbative action of
the hopping operator of the first band that has been neglected
so far. We postpone the computation of these quantities to the
end of the present section. The relaxed energy conservation
rule selects from Eq. �11� the set K of permitted decay chan-
nels �h ,w� parametrized by the two indices h ,w such that:

E0�n��,w� − E0�n�� = 
2 − 
1 − F�h − w� − W1�nh − 1�

� �−
�E�n�� + �E�n���

2
,

�E�n�� + �E�n���
2

� . �13�

The last equation means that the energy 
2−
1 required to
promote a particle to the second band is supplied by the
decrease of the repulsion energy �proportional to W� and by
the work of the force �proportional to F� exerted on the pro-
moted particle.

The total width �1�n�� for the decay via the allowed chan-
nels K, is proportional to the square of the matrix element
and to the level density ��E ,n�� given below in Eq. �22�. We
arrive at

�1�n�� = 2�F2dF
2 �

�h,w��K
��Jh−w�− J2/F��nh�2

1

�E�n���E�n���
� .

�14�

The perturbation Ĥ2 is treated in a similar way, with the
difference that two particles are promoted to the second
band, and the position of the second Stark state �w�� is an
additional degree of freedom for the transition. The decay
channels are

�n,N� � �vac� → �n��;N − 2� � �w� ,

nh� = nh − 2. �15�

The approximate energy matching equation selects a set K of
possible decay channels, parametrized by the three site indi-
ces �h ,w ,w��,

�h,w,w�� � K s.t. E0�n��,w,w�� − E0�n�� = 2�
2 − 
1�

− F�2h − w − w�� − W1�2nh − 3�

� �−
�E�n�� + �E�n���

2
,
�E�n�� + �E�n���

2
� . �16�

We state the result for the decay width

�2�n�� =
1

2
�W�

2 �
�h,w,w���K

�Jh−w�− J2/F��Jh−w��− J2/F��2

�4nh�nh − 1�
1

�E�n���E�n���
� . �17�

With respect to Eq. �14�, the additional degree of freedom w�
results in an extra summation extended over the �infinite�
possible values of the difference w−w�. This follows from
the possibility to conserve the energy even if a particle is

pushed very far, if the other particle is pushed almost equally
far in the opposite direction. Since the decay width equation
�17� depends on the product of two �rapidly decaying� Bessel
functions we apply the truncation �w−w��� �J2 /F�, to reduce
the formula to a finite form.

Now we conclude the computation and derive the energy
broadening �E�n�� of the Fock states in the ground band nec-
essary to implement the conditions of Eqs. �13� and �16�. In
the ground band, the unperturbed Hamiltonian consists only
of the on-site interaction operator

Ĥ0 =
1

2
W1�

�

n̂�,1�n̂�,1 − 1� .

In the case of a single particle in a periodic potential, the use
of first-order perturbation theory is wrong, as the second or-
der of the perturbation theory diverges because of the exact
degeneracy in energy of neighboring sites, entailed by the
translational symmetry of the lattice. On the contrary, in the
present case, the unperturbed Hamiltonian is just a rough
approximation of the true Hamiltonian of the system and the
remaining operators are supposed to remove the degeneracy,
since the translational symmetry is broken by the external
field in the WS picture. The perturbation Hamiltonian is
given by

Ĥh = −
1

2
J1�

�

�â�+1,1
† â�,1 + H.c.� , �18�

and its matrix elements between Fock states are

�n���Ĥh�n�� = −
1

2
J1�

�=1

L

�
��=±1

�
m��

m��+��

�n�,1
�n�+��,1 + 1

���nm,1� ,nm,1���n�,1� ,n�,1 − 1�

���n�+��,1� ,n�+�l,1 + 1� . �19�

Transitions are allowed between Fock states that differ for
one boson in two adjacent holes m, m+�m. The transition
channels are written as �n��→ �n���, with n�m,1� =n�m,1−1 and
n�m+�m,1� =n�m+�m,1+1, and must fulfill the condition of the en-
ergy conservation

E0�n��� − E0�n�� = W1�nm+�m,1 − nm,1 + 1� � 0. �20�

The total uncertainty is obtained by adding up the contribu-
tions from all the transitions and the summation over the
allowed channels can be recast in a summation over the lat-
tice sites. Using the golden rule, each Fock state is attributed
the following energy uncertainty:

�E�n�� =
1

2
�J1

2�
n��

�E�n� → n���

=
1

2
�J1

2�
�

�
��=±1

n�,1
2 ��n�+��,1 + 1,n�,1� . �21�

Finally, the level density ��E ,n�� around the unperturbed en-
ergy E0�n�� of a Fock state �n�� is approximated by a rectan-
gular profile, of width �E�n�� and area unity
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��E,n�� = �	�E − E0�n��� � �E�n��/2
/�E�n�� . �22�

IV. RESULTS OF THE PERTURBATIVE OPENING OF
THE ONE-BAND SYSTEM

The total width �F=�1+�2 is now added to the single-
band Hamiltonian as a complex shift. Given the translational
symmetry of this Hamiltonian, we added the shift to the di-
agonal in the representation of the cyclic basis ��� in Eq.
�B2�, as −i�F��� /2. The eigenvalues of the FB operator are
no longer unitary and the quasienergy Ej has a complex part
−i� j /2. We analyzed the decay rates � j along with the
quasienergy spacing’s statistics to study how the dynamics
within the first band influences the coupling to the second
band. We reported the distribution P��� in �16�. Here we
refine our analysis and we first focus on P���, with �
=log10 �, shown in Fig. 4 for some paradigmatic cases. The
widths are much smaller than unity, consistently with a per-
turbative approach of the system, yet the lattice potential is
only V=1.5ER to increase the spread of the Stark state in the
second band. Moreover, the decay channels are activated by
an increase of the interaction energy, which can be experi-
mentally achieved by acting on the transversal confining po-
tential �31� of the quasi-one-dimensional lattice, or by a Fes-
hbach resonance �14�. In this section, W�0.02 used in �9� is
multiplied by a factor of order 10, a value that is still well
within the experimental possibilities �14,32�.

In Fig. 4 we compare the distribution of the decay widths
for two values of F that belong to the regular �a,c� and the
chaotic region �b,d�. The difference in the average decay
width ��� is due to the improved energy matching provided

by a stronger external field F, that supplies the necessary
energy to promote particles to the second band. For the pa-
rameters of Fig. 4, the single-particle Landau-Zener formula
�23� gives �LZ=F / �2��exp�−�2�
2−
1�2 / �8F��
�10−20, 10−75 for �a,b�. Then we see that there are regimes
where the many-body interactions affect substantially the
single-particle tunneling rates and cannot be neglected.
Moreover, even mean-field treatments of the Landau-Zener
tunneling �8,33� cannot account for several decay channels.

The bulks of the distributions, both in the regular and in
the chaotic regime, are appropriately fit by a log-normal pro-
file P����exp	−�ln��−�min��2 /2��2
 / ��−�min�. We no-
tice that the spread �� is reduced in the chaotic case, where
the Fock states are strongly mixed by the dynamics and a fast
decaying Fock state �in the ��� representation� could be a
privileged decay channel for many eigenstates of the system.
Many eigenstates then shared similar decay widths and their
statistical distribution would be thinner. Following this rea-
soning, we interpret the thinner distributions found in the
panels �b� and �d� of Fig. 4 as a signature of the strongly
correlated dynamics.

This picture is supported by Fig. 5, where the dependence
on F of the spread �� �lower panel� is confronted with the
regular-chaotic transition evidenced by the �2-like test of Eq.
�5� �upper panel�. The shrinking of the decay widths distri-
bution goes along with the transition, though the precise de-
termination of a transition point is precluded by a substantial
amount of noise. The finite size of the samples that can be
managed numerically accounts for the noise, as we verified
that the profile becomes sharper while increasing the size of
the system. Moreover, since the average decay width de-
creases with smaller F, we need a more precise and hence a
more time-expensive numerical computation to determine
�� as we enter the chaotic regime.
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FIG. 4. �Color online� �a,b� The probability distribution P and
�c,d� the CDF for the logarithm of the decay widths � in the regular
regime ��a,c� with log10�2� /F��1.5� and in the chaotic regime
��b,d� with log10�2� /F��2.1�. The size of the system is N=8, L
=7. The dashed line is the fit with a log-normal distribution. The
inset in panel �d� shows that the log-normal is not appropriate to fit
the tails of the distributions in the chaotic regime. Here and in the
following figures, V=1.5, 
2−
1=2.63, J1=0.22, J2=−1.0, W1

=0.2, W�=0.1, dF=−0.2.
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FIG. 5. �Upper panel� The �2-like test for the quasienergy spac-
ing s and �lower panel� the spread of the distribution of the decay
widths �. The size of the system is N=8, L=7. The dashed lines are
a guide to the eye and suggest that the transition to the chaotic
regime can be appreciated by looking at both, the real and the
imaginary parts of the FB eigenvalues.
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Finally, we found in �16� that the tails of the distributions
in the chaotic case follow the expected power law for the
diffusive regime of an open quantum chaotic system. In our
case, the opening of the ground band subsystem is defined by
the interband coupling, which in a sense attaches “leads” to
all lattice sites within the sample. Indeed, the inset of Fig.
4�d� shows that the log-normal is not a good fit to the tails in
the chaotic regime: the distributions transform to a power
law P�����−� in close analogy to the transition from
Anderson localized to diffusive dynamics in open disordered
systems �34,35�. In particular we found ��2, in accordance
with the general results of �36�. In Fig. 6, panel �d� we show
that this value is indeed peculiar to the chaotic regime, and
strong fluctuations with F mean that the exponent � is not
defined within the transition region. Here we evaluate the
integrated profile

1 − CDF��� � 1 −� �P����d�� � �1−�, �23�

and fit the latter to reduce the statistical fluctuations due to
the finiteness of our samples. The finite-size effects are more
relevant in the chaotic case �panels �b� and �c��, because the
reduced spread of the distribution makes the fit sensible to
the few points that fall in the further part of the tail �shaded
in the pictures�. The largest analyzed sample has only �400
energy levels, yet the uncertainty on ��2 on the chaotic
side of the transition is less than 10%.

V. CONCLUSIONS

We studied the problem of a many-body atomic system in
a tilted optical lattice, using a statistical analysis of the com-

plete quantum spectrum. We extended previous work
�9,10,16� and verified thoroughly the transition from a regu-
lar to a quantum chaotic spectrum, found in �10� as the Stark
field is varied. The transition takes place when the tunneling
amplitude in the lattice becomes comparable to the interac-
tion energy of the atoms. In this regime it is not possible to
find a set of quantum numbers that decompose the spectrum
into subspaces not mixed by a change of the Stark field.
Because of the strong mixing of the energy eigenstates, many
avoided crossings are found in the spectrum and the statisti-
cal analysis of the energy spacing’s show a characteristic
depletion of small spacing’s—a signature of quantum chaos.

We derived a reasonable two-band model, on the basis of
which we opened the ground band subsystem by a perturba-
tive coupling of the Fock states to excited Stark states. We
obtained the set of decay rates from the complex-valued
quasienergies of the FB operator. We analyzed the real part
of the quasienergies and verified that the transition from the
regular to the chaotic regime is still visible and not much
modified with respect to the one-band system. Moreover, we
analyzed the statistical distribution of the imaginary part of
the quasienergies, i.e., the decay rates of the states in the
ground band. We found that the distributions of the decay
rates become thinner as the regular-chaotic transition is
crossed. We believe that thinner distributions of the decay
rates are a signature of the complex dynamics, where a few
strongly decaying states act as leading decay channels. The
statistical characterization of the tunneling rates could be
used to compute the expected atomic current from the
ground band to the excited band of the lattice, thus providing
an experimental probe for the regular-chaotic transition.
Time-dependent observables could possibly be computed
also with advanced mean-field techniques as reported in Ref.
�37�, as long as no full spectral information of the many-
body system is wanted.

Of course, a deeper investigation is desirable to under-
stand on quantitative grounds the full interplay of the dynam-
ics within the first band and the decay toward higher bands,
and a more detailed analysis of the interband coupling will
be worthwhile in a full-blown model in which at least two
bands are completely included. Our results are a step in this
direction of studies of regimes in which both “horizontal”
and “vertical” quantum transport are simultaneously present
and influence each other in a complex manner.
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FIG. 6. �Color online� �a�–�c� Left-hand side of Eq. �23� in the
regular �a� and in the chaotic regime �b,c�, for a system with N=8,
L=7. The dashed area in panels �b,c� shows the part of the histo-
gram where the total amount of points is about 40, less then 10% of
the full sample. The red solid line is the linear fit to the profile in the
scaling region. �d� The exponent of the power law P�����−� as
obtained from the linear fits shown in �a�–�c�, for N=8, L=7 �black
circles�, N=8, L=5 �red squares�, N=7, L=8 �blue diamonds�, N
=7, L=5 �green pyramids�. To show together different data sets we
horizontally translated the first by +0.1 and the last by −0.05.

MANY-BODY LANDAU-ZENER TUNNELING IN THE BOSE- … PHYSICAL REVIEW A 77, 013606 �2008�

013606-7

176 KAPITEL 4. WISSENSCHAFTLICHE ARTIKEL



APPENDIX A: COMPUTATION OF THE COEFFICIENTS
OF THE MANY-BODY HAMILTONIAN

The coefficients of the Hamiltonian equation �4� are given
by integrals of the WF ��,�, once the expansion of Eq. �2� is
substituted into Eq. �3�. The WF are defined as

�k,��x� =� 1

2�
�

�

ei��k��,��x� . �A1�

From the definition it follows that ��,��x�=���x−�a�, so that
all the Bloch waves for a band can be computed starting
from a single Wannier function ��. We computed the WF
following the method introduced in �38�. A Bloch wave is
factorized as �k,��x�=eikxuk,�, where the periodic function
uk,��x�=uk,��x+a� is expanded in a truncated basis of mo-
menta using multiples of 2�j /a only,

uk,��x� = �
j=−Q

Q−1

uj��,k�
1
�a

ei2jx. �A2�

Using a gauge transform �p→−i�x+k�, an effective Hamil-
tonian for the periodic uk,� is derived from Eq. �1�. We
solved the effective Schrödinger equation as a linear system
for uj�k ,�� with dispersion law Ek,� as eigenvalues. We ob-
tained the on-site energies and the hopping amplitudes from
the Fourier transform of Ek,�,


� =
1

2
�

−1

+1

Ek,�dk, J� = − �
−1

+1

Ek,�ei�kdk . �A3�

The WF is finally computed from the inversion of Eq. �A1�.
The relative phase of the eigenvectors uj�k ,��, for different
quasimomenta, is not unique. For the simple case of a sinu-
soidal lattice potential, the correct choice of the phases can
be inferred from �38�,

uj�k,1� → �uj�k,1��, uj�k,2� → �uj�k,2��sgn�2j + k� .

�A4�

This phase choice guarantees the correct inversion symmetry
���−x�= �−1��−1���x� of the WF of the first and of the sec-
ond band, respectively. The interaction coefficients for Eq.
�4� read as

W� = W�
−�

�

��
4dx, W� = W�

−�

�

�1
2�2

2dx . �A5�

The WF are an orthogonal set of functions, so that different
bands are decoupled in the one-body dynamics. The tilting
potential Fx has nonvanishing “dipole” matrix elements that
couples adjacent bands,

dF = �
−�

�

�1�x�x�2�x�dx . �A6�

APPENDIX B: COMPUTATION OF THE FLOQUET-
BLOCH OPERATOR

The Fock states �n�� are defined by the sequence of occu-
pation numbers 	n�,�
�=1

L for the L sites of the lattice, in each
band �. The cyclic boundary conditions, n0,�=nL,� allow us

to define a shift operator Ŝ �10� that translates the occupation
numbers of a Fock state �n�,

Ŝm�n� = �. . . ,n1−m,�, . . . ,nL−m,�, . . .� . �B1�

The operator Ŝ naturally decomposes the Fock space into
equivalence classes of vectors generated by repeated appli-

cation of Ŝ onto a “seed” vector ��� with M����L such that

ŜM����n�= �n� for all the vectors �n� in the class. A new basis
��� can be introduced for which the many-body quasimo-
mentum = j /M��� �0� j�M����, supplies a convenient la-
bel

��� =
1

�M���
�
�=1

M���

ei2��Ŝ���� . �B2�

The cyclic basis decomposes the Hamiltonian equation �4�
into a block form that transfers to the FB operator, whence

ÛFB= � j=1
L ÛFB�= j /L� with the obvious advantage that we

can diagonalize separately each block of dimension D
	DH /L. This decomposition not only leads to a substantial
numerical simplification but is also of dynamical relevance
�10�. Moreover, we exploited that the Hamiltonian matrix is
sparse and we verified that the fraction of the nonzero entries
is 4.0�D−1.1 in the limit of large Hilbert spaces D�1.

The column c of the FB operator coincides with the col-
umn of the coefficients of the basis state of index c, evolved
in time up to one Bloch period. We used a fourth-order
Runge-Kutta time integrator with adaptive step size, tuned in
precision by the upper bound 
 of the estimated one-step
error �28�. The value of 
 was chosen to suppress, up to TB,
the well-known exponential instability of the Runge-Kutta
method applied to the Schrödinger equation. The quantity
Q�E ,E�����i�Ei−Ei��

2 /D2�1/2 was used to compare different
spectra 	E
, 	E�
, and we verified the consistency of our
computations, finding a power-law self-convergence
Q�E�r� ,E�r−1���
r

1.2 for a sequence of tests with increasing
required precision, 	
r
r→0. The achieved precision scales
with CPU time t as Q� t−6.1. A precision up to 10−11 was
necessary to reliably compute the small complex part in the
eigenvalues of the FB operator, analyzed in Sec. IV.
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Engineering many-body quantum dynamics by disorder
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Going beyond the currently investigated regimes in experiments on quantum transport of ultracold atoms in
disordered potentials, we predict a crossover between regular and quantum-chaotic dynamics when varying the
strength of disorder. Our spectral approach is based on the Bose-Hubbard model describing interacting atoms
in deep random potentials. The predicted crossover from localized to diffusive dynamics depends on the
simultaneous presence of interactions and disorder and can be verified in the laboratory by monitoring the
evolution of typical experimental initial states.

DOI: 10.1103/PhysRevA.77.041606 PACS number�s�: 03.75.Kk, 05.45.Mt, 61.43.�j, 71.35.Lk

While well-controlled experiments in solid-state systems
are lacking, the recent advances in atom and quantum optics
allow the experimentalist to study minimal models where
single-particle dynamics, many-body interactions, and disor-
der can be engineered at will. Ultracold bosons or fermions
loaded into optical lattices, which realize spatially periodic
potentials �1�, are optimally suited to study, e.g., quantum
transport across disorder potentials and possible manifesta-
tions of Anderson localization in the mean-field regime �2,3�.
Moreover, modern experiments reach the regime of strong
atom-atom correlations to investigate many-body quantum
effects such as interaction-driven phase transitions �1,4� or
interaction-induced changes of Landau-Zener tunneling rates
�5,6�.

The Bose-Hubbard model well describes ultracold bosons
in periodic lattices at small fillings �where a mean-field
theory is obviously bound to fail� and not too shallow lattice
depths �1,4,7,8�. A recent study of an open Bose-Hubbard
system �6� furthermore showed that many-body interactions
lead to similar decay-rate distributions as predicted for
single-particle transport in disordered potentials. More pre-
cisely, interactions in a many-body system can substitute for
disorder in the diffusive regime of quantum transport �6�.

Here we show how to engineer the dynamical properties
of a many-body Bose-Hubbard system by varying the
strength of static disorder. We predict that, for an intermedi-
ate regime of disorder strength, the system shows clear sig-
nature of global quantum chaos. The latter is quantified by
spectral measures of quantum chaos �6–10� and transport
�11–13�. Complexity arises in our systems from the simulta-
neous presence of atom-atom interactions and disorder.

We consider a disordered Bose-Hubbard system on a one-
dimensional �1D� lattice �14� comprising L sites, defined by
the Hamiltonian

H = �
�=1

L

�Ua�
†2a�

2 − J�ei�a�
†a�+1 + H.c.� + ��a�

†a�� . �1�

The operators a�
†, a� create and destroy bosons at lattice site

�, respectively. The random on-site potentials, ����, are cho-
sen from a box distribution in �−� /2,� /2�. The deterministic
Peierls phase � in the kinetic term corresponds to a finite
�angular� momentum of the lattice or, equivalently, to the

presence of a �effective� magnetic potential �15�, and math-
ematically to imposing different boundary conditions,
twisted as opposed to simply periodic, onto the standard
model, Eq. �1� with �=0 �13�. Phases could be controlled
experimentally as described in �16�, while the periodic
boundary conditions assumed for Eq. �1� in the following
could be implemented in optical ring lattices �16,17�. The
effects of ���� and � are in some sense complementary. This
can be understood switching to the Fock basis of the quasi-
momentum �QM� operators b�=L−1/2��a�ei2���/L �8,18�, di-
agonalizing the kinetic term in Eq. �1�. In this reciprocal
basis, the interaction term is block-diagonal, the blocks being
labeled by the total QM=���b�

†b� mod�L�, where the mod
operation guarantees a QM in the unit interval. Conversely,
the local potential term, ����, couples blocks of different QM,
since it corresponds to a sum of nonlocal operators b�

†b�

�18�. Any such operator couples blocks whose total QM dif-
fers by ��−�� units, and since b�

†b� is a number operator, the
coupling within each block reduces to a trivial constant.
Hence ���� induces interblock couplings, while � affects the
diagonal blocks of fixed QM.

We are interested in the global dynamics generated by Eq.
�1�. Our approach to characterize the quantum transport in
the system is twofold: first, we study the spectral properties
of Eq. �1�, and second, we present results of the time-
evolution of initial states which are not eigenstates of Eq.
�1�. The evolution of typical experimental observables, such
as the spatial population and the mean momentum of the
condensate particles �1,3,4�, allows one to directly probe the
here predicted diffusion-localization transition �DLT�. In
contrast to �19�, we do not just focus on the regime of small
disorder ��J, and we include � to generalize the assumed
periodic boundary conditions.

For the case without disorder and filling factors of order
one, a crossover between regular and quantum chaotic spec-
tra was predicted in �8� when varying the ratio U /J. Quan-
tum chaotic spectra are identified by their statistics, more
precisely the distribution P�s� of the normalized level spac-
ings s��E /�E follows a Wigner-Dyson �WD� distribution
�8�. Also by adding a linear force to the Hamiltonian, a tran-
sition between regular and chaotic motion can be identified
by a crossover from Poisson to WD statistics �6,7�, corre-
sponding to a regime of strong �Stark� localization or of
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quantum chaos, respectively. Based on translational invari-
ance, most previous results �6–8� concern a subset of states
with constant �conserved� QM. Since in the experiment it is
generally hard to focus on a subset of states taking part in the
dynamical evolution, it is desirable and more general to
search for global quantum chaos, which is not just restricted
to independent subsets of the system’s eigenvalue spectrum,
e.g., corresponding to constant QM. Disorder �which cannot
be completely avoided in any real system� naturally breaks
the translation invariance �19�, and we will show that the
dynamics of a dilute boson system �induced by its spectral
properties� can be controlled by the combined action of
atom-atom interactions and the random potential in Eq. �1�.

For a complex spreading of the system’s eigenfunctions in
the eigenbases of the integrable cases �J=0=�� and �U=0
=��, the energy scales defined by the terms in Eq. �1� should
be roughly of the same order of magnitude, i.e., J	U	�.
For such a situation and small filling, we indeed found clear
signatures of global quantum chaos in the system. Our re-
sults are shown in Fig. 1, which collects avoided crossing
scenarios of the energy levels �a�, the cumulative distribution
C�s��
0

sds�P�s��, and the number variance 	2 of the energy
levels �which measures the long-range correlations in the
spectrum �10�� in 1�b� and 1�c�. Both C�s� and 	2 agree well
with the WD predictions for a Gaussian orthogonal ensemble
of random matrices �7–10�. Residual symmetries of Eq. �1�
�e.g., a reflection symmetry for special values of the number
of atoms N and the system size L �8�� can be destroyed by
��0.

Our results of Figs. 1 and 2 depend on the procedure
chosen to unfold the energy spectrum �i.e., to make the den-
sity of states approximately constant�, which is necessary to
compare to the normalized theoretical predictions �8,10�. We
used a rescaling of the levels by the numerically obtained
local density of the raw data, which is independent of further
assumptions on the original level density. Choosing a small

window �over 5–10 levels� for computing the local average
permits an optimal match on smaller scales, while larger
windows �over 20–40 levels� are chosen to compute the
number variance. Our analysis considered all levels of a
given spectrum at fixed parameters, and we checked that
excluding levels at the band edges does not change our re-
sults, as long as we stay in the dilute limit of UN /L
1.

For �
0.5 and ��1, we observed a trend towards glo-
bally regular dynamics, a consequence of good, yet not per-
fect Poisson statistics. In the limit �→0, the various QM
blocks uncouple, and as exercised in �6–8� one has to con-
centrate just on one of these blocks in the spectral analysis.
Any small ��0, however, destroys the translation invari-
ance, making an analysis of the full spectrum quite intricate.
We therefore concentrate for a moment on the case of large
disorder. As shown in Fig. 1�c�, this limit is well-
characterized by a Poisson distribution. This result is ex-
pected, since the eigenstates become pinned at the randomly
distributed minima of the potential, leading to a small re-
sidual overlap between them. Of course, for finite U and L,
such a localization cannot be perfect �14�. Indeed, we ob-
serve a better correspondence in our system with the Poisson
prediction �see inset of Fig. 1�c�� for smaller fillings, consis-
tent with single-particle localization theory �20�. This trend
was observed when increasing L�20 at fixed N=3 and 4, or
when decreasing 1�N4 at fixed 10�L�20.

The DLT occurs for all data sets shown in Fig. 2 at a
critical value �cr�4. We characterize this crossover by a �2

statistical test �23�, which measures the deviation from WD.
The saturation of our �WD

2 measure for large �, at the right of
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FIG. 1. �Color online� �a� Sector of the spectrum in the band
center as a function of U, for N=3,L=15,J=1, and ��0.119 for
�=1 �a linear function of U was added to E to eliminate an overall
trend�. �b� C�s� �obtained from collecting levels of 25 disorder re-
alizations� and 	2 �for one realization in the inset� at U=1, corre-
sponding to the WD prediction �solid lines�. �c� Same as in �b� but
for a regular case with N=3,L=15 ���, 20 ���, U=1=J, and �
=10,�=0, together with the Poisson predictions �solid lines�.
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FIG. 2. �Color online� �a� and �b� �2 statistical test �23� �with
values close to zero for good WD statistics� as a function of the
scaled disorder parameter, for �a� L=15 and N=2 ���, 3 ���, 4
���, and �b� for N=4 and L=8 ���, 10 ���, 14 ���, 17 ���, at
J=1=U ,�=0. The inset in �a� shows a zoom of N=3 for small �,
�=0 ��� and ��0.119 �+�. Each data point is averaged over 20
disorder realizations. The inset in �b� shows the relative deviation
for the marked point in the crossover regime �dashed line� from two
heuristic interpolating laws between WD and Poisson: Semi-
Poisson �gray� �21� and Berry-Robnik �22� �black�. As expected
�21,22�, correspondence is not perfect with either of those laws, but
the Berry-Robnik lies closer overall.
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the graphs in Fig. 2, signals the convergence to a Poisson
distribution, an example of which is explicitly shown in Fig.
1�c�. For fixed N and L, �cr scales linearly with U=J, as
expected since our Hamiltonian in Eq. �1� is scale invariant
for a given realization of disorder �i.e., U=J defines the en-
ergy scale for ��. At fixed U=J, the crossover to the localized
regime depends on the filling, and our results from Fig. 2
suggest the following functional form �WD

2 �x�, with x
��L /N, in the range ��4–15. It is numerically hard to
obtain a full scaling function for interacting systems with
larger N and L, since it is necessary to diagonalize the full
system, not just one QM block as in �6–8�.

Interestingly, our spectral analysis of Figs. 1 and 2 does
not show a dependence on � in the localized regime ���4�,
while especially for �
1 �see inset of Fig. 2�a�� both cou-
plings by ��0 and by ��0 can conspire to enhance the
quantum chaotic properties of the full spectrum �i.e., not only
of a subblock of fixed QM�. We therefore can use, to some
extent, both parameters as independent handles to change the
global spectral properties.

The dependence of the spectrum on the choice of the
boundary conditions defined by � is reminiscent of the
Thouless conductance, another prominent measure to
characterize the transition between extended and localized
states �12�. We computed the Thouless conductance,
which essentially is given by the curvature CT
���d2E /d�2 � ����2�E���−E�0�� � /�2�, for �→0 �11,13�,
which was geometrically averaged �11� over the full spec-
trum and 40 realizations of disorder. Our results are shown in
Fig. 3. In contrast to the distributions of nearest level spac-
ings, where the small but finite mixing of QM blocks at �
→0 does not allow one to characterize well the true type of
dynamical regime, the curvature is a local property of the
spectrum. Hence in the diffusive limit �→0, we find the
expected divergence CT��−�, with ��2–1.8 �N=2–4,L
=15� and ��1.3 �N=4,L=10�. In analogy to Fig. 2, the
crossover between the diffusive �quantum chaotic� and the
localized regime sets in at �cr�4. For ��4, our results con-
firm an exponential scaling �typical of finite-size localized
systems� CT�exp�−const ���, with ��0.8 �N=2–4,L=15�
and ��0.5 �N=4,L=10�. The systematic deviation of both
exponents from the single-particle predictions ��=2 and �

=1 �11�� with increasing filling factor highlights the struc-
tural change of the level dynamics in the presence of atom-
atom interactions.

In the following, we focus on experimentally observable
consequences of the spectral analysis presented so far. Figure
4 shows the temporal evolution of initial states, typically
prepared in experiments with Bose-Einstein condensates.
Panel �a� presents the mean momentum on the lattice
�7,13,19�, defined as

p�t� �
1

2iN
���t���

�

�a�
†a�−1 − H.c.����t��

=
1

N
���t���

�

sin�2��

L
�b�

†b����t�� , �2�

in the direct and reciprocal space, respectively, for ���t
=0��= �b�

†�N �0� /N!, with �=2. For strong disorder, the mo-
mentum decays almost instantaneously to zero, and is further
characterized by small, random fluctuations. The quantum
chaotic behavior for �=1 is visible in the strongly correlated
large-scale fluctuations, characterized by a slowly, algebra-
ically decaying Fourier transform of the time series p�t�, cf.
Fig. 4�b�. The latter implies a large number of modes being
present in the evolution of p�t�, a standard signature of com-
plex dynamics �24�. Complex transport behavior was pre-
dicted also in �25� by analyzing the power spectrum of os-
cillations in a three-well system. In contrast to Figs. 4�a� and
4�b�, Figs. 4�c� and 4�d� show the real space dynamics of a
box-distributed initial state with one atom in wells �=7, 8,
and 9 and none elsewhere. While the chaotic mixing of all
wells dominates for �=2, in the localized regime �=10 we
observe the expected strong pinning at the random minima of
the potential �particularly in the seventh well in Fig. 4�d��.
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=10 �same parameters as in �a�, color code defined in �e��. The time
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�1,4�. The inset in �a� highlights the slow decay for �=1.
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The fluctuations in the latter case arise from our finite values
of U and L. For a typical realization of ����, the evolution
will be asymmetric as seen in Fig. 4�c�, which allows one to
distinguish it from the �=0 case. Equivalently, while for �
=0 QM is conserved, for ��0 QM starts to deviate from its
initial value, which is 0 for the data in Figs. 4�c� and 4�d�.
Figure 4 presents the limits of fully developed global quan-
tum chaos �without any residual symmetry in the system�
and strong localization. Yet, the crossover between the two
regimes is systematic, and as exemplified, even the evolution
of single, reduced experimental observables of our many-
body problem can be used to directly visualize the change in
the quantum spectra analyzed in Figs. 1–3. Of experimental
relevance is in particular the difference in the short-time evo-
lution of p�t� for experimental detection times �1 s.

In summary, we showed how one can scan between the
different dynamical regimes of the Bose-Hubbard system,
characterized by global quantum chaos and by essentially
localized bosons, by varying the strength of static disorder.
The dynamics of initial states which are far from eigenstates

of the system could be used as a clear experimental signature
of this crossover. Moreover, our analysis of the many-body
level curvatures opens a new link to transport problems in
mesoscopic solids �11,12� and photonic lattices �26�, where
global chaotic properties are accessible by conductance mea-
surements. As adumbrated in �9�, the here presented, ex-
tended, and unifying characterization of the spectral proper-
ties of a disordered many-body problem may be useful to
obtain, for instance, experimentally accessible estimates for
the localization properties for such complex systems. How-
ever, the necessary scaling arguments �12� as a function of N
and L make such an approach challenging for up-to-date
computational resources.
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1. Introduction

In the last decade, the experimental techniques used in atom and quantum optics have made
it possible to control the external and internal degrees of freedom of ultracold atoms with a
very high degree of precision. Thus, ultracold bosons or fermions loaded into optical lattices are
optimal realizations of lattice models proposed and studied in the context of solid-state physics.
Bose–Einstein condensates (BECs), for instance, have been used to simulate phenomena such
as Bloch oscillations in tilted periodic potentials [1]–[6] and to study quantum phase transitions
driven by atom–atom interactions [7].

Up to now most of the quantum transport phenomena investigated with BECs within
periodic optical lattices have focused on the atomic motion in the ground state band of the
periodic lattice. Only a few experiments have examined the quantum transport associated
with interband transitions ‘vertical’ in the energy space. Interband transitions were induced by
additional electromagnetic fields, as in the case of the spectroscopy of Wannier–Stark levels [8],
or by quantum tunneling between the bands. Tunneling between otherwise uncoupled energy
bands occurs when the bands are coupled by an additional force, which can be a static Stark
force (tilting the otherwise periodic lattice) [6], or also by strong atom–atom interactions
as observed for fermions in [9] and discussed for bosons in [10]. The quantum tunneling
between the ground and the first excited bands is particularly pronounced in the presence of
degeneracies of the single-well energy levels within the optical lattice leading to resonantly
enhanced tunneling (RET). RET is a quantum effect in which the probability for tunneling
of a particle between two potential wells is increased when the energies of the initial and
final states of the process coincide. Owing to the fundamental nature of this effect and the
practical interest [11], in the last few years much progress has been made in constructing solid
state systems such as superlattices [12]–[15], quantum wells [16] and waveguide arrays [17]
which enable the controlled observation of RET. RET has also been examined theoretically for
ultracold atoms trapped in an optical lattice [18]–[21].

RET-like effects have been observed in a number of experiments to date. In [22], resonant
tunneling was observed for cold atoms trapped by an optical lattice when an applied magnetic
field produced a Zeeman splitting of the energy levels. At certain values of the applied magnetic
field, the states in the up-shifting and down-shifting energy levels were tuned into resonance
with one another. This led to RET drastically altering the quantum dynamics of the system
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and producing a modulation of the magnetization and lifetime of the atoms trapped by the
optical lattice. Resonant tunneling has been observed in a Mott insulator within an optical
lattice, where a finite amount of energy given by the on-site interaction energy is required
to create a particle–hole excitation [23]. Tunneling of the atoms is therefore suppressed.
If the lattice potential is tilted by application of a potential gradient, RET is allowed whenever
the energy difference between neighboring lattice sites due to the potential gradient matches the
on-site interaction energy. The corresponding nonlinear effect in a Mott insulator allowed
Fölling et al [24] to observe two-atom RET, and RET in the presence of many-body coherences
was theoretically analyzed in [25]. We reported very precise RET measurements for BECs
in [26]. The condensates were loaded into a one-dimensional (1D) optical lattice and subjected
to an additional Stark force, optimally implemented and controlled by accelerating the lattice.

In this paper, we report additional investigations on RET for a BEC in a 1D optical
lattice applying the high-level control elaborated in our previous work. The experimental data
presented here concentrates on the regime of parameters for which the Stark force dominates the
dynamics of the condensate. Our precise control of the experimental parameters (lattice depth,
interaction strength, and the flexibility of the choice of the initially populated band) enables us
to measure the RET decay of the ground band and the first two excited energy bands in a wide
range of experimental conditions. Moreover, we study the impact of atom–atom interactions
on the RET process. All these features extend previous experimental studies on Landau–Zener
tunneling for ultracold atoms in periodic potentials [3, 4, 27, 28]. A theoretical description
complements our experimental work.

The paper is organized as follows. Section 2.1 collects the necessary theoretical tools to
describe our experiments, whereas section 2.2 introduces the RET modifications produced by
the atom–atom interactions. Section 3.1 presents our experimental data in the linear tunneling
regime, i.e. in the absence of atom–atom interactions. The effect of the latter is investigated in
section 3.2, before we discuss and summarize our results in section 4.

2. Theoretical description

2.1. Single-particle RET

Neglecting for a moment atom–atom interactions in a BEC, our system is described by the
following Hamiltonian:

H = −
h̄2

2M

d2

dx2
+ V0 sin2

(
πx

dL

)
+ Fx, (1)

where V0 is the depth of the optical lattice, dL its spatial period, and M the atomic mass of
rubidium 87. This Hamiltonian defines the well-known Wannier–Stark problem [19, 29, 30].

For small Stark forces F , one can picture the evolution of a momentum eigenstate induced
by equation (1) as an oscillatory motion in the ground energy band of the periodic lattice. These
Bloch oscillations with period TBloch = h/dL F , where h is Planck’s constant, were observed for
cold and ultracold atoms in optical lattices [6].

At stronger forces, a wave packet prepared in the ground state band has a significant
probability to tunnel at the band edge (where the band gap 1 is minimal) to the first excited
band. For a single tunneling event, such a probability is best estimated by Landau–Zener theory
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Figure 1. Schematic of the RET process between second nearest neighboring
wells, i.e. for 1i = 2. The tunneling of atoms is resonantly enhanced when
the energy difference between lattice wells matches the separation between the
energy levels in different potential wells.

as [30]

PLZ = e−π2(1/Erec)
2/(8F0), (2)

with the recoil energy Erec = (h̄π/dL)
2/2M and F0 ≡ FdL/Erec. The decay rate—owing to a

sequence of Landau–Zener tunneling events—is then obtained by multiplying PLZ with the
Bloch frequency [19]

0LZ = νrec F0e−π2(1/Erec)
2/(8F0), (3)

where the recoil frequency is given by νrec = Erec/h̄.
The actual decay rates can dramatically deviate from equation (3) when two Wannier–Stark

levels in different potentials wells are strongly coupled owing to an accidental degeneracy. By
imposing an energy resonance between the Wannier–Stark levels in different wells of an optical
lattice shifted by the potential of the external force, one finds that these degeneracies occur at
the values F at which FdL1i (1i integer) is close to the mean band gap between two coupled
bands of the F = 0 problem [15, 19]. The actual peak positions are slightly shifted with respect
to this simplified estimate, because the Wannier–Stark levels in the potential wells are only
approximately defined by the averaged band gap of the F = 0 problem, a consequence of field-
induced level shifts [19]. The RET process based on the n = 1 and 2 levels of the Wannier–Stark
ladder is sketched in figure 1.

The modification of the level decay rate by the presence of a degeneracy may be described
by a simple model of a two-level Hamiltonian with energy splitting 2ε and one decaying
level [31, 32]

H =

[
ε− iγ v

v −ε

]
. (4)

In this approach it is assumed that the upper bare state decays with rate γ , whereas the
decay is negligible for the other one. The two states are coupled with strength v. The eigenvalues
of the non-hermitian Hamiltonian of equation (4) are given by

E± = −iγ ±

√
(ε− iγ )2 + v2 = E± − i0±/2. (5)
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Figure 2. Real (left) and imaginary (right) part of the eigenvalues of equation (5)
as a function of ε for γ = 1, measured in units of Erec. A type-I crossing is found
for v = 1.01 Erec (upper plots), and a type-II crossing is found for v = 0.99 Erec

(lower plots).

Real and imaginary part of the eigenvalues are different for ε 6= 0, but crossings or
anticrossings of the real and imaginary part are found at the critical value ε = 0 where two
different scenarios take place. For |v|> γ , at ε = 0 the imaginary parts of the eigenvalues
coincide, 0+ = 0− = 2γ , whereas the real parts differ. In this case, denoted as type-I crossing,
the imaginary parts of the eigenvalues cross while the real parts anti-cross, as shown in the upper
plots of figure 2. For |v|6 γ , at ε = 0 the real parts of the eigenvalues coincide, E+ = E− = 0,
whereas the imaginary parts differ. In this case, denoted as type-II crossing, the eigenvalues
anticross whereas the real parts cross, as shown in the lower plots of figure 2. Type-II crossing
corresponds to the RET phenomenon: if the lower state is energetically close or equal to the
decaying upper level, the decay rate of the lower state increases significantly. In addition, the
upper state experiences a resonantly stabilized tunneling (RST) with a decrease of its decay rate.

For non-interacting atoms described by equation (1), we can easily diagonalize an opened
version of our Hamiltonian [18, 19], [33]–[35] to obtain the true resonance eigenstates and
eigenenergies of our decaying system. Figure 3(a) shows the crossing and anticrossings for the
real parts of the eigenenergies associated with a configuration investigated experimentally as
a function of the experimental control parameter, the Stark force. It may be noticed that the
type-II crossings are typically encountered for our problem of decay from lower bands. The
associated Wannier–Stark states decay with rates are shown in figure 3(b) as a function of the
dimensionless parameter F0. The strong modulations on top of the global exponential decrease
arise from the RET processes originated by the type-II crossings.
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Figure 3. (a) Real part of the eigenenergies and (b) decay rates for a lattice
depth of V0/Erec = 10 and the Hamiltonian from equation (1). The eigenenergies
and the decay rates are associated with two Wannier–Stark ladders or,
equivalently, with two energy bands: ground (thick black lines) and first excited
states (thin red lines). The maxima of the ground-state decay rates correspond to
1i = 1, 2, 3 and 4.

2.2. Interacting BEC dynamics

In this section, we discuss the effect of atom–atom interactions in the BEC and how to
effectively model them for a quantitative description of the experiment. We focus on a parameter
regime where the Stark force essentially dominates the dynamics of the condensate. Here
the quantum tunneling between the energy bands is significant and most easily detected
experimentally. The critical field values for which such excitations are relevant can be estimated
by comparing, for instance, the potential energy difference between neighboring wells, FdL,
with the coupling parameters of the many-body Bose–Hubbard model, i.e. the hopping constant
J and the interaction constant U [6]. These parameters are plotted in figure 4 for typical
experimental parameters as a function of the lattice depth V0.

Our theoretical and experimental analyses will exclude the regime of F0 6 J/Erec where a
quantum chaotic system is realized [36]–[39]. The origin of quantum chaos, i.e. of the strongly
force-dependent, nonperturbative mixing of energy levels can be understood as a consequence
of the interaction-induced lifting of the degeneracy of the multiparticle Wannier–Stark levels in
the crossover regime from Bloch to Wannier spectra, making nearby levels strongly interact, for
comparable magnitudes of hopping matrix elements and Stark shifts.

For the regime of F0 � J/Erec studied here, the effect of weak interactions is just
a perturbative shifting and a small splitting of many-body energy levels [33, 39]. As a
consequence, we can use a global mean-field description based on the Gross–Pitaevskii
equation [40] to simulate the temporal evolution of a BEC wavefunction ψ(Er , t) subjected to a
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Figure 4. Hopping parameter J (dashed line) and on-site interaction constant
U (solid line) of a 1D Bose–Hubbard model as a function of the depth of the
optical lattice. U is computed for rubidium 87 and for typical experimental
parameters, i.e. lattice spacing dL = 620 nm, and radial confinement frequency
ωr/2π = 250 Hz, using the projection to a quasi-1D situation of [41].

realistic potential

ih̄
∂

∂t
ψ(Er , t)=

[
−

h̄2

2M
∇

2 +
1

2
M(ω2

x x2 +ω2
r ρ

2)+ V0 sin2

(
πx

dL

)
+ Fx + g|ψ(Er , t)|2

]
ψ(Er , t).

(6)

The frequencies ωx and ωr characterize the longitudinal and transverse harmonic
confinement (with cylindrical symmetry of the optical dipole trap: ρ =

√
y2 + z2, cf section 3).

The atom–atom interactions are modeled by the nonlinear term in equation (6), with the
nonlinear coupling constant given by g = 4π h̄2as/M , where as is the s-wave scattering
length [40]. Later, we will use the dimensionless nonlinearity parameter C = gn0/(8Erec) [4, 6],
which is computed from the peak density n0 of the initial state of the condensate, to describe the
experimentally relevant nonlinear couplings C ≈ 0.01, . . . , 0.06. In the Thomas–Fermi regime
of the condensate [40], for given ωx and ωr the density n, and therefore C , is proportional to
N 2/5 where N is the number of atoms in the condensate.

The Gross–Pitaevskii equation (6) is numerically integrated using finite difference
propagation, amended by predictor–corrector loops to reliably evolve the nonlinear interaction
term [42]. To avoid any spurious effects owing to the fast spreading of the wavefunctions, we
use a large numerical basis, especially in the longitudinal direction. In this way, we fully cover
the 3D expansion of the entire wave packet, including its tunneled tail, without the use of non-
Hermitian potentials. The initial state propagated by equation (6) is the relaxed condensate
wavefunction, adiabatically loaded into the confining potential given by the harmonic trap and
the optical lattice (at F = 0).

In order to have access to the decay rates in the experiment, one needs to measure the
temporal evolution of the probability of the condensate to remain in the energy band in which it
has been prepared initially. As proposed in [21], such a survival probability is best measured in
momentum space, since, experimentally, the most easily measurable quantity is the momentum
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distribution of the condensate obtained from a free expansion after the evolution inside the
lattice. From the momentum distributions we determine the survival probability by projection
of the evolved state ψ(Ep, t) onto the support of the initial state:

Psur(t)≡

∫ pc

−pc

dpx

(∫
dpydpz|ψ(Ep, t)|2

)
. (7)

A good choice is pc > 3pR since typically three momentum peaks are initially significantly
populated when loading the condensate adiabatically into the periodic lattice, and they
correspond to −2pR, 0, 2pR [3, 4, 6]. For g = 0, the individual tunneling events occurring
when the condensate crossed the band edge are independent, and hence Psur(t) has a purely
exponential form (apart from the t → 0 limit [43]). When the nonlinear interaction term is
present, the density decays with time too. As a consequence, the rates 0 are at best defined
locally in time, and in the presence of RET even a sharp non-exponential decay is possible,
as discussed in [35, 44]. Nevertheless, for the short evolution times and the weak nonlinear
coupling strengths C that are experimentally accessible, the decay of the condensate can be
well fitted by an exponential law [26, 45]

Psur(t)= Psur(t = 0) exp(−0nt)= exp(−0nt), (8)

with rates 0n for the band n = 1 (ground band), 2 (first excited band), 3 (second excited band),
in which the atoms are initially prepared.

Before we discuss our experimental set-up and present our data on linear and nonlinear
tunneling, we come back to the RET peaks discussed above, cf figure 1. These peaks, which are
predicted to occur for the single-particle motion studied in section 2.1, will be affected by the
nonlinear interaction term of equation (6). A shift of the RET peaks in energy or in the position
of the Stark force, as predicted in [33] for much larger parameters C , is negligible for our
nonlinearities C < 0.06, for which such a shift would correspond to the extremely small amount
of 1F0 < 5 × 10−4 [33]. The RET peaks, however, originate from an exact matching of energy
levels in neighboring potential wells, and hence they are very sensitive to slight perturbations.
We may estimate the necessary perturbation by the nonlinear term in equation (6) by comparing
the width of the RET peaks of a band n (which essentially is determined by the decay width
0n+1 of the band into which the atoms tunnel) with the energy scale of the nonlinearity.
In the experiment, we can easily reach nonlinearities corresponding to this order-of-magnitude
argument, and the consequences will be discussed in section 3.2 below.

3. Experimental results

The starting point of the measurements presented in this paper is the creation of a BEC of
87Rb atoms. This is realized starting from a cloud of atoms trapped in a 3D magneto-optical
trap (MOT) and then loaded in a pure-magnetic time-orbital potential (TOP) trap after a
molasses stage for sub-Doppler cooling. In order to achieve condensation, evaporative cooling
is performed first in the TOP trap and then in an all-optical dipolar trap, where the atoms are
transferred once they have a temperature of few microkelvin. A BEC of up to 5 × 104 atoms
then forms in the optical trap. The dipolar trap is realized with two off-resonant Gaussian laser
beams focused to waists of 50µm, having a wavelength λ= 1030 nm, and mutually detuned
by ∼220 MHz in order to avoid interference. The aspect ratio of the trap can be varied through
the power of the laser beams, which is up to 1 W each and actively controlled by a feedback

New Journal of Physics 10 (2008) 053038 (http://www.njp.org/)

190 KAPITEL 4. WISSENSCHAFTLICHE ARTIKEL



9

loop. This feedback loop permits us to decrease the intensity noise on the beams and to improve
reproducibility during the data collection.

After the creation of the condensate, the trap frequencies are adiabatically varied in order
to confine the BECs in a cigar-shaped trap, with a longitudinal frequency of ∼20 Hz and radial
frequency in the range 80–250 Hz. The BECs are then loaded into a 1D optical lattice oriented
along the weak direction of the dipolar trap. The lattice is created by optical interference of
two linearly polarized Gaussian laser beams (λ= 852 nm) focused to a waist of 120µm and
intersecting with an angle θ . The lattice spacing is then dL = λ/(2sin(θ/2)). The lattice depth V0

is controlled through the laser intensity, and will be expressed in units of the recoil energy Erec.
The measurements presented in the paper were taken for different values of the lattice depth and
of the lattice spacing: V0/Erec = 6, 4, 9, 16 with dL = 0.426µm, and V0/Erec = 2.5, 10, 12, 14
with dL = 0.620µm. Each lattice beam passes through an acousto-optic modulator (AOM) in
order to control its power and hence the lattice depth. Moreover, by varying the radio-frequency
driving one of the two AOMs, it is possible to create a detuning 1ν between the two lattice
beams. This causes a displacement in time of the lattice in the laboratory frame. Within this
frame, it is possible to make the lattice move at a velocity v = dL1ν, or to accelerate it with an
acceleration a = dL(d1ν/dt).

The lattice is usually loaded in 1 ms to avoid excitations to higher bands, and the atoms
occupy the fundamental band if they have zero group velocity in the lattice rest frame during the
loading phase. However, if the lattice is loaded with a constant velocity, the atoms can occupy
one of the excited bands if the energy and quasi-momentum are conserved [1]. Furthermore,
when the lattice is accelerated, the atoms are subjected to a force F = ma in the rest frame of
the lattice: this corresponds to the experimental realization of the Hamiltonian (1). The applied
force F is chosen in order to minimize the growth of dynamical instabilities, as explored in [46].

In order to measure the tunneling rate 0n for BECs initially loaded into the nth band of the
optical lattice (ground state: n = 1, first excited state: n = 2, etc), the lattice is accelerated with
acceleration a for an integer number of Bloch oscillation cycles. During this acceleration time,
atoms are most likely to tunnel to upper bands when the condensate quasi-momentum is close
to the edge of the Brillouin zone. Atoms that do not tunnel to a higher band and are, therefore,
‘dragged along’ by the accelerated lattice acquire a larger final velocity than those that have
undergone tunneling. They are spatially separated from the latter by releasing the BEC from
the dipole trap and lattice at the end of the acceleration period and allowing it to expand and
to fall under gravity for 5–20 ms. After the time-of-flight, the atoms are detected by absorptive
imaging on a CCD camera using a resonant flash.

From the dragged fraction Ndrag/Ntot, we then determine the tunneling rate 0n by imposing
the asymptotic decay law

Ndrag(t)= Ntot exp (−0nt), (9)

where the subscript n indicates the dependence of the tunneling rate on the local energy level n
in which the atoms are initially prepared. Our measurement of 0n based on the dragged fraction
relies on the fact that for the lattice depths used in our experiments the number of bound states
in the wells was small (2–4, depending on the lattice depth), so after the first tunneling event,
the probability for tunneling to the next bound state or the continuum was close to unity. This
explains why we observe type-II crossings, corresponding to γ > |v| in the model discussed in
section 2.1.

The way in which we measure the tunneling rate also determines the achievable resolution
of our method. This is given by the minimum number of atoms that we can distinguish reliably
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from the background noise in our CCD images, which varies between 500 and 1000 atoms,
depending on the width of the observed region. With our condensate number, and taking
into account the minimum acceleration time limited by the need to spatially separate the two
fractions after time-of-flight and the maximum acceleration time limited by the field of view of
the CCD camera, this results in a maximum 0n/νrec of ≈1 and a minimum of ≈1 × 10−2.

3.1. The linear regime

Although the finite and positive scattering length of the 87Rb atoms in our BECs means that
the linear Hamiltonian of equation (1) is never exactly realized in our experiments, we can
approximate a non-interacting BEC by keeping the condensate density low. In that case, the
interaction energy can be made much smaller than all the other energy scales of the system
(recoil energy, band width, gap width) and hence negligible for our purposes. A low density can
be achieved by using a weak trap with small trap frequencies and/or a small atom number in
the BEC. Alternatively, one can also allow the BEC to expand freely for a short time (typically
less than a millisecond, to avoid excessive dropping under gravity) before performing the lattice
acceleration.

Figure 5 shows the results of experiments with low-density condensates for which the
nonlinearity parameter C was less than ≈1 × 10−2, which in this work we define to be the limit
of the linear regime. In each plot, the tunneling rate 0n out of the nth band (in our experiments
we were able to study the cases n = 1, 2 and 3) is shown as a function of F−1

0 . Superimposed on
the overall exponential decay of 0n/F0 with F−1

0 , one clearly sees the resonant tunneling peaks
corresponding to the various resonances 1i = 1, 2, 3, 4. Which of the resonances were visible
in any given experiment depended on the choice of lattice parameters and the finite experimental
resolution. The limit n = 3 for the highest band we could explore was given by the maximum
lattice depth achievable.

The inset in figure 5(a) shows the tunneling resonances in the lowest energy band for a
different value of the lattice depth V0. One clearly sees that the positions of the resonances
are shifted according to the variation in the energy levels. Figure 6(a) shows the positions F res

0
of the 1i = 1 resonances as a function of the lattice depth. For deep enough lattices, these
positions agree perfectly with the results of a numerical simulation (see figure 6(a)) and can
also be approximately calculated by making a harmonic approximation in the lattice wells,
which predicts a separation of the two lowest energy levels (n = 1 and 2) of

1E2−1 = 2Erec

√
V0

Erec
. (10)

The resonance condition 1E2−1 = F resdL1i can then be used to calculate the resonance
position F res. Our experimental results of figure 5(a) are well fitted by this formula if the
factor 2 in the expression for 1E2−1 is replaced by ≈1.5. This discrepancy with the theoretical
prediction is to be expected since the anharmonicity of the potential wells reduces the actual
energy separation of the levels compared to the harmonic case. While we were not able to
measure the tunneling resonances in two different bands for the same lattice depth, we could
measure the resonances in one single band and compare our results with the theoretically
predicted resonances in an adjacent band [26]. This allowed us to confirm that in our
experiments a resonance peak in one band always coincided with an anti-peak or trough in
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Figure 5. Resonant tunneling in the linear regime. Shown here are the tunneling
rates from the three lowest energy bands of the lattice as a function of the
normalized inverse force F−1

0 for lattice depths (a) V0/Erec = 2.45 (insert:
V0/Erec = 6), (b) V0/Erec = 10 and (c) V0/Erec = 23. Note the different scales
on the horizontal axes.

the adjacent band, which agrees with our interpretation in terms of a type-II crossing (see
section 2.1).

We also studied the dependence of the widths of the tunneling resonances on the lattice
depth. Physically, this width is determined by the width of the state to which the atoms tunnel
and hence should decrease with increasing lattice depth. For instance, for tunneling from the
ground state band n = 1, the resonance width should reflect the width of the first excited band
n = 2. Figure 6 shows the results of our measurements. For large lattice depths, the resonance
width decreases as expected, whereas for shallow lattices the behavior is more complicated.
This is also reflected in the numerical simulations.

3.2. The nonlinear regime

In order to enter the regime for which C & 1 × 10−2, we carry out the acceleration experiments
in radially tighter traps (radial frequency &100 Hz) and hence at larger condensate densities.
Figure 7 shows the1i = 2 and 3 resonance peaks of the ground state band (n = 1) for increasing
values of C , starting from the linear case and going up to C ≈ 3 × 10−2. As the nonlinearity
increases, two effects occur. Firstly, the overall (off-resonant) level of 01 increases linearly
with C . This is in agreement with our earlier experiments on nonlinear Landau–Zener tunneling
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line is the theoretical prediction based on the harmonic oscillator approximation,
modified as described in the main text. In (a) and (b), the open symbols connected
by the dashed line are the results of a numerical simulation.
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Figure 7. Resonant tunneling in the nonlinear regime. (a) The tunneling rates
for 1i = 2 from the lowest energy band of the optical lattice as a function of
the normalized inverse force F−1

0 for a lattice depth V0/Erec = 3.5 and different
values of C ≈ 0.01, 0.022 and 0.033 from bottom to top. The dashed line is
the theoretical prediction in the linear regime. As the nonlinearity increases,
the overall tunneling rate increases and the resonance peak becomes less
pronounced. (b) Dependence on the condensate atom number N of the tunneling
rate at the position of the peak F−1

0 = 0.71 (solid symbols) and of the through
F−1

0 = 0.60 (open symbols) for V0/Erec = 3.0.
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[3, 28] and can be explained describing the condensate evolution within a nonlinearity-
dependent effective potential Veff = V0/(1 + 4C) [47]. Secondly, with increasing nonlinearity,
the contrast of the RET peak is decreased and the peak eventually vanishes, as is also evident
from the different on-resonance and off-resonance dependence of the tunneling rate as a function
of the atom number N (and hence the nonlinearity), as seen in figure 7(b). This is in agreement
with the theoretical discussion of section 2.

As mentioned in section 2.2, the critical value of C for which the nonlinearity significantly
affects the resonance peak should be given by the width of the resonance peak itself. For the
parameters of figures 5(a) and 7(a) and the RET peak with 1i = 2, the typical width 02 of the
decaying state to which the atoms tunnel is of the order of 0.2, . . . , 0.5, expressed in units of
Erec. Since C reflects the nonlinearity expressed in units of 8 × Erec, this means that we expect to
see substantial deviations from the linear behavior when C & 0.025, . . . , 0.06. Experimentally,
we confirm that this threshold is a good estimate for the onset of the destruction of the RET
peak, which is observed to occur around C = 0.02 in figure 7(a).

4. Conclusions and outlook

In this paper, we have studied the RET of BECs in optical lattices both theoretically and
experimentally. Our results show that ultracold atoms in periodic potentials are well suited to
simulating and exploring basic quantum mechanical processes which are also the subject of
active investigations in the solid state physics community, such as Bloch oscillations [48]–[51]
and Zener tunneling [52, 53]. Compared to solid-state experiments, our approach offers the
advantage of a large flexibility in the experimental parameters and the possibility to add a
nonlinearity in a controlled way.

The experimental set-up presented in this paper also opens up the possibility to explore
different regimes, such as the strongly interacting regime for J ' U & F0 [38, 39]. Another
interesting aspect to be studied in the nonlinear regime is the limit in which the fraction of
atoms undergoing tunneling is either very large (i.e. very few atoms remain in the initial band)
or very small. In both limits, deviations from the Gross–Pitaevskii equation, which presupposes
a mean-field approximation for all the bands involved, are expected [54].
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Abstract

We discuss the dynamics of an open two-mode Bose–Hubbard system subject to phase noise

and particle dissipation. Starting from the full many-body dynamics described by a master

equation the mean-field limit is derived resulting in an effective non-Hermitian (discrete)

Gross–Pitaevskii equation which has been introduced only phenomenologically up to now.

The familiar mean-field phase-space structure is substantially altered by the dissipation. In

particular, the character of the fixed points shows an abrupt transition from elliptic or

hyperbolic to attractive or repulsive, respectively. This reflects the metastable behaviour of

the corresponding many-body system which surprisingly also leads to a significant increase

of the purity of the condensate. A comparison of the mean-field approximation to simulations

of the full master equation using the Monte Carlo wavefunction method shows an excellent

agreement for wide parameter ranges.

(Some figures in this article are in colour only in the electronic version)

The physics of ultracold atoms in optical lattices has made

enormous progress in the last decade, as it is an excellent

model system for a variety of fields such as nonlinear dynamics

or condensed matter physics [1, 2]. Although this seems

to be an inherent many-particle problem, the dynamics of

the macroscopic wavefunction is remarkably well reproduced

by the (discrete) Gross–Pitaevskii equation (GPE) if the

system undergoes a Bose–Einstein condensation (BEC) [3].

Recently, there has been an increased theoretical [4–8] as

well as experimental [9] interest in the dynamics of these

systems coupled to the environment. In particular, the effects

of particle loss have been discussed in several theoretical

communications resorting to an effective non-Hermitian

mean-field description introduced phenomenologically to

analyse resonances, transport and localization effects [10–16].

In this communication, we want to illuminate the

origin and give a convincing motivation of this approach.

Starting from a master equation describing the full many-

body dynamics including phase noise and particle loss we

derive a generalized, non-Hermitian GPE. Due to the decay

the structure of the resulting dynamics abruptly changes

introducing repulsive and attractive fixed points. Unlike the

dissipation-free case there are no longer oscillations around

the fixed points, such that irreversible transitions between the

former self-trapping fixed points are possible. This reflects

the metastable behaviour of the open many-particle system

and gives rise to a significant purification of the BEC by

the dissipation which will be explained here. The validity

of the presented approximation is tested by a comparison

to full quantum many-body calculations, showing that the

mean-field approximation provides an excellent description

of the system. To integrate the effective description by

a non-Hermitian GPE into well-known concepts from the

theory of open quantum systems, we discuss their relation

0953-4075/08/171001+05$30.00 1 © 2008 IOP Publishing Ltd Printed in the UK
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to the quantum jump approach [17, 18], demonstrating that

they provide a well-suited tool to analyse the short-time as

well as the long-time behaviour of the open many-particle

system.

In particular, we consider the dynamics of ultracold atoms

in an open double-well trap which is not only an extremely

popularmodel system, but also has several recent experimental

realizations [19–22]. The unitary part of the dynamics is

described by the Bose–Hubbard-type Hamiltonian

Ĥ = −J
(

â
†
1â2 + â

†
2â1

)

+ ǫ1n̂1 + ǫ2n̂2 +
U

2

(

â
†2
1 â21 + â

†2
2 â22

)

,

(1)

where âj and â
†
j are the bosonic annihilation and creation

operators in mode j and n̂j = â
†
j âj is the corresponding

number operator. We set h̄ = 1, thus measuring all energies

in frequency units. In order to analyse the dynamics in the

Bloch representation we transform the Hamiltonian using the

collective operators

L̂x =
1

2

(

â
†
1â2 + â

†
2â1

)

, L̂y =
i

2

(

â
†
1â2 − â

†
2â1

)

,

(2)

L̂z =
1

2

(

â
†
2â2 − â

†
1â1

)

,

which form an angular momentum algebra su(2) with

rotational quantum number N/2 [6, 23–25]. With these

definitions the Hamiltonian (1) can be rewritten as

Ĥ = −2J L̂x + 2ǫL̂z + UL̂2z, (3)

with 2ǫ = ǫ1 − ǫ2 up to terms which only depend on

the total number of atoms. The macroscopic dynamics

of the atomic cloud is well described within a mean-field

approximation, only considering the expectation values of

the angular momentum operators ℓj = 〈L̂j 〉 and the particle
number n = 〈n̂1 + n̂2〉 [6, 23, 24].

Here we consider the dissipative extension of this system.

The main source of decoherence in current experiments is

phase noise due to elastic collision with atoms in the thermal

cloud [4, 5] which effectively heats the system, leaving the

particle number invariant. Only recently, methods to tame

this source of decoherence were discussed in [30, 31]. In

this communication, we focus on the effects of particle loss at

constant rates γaj in the two wells j = 1, 2. Such a loss

is not only of fundamental interest but can be adapted in

current experiments without greater difficulties by removing

atoms with a focused resonant laser beam or by inducing a

radio frequency transition to an untrapped internal state [26].

All parameters used here lie in realistic ranges for ongoing

experiments [19, 20].

The master equation description including both phase

noise and particle loss is well established [27] and routinely

used in the context of photon fields. Thus we consider the

dynamics generated by the master equation

˙̂ρ = −i[Ĥ , ρ̂]−
γp

2

∑

j=1,2

(

n̂2j ρ̂ + ρ̂n̂2j − 2n̂j ρ̂n̂j

)

−
1

2

∑

j=1,2

γaj

(

â
†
j âj ρ̂ + ρ̂â

†
j âj − 2âj ρ̂â

†
j

)

. (4)

–0.2

0

0.2

s z

1

10

100

n

0 0.5 1
60

70

80

90

100

t [s]

n

0 0.5 1
0.3

0.4

0.5

t [s]

s z

Figure 1. Comparison of the mean-field approximation (thin blue
line) with the full many-particle dynamics calculated with the
MCWF method (thick red line) for J = 10 s−1, U = 1 s−1,
γp = 3 s−1 and γa2 = 5 s−1. The initial state was assumed to be a
pure BEC (i.e. a product state) with s = (0.46, 0, 0.2) (a) and
s = (0.14, 0, 0.48) (b), respectively, and n = 100 particles.

The evolution equations for the expectation values of the

angular momentum operators (2) can be calculated starting

from the master equation via ℓ̇j = tr(L̂j
˙̂ρ) with j = x, y, z.

This yields the exact result

ℓ̇x = −2ǫℓy − 2U(ℓyℓz +1yz) − T −1
2 ℓx,

ℓ̇y = 2Jℓz + 2ǫℓx + 2U(ℓxℓz + Jxz) − T −1
2 ℓy,

ℓ̇z = −2Jℓy − T −1
1 ℓz − T −1

1 fan/2,

ṅ = −T −1
1 n − 2T −1

1 faℓz,

(5)

where we have defined the transversal T −1
1 and longitudinal

T −1
2 damping rates by

T −1
1 = (γa1 + γa2)/2 and T −1

2 = γp + T −1
1 (6)

and the asymmetry of the loss rates by fa = (γa2 – γa1)/(γa1 +

γa2). In the non-interacting case U = 0, these equations

of motion resemble the Bloch equations in nuclear magnetic

resonance [28], except for the fact that the ‘equilibrium’

value of the population imbalance ℓz is given by −fan/2 and

therefore depends on the decreasing expectation value of the

total particle number n.

The exact equations of motion (5) still include the

covariances 1jk = 〈L̂j L̂k + L̂kL̂j 〉/2 − 〈L̂j 〉〈L̂k〉. The
approximation of second-order moments by products of

expectation values, such that 1jk ≈ 0 yields the well-

known mean-field description. This truncation is valid in the

macroscopic limit, since the covariances vanish as 1/n if the

many-particle quantum state is close to a pure BEC. Here and

in the following we depict the rescaled variables sj = ℓj/n,

thus renormalizing to separate the decay of the particle number

n from the internal dynamics.

The benefit of the mean-field approximation is illustrated

in figure 1, where it is compared to the full many-

particle quantum dynamics calculated with the Monte Carlo

wavefunction (MCWF) method [17, 18]. The trajectory

in figure 1(a) was launched at s = (0.46, 0, 0.2) with a

moderate population imbalance, thus performing Josephson

oscillations [19]. The amplitude is damped because of the

2
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(a) (b) (c)

(d) (e)
(f)

Figure 2. Mean-field dynamics for the non-interacting case g = 0 (upper row) and for a fixed interaction strength g = 4 s−1 (lower row) in
dependence of the decay rate (γ = 0 for (a) and (d), γ = 1.9 s−1 for (b), γ = 2.1 s−1 for (c), γ = 1 s−1 for (e) and γ = 4 s−1 for (f)), for all
figures holds J = 1 s−1 and ǫ = 0.

phase noise, while the oscillation period increases as the

effective macroscopic interaction strength g(t) := Un(t)

decreases. The decay of the particle number n(t) is also

strongly modulated by the oscillations of the population

imbalance. The trajectory in figure 1(b) was launched at

s = (0.14, 0, 0.48) in the self-trapping region. The residual

oscillations are rapidly damped out and the system relaxes to

a quasi-steady state on the shown time scale. The particle

number decreases slowly and non-exponentially, since the

condensate is mostly localized in the non-decaying potential

well, cf also [15]. All these features of the dynamics are well

reproduced by the mean-field description, and the decay of

the particle number is accurately predicted. Strong deviations

are only expected in the vicinity of unstable fixed points of

the mean-field dynamics, which can be nearly cured within

the framework of phase-space distributions [25].

In order to explore the genuine effects of particle loss,

phase noise is neglected (γp = 0) in the following. In this

case, the dynamics can be further simplified and one can easily

show that the particle number coincides with the magnitude

of the Bloch vector
√

ℓ2x + ℓ2y + ℓ2z = n/2, which we can use

to reformulate the mean-field dynamics by an effective non-

Hermitian GPE

i
d

dt

(

ψ1
ψ2

)

=

(

ǫ̃1 + U |ψ1|2 −J

−J ǫ̃2 + U |ψ2|2

)

(

ψ1
ψ2

)

(7)

with complex on-site energies ǫ̃j = ǫj − iγaj/2. The

equivalence to the Bloch vector description is established via

the identification

ℓx =
1

2
(ψ∗

1ψ2 + ψ∗
2ψ1), ℓy =

1

2i
(ψ∗

2ψ1 − ψ∗
1ψ2),

(8)

ℓz =
1

2
(|ψ2|2 − |ψ1|2)

and n = |ψ1|2 + |ψ2|2. In this effective description a loss of
particles is represented by a loss of normalization.

We now consider the dynamics for a fixed value of

the macroscopic interaction strength g = Un = const. in

the special case γa1 =: γ and γa2 = 0. Even though the

restriction to a fixed interaction constant seems to be artificial,

it reveals the effects of the particle loss on the structure of

the mean-field phase space and especially the character of

the fixed points most clearly. Moreover, the dynamics under

a fixed interaction constant correspond to the periods of the

constant particle number between two loss processes in the

quantum jumps picture [17, 18]. Therefore this treatment

provides a well-suited description of the short-time as well as

the long-time behaviour. Note that the more general case

γa1 6= 0 and γa2 6= 0 does not lead to a fundamentally

different dynamical behaviour since only the difference of the

decay rates influences the internal dynamics. However, the

expectation value of the particle number n and thereby also

the effective interaction strength g(t) decrease faster.

The resulting dynamics of the Bloch vector is illustrated

in figure 2. The upper row (a)–(c) shows the phase space for

the linear case, U = 0, where the mean-field approximation

is exact. Without loss one recovers the famous Josephson

3
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Figure 3. Comparison of the many-particle dynamics (thick red line) to the mean-field approximation (thin blues line) for an initially pure
BEC, with s = (−0.5, 0, 0) and n(0) = 200 particles: dynamics of the Bloch vector s (a), evolution of the purity of the BEC (b) and
evolution of the population imbalance sz (c). The system initially relaxes to a nonlinear quasi-steady state with a purity of almost one which
is then lost as n(t) decreases. Parameters are chosen as J = 1 s−1, Un(0) = 10 s−1, T1 = 1 s and fa = 1.

oscillations (a). An analysis of the fixed points for the

dissipative dynamics shows the emergence of two regimes

depending on the amplitude of the loss rate. For weak losses,

|γ | 6 2J , the fixed points are given by

sJ
± =







±
[

1
4

−
(

γ

4J

)2] 1
2

− γ

4J

0






. (9)

While the fixed points remain elliptic and the population is still

equally distributed, the fixed points are no longer symmetric,

since the relative phase between them decreases (b). This

behaviour can be qualitatively understood within the analogy

to Josephson junctions: the weak decay induces an asymmetry

between the wells leading to a continuous particle stream to

the first well. At the fixed points this effect is compensated by

the Josephson current IJ ∝ J sy requiring sy 6= 0.

For stronger decay rates, |γ | > 2J , the two fixed points

are given by

sD
± =









0

− J
γ

±
[

1
4

−
(

J 2

γ 2

)]
1
2









. (10)

Above the critical value |γ | = 2J the character of the two

fixed points changes abruptly from elliptic into an attractive

and a repulsive one as shown in figure 2(c). The maximal

Josephson current is no longer sufficient to compensate the

current induced by the decay leading to a population excess in

the non-decaying site. This explains the population imbalance

in the fixed points which increases with ascending decay rates.

In the strongly interacting case without dissipation one

observes the splitting of one of the elliptic fixed points into

two novel elliptic and one hyperbolic fixed point—this is

the famous self-trapping effect [19, 23, 24]. The critical

interaction strength for the occurrence of this bifurcation is

lowered in the presence of dissipation to g2 = U 2n2 > 4J 2 −
γ 2. In the subcritical regime for γ < 2J and Un 6 4J 2− γ 2,

we find oscillations around the same fixed points sJ
± as in the

non-interacting, but dissipative case (9). However, these are

now distorted (not shown in the figure). In the overcritical

regime g = Un >
√

4J 2 + γ 2 and for a weak decay γ < 2J

one rediscovers a generalized self-trapping effect. As a

result of the dissipative process, one elliptic fixed point now

bifurcates into an attractive and a repulsive fixed point (in

contrast to the two elliptic ones) and one hyperbolic one

(cf figure 2(e)). The novel fixed points are located at

sπ
± =

1

γ 2 + g2









−gJ

−γ J

±
√

(γ 2 + g2)
(

γ 2+g2

4
− J 2

)









. (11)

For stronger decay rates, γ > 2J , the hyperbolic and the

elliptic fixed point sJ
± (9) meet and annihilate themselves as

illustrated in figure 2(f). Their disappearance is accompanied

by the complete disintegration of periodic orbits.

Let us finally discuss the implication of this phase-space

structure. We especially focus on the emergence of the

attractive fixed point since it is stable and therefore strongly

influences the many-body quantum dynamics. Figure 3

shows the dynamics of the rescaled Bloch vector s comparing

results of a MCWF simulation (solid red line) to the mean-

field approximation (thin blue line). The given parameters

correspond to the situations illustrated in figure 2(b) or (e),

respectively, depending on the value of the macroscopic

interaction strength g(t) = Un(t). The Bloch vector first

relaxes to the attractive fixed point illustrated in figure 2(e).

The contraction of the mean-field trajectories to the attractive

fixed point manifests itself by a convergence towards a

pure BEC, which is the state of tightest localization in

phase space [25]. This is illustrated in figure 3(b)

where we have plotted the purity P := 2 tr
(

ρ2red
)

− 1

of the reduced single-particle density matrix ρred, P = 1

indicating a pure BEC [6]. However, the attractive fixed

point is lost as g(t) = Un(t) decreases, and thus the

Bloch vector departs again. This behaviour is very well

predicted by the mean-field approximation already for the

modest atom number in the simulation. The mean-field

trajectory then convergences to the limit cycle shown in

figure 2(b). However, as the atoms are so rapidly lost nearly no

particles remain to follow the limit cycle predicted by mean-

field theory. This transition effect between different fixed

points is closely related to the quantum-state diffusion in and

out of a metastable state, which can be observed in optical

4
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bistability (see, e.g., [32]). Note, however, that the system

considered here irretrievably departs from the metastable self-

trapping state because the fixed point is lost as n(t) decreases.

In summary, we have derived a mean-field approximation

for a dissipative two-mode BEC, starting from the full many-

body dynamics described by a master equation including

phase noise and particle losses. This treatment puts the

so far phenomenological description of open systems via

non-Hermitian GPEs on a firm footing and paves the way

for a variety of future applications in particular because the

extension to an arbitrary number of modes is straightforward.

An analysis of the resulting equations for a fixed interac-

tion constant g shows that not only the critical value for the

self-trapping bifurcation is lowered but also the character of the

fixed points abruptly changes to attractive and repulsive, such

that one of thembecomes unstable. Taking into account the de-

cline of the interaction constant g(t) due to the particle losses,

the system initially converges to the attractive fixed point, but

then suddenly jumps to a Josephson oscillation as soon as g(t)

falls below the critical value. This effect is understood as a

manifestation of themetastable behaviour of themany-particle

system and leads to a significant increase of the purity of the

quantum state compared to the dissipation-free case.

The comparison to numerical results for the many-

particle system obtained via the Monte Carlo wavefunction

method shows that the approach presented here is an excellent

approximation to the full many-body dynamics already for a

modest initial number of atoms. Thus it provides an excellent

basis for a further analysis of the interplay between dissipation

and interaction [31]. Likewise the embedding into the more

general concept of mean-field description [33] will be the

subject of future research.
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Scaling law and stability for a noisy quantum system
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We show that a scaling law exists for the near-resonant dynamics of cold kicked atoms in the presence of a
randomly fluctuating pulse amplitude. Analysis of a quasiclassical phase-space representation of the quantum
system with noise allows a new scaling law to be deduced. The scaling law and associated stability are
confirmed by comparison with quantum simulations and experimental data.

DOI: 10.1103/PhysRevE.78.025206 PACS number�s�: 05.45.Mt, 03.65.Yz, 05.60.Gg

Coherent quantum phenomena may now be routinely ob-
served in ultracold neutral atoms manipulated by light fields
detuned from atomic resonance. The unprecedented control
of atomic dynamics afforded by these atom-optical tech-
niques has impacted a number of fields significantly in the
last decade. In practical terms, the realization of cold-atom
fountain atomic clocks and atom interferometers is very im-
portant for precision measurements and metrology in general
�1�. Other promising applications include the manipulation
of atoms in optical lattices �2� with possible applications to
quantum computing �3�.

Aside from such practical applications, atom optics has
also offered the means to create ideal experimental imple-
mentations of model systems, in particular, the quantum
kicked rotor known in this realization as the atom optics
kicked rotor. The system and its variants have been studied
by a number of groups worldwide �4–8� due to the ease of
observing such quintessential quantum phenomena as dy-
namical localization �9� and dynamical quantum resonance
�10�. Recent interest in the quantum resonance phenomenon
comes not only from a fundamental perspective, but also
from the useful features of the resonance behavior. For ex-
ample, it has been shown that the resonance peaks exhibit
sub-Fourier resonance scaling �7,8�, opening the possibility
of faster than Fourier signal detection using the resonance
phenomenon �5�. Additionally, our work has great relevance
to similar proposals for precision measurements of the
atomic recoil frequency �11�.

The cloud hanging over all planned implementations of
quantum technologies, is that of decoherence �12�—
interaction with environmental degrees of freedom which
leads to irreversible loss of phase coherence in quantum sys-
tems. In atom-optics systems, decoherence typically arises
due to spontaneous emission and timing and amplitude fluc-
tuations in lasers. Typically, decoherence must be treated sta-
tistically, and its effect is only made plain by simulating
quantum master equations. However, in the case of the quan-
tum kicked rotor, some progress has been made in treating
the response to spontaneous emission decoherence through a
quasiclassical scaling theory �13�. In this case the dynamics
of kicked atoms near a fundamental quantum resonance, de-
pendent ostensibly on four parameters �kick number,
strength, period, and spontaneous emission rate� is reduced
to a stationary function of two scaled time variables, with a
closed analytical form. The presence of this scaling belies the

fact that moderate noise typically destroys quantum correla-
tions and it might be thought that the scaling function in the
presence of spontaneous emission is an isolated case where
decoherence is analytically tractable. However, here we
show that a scaling exists in the same system in the presence
of amplitude fluctuations. Most remarkably, the fundamen-
tally quantum decoherence process can be visualized with a
classical phase-space picture here. The noise changes the to-
pology of the phase space in a way that makes clear which
parameter regimes will exhibit robustness to decoherence.

It is important to note that amplitude noise induced de-
struction of quantum correlations has been proven for non-
quantum resonance conditions �14�. This naturally leads to
the assumption that away from exact quantum resonance,
amplitude fluctuations will rapidly induce quantum decoher-
ence. The contrary was proved by a recent experiment �15�,
but the cause of the stability near quantum resonance has
remained opaque. We derive in the following a thorough the-
oretical understanding of this robustness based on a semi-
classical scaling approach. Our theory compares very well
with measurements of near-resonant motion.

Experimentally, we realize a kicked atom system with
noise by overlapping an optical standing wave with a sample
of cold atoms and pulsing the potential periodically. The
height of the potential can be controlled by adjusting the
optical power transmitted through an acousto-optic modula-
tor. The system with amplitude noise may be represented by
the Hamiltonian �16�

H�t�� =
p2

2
+ k cos�z��

s=0

t−1

�1 + Rs���t�/� − s� , �1�

where p is the atomic momentum in units of 2�kL, z is the
atomic position scaled by 2kL, t� is time, and t is the total
number of kicks. Amplitude noise enters in the factors Rs,
which are random numbers distributed uniformly on the in-
terval �−L /2, +L /2�, where L is a noise level between 0 and
2. The scaled kicking period � is defined by the equation �
=8�rT, where �r=�kL

2 /2M is the recoil energy. The kicking
strength is proportional to the optical standing wave inten-
sity, and its measured value was k�4.3 or k�2.8 for the two
separate sets of experimental data considered here. The kick-
ing strength varied by about 10% across the atomic sample.
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In our experiments, a sample of cold Cs atoms was pre-
pared in a standard magneto-optical trap �MOT� �15�. The
atom ensemble had an initial width in momentum of up to
�p / �2�kL��8. They were released from the trap and ex-
posed to either 5 or 20 periodic pulses of width 480 ns from
an optical standing wave detuned by 0.5 GHz from atomic
resonance. For the 20 kicks experiments �with k�2.8� the
presence of spontaneous emission at a rate of 2.5% per kick
led to a slight lifting and broadening of the resonance peaks.
We corrected for the broadening by subtracting an additional
small, empirically determined constant from the off-resonant
energies in this case. Atoms were then allowed to evolve
freely for 12 ms before applying the MOT beams and imag-
ing the resultant fluorescence on a charge-coupled device
camera. In this way, the momentum distribution of the atoms
was calculated allowing a comparison with theoretical pre-
dictions. It has been shown that for pulse periods � equal to
integer multiples of 2� �so-called fundamental quantum
resonances� a semiclassical map may be used to describe the
quantum dynamics �13�. We define a detuning �=�−2��
which measures how far the pulse period is from the �th
fundamental quantum resonance, and define new scaled mo-
menta and position variables Js= ���ps+��+�� �where ps is
the atomic momentum in units of 2�kL at kick s and � is the
noninteger quasimomentum� and 	=z+��1−sgn���� /2
mod�2��. Then the pseudoclassical standard map with am-
plitude fluctuations is �see �13,15��

Js+1 = Js + �k�1 + Rs�sin�	s+1�, 	s+1 = 	s + Js. �2�

We now proceed to investigate how the mean energy at exact
quantum resonance is affected by amplitude noise. To do this
we need to find the average over all amplitude noise realiza-
tions �and later initial conditions 	0 ,J0� of the equation

Et�k1, . . . ,kt� =
1

2���2
�Jt − J0�2 →

�→01

2��
s=0

t−1

ks+1 sin�	0 + sJ0�	2

,

where we have used an expansion given in �13�.
The noise average is given by 
Et�k1 , . . . ,kt��Rj

=� j=1
t 1

L−L/2
L/2 dRjEt�k1 , . . . ,kt�. Since the series �ks=k�1+Rs��

is a series of independent random variables, this expression
simplifies greatly. Noting that 
Rj�=0 and 
RjRi�=0, j� i, we
need only retain the following terms of Et in the integrand:

��
s=0

t−1

sin�	0 + sJ0�	2

+ ��
s=0

t−1

Rs sin�	0 + sJ0�	2

. �3�

We note in addition that 
��s=0
t−1Rs sin�	0+sJ0��2�

= L2

12�s=0
t−1 sin2�	0+sJ0�, where we have used the fact that

�1 /Lt�−L/2
L/2 dR1¯dRs¯dRt Rs

2=L2 /12. Averaging over ini-
tial conditions �	0 ,J0� gives, with 	0� �0,2�� and J0
� ��� ,��+�� corresponding to a uniform quasimomentum
distribution in the unit interval �see �13��,



Et,L�� =
k2

4
t�1 +

L2

12
� , �4�

where we have used the fact that the averages over both
terms in Eq. �3� evaluate to t /2. �This result was also given
in Ref. �17� from a purely quantum argument.� Figure 1

shows experimental data compared with simulation results
and Eq. �4�, demonstrating good agreement between all
three. Shot-to-shot errors were found not to vary with � and
the given error bars are estimates calculated from the stan-
dard error over ten energy measurements at a kicking period
of 58 
s. The discrepancy between theory and experiment in
the L=0 case is due to the difficulty in measuring the high
momentum components, a problem which is ameliorated by
the addition of noise �6,15�.

We now show how the scaling law introduced in �13� can
be modified to take amplitude noise into account. We start
with the pseudoclassical scaling function �13�


Et,L,��

Et,0�

� R�t,k,�� � H�x� � 1 − �0�x� +
4

�x
G�x� , �5�

where x= t�k��� and 
Et,0�=k2t /4 is the mean peak energy.
The functions �0 and G are evaluated numerically, and the
reader is referred to Ref. �13� for details.

For L�0, we generally expect a loss of the scaling in all
the variables � ,k , t ,L due to higher correlations in the evo-
lution of the classical map �2�, neglected above when deriv-
ing Eq. �4�. Remarkably, however, by observing the type of
change in topology of the pseudoclassical phase space when
increasing �, as depicted in Fig. 2, we can nevertheless ac-
curately estimate the change of energy growth in the pres-
ence of noise for small � �for which the semiclassical ap-
proach is valid for long experimental time evolutions�. Noise
is well known to enhance diffusion along nonlinear reso-
nances in the first place �18�. Therefore, we expect the major
contribution of energy enhancement around the separatrix
region of pseudoclassical phase space, which separates the
two different topologies that give rise to the contributions G
and �0 to the scaling function �13�. Since G describes
bounded librating pendulum motion within the principal
resonance zone, local changes of that motion due to noise
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��
�� ��

�

�

0 0.5 1 1.5 2
L

70

80

90

100

0 0.1 0.2 0.3
ε

40

50

60

70

80

90

100

m
ea

n
en

er
gy

(a) (b)

FIG. 1. �a� Experimental measurements of quantum resonance
peaks as a function of � for noise levels L=0 ���, L=0.5 ���, L
=1.0 ���, L=1.5 ���, and L=2.0 ���. �b� Points show experimen-
tally measured peak energies �circles�, whilst the dashed line shows
the theoretical formula Eq. �4�. Crosses show simulation energies,
which exactly agree with the theory. Sample error bars are plotted
from shot-to-shot measurements, not taking into account systematic
uncertainties in the absolute value of k.
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will be small. The largest perturbation comes from classical
trajectories moving close to the separatrix which is washed
out due to the fluctuations of k �see Fig. 2�. In this region,
trajectories can actually perform rotating motion now, where
at L=0 they would still be bounded to the resonance. The
increase of energy arising from those trajectories can be es-
timated by considering the area in phase space covered by
them, as shown for L=1.5 in Fig. 2. Since the width of the
principal resonance is given by Jres�4�k�, the relative
change in weight of rotating orbits is given by

1

2�


Jres
2 � − Jres

2

Jres
2 �

L

8�
. �6�

The noise-averaged standard deviation is 
Jres
2 ���1

+L /4�Jres
2 by a simple integration. With this result we can

now add the additional energy of rotating trajectories to the
scaling function from Eq. �4�, by adding a term L / �8����x�.
Dividing now the true energies by the result at exact quan-
tum resonance and L=0, we finally arrive at the new scaling
function for finite noise,



Et,���
1

4
k2t

� R�t,�,k,L� � H�x,L�

� 1 +
L2

12
− �1 − L/�8����0�x� +

4

�x
G�x� . �7�

Our derivation of Eq. �7� is thus analogous to the noise-free
case, taking into account, however, the main contribution of
heating due to noise. Higher-order correlations and heating
of the librating modes are neglected. We note that the prin-
ciple changes to the phase space which give rise to this scal-
ing are readily seen in Fig. 2. In essentials, the scaling func-
tion reduces a complicated quantum system which includes
decoherence to the dynamics of the pendulum.

Inspection of Eq. �7� reveals some interesting features as
seen in Fig. 3. Firstly, because �0 saturates to 1 and G�x� is
small for small values of x, the small x behavior is largely
unchanged in the scaling function. Essentially, the zero-noise
scaling function is merely displaced upwards for small t, k,

or �. Experimentally, this means that as long as x= t�k��4
�e.g., take t=20, k=0.1 and scan over � for any noise value�,
the resonance peak will not be broadened. This fact is im-
portant for proposed precision experiments such as �11�
where experimenters need to know how much tolerance the
resonance width has to naturally occurring laser power fluc-
tuations. Secondly, for large x the scaling function is signifi-
cantly changed with the offset being much greater, corre-
sponding to real broadening of the peak and reduction of
peak visibility.

A comparison of the theory with simulation results is
shown in Fig. 3. It may be seen that the scaling function
reproduces the broad shape of the quantum simulations over
a large spectrum of parameters. Each point in Fig. 3 is ob-
tained by averaging over 50 000 initial conditions, each of
which is subject to kick-to-kick amplitude fluctuations. Al-
though our statistics are good, there is still a non-negligible
scatter in the simulation data which decreased systematically
when augmenting the number of initial conditions averaged
to obtain the final energy. The experimental data from Fig.
1�a� and additional new data sets have been plotted in Fig. 4.
The experimentally measured energies are obtained as an
ensemble average over the total number of atoms and are
rescaled by subtracting the mean initial energy of the en-
semble �p

2 /4 and then dividing by the energy at the peak
maximum for L=0. The estimated error bars shown in Fig. 4
represent shot-to-shot fluctuations over different noise real-
izations calculated as for Fig. 1.

In summary, we have derived and tested a generalized
scaling function for the quantum resonance peaks in the pres-
ence of noise. The theory shows broad agreement with both
quantum simulations and experimental results. Most impor-
tantly it illuminates new facts about the response of quantum
resonance to noise—in particular, the stability of motion near
to quantum resonance is revealed to be due to the unexpected

FIG. 2. �Color online� Phase-space diagrams showing the effect
of amplitude noise on the pseudoclassical map �2�. Left panel: with-
out noise. Middle panel: noise level L=1.5. Right panel: pendulum
trajectories for various initial conditions. The separatrix is shown by
a thick, dashed line. The gray shaded area shows a region of
�
Jres

2 � for L=1.5 about the separatrix, demonstrating the trajec-
tories which lead to the correction in Eq. �7�.

1 10 100
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0.1
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H
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)

FIG. 3. �Color online� Theoretical scaling function for L=0
�thick solid line�, L=0.5 �dotted line�, L=1.0 �dashed line�, L=1.5
�dot-dashed line� and L=2.0 �thin line�. Simulation data is also
shown, rescaled by the factor 1

4k2t, for L=0.5 ���, L=1.0 ���, L
=1.5 ���, and L=2.0 ���. Open symbols are produced for fixed k
=2.8, varying �� �10−3 ,0.1�, t� �20,150�, while filled symbols
represent data for randomly chosen values of k� �1,10�, �
� �10−3 ,0.1�, t� �2,150�.
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persistence of scaling laws in the noisy system. Although the
effect of amplitude noise is to modify and even destroy quan-
tum correlations, the effect near to quantum resonance can be
understood precisely in terms of the noise-induced changes
to the epsilon-classical phase space. Hence, quantum deco-
herence may be understood by a quasiclassical analysis in
the system studied here. The robust nature of the scaling for
small x allows us to predict parameter families of t, �, and k
for which noise will have a minimal effect on the quantum
resonance, and surprisingly we find that for small enough x,
the quantum resonance peak shape is entirely unaffected by
noise �although a displacement in energy occurs�. The explo-
ration of quantum systems which exhibit resistance to noise
is of great importance for the future of quantum technolo-
gies. Analytical methods for determining the response of a
system to noise and perturbations, as done here and in a
different context in �19�, are valuable because they offer in-
sight on the stability of quantum motion which simulations
cannot readily provide.

The authors acknowledge support within the Excellence
Initiative by the DFG through the Heidelberg Graduate
School of Fundamental Physics �Grant No. GSC 129/1� and
thank Shmuel Fishman for stimulating discussions.
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FIG. 4. Theoretical scaling function of Eq. �7� �as shown in
Fig. 3� is compared with rescaled experimental data �as, e.g., from
Fig. 1�. Shown are data across more than one order of magnitude
in the scaling variable x for �a� L=0 ���, L=1.0 ���, and L=2.0
��� and �b� L=0.5 ��� and L=1.5 ���. Theoretical curves are
shown with the same line styles as in Fig. 3. Note that for x�5 the
data comes from separate five kick experiments, and the error bars
are the same size as the plotted points. Sample error bars are cal-
culated as described in the caption of Fig. 1. Data for ����0.15
is excluded since the pseudoclassical theory breaks down in this
region.
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Dissipation-induced coherence and stochastic resonance of an open two-mode
Bose-Einstein condensate
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We discuss the dynamics of a Bose-Einstein condensate in a double-well trap subject to phase noise and
particle loss. The phase coherence of a weakly interacting condensate, experimentally measured via the con-
trast in an interference experiment, as well as the response to an external driving becomes maximal for a finite
value of the dissipation rate matching the intrinsic time scales of the system. This can be understood as a
stochastic resonance of the many-particle system. Even stronger effects are observed when dissipation acts in
concurrence with strong interparticle interactions, restoring the purity of the condensate almost completely and
increasing the phase coherence significantly. Our theoretical results are backed by Monte Carlo simulations,
which show a good qualitative agreement and provide a microscopic explanation for the observed stochastic
resonance effect.

DOI: 10.1103/PhysRevA.79.033621 PACS number�s�: 03.75.Lm, 03.75.Gg, 03.65.Yz

I. INTRODUCTION

Stochastic resonance �SR� is a strongly surprising yet very
general effect in nonlinear dynamical systems. Against our
naive understanding, the response of a system to an external
driving can be facilitated if an appropriate amount of noise is
added. In fact, the maximum of the response—the stochastic
resonance—is found if the time scale of the noise matches an
intrinsic time scale of the system. The effect was first de-
scribed for strongly damped classical systems such as the
overdamped particle in a driven double-well trap. In this case
the noise is strong enough to induce the transition between
the wells, whereas it is still weak enough not to randomize
the dynamics completely. The particle will then hop to and
fro almost deterministically if the average transition time be-
tween the wells due to the noise equals half of the driving
period �1�. By now, a stochastic resonance has been shown in
a variety of systems; an overview can be found in the review
articles �2–5�. In addition to numerous examples in classical
dynamics, stochastic resonance has also been found in a va-
riety of quantum systems �see, e.g., �5–11��.

Recently, there has been an increased interest in the ef-
fects of dissipation and the possibilities to control these in
interacting many-body quantum systems. For instance, the
entanglement in a spin chain assumes an SR-like maximum
for a finite amount of thermal noise �12�. Methods to attenu-
ate phase noise for an open two-mode Bose-Einstein conden-
sate �BEC� were discussed in �13�, and the effects of particle
loss on the spin squeezing of such a system were analyzed in
�14�. Furthermore, it has been shown that dissipative pro-
cesses can be tailored to prepare arbitrary pure states for
quantum computation and strongly correlated states of ultra-
cold atoms �15,16� or to implement a universal set of quan-
tum gates �17�. Actually, a recent experiment has even
proven that strong inelastic collisions may inhibit particle

losses and induce strong correlations in a quasi-one-
dimensional �quasi-1D� gas of ultracold atoms �18,19�.

In the present paper, we investigate the effects of noise
and dissipation for a BEC in a double-well trap. The essen-
tial idea has been introduced in a recent letter �20�, and here
we extend the discussion to a detailed analysis of the pre-
dicted SR phenomenon. The setup under consideration has
been experimentally realized by several groups only in the
last few years �21–26�. Ultracold atoms in optical potentials
have the enormous advantage that they allow us to observe
the quantum dynamics of an interacting many-particle sys-
tem in situ. Thus they serve as excellent model systems,
bringing together aspects of nonlinear dynamics, solid-state
physics, and the theory of open quantum systems. Here we
show that the coherence of the two condensate modes as-
sumes a maximum in the fashion of the stochastic resonance
effect for a finite dissipation rate, which matches the time
scales of the intrinsic dynamics. In this case the particle loss
is strong enough to significantly increase the condensate pu-
rity, whereas it is still weak enough not to dominate the
dynamics completely. Similarly the response to an external
driving is increased if a proper amount of dissipation is
present. Even more remarkable results are found when dissi-
pation acts in concurrence with strong interparticle interac-
tions, leading to an almost complete revival of the purity of
the BEC. These effects are of considerable strength for real-
istic parameters and thus should be readily observable in
ongoing experiments.

This paper is organized as follows. First, we introduce the
theoretical description of the open two-mode Bose-Hubbard
system. We discuss the main sources of noise and dissipation
and derive the corresponding mean-field approximation of
the many-particle system. The resulting dynamics for weak
interparticle interactions is analyzed in Sec. III. It is shown
that the phase contrast between the two modes assumes an
SR-like maximum if the time scales of tunneling and dissi-
pation are matched. This result is explained within the mean-
field approximation as well as for the underlying many-*dirk.witthaut@nbi.dk
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particle quantum dynamics with Monte Carlo simulations
backing up the approximative results. The response of the
open system to an external driving is discussed in Sec. IV.
The amplitude of the forced oscillation also shows a pro-
nounced stochastic resonance effect. Section V then investi-
gates the case of a strongly interacting BEC, which is a prob-
lem of both fundamental theoretical interest as well as high
experimental relevance. The interplay between interactions
and dissipation can restore the purity of the condensate al-
most completely and significantly increase the phase coher-
ence in comparison with situations where one of the two is
weak or missing. This counterintuitive effect is robust and
can be explained by the appearance of novel nonlinear eigen-
states.

II. NOISE AND DISSIPATION IN A TRAPPED BEC

The basic setup under consideration is depicted in Fig. 1.
Ultracold atoms are confined in a double-well trap that can
be realized, e.g., by superimposing an optical lattice with an
optical dipole trap �21–23�, in a bichromatic optical lattice
�24,25�, or on an atom chip �26�. We consider the case of a
deep but tight trap, which is tuned such that only one mode
in each well is bounded and thus significantly populated. All
scattering solutions of the model form a continuum of un-
bound modes which adds up to the heat bath �see below�
�27�. One major assumption in the derivation of this model is
that the level spacing between the trap modes is significantly
larger than the self-energy of the atom-atom interactions in
the trap: UN���trap. For a typical trap frequency around
100 Hz, this restricts the atom number to a few hundreds.
Note that this model is not compatible to the Thomas-Fermi
approximation, where the many-body interaction dominates
the kinetic energy. Likewise, it is not directly applicable to
the case of two weakly coupled 1D quasicondensates �28,29�
due to the excitation of longitudinal modes.

The unitary dynamics of the atoms is then described by
the two-mode Bose-Hubbard Hamiltonian �30–33�,

Ĥ = − J�â1
†â2 + â2

†â1� + �2n̂2 + �1n̂1

+
U

2
�n̂1�n̂1 − 1� + n̂2�n̂2 − 1�� , �1�

which describes both the dynamics of the condensed frac-
tion, as well as the noncondensate, but nevertheless trapped

atoms. The operators âj and âj
† are the bosonic annihilation

and creation operators in mode j and n̂j = âj
†âj is the corre-

sponding number operator. Furthermore, J denotes the tun-
neling matrix element between the wells, U denotes the in-
teraction strength, and � j denotes the on-site energy of the jth
well. We set �=1, thus measuring all energies in frequency
units.

In order to clarify the algebraic structure of the model and
to analyze the dynamics in the Bloch representation we in-
troduce the collective operators,

L̂x =
1

2
�â1

†â2 + â2
†â1� ,

L̂y =
i

2
�â1

†â2 − â2
†â1� ,

L̂z =
1

2
�â2

†â2 − â1
†â1� , �2�

which form an angular-momentum algebra su�2� with quan-
tum number �=N /2 �30–35�, where N is the actual particle
number. Hamiltonian �1� then can be rewritten as

Ĥ = − 2JL̂x + 2�L̂z + UL̂z
2 �3�

up to terms only depending on the total number of atoms.
Here, �=�2−�1 denotes the difference of the on-site energies
of the two wells.

A model for noise and dissipation in a deep trapping po-
tential has been derived by Anglin �27� and later extended by
Ruostekoski and Walls �36� to the case of two weakly
coupled modes. The dissipation of energy is described by the
coupling to a thermal reservoir consisting of noncondensate
modes. The dynamics is then given by the master equation,

�̇̂ = − i�Ĥ, �̂� −
�p

2 �
j=1,2

�n̂j
2�̂ + �̂n̂j

2 − 2n̂j�̂n̂j�

−
�in

2 �
j=1,2;�

�Ĉj�
† Ĉj��̂ + �̂Ĉj�

† Ĉj� − 2Ĉj��̂Ĉj�
† � �4�

with the Lindblad operators

Ĉj+ = âj
†

and

Ĉj− = e�/2��j−	+Un̂j�âj , �5�

describing growth and depletion of the condensate.
Let us briefly discuss the effects of the noise and dissipa-

tion terms. The second term ��p in Eq. �4� describes phase
noise due to elastic collisions with the background gas at-
oms. It is usually the dominating contribution, effectively
heating the system, but leaving the total particle number in-
variant. If only phase noise is present, the system relaxes to
an equilibrium state where all coherences are lost and all
Dicke states �n1 ,N−n1�� â1

†n1â2
†N−n1�0,0� are equally popu-

lated,

FIG. 1. �Color online� The open double-well trap considered in
the present paper.
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	n1,N − n1��̂�n1�,N − n1�� =
1

N + 1

n1,n1�

, �6�

as long as J�0 �37,38�. This corresponds to a thermal state

of infinite temperature with 	L̂�=0. The remaining terms
��in in the master equation �Eq. �4�� describe amplitude
noise, i.e., the growth and depletion of the condensate due to
inelastic collisions with the background gas. In contrast to
phase noise, amplitude noise heats and cools the system. If
both amplitude and phase noise are present, the system will
relax to the proper thermal state with a density operator

�̂�exp�−��Ĥ−	n̂�� �27�.
In current experiments amplitude noise and dissipation

are usually extremely weak in comparison to phase noise
�36�, if it is not introduced artificially as for example by
forced evaporative cooling during the preparation of the
BEC. For example, phase noise damps Josephson oscilla-
tions on a time scale of a few hundred milliseconds in the
experiments, while less than 10% of the atoms are lost dur-
ing a 30 s experiment �21–23�. This is much too weak to
produce significant effects, such that the terms describing the
particle exchange with the background gas in Eq. �4� can be
neglected, �in
0.

However, nontrivial effects of dissipation such as the sto-
chastic resonance discussed below require strong, tunable,
and biased loss rates. A well-controllable source of dissipa-
tion can be implemented artificially by shining a resonant
laser beam onto the trap, which removes atoms with the site-
dependent rates �aj from the two wells j=1,2. For such a
laser beam focused on one of the wells an asymmetry of fa
= ��a2−�a1� / ��a2+�a1�=0.5 should be feasible. In magnetic
trapping potentials, a similar effect can also be achieved by a
forced rf transition to an untrapped magnetic substate �39�.

Therefore the above master equation must be extended to
take into account the single-particle losses. The additional
term describing the particle loss is well established and rou-
tinely used in the context of photon fields �38�. In the fol-
lowing we will thus consider the dynamics generated by the
master equation:

�̇̂ = − i�Ĥ, �̂� −
�p

2 �
j=1,2

�n̂j
2�̂ + �̂n̂j

2 − 2n̂j�̂n̂j�

−
1

2 �
j=1,2

�aj�âj
†âj�̂ + �̂âj

†âj − 2âj�̂âj
†� . �7�

The macroscopic dynamics of the atomic cloud is to
a very good approximation �32,33,40� described by a
mean-field approximation, considering only the expectation

values sj�t�=2 tr�L̂j�̂�t�� of the angular-momentum operators
�Eq. �2�� and the particle number n�t�=tr��n̂1+ n̂2��̂�t��. The
evolution equations for the Bloch vector s= �sx ,sy ,sz� are
then calculated starting from the master equation via ṡ j

=2 tr�L̂j�̇̂� with the exact result �cf. �40��,

ṡx = − 2�sy − U�sysz + �yz� − T2
−1sx,

ṡy = 2Jsz + 2�sx + U�sxsz + �xz� − T2
−1sy ,

ṡz = − 2Jsy − T1
−1sz − T1

−1fan ,

ṅ = − T1
−1n − T1

−1fasz, �8�

where we have defined the transversal and longitudinal
damping times by

T1
−1 = ��a1 + �a2�/2 and T2

−1 = �p + T1
−1. �9�

These equations of motion resemble the celebrated Bloch
equations in nuclear-magnetic resonance �41,42�, with some
subtle but nevertheless important differences. The longitudi-
nal relaxation is now associated with particle loss and, more
important, the dynamics is substantially altered by the
U-dependent interaction term �21,30,31�.

The exact equations of motion �8� still include the cova-
riances

� jk = 	L̂jL̂k + L̂kL̂j� − 2	L̂j�	L̂k� . �10�

The celebrated mean-field description is now obtained by
approximating the second-order moments by products of ex-
pectation values such that � jk
0 �30–33�.

In the following, we will show that a finite amount of
dissipation induces a maximum of the coherence which can
be understood as a stochastic resonance effect. In this discus-
sion we have to distinguish between two different kinds of
coherence, which will both be considered in the following.
First of all we consider the phase coherence between the two
wells, which is measured by the average contrast in interfer-
ence experiments as described in �21–23� and given by

�t� =
2�	â1

†â2��
	n̂1 + n̂2�

=
�sx�t�2 + sy�t�2

n�t�
. �11�

Second, we will analyze how close the many-particle quan-
tum state is to a pure Bose-Einstein condensate. This prop-
erty is quantified by the purity

p = 2 tr��̂red
2 � − 1 �12�

of the reduced single-particle density matrix �32,33,35,43�,

�̂red =
1

N
�	â1

†â1� 	â1
†â2�

	â2
†â1� 	â2

†â2�
 . �13�

One can easily show that the purity is related to the Bloch
vector s by p= �s�2 /n2. A pure BEC, corresponding to a prod-
uct state, is, of course, characterized by p=1. For smaller
values of p, there is a growing amount of trapped but non-
condensate atoms. This depletion of the BEC results from the
many-particle interactions, which destroy the macroscopic
product state. However, in leading order these do not lead to
scattering to the background gas or to higher unpopulated
modes, respectively �cf. �27,36��.

III. DISSIPATION-INDUCED COHERENCE
IN A WEAKLY INTERACTING BEC

In this section, we show that a proper amount of dissipa-
tion can indeed increase the phase coherence �11� of a two-
mode BEC similar to the stochastic resonance effect. For
simplicity, we start with the linear case U=0, where the
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mean-field equations of motion for the expectation values
�Eq. �8�� are exact. The linear equations resemble the Bloch
equations for driven nuclear spins in the rotating wave ap-
proximation �42�, which are known to show a pronounced
stochastic resonance effect �41�: the amplitude of forced os-
cillations of the spins given by sy assumes a maximum for a
finite value of the relaxation rates T1

−1 and T2
−1, provided

these are coupled. For the two-mode BEC considered here
this is automatically the case as given by Eq. �9�. Thus we
also expect a maximum of the steady-state value of the phase
coherence �11� for a finite value of T1

−1.
Let us now determine the steady-state value of the con-

trast �11� which quantifies the phase coherence of the two
wells as a function of the system parameters and the relax-
ation rates. Obviously, the only steady state in the strict sense
is given by s=0 and n=0, corresponding to a completely
empty trap. However, the system rapidly relaxes to a quasi-
steady-state where the internal dynamics is completely fro-
zen out and all components of the Bloch vector and the par-
ticle number decay at the same rate,

s�t� = s0e−�t, n�t� = n0e−�t. �14�

Substituting this ansatz into the equations of motion �8�, the
quasi-steady-state is determined by the eigenvalue equation,

M�
sx0

sy0

sz0

n0

� = ��
sx0

sy0

sz0

n0

� �15�

with the matrix

M =�
T2

−1 2� 0 0

− 2� T2
−1 − 2J 0

0 2J T1
−1 faT1

−1

0 0 faT1
−1 T1

−1
� , �16�

which is readily solved numerically.
Figure 2 depicts the smallest real eigenvalue � corre-

sponding to the most stable quasi-steady-state as a function
of J and 1 /T1 for the noninteracting case and �=0. It deter-
mines the basic time scale of the system and is essentially
proportional to the dissipation rate T−1.

Figure 3 shows the resulting values of the contrast  as a
function of the dissipation rate T1

−1 and the tunneling rate J
for U=�=0 and �p=5 s−1. For a fixed value of one of the
parameters, say J, one observes a typical SR-like maximum
of the contrast for a finite value of the dissipation rate 1 /T1
as shown in part �b� of the figure. In particular, the contrast is
maximal if the time scales of the tunneling and the dissipa-
tion are matched according to

4J2 
 fa
2T1

−2 + fa�pT1
−1. �17�

Furthermore, the contrast �J� shows a similar maximum for
a finite value of the tunneling rate J when the dissipation rate
is fixed as shown in Fig. 3�c�. Contrary to our intuition this
shows that an increase in the coupling of two modes can
indeed reduce their phase coherence.

In the special case �=0, illustrated in Fig. 3, one can solve
the eigenvalue problem �Eq. �15�� exactly. In this case one
has sx=0 and the contrast  is related to the eigenvalue � by

 =
2J�T1

−1 − ��
faT1

−1�T2
−1 − ��

. �18�

Evaluating the roots of the characteristic polynomial to de-
termine � leads to an algebraic equation of third order which
can be solved analytically. The resulting expressions are
quite lengthy, but the limits for small and large values of the
tunneling rate are readily obtained as
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FIG. 2. �Color online� Decay rate � of the quasi-steady-state
�14� as a function of the tunneling rate J and the dissipation rate
1 /T1 for �p=5 s−1 and U=�=0.
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FIG. 3. �Color online� Contrast  of the quasi-steady-state �14�
as a function of the tunneling rate J and the dissipation rate 1 /T1 �a�
for �p=5 s−1 and U=�=0 and �b� for a fixed value of the tunneling
rate J=2 s−1 and �c� a fixed value of the dissipation rate
1 /T1=2 s−1. The dashed-dotted red lines represent the approxima-
tions �Eq. �19�� for small and large values of J.

WITTHAUT, TRIMBORN, AND WIMBERGER PHYSICAL REVIEW A 79, 033621 �2009�

033621-4

210 KAPITEL 4. WISSENSCHAFTLICHE ARTIKEL



 

faT1

−1

2J
for J � T1

−1. �19�

These approximations are plotted as dashed red lines in Fig.
3�c�. Their intersection given by Eq. �17� gives a very good
approximation for the position of the SR-like maximum of
the contrast �J�.

An important experimental issue is the question whether
the quasi-steady-state is reached fast enough, such that the
typical SR-like curve of the contrast as shown in Fig. 3 can
be observed while still enough atoms are left in the trap.
To answer this question, we integrate the equations of
motion �8� starting from a pure BEC with s�0� /n�0�
= ��3 /2,0 ,1 /2� and n�0�=100 particles. Figure 4�a� shows
the relaxation of the contrast for J=4 s−1 and T1=1 s. The
steady-state value is nearly reached after t=1 s when still
40% of the atoms are left in the trap. Figure 4�b� shows the
development of the contrast �J� in time. It is observed that
the characteristic SR-like maximum is already well devel-
oped after 1 s, where roughly half of the atoms are lost. Thus
we conclude that the SR-like maximum of the contrast
should be observable in ongoing experiments.

The stochastic resonance effect introduced above is robust
and generally not altered by changes in the system param-
eters or in the presence of weak interparticle interactions. For
instance, a change in the bias � of the on-site energies of the
two wells preserves the general shape of �1 /T1 ,J� shown in
Fig. 3 and especially the existence of a pronounced SR-like
maximum. At most, the function �1 /T1 ,J� is stretched,
shifting the position of the SR-like maximum. This shift is

illustrated in Fig. 5�a� where we have plotted the contrast as
a function of J for the dissipation rate T1

−1=2 s−1 and differ-
ent values of �. Thus, this effect provides a useful tool to
shift the maximum to values of J, which are easier accessible
in ongoing experiments.

Similarly, the position of the maximum of the coherence
�J� is shifted in the presence of weak interparticle interac-
tions. An interacting BEC will usually not show a simple
exponential decay of form �14� because the instantaneous
decay rate depends on the effective interaction strength
Un�t�, which also decreases �44–46�. However, the discus-
sion of quasi-steady-states and instantaneous decay rates is
still useful if the decay is weak. In this case the system can
follow the quasi-steady-states adiabatically and the decay of
the population is given by

dn�t�
dt

= − �„n�t�…n�t�

and

ds�t�
dt

= − �„n�t�…s�t� , �20�

in good approximation. Substituting this ansatz into the
equations of motion �8� yields four coupled nonlinear alge-
braic equations, which can be disentangled with a little alge-
bra. For a given number of particles n, the instantaneous
decay rate � is obtained by solving the fourth-order algebraic
equation,

��� − T2
−1�2 + �Un�2�� − T1

−1�2���� − T1
−1�2 − fa

2T1
−2�

+ 4J2fa
2T1

−2�� − T1
−1��� − T2

−1� = 0. �21�

The Bloch vector for the corresponding quasi-steady-state is
then given by

sx0 =
� − T1

−1

� − T2
−1

�� − T1
−1�2 − fa

2T1
−2

2Jfa
2T1

−2 Un2,

sy0 =
�� − T1

−1�2 − fa
2T1

−2

2JfaT1
−1 n ,

sz0 =
� − T1

−1

faT1
−1 n . �22�

The fourth-order equation �Eq. �21�� yields four solutions for
the decay rate �. Discarding unphysical values, one finds
either one or three quasi-steady-states. This appearance of
novel nonlinear stationary states has been discussed in detail
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FIG. 4. Relaxation to the quasi-steady-state for �p=5 s−1, T1
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Development of the SR maximum of the contrast �J�.
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in the context of nonlinear Landau-Zener tunneling �44–50�
and nonlinear transport �51,52�.

The resulting contrast �J� in a quasi-steady-state is
shown in Fig. 5�b� for different values of the effective inter-
action constant g=Un. One observes that the position of the
SR-like maximum of the contrast is shifted to larger values
of the tunneling rate, while the height remains unchanged.
Furthermore the shape of the stochastic resonance curve �J�
is altered, becoming flatter for J�Jmax and steeper for
J�Jmax. For even larger values of the interaction constant
Un one finds a bifurcation into three distinct quasi-steady-
states as introduced above. This case will be discussed in
detail in Sec. V.

The reasons for the occurrence of an SR-like maximum of
the contrast in terms of the underlying many-particle dynam-
ics are illustrated in Fig. 6. To obtain these results we have
simulated the dynamics generated by the master equation
�Eq. �7�� using the Monte Carlo wave-function �MCWF�
method �53–55� averaging over 100 quantum trajectories.
For a given particle number n, the probabilities P to obtain
the population imbalance sz and the relative phase � in a
projective measurement are thereby given by

P�sz� = tr��sz�	sz��̂�

and

P��� = tr����	���̂� , �23�

where the L̂z eigenstates

�sz� = �n/2 − sz,n/2 + sz�

with

sz = − n/2,− n/2 + 1, . . . ,n/2 �24�

and the phase eigenstates

��� ª
1

�n + 1
�

sz=−n/2

+n/2

ei�sz�sz�

with

� = 0,2�
1

n + 1
, . . . ,2�

n

n + 1
�25�

each form a complete basis.
Part �a� of Fig. 6 shows a histogram of the probabilities to

observe the relative population imbalance sz /n and the rela-
tive phase � in a single experimental run for three different
values of the tunneling rate J after the system has relaxed to
the quasi-steady-state. With increasing J, the atoms are dis-
tributed more equally between the two wells so that the
single shot contrast increases. Within the mean-field descrip-
tion this is reflected by an increase in �sx

2+sy
2 / �s� at the ex-

pense of �sz� / �s� �cf. part �b� of the figure�. However, this
effect also makes the system more vulnerable to phase noise
so that the relative phase of the two modes becomes more
and more random and �s� /n decreases. The average contrast
�11� then assumes a maximum for intermediate values of J as
shown in part �b� of the figure.

IV. STOCHASTIC RESONANCE OF A DRIVEN BEC

So far we have demonstrated a stochastic resonance of the
contrast for a BEC in a static double-well trap with biased
particle losses. In the following we will show that the sys-
tem’s response to a weak external driving also assumes a
maximum for a finite dissipation rate—an effect which is
conceptually closer to the common interpretation of stochas-
tic resonance. From a mathematical viewpoint, however, one
can rather relate the undriven case discussed above to the
stochastic resonance effect in nuclear-magnetic resonance
�41�. In fact, the Bloch equations for the magnetization have
constant coefficients in the rotating wave approximation and
should thus be compared to the undriven equations of motion
�8�.

Let us consider the response of the system to a weak
sinusoidal driving of the tunneling rate

J�t� = J0 + J1 cos��t� �26�

at the resonance frequency �=�J0
2+�2, while the amplitude

of the driving is small and fixed as J1 /J0=10%. A variation
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FIG. 6. �Color online� �a� Histogram of the probabilities to measure the relative phase � and the relative population imbalance sz in a
single experimental run after t=1.5 s obtained from a MCWF simulation of the many-body dynamics. The initial state was chosen as a pure
BEC �i.e., a product state� with sz=n /2 and n�0�=100 particles and the remaining parameters are �p=5 s−1, T1=0.5 s, �=10 s−1, and
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in J can be realized in a quite simple way in an optical setup
�21–23�, where the tunneling barrier between the two wells
is given by an optical lattice formed by two counterpropa-
gating laser beams. A variation in the intensity of the laser
beams then directly results in a variation in the tunneling rate
J. Figure 7 shows the resulting dynamics for T1=0.5 s and
three different values of J0 and U=0. After a short transient
period, the relative population imbalance sz�t� /n�t� oscillates
approximately sinusoidally. One clearly observes that the re-
sponse, i.e., the amplitude of the forced oscillations, assumes
a maximum for intermediate values of J0 matching the ex-
ternal time scale of the dissipation given by T1

−1.
For a detailed quantitative analysis of this stochastic reso-

nance effect, we evaluate the amplitude of the oscillation
based on a linear-response argument for U=0. In the follow-
ing, we will use a complex notation for notational conve-
nience, while only the real part is physically significant. The
equations of motion �8� are then rewritten in matrix form as

d

dt
�s

n
 = �M0 + M1ei�t��s

n
 . �27�

The matrices M0 and M1 are defined by

M0 =�
T2

−1 2�0 0 0

− 2�0 T2
−1 − 2J0 0

0 2J0 T1
−1 faT1

−1

0 0 faT1
−1 T1

−1
� �28�

and

M1 =�
0 0 0 0

0 0 − 2J1 0

0 2J1 0 0

0 0 0 0
� . �29�

As before we consider the dynamics after all transient oscil-
lations have died out, assuming that s�t� as well as n�t� decay

exponentially at the same rate. However, we now also have
an oscillating contribution so that we make the ansatz,

s�t� = �s0 + s1ei�t�e−�t,

n�t� = �n0 + n1ei�t�e−�t. �30�

The amplitude of the oscillations, i.e., the system response, is
thus directly given by s1 /n0. Substituting this ansatz in the
equations of motion and dividing by e−�t yields

− ��s0

n0
 + �i� − ���s1

n1
ei�t

= �M0 + M1ei�t���s0

n0
 + �s0

n0
ei�t� . �31�

Neglecting the higher order terms �e2i�t in a linear-
response approximation and dividing Eq. �33� in the time-
dependent and the time-independent parts yields the equa-
tions

�− M0 + �i� − ��1��s1

n1
 = M1�s0

n0
 �32�

and Eq. �15�, which determine s1 and n1. The resulting val-
ues of the system response are shown in Fig. 8. One observes
the characteristic signatures of a stochastic resonance: if one
of the two parameters J0 and T1 is fixed, the response as-
sumes a maximum for a finite value of the remaining param-
eter as shown in parts �b� and �c� of the figure. Part �a� shows
that this maximum is assumed if the external �T1

−1� and the
internal �J0� timescales are matched similar to the undriven
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FIG. 7. Dynamics of the relative population imbalance sz�t� /n�t�
in a weakly driven double-well trap for three different values of the
tunneling rate: �a� J0=0.5 s−1, �b� J0=1.5 s−1, and �c� J0=5 s−1.
The amplitude of the forced oscillations is maximal for intermediate
values of J0 as shown in part �b�. The remaining parameters are
T1

−1=2 s−1, U=0, �=0, �p=5 s−1, and J1 /J0=10%. Please note the
different scalings.
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FIG. 8. �Color online� �a� Response �amplitude of the oscilla-
tions of sz�t� /n�t�� of a weakly driven double-well trap vs T1

−1 and
J0 calculated within linear-response theory. �b� For a fixed value of
the tunneling rate J0=2.5 s−1. �c� For a fixed value of the dissipa-
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case illustrated in Fig. 3. Let us stress that this scenario is
again not fundamentally altered in the case of weak interac-
tions as numerically tested but not shown here.

A different situation arises if the energy bias is driven
instead of the tunneling rate J such that

��t� = �1 cos��t� . �33�

As above we can evaluate the amplitude of the forced oscil-
lations within the linear-response theory, however, with

M1 =�
0 − 2�1 0 0

2�1 0 0 0

0 0 0 0

0 0 0 0
� . �34�

Solving Eqs. �32� and �15� then yields s1y =s1z=0. Remark-
ably, a driving of the energy bias does not affect the popula-
tion imbalance in leading order. Only the first component of
the Bloch vector sx, and thus also the contrast , is strongly
affected.

This is illustrated in Figs. 9�a� and 9�b� where the relative
population imbalance sz�t� /n�t� and the first component of
the Bloch vector sx�t� /n�t� are plotted for J0=2 s−1,
T1

−1=4 s−1, and �1=1 s−1. The coherence oscillates strongly
at the fundamental frequency �, while the population imbal-
ance oscillates only with a tiny amplitude at the second-
harmonic frequency 2�. The oscillation amplitude of the co-
herence then again shows the familiar SR-like dependence
on the parameters J0 and T1 as illustrated in Fig. 9�c�.

V. DISSIPATION-INDUCED COHERENCE
IN A STRONGLY INTERACTING BEC

Let us finally discuss the case of strong interactions,
which is experimentally most relevant and theoretically most
profound. This is the regime of the current experiments
�21–23�, which confirm the theoretical predictions using the
two-mode approximation �1� extremely well. However, the
model assumes that the ground-state properties of the indi-
vidual potentials are only slightly affected by the interac-
tions, such that the condition UN���trap discussed above
must be fulfilled. Moreover, the results presented here are not
directly applicable to the case of extended trapping poten-
tials, where longitudinal excitations cause dephasing and a
loss of purity.

An example for the dynamics of a strongly interacting
BEC is shown in Fig. 10�a� for an initially pure BEC with
sz=n /2, calculated both with the MCWF method and within

the mean-field approximation �8�. One observes that the pu-
rity p and the contrast  first drop rapidly due to the phase
noise and, more importantly, due to the interactions. This is
an effect well known from the nondissipative system and can
be attributed to a dynamical instability which also leads to
the breakdown of the mean-field approximation
�32,33,35,56�. However, a surprising effect is found at inter-
mediate times: the purity p is restored almost completely and
the contrast  is slightly increasing.

Most interestingly, the observed values of the purity and
the coherence are much larger than in the cases where one of
the two effects—interactions and dissipation—is missing.
The time evolutions for these two cases are also shown in
Fig. 10. In the case of no interactions both purity and coher-
ence rapidly drop to values of almost zero and do not revive.
This case has been discussed in detail in Sec. III. In the
interacting case without dissipation one observes regular re-
vivals, which are artifacts of the small particle number in the
simulation and become less pronounced with increasing par-
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FIG. 9. �Color online� Dynamics of the coher-
ence �a� sx�t� /n�t� and the relative population im-
balance �b� sz�t� /n�t� for a double-well trap with
a driven energy bias � for J0=2 s−1 and T1

−1

=4 s−1. �c� Response �amplitude of the oscilla-
tions of sx�t� /n�t�� vs T1

−1 and J0 calculated
within linear-response theory. The remaining pa-
rameters are U=0, �1=1 s−1, and �p=5 s−1.
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mean-field results are plotted as a thick line in �a� and �b�. Note that
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ticle number. Apart from these occasional revivals, however,
the purity and the coherence relax to values which are much
smaller than in the interacting and dissipative case.

The surprising repurification of a strongly interacting
BEC by particle dissipation can be understood within a semi-
classical phase-space picture. In order to visualize the effects
of particle loss, we have plotted the “classical” phase-space
structure generated by the Bloch equation �Eq. �8�� for �p
=0 in Fig. 11 without interactions and dissipation �a�, with
interactions �b�, and with both �c�. For illustrative purposes,
we have plotted the rescaled Bloch vector s /n and have ar-
tificially fixed the particle number so that n=const. Since we
are interested only in the short-time dynamics of the Bloch
vector and not in the decay of the particle number on longer
time scales, this is an appropriate treatment. Moreover, in the
quantum jump picture this approximation corresponds to the
periods of constant particle number between two loss pro-
cesses �40,53,55�.

Parts �a� and �b� of the figure show the phase-space struc-
ture without dissipation and Un=0 and Un=4J, respectively.
One observes the familiar self-trapping bifurcation of the
fixed points for Un�2J �31,32�. The phase-space structure is
significantly altered in the presence of particle loss as shown
in part �c�. The most important consequence is the occur-
rence of an attractive and a repulsive fixed point instead of
the elliptic fixed points in the dissipation-free case �40�.

In the course of time the system will thus relax to the
attractive stationary state illustrated Fig. 11�c�. A
many-particle quantum state can now be represented by a
quasidistribution function on this classical phase space, for
instance, the Husimi Q function �34,35�. In this picture, a
pure BEC is represented by a maximally localized distribu-
tion function and the loss of purity corresponds to a broad-
ening or distortion of the Q function. The existence of an
attractive fixed point clearly leads to the contraction of a
phase-space distribution function and thus to a repurification
of the many-particle quantum state as observed in Fig. 10�a�.

However, this nonlinear stationary state exists only as
long as the particle number exceeds a critical value given by
�cf. �40��

U2n2 � 4J2 − fa
2T1

−2. �35�

As particles are slowly lost from the trap, the particle number
eventually falls below the critical value. For this reason the
attractive fixed point vanishes and the purity drops to the

values expected for the linear case U=0. Since the attractive
fixed point tends toward the equator maximizing sx / �s�, the
contrast assumes a maximum just before the disappearance
of the attractive fixed point, while the purity is still large. In
Fig. 10�a� this happens after approximately 2.5 s.

The surprising effect of the repurification of a BEC is
extremely robust—it is present as long as condition �35� is
satisfied. A variation in the system parameters does not de-
stroy or significantly weaken the effect, it only changes the
time scales of this relaxation process. Figure 12 compares
the time evolution of the purity and the contrast for three
different values of the particle loss rate T1

−1. With increasing
losses, the nonlinear stationary state is reached much faster
but is also lost earlier. One can thus maximize the purity or
the contrast at a given point of time by engineering the loss
rate. This effect is further illustrated in Fig. 13, where the
purity and the contrast after 2 s of propagation are shown in
dependence of the loss rate T1

−1. Both curves assume a maxi-
mum for a certain finite value of T1

−1.

(a) (b) (c)

FIG. 11. �Color online� Mean-field dynamics �a� without interactions and dissipation, �b� with interactions Un=40 s−1, and �c� with
interactions and dissipation �a=10 s−1. The remaining parameters are J=10 s−1 and �=0. To increase the visibility we have plotted the
rescaled Bloch vector s /n and we have artificially fixed the particle number so that n=const.
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results are plotted as a thick line.
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VI. CONCLUSION AND OUTLOOK

In summary, we have shown that the coherence properties
of a weakly and, in particular, also of a strongly interacting
Bose-Einstein condensate in a double-well trap can be con-
trolled by engineering the system’s parameters and dissipa-
tion simultaneously. Surprisingly, dissipation can be used to
stimulate coherence in the system rather than—as may be
expected—solely reduce it.

In the weakly interacting case, the contrast of the quasi-
steady-state of the system assumes a maximum for a finite
value of the tunneling and the dissipation rate. This stochas-
tic resonance effect is robust against parameter variations. A
Monte Carlo wave-function simulation of the full many-body
quantum dynamics shows a good agreement to the mean-
field description and provides a microscopic explanation of
the observed effect. Moreover, a similar effect can be ob-
served in the case where either the tunneling or the energy
bias is driven, which is conceptually even closer to the com-
mon interpretation of stochastic resonance.

In Sec. V, we have studied the effects of dissipation on the
strongly interacting system. An important conclusion is that
the interplay of interactions and dissipation can drive the
system to a state of maximum coherence, while both pro-

cesses alone usually lead to a loss of coherence. We show
that this effect can be understood from the appearance of an
attractive fixed point in the mean-field dynamics reflecting
the metastable behavior of the many-particle system.

Since the double-well BEC is nowadays routinely realized
with nearly perfect control on atom-atom interactions and
external potentials �21–23�, we hope for an experimental
verification of the predicted stochastic resonance effect. An
interesting perspective is to lift our results to extended dissi-
pative setups as, e.g., studied in �28,29�. Besides the general
idea of controlling many-body dynamics �57�, one may also
investigate the possibility of dynamically engineering en-
tanglement in similar systems as to some extend possible in
state-of-the-art experiments �58�.
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Abstract. Recent studies have demonstrated that a directed current arises in
kicked atom systems at quantum resonance (so-called ‘resonance ratchets’).
Here, we demonstrate that this effect can be explained using a pseudo-classical
model by taking classical initial conditions analogous to the initial quantum state.
A corollary of our result is that a current is also expected to arise in the actual
standard classical limit of the kicked atoms, demonstrating that the phenomenon
can arise even in the absence of quantum interference. We show that in the
standard classical limit, the momentum current undergoes far less saturation due
to quasi-momentum spread than for the quantum resonance case. Additionally,
we demonstrate that a phase-independent analytical scaling law exists for the
mean momentum as a function of a single combined parameter and show that it
predicts an unexpected current inversion regime.
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1. Introduction

Dynamical systems that display directed motion in the absence of unbalanced forces are of
considerable interest across scientific fields. On the one hand, physicists hope to take advantage
of such effects to realize novel transport solutions at the atomic scale [1] and such studies can
also improve our understanding of basic thermodynamic phenomena [2, 3]. On the other hand,
biologists have an interest in studying mechanisms for movement in situations where thermal
fluctuations are large compared with the forces available to propel an organism. The study of
Brownian and biological motors [4] is indeed one of the driving forces behind the study of
directed diffusion in general.

In the last few years, there have been a number of studies of systems where fluctuations
provided by Hamiltonian chaos (rather than noise) drive a current in a system with broken
symmetries [5]. The coherent nature of these noiseless ratchet realizations allows quantum
effects such as current saturation and current reversal to be easily observed. Only a few
realizations of such Hamiltonian ratchets have been performed experimentally [6]. However,
a closely related system, which uses atoms in an initial quantum superposition of two motional
states exposed to a sinusoidal potential pulsed at the quantum resonance (QR) [7] (i.e. at
the Talbot time [8]) has produced readily controllable momentum currents in two separate
experiments [9, 10]. In these studies, and in related studies at QR, using an asymmetric
potential [11], the strictly quantum nature of the initial state along with the necessity of the
wave-mechanical Talbot effect has justifiably led to the claim that this ratchet-like directed
motion4 is fundamentally quantum-mechanical.

Although we do not aim to undermine the above claim, it is nonetheless clear from previous
studies of the QR phenomenon that a pseudo-classical theory suffices to explain near-resonant
dynamics to an excellent approximation [12]–[16]. The so-called ε-classical standard map
(εSM) and the associated scaling law for the quantum resonant peaks of the atom optics kicked
rotor provide an elegant theoretical structure for understanding quantum dynamics for small
detuning from resonance ε. Since the QR ratchets of [9, 10] rely on QR to produce a momentum
current, one might expect that a pseudo-classical description of the phenomenon is also possible.

In the following, we will show that this is indeed the case. In fact, there is only one
hurdle to overcome before the existing ε-classical theory can be adapted to the case of resonant
ratchets—the identification of appropriate classical initial conditions that correspond to the
initial quantum superposition state required to produce directed diffusion. Once this has been
done, the phenomena documented in [9, 10] can readily be explained using the pseudo-classical
theory of [13].

Along with the ε-classical formulation of the resonance ratchet problem come a number of
interesting revelations about the system. Firstly, we find that a momentum current also exists in
the semi-classical limit of vanishing kicking period. Furthermore, in this limit, the momentum
current is much less sensitive to the initial quasi-momentum spread, and so is more useful
for real transport applications. Additionally, we demonstrate that a scaling law exists for the
momentum current as a function of a combined parameter of the kick strength, detuning from
QR, and the kick number. This scaling law reveals that current reversals should occur in the
resonant ratchet, not just for particular parameter values but for certain parameter families.

4 Strictly, since no ratchet potential is applied, the system does not constitute a ratchet in the normal sense.
Henceforth, however, we will use ‘ratchet’ without quotation marks with the understanding that it refers to the
behaviour observed in [9, 10].

New Journal of Physics 11 (2009) 083027 (http://www.njp.org/)

4.17. 219



3

Such a hitherto unnoticed phenomenon should certainly be observable in experiments at finite
detuning from exact QR. Furthermore, the scaling law for the current may be expressed in a
form which is independent of the quantum phase φ, raising interesting questions about the role
of quantum interference in the dynamics of the atoms.

2. ε-classical map and initial conditions

Here we will consider the well-known atom optics quantum kicked rotor (AOQKR) system [17].
Atoms are subject to pulses from an off-resonant optical standing wave. Assuming spontaneous
emission can be neglected, atomic motion is governed by the following Hamiltonian [18] in
dimensionless units [12]–[14]:

H =
τp2

2
+ k cos (2)

N∑
t=1

δ(t ′
− t), (1)

where 2= 2kl xphys (the ‘phys’ subscript denotes physical units as opposed to dimensionless
units) is the scaled position and p = pphys/2prec, prec = h̄kl , its conjugate momentum, with 2kl

being the wavenumber of the standing wave. k = V01/h̄ is the kick strength (for an optical
standing wave potential depth of V0 pulsed on for time 1). We also transform the kicking
period Tphys into the dimensionless quantity τ = 8ωrecTphys, where ωrec = p2

rec/(2Mh̄) for an
atomic mass M , is the recoil frequency of the atoms in the field. Note that when the kicking
period Tphys is an integer multiple of the QR time, then τ is an integer multiple of 2π . We also
use a dimensionless continuous time variable t ′ and the integer kick counter t .

Classically, the system is a paradigm of chaos studies; the Hamiltonian may be replaced
by a discrete map that gives discrete time atomic position xt and momentum pt after each
δ-kick. For sufficiently large k, the system exhibits global chaos [19]. However, if the system
is quantized, it is well known that two uniquely quantum behaviours can appear. Best studied
is dynamical localization where atomic diffusion is halted after a certain time due to quantum
interference. Also unique to the quantum system is QR (which concerns us here), which occurs
when the kicking frequency is commensurate with the energy spacing of the free rotor as
dictated by quantization. The primary QR of the kicked rotor occurs, then, whenever τ = 2πl,
with integer l > 0 [7, 13].

Starting from the quantum evolution operator over a single kick U =

exp (−ik cos(2))exp (−iτp2/2), it was shown in [13] that introducing a fictitious Planck
constant ε = 2πl − τ allowed the near resonant dynamics to be approximated by a pseudo-
classical map (‘pseudo-classical’ due to the presence of a variable quantity in the role of
Planck’s constant). Using appropriate definitions, the εSM may be written in the same form as
the usual classical map viz. [14]

Jt+1 = Jt + k̃ cos (θt), θt+1 = θt + Jt , (2)

where Jt is a scaled momentum variable defined by Jt = εpt + lπ + τβ with β the non-integer
part of the momentum or quasi-momentum and θt =2t +π(1 − sign(ε))/2 is the rescaled
position. The effective Planck constant ε enters in the definition k̃ = |ε|k.

The εSM reproduces the dynamics of the quantum kicked rotor near QR (i.e. when τ is a
multiple of 2π ) very well as was demonstrated theoretically in [12, 13] and experimentally
in [14]. However, if we seek to apply it to the phenomenon of directed transport at QR
as investigated experimentally in [9, 10], we run into a problem: for the derivation of the
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scaling results in [13]–[16], the pseudo-classical formalism reviewed above averages over an
initial momentum distribution covering the entire Brillouin zone (i.e. 06 β 6 1) and uses the
pendulum Hamiltonian as an approximation to the true kicked rotor Hamiltonian (see e.g. [13]
for details). By symmetry of those initial conditions and of the pendulum dynamics we know
that there can be no net momentum gain. Nonetheless, we will show that it is possible to adapt
the usual ε-classical method to dynamics to describe the resonance ratchet effect by choosing
classical initial conditions which are analogous (but not necessarily equivalent) to the quantum
case.

Of course, in the ratchet experiments an initial quantum superposition of momentum states
(and thus position states) was created, which has no direct classical analogy. Thus, our strategy
is to choose initial conditions that best correspond to the quantum resonant ratchet initial
conditions by considering the momentum and spatial distributions of atoms placed into the
|ψi〉 = 1/

√
2(|p = 0〉 + |p = 2h̄k〉) initial state. We will show that by matching the quantum

and classical distributions (both in momentum and position space) the εSM may be used to
describe the directed transport behaviour seen in [9, 10].

Firstly, we consider the initial momentum of the atoms. The momentum probability
distribution corresponding to the initial momentum superposition state ψi is

P(p0)=
1
2(δp0,0 + δp0,1). (3)

We will take this to be the momentum distribution for the classical atoms as we continue below.
What about the position space distribution of atoms? If the momentum space wavefunction

is ψi, then the position space distribution is non-trivially the Fourier transform of ψi. We
note that for classical atoms, no such relation between the momentum and position space
distributions for the atoms is actually required, given the absence of the uncertainty principle
in classical physics. Writing the momentum eigenstates as δ functions in momentum space, we
see that the appropriate Fourier pair is 〈p|ψi〉 = δ(p)+ δ(p + 1)⇒ 1/(2π)(1 + exp (iθ)). We can
also take into account the possibility that the initial spatial distribution has a phase difference
compared to the periodic potential by adding a phase term φ inside the complex exponential.
This mimics the role of quantum phase in the pseudo-classical system. This leads to a position
space probability distribution of

P(θ)= |ψ(θ)|2 =
1

2π
(1 + cos (θ +φ)). (4)

3. ε-classical momentum current

We now show that if these probability distributions are used, the ε-classical map predicts
the current found in the resonance ratchet system. We proceed by iterating the standard map
in the usual way to find Jt dependent on particular initial conditions J0 and θ0 governed
by the definitions of the J and θ variables along with the probability distributions given by
equations (3) and (4). This gives

JN = J0 + k̃
N−1∑
t=0

cos (θt). (5)

The mean momentum is found by averaging over initial conditions. At perfect QR, the atoms
have the same value of θ modulo 2π after each iteration, we can replace θt with θ0. Thus, we
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Figure 1. Simulations of the εSM (discreet points) compared with the predictions
of equation (8). The data sets are for φ = 0 (crosses, dashed line), φ = π/2
(circles, dotted line) and φ = π (squares, dash-dotted line).

have at a particular discrete time t

〈Jt,res〉 = 〈J0〉 + k̃t〈cos (θ0)〉. (6)

Finally, to find the physical mean momentum at resonance from the εSM, we calculate the
quantity [13]

〈pt,res〉 =
〈J − J0〉

|ε|
=

k̃t

|ε|
〈cos (θ0)〉. (7)

For kicked rotor experiments with cold thermal atoms (i.e. atoms which still have a
broad momentum spread compared with the width of the Brillouin zone of the periodic kick
potential), equation (7) is trivially zero because atoms are distributed uniformly over the
standing wave to a good approximation. However, in the resonant-ratchet experiments, the
position space probability distribution is given by equation (4). In this case, we can show that
〈cos (θ0)〉 = cos (φ)/2. Thus, we find that

〈pt,res〉 =
kt

2
cos (φ). (8)

It is immediately apparent that equation (8) will reproduce the φ dependent momentum current
seen in [9]. This is demonstrated in figure 1, where ε-classical simulation results are seen to be
in good agreement with the predictions of equation (8).

Figure 2 shows the phase space of the resonance ratchet system for three different kick
numbers for an initial phase φ = 0 with initial (classical) distributions of momentum and
position given by equations (3) and (4), respectively. The figures show that the phase space
accumulates an imbalance in positive and negative momentum trajectories as time increases.
Because the case considered here is not exactly on resonance, after a finite time (∼400 kicks
for the parameters in figure 2) the phase space becomes symmetrically filled and the current
disappears. We discuss the off-resonant behaviour of the system further in section 5.
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Figure 2. The ε-classical phase space shown for a sinusoidal initial position
distribution and ε = 10−4 for a phase of 0 for total number of kicks (a) N = 25,
(b) N = 100 and (c) N = 250 of the potential relative to the spatial density.

4. The effect of quasi-momentum

We now look at the more general case where the atoms have an initial quasi-momentum. Such
an analysis is required to explain the results of the Summy group [10]. We start with the standard
result from ε-classical theory that the momentum at QR is given by

〈pt,res〉 = lim
ε→0

〈Jt − J0〉

ε
= k

〈
sin (t J0/2)

sin (J0/2)
[sin [θ0 + (t − 1)J0/2]]

〉
, (9)

where the average is taken at fixed time t over initial conditions in momentum and position
as given by equations (3) and (4). The reader may refer to [13], where a similar limit was
calculated.

We proceed by computing the averages of the terms sin (θ0) and cos (θ0) over the
distribution P(θ0)= 1/(2π)[1 + cos(θ0 +φ)] for θ0 ∈ [0, 2π ]. We find that

〈cos (θ0)〉 =
1
2 cos (φ), 〈sin (θ0)〉 = −

1
2 sin (φ). (10)

Using equation (10) and trigonometric identities, and noting that by definition of J , J0 → 0 in
the ε → 0 limit which we are considering here, we can average equation (9) over the initial
conditions to give

〈pt,res〉 =
k

2

sin [(πl + τβ)t/2]

sin [(πl + τβ)/2]
sin [(t − 1)(πl + τβ)/2 −φ]. (11)

This formula is essentially the same as equation (1) from [10], where it was derived using a
purely quantum analysis. In figure 3, we show the variation of the momentum current with β
for two different QRs.

The above analysis shows that an ε-classical treatment correctly models the behaviour of
the quantum resonant ratchet. This is despite the fact that the behaviour of an atomic wavepacket
subject to pulses from a standing wave at QR is fundamentally quantum in nature. The success
of the ε-classical approach implies that the salient aspects of the quantum behaviour can be
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Figure 3. The momentum current as a function of β as given by equation (11)
for QRs with (a) l = 1 and (b) l = 2. In each case, the solid line shows the results
for φ = −π/2 and the dashed line shows the results for φ = π/2. The case in (a)
demonstrates exactly the behaviour seen in [10].

captured in ε-classical correlations between the atomic position distribution and the driving
field. We note that, as pointed out in [10], the actual classical mechanics for a quantum resonant
pulse period do not exhibit a momentum current precisely because the mixing caused by
classical chaos destroys the sinusoidal position distribution necessary for the ratchet effect to
occur.

However, the fact that the ε-classical description is successful at QR suggests that there
should also be a current in the semi-classical limit ε ≡ τ → 0. This was established for the
resonance in mean energy in [15], and its origin lies in the dependence of J on the product τβ,
which for this case tends to zero, too, as ε → 0.

Nonetheless, there is a very important difference between the ε-classical map for l = 0,
ε → 0 (the semi-classical limit) and l > 0, ε → 0 which we will now comment on. The general
behaviour of the resonance ratchet in the presence of an initial momentum spread, as has already
been noted [10], is saturation of the momentum current at a finite kick number, rather than
the unbounded momentum growth that is predicted in the absence of other limiting factors.
This saturation, of course, limits the usefulness of the ratchet effect in all realistic experimental
situations where a quasi-momentum spread is inevitable.

However, the effect of quasi-momentum on the system is not independent of the kicking
period. Indeed, the longer the kicking period is, the more time there is for the system to
resolve the quasi-momentum differences between atoms. For this reason, as has been noted
elsewhere [15], the QR peaks in energy for the kicked rotor are narrower and taller at the l = 0
case than for l > 0. For similar reasons, when l = 0, the momentum current becomes insensitive
to the initial momentum spread, in principle preventing saturation of the momentum current,
cf, the above argument τβ = εβ → 0.

Figure 4 shows the effects of an initial quasi-momentum spread for l = 0 and 2, with
ε = 0 in both cases. In the upper and lower plots of figure 4, solid lines show ε-classical
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Figure 4. Simulation results for ε-classical simulations (lines) and quantum
simulations (discrete points) showing the effect of initial momentum spread. The
upper plot shows the results as a function of kick number when l = 2 for uniform
quasi-momentum distributions of width 0h̄k (solid line), 0.01 × h̄k (dashed line,
crosses), 0.1 × 2h̄k (dash-dotted line, circles) and 2h̄k (dotted line, squares). The
lower plot shows simulations for the same values of quasi-momentum spread
with the same symbols, but this time near the true classical limit (i.e. l = 0 in the
definition of J , see around equation (2), τβ = εβ → 0).

simulation results whereas discrete points are from quantum simulations. We see that as the
quasi-momentum spread is increased from 0.01 × 2h̄k, to 2h̄k, the momentum current saturates
at a low kick number in the l > 0 case. However, in the l = 0 case (the semi-classical limit), 〈p〉

does not saturate.
It should not come as a surprise that in the classical limit the effect of quasi-momentum,

which is an inherently quantum-mechanical quantity, becomes negligible. However, this fact
is very helpful because it allows us to eliminate the principle problem with the QR ratchet—
saturation due to quasi-momentum spread—while retaining the benefits of a momentum current.
Of course, the flip-side to this benefit is that the control over the momentum current afforded
by altering the quasi-momentum is not present in the l = 0 limit. This can be seen immediately
by inspecting equation (11), since the quantity τβ, which gives the variation of 〈p〉 with β is
always approximately 0 in the l = 0 limit, for which τ = ε → 0.

5. Scaling law for momentum current

So far in the study of directional momentum transport in these resonant systems, the effect of
detuning from exact QR has not been considered. In general, it is not a trivial matter to calculate
a closed form solution for off-resonant dynamics (representative examples of which are shown
in figure 5), and the scaling functions for the atomic energy found in [13, 14] are thus considered
to be important results.
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Figure 5. Momentum current as a function of kick number for ε = 0.0005
(crosses), ε = 0.01 (circles) and ε = 0.05 (squares). The solid line shows linear
growth for k = 2.8 and φ = 0 for a system at perfect QR (l = 2). The inset shows
the momentum current as a function of ε for the same parameters.

Before considering the possibility of a scaling law for the momentum current, we will
inspect the time behaviour of the resonance ratchet as the kicking time diverges from exact
resonance.

In [14] it was shown that a one parameter scaling law exists for the mean energy of the
quantum kicked rotor near QR. In particular, the scaled energy is given by

E

k2t
= 1 −8(x)+

π

4x
G(x), (12)

where x =
√

k|ε|t and 8(x) and G(x) are closed form functions derived by considering the
topological changes in the ε-classical phase space as ε increases.

We now demonstrate that such a law also exists in the case of the momentum current. We
proceed according to [13]. First, we employ the scaled variable J ′

= J/(
√

k|ε|) and apply the
pendulum approximation to the kicked rotor Hamiltonian [19] (in the scaled variables J ′ and θ ).
The motion is then described—in continuous time—by H ′

≈ (J ′)2/2 + |ε|k cos (θ). Expressing
the original momentum p in terms of those scaled variables, we have

〈p〉 =
1

|ε|

√
k|ε|〈J ′

− J ′

0〉. (13)

Under the pendulum approximation, we can determine J ′
= J ′(θ0, J ′

0, x) using solutions
for the pendulum trajectories at arbitrary initial conditions. Because the definition of J
multiplies the physical momentum p by |ε|, for small ε, the initial conditions for J ′

0 when
p = 0 or 1 are essentially the same. Therefore, we take the initial momentum J ′ to be zero and
merely integrate over the (non-uniform) initial position distribution:

〈J ′
− J ′

0〉 =

∫ π

−π

dθ0 P(θ0)(J
′(θ0, J ′

0, x)− J ′

0). (14)
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Figure 6. Scaled mean momentum 〈p〉/(−kt sin (φ)) plotted against the scaling
variable x =

√
k|ε|t . Discrete points show ε-classical (crosses) and quantum

(all other symbols) simulation results for a variety of experimentally relevant
parameters as indicated in the legend. The solid line shows the analytical scaling
function given by equation (17). The same data are shown in the inset on
logarithmic axes, where excellent agreement is found over at least two orders
of magnitude on both axes.

Taking P(θ0) as given by equation (4) and expanding the cosine term, we find that

〈J ′
− J ′

0〉 =

∫ π

−π

dθ0(J
′(θ0, J ′

0 = 0, x))+ cos (φ)
∫ π

−π

dθ0 cos θ0(J
′(θ0, J ′

0 = 0, x))

− sin(φ)
∫ π

−π

dθ0 sin θ0(J
′(θ0, J ′

0 = 0, x)). (15)

Firstly, we note that by symmetry of the initial conditions, the first term on the rhs of
equation (15) vanishes. Furthermore, because the solutions for J ′ are odd, the term in
cos (φ) also vanishes and we are left with just the sine term in φ. If we define F(x)≡∫ π

−π
dθ0 sin θ0(J ′(θ0, J ′

0 = 0, x)), then substituting into equation (13) gives

〈p〉 = −

√
k

√
|ε|

sin (φ) F(x). (16)

Finally, dividing by −kt sin(φ) gives the following new scaling law:

〈pt,ε〉

−kt sin (φ)
≈ R(x)≡

F(x)

x
. (17)

We tested this scaling law by performing quantum simulations for a wide variety of all
parameters of the system (φ, ε, t and k), and compared the results with scaled energies from an
ε-classical simulation for a single parameter set. The results are shown in figure 6. We see very
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good agreement between quantum simulations (done over a broad range of parameters) and the
scaled ε-classical simulation (for a single parameter set with varying ε). For values of k > 10,
there seems to be a breakdown in scaling, which probably results from the large spread of the
wavepackets suppressing the current. However, in general, it is clear that a single parameter
scaling law is valid for the momentum current over a broad parameter range, as long as time
is neither too short (where our argument based on a continuous time evolution and on average
momentum values fails) nor too large (where the ε-classical approximation would fail).

Note that the present scaling law only exists for very small spread in the initial quasi-
momentum. In the case of a uniform quasi-momentum distribution, there is no momentum
current because of the symmetric filling of the pseudo-classical phase space.

The most intriguing feature of the scaling function is the fact that the scaled current
(and thus the unscaled current as well) becomes negative for certain x . This so-called current
inversion has also been found in other quantum ratchets [1, 5], but to our knowledge this is
the first prediction of current inversion due to parameter variation for the QR ratchet system
(aside from the obvious dependence of the current on φ and β). Indeed, studies of the system
up until now have focused on exactly resonant kicking. This precludes the possibility of finding
the current inversion phenomenon, which requires nonzero x , and hence nonzero ε, or in other
words off-resonant kicking. It should be a fairly simple matter to adapt current experiments to
look for the scaling and current inversion effects.

Lastly, we note that we can use equation (8) to simplify the scaling function even further.
Note that sinφ = ±

√
1 − cos2 φ = ±

√
1 − (pt,res/kt)2, we may write the scaling function as

sign(〈pt,res〉)〈pt,ε〉√
k2t2 − 〈pt,res〉

2
≈ R(x)≡

F(x)

x
. (18)

In equation (18) there is no dependence on the phase φ. Thus to scale experimental
measurements for comparison with the scaling function, it is sufficient to know simply the
resonant momentum current and the kick strength k. The exact quantum phase plays no part in
determining the unique dynamics of the system.

Equation (18) underlines an intriguing feature of the work presented here. Despite the
explanation of the directed transport in [9] in terms of interference of matter waves spreading
from two initial wavepackets, the dynamics of the atomic ensemble may be predicted to a good
approximation by a theory that takes only classical probabilities into account. We know that,
in general, it is certainly not possible to replace quantum probability distributions by their
classical counterparts since to do so ignores the interference terms that are responsible for
uniquely quantum behaviour. However, in the present case, it is apparent that merely taking
account of the spatial correlation between the atom density and the optical field intensity allows
all the important features of the dynamics to be reproduced. Whether such an approach can
be generalized to other systems where quantum interference is of importance is an interesting
question for further research.

6. Conclusion

In the present paper, we have shown that a pseudo-classical approach may be used to
describe the dynamics of QR ratchets so far studied using purely quantum methods. We
first demonstrated that the pseudo-classical dynamics reproduced the main results of [9, 10],
including the existence of a momentum current dependent on the quantum phase φ and the
variation of the current as a function of the atomic quasi-momentum β.
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We then demonstrated a number of surprising new facts about this system, which were
illuminated by our pseudo- or ε-classical approach. Firstly, it follows as a simple corollary that
the ratchet effect at QR also occurs in the limit as τ → 0. Although this does not change the
fact that the ratchet effect seen when τ equals the Talbot time (i.e. equals the quantum resonant
value) is purely quantum, it does show that an equivalent effect exists even for purely classical
atoms.

Secondly, we demonstrated that the current suppressing effect of a nonzero quasi-
momentum spread is absent in the semi-classical limit. Surprisingly, this means that the use
of a vanishing kicking period is actually the best strategy to accelerate atoms using the methods
developed in [9, 10]. However, in this case, we also lose the possibilities for quantum control
offered by the dependence of the momentum current on the quasi-momentum.

Finally, we demonstrated the existence of a scaling law for the momentum current as
a function of a combined variable x =

√
|ε|kt . We tested the scaling law for a broad range

of parameters and found good agreement between simulations and the one-parameter law so
long as the kicking strength was not too large. Of particular interest was the current inversion
predicted for certain x . This inversion has not yet been observed experimentally, but the
advantage of the scaling law formulation is that it predicts a family of experimental parameters
ε, k and t for which inversion should occur, allowing experimentalists freedom to find the most
accessible regime in which to observe the effect.
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Using a semiclassical ansatz we analytically predict for the fidelity of �-kicked rotors the occurrence of
revivals and the disappearance of intermediate revival peaks arising from the breaking of a symmetry in the
initial conditions. A numerical verification of the predicted effects is given and experimental ramifications are
discussed.
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Besides entanglement in multipartite systems, it is the
evolution of phases and the superposition principle which
distinguishes a quantum from a classical system. Phase evo-
lutions can be monitored in many ways, e.g., by correlation
functions �1�. A quantity which has gained interest in the last
decade is fidelity �2� defined as the overlap of two wave
functions subjected to slightly different temporal evolutions.
The temporal evolution of this quantum fidelity crucially de-
pends on evolving relative phases. For many-particle sys-
tems, fidelity can be viewed as a Hilbert space measure to
study quantum phase transitions �3� and the regular-to-
chaotic transition in complex quantum systems �4�. For
single-particle evolutions fidelity was measured in electro-
magnetic wave �5� and matter wave �6� billiards and with
two different methods for periodically kicked cold atoms
�7,8�.

The latter system is a realization of the quantum kicked
rotor �QKR�, the standard model for low-dimensional quan-
tum chaos and the occurrence of dynamical localization �9�.
Great interest in the QKR has reemerged in the study of its
quantum resonant motion �10–16� and related accelerator
modes �17–20�. These two regimes are far from the classical
limit of the QKR and, therefore, governed by distinct quan-
tum effects. Nevertheless, close to quantum resonance the
system can be described �pseudo�classically with a new
Planck’s constant, which is the detuning from the exact reso-
nant value of the kicking period �10,18,21�. For the quantum
resonances, the underlying pseudoclassical model is com-
pletely integrable and corresponds in good approximation to
the dynamics of a classical pendulum �10,21�.

In this Rapid Communication we apply well-known semi-
classical methods to describe the behavior of fidelity close to
the lowest-order quantum resonances of the QKR. We extend
previous analytical results at exact resonance �11� to a
broader parameter regime, recently measured in experiments
performed by Wu and co-workers �8�. The behavior of clas-
sical �22� and quantum fidelity �23,24�, in the case when
classical motion is integrable, has mainly been addressed nu-
merically so far, while our approach is both numerical and
analytical. Also, the recurrences of fidelity found in �23� for
the near-integrable regime of the kicked rotor are just pre-
dicted for perturbative variations around small kicking
strengths. Our results are more general, allowing, e.g., for
strong changes of the fidelity parameter as long as the mo-
tion remains nearly resonant. As expected, in the nearly reso-

nant regime, the temporal behavior of fidelity follows the
behavior at exact resonance the longer, the smaller the de-
tuning from resonance. Indeed, we show that the exactly
resonant result predicted in �11� by quantum calculations is
retrieved by pseudoclassical analysis. At large times, how-
ever, the exactly resonant fidelity and the nearly resonant one
differ, as the latter displays recurrent revivals while the
former steadily decays. Such revivals are approximately pe-
riodic. Their period depends on the detuning from resonance
and diverges as exact resonance is approached so this note-
worthy phenomenon is unrelated to quantum resonant dy-
namics. On the other hand, it is quite unexpected on classical
grounds because the system is chaotic in the proper classical
limit. Revivals of fidelity are thus a quantum effect and yet
are explained by a �pseudo�classical analysis that relates
them to periodic motion inside pseudoclassical resonant is-
lands. Experimental possibilities to verify our predictions are
discussed at the end of the Rapid Communication.

The dynamics of kicked atoms moving along a line in
position space is described, in dimensionless units, by the
Hamiltonian �10,25�

H�t� =
�

2
p2 + k cos�x� �

t�=−�

+�

��t − t�� , �1�

where x is the position coordinate and p is its conjugate
momentum. We use units in which �=1 so the parameter �
plays the role of an effective Planck’s constant; t is a con-
tinuous time variable and t� is an integer which counts the
number of kicks. The evolution of the atomic wave function
��x� from immediately after one kick to immediately after
the next is ruled by the one-period Floquet operator

Ûk=exp�−ik cos�x̂��exp�−i�p̂2 /2�. Fidelity of the quantum
evolution of a state � with respect to a change in the param-
eter k from a value k1 to a value k2 is the function of time t
which for all integer t is defined by

F�k1,k2,t� = ��Ûk1

t ��Ûk2

t ���2. �2�

Periodicity in space of the kicking potential enforces
conservation of quasimomentum �, which is just the frac-
tional part of p thanks to �=1. The atomic wave function
decomposes into Bloch waves �10,18�, which are eigenfunc-
tions of quasimomentum, ��x�=	0

1d�ei�x
�������	�, where
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	=x mod�2
� and the factor ���� is introduced in order to
normalize �� �it weights the initial population in the
Brillouin zone of width one in our units�. The dynamics at
any fixed value of � is formally that of a rotor on a circle
parameterized by the angle coordinate 	 and described by the
wave function ��. The Floquet propagator for the rotor is

given by Û�,k=exp�−ik cos�	̂��exp�−i��N̂+��2 /2�, where
N=−i d

d	 . Fidelity Eq. �2� may then be written as

F�k1,k2,t� = ��
0

1

d������Û�,k1

t ���Û�,k2

t ����2

�3�

so it results from averaging the scalar product under the
integral sign over � with the weight ����. Note that the
rotor’s fidelity is the squared modulus of this quantity so the
fidelity �Eq. �2�� of atomic evolution does not coincide with
the � average of the rotors’ fidelities, cf. �11�. Whenever
�=2
� �� integer�, the evolution is explicitly solvable �10�
and in particular the rotor’s fidelity is determined by �11�

��Û�,k1

t ���Û�,k2

t ����2 = J0
2��Wt��k� , �4�

where J0 is the Bessel function of first kind and order 0,
�k=k2−k1, and �Wt�= �sin�
t���− 1

2 ��csc�
���− 1
2 ���. If

2�−1 is an integer then a so-called QKR resonance occurs
and Eq. �4� decays in time proportional to t−1. When � is
close to a resonant value: �=2
�+�, the quantum rotor dy-
namics may be viewed as the formal quantization of the
pseudoclassical dynamics, defined by the map �10,18,21�:

It+1 = It + k̃ sin�	t+1� ,

	t+1 = 	t + It + 
� + �� mod�2
� , �5�

using � as the Planck’s constant, I=�N, and k̃=�k. It is thus
possible to investigate the quantum fidelity in the limit of
small � by means of standard methods of semiclassical ap-
proximation. In the limit �→0, the physical parameter k is

fixed so the pseudoclassical parameter k̃→0. As a conse-
quence, for sufficiently small �, the pseudoclassical dynam-
ics �Eq. �5�� is in the quasi-integrable regime even in cases
when the classical kicked rotor dynamics is fully chaotic. It
is dominated by the resonant islands at Ires= �2m+��
−��,
with m as an integer. As we consider initial atomic states
with a narrow distribution of momenta near p=0, we may
restrict ourselves to a portion of the pseudoclassical phase
space that includes the one island which is located astride
I=0. We assume �=1 for simplicity. The pseudoclassical
dynamics inside the resonant island is ruled, in
continuous time, by the pendulum Hamiltonian �26�
H�	 , I , k̃�= 1

2 �I+ �̄�2+ k̃ cos�	�, where �̄���− 1
2 �. We

choose ���	�= �2
�−1/2 so

Û�,k
t ���	� �

1

2


�
s
� �	

�	�
�

	�=	s�

−1/2

ei/��s�	,t�−i�
/2�s, �6�

where ��0 is assumed with no limitation of generality. The
sum is over all trajectories �labeled by the index s� which
start with I=0 at time t=0 and reach position 	 at time t.
	�=	s� are their initial positions, and the function whose de-

rivative is taken in the prefactor yields 	 at time t as a func-
tion of position 	� at time 0, given that the initial momentum
I�=0. Finally, the function �s�	 , t�=S�	 ,	s� , t� is the action
of the sth trajectory and s is the Morse-Maslov index �27�.
We restrict ourselves to librational motion inside the stable

island. The frequency of this motion decreases from �=
k̃
at the island center to �=0 at the separatrix. For times less

than the minimal half period 
 /
k̃, there is a single trajec-
tory in Eq. �6�. Furthermore,

��s�	,t�
�t

= � �S�	,	�,t�
�	�

�	��	,t�
�t

+
�S�	,	�,t�

�t
�

	�=	s�

= � �S�	,	�,t�
�t

�
	�=	s�

= − H�	s�,0� = −
�̄2

2

+ k̃ cos�	s�� . �7�

For t fixed and �→0 we use 	��	 , t��	− �̄t in

this equation so ��	 , t��− 1
2 �̄2t+ k̃	0

t dt� cos�	− �̄t�
=− 1

2 �̄2t+2 k̃

�̄
sin� �̄

2 t�cos�	− �̄t
2 �. Replacing all this in Eq. �3�,

we find for the rotor’s fidelity in the limit when �→0 at
constant t:

��Û�,k1

t ���Û�,k2

t ����2 � � 1

2

�

0

2


d	eiB��,t�cos�	−��̄t/2���2

= J0
2�B��,t�� , �8�

where B�� , t�=2 �k

�̄
sin� �̄t

2 �. Since B�� , t���Wt� in Eq. �4� for

�=2
� and ��0.5, we see that the pseudoclassical approxi-
mation along with the pendulum approximation well repro-
duce the exact quantum calculation �Eq. �4�� when �→0 at
fixed t. In the final step of integrating over quasimomenta to
find the fidelity for atoms �as distinct from fidelity for ro-
tors�, the pseudoclassical approximation plays no role since
the particle’s dynamics, unlike the rotor’s, does not turn
pseudoclassical in the limit �→0 �18�. Replacing Eq. �4� into
Eq. �3� and computing the integral with a uniform distribu-
tion of � in �0,1� shows that the complete fidelity �Eq. �3��
saturates to a nonzero value in the course of time �11�.

Next we address the asymptotic regime where �→0
and t�1/2�const. To this end, the exact solution of the pen-
dulum dynamics is needed in order to compute actions; how-
ever, some major features of fidelity are accessible by ex-
ploiting the harmonic approximation of the pendulum
Hamiltonian. We replace the pendulum by the quadratic

Hamiltonian H�I ,	�=1 /2�I+ �̄�2+�2 /2	2, where �=
k̃
and a shift of 	 by 
 is understood. Except at exact
multiples of the period, there is one harmonic oscillator
trajectory in the sum in Eq. �6�; moreover, Maslov
indices do not depend on the trajectory. Straightforward

calculations yield 	��	 , t�=sec��t��	− �̄�−1 sin��t�� and

��	 , t�= �̄	�sec��t�−1�− ��−1�̄2+�	2�tan��t� /2, and so
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�Û�,k1

t ���Û�,k2

t ��� �
ei��t�

2

�cos��1t�cos��2t��
�

−





d	

�ei/2��A�t�	2+C�t��̄2−2�̄	B�t��, �9�

where A�t�=�2 tan��2t�−�1 tan��1t� ,B�t�
=sec��2t�−sec��1t� and C�t�=�2

−1 tan��2t�−�1
−1 tan��1t�.

��t� is a phase factor accumulated by the Maslov indices and
it just depends on time, rendering it irrelevant for our present
purposes. We next insert Eq. �9� into Eq. �3� and choose for
���� a uniform distribution in some interval � 1

2 −b , 1
2 +b�,

with 0�b�1 /2. It is necessary to assume that b is smaller
than the halfwidth of the pseudoclassical resonant island be-
cause the harmonic approximation we have used is valid
only inside that island. Then

F�k1,k2,t� �
1

16
2b2�2�cos��1t�cos��2t��

� ��
−





d	e−i/2��1�	,�,t��
−�b

�b

d�̄e−i/2��2��̄,	,�,t��2

,

�10�

where �1�	 ,� , t�= �A�t�−B2�t�C�t�−1�	2 and �2��̄ ,	 ,� , t�
= ��̄
C�t�−B�t�C�t�−1/2	�2. As �2��−1/2 in the limit when

�→0 and t
��const, the limits in the �̄ integral in Eq. �10�
may be taken to ��:

�
−�b

�b

d�̄e−i/2��2��̄,	,�,t� � �2
�1/2�1/2C�t�−1/2e−i
/4.

Due to this approximation, Eq. �11� below is valid in the
asymptotic regime where � is small compared to b2. The
remaining 	 integral is dealt with similarly because the pref-
actor of 	2 in �1 is ��−1/2. Thus finally

F�k1,k2,t� �
�2

16
2b2�C�t�A�t� − B�t�2��cos��1t�cos��2t��

=
�2�1�2

8
2b2�4�1�2 − �+
2 cos��−t� − �−

2 cos��+t��
,

�11�

where ��=�1��2. Singularities of this expression are arti-
facts of the approximations used in evaluating the integrals
in Eq. �10�, which indeed break down when the divisor in
Eq. �11� is small compared to �. However, they account for
the periodic “revivals” that are observed in the fidelity at
large times, with the beating period T12=2
 / ��−� �Fig. 2�a��.
With a quite narrow distribution of �, however, fidelity
is at long times dominated by the “resonant” rotors
��=0 or �=1 /2, respectively�, and then revivals occur with
the period T12 /2 �Fig. 1�. Indeed, with the purely resonant �,
Eq. �10� yields

F�k1,k2,t�  Fres�k1,k2,t�

�
�

2


1

��2 cos��1t�sin��2t� − �1 cos��2t�sin��1t��
,

�12�

which has singularities in time with the mentioned periodic-
ity of T12 /2. This behavior of resonant rotors has a simple
qualitative explanation. As the initial state of the rotor corre-
sponds to momentum I=0, at that value of quasimomentum
��= 1

2 � the stationary-phase trajectories of the two harmonic
oscillators, which were started at I=0, exactly return to
I=0 whenever time is a multiple of the half period T12 /2 and
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FIG. 1. �Color online� Fidelity as predicted by Eq. �12� because
of the singularities of the analytical formula the curve is folded with
normalized Gaussians with a standard deviation of t�6 kicks �solid
black line� and numerical data �gray/green curve� for k1=0.8
, k2

=0.6
, and detuning �=0.01 from �−�=2
. In the inset, the non-
smoothed result �Eq. �12�� is shown.
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FIG. 2. �Color online� Same as in Fig. 1 for an ensemble of
5000 equidistantly chosen rotors �solid gray/green lines� with a

width of �a� ��=0.05 �or ��̄�0.31� around the resonant value
covering half the width of the resonance island in the phase space
induced by Eq. �5� and �b� ��=1 covering the full phase space,
compared with the smoothed �see caption of Fig. 1� version of Eq.
�11� �solid black lines�. In �a� the intermediate revival peaks ob-
served in Fig. 1 disappear as predicted by Eq. �11�. The dashed line
in �a� reproduces the smoothed analytic formula from Fig. 1. For �
distributed over the full Brillouin zone in �b�, the revivals are barely
visible since the average includes many nonresonant rotors per-
forming rotational motion in phase space, which is not decribed by
our theory valid just for the librational island motion.
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so fully contribute to fidelity in spite of their angles being
different by 
 in the case of odd multiples. At ��0 this
symmetry is lost. Comparing numerical data �obtained by
repeated application of the Floquet operator to the initial
wave function� with the analytical predictions we find excel-
lent agreement. We observe the expected peak structure of
the revivals in Fig. 1 and the loss of intermediate revival
peaks at T12 /2 in Fig. 2�a�. The time scale on which the
revivals occur is proportional to �−1/2 and of crucial impact to
experimental measurements: conservation of coherence has
been shown for up to 150 kicks �see �19�� with cold atoms,
making an observation of the revivals for reasonable
��0.01 possible. Earlier realizations of the QKR were
implemented using cold atoms �7,12,14� with broad distribu-
tions in quasimomentum. Nowadays, much better control of
quasimomentum is provided by using Bose-Einstein conden-
sates �see �13,16��, which allow for a restriction in � up to
0.2% �as achieved in �16�� of the Brillouin zone. This would
allow us to verify our results by conveniently reducing the
intervals in quasimomentum and thus retracing the revivals
with period T12 /2 to the exactly resonant and the revivals
with period T12 to the near-resonant rotors. There exists an
interesting second possibility to measure the transition from

Eq. �12� to Eq. �11� with just cold atoms since the �̄ we use

scales with the kicking period, i.e., �̄=���−1 /2�. Due to this
scaling, the limit �→0 �automatically implying also �→0,
cf. �14�� permits a measurement of Eq. �12� even with an
ensemble of cold atoms whose quasimomenta occupy the
full Brillouin zone. Also the momentum selective interfero-
metric measurements of fidelity �8� allow us to select narrow
intervals of quasimomenta and hence would permit to check
our predictions experimentally.

To summarize, we predict fidelity revivals in the QKR
close to quantum resonance using a semiclassical ansatz. Our
results are supported by numerical data showing the same
characteristic revival peaks. Every second peak vanishes
once the symmetry of the initial quasimomentum distribution
on the resonance island is broken. This makes for a surpris-
ing transition that could be measured with both cold and

ultracold atoms owing to the scaling of �̄ or the use of mo-
mentum selective methods as described in the previous para-
graph.
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Abstract

We study the effect of a many-body interaction on inter-band oscillations in a two-band

Bose–Hubbard model with an external Stark force. Weak and strong inter-band oscillations

are observed, where the latter arise from a resonant coupling of the bands. These oscillations

collapse and revive due to a weak two-body interaction between the atoms. Effective models

for oscillations in and out of resonance are introduced that provide predictions for the system’s

behaviour, particularly for the time scales for the collapse and revival of the resonant

inter-band oscillations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent experiments have proven the possibility of studying the

coherent dynamics of interactingmany-particle systems [1–3].

Such realizations of many-body systems with ultra-cold gases

in optical lattices have a short but impressive history and open

immense possibilities for various fields of physics [4, 5]. The

demonstration of the well-known phenomenon of collapse and

revival, the latter being a pure quantum effect, with ultra-cold

atoms bears witness to this coherent evolution of a many-

body wavefunction [2, 6]. Additionally, the high degree of

control in such experiments allows a manipulation of many

system parameters and makes them particularly interesting for

various fields of physics as well as future applications [5, 7].

Different ways of addressing additional degrees of freedom in

such ultra-cold bosonic gases have been suggested [5].

In this fast track communication, we discuss a two-

band model with an additional external force to control the

coupling between the two bands. Applying a force to atoms in

optical lattices leads to Bloch oscillations and is a realization

of a many-body Wannier–Stark system [8]. The coupling

of the low-lying energy bands in such systems has been

demonstrated in different experiments, e.g. on Landau–Zener

tunnelling [8, 9], and the influence of the many-body

interaction on a weak coupling of the bands has also been

studied theoretically [10]. We go beyond a weak coupling

of energy bands and consider an isolated two-band system

with a strong external force. A closed two-band system

is an idealization but can be realized approximatively with

ultra-cold atoms [4] using different techniques such as, e.g.,

superlattices [11, 12]. Besides the possibility of experimental

realization, a closed two-band model is also interesting as a

simple model system. For the latter, we focus on the two

lowest energy bands of interacting bosons in a optical lattice

V (x) = V0 cos(2kLx), with the wave vector of the optical

lattice kL = 2π/λL. Then, all parameters of the

model Hamiltonian just depend on this external potential.

The parameters can be computed numerically (see, e.g.,

appendix A in [13]) and analytical approximations exist for

them for not too small amplitudes V0 [4]. Using this setup,

we are able to identify regions of strong and weak inter-

band coupling. A weak two-body interaction introduces new
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energy scales in the coherent evolution of the many-body

wavefunction, leading to a collapse of such oscillations, but

the form of the interaction gives rise to subsequent revivals.

We give analytical expressions for all time scales in this

many-body realization of a two-band collapse and revival

phenomenon, and experimental ramifications for a realization

with ultra-cold bosonic gases are discussed.

2. The many-particle model

We study a two-band Bose–Hubbard model with an additional

external Stark force for a strong coupling of the two bands,

introduced in [13, 14],

H =
L

∑

l=1

[

ǫ−
l na

l −
ta

2

(

a
†
l+1al + h.c.

)

+
gWa

2
na

l

(

na
l − 1

)

+ ǫ+l nb
l +

tb

2

(

b
†
l+1bl + h.c.

)

+
gWb

2
nb

l

(

nb
l − 1

)

+FC0
(

b
†
l al + h.c.

)

+ 2gWxn
a
l n

b
l

+
gWx

2

(

b
†
l b

†
l alal + h.c.

)

]

. (1)

Here, al

(

a
†
l

)

annihilates (creates) a particle at site l of

totally L sites in the lower band and bl

(

b
†
l

)

in the upper

band. The corresponding number operators are na
l = a

†
l al ,

nb
l = b

†
l bl . The bands are separated by a bandgap 1 and

have onsite-energies ǫ±
l = ±1/2 + lF , respectively. We

include hopping between neighbouring sites in band a, b with

a hopping strength ta, tb > 0, and a repulsive interaction

between particles occupying the same site in band a(b) with

a strength Wa (Wb). The two bands are coupled via C0F ,

with the external Stark force F and a coupling constant C0
depending on the depth of the lattice V0 [13, 14], and also

via the inter-particle interaction with a strength Wx . All

parameters are measured in recoil energiesErec ≡ h̄2k2L
/

(2m)

and we set h̄ = 1 throughout. Focusing on a realization with

a single optical lattice rather than a superlattice, the relation

between the parameters is generally: 1 ≫ ta, tb, as well as

ta, tb ≈ Wi and C0 = O(10−1). We take the external force F

as a free parameter. We assume that the interaction strength

can be tuned (experimentally, e.g., by the use of Feshbach

resonances [4]) and include a corresponding scaling factor g

to all interaction terms. To study the occupation of the upper

band, we prepare the system in an initial state |ψ(0)〉, with a
uniform distribution of particles in the lower band only, and

evolve it in time by the many-body Schrödinger equation. The

quantity we study is the (normalized) number of particles in

the upper band

Nb(t) ≡
1

N
〈ψ(t)|

∑

l

nb
l |ψ(t)〉, (2)

where N =
∑

l

(

na
l + nb

l

)

is the total number of particles. We

will refer to Nb(t) as occupation of the upper band.

Let us discuss the non-interacting single-particle case

H0 ≡ H(g = 0) first. We apply the following transformation

involving Bessel functions of the first kind Jn(x) to our

operators, which is known to remove the hopping terms in

the single-band case [15]

αn =
∑

l∈Z

Jl−n(xa)al βn =
∑

l∈Z

Jl−n(xb)bl, (3)

with xi ≡ ti/F , i = a, b. Using relations for Bessel functions,

we arrive at

H0 =
∑

l∈Z

[

ǫ−
l α

†
l αl + ǫ+l β

†
l βl

+C0F
∑

n

Jl−n(1x)
(

α
†
l βl+n + h.c.

)

]

, (4)

where 1x = xa + xb and ǫ±
l = ±1/2 + lF as above. We

obtain coupling between any two sites of the two different

bands, weighted by Bessel functions. In (1) the coupling

between different and possibly remote sites originates from

an on-site coupling and subsequent hoppings. It can thus be

considered a higher order process in the original basis. But in

the transformed Hamiltonian (4), this coupling is now direct

with a strength modified by the factor Jl−n(1x).

The Hilbert space in the many-particle problem

is spanned by Fock states with fixed particle number
∣

∣na
1, . . . , n

a
L; nb

1, . . . , n
b
L

〉

with single-particle basis al, bl . The

total dimension of the Fock space for a given number of

atoms N and lattice sites L per band is given by dimH =
(N + 2L − 1)!/[N !(2L − 1)!]. For numerical simulations, we
change to the interaction picture with respect to the external

force [16] which removes the tilt
∑

l ln
a,b
l F and replaces

a
†
l+1al → eiF ta

†
l+1al (and likewise for b

†
l+1bl). TheHamiltonian

is then time dependent with a periodicity of TB ≡ 2π/F and

decomposes into a direct sum of operators for specific quasi-

momenta κ [16]. As a consequence, the size of the Hilbert

space is reduced by a factor of the order of L [13, 14, 16]. Since

the different subspaces are physically equivalent, we restrain

our discussion to the κ = 0 subspace of the Hilbert space [16].

For the time evolution of a given initial state, we use

either a direct numerical integration (with an adaptive step-

size Runge–Kutta algorithm [17]) or an eigenbasis expansion

after diagonalizing the problem:

|ψ(mTB)〉 =
∑

n

cn exp(−iεnmTB)|εn〉. (5)

Here we use the eigenstates UF (TB)|εn〉 = exp(−iεnTB)|εn〉
of the Floquet–Bloch operator (T denotes time ordering)

UF (TB) = T exp
[

−i
∫ TB

0

H(t) dt

]

, (6)

since the Hamiltonian is explicitly time dependent, with a

periodicity TB . In addition, this gives us the full spectrum and

enables access to relevant energy scales of the problem, as well

as an identification of the most important states participating

in the time evolution.

3. Results

For the specific system under consideration, i.e. bosons in

optical lattices, both hopping coefficients ta, tb are smaller

than unity and (since we are interested in strong inter-band

2
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Figure 1. Occupation of the upper band as a function of time for a
resonance of order r = 2. The following cases are shown: vanishing
two-body interaction (g = 0, thin dashed line), weak two-body
interaction (g = 0.1) with all interaction terms (thick line) and only
one interaction term 2Wx

∑

l n
a
l n

b
l (thick dashed line) included. The

collapse and revival times, tcoll and trev, are indicated by arrows.
Lower panel: magnification of the initial oscillation showing small
non-resonant oscillations of period T1̃ on top of the resonant
oscillations with a much longer period Tres. Parameters correspond
to V0 = 4: 1 = 4.39, C0 = −0.15, ta = 0.062, tb = 0.62, Wa =
0.030, Wb = 0.018, Wx = 0.012; N = L = 5 and F = 2.2207.

coupling) we take the external Stark force F to be much

larger than the hopping coefficients: 1x ≡ (ta + tb)/F ≪ 1.

The non-interacting Hamiltonian (4) now allows for simple

solutions for two regimes: values of the external force

F not leading to a degeneracy between energy levels of

different bands (off-resonant regime) and values of the force

F leading to such a degeneracy (resonant regime). For the

off-resonant regime we make use of 1x ≪ 1 and neglect

all Bessel functions in (4) except for J0(1x) ≈ 1. The

Hamiltonian then decomposes [18] into a sum of independent

two-level systems and the occupation of the upper band

when initially zero follows a simple Rabi formula Nb(t) =
[

1+ 1̃2
/(

4C2
0F

2
)]−1

sin2(1̃t/2), where 1̃ ≡
√

12+4C20F
2. This

corresponds to Rabi oscillations between the bands with an

amplitude much smaller than unity and a period T1 = 2π/1̃

of the order of the Bloch period TB = 2π/F . An example is

shown in the lower panel of figure 1 where the off-resonant

contribution to the oscillations is shown.

Although the coupling from a site l to sites in the

other band with different index l′ is usually small (see the

discussion after (4)), it is important when the two levels

become degenerate in energy, i.e. for resonant values of the

forceF. This happenswhen the energy gap between both bands

is close to an integer multiple of the external force 1̃ ≈ rF and

we refer to this regime as resonant of order r. In resonance,

the coupling of the degenerate levels is most important and

the Hamiltonian of (4) can similarly be reduced to a sum of

independent two-level systems

H0 =
∑

l∈Z

[

ǫ−
l α

†
l αl + ǫ+l β

†
l βl + C0FJl−r(1x)

(

α
†
l βl+r + h.c.

)]

,

(7)

and diagonalized by µ
(r)
l = 1√

2
(βl + αl+r) and ν

(r)
l = 1√

2
(βl −

αl+r). The resonant oscillations (of order r) between the two

bands have an amplitude of almost unity and a period given by
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Figure 2. Collapse times (open symbols) and revival times (filled
symbols) versus 1/g for N,L = 5, 5 and V0 = 4: ¤, V0 = 5: ◦,
V0 = 6: ♦. Order of the resonance: r = 1. The collapse time is
defined via Nb(tcoll) = (1 + e−1)/2 and the revival time is chosen as
the next maximum in the oscillations after the initial decay t > tcoll,
as indicated in figure 1 (upper panel).

Tres = π/|C0FJr(1x)| ≫ TB . An example of these resonant

oscillations for r = 2 is shown as the thin dashed line in

figure 1. The period predicted by the reduction to independent

two-level systems is T r=2
res = 285 TB for the parameters given

there, in excellent agreement with figure 1 where the actual

period is Tres ≈ 288 TB . We found equally good agreement

in numerical simulations for different lattice depths and other

orders r of resonance not explicitly reported here.

Let us now study the effect of the many-body interaction

in the original Hamiltonian (1). Figure 1 also shows the

occupation of the upper band as a function of time for the initial

state |ψ(0)〉 = |1, . . . , 1; 0, . . . , 0〉 in a weakly interacting
system with g = 0.1. We observe a decay of the resonant

oscillations followed by a major revival. At later times several

minor revivals occur (not shown in figure 1). This effect

is stable against variations of the system parameters (as the

number of particles and lattice sites, even for fillings N/L

of order but not always close to 1), with the time scales

of decay and revival depending on the interaction strength

g (see the following section and figure 2). We found the

same phenomenon with different initial states in numerical

simulations as long as the particles are mainly delocalized

along the lattice and occupy only the lower band, i.e. excluding

Fock states with all particles on one lattice site for instance.

The oscillatory behaviour depicted in figure 1 strongly

reminds us of the collapse and revival effect known from

quantum optics [19]. A specific feature in these systems

is a linear dependence of the collapse and revival time on

the inverse coupling strength, i.e. trev ∝ 1/g and tcoll ∝ 1/g

where g usually denotes the coupling strength between the light

field and the two-level atom in the quantum optical systems

[19]. We verified numerically for our system that the observed

decay and revival times obey a similar dependence with the

interaction parameter g as coupling strength in our model.

We define tcoll as the time when the difference between the

maximal and average amplitude of the inter-band oscillations

has fallen to 1/e, i.e.Nb(tcoll) ≡ 1/2+1/(2e). The revival time

is taken as the maximum of the revived oscillations. Figure 2

clearly demonstrates the linear dependence of these times on

the inverse interaction strength.

To find an effective description, we try to understand the

most relevant interaction processes. Clearly, the repulsive

3
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two-body interaction disfavours double occupancy of sites

since this will always cost an interaction energyWa(b) for two

particles occupying the same site in the lower (upper) band.

Starting from an initial state with population of the ground

band only, the strong Stark force leads to an occupation of the

upper band. Doubly occupied sites are also suppressed there,

but two particles may sit at the same site in either band, i.e. ‘on

top of each other’. Indeed, the most important interaction term

in the time evolution is 2Wx

∑

l n
a
l n

b
l , since it already gives a

non-zero contribution when there is only one particle per site

in each of the two bands. In fact, comparing the time evolution

of the initial state with all interaction terms and only the one

mentioned shows almost no difference (cf figure 1). We focus

on fillings close to unity n̄ = N/L ≈ 1 and study the time

evolution of states of the form |ψ0〉 = |1, 1, . . . , 1; 0, . . . , 0〉,
which is not an eigenstate of the system in resonance. Note that

this is the most important contribution to the superfluid ground

state in an expansion in our configuration state Fock basis. For

large enough systems the superfluid ground state of the untilted

system (and the single-occupancy state |ψ0〉 likewise) becomes
indistinguishable from a coherent state (equation (66) in [4])

that factorizes into a product of local coherent states at each

site l:
∏

l

(

e
√

n̄a
†
l |vac〉l

)

=
∏

l

|ϕ; 0〉l ≡ |ϕ; 0〉. (8)

We denote this coherent state with phase ϕ =
√

n̄ by |ϕ; 0〉.
We are now going to re-write this state in the resonant basis and

determine the effect of the interaction term 2Wx

∑

l n
a
l n

b
l when

acting on this state. We start by inserting the transformation

a
†
l = (1/

√
2)

∑

n Jl−n(xa)
(

µ
†
n − ν

†
n

)

into (8) to obtain

|ϕ; 0〉 =
∏

l

exp

[
√

N

2L

∑

n

Jl−n(xa)
(

µ†
n − ν†

n

)

]

|vac〉

=
∏

n

e
√

n̄/2 µ
†
n e−

√
n̄/2 ν

†
n |vac〉, (9)

where we used
∑

m∈Z Jm(x)zm = exp[x(z−1/z)/2] for z = 1

[20] and
[

µ
†
n, ν

†
n

]

= 0 which follows from the properties of the

operators a(†), b(†). Let us denote Fock states with the single-
particle basis µl, νl by parentheses

∣

∣n
µ

1 , . . . , n
µ

L; nν
1, . . . , n

ν
L

)

.

From (9) we see that the coherent state of the lower band

in resonance is a product of local coherent states for both

bands in the resonance basis
∏

l |ϕ̃;−ϕ̃)l ≡ |ϕ̃;−ϕ̃) with

ϕ̃ ≡ ϕ/
√
2. The time evolution of this state (for the non-

interacting system in resonance) is simple since it is diagonal

in the eigenbasis of the Hamiltonian in resonance (7). We

continue to study the phase evolution created by the most

important term 2Wx

∑

l n
a
l n

b
l perturbatively by expressing the

operators a
(†)
l , b

(†)
l in the µ, ν-basis:

exp

[

i2gWx t
∑

l

na
l n

b
l

]

|ϕ̃;−ϕ̃)

= exp

[

igWx t

2

∑

l

∑

l1,...,l4

Jl−l1(xa)Jl−l2(xa)Jl−l3(xb)Jl−l4(xb)

×
(

µ
†
l1

− ν
†
l1

)

(µl2 − νl2)
(

µ
†
l3
+ ν

†
l3

)

(µl4 + νl4)

]

|ϕ̃;−ϕ̃).

(10)
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Figure 3. |cn| versus the corresponding quasi-energies εn in an
expansion in the eigenbasis of the Floquet–Bloch operator (6).
Different interaction strengths are shown: g = 0.0 (*), g = 0.05
(•), g = 0.1 (¥), and g = 0.2 (¨); other parameters as in figure 1.
We observe that different quasi-energies are shifted at different rates
when increasing the interaction strength.

Since |ϕ̃;−ϕ̃) is a product of local coherent states we can

ignore the sumover l and discuss the expected behaviour. First,

both xa,b aremuch smaller than unity and themain contribution

in the sums over l1, . . . , l4 will come from the zeroth-order

Bessel functions J0. Secondly, the product of operators gives

16 different combinations of the field operators. But due to

the prefactors, the combinations with equal indices are the

most important. They simply give an integer number when

applied to the product of local coherent states they are acting

on. Taking these two points together, the time evolution of

this state should show an approximate revival at

trev ≈
4π

gWxJ
2
0 (xa)J

2
0 (xb)

. (11)

This result is valid for large systems and cannot account for

the effect of non-universal properties like a limited number of

particles and lattice sites, but we expect it to yield the right

order of magnitude for finite systems, and in particular the

correct scaling with the parameters of external potentials (cf

figure 4, inset, below).

Additional finite size corrections to (11) can be understood

by using the decomposition into the eigenbasis (5). The

evolution of the occupation of the upper band certainly

depends on the initial state, which we can take into account

by studying the weights cn of the initial state expanded in

the eigenbasis. The result of a numerical diagonalization

for a system in resonance is depicted in figure 3, where

the absolute values of the expansion coefficients with their

corresponding quasi-energies are shown. For vanishing two-

body interaction strength g = 0, the quasi-energies from

the states with different occupation numbers are degenerate

as expected. The energy difference between neighbouring

lines of constant quasi-energies corresponds to the time scale

of the resonant inter-band oscillations and follows from the

diagonalization of the resonant non-interacting system as

Äres = 2π/Tres = 2|C0FJr(1x)|. In the non-interacting

system (g = 0), two coefficients are dominating and the

difference of the quasi-energies yields a single time scale

4
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Figure 4. Comparison between estimated revival times according to
(11) (– – –) and to (12) (•) with numerical simulations (¤) for
V0 = 8, r = 1, and different system sizes, parameterized by the
Hilbert space dimension of the κ = 0 subspaces. The error bars
indicate the width of the revival at half maximum. Inset: scaling of
the numerically measured revival time with the lattice depth V0 for
r = 1. We multiply trev byWx sinceWx also depends on V0 to show
the remaining non-trivial scaling behaviour. Shown are N,L = 4, 4
(dimH = 86, ¤), N,L = 5, 5 (dimH = 402, ♦), N,L = 6, 7
(dimH = 3876, △) N,L = 7, 7 (dimH = 11076, ×). Filled
symbols are trev expected from (12) for the same system, and the
thick dashed line again shows our universal result (11).

Tres. When the interaction is turned on, the weight of states

with many contributions from double or higher occupancies

of sites decrease significantly (since they are energetically

disfavoured) and their quasi-energies are slightly shifted. But,

surprisingly, only a limited number of additional coefficients

cn contributes significantly in the eigenbasis expansion even

for g 6= 0. The observed collapse and revival signal is

now determined by a few expansion coefficients that are

much larger than the others. If we focus on the three

largest coefficients, denoted as c1, c2, c3 and sorted by their

quasi-energies ε1, ε2, ε3, we find that the latter are shifted

by the interaction by different amounts. The differences

between neighbouring quasi-energies, ω12 = |ε2 − ε1| and
ω23 = |ε3 − ε2| (shown for the example g = 0.2 in figure 3),

lead to a beating between two oscillations with periods

T12, T23 ≈ Tres and the revival time will thus be given by

trev ≈
2π

ω23 − ω12
=

T12T23

T23 − T12
. (12)

This estimate requires a numerical diagonalization but gives

a clear physical interpretation to the revival time observed in

a specific realization with N atoms on L lattice sites. Thus,

taking (11) and (12) together, we have an understanding of

the general physical mechanism triggering the collapse and

revival of the resonant two-band oscillations.

We compare our prediction for the revival time, (11) and

(12), to actual numerical simulations shown in figure 4. We

find that (11) gives the right order of magnitude for the revival

in a specific realization, and, in particular, it shows the correct

scaling behaviour with the depth of the optical lattice (shown

in the inset of figure 4). Additionally, figure 4 shows that the

corrections for specific sizes of the system are well accounted

for by (12), which only slightly underestimate the revival

times by a few per cent. This deviation could be corrected

by including more than three participating states, extending in

this manner the arguments which lead to (12).

In an experimental realization, the shorter the collapse

time tcoll, the easier it could be observed, and for an estimate

we make use of the fact [19, 21] that the collapse time is

proportional to the revival time

tcoll =
1

π(1n)2
trev, (13)

where 1n denotes the width of the distribution of coefficients

cn necessary to expand the initial state in the eigenbasis.

For the specific example of V0 = 5, g = 0.1, r = 1

and N = 5 = L, we find 1n ≈ O(1) for the width of

the distribution (i.e. the g 6= 0 couplings include just one

or very few additional states as in the derivation of (12)

above), such that we estimate trev/tcoll ≈ 3 compared to

trev/tcoll ≈ 5.7± 0.1 found numerically.
In this work, we focused on realizations with ultra-cold

atoms in a tilted periodic potential, and the observed effect

can be manipulated by engineering the potential [1, 11] or the

two-body interaction [4]. Specifically, the revival time (11)

depends sensitively on parameters as the hopping strength and

the external force close to the zeros of the Bessel function

in (11). This is analogous to already realized manipulations

by time-dependent forces as predicted by [22] and realized in

[23]. The observation of Bloch oscillations over thousands of

periods and a fine control on the two-body interaction have

already been demonstrated experimentally [3]. Therefore,

the collapse and revival of resonant inter-band oscillations

predicted here should be accessible in such state-of-the-art

experiments. We finally remark that the collapse and revival

phenomena discussed in this section have their origin (see

figure 1) in the degradation (due to interactions) of single

particle inter-band oscillations. So, even if there are analogies

to the collapses and revivals observed in other experiments

[2, 6, 24], the collapse-revival oscillations reported there arise

from the interaction within a single band. Therefore, in

contrast to our results, those oscillations would not at all occur

when the lower band interaction is suppressed, equivalent to

Wa = 0 in the model discussed here.

4. Summary

We studied the coupling between two energy bands in a two-

band Bose–Hubbard model with an additional tilting force.

The force can lead to a strong coupling of the bands and we

found strong resonances in the inter-band oscillations in this

lattice model. Furthermore, the two-particle interaction leads

to a collapse and revival of the resonant inter-band oscillations.

Here, we made predictions for the relevant time scales which

were verified numerically.

A closed two-band system is an idealization, but it can

approximately be realized in various parameter regimes with

ultra-cold atoms [4] using different techniques such as, e.g.,

superlattices [11]. In addition, the use of Feshbach resonances

allows a complete control and fine tuning of the interaction

strength [3] needed to test our predictions. Our work is an

important first step in going beyond ground-band physics and

accessingmore degrees of freedom in bosonic ultra-cold gases.
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A comprehensive study of the tunneling dynamics of a Bose-Einstein condensate in a tilted periodic potential
is presented. We report numerical and experimental results on time-resolved measurements of the Landau-Zener
tunneling of ultracold atoms introduced by the tilt, which experimentally is realized by accelerating the lattice. The
use of different protocols enables us to access the tunneling probability, numerically as well as experimentally,
in two different bases, namely, the adiabatic basis and the diabatic basis. The adiabatic basis corresponds to the
eigenstates of the lattice, and the diabatic one to the free-particle momentum eigenstates. Our numerical and
experimental results are compared with existing two-state Landau-Zener models.
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I. INTRODUCTION

Quantum transport is an essential topic in solid-state
physics and electronic applications. Bloch oscillations,
Landau-Zener (LZ) tunneling, and Wannier-Stark ladders
[1–9] are fundamental quantum effects occurring in a system
of electrons moving in a periodic potential and driven by an
electric field. Due to complications such as impurities, lattice
vibrations, and multiparticle interactions, clean observations of
these effects have been difficult [10]. In recent years, ultracold
atoms and Bose-Einstein condensates in optical lattices have
been increasingly used to simulate solid-state systems and the
above-mentioned phenomena [6–8,11–16].

Optical lattices are easy to realize in the laboratory, and
their parameters can be perfectly controlled both statically
and dynamically, which makes them attractive as model
systems for crystal lattices. The LZ model for transitions [1,2]
between two energy states at an avoided level crossing is
one of the few exactly solvable examples of time-dependent
quantum mechanics. LZ transitions have been investigated
for Rydberg atoms [17], molecular nanomagnets [18,19],
field-driven superlattices [20], current-driven Josephson junc-
tions [21], Cooper-pair box qubits [22], and using light
waves in coupled waveguides [23–25]. While the asymptotic
tunneling probability can be calculated accurately [26] and
has an intuitive interpretation as a statistical mean value of
experimental outcomes, the concept of tunneling time and its
computation are still the subject of debate even for simple
systems [21,27–31]. The tunneling time is the time required
for a state to evolve into an orthogonal state.

In this paper, we present numerical as well as experimental
results on the Wannier-Stark system. This system is realized
with ultracold atoms, forming a Bose-Einstein condensate,
in an optical lattice subjected to a static tilting force [8].
The tilt is experimentally implemented by accelerating the
optical lattice [6,7,13,15,32–36]. We explore the LZ tunneling
between the Bloch bands of a Bose-Einstein condensate in

*g.tayebirad@thphys.uni-heidelberg.de

such an accelerated lattice. The lattice depth controls the
tunneling barrier, while its acceleration controls the time
dependence of the Hamiltonian. At large accelerations, LZ
tunneling leads to significant interband transitions for the
condensate [15,26]. This tunneling process is detected by
measuring the atomic momentum distributions.

Following our previous work, in which we presented
time-resolved observations of LZ tunneling [36], in the present
article we report more detailed investigations. We measure the
time dependence of the tunneling probability by performing
a projective quantum measurement on the eigenstates in a
given basis of the Hamiltonian describing the Bose-Einstein
condensate within the optical lattice. Our measurements
resolve the steplike time dependence of the occupation
probability. Using different numerical as well as experimental
protocols, we are able to perform our calculations and
experiments both in the adiabatic basis of the lattice eigenstates
and in the diabatic basis of the free-particle momentum
eigenstates. We present theoretical and experimental results
which clearly show that the time dependence of the transition
probability exhibits a steplike structure with a finite transition
time and oscillations with a finite damping time, all of them
depending on the choice of the measurement basis.

The paper is organized as follows. Section II collects the
necessary theoretical background to describe the probability
and transition time for the LZ transition tunneling. The limits
one faces in applying this theory to the Wannier-Stark problem,
and the essential theoretical and numerical tools to describe
our time-resolved measurements are reported in Sec. III.
Section IV presents numerical and experimental data. We
discuss and summarize our results in Sec. V.

II. SURVIVAL PROBABILITY AND TRANSITION TIME

A. LZ theory in a nutshell

Quantum-mechanical systems having two discrete energy
levels are omnipresent in nature. For crossing levels, there
is a possibility of a transition if the degeneracy is lifted
by a coupling and the system is forced across the resulting

1050-2947/2010/82(1)/013633(8) 013633-1 ©2010 The American Physical Society
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avoided crossing by varying the parameter that determines
the level separation. This phenomenon is known as LZ
tunneling. LZ theory, developed in the early 1930s in the
context of atomic scattering processes and spin dynamics in
time-dependent fields [1–4], demonstrated that transitions
are possible between two approaching levels as a control
parameter is swept across the point of minimum energy
separation. The phase accumulated between the incoming
and outgoing passages varies with, e.g., the collision energy,
giving rise to Stückelberg oscillations in the populations [3].

In its basic form, the LZ problem can be described by a
simple two-state model and allows for a simple expression
for the transition probability. The LZ Hamiltonian for a single
crossing taking place at time t = 0 can be written as the
following 2 by 2 matrix:

HLZ =
(

αt �E/2

�E/2 −αt

)
. (1)

The off-diagonal term, �E/2, is the coupling between the
two states, and α is the rate of change of the energy levels
in time. The dynamics of the system can be measured in
different bases: diabatic and adiabatic. The diabatic basis is
the eigenbasis of the bare states of Eq. (1) when there is no
off-diagonal coupling. The adiabatic basis, on the other hand,
is the basis of a system with a finite �E/2 coupling between
the two states. The Hamiltonian has two adiabatic energy levels
E± = ± 1

2

√
(2αt)2 + �E2.

Assuming that the system is initially, at t → −∞, in the
ground energy level E− and if the sweeping rate is small
enough, it will be exponentially likely that the system remains
in its adiabatic ground state E− at t → +∞. The limiting
value of the adiabatic LZ survival probabilities (for t going
from −∞ to +∞) is [26]

Pa(∞) = 1 − exp

(
−π

γ

)
, (2)

where we introduce a dimensionless parameter, the so-
called adiabaticity parameter γ = 4h̄α/�E2. This survival
probability is valid for both E− and E+ initial states, and
the same equation is valid for the diabatic case. A small
adiabaticity parameter corresponds to a small velocity of the
state displacement along the energy scale compared to �E2,
such that the system follows the adiabatic trajectory of Fig. 1.

0

2αt/∆E

0

E
/∆

E

E
+

E
-

FIG. 1. Energy levels as a function of time. The dashed lines
show the so-called diabatic levels, i.e., the energies of states in the
absence of the interaction. The solid lines demonstrate the so-called
adiabatic levels, i.e., the eigenstates of the system corresponding to
the instantaneous Hamiltonian.

Thus, there is a large coupling between the diabatic states; and
at the avoided crossing at t = 0, an almost complete transition
from the initial diabatic state to the final diabatic state takes
place. On the other hand, for a large value of the adiabaticity
parameter γ , the coupling between the two states is small, and
consequently the system remains in its initial state following
the diabatic trajectories of Fig. 1.

B. Jump times

A careful study of the transition from an initial state to
a final state can reveal the time required to complete the
transition. Moreover, in the case of multiple level crossings, as
in our experimental realization of Ref. [36], it is necessary to
know whether a transition has been completed before the next
avoided crossing. The LZ approach may be applied when a
transition between two coupled quantum states takes place in a
small time interval around the avoided crossing and successive
crossings are independent from each other.

Analytical estimates for the LZ transition times have been
derived in Refs. [29,30] using the two-state model of Eq. (1).
In a given basis, e.g., adiabatic or diabatic, different transition
times are obtained. Vitanov [29] calculated the time-dependent
diabatic and adiabatic survival probability at finite times.
The LZ transition times were derived in [30] using some
exact and approximate results for the transition probability.
Figure 2 shows a typical time dependence of the adiabatic
survival probability, similar to that predicted in [29], that we
measured for Bose-Einstein condensates in optical lattices for

1.0

0.8

0.6

0.4

0.2

P
a(

t)

1.00.80.60.40.20.0

t / TB

FIG. 2. (Color online) Time-resolved measurements of the adia-
batic survival probability for the Bose-Einstein condensate tunneling
in an optical lattice at fixed dimensionless force F0 = 1.197 and
different lattice depths: V/Erec = 2.3 (filled squares), 1.8 (open
circles), 1 (open squares) and 0.6 (filled circles); all parameters are
introduced in detail in Sec. III A. For the Bose-Einstein condensate
evolution the crossing time is t = TBloch/2, where the step of the
survival probability is one-half of the final value. The dashed and
dot-dashed lines are the results of numerical simulations using the
cutoff and adiabatic method, respectively (see Sec. III C). The lattice
depth for the numerical simulations was corrected by up to ±15%
with respect to the experimentally measured values to give the best
possible agreement.
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experimental parameters to be discussed in Sec. IV. Notice
that in the Bose-Einstein condensate case, the crossing occurs
at the time t = TB/2 defined below. The t → ∞ asymptotic
value is given by Eq. (2).

The LZ jump time in a given basis can be defined as the time
after which the transition probability reaches its asymptotic
value. From this definition, one can expect to observe a
steplike structure, with a finite width, in the time-resolved
tunneling probability, as in Fig. 2. Because the step is not
very sharp, it is not straightforward to define the initial and
final times for the transition. It is even less obvious how to
define the jump time for both small and large couplings. Some
possible choices have been used by Lim and Berry [28] and
Vitanov [29,30]. The problem is even more complicated when
the survival probability shows an oscillatory behavior on top of
the step structure as seen in Fig. 2, which shows experimental
and numerical results for a single LZ transition measured in
the adiabatic basis (the numerical and experimental methods
will be described in detail later in this paper). The oscillations
give rise to other time scales in the system, namely, an
oscillation time and a damping time of the oscillations
appearing in the transition probability after the crossing.
Therefore, a measurement of the tunneling time depends very
much on how these times are defined and also which basis is
considered.

In [29], the jump time in the diabatic and adiabatic bases is
defined as

τ jump
x = Px(∞)

P ′
x(0)

. (3)

where x = d or a, and Pd (Pa) is the transition probability
between the two diabatic (adiabatic) states. P ′

x(0) denotes the
time derivative of the tunneling probability evaluated at the
crossing point. The diabatic jump time τ

jump
d ≈ √

2πh̄/α is
almost constant for large values of the adiabaticity parameter
γ [29]. Instead, for γ � 1 it decreases with increasing γ ,
τ

jump
d ≈ 2

√
h̄(γα)−1 [29]. In the adiabatic basis, when γ is

large, the transition probability resembles the one of the
diabatic basis with an equal jump time. For a small adi-
abaticity parameter, because of the oscillations appearing
on top of the transition probability step structure, it is not
straightforward to define the initial and final times for the
transition. Vitanov [29] defines the initial jump time as the
time t < 0 at which the transition probability is very small;
i.e., Pa(τ ) = εPa(∞), where ε is a proper small number. The
final time of the transition t > 0 is defined as the time at which
the nonoscillatory part of Pa(τ ) is equal to (1 + ε)Pa(∞).
Using these definitions, Vitanov derived that the transition
time in the adiabatic basis depends exponentially on the
adiabaticity parameter, τ

jump
a ≈ (4/ε)1/6 γ −1/3exp [π/(6γ )]√

h̄/α, [29].
In principle, the experimental and numerical methods

presented in the following could be used for a quantitative
study of the tunneling time (or jump time) as a function
of the parameters of the system. For the purposes of the
present paper, however, we concentrate on a careful analysis
of the possibilities and limitations of our methods, and in
particular on measurements of LZ tunneling in different
bases.

III. LZ IN AN OPTICAL LATTICE POTENTIAL

A. Wannier-Stark problem and LZ limit

We generalize the two-level LZ theory to study the temporal
evolution of ultracold atoms loaded into a spatially periodic
potential subjected to an additional static force in the presence
of negligible atom-atom interactions, as in the experimental
conditions [36]. The dynamics of ultracold atoms in a tilted
optical lattice can be described by the well-known Wannier-
Stark Hamiltonian [9]

H̃ = − h̄2

2M

d2

dx2
+ V

2
cos(2kLx) + FLZx, (4)

where M is the atomic mass, V is the depth of the optical
lattice with the spatial period dL = λL/2 determined by the
laser wavelength λL, kL = 2π/λL is the wave number of the
laser light creating the periodic potential, and FLZ is the Stark
force. The characteristic energy scale of the system is the recoil
energy, which is defined as Erec = π2h̄2/2Md2

L.
The atomic motion produced by the force FLZ may be

interpreted in the upper left energy diagram of Fig. 3, where for
the case of FLZ = 0 the atomic energies E(q) for the n = 0,1,2
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FIG. 3. (Color online) Band structure in the optical lattice
potential and experimental protocols for measuring LZ dynamics
in the adiabatic and diabatic bases. After the initial loading into the
lattice and acceleration for a time tLZ (top), measurements of the
instantaneous populations in the two states are performed (bottom)
as explained in the text. In the top figures, the adiabatic (solid lines)
and diabatic (dashed lines) energies for an optical lattice of depth
V0 = 1 are shown.
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lower bands are represented versus the quasimomentum q

within the Brillouin zone of width pB = 2prec = 2πh̄/dL

[15,32]. Under the action of a constant force FLZ, the
quasimomentum of a condensate initially prepared at q = 0
in the n = 0 band scans the lower band in an oscillating
motion periodically with the Bloch period TB = 2h̄(FLZdL)−1.
At the edge of the Brillouin zone, where a level splitting �E

increasing with V [26] takes place, tunneling of the condensate
to the n = 1 energy band may occur.

The Wannier-Stark Hamiltonian of Eq. (4) can be written
in dimensionless units [26,37]

H0 = −1

2

∂2

∂x2
0

+ V0

16
cos(x0) + F0x0

16π
, (5)

where x0 = 2πx/dL, and energy and time are rescaled by
H0 = H̃ /(8Erec) and t0 = 8tErec/h̄, respectively. Moreover,
in dimensionless units, the lattice depth is given by
V0 = V/Erec and the force by F0 = FLZdL/Erec. The
translational symmetry of the given Hamiltonian, broken by
the static force, is recovered using a gauge transformation.
Substituting ψ̃(x0,t0) = exp(−iF0t0x0/16π )ψ(x0,t0), the
Schrödinger equation reads i∂ψ/∂t0 = H (t0)ψ , with H (t0)
the time-dependent Hamiltonian

H (t0) = 1

2

(
p̂ − F0t0

16π

)2

+ V0

16
cos(x0), (6)

and the momentum operator p̂ = −i∂/∂x0. In the following,
we analyze the Hamiltonian of Eq. (6) in the momentum basis.
In order to decompose the Hilbert space into independent
subspaces, we use the Bloch decomposition, and for that
we identify the momentum eigenstates of the free particle
(V0 = 0 = F0) for fixed quasimomentum q within the
Brillouin zone, i.e., p = q + n, p and q being indices in the
momentum and quasimomentum representations and n ∈ Z.
To calculate the time evolution of any momentum eigenstate
|p〉 = |q + n〉, we only need the Hamiltonian Hq acting on
the subspace with a given quasimomentum index q, as there
is no transition between states with different q, i.e.,

Hq = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0

(q̃ − 1)2 V0/16

V0/16 (q̃)2 V0/16

V0/16 (q̃ + 1)2

0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where q̃ = q − F0t0/16π .
The full dynamics of the Wannier-Stark system can be

locally approximated by a simple two-state model

hq = 1

2

(
q̃2 V0/16

V0/16 (q̃ + 1)2

)
. (8)

hq can be brought into the form of the Hamiltonian given by
Eq. (1) by properly shifting the diagonal parts (e.g., shifting
away the quadratic term in time t0). For q = 0 we thus
immediately obtain

1

8

(
2F0Erect0/πh̄ V0/4

V0/4 −2F0Erect0/πh̄

)
. (9)

The α, �E, and γ introduced in the LZ model of
Eq. (1) can be expressed in terms of our system parameters:
α = 2F0E

2
rec/πh̄ = 4Erec/(πTB), �E = V0Erec/2, and γ =

32F0/πV 2
0 . The LZ theory predicting the asymptotic behavior

of the tunneling probability can be used as a very good
approximation for our system for times far enough from the
avoided crossings. However, there are some limiting cases and
experimental parameters for which the simplified two-state
model is not a good approximation for the Wannier-Stark
system. The discrepancy is large for lattice depths larger
than the energy scale Erec of the system (V0 	 1), where
the gap between energy bands increases leading to quasiflat
bands and localized eigenstates. Therefore, several momentum
eigenstates contribute with a non-negligible amount to the
lowest energy eigenstate, and one would need to take into
account more components in the Hamiltonian matrix.

B. Initial conditions

Before analyzing the experiment results, we need to
address an additional problem, the finite coupling duration,
as in [30]: an experiment necessarily takes a finite time for
the measurement, whereas the standard LZ theory assumes
that the time taken for the transition runs from −∞ to ∞. The
experimental finiteness of the sweep time TB implies that for
the initial state at a finite distance from the transition point,
the diagonal and off-diagonal matrix elements in the system
Hamiltonian are comparable. The experiment we are dealing
with typically operates in the regime defined in [30] as a large
time, meaning that the time intervals from the turn-on and the
turn-off times to the crossing are larger than the jump time.
The presence of a jump time comparable to the Bloch time
may modify the temporal evolution of the survival probability
for the two mechanisms discussed in the following. Because at
large γ the ratio τ

jump
d /TB between jump time and sweep time

is given by π
√

F0/2, large F0 values may produce deviation
from the ideal theory of [29].

At t = −∞ the diabatic and adiabatic states coincide, and
hence, the preparation of the system in its ground state is
unambiguous. On the other hand, at a finite distance from
the transition point, the diabatic and adiabatic states do not
coincide. In a numerical approach any chosen initial state
can be evolved given the proper Hamiltonian, but from an
experimental point of view the system will be prepared in a
well-defined initial state, which depends both on the parameter
values and on the preparation protocol. It is not obvious
that this initial state can be chosen at will: most likely, the
experimental initial state will be the one corresponding to the
ground state of the complete Hamiltonian, i.e., the adiabatic
lower energy state, at a time equal to the time when the
sweep starts. The comparison between experiments and theory
performed for different initial states should clarify this issue,
because the evolution for different initial states is markedly
different, when observed both in the diabatic basis and in
the adiabatic basis, see Figs. 4(a) and 4(b) corresponding
to typical Bose-Einstein condensate experimental parameters.
The results of Fig. 4 show that for experimentally accessible
parameters, the two evolutions do not coincide in both
the diabatic and adiabatic bases [see Figs. 4(a) and 4(b),
respectively]. We have verified that the results of Fig. 4
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FIG. 4. Comparison between the time evolution of the Bose-
Einstein condensate survival probability, in the (a) diabatic and (b)
adiabatic basis, for different initial conditions, prepared at a temporal
distance �t = TB/2 from the crossing point. The dashed line is
the evolution in a possible experimental setup, i.e., the evolution
following an initial preparation in the ground state of the adiabatic
basis; the solid line is the evolution following an initial preparation
in the ground state of the diabatic basis. Parameters are F0 = 1.197
and V0 = 2.3, corresponding to γ = 2.3, leading to a jump time in
both adiabatic and diabatic bases 1.9 times the Bloch period TB .

following an initial preparation in the ground state of the
diabatic basis (solid lines) coincide with the finite coupling
duration predictions of Ref. [30].

It is not at all obvious that an initial state chosen as the
adiabatic ground state at a finite time from the transition point
(which is likely to be the initial experimental state) should
coincide with the state obtained evolving from t = −∞,
projected onto the adiabatic basis. We computed the survival
probability simulating different Bose-Einstein condensate
initial states, see Fig. 5. For our experimental parameter
set, the discrepancy is not very large but certainly important
for a precise description of the temporal evolution of the
tunneling. Therefore, the approach of [29] yields some elegant
theoretical results for the LZ transition, but care is needed in
comparing them with the experiment due to the presence of the
additional time scale connected to the finite distance between
the experimental starting point and the transition point.

C. Numerical calculation

In [38] some of us have introduced an easily computable
quantity to determine in a good approximation the survival
probability in the adiabatic basis:

Pa(t) =
∫ ∞

−pc

dp|�(p,t)|2, (10)

where �(p,t) is the Bose-Einstein condensate wave function
in momentum representation, and pc � 3prec is an ad hoc
cutoff. Equation (10) can be interpreted as the projection of
�(p,t) onto the support of the initially prepared condensate
at t = 0 (in the presence of the optical lattice but at FLZ = 0),
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FIG. 5. Comparison between the time evolution of the Bose-
Einstein condensate adiabatic survival probability, starting from
initial ground states prepared at different time distances from the
transition point. Survival probabilities measured for F0 = 1.197 and
V0 = 0.3 in (a), and for F0 = 1.197 and V0 = 3.0 in (b). The dotted
lines show the evolution obtained evolving the survival probability
from the ground state in the adiabatic basis at t = −∞; the solid lines
illustrate the evolution obtained evolving the survival probability from
the ground state which simulates a possible experimental initial state,
i.e., the ground state in an adiabatic basis, at a finite time from the
transition point.

which is illustrated in Fig. 6(a). Since Eq. (10) measures the
decay only after the Bose-Einstein condensate wave packet
�(p,t) has extended beyond −pc [= −3prec in Fig. 6(a)], we

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
p/2p

rec

10
-5

10
-4

10
-3

10
-2

|Ψ
(p

)|2

0 1 2 3 4 5 6 7 8 9 10

t/T
B

0.01

0.1

0.2

0.5

1

P
a(t

)

(a)

(b)

FIG. 6. (Color online) (a) Momentum distribution at time
t = 10TB (dashed lines) starting from the initial momentum dis-
tribution (solid lines) under the action of a force directed toward
negative p values. The vertical dash-dotted line shows the cutoff
value pc = 3prec in the definition of Eq. (10). (b) Temporal evolution
of the survival probability in the adiabatic basis using the mentioned
definition. Simulation parameters: V0 = 2.07, F0 = 1.197.
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must resort to the acceleration theorem [6,26] to identify time
t with t − TB , i.e., we must rescale time by the traversal time
of the Brillouin zone TB .

While many previous experimental results proved in very
good agreement with simulations based on Eq. (10), see
[34–36], a better numerical method is needed for the new
generation of experiments reported here. The dash-dotted
lines in Fig. 2 were produced using Pa(t) of Eq. (10). These
simulations well reproduce the height of the steps in agreement
with the LZ prediction given in Eq. (2). They do not, however,
reproduce the oscillations of the experimentally measured
survival probability, due to the artificial cutoff used for
evaluating Pa(t). While the sequence of steps—corresponding
to a sequence of LZ tunneling events—is observable in
Fig. 6(b), no oscillations are visible. To reproduce the
oscillatory behavior of the experimental data in Fig. 2, instead
of Eq. (10) we determine Pa(t) in the following way: |φ(n,q)〉
shall denote the band solution for the ground band n = 0 as
shown in the lower left panel of Fig. 3. Then the adiabatic
survival probability is just the projection of the condensate
wave function �(p,t) onto φ(n = 0,q) integrated over the full
Brillouin zone, i.e.,

Pa(t) =
∫ prec

−prec

dq|〈�(p = q,t)|φ(0,q)〉|2. (11)

The survival probabilities Pa(t) shown in Figs. 4 and 5 have
been calculated in this way.

On the other hand, following the procedure sketched in the
lower right panel of Fig. 3, the survival probability determined
in the diabatic basis of free-momentum eigenstates is given by

Pd (t) =
∫ prec

−prec

dq|〈�(p = q,t)|p = q〉|2, (12)

with p = q within the first Brillouin zone in the notation of
Sec. II A. Equation (12) is used to simulate the experimental
results of Figs. 7(a) and 7(b) presented in the next section.

IV. RESULTS

In our experiments we realized the Wannier-Stark Hamilto-
nian of Eq. (4) with Bose-condensed rubidium atoms inside an
optical lattice [13,32–36]. Initially, we created Bose-Einstein
condensates of 5 × 104 87Rb atoms inside an optical dipole
trap (mean trap frequency around 80 Hz). A one-dimensional
optical lattice created by two counter-propagating, linearly
polarized Gaussian beams was then superposed on the Bose-
Einstein condensate by ramping up the power in the lattice
beams in 100 ms. The wavelength of the lattice beams was
λ = 842 nm, leading to a sinusoidal potential with lattice
constant dL = λ/2 = 421 nm. A small frequency offset �ν(t)
between the two beams could be introduced through the
acousto-optic modulators in the setup, which allowed us to
accelerate the lattice in a controlled fashion and hence, in
the rest frame of the lattice, to subject the atoms to a force
FLZ = MaLZ with aLZ = dL

d�ν(t)
dt

.

In several previous experiments [32–35], we had already
measured the LZ tunneling probability by first loading the
Bose-Einstein condensate into a lattice, then accelerating the
lattice for one Bloch period (i.e., across the zone edge and then
to the center of the second Brillouin zone) and subsequently

measuring the number of atoms left in the fundamental band.
This was done by accelerating the lattice further with a smaller
value of asep and a larger lattice depth Vsep chosen such as to
ensure that atoms in the fundamental band did not undergo
LZ tunneling at subsequent crossing of the zone edge and that
atoms in higher bands tunneled with almost 100% probability.
In that way it was possible to separate atoms in the fundamental
band in momentum space so that after a time of flight they
could be easily measured.

The time-resolved measurements we are interested in for
the purposes of the present paper initially followed the same
procedure. Rather than accelerating the lattice for a full Bloch
period, however, we had to interrupt the LZ tunneling event
at some time t �= nTB in general. The exact protocol then
depended on whether we wanted to measure in the adiabatic
or in the diabatic basis.

For measurements in the adiabatic basis, we proceeded as
follows, see Fig. 3. After loading the Bose-Einstein condensate
into the optical lattice, the lattice was accelerated with
acceleration aLZ for a time tLZ. The lattice thus acquired a
final velocity v = aLZtLZ. At time t = tLZ the acceleration was
abruptly reduced to a smaller value asep and the lattice depth
was increased to Vsep in a time tramp � TB . These values were
chosen in such a way that at time t = tLZ the probability for
LZ tunneling from the lowest to the first excited energy band
dropped from between ≈0.1 and 0.9 (depending on the initial
parameters chosen) to less than ≈0.01, while the tunneling
probability from the first excited to the second excited band
remained high at about 0.95. This meant that at t = tLZ the
tunneling process was effectively interrupted, and for t > tLZ

the measured survival probability P (t) = N0/Ntot (calculated
from the number of atoms N0 in the lowest band and the
total number of atoms in the condensate Ntot) reflected the
instantaneous value P (t = tLZ).

The lattice was then further accelerated for a time tsep

such that aseptsep ≈ 2mprec/M (where typically m = 2 or 3).
In this way, atoms in the lowest band were accelerated to a
final velocity v ≈ 2mprec/M , while atoms that had undergone
tunneling to the first excited band before t = tLZ underwent
further tunneling to higher bands with a probability >0.95
and were, therefore, no longer accelerated. At time tsep the
lattice and dipole trap beams were suddenly switched off and
the expanded atomic cloud was imaged after 23 ms. In these
time-of-flight images, the two velocity classes 0 and 2mprec/M

were well separated and the atom numbers N0 and Ntot could
be measured directly. Since the populations were effectively
“frozen” inside the energy bands of the lattice, which represent
the adiabatic eigenstates of the total Hamiltonian of the system,
this experiment measured the time dependence of the LZ sur-
vival probability Pa in the adiabatic basis, see Eq. (11) above.

The results of our measurements in the adiabatic basis are
summarized in Fig. 2. The steplike behavior of the survival
probability around t = 0.5TB is clearly visible, as well as
the finite width of the step, which demonstrates that our
experimental protocol does, indeed, allow us to access the
dynamics of the LZ transition and the jump time associated
with that transition. Also shown in the figure are the results
of numerical simulations using the cutoff and the adiabatic
survival methods described above in Sec. III C. As expected,
both methods reproduce the step with a finite width and
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FIG. 7. (Color online) Time-resolved measurements of LZ tun-
neling in the diabatic basis. (a) Fixed force F0 = 1.197 with different
lattice depths V0 = 1 (filled circles), 1.8 (open circles), 2.3 (filled
squares), and 4 (open squares). (b) Fixed lattice depth V0 = 1.8 with
different forces: F0 = 2.394 (open circles), 1.197 (filled squares),
and 0.599 (open squares). The dashed lines are the results of
numerical simulations based on Eq. (12), which nicely reproduce
the experimental data.

the steady-state value of the survival probability for long
times. The slight oscillations of the survival probability for
t > 0.5TB , however, are only visible in the results computed
according to Eq. (11) above. In fact, the amplitude of these
oscillations is larger in the numerical simulations than in
our experimental data. This might indicate that our protocol
for freezing the instantaneous populations in the ground and
excited bands is not perfect. Indeed, we found that a delicate
balance between the accelerations and lattice depths for the
separation phase was necessary in order to ensure that the
populations after the separation phase faithfully reproduced
those at t = tLZ, which was tested by choosing two extreme
values for aLZ which gave theoretical survival probabilities of
approximately 0 and 1, respectively, and then verifying that
these values were measured in the experiment. In practice, the
parameters for the separation phase were optimized in this way
for one set of the LZ parameters and then kept constant as V

was varied in Fig. 2.
For measurements in the diabatic basis, the experimental

protocol was even simpler, see Fig. 3. As in the adiabatic
case, after the initial loading phase the lattice was accelerated

with acceleration aLZ for a time tLZ. At that point the atomic
sample was projected onto the free-particle diabatic basis
by instantaneously (within less than 1 µs) switching off the
optical lattice. After a time of flight, the number of atoms in
the v = 0 and v = 2prec/M momentum classes are measured
and from these the survival probability (corresponding to the
atoms remaining in the v = 0 velocity class relative to the
total atom number) is calculated. Figure 7 shows the results
of such measurements, together with numerical simulations
based on Eq. (12). As in the adiabatic case, a step of the
survival probability around t = 0.5 TB is clearly seen, as well
as strong oscillations for t > 0.5 TB . These oscillations are
much stronger and visible for a wider range of parameters in
the diabatic basis than in the adiabatic basis (see the results
for V0 = 2.3 in Fig. 2, which is confirmed by our numerical
simulations).

V. CONCLUSIONS

Ultracold atoms in optical lattices provide an ideal model
system for time-resolved studies of LZ tunneling. The com-
plete control over the parameters of the lattice makes it
possible to measure the tunneling dynamics in the adiabatic
and diabatic bases by using different measurement methods.
Our results confirm the existence of a finite temporal width for
the transition in both bases and of strong oscillations of the
survival probability in the diabatic basis. Both of these features
are backed up by numerical simulations taking into account
details of the experimental protocol.

Our findings pave the way toward more quantitative studies
of the tunneling time for LZ transitions, which are of current
interest in the context of optimal quantum control and the
quantum speed limit [39]. Also, it should be possible to
measure the tunneling dynamics in arbitrary bases by inducing
a rotation of the 2 × 2 LZ matrix through variations in the
lattice depth during the transition. With an appropriate choice
of this variation, one could then, for instance, realize the
superadiabatic basis proposed by Berry [28].
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We study the tunneling decay of a Bose-Einstein condensate from tilted optical lattices within the mean-field
approximation. We introduce a method to calculate ground and excited resonance eigenstates of the Gross-
Pitaevskii equation, based on a grid relaxation procedure with complex absorbing potentials. This algorithm
works efficiently in a wide range of parameters where established methods fail. It allows us to study the effects
of the nonlinearity in detail in the regime of resonant tunneling, where the decay rate is enhanced by resonant
coupling to excited unstable states.

DOI: 10.1103/PhysRevA.82.063601 PACS number(s): 03.75.Lm, 03.65.Ge, 03.65.Nk

I. INTRODUCTION

The dynamics of a quantum particle in a periodic potential
subject to an external force is one of the central problems
in solid-state physics. In the field free case all eigenstates
are delocalized over the lattices, leading to transport [1,2].
The application of a constant force leads to a localization of
the eigenstates such that transport is suppressed contrary to
our intuition [3–6]. Instead, the quantum particle performs
the celebrated Bloch oscillations and eventually decays by
repeated Zener tunneling to higher Bloch bands [7–18]. The
most detailed studies of Bloch oscillations and decay have
been carried out with ultracold atoms trapped in optical
lattices. These systems are particularly appealing, because
the dynamics of the atoms can be recorded in situ and all
parameters can be tuned precisely over a wide range. The
external force can be induced by gravity [7], magnetic gradient
fields [8], or accelerating the lattice [9–14]. Decay in strong
fields manifests itself in the pulsed output of coherent matter
waves. The dynamics is even more interesting when the
atoms undergo Bose-Einstein condensation and interactions
have to be taken into account. For low temperature and high
densities, the dynamics of the atoms can be described by the
celebrated Gross-Pitaevskii equation (GPE) with astonishing
accuracy [19]. In this treatment, interactions are incorporated
by a nonlinear mean-field potential, which is proportional
to the condensate density. The nonlinearity of the equation
alters the dynamics and in particular the decay substantially.
Interactions can lead to a damping of Bloch oscillations
[20], asymmetric Landau-Zener tunneling [10,21,22], or a
bistability of resonance curves [23–25].

Here we study the resonance eigenstates of the GPE(−h̄2

2m

d2

dx2
+ V (x) + Fx + g|ψ(x)|2

)
ψ(x)

= (µ − i�/2)ψ(x) (1)

with a periodic potential V (x + d) = V (x) and a static force
F > 0, which is known as a Wannier-Stark (WS) potential.
The imaginary part � of the eigenenergy gives the decay rate
of the condensate. A comprehensive review of the localized
eigenstates, the WS resonances, can be found in Ref. [17]. In

the following we assume a cosine potential V (x) = V0 cos(x)
except for Sec. IV, where a bichromatic lattice is considered.
Throughout this article we use scaled units defined by
x̃ = 2πx/d such that the period of the potential is 2π and
h̄ = m = 1. The energies, µ and V0, are then given in units of
8ER , where ER = (h̄2π2)/(2md2) is the recoil energy. If not
stated otherwise we fix the strength of the lattice as V0 = 1 in
scaled units.

In this article we introduce an algorithm for the computation
of nonlinear resonance states based on a grid relaxation method
with a complex absorbing potential (CAP). This algorithm
converges in a wide parameter range and is applicable even
to situations of many degenerate energy levels, such as the
WS system at resonance condition (see below). It is thus
capable to describe genuine nonlinear phenomena such as
bistability, which pose a major difficulty to other methods
as for instance nonlinear complex scaling (CS) [26–31]. In
addition, it is more efficient and easier to implement and, unlike
previous methods, is not restricted to ground-state calculations
but can also compute excited states. Note that our approach
differs from the CAP method used in Refs. [27,32] because
the latter does not use a grid relaxation but relies on a basis
set expansion. Although such expansions work well for simple
single-well potentials, they cannot easily handle complicated
problems like the Wannier-Stark system studied in the present
article, which requires the use of as much as 500 basis states
even in the linear (noninteracting) case [33]. Our method is
applied to study the decay of a Bose-Einstein condensate in
the strongly nonlinear regime. Nonlinear effects are crucial
in the regime of resonantly enhanced tunneling (RET). In
this case a metastable WS resonance becomes energetically
degenerate with an excited, less stable state, which can increase
the decay rate by orders of magnitude. This phenomenon
is most pronounced in deep optical lattices and has been
studied systematically for the linear case in Refs. [16,17].
The nonlinearity shifts the resonance and eventually bends the
resonance peak leading to a bistable behavior.

II. COMPUTATIONAL METHOD

Linear WS resonances can be efficiently calculated with
the truncated shift operator technique introduced in Ref. [33].
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In the nonlinear case, the method of CS has been applied
[26,28–30]. Though satisfactory from a conceptual point of
view, this method has several drawbacks. The implementation
is complicated as it requires switching between different basis
sets as well as different time propagation methods. Further-
more, the calculation of excited states is highly nontrivial,
as the method relies on an imaginary time propagation, and
the convergence is quite slow, especially for weak fields and
close to energetic degeneracies as present in the RET condition
[28,29].

As an alternative, we propose a method based on complex
absorbing potentials (CAP) performed on a finite grid [x−,x+]
in real space. We assume that the resonance wave function is
mainly localized in the interval [x�,xr ] with x− < x� < xr <

x+ and fix the normalization as
∫ xr

x�
|ψ(x)|2dx = 1. For x →

−∞, we apply a CAP of the type

VCAP ∝
{

−i(x/x−)10 x < 0

0 x > 0
, (2)

which only modifies the wave function in the vicinity of the
grid boundary x− making it square integrable. We choose x− to
be quite large (ca. 40 lattice periods) in order to include enough
of the asymptotic behavior of the resonance. The exact size of
the area of integration and the strength η of the CAP must be
chosen such that the results are stable with respect to a small
variation of these parameters (compare the cusp condition in
Ref. [34]). On our finite grid [x−,x+] the boundary conditions
for the wave function read

ψ(x−) = 0, ψ(x+) = 0, ψ ′(x+) = C, (3)

where the last condition is used to control the normalization.
The algorithm starts from the linear case g = 0, for which all
WS resonances can be computed efficiently [33]. Nonlinear
WS resonances in different bands are calculated by choosing
a different initial guess. The nonlinearity is then increased
gradually, using the previous result as initial guess for a
standard boundary value problem (BVP) solver, e.g., the
MATLAB function bvp4c. Applying the BVP solver changes
the normalization of ψ , such that the parameter C has to be
adjusted according to

C → C

/ (∫ xr

x�

|ψ(x)|2dx

)1/2

. (4)
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FIG. 1. (Color online) Test of the algorithm for vanishing nonlin-
earity g = 0. (Left panel) Initial solution |�|2 and complex potential
V (x) = cos(x) + Fx − iη(x/xα)10 with F = 0.135. The inset shows
a magnification in the vicinity of the main peak of the initial solution.
(Right panel) Comparison between the initial solution |�|2 (blue) and
the solution |ψ |2 (red) obtained using a complex absorbing potential.

TABLE I. Decay rates � for the most stable resonance of the
potential V (x) = cos(x), taken from Ref. [28] (CS method) and
computed using the CAP grid relaxation method. Particularly for
small decay rates the new CAP method proves more efficient than the
CS technique.

g F �CS �CAP

0 0.5 1.941 × 10−2 1.941 × 10−2

0.1 0.5 2.180 × 10−2 2.180 × 10−2

0 0.25 7.2 × 10−4 7.104 × 10−4

0.1 0.25 8.4 × 10−4 8.346 × 10−4

0.2 0.25 9.7 × 10−4 9.688 × 10−4

0.25 0.25 1.04 × 10−3 1.041 × 10−3

0.5 0.25 1.48 × 10−3 1.476 × 10−3

0.2 0.15 2.9 × 10−5 2.832 × 10−5

0.2 0.13125 5.7 × 10−5 5.600 × 10−5

This is repeated until the normalization converges to unity. The
nonlinearity is then increased by one step.

The basic features of this algorithm and the effects of the
CAPs are illustrated in Fig. 1 for a tilted cosine potential with
V0 = 1, F = 0.135, and g = 0. The left-hand side shows the
squared magnitude |�|2 of the initial wave function as well as
the real and imaginary part of the potential. The right panel
of Fig. 1 compares the squared magnitudes of the initial wave
function � and the normalized wave function ψ calculated by
the BVP solver for the most stable resonance. We observe a
difference in the asymptotic behavior for x → −∞ which is
caused by the CAP. The shift between the two functions is an
artifact of a slight difference in normalization caused by the
relatively coarse mesh used for the initial solution.

To demonstrate the validity of the CAP algorithm we
compare the calculated decay rates for a cosine potential
for several parameters to complex scaling results, which
themselves were tested against a direct time propagation in
Ref. [28]. The values summarized in Table I show an excellent
agreement over the entire parameter range. Residual numerical
errors are very small; they can mainly be attributed to the
limited computation time for the CS method and reflections
of the matter wave at the CAP. For a further discussion of
CAPs in the simulation of few boson systems, see Ref. [35]
and references therein.

III. RESONANTLY ENHANCED TUNNELING

We use the CAP method to investigate how a nonlinear
interaction affects the decay of a BEC in a tilted optical lattice.
In the weakly interacting regime, the scaling of the decay rate
with the field strength is given by the celebrated Landau-Zener
formula

�(F ) ≈ F exp(π�E2/F ), (5)

where �E is the energy gap between the Bloch bands of the
periodic potential [2,15] and the field strength F determines the
oscillation frequency in the bands [15,17]. Major differences
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FIG. 2. (Color online) Resonantly enhanced tunneling (RET)
of (non-) linear WS resonances. (a) Energies and (b) decay rates
of the two most stable WS resonances in a cosine potential as a
function of the inverse field strength 1/F . (c) Shift of the RET
peaks due to the nonlinear interaction of a BEC for g = +0.02 (◦),
g = −0.02 (�), and g = 0 (- -). Numerical results (symbols) are
compared to a perturbative calculation (solid lines) according to
Eqs. (6) and (8).

arise in the regime of RET. In this case an eigenstate
localized mainly in one of the wells of the potential becomes
energetically degenerate with an exited state in another well,
which can increase the decay rate by orders of magnitude [17].
In the following, we focus on the experimentally studied
regime [11,12], where a modest nonlinearity strongly affects
the decay of the condensate [11,12,18].

RET is illustrated in Figs. 2(a) and 2(b) for the linear case
g = 0, showing the decay rate � and the chemical potential
µ of the two most stable resonances as a function of F . RET
is observed at 1/F ≈ 7.5, where the two energy levels µ(F )
cross. The resonant coupling to the excited states leads to a
pronounced RET peak of the decay rate for the most stable
resonance. Coincidentally, a pronounced dip is observed for
the first excited resonance, which is stabilized by the coupling
to the most stable resonance [17]. The influence of a small
nonlinearity is illustrated in Fig. 2(c). Three main effects are
observed: a shift of the resonance peaks, an increase (decrease)
of the peak decay rate in the ground state for g > 0 (g < 0),
and a deformation of the peak shape.

The shift and the deformation can be qualitatively under-
stood by a perturbative approach [28]. To first order, this
predicts a shift of the real part of the eigenenergy,

�µ(g) ≈ g

∫ xr

x�

|ψg|2|ψg=0|2dx ≈ g

∫ xr

x�

|ψg=0|4dx, (6)

which corresponds to a shift of the field strength according to

�F (g) ≈ ±�µ(g)/(2π ). (7)
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FIG. 3. (Color online) (a) Colormap plot of the decay rates of the
most stable WS resonances in a cosine-potential vs. the field strength
F and the interaction strength g in the vicinity of the first order RET
peak. (b) Position and (c) height of the RET peak vs. the interaction
strength g.

Here, the minus sign holds for the ground and the plus
sign for the excited band. The nonlinear decay rate is then
approximately given by

�g(F ) = �0[F + �F (g)]. (8)

The shift is further investigated in Fig. 3(b), where the decay
rate as well as the peak position is plotted vs. the interaction
strength over a wide parameter range. The perturbative
calculation (6) predicts that the peak position Fres is shifted
with a slope dFres/dg = 0.059 for small values of g, which
is plotted as a green line in Fig. 3(b). This deviates from the
numerically exact results already for small values of g, for
which a linear fit yields a smaller slope of dFres/dg = 0.051.
In agreement with Ref. [28] we thus find that first-order
perturbation theory is insufficient in describing the shift of
the RET peaks quantitatively. Noticeably, the RET peak and
the dip of the decay rate for the first excited resonance always
shift into opposite directions, as shown in Fig. 2(c).

The change in the maximum decay rate is not predicted by
perturbation theory but easily explained phenomenologically.
It is a direct consequence of the interaction as repulsion
between the particles in general leads to a destabilization,
whereas attraction leads to a stabilization of both resonances
and bound states (see Ref. [10] and references therein). This
is further illustrated in Fig. 3(c), where the peak decay rate of
the most stable resonance is plotted as a function of g over a
wide parameter range. Similar effects have been investigated
for several other model potentials [24,26,29,31].

The dependence of the linear and nonlinear RET peaks is
further analyzed in Fig. 4. The upper panel shows the decay rate
�(F ) for different values of the potential strength V0 for g = 0.
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FIG. 4. (Color online) (a) Emergence of the RET peaks: Decay
rate � as a function of the field strength F for different values of the
lattice strength V0 and g = 0. The primal RET peaks analyzed in the
following are marked with a square (�). [(b) and (c)] Scaling of
the peak position Fres and the peak decay rate �res with the strength
of the optical lattice V0 for g = 0 (�) and g = 0.2 (◦).

For shallow lattices, �(F ) decreases monotonically with 1/F

as predicted by the celebrated Landau-Zener formula (5). As
the lattice becomes deeper, Landau-Zener theory predicts that
� vanishes exponentially with the band width �E. However,
this is only true as long as tunneling to excited states in
neighboring potential wells is not resonantly enhanced. On
resonance, the decay rate � decreases much slower with V0 as
shown in Fig. 4(c) such that sharp RET peaks emerge. This
remains true also for weak nonlinearities as shown for g = 0.2
in the figure. One observes a similar slow decrease of �res with
V0, however, the actual values of the decay rate are larger
for g > 0. The position of the RET peaks Fres is plotted as a
function of V0 in Fig. 4(b). Tunneling becomes resonant when
ndF matches the energy difference between the most stable
and an excited, less stable resonance, where nd is an integer
multiple of the lattice period. For a deep lattice this energy
difference, and thus also the peak position Fres, is given by√

V0 [11]. This estimate agrees very well with the numerical
results for the linear case g = 0 as shown in the figure. In the
nonlinear case the RET peaks are shifted to smaller values of
the field strength F according to Eq. (7); however, the general
progression with the potential strength V0 remains the same.

Another important feature observed in Fig. 2(c) is that the
RET peaks become asymmetric for g 	= 0. For a repulsive
(attractive) nonlinearity, the peak bends to higher (lower)
values of F . If the nonlinearity is increased above a critical
value gcr, the peaks bend over and a bistable behavior
emerges. The detailed shape of a bistable RET peak is plotted
in Fig. 5, which also indicates how WS states are calculated
numerically in the bistable regime: We have started with a
small value of F which was then gradually increased, using
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4
x 10

−3

F − F
res

Γ

FIG. 5. (Color online) Bistability of the RET peak for strong
repulsive interactions (g = 0.8). The decay rate was calculated for a
forward sweep (blue asterisk) and a backward sweep (red circles). A
spline interpolation (dashed line) is included to guide the eye. The
solid line shows the linear (g = 0) peak shape for comparison.

every result as initial guess for the next calculation (cf. also
Refs. [28,29]). After reaching a final, large value of the field
strength, the procedure was reversed and F was decreased
back to the initial value. Within the regime of bistability
forward and backward sweep yield the upper and lower
branches of the peak, respectively. The intermediate branch is
generally difficult to compute as it is dynamically unstable.

The bending of the RET peak and the emergence of a
bistability can be understood qualitatively by the perturbative
approach introduced above. A common WS state in a deep
optical lattice is strongly localized in a single potential well so
its chemical potential is strongly changed according to Eq. (8).
In comparison, the state corresponding to the maximum of the
RET peak is delocalized because of the energetical degeneracy
with an excited state in another well. Therefore its chemical
potential is affected rather weakly and according to Eq. (7)
also the change of the peak position �F is small (cf. also
Refs. [11,12]). With increasing nonlinearity, the edges of a
RET peak shift to smaller values of the field strength, while
the maximum falls behind. The whole peak bends to the right
and finally becomes bistable.

The onset of bistability is analyzed quantitatively in Fig. 6.
The upper panel shows the two branches of the decay curves
for V0 = 1 and different values of g. The RET peaks are shifted
to smaller values of F when g is increased and the peaks are
bistable for g = 0.5 and higher. The lower panel shows the
critical nonlinearity gcr as a function of the lattice strength V0.
The sharp decrease of gcr for V0 >∼ 1 can be understood from
the properties of the two most stable Wannier-Stark resonance
states. Generally, the critical nonlinearity for a bifurcation of a
nonlinear stationary state is smallest, when the state is coupled
to a second state which is energetically close—a result which
has been established quantitatively for nonlinear two-state
systems (see Refs. [21,30] and references therein). For V0 >∼ 1,
the optical lattice becomes deep enough such that the first
excited WS resonance state becomes strongly localized and
that its decay rate decreases significantly. Correspondingly, the
most stable resonance is destabilized as the coupling between
the two states is increased – its decay increases for V0 >∼ 1
as shown in Fig. 4(c). Furthermore, the coupling to the first
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FIG. 6. (Color online) Emergence of bistability of the RET peaks
in an optical lattice. (a) Decay rate � as a function of the field
strength F for different values of the nonlinearity g. The decay rate
was calculated for a forward sweep (blue solid lines) and a backward
sweep (red dashed lines). (b) Critical nonlinearity gcr for the onset
of bistability as a function of the lattice strength V0. The solid line is
drawn to guide the eye.

excited resonance, which is now energetically close, facilitates
a bifurcation and thus the onset of bistability.

The emergence of bistability has also been analyzed for
the transmission coefficient in the context of nonlinear RET
through one-dimensional potential barriers [23–25]. However,
in this case states corresponding to the transmission maximum
are localized strongest. Thus the resonance peaks bend into
the same direction as they are shifted, which is in contrast to
the behavior of the WS RET peaks shown in Fig. 5.

IV. BEYOND THE RET REGIME

A new regime of RET can be explored in bichromatic
optical lattices,

V (x) = V0{cos(x) + δ cos(x/2 + φ)}. (9)

These potentials can be realized experimentally by superim-
posing two incoherent optical lattices [36,37] or by combining
optical potentials based on virtual two-photon and four-photon
processes [38]. The introduction of an additional potential with
a doubled periodicity leads to the splitting of the ground Bloch
band into two minibands for F = 0. This distinguished feature
has been used to study Landau-Zener tunneling between
different minibands [39] and the interplay of tunneling and
Bloch oscillations [40].

The decay rates of the WS resonances states in a bichro-
matic optical lattice are plotted in Fig. 7(a) as a function of
the field strength F for V0 = 1 and φ = π/2. The splitting
of the Bloch bands into minibands translates into a splitting

4 6 8 10 12
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FIG. 7. (Color online) (a) The decay rate � of the four most stable
WS resonance states in a tilted bichromatic potential (9) for V0 = 1,
φ = π/2, and δ = 0 (black dashed line), δ = 0.05 (thin red line), and
δ = 0.1 (solid blue line). [(b) and (c)] Position Fres and height �res of
the RET peaks of the two most stable resonance states as a function
of δ.

of the WS resonance states and their decay curves �(F ), which
is most pronounced in the vicinity of the RET peaks. The
position of the RET peaks changes linearly with the strength
δ of the additional lattice as shown in Fig. 7(b). For φ = π/2,
the energy of the lattice wells are alternately shifted up and
down in energy by an amount of ±δ. Thus also the energies
of the WS resonance states shift by an mount of ±δ and the
positions of the RET peaks changes by �Fres = ±2δ/(2π ),
2π being the period of the optical lattice.

The change of the peak height �res in a bichromatic optical
lattice is much more striking as shown in Fig. 7(c). The
height of one of the RET peaks increases drastically for larger
values of δ. For δ > 0.08 one can no longer identify a single
RET peak. As argued above RET occurs when the real parts
µ of the eigenenergies of two WS resonances cross, while
the imaginary parts � anticross. For δ > 0.08 the crossing
scenario changes; the imaginary parts show a real crossing
while the real parts anticross. The two different scenarios are
commonly referred to a type I (real-parts cross) and type II
crossing (imaginary parts cross), respectively [12,41,42]. The
qualitative difference is also observed in the decay curves
plotted in Fig. 7(a).

For both types of crossings, the eigenenergies are never
fully degenerate—such a full degeneracy occurs only for
isolated points in parameter space. At these exceptional points,
already small nonlinearities lead to significant changes of
the WS resonance states and especially their decay rates �.
Examples are shown in Fig. 8 for δ = 1 and different relative
phases φ of the two lattices. An ordinary type II crossing is ob-
served for φ = −1.7, leading to the familiar RET peaks of the
decay rates. Changing the phase slightly to φ = −1.6 changes
the type of the crossing scenario to type I. An exceptional point
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FIG. 8. (Color online) Chemical potential µ and decay rates �

for (non-)linear WS resonances in a bichromatic optical lattice for
V0 = 1/2, δ = 1 and (a) φ = −1.7, (b) φ = −1.6, (c) φ = −1.646
and g = 0 (dashed black line), g = +0.01 (thick blue line), and g =
−0.01 (dash-dotted red line).

is found for φ = −1.646, as shown in Fig. 8(c). However, the
degeneracy is lifted as soon as the atoms start to interact. A
weak repulsive nonlinearity g = +0.01, turns the exceptional
crossing into an ordinary type I crossing, while an attractive

nonlinearity g = −0.01 favors a type II crossing. This change
of peak shape can have dramatic effects on the dynamics of
a Bose-Einstein condensate, in particular when experimental
parameters are adiabatically varied (see, e.g., Ref. [42]).

V. CONCLUSIONS

Bose-Einstein condensates in tilted optical lattices are ideal
to study the decay of interacting open quantum systems.
Experimentally the parameters can be tuned over a wide range
and the dynamics can be recorded in situ. Here we presented
an efficient method to calculate the decay rate in the mean-field
regime also in the presence of degeneracies which also, unlike
previous methods, is not restricted to ground-state calculations.
The effects of the nonlinearity are strongest in the regime of
resonant tunneling, where the decay rate can be enhanced by
orders of magnitude by resonant coupling to unstable excited
states. The interactions shift and bend the resonance peaks and
eventually lead to a bistable peak shape. Even more interesting
effects can be studied in tilted bichromatic lattices, where
different types of level crossing scenarios emerge when the
lattice parameters are tuned. These effects will be studied in
detail in a future publication.
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a b s t r a c t

The fidelity, defined as overlap of eigenstates of two slightly different Hamiltonians, is
proposed as an efficient detector of avoided crossings in the energy spectrum. This new
application of fidelity is motivated for model systems, and its value for analyzing complex
quantum spectra is underlined by applying it to a random matrix model and a tilted
Bose–Hubbard system.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The progress in cooling and manipulating ultracold atomic gases in recent years has opened new perspectives on
interacting many-body models from condensed matter physics [1,2]. It led to questions and opportunities beyond
conventional solid-state physics, e.g., the direct experimental study of quantum phase transitions [1], the role and
engineering of genuine quantum correlations [1,3], and the phenomenon of quantum chaos in systems that consist of
indistinguishable particles [4–8]. In this context, it is possible to detect a quantum phase transition by the change of fidelity
(modulus of the overlap between eigenstates of slightly different Hamiltonians) [9], since the ground state of a quantum
system changes dramatically at a critical parameter [10].

Up until now, the temporal change of fidelity – as the overlap of the same initial states evolved by different
Hamiltonians [11] – has been measured experimentally not only in wave billiards [12], but also in systems of cold atoms
subject to optical potentials [13,14]. Similar techniques may be applied to measure the evolving overlap of two eigenstates
where time is substituted by the change of some tunable control parameters. Often a quantum phase transition may
be viewed, for finite-size realizations of a system, as an avoided crossing (AC) in parameter space which closes in the
thermodynamic limit [10]. A scenario of many ACs with a broad distribution of widths [15–17], as a manifestation of a
strong coupling ofmany energy levels, is naturally found in quantum chaotic systems [15]. The dynamical evolution of these
systems is determined by the number and distribution of ACs present in the spectrum. The question then arises whether
the applicability of fidelity can be lifted from pure ground-state analysis [18] to detect and characterize ACs in the entire
spectrum of a complex quantum system. In this paper we propose to use the fidelity as a new and experimentally accessible
tool to detect and characterize ACs in quantum spectra [19]. This is corroborated by analytical and numerical results for
exemplary quantum systems.

∗ Corresponding author at: Institut für Theoretische Physik, Philosophenweg 19, Universität Heidelberg, 69120 Heidelberg, Germany. Tel.: +49 6221 54
9449; fax: +49 622154 9331.
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2. The fidelity measure

Given some parameter depending Hamiltonian H(λ) = H1 +λH2, the fidelity [11] between the nth eigenstates, denoted
by |n⟩, of two slightly different Hamiltonians H(λ) and H(λ + δλ) is defined as fn(λ, δλ) ≡ |⟨n(λ)|n(λ + δλ)⟩|. In complex
quantum systems with many degrees of freedom, many of the levels of the system are coupled to each other leading to ACs
in the spectrum of the Hamiltonian when the parameter λ is changed [15]. To simplify the discussion, we assume a finite
size Hilbert space H , where all energy levels are never exactly degenerate. To detect and characterize an AC for a given
quantum level nwe study the fidelity change [9]

Sn(λ, δλ) ≡
1 − fn(λ, δλ)

(δλ)2
(1)

which measures the change of the state |n⟩. For δλ ≪ 1, it is independent of δλ, i.e. Sn(λ, δλ) ≈ Sn(λ), and vanishingly
small everywhere except in the vicinity of an AC. The independence of δλ arises from the fact that the first non-vanishing
contribution to fn in the expansion of the changed state |n(λ+ δλ)⟩ is of second order in δλ [19,20]. The fidelity measure (1)
also has the advantage of being applicable locally in the spectrum, where one follows a certain state |n(λ)⟩ and its neighbors
over a range of parameter values λ to study the ACs they encounter. In addition, it is well-suited for numerical computations,
since λ is the only relevant parameter as long as δλ is sufficiently small. The different limit of large δλ and hence the coupling
over a broad energy band was the focus of a recent work using another generalized fidelity [21]. In contrast, our interest
here is the detection and characterization of ACs as local couplings in energy space.

2.1. Two-state model

Let us first discuss an isolated ACwhich can locally be described in nearly-degenerate perturbation theory as an effective
two-level system. It is then represented by a Hamiltonian H(λ) = λσz + gσx, with a real coupling g between the levels (σx
and σz denote Pauli matrices), showing an AC at λ = 0 of width c = 2g . The eigenstates are easily found [15,22] and from
them we calculate the fidelity for the two-level system:

f±(λ, δλ) =
g2

+ λ(λ̄ − λ) + λ2
+ λ̄


g2 + λ2 + λ


g2 + λ̄2 +


[g2 + λ2][g2 + λ̄2]

2


g2 + λ

λ ±


g2 + λ2

 
g2 + λ̄


λ̄ ±


g2 + λ̄2

 ,

where we used the shorthand notation λ̄ ≡ λ+δλ. To obtain the fidelity change in the limit δλ ≪ 1, we need to expand the
expression for the fidelity in a power series for δλ and keep only the leading term proportional to (δλ)2. The final expression
is the same for both eigenstates (indexed by ±) and has the simple form:

S±(λ) =
1
8


g

g2 + λ2

2

. (2)

This is the square of a Lorentzian and differs significantly from zero only near the AC at λ = 0. This formula already allows
us a good understanding of isolated ACs, as, for example, the peak width is easily computed as σ FWHM

= 2g
√

2 − 1. On
the other hand an AC can be characterized by the ratio between the local energy level curvature and the distance between
the two repelling energy levels. We call the absolute value of this ratio renormalized curvature Cn(λ) and find

C±(λ) ≡

 1
∆(λ)

∂2E±(λ)

∂λ2

 = 4S±(λ) (3)

for the two-level system. For higher-dimensional systems we expand the wave function |n(λ + δλ)⟩ in second order in δλ
and find

Sn(λ) =
1
2

−
m≠n

|⟨m(λ)|H2|n(λ)⟩|2

[En − Em]2
≈

|⟨n′(λ)|H2|n(λ)⟩|2

2 [En − En′ ]2
,

wherewe reduced the sumnear an isolatedAC to the nearest neighboring level n′. Similarly, one obtains for the renormalized
curvature [23]

Cn(λ) =

 2
∆(λ)

−
m≠n

|⟨m(λ)|H2|n(λ)⟩|2

En − Em


≈ 2

|⟨n′(λ)|H2|n(λ)⟩|2

[En − En′ ]2
= 4Sn(λ). (4)

The relation Cn ≈ 4Sn thus holds as long as the effect of other levels can be neglected close to a single AC.
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2.2. Beyond the two-level approximation

ACs in higher dimensional systems are not totally isolated, but other levels can contribute to the evolution of a quantum
state as the parameter λ is varied. Consider two energy levels approaching each other as λ → 0, and a third level being well
separated by a distance ϵ in energy and weakly coupled to the first two levels. A Hamiltonian model for such a situation
reads

H(λ) =


−λ g g13
g λ g23
g13 g23 ϵ


, gij, ϵ ∈ R, (5)

where we limited ourselves to real couplings. Since the first two levels become nearly degenerate and are well-separated
from the third one, we can write this in degenerate perturbation theory [24] close to the crossing as

HPT(λ) =

−λ +
g2
13

ϵ
g +

g13g23
ϵ

g +
g13g23

ϵ
λ +

g2
23

ϵ

+ O(ϵ−2). (6)

This reduces the three-level system to an effective two-level system taking the effect of the distant level perturbatively into
account. The same procedure can be applied, in principal, to higher dimensional systems. The minimal distance c between
the two levels of Eq. (6) is thus changed by the influence of the distant third level in first order to

cPT = 2|g|


1 +

g13g23
2gϵ

2

+


g2
23 − g2

13

2gϵ

2

≈ 2|g|

1 +

g13g23
2gϵ


, (7)

wherewe kept only the leading order behaviour. Theminimal distance in an isolated AC is accordingly only slightly changed,
provided that the coupling to the third level is not much larger than between the two encountering levels and that the third
level is well-separated from them.We need to compute the eigenstates |E±(λ+δλ, ϵ)⟩ of Eq. (6) and then take their overlap
for slightly different parameter values to obtain the fidelity, i.e., f±(λ, δλ, ϵ) = |⟨E±(λ, ϵ)|E±(λ+δλ, ϵ)⟩|. The fidelity change
can be computed by taking the second derivative of the fidelity at δλ = 0. The full expression is very long and difficult to
grasp. Expanding it in inverse powers of ϵ and including just the first order correction to the simple two-level system, the
fidelity change under the influence of a third not too close level is then given by

SPT
±

(λ, ϵ) =
1
8

g2
g2 + λ2

2

1 −

2
ϵ


gg13 + λg23


gg23 − λg13


g(g2 + λ2)

+ O

ϵ−2 .

The correction due to the third level is also λ-dependent and changes the peak height at λ = 0. Let us also include the second
order correction to the fidelity change at λ = 0 here

SPT
±

(λ = 0, ϵ) =
1

8g2

[
1 −

2
ϵ

g13g23
g

−
1

2ϵ2

g4
13 − 8g2

13g
2
23 + g4

23

g2
+ O(ϵ−3)

]
.

If all off-diagonalmatrix elements are of similarmagnitude, the effect of the third level is characterised by its inverse distance
to the AC. This underlines our claim that the effect of a third level on an AC is not too strong, provided that the level is not
very close. But the latter does not take place when three levels undergo a joint AC, i.e., if there were no off-diagonal matrix
elements coupling the levels they would all cross in one point. Such a situation cannot be reduced to an effective two-level
system. We will in the following also study numerically the behaviour of the fidelity change in exactly this case, where the
third level cannot be considered a simple perturbation to the two-level system, i.e., when the approximation of an isolated
AC breaks down.

Three crossing levels can be generated, e.g., by the following real symmetric Hamiltonian

H(λ) =


−λ a b
a 0 c
b c λ


, (8)

which generalizes the above 2 × 2-model. Fig. 1 shows that the fidelity change, defined in Eq. (1), is able to detect and
to distinguish two nearby ACs in this system. Furthermore it reflects specific features of an AC in the shape of its peak,
i.e., depending on the coupling g , Sn(λ) shows a narrow peak of height S(λ = 0) = 1/(8g2).

We see already in this simple example that the renormalized curvature captures the formof the fidelity change Sn(λ) close
to an AC, with deviations arising from the admixture of a further level, which first and foremost affects the local curvature,
i.e., the numerator in Eq. (3). But it also demonstrates that the fidelity change S(λ) itself is still effective in detecting and
characterizing the ACs.
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Fig. 1. (a) Energy spectrum of Eq. (8) for a = 0, b = 2, c = 3. All levels are coupled and the spectrum shows two close ACs; (b) fidelity change Sn(λ) and
(c) renormalized curvature Cn(λ) for the energy levels of (a). (d) Energy spectrum for a = 1, b = 2, c = 3. All three levels are now directly coupled and
the spectrum shows two close ACs. (e) Sn(λ) and (f) Cn(λ) for the energy levels of (d).

3. Application to complex systems

3.1. Quantum chaos model

A highly dense spectrum with many and possibly overlapping ACs is encountered in quantum chaotic systems as
described by RandomMatrix Theory (RMT) [15]. A prime example having such a dense complex spectrum is the combination
of two randommatrices drawn from the Gaussian orthogonal ensemble (GOE) [15]

H(λ) = cos(λ)H1 + sin(λ)H2, H1,H2 ∈ GOE. (9)

The distribution of minimal distances c at the ACs (normalized to unit mean) is then given by a Gaussian distribution
P(c) = (2/π) exp[−c2/π ] [16]. Using our fidelity measure, we can directly detect the ACs in this system (by a numerical
search for maxima of the S-function) and estimate also their widths. In the vicinity of a local maximum, the S-function has
a Lorentzian shape as in Eq. (2) even in very dense quantum chaotic spectra. Under this assumption, we can thus extract
the width of the AC as c = 2g = 1/

√
2Smax, c.f. Eq. (2), from the local maximum Smax. Averaging over many ACs, the

fidelity allows the verification of the RMT prediction with high accuracy. This is demonstrated in Fig. 2 for large random
matrices.

3.2. Bose–Hubbard system

To further exemplify the value of our fidelitymeasure, we apply it to a one-dimensional Bose–Hubbard Hamiltonianwith
additional Stark force [6,8,25]. This example of a many-body Wannier–Stark system can be realized with ultracold atoms
in optical lattices and the relevant parameters may be changed using well-known experimental techniques [1]. This model
describes N particles on L lattice sites, with hopping between adjacent sites and a local on-site interaction. As exemplified
in Refs. [6,8], a gauge transformation into the force accelerated frame of reference turns a constant Stark force into a time-
dependent phase exp(±iFt) with periodicity TB = 2π/F (the Bloch period). The corresponding Hamiltonian reads

H(t) = −
J
2

L−
l=1

(eiFtaĎl+1al + h.c.) +
U
2

L−
l=1

nl(nl − 1), (10)
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Fig. 2. Cumulative distribution of ACs determined from the fidelity change maxima for the RMT model of Eq. (9) with dimH1,2 = 1024 and λ ∈ [0, π[

showing ca. 30,000 ACs: the numerical distribution (solid line) in excellent agreement with the RMT prediction CDF(c) = erf(c/
√

π) (dashed line). Inset:
Distribution of widths of the ACs P(c) (histogram) and the RMT prediction (dashed line).

Fig. 3. Density of ACs ρAC in the quasienergy spectrum of the Floquet operator of our Bose–Hubbard model for varying F and fixed J = 0.038, U = 0.032,
N = L = 6. The number of ACs as detected by the fidelity change increases with 1/F and saturates around 1/F ≈ 20 to an average value which is shown
by the dashed line. Inset: Magnification of the region marked by the box on logarithmic scale with a comparison to a χ2 test (with small values for good
Wigner–Dyson statistics [8]).

where aĎl (al) creates (annihilates) a boson at site l and nl = aĎl al is the number of bosons at site l. The parameter J is the
hopping matrix element, U the interaction energy for two atoms occupying the same site, and F the Stark force. Periodic
boundary conditions are imposed for H(t), such that the Hamiltonian and the one-period Floquet operator ÛF (TB) =

T exp

−i
 TB
0 H(t)dt


(where T denotes time-ordering) decompose into a sum of operators for specific quasimomenta

κ [6]. In the following, we use F as a control parameter. For J ≈ U ≪ F the quasienergy spectrum (eigenphases of ÛF (TB)) is
dominated by the force F and the system is regular. Decreasing the force to J ≈ U & F the quasienergy spectrum reorders and
the coupling between the levels becomes more important. For fillings of order unity, e.g. N/L ≈ 1, the system is quantum
chaotic in this regime and the spectrum obeys Wigner–Dyson statistics [6,8]. As F is varied one observes an increasing
number of ACs as the spectrum is changing and additionally many broad ACs once the quantum chaotic region is reached.

To illustrate the crossover between regions with few and many ACs, we study the density of ACs as detected by the
fidelity change Sn, when changing the system parameter λ. In a histogram, the density ρAC(λ) is defined via ρAC(λ) · dλ ≡

NAC(λ)/ dimH, comparing the number of ACs NAC(λ) in the interval [λ, λ+dλ] to the total number of energy levels dimH .
This is shown in themain part of Fig. 3wherewe observe no ACs at large F , i.e., small values of 1/F , and an increasing number
of ACs for larger values of 1/F that saturates around 1/F ≈ 20.
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Fig. 4. Cumulative distribution of ACs determined from the fidelity change maxima for the system of Eq. (10). Shown are the numerical distribution
(solid line), the best fit for a mixed RMT spectrum (thick dashed line, chaotic part γ ≈ 0.94), and the RMT prediction for a purely chaotic spectrum (thin
dashed–dotted line). Parameters: N = 6, L = 7, J = 0.038,U = 0.032, F = 1/39 . . . 1/35. Inset: Distribution of widths of ACs for the same model
(histogram) and Eq. (11) with γ ≈ 0.94 (dashed line). The enhancement close to c = 0 arises from regular ‘‘solitonic’’ states [26] in the spectrum.

Thementioned transition between regular and chaotic spectral properties for J ≈ U & F and approximately integer filling
in the tilted system can be visualized by comparing the actual level spacing distribution to a Wigner–Dyson distribution
using a standard statisticalχ2 test [8]. This is displayed in the inset of Fig. 3 alongwith the density of ACs in Fig. 3. The fidelity
change S(1/F)detects ACs and shows the samequalitative behavior as the spectral statistics along the crossover from regular
to chaotic dynamics: in regions of goodWigner–Dyson statisticswe find a high density of ACs compared to a smaller number
of ACs in the regular regime. The crossover beginning for log(1/F) ≈ 2, where the density of ACs rises above unity, i.e., on
average each energy level undergoes more than one AC in the unit interval. The transition is complete for log(1/F) ≈ 3
where the χ2 test saturates around a low value. However, the density of ACs alone is not able to distinguish regular from
chaotic dynamics. Instead the ACs need to have a broad distribution of widths which is reflected in the distribution P(c)
introduced above.

By using the fidelity change in order to detect and characterize ACs, we can resolve further remarkable details in the
full spectrum. With this method we are, e.g., able to detect a small number of regular states [26] traversing the chaotic sea
of energy levels in the chaotic regime of the tilted Bose–Hubbard model. In this case the distribution of widths of ACs is a
mixture of regular and quantum chaotic distributions:

P(c) = (1 − γ )δ(c) +
2γ 2

π c̄
exp

[
−

γ 2c2

π c̄2

]
, (11)

with a chaotic part of weight 0 ≤ γ ≤ 1 [27]. A finite regular component makes itself visible as a strong enhancement of
P(c) close to zero, c.f., the inset of Fig. 4. We are able to estimate the size of this component by analyzing the cumulative
distribution function CDF(c) = 1 − γ + γ erf


γ c
√

π


. The result is shown in the main part of Fig. 4, where we plot the

numerically obtained distribution and the best χ2-fit including a finite regular component. We obtain a chaotic part of
γ ≈ 0.94, corresponding to ca. 6% of regular levels, in good agreement with counting 7 regular levels out of 132 by direct
inspection of the spectrum. Except for the identification of single regular levels [26], this has so far not been detected in the
tilted Bose–Hubbardmodel by other statisticalmeasures. The reported results are obtained for periodic boundary conditions
applied to the Hamiltonian of Eq. (10), but we found a qualitatively similar picture for hard-wall boundary conditions, as
used in Ref. [26]. Our results underline the value of fidelity as a measure for detecting ACs with high resolution in energy
spectra.

4. Conclusions

We showed that quantum fidelity is perfectly suited to detect and characterize ACs in the energy spectrum. It therefore
connects information about the wave function of a system with its spectrum, without direct reference to the energy levels
by using only the overlap of wave functions [28]. This has been exemplified for simple models and for complex quantum
systems showing many ACs. The fidelity, therefore, proves very useful to study many-body systems, also beyond their
ground-state properties [9].

We expect a clear advantage of the fidelity change compared to spectral statistics in the sense that it can be applied, in
principle, also just locally in the spectrum. This means that, if one is interested only in local spectral properties of a system,
it is sufficient to follow a small number of levels to characterize the behavior of a system. For larger systems, computing
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the entire spectrum and all eigenstates is in general difficult, but the fidelity allows an analysis of parts of the spectrum
providing local spectral information. To make use of this advantage, one may resort to numerical algorithms optimized to
access just a subset of eigenstates, e.g., the Lanczos algorithm [29]. Wewill pursue this interesting perspective of the fidelity
proposed here in a future publication [30].
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Abstract Several ways are discussed to control the Landau–
Zener tunneling in the Wannier–Stark system. We focus on
a realization of this system with interacting and noninteract-
ing ultracold bosons. The tunneling from the ground band
to the continuum is shown to depend crucially on the initial
condition and system parameters and, more interestingly,
on added time-dependent disorder—noise—on the lattice
beams.

1 Introduction

Bloch oscillations, Landau–Zener (LZ) tunneling, and
Wannier–Stark ladders [1–11], are fundamental quantum
effects occurring in a system of electrons moving in a peri-
odic potential and subjected to a constant electric field. Due
to complications such as impurities, lattice vibrations, and
multiparticle interactions, clean observations of these effects
have been difficult [12]. In recent years, ultra-cold atoms and
Bose–Einstein condensates in optical lattices have been in-
creasingly used to simulate solid state systems and the above
mentioned phenomena [6–10, 13–17]. Optical lattices are
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nowadays easy to realize in the laboratory, and their parame-
ters can be perfectly controlled both statically and dynami-
cally, which makes them attractive model systems for crys-
tal lattices. More complicated potentials can be realized by
adding further lattice beams [18–24]. In fact, by superimpos-
ing laser beams from different directions and with slightly
different wave-lengths, it is possible to generate many differ-
ent three-dimensional lattice geometries [16, 17]. The ques-
tion arises of how to control the dynamics of particles by
quasi-periodic potentials (possibly time-dependent or even
stochastic ones).

In this paper, we present results on the Wannier–Stark
system realized with ultracold atoms, forming a Bose–
Einstein condensate, in an optical lattice [6–10, 14, 25–29].
We compute the time dependence of the tunneling probabil-
ity of the Bose–Einstein condensate atoms out of the ground
band in which they were originally prepared. By changing
the initial condition and the system parameters and intro-
ducing atom–atom interactions into the system, we are able
to control the tunneling rate of the Bose–Einstein conden-
sate to higher bands. Finally, a controlled noise added to the
system will be shown to be a further handle to engineer the
interband tunneling.

2 Landau–Zener tunneling in optical lattices

We study the temporal evolution of ultracold atoms loaded
into a quasi one-dimensional optical lattice which can be
a spatially periodic potential or a time-dependent stochas-
tic potential, subjected to an additional static force, in
the presence of weak atom–atom interactions [29]. We
use the following general form of the three-dimensional
Gross–Pitaevskii equation to model the temporal evolution
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of the atoms

H = − �2

2M
∇2

�r + W(�r, t) + g3D|Ψ (�r, t)|2 + Fx;
W(�r, t) = Vtrap(�r) + V1(x) + V2(x, t), (1)

with lattice potentials along the longitudinal direction, x,
as

V1(x) = αV sin2
(

πx

dL

)
; (2a)

V2(x, t) = αV sin2
(

πx

d ′
L

+ φ(t)

)
. (2b)

M is the mass of condensate atoms and F is the Stark
force. V1(x) and V2(x, t) are spatially periodic potentials
with incommensurate lattice spacings dL and d ′

L, respec-
tively. As will be shown below around (9), the noise has
a tendency to average over the second lattice, and there-
fore the amplitudes of the two lattices should be compa-
rable. For convenience we chose equal amplitudes αV and
dL = 426 nm and d ′

L = dL(
√

5 − 1)/2 for the lattice con-
stants. The potential V2(x, t) is a time-dependent stochas-
tic potential with a time-dependent stochastic phase φ(t),
which we will characterize further down in Sect. 2.2. The
renormalization factor α is introduced to be able to com-
pare the dynamics in the presence of the potential given by
(2a) and (2b) to the dynamics of the “reference system”, i.e.
the dynamics in the potential W(�r) = Vtrap(�r)+V sin2(πx

dL
).

α will be chosen in such a way that the following standard
deviations are equal:

〈(
sin2

(
πx

dL

)
−

〈
sin2

(
πx

dL

)〉
x

)2〉
x

= 〈(
Veff(x) − 〈

Veff(x)
〉
x

)2〉
x
, (3)

where the effective potential Veff(x) will be defined in
Sect. 2.2. The average 〈·〉 is an integral over space for a suf-
ficiently large L, i.e., 〈·〉 = 1/L

∫ L/2
−L/2 dx. The third term

in the Hamiltonian is the non-linearity, which makes the
equation different from the Schrödinger equation. Ψ (�r, t)
represents the condensate wave function and |Ψ (�r, t)|2 the

local atomic density. g3D = 4π�2asN0
M

is the coupling con-
stant which is proportional to the scattering length as and
determines the strength of atom–atom interactions, where
4π�2as
MER

≈ 2.45 × 10−21 m3, with as = 53 × 10−10 m and

M = 1.44 × 10−25 kg for rubidium 87. N0 is the number
of atoms in the condensate. The recoil energy ER = p2

R/2M

and the recoil momentum pR = π�/dL are the character-
istic energy and momentum scales for our system. More-
over, we define V0 = V/ER and F0 = FdL/ER as dimen-
sionless quantities in this energy unit. Experimentally, the

initial state is the relaxed condensate wave function pre-
pared in the confining potential given by a harmonic trap
Vtrap = 1

2m(ω2
ρρ2 + ω2

xx
2), with ωx 	 ωρ for a quasi 1D

situation, and then loaded adiabatically into the optical lat-
tice when the Stark force F equals zero. Then ωx is either
switched off or relaxed to a small value ωx,rel and the Stark
force F is simultaneously switched on to induce the dy-
namics. In the following sections we study the system in
the presence/absence of different terms of the above Hamil-
tonian.

2.1 Noise free case

2.1.1 Linear case—Wannier–Stark problem

For zero or small ωx,rel (cf., e.g., [30]) and negligible atom–
atom interactions, when V2(x, t) = 0 and α = 1, the above
Hamiltonian in (1) describes the dynamics of atoms in a
tilted periodic potential which is the well-known single-
particle Wannier–Stark problem. Without the non-linearity
term, we can use the 1D version of (1) for our simulations.
In the presence of F , the quasimomentum of a condensate
(initially prepared at the center of the Brillouin zone in the
ground band) scans the lower band in an oscillating motion
periodically—so-called Bloch oscillations—with the Bloch
period TB = 2�(FdL)−1. At the edge of the Brillouin zone,
where the gap between the ground and the first excited band
�E of the F = 0 system (increasing with V0 [31]), acquires
its minimum value, a tunneling of the condensate to the first
excited energy band may occur. The tunneled atoms escape
from the system through successive tunneling events across
the much smaller band gaps between the upper bands. This
phenomenon is known as the LZ tunneling. LZ theory pre-
dicts a decay rate

PLZ = e
− π

γ , (4)

where γ is the adiabaticity parameter and γ ≈ 32F0
�V 2

0
[31].

In order to study the LZ prediction for our system we need
to access the decay rate of the population from the ground
band. In that respect, we compute the time dependence of
the probability of the condensate to remain in the ground
band in which it has been initially prepared. Such a survival
probability is best measured in momentum space. From the
time-dependent momentum distribution we can determine
Psur(t) by projection of the evolved state Ψ̃ ( �p, t) on to the
support of the initial state [30, 32, 33]

Psur(t) =
∫ ∞

−∞

∫ ∞

−∞
dpy dpz

∫ ∞

−pc

dpx

∣∣Ψ ( �p, t)
∣∣2

, (5)

where pc is an ad hoc cut-off momentum. In our calcula-
tion we chose pc = 3prec. Then (5) starts to measure the
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Fig. 1 Time-resolved survival probability of the BEC in the ground
band, for a lattice depth V0 = 4, and a narrow width of the initial
momentum distribution of the BEC cloud, �p/2pR = 0.05 (trap fre-
quency ωx = 2π ×50 Hz), and various Stark forces. For non-RET con-
dition: F0 = 1.07 (solid line) and F0 = 1.63 (dash–dotted line); for
RET condition: F0 = 1.48 (dashed line). Inset: height of one step (of
data as shown in the main panel) for fixed V0 = 4 and various γ . The
step height as predicted by (4) (solid line) in comparison with the nu-
merically obtained values (filled circles). A significant deviation from
the LZ prediction can be observed at values of 1

γ
corresponding to RET

conditions and marked by the vertical dashed lines

wave packet leaving the ground band with an artificial de-
lay of one Bloch period, since by the acceleration theorem
the average momentum is proportional to time (more details
can be found in [30, 32, 33]). A very nice step structure—
local deviation from the overall exponential decay—can be
seen in the survival probability (see Figs. 1 and 2). Such
step structures reflect the above mentioned phenomena, i.e.,
Bloch oscillations and LZ tunneling. One can see that the
tunneling events from the ground band to the next band oc-
cur after each Bloch period when the wave packet is at the
edge of the Brillouin zone. It is possible to control the LZ
tunneling of the Bose–Einstein condensate from the ground
band in the linear system and in the absence of atom–atom
interactions by

– Changing the system parameters, such as external force
F0, and the amplitude of the optical lattice V0 (see Fig. 1)

– Exploiting resonantly enhanced tunneling (RET) between
degenerate Wannier–Stark states at �E ≈ n × FdL with
n being an integer number (see Fig. 1) [11]

– Changing the initial condition by changing the trap fre-
quencies and hence preparing the Bose–Einstein conden-
sate with different widths �p of its initial momentum dis-
tribution (see Fig. 2)

As seen in Fig. 1, increasing the tilting force leads to more
and more tunneling of the atoms from the ground band. On
the other hand, depending on the system parameters, one can
tune into a special condition for which the rate of the tunnel-

Fig. 2 The survival probability of the BEC in the ground band for
a lattice depth V0 = 4.0, a constant Stark force F0 = 1.48, and
various widths of the initial momentum distribution of the BEC
cloud, �p/2pR = 0.05 (solid line); �p/2pR = 0.2 (dashed line);
�p/2pR = 0.3 (dash–dotted line). Inset: step width �t for several
�p (filled circles). The step width �t is the distance between the
two vertical dashed lines shown in the main panel for the case of
�p/2pR = 0.05

ing is enhanced. This occurs when an integer multiple of the
energy scale of the tilting force FdL matches the energy dif-
ference between the initial state and the final state, i.e., ap-
proximately the band gap �E. This phenomenon has been
observed experimentally [27, 28] and is called resonantly
enhanced tunneling (RET). A deviation from the LZ predic-
tion is expected in this case. In order to see whether the tun-
neling probability given by the standard LZ tunneling prob-
ability correctly predicts the height of a step corresponding
to a single tunneling event, we fit a step function to our step-
like survival probability and extract the height of each step.
The result and the comparison to the LZ prediction is shown
in the inset of Fig. 1. When the system parameters are in the
RET condition (e.g., 1/γ ≈ 1.05 and 1.6), the height of the
steps of the survival probability increases and shows a sig-
nificant deviation from the LZ prediction given in (4). This
behavior is seen in Fig. 1 where the survival probability for
F0 = 1.48 decays much faster than for the other two cases.
Since the derivation of (4) [31] does not take into account
the actual Wannier–Stark level structure, which is necessary
to describe the RET condition, (4) or the survival probabil-
ity derived from it cannot describe the enhancement of the
tunneling probability due to RET.

The other parameter which can affect the survival proba-
bility is the width �p of the initial momentum distribution.
By changing the trap frequencies ωx and ωρ one can pre-
pare the initial distribution with different widths. Figure 2
demonstrates the dependence of the width of the steps �t on
�p. The steps are smooth and partly washed out since the
wave packet reaches the edge of the Brillouin zone earlier
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when it has a broader initial momentum distribution. Still
the remnants of the steps cause a local deviation from the ex-
ponential decay of the tunneling probability. Nevertheless,
the survival probability exhibits an exponential decay glob-
ally in time, i.e., on large time scales, for all the mentioned
cases.

2.1.2 Non-linear case—Gross–Pitaevskii equation

In the regime of weak atom–atom interactions the effect
of interactions is studied in the mean-field regime based
on the Gross–Pitaevskii equation. The 3D Gross–Pitaevskii
equation can describe the dynamics of the entire Bose–
Einstein condensate in terms of an equation of motion for
a single-particle wave function. Therefore, the following
non-linear equation describes the dynamics of interacting
Bose–Einstein condensate atoms in a tilted periodic poten-
tial (V2(x, t) = 0) with α = 1:

H = − �2

2M
∇2

�r + Vtrap(�r) + V1(x) + g3D
∣∣Ψ (�r, t)2

∣∣ + Fx.

(6)

As mentioned in Sect. 2, g3D is the coupling constant cal-
culated from the s-wave scattering wavelength as and the
number of atoms in the condensate N0. |Ψ (�r, t)2| is the lo-
cal atomic density. As an estimate for the non-linear term in

(6), we define C ≡ g3D|Ψ (�r,t)2|peak
ER

at the peak density of the
initial state. The following effects can be seen by increas-
ing the strength of a repulsive non-linearity (g3D > 0) in the
system:

– Enhancement of the tunneling rate
– Deviation from mono-exponential decay
– Washed out steps (corresponding to damped Bloch oscil-

lations)

According to our results shown in Fig. 3 for a RET case
and the experimental results in [27, 28], the temporal be-
havior of the survival probability depends on the strength of
atom–atom interactions. As can be found with more detail
in [27, 30], the enhancement of decay rate is generic for re-
pulsive interactions. The scaling of the decay rate as a func-
tion of non-linearity is yet more interesting in the RET case
(see the inset of Fig. 3). We can quantify the decay rate Γ

of the survival probability by globally fitting an exponential
decay function to the step-like curves of the survival prob-
ability. Such rates, for various non-linearities, are depicted
in the inset of Fig. 3. A repulsive interaction initially en-
hances the interband tunneling probability of the ultracold
atoms [30]. Since the tunneling events occurring at differ-
ent integer multiples of the Bloch period are correlated by
the presence of the non-linearity, a clear deviation from the
mono-exponential decay is observed making the definition

Fig. 3 Time-resolved survival probability in the ground band for the
non-linear case with V0 = 4.0, F0 = 1.48 (RET), a narrow width of the
initial momentum distribution of the BEC cloud, �p/2pR = 0.05, and
composed of the following number of atoms prepared in a trap with
ωx = 2π × 50 Hz and ωρ = 2π × 100 Hz: N0 = 2 × 104, C ≈ 0.2
(open circles); N0 = 5 × 104, C ≈ 0.32 (filled squares); N0 = 1 × 105,
C ≈ 0.42 (open triangles) as compared to the linear case g3D = 0,
(solid line). Inset: Decay rate of the survival probability Γ at RET
condition vs. N0 (filled circles)

of a global decay rate Γ somewhat problematic [34]. A con-
tinuous change in the density of the condensate in time due
to escaped particles from the system leads to a decreasing
impact of the non-linearity. Therefore, the time local rate of
decay systematically decreases as the time increases. Addi-
tionally, the non-linearity leads to a dephasing and damping
of the Bloch oscillations, not discussed here, but a discus-
sion of this phenomenon can be found in [14–16, 35, 36].

2.2 Impact of a time-dependent stochastic potential (noisy
Wannier–Stark problem)

Going back to the linear system, g3D = 0, the case of
V2(x, t) �= 0 leads to a time-dependent stochastic potential
where we claim that we are able to control the dynamics of
the Bose–Einstein condensate atoms by changing the char-
acteristic parameters of the time-dependent stochastic phase
φ(t). α is no longer 1 and we can calculate it as defined
above by (3), using the effective potential introduced below
in (9). We use correlated noise for the time-dependent phase
φ(t) for the second lattice. A standard example is exponen-
tially correlated noise, which is characterized by a single
correlation time. Such a noise can be obtained from linearly
filtered white noise as

φ̇ = −φ

τ
+

√
2D

τ
ξ(t), (7)

where ξ is a Gaussian white noise with zero mean and stan-
dard deviation equal to one. τ is the correlation time of the
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Fig. 4 Time evolution of the survival probability for V0 = 2.5 ER,
F0 = 1.5, and α ≈ 0.82; The thick solid line is the decay of the ref-
erence system defined by (1) with g3D = 0, V2(x, t) = 0 and α = 1;
in the presence of exponentially correlated noise with D/τ ≈ 0.25 and
correlation times: τ = 10 TB (dashed line), τ = 1 TB (dot–dashed line),
τ = 0.05 TB (dot–dot–dashed line), τ = 0.001 TB (thin solid line); re-
sults for the effective potential of (9) are shown by the filled circles

noise and the strength of the noise is given by the para-
meter D. The introduced noise has a zero mean (〈φ(t)〉 = 0)
and an exponential correlation function 〈φ(t)φ(s)〉 =
D/τ exp(−|t − s|/τ). τ describes the time-scale of the fluc-
tuations and D/τ its variance. The power spectrum of the
exponentially correlated noise is given by a Lorentzian func-
tion as

S(ω) = D

π(1 + ω2τ 2)
. (8)

Figure 4 demonstrates the survival probability of the atoms
in the ground band for various correlation times τ and a fixed
value of the variance D/τ ≈ 0.25 of the noise. The system
parameters are V0 = 2.5 ER and F0 = 1.5 (non-RET condi-
tion). The solid line shows the time evolution of the survival
probability for the reference system introduced by (1) with
g3D = 0, V2(x, t) = 0 and α = 1. A nice step structure sim-
ilar to the ones depicted in Figures 1 and 2 is observed for
this case. The other curves in Fig. 4 exhibit the time evo-
lution of the survival probability for the temporally disor-
dered system introduced in (1) with g3D = 0, V2(x, t) �= 0
and α �= 1. As seen for all the cases the step structure is
washed out. Considering the characteristic parameters of the
exponentially correlated noise, different regimes of the noise
are introduced. The regime of slowly varying noise is recov-
ered when the noise has a large correlation time compared
with the time scales of the system (e.g., TB). The tunnel-
ing probability of the atoms in such a regime is suppressed
(e.g., for τ = 10 TB shown by the dashed line in Fig. 4). De-
creasing the correlation time the rate of tunneling increases
but, nevertheless, for τ ≥ TB the noise suppresses the tun-
neling compared with the reference system (see the data for

τ = 1 TB as shown by the dot–dashed line in Fig. 4). For cor-
relation times smaller than TB , the noise recovers the regime
of fast noise (e.g., for τ = 0.05 TB) and causes an enhance-
ment in the tunneling rate (dot–dot–dashed line) compared
with the reference system (thick solid line). Surprisingly a
further decrease of the correlation time decreases the tun-
neling rate of the atoms (e.g., for τ = 0.001 TB depicted by
the thin solid line).

In order to understand the effect of the time-dependent
stochastic potential on the system, we renormalize the po-
tential. The time-dependent potential can be replaced by a
suitable static effective potential in the limit of small τ . Such
an effective potential can be calculated integrating over all
possible phases giving:

Veff(x) = αV
[
sin2(πx/dL) + β sin2(πx/d ′

L)
]
, (9)

with a renormalization factor for the second lattice β =
e−2D/τ . Equation (9) provides a time-independent potential
which can be used to compute α as stated in (3). As seen in
Fig. 4 the survival probability for a small τ = 0.001 TB (thin
solid line) shows perfect agreement with the results achieved
using the effective potential of (9) (filled circles).

Keeping the noise parameters constant, we study the de-
cay rate of the survival probability, Γ , of the condensate for
various system parameters. The results of a scan over the
Stark force are shown in Fig. 5(a). The simulations have
been done for three values of the correlation time of the
noise τ = 0.0005,0.05,50 TB, keeping the variance of the
noise constant (here D/τ ≈ 0.25). The three correlation
times are chosen from the left shoulder, the peak point and
the right shoulder of curves in Fig. 5(b). The solid line de-
picts the decay rate of the reference system (given by (1)
with g3D = 0, V2(x, t) = 0 and α = 1). Noise in the system
leads to a washing out of the RET peaks (present in the solid
line of Fig. 5(a)) in the decay rate, and, dependent on the cor-
relation time of the noise, a suppression (for very large and
very small values of τ ) or an enhancement of the tunneling
(e.g., for τ ≈ 0.05 TB) can be obtained.

We also ran a scan over the correlation time of the
noise τ , again keeping the variance of the noise constant
(D/τ ≈ 0.25). The decay rate of the survival probability
for three amounts of the Stark force (F0 = 0.95, 1.25, 1.5)
is shown in Fig. 5(b). Comparing the symbols to the lines
(which specify the decay rate in the corresponding refer-
ence system) one can realize that the decay rate is enhanced
when the system parameters do not fulfill the RET condi-
tion, i.e., in this case for F0 = 0.95 and 1.5. For the case
of F0 = 1.25 (RET) the tunneling rate is suppressed, and
the symbols lie always below the reference line (dot–dot–
dashed line). The enhancement is pronounced in the range
of τ ≈ 0.005 . . .0.2 TB, corresponding to an energy scale
equal or larger to/than the band gap �E. On the other hand,
for small values of the correlation time, the noise recovers

4.23. 267



494 G. Tayebirad et al.

Fig. 5 The decay rate of the survival probability for V0 = 2.5 ER,
and D/τ ≈ 0.25: (a) scan over F0 for τ = 0.0005 TB (open squares),
τ = 0.05 TB (open circles), τ = 50 TB (open triangles), for the ref-
erence system (solid line), and the Landau–Zener exponential pre-
diction for the reference system (dashed line); (b) scan over τ for
F0 = 1.5 (filled circles) and its reference system (dot–dot–dashed line),
F0 = 1.25 (filled squares) and its reference system (dot–dashed line),
F0 = 0.95 (filled triangles) and its reference system (dashed line)

the regime of white noise, where the effective potential de-
scribes the dynamics of the system very well, and for large
values of τ , the system is in the regime of a slowly vary-
ing noise corresponding to energy scales that do not help to
enhance the tunneling of atoms either.

3 Conclusion

It is possible to control the Landau–Zener (LZ) tunneling
probability of the ultracold atoms from the ground band in
tilted optical lattices. This control is possible by changing
the system parameters such as the lattice depth and the Stark
force, or by changing the initial condition which is given by
the initial width of the momentum distribution of the BEC.
All the mentioned parameters can be easily tuned experi-
mentally. Furthermore, our calculations showed that atom–
atom interactions affect the LZ tunneling probability and a
repulsive interaction typically leads to an enhancement of
the LZ tunneling of the ultracold atoms from the ground
band. Most interestingly, our results demonstrate that it is
also possible to control the tunneling by adding noise to
the system. By changing the noise parameters, the tunnel-
ing probability can be enhanced or suppressed. The noise

can particularly enhance the tunneling probability when the
system parameters are chosen far from the RET condition.

Acknowledgements We acknowledge funding by the Excellence
Initiative by the German Research Foundation (DFG) through the Hei-
delberg Graduate School of Fundamental Physics (grant number GSC
129/1) and the Global Networks Mobility Measures. S.W. is grateful
to the Heidelberg Academy of Sciences and Humanities for the Acad-
emy Award 2010 and to the Hengstberger Foundation for support by
the Klaus-Georg and Sigrid Hengstberger Prize 2009. G.T. thanks the
Landesgraduiertenförderung Baden-Württemberg for support.

References

1. L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932)
2. C. Zener, Proc. R. Soc. A 137, 696 (1932)
3. E.C.G. Stückelberg, Helv. Phys. Acta 5, 369 (1932)
4. E. Majorana, Nuovo Cimento 9, 43 (1932)
5. K. Leo, P.H. Bolivar, F. Brueggemann, R. Schwedler, K. Koehler,

Solid State Commun. 84, 943 (1992)
6. E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, C. Salomon,

Phys. Rev. A 55, 2989 (1997)
7. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, C. Salomon, Phys.

Rev. Lett. 76, 4508 (1996)
8. S.R. Wilkinson, C.F. Bharucha, K.W. Madison, Q. Niu, M.G.

Raizen, Phys. Rev. Lett. 76, 4512 (1996)
9. S.R. Wilkinson, C.F. Bharucha, K.W. Madison, Q. Niu, M.G.

Raizen, Nature (London) 387, 575 (1997)
10. B.P. Anderson, M.A. Kasevich, Science 282, 1686 (1998)
11. M. Glück, A.R. Kolovsky, H.J. Korsch, Phys. Rep. 366, 103

(2002)
12. K. Leo, High-Field Transport in Semiconductor Superlattices

(Springer, Berlin, 2003)
13. Q. Niu, M.G. Raizen, Phys. Rev. Lett. 80, 3491 (1998)
14. O. Morsch, J.H. Müller, M. Cristiani, D. Ciampini, E. Arimondo,

Phys. Rev. Lett. 87, 140402 (2001)
15. G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, M. In-

guscio, Phys. Rev. Lett. 92, 230402 (2004)
16. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006)
17. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)
18. L. Santos, M.A. Baranov, J.I. Cirac, H.-U. Everts, H. Fehrmann,

M. Lewenstein, Phys. Rev. Lett. 93, 030601 (2004)
19. D. Clément, A.F. Varón, J.A. Retter, L. Sanchez-Palencia, A. As-

pect, P. Bouyer, J. New, New J. Phys. 8, 165 (2006)
20. L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, A. Aspect,

New J. Phys. 10, 045019 (2008)
21. P. Lugan, D. Clément, P. Bouyer, A. Aspect, M. Lewenstein,

L. Sanchez-Palencia, Phys. Rev. Lett. 98, 170403 (2007)
22. T. Schulte, S. Drenkelforth, G. Kleine Büning, W. Ertmer, J. Arlt,

M. Lewenstein, L. Santos, Phys. Rev. A 77, 023610 (2008)
23. T. Salger, C. Geckeler, S. Kling, M. Weitz, Phys. Rev. Lett. 99,

190405 (2007)
24. T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina,

M. Weitz, Science 326, 1241 (2009)
25. M. Cristiani, O. Morsch, J.H. Müller, D. Ciampini, E. Arimondo,

Phys. Rev. A 65, 063612 (2002)
26. M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, J.H.

Müller, E. Courtade, M. Anderlini, E. Arimondo, Phys. Rev. Lett.
91, 230406 (2003)

27. C. Sias, A. Zenesini, H. Lignier, S. Wimberger, D. Ciampini,
O. Morsch, E. Arimondo, Phys. Rev. Lett. 98, 120403 (2007)

28. A. Zenesini, C. Sias, H. Lignier, Y. Singh, D. Ciampini,
O. Morsch, R. Mannella, E. Arimondo, A. Tomadin, S. Wim-
berger, New J. Phys. 10, 053038 (2008)

268 KAPITEL 4. WISSENSCHAFTLICHE ARTIKEL



Engineering of Landau–Zener tunneling 495

29. A. Zenesini, H. Lignier, G. Tayebirad, J. Radogostowicz,
D. Ciampini, R. Mannella, S. Wimberger, O. Morsch, E. Ari-
mondo, Phys. Rev. Lett. 103, 090403 (2009)

30. S. Wimberger, R. Mannella, O. Morsch, E. Arimondo, A.R.
Kolovsky, A. Buchleitner, Phys. Rev. A 72, 063610 (2005)

31. M. Holthaus, J. Opt. B 2, 589 (2000)
32. G. Tayebirad, A. Zenesini, D. Ciampini, R. Mannella, O. Morsch,

E. Arimondo, N. Lörch, S. Wimberger, Phys. Rev. A 82, 013633
(2010)

33. G. Tayebirad, A. Zenesini, D. Ciampini, R. Mannella, O. Morsch,
E. Arimondo, N. Lörch, S. Wimberger, Phys. Rev. A 82, 069904
(2010)

34. P. Schlagheck, S. Wimberger, App. Phys. B 86, 385 (2007)
35. M. Gustavsson, E. Haller, M.J. Mark, J.G. Danzl, G. Rojas-

Kopeinig, H.-C. Nägerl, Phys. Rev. Lett. 100, 080404 (2008)
36. A.R. Kolovsky, H.J. Korsch, E.-M. Graefe, Phys. Rev. A 80,

023617 (2009)

4.23. 269



Eur. Phys. J. D (2010)
DOI: 10.1140/epjd/e2010-10554-7

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL D

Effective spin model for interband transport in a Wannier-Stark
lattice system
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Abstract. We show that the interband dynamics in a tilted two-band Bose-Hubbard model can be reduced
to an analytically accessible spin model in the case of resonant interband oscillations. This allows us to
predict the revival time of these oscillations which decay and revive due to inter-particle interactions.
The presented mapping onto the spin model and the so achieved reduction of complexity has interesting
perspectives for future studies of many-body systems.

1 Introduction

An amazing control of quantum degrees of freedom
is nowadays routinely possible with the techniques of
preparing and handling ultracold matter in the labora-
tory [1–5]. Backed by a plethora of theoretical propos-
als (see, e.g., [6–9]), a new direction is the coupling of
such matter to additional degrees of freedom, such as pro-
vided by internal states (e.g. [10]), by external potentials
(e.g. [11]), by coupling to a bath (e.g. [12]), to a continuum
(e.g. [13,14]) or even to macroscopic objects (e.g. [15,16]).
Such hybrid quantum systems are of high interest for ap-
plications, ranging from fundamental physics to metrol-
ogy.

A major challenge in studying these systems is to re-
duce their inherent complexity. This is important for an
understanding of both the internal dynamics as well as an
extension to include a coupling to further degrees of free-
dom. In this paper we focus on the dynamics of atomic
bosons in a two band Bose-Hubbard model. The problem
is non-stationary due to an additional Stark force (or con-
stant tilt). In particular, we describe the Rabi-like oscilla-
tions between the two bands, which are well pronounced in
the case of single-particle resonant tunnelling between the
levels of adjacent lattice wells [13,17]. The presence of a
second band gives an additional degree of freedom – in the
sense of the previous paragraph – making the full many-
particle problem very rich in new phenomena, yet also
very complicated in general. We show how to effectively
map the original problem to a much simpler spin system
for specific fillings and parameters. This new model allows
us to derive an analytical formula for the revival time of
the interband oscillations which decay and revive due to
weak inter-particle interactions.

a e-mail: ploetz@thphys.uni-heidelberg.de

2 The system

2.1 The many-body model

We consider a two-band Bose-Hubbard model in one
spatial dimension with an additional external force as
obtained from a general many-body Hamiltonian under
the assumption of a contact interaction and introduced
in [18,19]. We measure all parameters of the Hamiltonian
in recoil energies Erec ≡ �2k2

L/(2m), where kL is the
wave vector of the laser creating the optical lattice and
m the mass of the atoms. Setting � = 1 throughout, the
Hamiltonian reads [18,19]

H =

L∑

l=1

[
ε−l n

a
l − ta

2
(a†

l+1al + h.c.) +
gWa

2
na

l (na
l − 1)

+ ε+l n
b
l +

tb
2

(b†l+1bl + h.c.) +
gWb

2
nb

l (n
b
l − 1)

+ FC0(b
†
l al + h.c.) + 2gWxn

a
l n

b
l

+
gWx

2
(b†l b

†
lalal + h.c.)

]
. (1)

The operator al (a†
l ) annihilates (creates) a particle at site

l of totally L sites in the lower band and bl (b†l ) in the up-

per band with the number operators na
l = a†

l al, n
b
l = b†l bl.

The bands are separated by a bandgap Δ and have on-
site energies ε±l = ±Δ/2 + lF . The hopping amplitudes
between neighbouring sites in band a, b are denoted by
ta, tb > 0, and a repulsive interaction between particles
occupying the same site in band a (b) with a strength
Wa (Wb) has been included. The single-particle coupling
of the bands is proportional to the external Stark force
F via C0F with a coupling constant C0 depending on
the depth of the lattice V0 [18,19]. The bands are addi-
tionally coupled via the inter-particle interactions with a
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strength Wx. Focusing on a realisation with a single op-
tical lattice, the parameters fulfill generally: Δ � ta, tb,
as well as ta, tb ≈ Wi and C0 ≈ −0.1. We take the ex-
ternal force F as a free parameter. Additionally we as-
sume that the interaction strength can be tuned, e.g., by
the use of Feshbach resonances [3], and include a factor
g to all interaction terms. For numerical simulations, we
change to the interaction-picture with respect to the ex-

ternal force [20] which removes the tilt
∑

l ln
a,b
l F and re-

places a†
l+1al → eiFta†

l+1al (and likewise for b†l+1bl). The
Hamiltonian is then time-dependent with a periodicity of
TB ≡ 2π/F and allows to use periodic boundary condi-
tions aL+1 = a1 and bL+1 = b1.

To study the interband transport, we prepare the sys-
tem in an initial state |ψ(0)〉, with a uniform distribution
of particles in the lower band only, and evolve it in time
by the many-body Schrödinger equation. The quantity we
study is the (normalised) number of particles in the upper
band

Nb(t) ≡ 1

N
〈ψ(t)|

∑

l

nb
l |ψ(t)〉, (2)

where N = 〈∑
l(n

a
l +nb

l ) 〉 is the total number of particles.
We will refer to Nb(t) as occupation of the upper band. For
the range of parameters described above, this observable
shows a superposition of many sinusoidal oscillations with
an amplitude of few per cent, even for strong forces [21].

2.2 Weakly interacting system in resonance

Despite the small interband oscillations described in the
previous paragraph, a strong enhancement of the inter-
band transport is possible for specific parameter values.
When the force-induced tilt of the lattice is such that a
lower and upper band energy level become nearly degen-
erate (i.e. for Δ ≈ mF, m ∈ N), the interband oscillations
of Nb(t) come close to 100% indicating a resonantly en-
hanced interband transport [21]. We refer to these specific
parameter values as resonant and will focus on this reso-
nant behaviour in the following.

To describe the non-interacting system H(g = 0) = H0

in resonance, we introduce the eigenstates of the single-
band problem (the Wannier-Stark states) involving Bessel
functions of the first kind Jn(x) [21,22]

αn =
∑

l∈Z

Jl−n(xa)al, βn =
∑

l∈Z

Jl−n(xb)bl, (3)

with xi ≡ ti/F , i = a, b. By using
∑

l∈Z Jn−l(x)
Jn′−l(x

′) = Jn−n′(x − x′), one finds that the trans-
formation removes the hopping terms from the original
Hamiltonian (1) but leads to a coupling between any sites
from the two different bands weighted by Bessel functions

H0 =
∑

l∈Z

[
ε−l α

†
lαl + ε+l β

†
lβl

+
∑

m∈Z

C0FJm(Δx)(α†
lβl−m + h.c.)

]
, (4)

where Δx = xa + xb and ε±l = ±Δ/2 + lF as above. The

resonance condition, Δ ≈ mF or equivalently ε−l ≈ ε+l−m,
means that two levels from different bands become ener-
getically degenerate. In this case, it is sufficient to keep
only the direct coupling between these two sites leading
to a sum of independent two-level systems

Hres
0 =

∑

l∈Z

[
ε−l α

†
lαl+ε

+
l β

†
lβl+C0FJm(Δx)(α†

lβl−m+h.c.)
]
.

(5)
This approximate description of the system in reso-
nance corresponds to lowest order nearly degenerate
perturbation theory and higher order corrections are
easily calculated, see e.g. [23,24]. However, the low-
est order approximation, equation (5), gives already
an accurate description of the non-interacting sys-
tem in resonance [21,23]. The resonant contribution
to the non-interacting case is thus well-described as
Nb(t) = sin2 [C0FJm(Δx) t] with a period Tres =
π/[C0FJm(Δx)] � TB much larger than the Bloch pe-
riod.

As demonstrated in [21], the inclusion of a weak inter-
particle interaction leads to a dephasing of the resonant
interband oscillations. The occupation of the upper band
as a function of time exhibits a collapse and revival effect,
with the time-scales for the collapse and revival inversely
proportional to the interaction strength g [23]. An exam-
ple of such oscillations under a weak repulsive interaction
is given by the solid line in Figure 2. In the weakly inter-
acting regime under consideration here, one of the inter-
action terms in the full Hamiltonian equation (1) is most
important. We focus solely on repulsive interactions, for
which the system tries to avoid double occupancy of sites
in either bands. However, the system is always assumed to
be at approximately integer filling and at the same time
sites from different bands are nearly degenerate, such that
it cannot avoid to have two particles occupying the same
site in either band. Thus the dominant contribution comes
from the term 2gWx

∑
l n

a
l n

b
l (see [21] for further details).

In the next section we derive an effective Hamiltonian that
allows to study the effect of a weak interaction on the res-
onant interband oscillations in detail.

3 Results

3.1 Effective spin model for system in resonance

We will now derive an effective spin Hamiltonian for the
interacting system in resonance. The strong reduction of
complexity is possible due to the resonant behaviour of
the system and the fact that the repulsive interaction
suppresses higher occupation of lattice sites. The descrip-
tion of the non-interacting system in resonance according
to equation (5) contains already the seed for an effective
model. The sum of many independent two-level systems
can be viewed as a system of non-interacting spins. We
only need to re-order the labeling of lattice sites such
that the two levels being coupled have the same site-
index and the coupling operator is then proportional to
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l = 3
l = 4

l = 5

l = 2

Fig. 1. (Color online) Schematical view of the effect of the interband interaction on the system in resonance of order m = 2. In
resonance, the system is forced into a superposition of states from both bands (the sites forming a superposition are indicated by
dashed ellipses). This happens on all lattice sites and the system cannot avoid an interaction of 2gWx

∑
l n

a
l n

b
l . A new fictitious

lattice labeling scheme setting the superpositions on one site is also indicated in the figure.

the Pauli matrix σx. The constant of proportionality is the
coupling matrix element C0FJm(Δx) from equation (5).
This is simply a different way of writing the approximate
Hamiltonian for the non-interacting system in resonance,
equation (5), and is schematically displayed for a reso-
nance of order m = 2 in Figure 1. To include the effect of
the most important interaction term 2gWx

∑
l n

a
l n

b
l into

our effective spin model, we insert the basis transforma-
tion from equation (3) and obtain in the transformed basis

2gWx

∑

l

na
l n

b
l = 2gWx

∑

l,l1,...,l4

{
Jl−l1(xa)Jl−l2(xa)

× Jl−l3(xb)Jl−l4(xb)

× α†
l−l1

αl−l2β
†
l−l3

βl−l4

}

≈ 2gWxJ
2
0 (xa)J2

0 (xb)
∑

l

α†
lαlβ

†
l βl. (6)

Here we used the fact that only one of the many differ-
ent combinations of Bessel functions gives a significant
contribution [21,23]. The reason is that the arguments
of the Bessel functions xa and xb are much smaller than
unity for a realisation with a single optical lattice as dis-
cussed here, and the dominant contribution is therefore
given by the product of four zeroth order Bessel functions
J2

0 (xa)J2
0 (xb). We denote the interaction strength for this

dominant process by

U ≡ 2gWxJ
2
0 (xa)J2

0 (xb). (7)

The introduction of the new fictitious lattice is now effec-
tively achieved by replacing l → l +m for the sites of the
upper band. It is important to note that the interband
interaction was between atoms occupying the same site in
different bands in the original lattice, i.e. ∝ na

l n
b
l , whereas

in the new lattice it connects a particle at one lattice site

in the lower band α†
lαl ≡ nα

l with a particle at a differ-

ent site in the upper band β†
l+mβl+m ≡ nβ

l+m (where we
used the transformed basis αl, βl). We focus on unit fill-
ing N = L and, since the repulsive interaction effectively
suppresses higher occupation of lattice sites, we limit the

occupation numbers of nα
l and nβ

l to 0 or 1 for our effec-

tive model. This allows us to replace nα,β
l → σ↑,↓

l with the

projectors on a spin-up or spin-down state σ↑↓
l =

(1l ± σz
l ) /2.

Collecting all arguments, the effective Hamiltonian (for
a resonance of order m) is accordingly given by

Heff =

L∑

l=1

(
Vmσ

x
l + Uσ↑

l σ
↓
l+m

)
(8)

where Vm = C0FJm(Δx). Here σi
l denotes the Pauli ma-

trices for a spin at site l. The first part is as in the non-
interacting resonant system, which was also a sum of inde-
pendent two-level systems. We only changed the ordering
of the sites to bring degenerate levels close together. The
second part reflects the repulsion of two particles when
sitting in different bands or different spin states respec-
tively. Since we are using spin-1/2 matrices in this ef-
fective description it can only be applied to the case of
unit filling and the number of lattice sites is per definition
identical with the number of spins. We expect it to be
a good approximation for close-to-unit filling (as is sup-
ported by our results below, see Fig. 4). An extension to
higher fillings should be possible by using larger spins than
spin 1/2, since this would allow further distinction of the
type non-occupied, partly occupied, or highly-occupied,
but is beyond the scope of the present article. The effective
Hamiltonian (8) is translational invariant as our original
model, such that one could use a reduction to subspaces
of fixed total quasimomentum similar to [18,20,23]. Please
note, that the Hilbert space for the effective Hamiltonian
has a dimension dim Heff = 2L that is much smaller
than the Hilbert space of the original bosonic problem,
equation (1), where dim H = (N + 2L− 1)!/[N !(2L− 1)!].
This is advantageous for numerical computations since
much larger system sizes become computable as compared
to the original model.

Let us discuss the effective model of equation (8) in
more detail. The parameters in the effective spin model are
chosen for the particular case of the system in resonance of
order m. It includes only the resonant coupling between
the two sites and other non-resonant couplings are ne-
glected. The effective model does thus not reproduce small
scale oscillations which are found on top of the resonant
oscillations within the full model (see [21] for an example).
However, these oscillations are only weakly influenced by
the interparticle interaction and are not relevant for the
collapse and revival effect we want to study. Another
important aspect of the effective spin model concerns the

choice of the interaction term σ↑
l σ

↓
l+m. Here we included
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Fig. 2. (Color online) Occupation of the upper band in the full
two-band Bose-Hubbard model (solid line; see [21] for details)
and number of up-spins in the effective spin model (dashed
line) for the same parameters. The spin model reproduces
most features of the time signal, first and foremost the collapse
and revival are in very good agreement between both models.
Parameters correspond to V0 = 10: Δ = 7.77, ta = 0.005,
tb = 0.121, C0 = −0.114, Wa = 0.040, Wb = 0.027, and
Wx = 0.018; resonance order m = 1, i.e. F = 7.9804; g = 0.1
and N = 5 = L.

only one of the four interaction terms from the original
Hamiltonian, equation (1), which has the strongest effect
on the resonant interband oscillations. The inclusion of
the other terms is straightforward but not necessary in
the present context. Furthermore we are limited to weak
inter-particle interactions, U 
 Vm, which is, however,
not a limitation of the effective model but originates from
the physics of the original system: as soon as the inter-
particle interaction becomes too strong, the resonant tun-
neling is washed out and the Rabi-like interband oscil-
lations cede and eventually transform into an essentially
structureless evolution of the band population defined in
equation (2) [23].

To compare the effective model to the full problem,
we computed the time-evolution of similar initial states
in both models and show the resulting occupation of the
upper band as a function of time with the pronounced
collapse and revival effect in Figure 2. The occupation of
the upper band for the full model is given by Nb(t), as
defined by equation (2), and has been computed by direct
numerical integration of the time-dependent Schrödinger
equation. In the effective spin model, a state with an
atom occupying the upper band is represented by a spin-
up such that the corresponding observable for the spin

model is given by N↑(t) = 1
L 〈ψ(t)| ∑l σ

↑
l |ψ(t)〉 and the

initial state is of the form |↓↓ . . . ↓〉. Both observables are
compared in Figure 2 for a weakly interacting system of
medium size. Overall, the effective spin model reproduces
the occupation of the upper band very well, especially
when compared to the drastic simplification from the full
two-band Bose-Hubbard model to the effective model of
equation (8). The good agreement is particularly surpris-
ing when taking into account that a reduction of occu-
pation numbers to 0 or 1 is usually known as “hard-core
bosons” [25,26] and valid in the limit of strong interac-

tions, whereas we are operating in exactly the opposite
regime of U 
 Vm. Furthermore, the effective model re-
produces the collapse and revival effect only when it is
introduced from the transformed basis. Limiting the oc-
cupation number in the original al, bl-basis by artificial
constraints (such a truncation procedure was applied, e.g.,
in [27,28]) cannot reproduce the effect [23].

A great advantage of the effective spin model for the
interband transport, equation (8), is its exact solvability.
Rewriting the spin-up and -down operators in terms of
Pauli matrices and applying a rotation of π/2 around the
y-axis (which leads to σx → σz and σz → −σx), our effec-
tive Hamiltonian takes the following form

Heff =
L∑

l=1

(
Vmσ

x
l − 1

4
U σz

l σ
z
l+m

)
+ const. (9)

This Hamiltonian is known (for m = 1) as the quan-
tum Ising model in a transverse magnetic field [29]. It
describes coupled spins that tend to align in z-direction
but are subjected to the force of an applied magnetic field
in x-direction. It can be solved exactly by subsequent ap-
plication of a Jordan-Wigner transformation [30], Fourier
and Bogolyubov transformation. The final result in terms
of Bogolyubov quasi-particles is [23,29]

Heff =
∑

k

ε(k)
(
d†

kdk − 1/2
)
. (10)

The exact dispersion relation ε(k) is given by

ε(k) = 2Vm

√
1 − U

2Vm
cos k +

(
U

4Vm

)2

≈ 2Vm− 1

2
U cos k

(11)
and can be approximated for our weakly interacting sys-
tem U 
 Vm as shown. Equation (10) is the exact solution
to our effective spin model. The elementary excitations of
the system are non-interacting fermions with a dispersion
relation that is approximately given by a cosine. These
elementary excitations correspond to magnons, i.e., to de-
localised spin-flips in the original spin basis. They read
explicitly

dk = cos(θk/2)ck − i sin(θk/2)c†−k, (12)

tan θk =
sin k

cos k − 4Vm/U
, (13)

with ck the Fourier transform of cl = σ−
l exp

[
iπ

∑
n<l c

†
ncn

]
, with σ±

l = (σx
l ± iσy

l )/2 and σz
l = 2c†l cl − 1.

3.2 Revival time within the effective model

The exact solution equation (10) of the effective
Hamiltonian allows, e.g., the computation of various
correlation functions. But in the present context, we are
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Fig. 3. (Color online) Shown are the coefficients cn =
〈En|ψ(0)〉 for an eigenbasis expansion of the initial state
|ψ(0)〉 = |↓ . . . ↓〉 versus the corresponding eigenenergies (+).
The three largest coefficients are marked by (�) and highlight
eigenstates with M − 1, M , and M + 1 magnons. Parameters:
Vm = 1, L = 7, U = 0.25, and F = 4.6020. Note the logarith-
mic scale on the y-axis.

interested in the time-evolution of particular initial states

|ψ(t)〉 =
∑

n

e−iEnt cn |En〉, (14)

where |En〉 are the eigenstates of the effective model, equa-
tion (10), and cn = 〈En|ψ(0)〉. In general the overlaps
cn between the given initial state and all eigenstates are
needed to calculate the time-evolution. Instead of an an-
alytical derivation of the overlaps on basis of the Jordan-
Wigner transformation, we adopt a numerical approach
here in order to decide which of the magnon states are
relevant. In detail, it is sufficient to know which eigen-
states have a significant contribution to the time-evolution
to estimate the revival time of the resonant interband os-
cillations. Figure 3 shows the coefficients cn for a time-
evolution of the initial state | ↓ . . . ↓〉 sorted by their
eigenenergies. The eigenenergies appear in several bunches
corresponding to eigenstates with a different number of
magnon excitations ranging from 0 to L magnons. Addi-
tionally, the three coefficients with the largest amplitude
have been marked by squares in Figure 3. We find that the
largest coefficients in the eigenbasis expansion are from the
energetically lowest eigenstates from the central bunches
of the spectrum. To be more specific, we found numer-
ically that the largest coefficients always come from the
subspaces with M − 1, M , and M + 1 magnons, where
M = L/2 for L even and M = (L − 1)/2 for L odd, and
are from the eigenstates with lowest energy within these
subspaces. This important observation allows a simple es-
timate of the revival time as the time for a beating between
oscillations with these three energies as frequencies.

To find the lowest eigenenergy of a state with M
magnons, we use the fact that the energy of a many-body
state with M magnons in the weakly interacting regime is

according to equation (11) given by

EM =

M∑

l=1

(
2Vm − 1

2
U cos(kjl

)

)
, (15)

where kjl
= 2πjl/L and each jl can take a value between

1, . . . , L. The energies for a given number of magnons M
thus arise from different choices of the momenta kjl

. The
state with lowest energy in this cosine dispersion is ob-
tained by using momenta that fill the empty cosine dis-
persion from zero upwards. A many-magnon state with
M = L/2 is reached when half of the possible states are
filled and with M ±1 by adding or removing one magnon,
respectively. This determines the momenta kjl

to obtain a
state with M magnons and minimal energy. We can now
estimate the revival time from the difference between the
energies of states with M − 1, M , and M + 1 magnons,
i.e., we need Δω = (EM+1 − EM ) − (EM − EM−1) =
EM+1 + EM−1 − 2EM . Inserting explicitly that the en-
ergy of M magnons is proportional to the sum of M co-
sine functions, equation (15), with different momenta fill-
ing the possible magnon states from below, we obtain the
following frequency difference

Δω = −U

2

⎛
⎝

M+1∑

j=1

cos(kj) +

M−1∑

j=1

cos(kj) − 2

M∑

j=1

cos(kj)

⎞
⎠

= −U

2

(
cos kM+1 − cos kM

)
≈ −π

L
U, (16)

where we expanded the cosine to lowest order around its
zero. Using equation (16) and our expression for U , equa-
tion (7), we find that the revival time as estimated by
oscillations between the dominant frequencies is given by

trev =
L

2π

4π

gWxJ2
0 (xa)J2

0 (xb)
. (17)

The effective spin model predicts the revival time to be
inversely proportional to the interaction strength and to
a product of two Bessel functions from the basis transfor-
mation. The parameters of the original full Hamiltonian
equation (1), like the hopping strengths, the gap between
the two energy bands and the order of the resonance, enter
via the arguments of Bessel functions xa,b = ta,b/F , where
the force has to be chosen according to the order of reso-
nance F ≈ Δ/m. These parameters and the revival time
change when the depth of the optical lattice V0 is varied
(see Eq. (4)). Furthermore, the result equation (17) from
the effective spin model additionally predicts a linear de-
pendence of the revival time on L. Within the effective
spin model this is by definition both the number of spins
and lattice sites. However, within the full two-band Bose-
Hubbard model the size-dependent prefactor refers to the
extension of the initial state within the lattice and not the
total number of lattice sites. Therefore, an observation of
the collapse and revival effect should also be possible in an
infinite lattice provided the initial state shows a limited
extension. In this way, our effective model adds an addi-
tional factor of L/2π to our earlier result [21], which has
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Fig. 4. (Color online) We show the revival times from differ-
ent numerical simulations of the full two-band Bose-Hubbard
model (the corresponding system sizes ‘N in L’ and the di-
mension of the Hilbert spaces D are indicated in the legend).
The numerical values have been rescaled by the size-dependent
prefactor 2π/L. The data points for different system sizes co-
incide, with small fluctuations due the approximation in equa-
tion (16). Our analytical prediction equation (17) (red dashed
line) captures nicely the scaling with the system parameters,
yet it shows a systematic offset arising from the three level ap-
proximation. The numerical result of the full spin model (cross
marked by arrow), extracted from Figure 2, coincides with the
full problem of equation (1).

been obtained following the arguments that led to equa-
tion (7) above, with the assumption that the initial state is
comparable to a coherent state and estimating the revival
time by computing the effect of the dominant interaction
term on a coherent state perturbatively [21].

To compare the result from equation (17) to numeri-
cal simulations of the full two-band Bose-Hubbard model,
we use the size-dependent prefactor to rescale numeri-
cal results for different system sizes. The curves for dif-
ferent system sizes should coincide, as is verified in Fig-
ure 4. The revival times from full many-body models with
Hilbert spaces ranging over three orders of magnitude fall
onto one curve and demonstrate the validity of the effec-
tive spin model equation (8) for the interband transport
in the weakly interacting two-band Bose-Hubbard model.
The remaining fluctuations with the system size originate
in the approximation of equation (16) and decrease with
growing L. The additional offset arises from taking only
the three largest coefficients for the derivation of the ex-
plicit expression in equation (17). This leads to an under-
estimation by about 10% of the time for the maximum
in the revived interband oscillations (which is our defini-
tion for the revival time). Inclusion of more than three
coefficients should remove this systematic offset between
the predicted and measured revival time. This has been
tested by comparing the oscillation dynamics of the orig-
inal model (1) with the full spin model (8) [23], and the
good agreement is shown for an exemplary data point in
Figure 4 (cross, extracted from the temporal evolution
presented in Fig. 2 above). We finally note, that equa-
tion (17) predicts a divergence of the revival time when-
ever the parameters of the system are chosen such that

one of the Bessel functions in the denominator vanishes.
This can be achieved, e.g., by tuning the energy gap Δ
between the two bands, and the expected divergence of
the revival time close to Bessel zeros was observed in nu-
merical simulations [23], giving room for a great deal of
control of the resonant interband oscillations.

4 Summary

We have shown how to reduce the complexity of the origi-
nal Hamiltonian equation (1) to the exactly solvable model
equation (9) for filling factors of the order one and for res-
onant coupling between the two energy bands. For weak
inter-particle interactions the model is in good agreement
with the full problem and allowed us to derive an ana-
lytical formula for the revivals of the resonant interband
oscillations. Interesting future aspects to work on would be
to include decay to higher energy states in the continuum
part of the spectrum (e.g. by opening the model in a simi-
lar way as exercised in [18,31] for a one-band problem) and
to extend the problem to atoms with internal structure.
The internal degrees of freedom would become correlated
with the external transport in “horizontal” – along the
lattice – and “vertical” – between the bands – direction.
Reductions of complex models are in general a necessary
prerequisite in order to describe quantum systems with
many degrees of freedom – possibly of different kind and
nature. So we hope that the spirit of our approach may
inspire future research in this direction.
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We show that and how ultra-cold atoms in an accelerated two-band lattice are a controlled real-
ization of Landau–Zener–Stückelberg interferometry.

I. INTRODUCTION

Two-level systems subject to a strong periodic driv-
ing appear in a large variety of quantum mechanical sys-
tems and their study has a long history. They are nat-
urally used in atomic physics when an atom is coupled
to a laser-field [1], in solid state physics when describ-
ing superconducting qubits [2] or as effective models [3].
One consequence of the strong driving is the possibility
for the two-level system to undergo a sequence of transi-
tions. Each transition can be seen as an effective beam
splitter and the coherent passage through several transi-
tions leads to an accumulation of phases and interference
effects known as Stückelberg oscillations (see [4] and ref-
erences therein).

Recently, Stückelberg oscillations have been observed
experimentally for ultra-cold atoms in accelerated optical
lattices [5, 6]. This opens the route for very detailed stud-
ies of Stückelberg interferometry with cold gases. The
high degree of control in these systems [7, 8] allows to
explore the strong sensitivity of the phase between inter-
band transitions on the band structure. The main goal of
the present paper is to establish explicitly the connection
between Stückelberg interferometry and interband tran-
sitions in optical lattices. Additionally, we provide simple
analytical formulae for the interband dynamics and com-
pute interference patterns, i.e. contour plots of transition
probabilities, for realizations with a single optical lattice
as experimentally used in [5] and superlattices as in [6].
The outline is as follows. In section II we are going
to obtain the Landau–Zener–Stückelberg (LZS) Hamil-
tonian from a two-band model for ultra-cold atoms in
accelerated optical lattices and study the dynamics of
the interband transitions using a systematic expansion
in section III. We will then compute the transition prob-
abilities using degenerate perturbation theory and com-
pare the results to numerical simulations. This will be
followed by predictions for interference patterns in real-
izations with a single optical lattice and superlattices.
We will close with a short summary.

II. COLD ATOM REALIZATION OF THE
LANDAU–ZENER–STÜCKELBERG

HAMILTONIAN

A quantum mechanical two-level system with energy
bias ε0 under strong periodic driving with amplitude
A and frequency ω is modeled by the Landau–Zener–

Stückelberg Hamiltonian [4]

HLZS = −1

2

(
ε0 +A sinωt ∆T

∆T −ε0 −A sinωt

)
. (1)

Here, ∆T denotes the tunneling amplitude between the
two levels. In the present section we are going to show ex-
plicitly how this Hamiltonian can be realized with ultra-
cold atoms in accelerated optical lattices.

Using ultra-cold atoms in optical lattices it is possi-
ble to create tilted non-interacting two-band systems [6].
We make all parameters of the Hamiltonian dimension-
less by measuring them in units of recoil energies Erec ≡
~2k2

L/(2m), where kL is the wave vector of the laser cre-
ating the optical lattice and m the mass of the atoms
(we set ~ = 1). The dimensionless force F is obtained by
multiplication of the physical force with the lattice con-
stant and dividing by Erec. The appropriate dimension-
less two-band Hamiltonian obtained from an expansion
in Wannier functions of the full problem [9, 10] reads

H2B =
∑

l∈Z

[(
lF − ∆

2

)
a†l al −

Ja
2

(a†l+1al + h.c.) (2)

+
(
lF + ∆

2

)
b†l bl −

Jb
2

(b†l+1bl + h.c.) + FC0(b†l al + h.c.)
]
.

The operator al (a†l ) annihilates (creates) a particle at

site l and bl (b†l ) in the upper band. The bands are sep-
arated by a bandgap ∆ and the whole lattice is tilted
by on-site energies lF . The hopping amplitudes between
neighbouring sites in band a, b are denoted by Ja > 0
and Jb < 0. The single-particle coupling of the bands
is proportional to the external Stark force F via C0F
with a coupling constant C0 depending on the optical
lattice but usually of order C0 ≈ −0.2 [9, 10]. We
take the external force F as a free parameter. The pa-
rameters of the Hamiltonian are directly computed from

Wannier functions wa,bl (x), which are maximally local-
ized states centered around the l-th lattice well. They
can be computed for realizations with a single opti-
cal lattice [10] V (x) = V0 cos(x) or with a superlattice
V (x) = V1 cos(x) + V2 cos(2x + φ) with a possible addi-
tional phase φ between the lattices [11, 12]. The param-
eters are then given by

Ja,b =

∫
wa,b(x)V (x)wa,b(x)dx (3a)

C0 =

∫
wa(x) · x · wb(x)dx. (3b)
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Here, wa,bl (x) denote the Wannier functions for the low-
est (a) and first excited band (b) that are computed from
the Bloch functions to the potential V (x). The band gap
∆ is the difference between the average energy of these
two lowest Bloch bands. Inter-particle interactions can
be neglected under specific experimental conditions [5]
and the case of weak interactions can be treated pertur-
batively, extending the discussion in [13, 14].

To obtain a driven time-dependent two-level system
similar to eq. (1), we change to the interaction-picture
with respect to the external force [15]. This removes

the tilt
∑
l lFa

†
l al and replaces a†l+1al → eiF ta†l+1al

(and likewise for b†l+1bl). The Hamiltonian is then
time-dependent with a periodicity of TB ≡ 2π/F . In-
troducing Fourier components a(k) =

∑
l e
ilkal and

b(k) =
∑
l e
ilkbl, we obtain the following periodic two-

level Hamiltonian [16, 17]

H =

(
−∆

2 − Ja cos(k + Ft) C0F
C0F

∆
2 − Jb cos(k + Ft)

)
. (4)

The finite distance between the two levels, a sinusoidal
driving and a constant coupling as in the LZS Hamilto-
nian, eq. (1), are already present now. To make the con-
nection completely transparent, we add a periodic shift
of the energy zero. The final result is then

H = −1

2

(
∆ + 2J cos(k + Ft) −2C0F

−2C0F −∆− 2J cos(k + Ft)

)

+ (Ja + Jb) cos(k + Ft)

(
1 0
0 1

)
, (5)

where J = Ja−Jb. Shifting the time zero as t→ t−k/F−
π/2F , we arrive exactly at the form of eq. (1). The first
part of the Hamiltonian eq. (5) is the ultra-cold atom re-
alization of the Landau–Zener–Stückelberg Hamiltonian
and the second part reflects a time-dependent shift of the
zero energy point, which does not concern interference
effects between different phases. To simulate the LZS
Hamiltonian and to perform interferometry one can use
the control offered by ultra-cold atom systems in acceler-
ated optical lattices. The role of the energy bias is taken
by the average band gap between the two Bloch bands,
the driving amplitude is realized as the difference in hop-
ping strengths and the driving frequency is the Bloch
frequency ωB = F in our units. Finally, the tunneling
amplitude in the ultra-cold atom realization is propor-
tional to the external Stark Force. This correspondence
between the two realizations is summarized in table I.
Please note that not all parameters in the cold atom re-
alization can be varied independently since the driving
frequency ωB = F and the interband coupling C0F both
depend on the external force. Figure 1 presents a typical
LZS interferometric pattern (see [4] for many examples
and a summary of different experimental results). Shown
are the transition probabilities, i.e. the long-time aver-
age (t≫ TB) of the occupation of the upper band, when
varying the ’driving strength’ J and the ’level splitting’

tilted optical lattice Landau–Zener–Stückelberg

band gap ∆ level splitting ε0

Bloch freq. ωB = F driving freq. ω

band coupling 2C0F level coupling −∆T /2

hopping J = Ja − Jb field strength A

TABLE I: Analogy between tilted optical lattices and the
Landau–Zener–Stückelberg Hamiltonian. Note that the band
coupling and the driving (or Bloch-) frequency are not inde-
pendent in tilted optical lattices.

FIG. 1: (Color online) Landau–Zener–Stückelberg interferom-
etry. Shown is the long-time average of the occupation of the
upper band as a function of the band gap ∆ (corresponding to
the level separation in atomic systems) and the hopping dif-
ference between the bands J = Ja − Jb (corresponding to the
driving amplitude). Parameters: C0 = −0.15 and F = 1.0.

∆ according to eq. (21) to be derived below. To see how
these interference patterns arise in systems of cold atoms,
we will derive analytical expressions for the interband dy-
namics.

III. STÜCKELBERG INTERFEROMETRY
WITH ULTRA-COLD ATOMS

A. Dynamics of the interband transitions

To study the dynamics of the interband transition we
have to solve the time-dependent Schrödinger equation.
However, it can be shown to be equivalent to the Hill
equation and exact analytical solutions in closed form are
not possible. To obtain approximate solutions in a sys-
tematic fashion, we will use the Magnus expansion [18].
It is useful apply the following transformation in order to
obtain a purely off-diagonal Schrödinger equation [16, 17]
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ã(k, t) = a(k, t)e−i∆·t/2−iJa
∫ t
0

cos(k+Ft′)dt′ (6a)

b̃(k, t) = b(k, t)e+i∆·t/2−iJb
∫ t
0

cos(k+Ft′)dt′ . (6b)

This removes the diagonal terms and we obtain an equiv-
alent Schrödinger equation with a transformed Hamilto-
nian H̃(t) for the transformed amplitudes

i
∂

∂t

(
ã(k, t)

b̃(k, t)

)
=

(
0 C0Fe

−iφ(k,t)

C0Fe
iφ(k,t) 0

)(
ã(k, t)

b̃(k, t)

)
,

(7)
where φ(k, t) = ∆ · t− (J/F )[sin(k + Ft)− sin(k)] is the
phase between the two Bloch bands and J = (Ja − Jb).
Where the pure existence of two energy bands allows phe-
nomena like Rabi oscillations, it is the non-trivial phase
difference for the time-evolution in both bands, related
to J 6= 0, that gives rise to Stückelberg oscillations and
the complex interference phenomena. That is, the differ-
ence in the curvature J = Ja − Jb 6= 0 allows to collect
different phases during the time evolution in the upper
or lower band and excludes exact analytical solutions of
the Schrödinger equation in closed form [1, 4, 17].

The idea of the Magnus expansion is to express the
time evolution operator as the exponential of an infinite
series U(t) = exp [

∑∞
n=1 Ωn(t)] , with each term contain-

ing an increasing number (n− 1) of nested different time
commutators [18]. All orders of the Magnus expansion
could be summed in a recent work for a new derivation
of the transition probability in the Landau–Zener prob-
lem [19]. The first two terms of this series read explicitly
(valid in both Schrödinger and interaction picture [20])

Ω1(t) = −i
∫ t

0

H̃(t1) dt1 (8a)

Ω2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2 [H̃(t1), H̃(t2)] (8b)

To compute the terms in the Magnus expansion for our
time-dependent problem, eq. (7), explicitly, we have to
integrate the Hamiltonian and commutators of it over
time. Without loss of generality, we restrict our discus-
sion to k = 0, which can always be achieved by shifting
the time zero. We will need the integral

χ(t) ≡
∫ t

0

eiφ(t′)dt′ =

∫ t

0

ei(∆·t′−(J/F ) sinFt′)dt′. (9)

Using the the generating function of the Bessel function
exp[u(τ − 1/τ)] =

∑
n∈Z Jn(2u)τn for τ = e−iF t, we can

write the sin in the exponent as a sum over Bessel func-

tions χ(t) =
∑
n∈Z Jn(J/F )

∫ t
0
dt′ei(∆−nF )t′ . After inte-

gration and minor manipulations, we obtain a closed ex-
pression with the explicit time dependence for the highly
oscillatory function

χ(t) = 2
∑

n∈Z
Jn(J/F ) eiωnt/2

sin (ωnt/2)

ωn
(10)

with ωn = ∆− nF . With the explicit expression for the
integral defining χ(t), the first term in the Magnus expan-

sion is given by Ω1(t) = −iC0F
(

0 χ∗

χ 0

)
and the time evo-

lution operator in first order reads correspondingly [11]

U1(t) =

(
cos(C0F |χ|) −iei argχ sin(C0F |χ|)

−ie−i argχ sin(C0F |χ|) cos(C0F |χ|)

)
.

(11)
This is the result in first order and the occupation of the
upper band Pb(t) ≡

∑
k|b(k, t)|2 is given by

Pb(t) = sin2

[
2C0F

∣∣∣
∑

n

Jn(J/F )eiωnt/2
sin (ωnt/2)

ωn

∣∣∣
]
.

(12)
This result captures resonant and non-resonant contri-
butions of the interferometry in a single and explicit for-
mula. Eq. (12) can be understood by treating the denom-
inator zeros ωm = 0 ⇔ ∆ = mF contained in χ(t) sep-
arately using limx→0

sin xt
x = t. This condition ∆ ≈ mF

corresponds to a resonant interband coupling and χ(t)
can be decomposed as

χ(t) = Jm(J/F ) t+ 2
∑

n 6=m
Jn(J/F ) eiωnt/2

sin (ωnt/2)

ωn
.

For large times the first term will be dominating and the
overall short-time averaged occupation of the upper band
shows large sinusoidal oscillations with unit amplitude
N res
b (t) = sin2[V Jm(J/F ) t]. The other high-frequency

and non-resonant terms lead to small amplitude oscilla-
tions on top of this overall resonant interband oscilla-
tions.

For the second order contribution we need the commu-
tator (where σz is the diagonal Pauli matrix)

[H̃(t1), H̃(t2)] = 2iC2
0F

2σz sin[φ(t2)− φ(t1)] (13)

and integrate over it in time. One obtains Ω2(t) =
iC2

0F
2σzψ(t) where the required integral ψ(t) ≡∫ t

0
dt1
∫ t1

0
dt2 sin[φ(t2) − φ(t1)] can be computed by ap-

plying the same expansion as above

ψ(t) =
∑

n∈Z

Jn(J/F )

ωn

{∑

m∈Z
Jm(J/F )×

( sin2 ωmt/2

ωm
− sin2[(m+ n)Ft/2]

(m+ n)F

)}
.

(14)

The time evolution operator can again be given ex-
actly [11] and one finds for the occupation of the upper
band

Pb(t) =
|χ|2

|χ∗χ + C2
0F

2ψ2| sin
2
(

2C0F
√
χ∗χ + C2

0F
2ψ2

)
,

(15)
where we suppressed the time-dependence of the func-
tions χ(t) and ψ(t). The eqs. (12) and (15) are the cen-
tral results of this section. They provide good approxi-
mations to the full interband dynamics in an explicit ex-
pression. They furthermore contain the resonant as well
as non-resonant contributions to the interband dynamics.
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B. Average occupation of bands

In order to determine the average occupation of the
bands it is more useful to go back to the original two-
band Hamiltonian eq. (2) instead of calculating the
long-time average over the expressions eq. (12) and
eq. (15). Introducing the Wannier–Stark states [21]
αn =

∑
l∈Z Jl−n(Ja/F )al and βn =

∑
l∈Z Jl−n(Jb/F )bl

into eq. (2), one obtains [13]

H2B =
∑

l∈Z

[(
lF − ∆

2

)
α†lαl +

(
lF + ∆

2

)
β†lβl

+
∑

m∈Z

C0FJm(J/F )(α†lβl−m + h.c.)
]
, (16)

where J = Ja − Jb as above. This expression contains
all relevant processes coupling the two bands as direct
couplings weighted by Bessel functions Jm(J/F ). For
J/F . 1 the dominant contribution is the on-site cou-
pling between the bands proportional to J0(J/F ). Keep-
ing only this dominant contribution, the Hamiltonian
eq. (16) is a sum of independent two-level systems and
can easily be diagonalized. The resulting occupation of
the upper band contains the dominant part of the non-
resonant oscillations already contained in eq. (12) and
reads

Pb(t) =
4V 2

0

∆2 + 4V 2
0

sin2
(√

∆2 + 4V 2
0 · t/2

)
. (17)

where V0 = C0FJ0(J/F ). This means that the non-
resonant contribution to the averaged occupation of the
upper band is given by

Pb =
1/2

1 +
[ ∆/F

2C0J0(J/F )

]2 . (18)

However, in addition to this onsite coupling, the
Hamiltonian eq. (16) allows a direct coupling of more
remote sites. This becomes particularly important when-
ever a site from the lower band and a site from the upper
band are energetically degenerate. The corresponding
resonance condition for two levels being separated by m
sites is ∆ ≈ mF , m ∈ N. We therefore apply degenerate
perturbation theory [22] to the Hamiltonian eq. (16) and
obtain for a resonance of order m in second order the
following effective two-level system [11, 23]




ε+l−m +
∑

i6=l

|Vl−m−i|2
ε+l−m − ε−l

V−m

V−m ε−l +
∑

i6=l−m

|Vl−i|2
ε−l − ε+i


 , (19)

with ε±l = lF ± ∆/2 and Vl = C0FJl(J/F ). This and
higher orders allow the computation of various observ-
ables with high degree of precision [23]. For example, the
resonance condition ∆ = mF experiences a slight Stark

shift and the corresponding condition in second order is
given by

∆ = mF − 2C2
0F

2
∑

i6=m

J2
i (J/F )

∆− iF . (20)

Unlike the usual LZS problem, the coupling between the
bands C0F and the driving frequency ωB = F are not
independent for atoms in optical lattices. This makes
eq. (20) nonlinear and difficult to solve. However, it
can be solved either numerically or by iteration. The
uncorrected resonance position for a single optical lat-
tice with V0 = 4 and a resonance of order 2 is given
by F2 = ∆/2 = 2.195. Solving eq. (20) numerically
gives FPT

2 = 2.22067 which has a relative error of order
10−5 when compared to the maximum of the resonance
F = 2.22070 from numerical simulations of the full prob-
lem eq. (4). In the same way, very high precision can be
achieved by higher orders perturbation theory.

The resulting resonant contribution to the average oc-
cupation of the upper band has a Lorentzian shape [4, 17]
and the total transition probability is given by the non-
resonant interband coupling and the different resonant
contributions

Pb =
1

2

4V 2
0

∆2 + 4V 2
0

+
1

2

∑

m

4(Vm/F∆)2

(1/F − 1/Fm)2 + 4(Vm/F∆)2
.

(21)
The first term describes the direct force-induced coupling
between the bands and is usually much smaller than
unity. However, for F � ∆ its contribution becomes
important and grows as F−2. The second part are the
resonant contributions from different orders of resonance.
Let us compare this result eq. (21) to numerical simula-
tions of the full Hamiltonian eq. (2). We change to the
interaction picture with respect to the external force and
impose periodic boundary conditions [10, 15]. We take an
initial state |ψ0〉 which occupies only the lower band, and
evolve it in time according to the Schrödinger equation
i∂t|ψ(t)〉 = H(t)|ψ(t)〉. We compute the total occupa-

tion of the upper band Pb(t) = 〈ψ(t)|b†l bl|ψ(t)〉 and take
the long time average. The result for a single optical lat-
tice realization with V0 = 4 is shown in fig. 2 together
with our result eq. (21). We observe very good agree-
ment even on the logarithmic scale shown in the figure.
The non-resonant interband coupling and the resonant
contribution as well as the resonance positions are accu-
rately reproduced. Only the asymmetry of the resonance
peaks (in particular of the high order m = 4 resonance
at 1/F ≈ 0.9) is not captured by our present analysis
since the effective model of eq. (19) should be extended
to describe well such more complex peak profiles.

C. Interferometry with optical lattices

We have established the general possibility to use ultra-
cold atoms for Stückelberg interferometry and have given
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FIG. 2: (Color online) Longtime average of the occupation of
the upper band from numerical simulations of the full problem
(blue circles) and the theoretical prediction eq. (21) (dashed
line). The insets show the resonances m = 2, 3, 4 on a linear
scale. Parameters for a single optical lattice of depth V0 = 4:
C0 = −0.14, ∆ = 4.39, and J = −0.682.

analytical results for the probability of interband tran-
sitions in the previous paragraphs. As already men-
tioned, the important parameters hopping J and band
gap ∆ to build the Landau–Zener–Stückelberg Hamilto-
nian, eq. (1), can, however, not be controlled indepen-
dently in optical lattice systems. We therefore show in-
terference patterns similar to figure 1 but with the ex-
perimentally accessible parameters varied. That is, we
vary the depth of the optical (super-)lattice (and possi-
ble the phase φ) and compute the Wannier functions for
each value of the lattice parameters. From these we ob-
tain the relevant parameters J , ∆, and C0 according to
eq. (3). With them we obtain the transition probabilities
at different forces from eq. (21). The results for realiza-
tions with a single optical lattice and a superlattice are
shown in fig. 3. We clearly observe resonances of differ-
ent orders as the external force is varied. The resonance
position changes nonlinearly with the lattice depth since
the band gap is generally a not strictly linear function of
the lattice depth (in both cases of a single lattice and a
superlattice). Additionally, the importance of the non-
resonant background becomes more important for larger
forces, i.e. for small 1/F .

As mentioned already, the three system parameters J ,
∆, and C0 all depend on the lattice depth V0 (or V2/V1)
and cannot be varied independently. However, the situa-

tion is slightly advantageous for superlattices, since there
are two experimental parameters, the ratio of the lattice
depths V2/V1 and the relative phase between the lattices
φ, that can be altered. We therefore computed the Wan-
nier functions and the system parameters for many dif-
ferent combinations of these two parameters and show
the resulting transition probability as a contour plot in
fig. 4 for fixed external force F = 3. We observe a clear
and broad resonance as a result of Stückelberg interfer-
ence when different parts of the wave function evolve in
the different bands. The complicated shape of the res-
onance is again a result of the nonlinear dependence of
the system parameters on V2/V1 and φ. Fig. 4 is an ex-
plicit prediction for transition probabilities from multiple
phase interference that should be observable with current
experimental methods as in [6].

IV. SUMMARY

We have made the connection between Stückelberg
interferometry and recent experiments with ultra-cold
atoms. We showed explicitly how to obtain the Landau–
Zener–Stückelberg Hamiltonian with cold atoms in ac-
celerated optical lattices. More specifically, we applied
the Magnus expansion to obtain analytical expressions
capturing various aspects of the complicated interband
dynamics. The transition probabilities for different ex-
perimental realizations with atomic quantum gases have
been computed and should be experimentally accessible.
We thus hope to have clarified some of the background of
ongoing experiments and to stimulate further research us-
ing the high control in state-of-the-art implementations.
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Beyond mean-field dynamics in open Bose-Hubbard chains
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We investigate the effects of phase noise and particle loss on the dynamics of a Bose-Einstein
condensate in an optical lattice. Starting from the many-body master equation, we discuss the ap-
plicability of generalized mean-field approximations in the presence of dissipation as well as methods
to simulate quantum effects beyond mean-field by including higher-order correlation functions. It
is shown that localized particle dissipation leads to surprising dynamics, as it can suppress decay
and restore the coherence of a Bose-Einstein condensate. These effects can be applied to engineer
coherent structures such as stable discrete breathers and dark solitons.

PACS numbers: 03.75.Lm, 03.65.Yz, 03.75.Gg

I. INTRODUCTION

Decoherence and dissipation, caused by the irreversible
coupling of a quantum system to its environment, rep-
resent a major obstacle for the long-time coherent con-
trol of quantum states. However, in the last years it has
been realized that dissipation can be extremely useful if
it can be controlled accurately. Recent experiments have
shown that strong correlations can be induced by two-
body losses in ultracold quantum gases [1, 2]. Three-body
losses can be tailored to generate effective three-body in-
teractions [3] and to prepare strongly correlated states
for quantum simulations of color superfluidity [4], quan-
tum hall physics [5] or d-wave pairing [6]. Even more,
dissipation can be used as a universal tool in quantum
state preparation [7, 8], entanglement generation [9] and
quantum information processing [10]. These concepts of
controlling quantum dynamics and transport are partic-
ularly important for experiments with ultracold atoms in
optical lattices, where it is possible to address the quan-
tum system with single-site resolution [11, 12]. An even
higher spatial resolution has been realized with a focussed
electron beam, removing atoms one-by-one from the lat-
tice [13, 14]. The effects of such a localized particle loss on
the dynamics of a Bose-Einstein condensate (BEC) have
been investigated from a nonlinear dynamics viewpoint in
several papers in the last years, discussing the possibility
to induce nonlinear structures such as bright breathers
[15, 16], dark solitons [17] or ratchets [18]. These studies
were based on a mean-field approximation, where the loss
was introduced heuristically as an imaginary potential.

In this article we go beyond this approximation and
investigate the quantum dynamics of ultracold atoms in
a finite optical lattice with dissipation, which provides a
distinguished model system for the study of open one-
dimensional chains. Our analysis is based on a numer-

∗Electronic address: witthaut@nld.ds.mpg.de

ical integration of the full many-body master equation
and generalized mean-field methods. In section II, we
present an explicit derivation of the mean-field equations
of motion, which hold if the many-body state is close to
a BEC, and generalize this approach to take into account
higher order correlation functions [19, 20]. If particle loss
is the only source of dissipation, the mean-field equations
reduce to a non-hermitian Schrödinger equation applied
previously [16, 17]. While such a non-hermitian descrip-
tion has been thoroughly studied for single particle quan-
tum mechanics [21], the applicability to open many-body
systems is an open issue.

Two important cases are studied in detail: In section
III, we analyze how boundary dissipation induces local-
ization and purifies a BEC. In section IV, we consider
localized loss from a single lattice site, which creates a
vacancy and leads to a fragmentation of the condensate.
Remarkably, strong dissipation can suppress the decay of
the condensate and a coherent dark soliton can be gen-
erated by properly engineering the dynamics. The tech-
niques presented here can be directly applied in ongoing
experiments [13, 14].

II. THE MEAN-FIELD LIMIT AND BEYOND

The coherent dynamics of ultracold atoms in opti-
cal lattices is described by the celebrated Bose-Hubbard
Hamiltonian [22]

Ĥ = −J
∑

j

(
â†

j+1âj + â†
jâj+1

)
+
U

2

∑
j
â†

j â
†
jâj âj , (1)

where âj and â†
j are the bosonic annihilation and creation

operators in mode j, J denotes the tunneling matrix el-
ement between the wells and U the interaction strength.
We set ~ = 1, thus measuring energy in frequency units.
This model assumes that the lattice is sufficiently deep,
such that the dynamics takes place in the lowest Bloch
band only.
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In the presence of dissipation, the dynamics is given
by a master equation in Lindblad form [23],

˙̂ρ = −i[Ĥ, ρ̂] + Lρ̂. (2)

Here, we are especially interested in the effects of local-
ized particle loss, which can be implemented by an elec-
tron beam [13, 14] or by a strongly focussed resonant
blast laser. Furthermore, phase noise is always present
in experiments, which degrades the phase coherence be-
tween adjacent wells and heats the sample [24, 25]. These
two processes are described by the Liouvillians [23, 26–
28]

Llossρ̂ = −1

2

∑
j
γj

(
â†

j âj ρ̂+ ρ̂â†
jâj − 2âj ρ̂â

†
j

)
, (3)

Lphaseρ̂ = −κ

2

∑
j
n̂2

j ρ̂+ ρ̂n̂2
j − 2n̂j ρ̂n̂j , (4)

where γj denotes the loss rate at site j and κ is the
strength of the phase noise.

To derive the mean-field approximation, we start from
the single particle reduced density matrix (SPDM) σjk =

〈â†
j âk〉 = tr(â†

j âkρ̂) [19, 20, 29]. The equations of motion

for σjk are obtained from the master equation (2),

i
d

dt
σj,k = tr

(
â†

j âk[Ĥ, ρ̂] + iâ†
j âkLρ̂

)

= −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+U (σkkσjk + ∆jkkk − σjjσjk − ∆jjjk) ,

−iγj + γk

2
σj,k − iκ(1 − δj,k)σj,k, (5)

where we have defined the covariances

∆jkℓm = 〈â†
j âkâ

†
ℓ âm〉 − 〈â†

j âk〉〈â†
ℓ âm〉. (6)

In the mean-field limit N → ∞ with g = UN fixed, one
can neglect the variances ∆jkℓm in Eq. (5) in order to
obtain a closed set of evolution equations. This is appro-
priate for a pure BEC, because the variances scale only
linearly with the particle number N , while the products
σjkσℓm scale as N2. If phase noise can be neglected, i.e.
κ = 0, the equations of motion (5) are equivalent to the
non-hermitian discrete nonlinear Schrödinger equation

i
d

dt
ψk = −J(ψk+1 + ψk−1) + U |ψk|2ψk − i

γk

2
ψk (7)

by the identification σj,k = ψ∗
jψk. This provides a proper

derivation of the non-hermitian Schrödinger equation,
which has previously been applied heuristically [15–17].

The mean-field approximation assumes a pure BEC
and is strictly valid only in the limit N → ∞. To de-
scribe many-body effects such as quantum correlations
and the depletion of the condensate for large, but finite
particle numbers, we generalize the Bogoliubov backre-
action (BBR) method [19] to the dissipative case, taking
into account the covariances (6) explicitly. We start with

the coherent part of the master equation, which yields
the following evolution equations for the four-point func-
tions:

i
d

dt
〈â†

j âmâ
†
kân〉 = tr

(
â†

j âmâ
†
kân[Ĥ, ρ̂]

)

= (ǫm + ǫn − ǫj − ǫk)〈â†
j âmâ

†
kân〉

−J 〈â†
j âmâ

†
kân+1 + â†

j âmâ
†
kân−1 + â†

jâm+1â
†
kân

+â†
jâm−1â

†
kân − â†

j+1âmâ
†
kân − â†

j−1âm+1â
†
kân

−â†
jâmâ

†
k+1ân − â†

j âmâ
†
k−1ân〉

+U 〈â†
j âmn̂mâ

†
kân + â†

j âmâ
†
kânn̂n

−n̂jâ
†
j âmâ

†
kân − â†

j âmn̂kâ
†
kân〉. (8)

Again, the interaction hamiltonian leads to higher-order
correlation functions. To obtain a closed set of evolution
equations, these function are truncated according to [20]

〈â†
j âmâ

†
kânâ

†
râs〉 ≈ 〈â†

j âmâ
†
kân〉〈â†

râs〉
+〈â†

j âmâ
†
râs〉〈â†

kân〉 + 〈â†
kânâ

†
râs〉〈â†

j âm〉
−2〈â†

jâm〉〈â†
kân〉〈â†

râs〉. (9)

For a BEC, the six-point function scale as N3, while the
error introduced by this approximation increases only lin-
early with N . The relative error induced by the trunca-
tion thus vanishes as 1/N2 with increasing particle num-
ber. Close to a pure condensate, the BBR method thus
provides a better description of the many-body dynam-
ics than the simple mean-field approximation, since it
includes the dynamics of higher order methods at least
approximately. Using this truncation, the coherent part
of the dynamics is given by

i
d

dt
∆jmkn =

−J
[
∆j,m,k,n+1 + ∆j,m,k,n−1 + ∆j,m+1,k,n + ∆j,m−1,k,n

−∆j,m,k+1,n − ∆j,m,k−1,n − ∆j+1,m,k,n − ∆j−1,m,k,n

]

+U
[
∆mmknσjm − ∆jjknσjm + ∆jmnnσkn − ∆jmkkσkn

+∆jmkn (σmm + σnn − σkk − σjj)
]
. (10)

Particle loss and dissipation affect the dynamics of the
four-point functions as follows

d

dt
〈â†

j âmâ
†
kân〉 = tr

[
â†

j âmâ
†
kânLρ̂

]

= −γj + γm + γk + γn

2
〈â†

j âmâ
†
kân〉 − δmkγm〈â†

j ân〉
−κ (2 + δmn + δjk − δjm − δjn − δkm − δkn)

×〈â†
jâmâ

†
kân〉.

In terms of the variances this yields

d

dt
∆jmkn = −γj + γm + γk + γn

2
∆jmkn − δmkγmσjn

−κ(δmn + δjk − δjn − 2δkm)(∆jmkn + σjmσkn)

−κ(2 − δjm − δkn)∆jmkn. (11)
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FIG. 1: (Color online) Numerical test of the BBR methods
for a leaky double-well trap with loss in the second well. (a,b)
Dynamics of the population imbalance 〈n̂2 − n̂1〉 for two dif-
ferent values of the loss rate, comparing the BBR approxima-
tion (solid blue line) to numerically exact results (thick red
line). (c) Condensate fraction λ0/ntot as a function of time
and the loss rate γ2. (d) Trace distance (12) between the
exact rescaled SPDM σ(t)/n(t) and the respective BBR ap-
proximation. In all cases the initial state is assumed to be a
pure BEC with with equal population and a phase difference
of π between the two modes. The remaining parameters are
J = 10 s−1, κ = 0, U = 0.5 s−1 and n(0) = 200 atoms.

The BBR method is especially useful if the many-body
state is close to, but not exactly equal to a pure BEC.
In particular, it accurately predicts the onset of the de-
pletion of the condensate mode. The number of atoms
in this mode is given by the leading eigenvalue λ0 of the
SPDM σj,k, where the trace of σj,k gives the total num-
ber of atoms ntot. The ratio λ0/ntot is referred to as the
condensate fraction [19, 30].

The BBR approach has been extensively tested for
closed systems in [20]. Therefore, we only briefly com-
ment on the performance of this method in the presence
of dissipation. Figure 1 shows two examples of the dy-
namics of a BEC in a leaky double-well trap, comparing
the BBR approximation (solid blue line) and numerically
exact results (thick red line). The initial state is assumed
to be a pure BEC with equal population and a phase dif-
ference of π between the two modes. In the case of strong
dissipation, the BBR approximation predicts the correct
evolution of the population imbalance 〈n̂2 − n̂1〉 with an
astonishing precision. In contrast, significant differences
are observed for weak losses. This means that the pres-
ence of particle loss actually improves the performance
of the BBR method, as the dissipation drives the many-
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FIG. 2: (Color online) Dynamics of a BEC in a triple-well trap
with boundary dissipation: (a) atomic density 〈n̂j(t)〉, (b)
total particle number and (c) the condensate fraction λ0/ntot

for J = 5 s−1, γ = 20 s−1, κ = 0, U = 30 s−1 and n(0) = 60
atoms. (d) Total particle number after a fixed propagation
time tfinal = 0.2 s as a function of the interaction strength
U . Mean-field (− · −) and BBR (—) results are compared to
numerically exact simulations with a quantum jump method
averaging over 200 trajectories (thick red line).

body quantum state towards a pure BEC [36]. This is
confirmed by the numerical results for the condensate
fraction λ0/ntot plotted in Fig. 1 (c). A significant de-
pletion of the condensate is only observed for small values
of the loss rate γ2. For a further quantitative analysis of
the accuracy, we compare exact and BBR results for the
rescaled SPDM σ(t)/ntot(t). Figure 1 (d) shows the trace
distance of the exact matrix and the matrix obtained by
the BBR method,

d :=
1

2
tr

(
|σBBR/nBBR − σex/nex|

)
, (12)

as a function of time for different values of γ2. For suf-
ficiently large dissipation, one observes that the distance
approximately vanishes for all times. In this regime the
quantum dynamics is faithfully reproduced by the BBR
approximation.

III. BOUNDARY DISSIPATION

We first analyze the effects of boundary dissipation
with a focus on small systems for which numerically ex-
act solutions of the many-particle dynamics are still pos-
sible, for instance by the quantum jump method [23, 31].
A comparison to numerically exact results for these ex-
amples provides another test of performance of the BBR
approach.
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We consider the decay of an initially pure, homoge-
neous BEC in a triple-well trap with boundary dissipa-
tion. Figure 2 (a) and (b) show the evolution of the
atomic density and the total particle number for strong
inter-atomic interactions U = 30 s−1. One observes a
fast decay of the atoms at the outer sites while the pop-
ulation at the central site is remarkably stable. This is
confirmed by the evolution of the total particle number,
which rapidly drops to about one third of its initial value,
where it saturates for a long time. This is a consequence
of the dynamical formation of a discrete breather at the
central site, which is an important generic feature of non-
linear lattices. Generally, discrete breathers, also called
discrete solitons, are spatially localized, time-periodic,
stable excitations in perfectly periodic discrete systems
[32–35]. They arise intrinsically from the combination of
nonlinearity and the discreteness of the system. In the
presence of boundary dissipation, these excitations be-
come attractively stable such that the quantum state of
the atoms will converge to a pure BEC with a breather-
like density for a wide class of initial states. Once a
discrete breather is formed, it remains stable also if the
dissipation is switched off. The crucial role of strong in-
teractions is illustrated in Fig. 2 (d), where the residual
atom number after tfinal = 0.2 s of propagation is plotted
as a function of the interaction strength. The particle
number increases for large values of U to ntot(tfinal) ≈ 20
due to the breather formation.

For strong interactions a simple mean-field approxima-
tion fails. It strongly underestimates the residual par-
ticle number as it predicts that discrete breather are
formed only for stronger losses. In contrast, the BBR
results agree well with the many-particle simulation even
for large values of U . We thus conclude that quantum
fluctuations facilitate the formation of repulsively bound
structures. Furthermore, a mean-field approach cannot
account for genuine many-body features of the dynam-
ics. Figure 2 (c) shows the evolution of the condensate
fraction λ0/ntot, where λ0 is the leading eigenvalue of
the SPDM [30]. In the beginning, interactions lead to a
rapid depletion of the condensate. On a longer time scale,
however, dissipation restores the coherence and drives the
atoms to a pure BEC localized at the central lattice site
[36]. The BBR approach faithfully reproduces the deple-
tion and re-purification but additionally predicts unphys-
ical temporal revivals. This example thus demonstrates
the strength but also the limitations of this method.

The decay dynamics of the discrete breather state is
further analyzed in Fig. 3. The total atom number ntot(t)
decreases rapidly until the discrete breather is formed at
t ≈ 0.2s. Afterwards the decay is much slower and clearly
non-exponential. In both regimes, one can calculate the
evolution of ntot(t) approximately, starting from the re-
lation ṅtot = −γ(n1 + n3). Initially, all sites are filled
homogeneously, n1 = n3 = ntot/3, such that the total
particle number decays as

ntot(t) ≈ ntot(0)e−2γ/3 t. (13)

2 4 6 80 0.2 0.4
0
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60

n to
t

t [s]

FIG. 3: (Color online) Decay of a discrete breather state for
J = 5 s−1, γ = 20 s−1, κ = 0 and U = 10 s−1. Numerical
results calculated with the BBR method (—) are compared
to the analytic estimates (13) and (14), respectively (− − −).

When the discrete breather is formed, the population of
the outer wells is given by n1 = n3 = J2/(U2ntot) in
first order perturbation theory. The atom number then
decays as

ntot(t) ≈
√
n2

db − 4γJ2 t/U2, (14)

where ndb is the number of atoms bound in the discrete
breather state. Both approximations are compared to the
BBR simulation results in Fig. 3, assuming a breather
with ndb = 13 atoms. One observes an excellent agree-
ment in the both regimes, i.e. an exponential decay for
very short times (t > 0.1 s) and an algebraic decay when
the discrete breather is formed. The transition between
the linear and nonlinear decay takes place at t ≈ 0.2 s. A
deviation from the algebraic decay (14) for the discrete
breather is observed only for very long times when the
atom number is very small such that the simple pertur-
bative estimate for n1,3 is no longer valid.

IV. LOCALIZED LOSS

Recent experiments with ultracold atoms have demon-
strated an enormous progress in spatial addressability us-
ing specialized optical imaging systems [11, 12] or a fo-
cussed electron beam [13, 14]. Especially the latter exper-
iment allows to manipulate a Bose-Einstein condensate in
an optical lattice dissipatively with single-site resolution.
In the following, we study the quantum dynamics in a
finite lattice of 11 sites with closed boundary conditions
and loss occurring from the central site only, which leads
to remarkably different decay as in the case of boundary
dissipation studied above.

A remarkable feature of the quantum dynamics is il-
lustrated in Figure 4, showing the results of a BBR sim-
ulation for an initially pure homogeneous BEC. For a
modest loss rate γ = 20 s−1, atoms tunnel to the central
site where they are dissipated with a rate γ, such that
the BEC decays almost homogeneously. On the contrary,
stronger losses (γ = 100 s−1) lead to a formation of a sta-
ble vacancy. The central site is rapidly depleted, but the
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FIG. 4: (Color online) Formation of vacancies by localized
loss at the central lattice site. (a,b) Evolution of the atomic
density 〈n̂j(t)〉 (colorscale as in Fig. 2). (c,d) Final value of
the total particle number after a fixed propagation time tfinal

as a function of the loss rate γ, without (solid lines) and with
strong phase noise (dashed lines, κ = 50 s−1). The remaining
parameters are J = 5 s−1, U = 0.2 s−1 and n(0) = 1000
particles (a-c) and U = 2 s−1 and n(0) = 50 particles (d).
The dynamics has been simulated with the BBR (thin blue
lines) and the quantum jump method (thick red lines).

atoms in the remaining wells are mostly unaffected. Thus
one faces the paradoxical situation that an increase of the
loss rate can suppress the decay of the BEC. Two effects
contribute to this counterintuitive behavior: (i) The ab-
sorbing potential suppresses tunneling to the leaky lattice
site. This effect is present also in the linear case and can
be explained by an analogy to wave optics [1]: A large
mismatch of the index of refraction leads to an almost
complete reflection of a wave from a surface. This is true
for an imaginary index describing an absorption as well
as for a real index. (ii) A dark breather stabilizes the va-
cancy and prevents the flow of atoms to the central site.
This nonlinear structure remains stable also if the dissi-
pation is reduced or switched off afterwards (cf. [33–35]
for a discussion of the stability of breathers).

The suppressed decay of the BEC is further illustrated
in Fig. 4 (c,d), where the residual atom number after a
fixed propagation time is plotted as a function of the loss
rate γ. The coherent output of the system, i.e. the num-
ber of lost atoms, assumes a maximum for a finite loss
rate γc. This maximum is reminiscent of the quantum
stochastic resonance discussed in [36]. In the following
we will estimate the value of γc by determining a lower
bound for γ for the dynamical breather formation. As
a single (both bright and dark) breather exhibits a pro-
nounced population imbalance between the central site
and the neighboring sites, we estimate γc by matching
the timescales of dissipation τD = 2/γ and tunneling τJ ,
i.e., τD = τJ . For smaller values of γ, atoms can tun-
nel away from the leaky lattice site again before they are
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FIG. 5: (Color online) Coherence of a vacancy generated by
loss from the central site: (a,b) atomic density, (c,d) scaled
eigenvalues λm/ntot of the SPDM and (e,f) phase coherence

g(1) between the two BEC fragments. Parameters are the
same as in Fig. 4 with γ = 100 s−1 and κ = 0. Results of a
quantum jump simulation are plotted as thick red lines, BBR
results as thin blue lines.

lost, while for larger values of γ a population imbalance
can form. From Eq. (7) we read τJ = 1/(2J) where the
factor 1/2 accounts for atoms tunneling from two sites to
the leaky site. Hence, the critical loss rate is estimated as
γc = 4J . We find good agreement of our qualitative esti-
mate for γc (dotted vertical lines in Fig. 4 (c,d)) with the
dip in the total particle number. An important quantity
for the breather formation and stability is the effective
nonlinearity of the system λ = Untot(t)/2J , which, due
to particle loss, is time-dependent. Strikingly, though λ
depends on the interaction strength U (which is differ-
ent in Fig. 4 (c) and (d)), the fairly good estimate γc is
independent of U .

Figure 4 (d) shows the respective results for a triple-
well trap with loss from the central site. A comparison
of the BBR approximation to a numerically exact many-
particle simulation shows a good agreement for all values
of γ. Phase noise suppresses decay as it effectively de-
couples the lattice sites. Thus, only the atoms initially
loaded at the leaky lattice site decay as e−γt, while the
other atoms remain at their initial positions. With in-
creasing loss rate γ, the number of atoms lost from the
trap approaches ≈ n(0)/M as shown in Fig. 4 (c,d).

The previous reasoning suggests to use dissipation as a
tool to coherently engineer the quantum state of a BEC
in an optical lattice. Mean-field theory predicts that dis-
sipation can be used to efficiently create a coherent dark
soliton [17], but cannot assert the coherence of the final
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FIG. 6: (Color online) Generation of dark solitons using loss
imprinting at a rate γ = 100 s−1 at the central site (a,c) and
phase imprinting in the lower half of the lattice (b,c), both
for times t < 0.1 s only. Shown are the atomic density (left,
colorscale as in Fig. 2) and the scaled eigenvalues of the SPDM
(right) calculated with the BBR method. Parameters are J =
5 s−1, U = 0.1 s−1, κ = 0 and n(0) = 1000 particles.

state as discussed above. The results of a BBR and a
quantum jump simulation of the many-body dynamics
shown in Fig. 5 reveal the limitations of the phase coher-
ence of a soliton generated by local dissipation. The up-
per panels (a,b) show the rescaled eigenvalues λm/ntot of
the SPDM [30]. One observes that there are two macro-
scopic eigenvalues approaching 1/2, while all remaining
eigenvalues vanish approximately. This proves that the
dissipation generates a fragmented BEC consisting of two
incoherent parts rather than a single BEC with a soli-
tonic wavefunction. The BBR simulations correctly de-
scribe the fragmentation of the condensate, but predict
temporal revivals of the coherence which must be consid-
ered as artifacts of the approximation. Experimentally,
one can test the coherence by the interference of the two
fragments in a time-of-flight measurement. Figure 5 (e,f)
shows the coherence

g(1)(ℓ,m) =
〈â†

ℓâm + a†
mâℓ〉√

〈n̂ℓ〉〈n̂m〉
(15)

between the wells ℓ and m. One clearly observes the
breakdown of phase coherence between the two conden-
sate fragments.

In order to overcome the loss of coherence, one can,
however, engineer the many-body dynamics. Figure 6 il-
lustrates the generation of dark solitons comparing three
different strategies. If the dissipation is switched off after
the generation of a vacancy at t = 0.1 s, the condensate
remains pure for long times. However, the vacancy is not
stable but decays into two dark solitons traveling out-

wards [17], where they are reflected at the boundaries.
The effects of a phase imprinting, which is an established
experimental method [37], are shown in Fig. 6 (b). A
local potential is applied to the lower half of the lattice
for t < 0.1 s imprinting a phase difference of π. Again
coherence is preserved but the generated solitons travel
outwards. A coherent and stable dark soliton can be en-
gineered by combining both methods, as shown in Fig. 6
(c). The generated dark soliton stays at its initial posi-
tion and remains coherent over a long time.

V. CONCLUSION

We have discussed the influence of localized particle
dissipation on the dynamics of a finite one-dimensional
Bose-Hubbard chain, which describes a Bose-Einstein
condensate in a deep optical lattice [13, 14]. Starting
from the many-body master equation, we have derived
the mean-field approximation and the dissipative Bogoli-
ubov backreaction method, which allows a consistent cal-
culation of the depletion of the condensate.

Two important special cases have been studied in de-
tail. Particle loss at the boundary leads to localization
and the formation of coherent discrete breathers. Sur-
prisingly, dissipation together with interactions can re-
purify a BEC. A striking effect of localized loss is that
strong dissipation can effectively suppress decay and in-
duce stable vacancies. The decay shows a pronounced
maximum for intermediate values of the loss rate, when
the timescales of the dissipation and the tunneling are
matched. Combined with an external potential, these
effects can be used to generate stable coherent dark soli-
tons. These examples show that engineering the dissipa-
tion is a promising approach for controlling the dynamics
in complex quantum many-body systems.

Ultracold atoms provide a distinguished model system
for the dynamics of interacting quantum systems, such
that the effects discussed in the present paper may be
observed in different systems, too. In particular, quan-
tum transport of single excitations driven by local dissi-
pation has recently been studied in a variety of physical
systems ranging from spin chains [38] to light-harvesting
biomolecules [39]. On the other hand, it has also been
shown on the mean-field level that nonlinear excitations
such as discrete breathers play an important role for
quantum transport in these systems (cf. [33, 34, 40] and
references therein). Thus it is of general interest to fur-
ther explore the regime which interpolates between the
nonlinear mean-field dynamics and the many-body quan-
tum dynamics in the spirit of the work presented here.
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11.1 INTRODUCTION

Tunneling as a quantum mechanical effect takes place in a classically forbidden region between
two regions of classically allowed motion. While the term “dynamical tunneling” typically refers
to tunneling of quantum states across dynamical barriers in classical phase space [1], the original
problem simply intended tunneling across a potential barrier. Both types of tunneling are addressed
in this chapter, with major focus on situations in which external forces make the studied systems
intrinsically time-dependent and allow for a dynamical control of tunneling through potential barri-
ers or across band gaps which are dynamically explored by the system.

A standard example of tunneling across static barriers is the motion in a double-well potential.
The two potential wells are separated by a potential barrier which is impenetrable for a low-energy
classical particle. The quantum mechanical solution shows that the wave packet initially localized in
one of the wells performs oscillations between the two classically allowed region. Tunneling takes
place between two levels nearly degenerate in energy, and in most cases the investigated tunneling
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takes place between the lowest energy states—for instance of a double well. However, in a potential
configuration as the asymmetric double well shown in Figure 11.1a, an energy matching between a
ground state on one side and an excited state on the other side leads to a tunneling between those
states resonantly enhanced by the energy matching. In the resonantly enhanced tunneling (RET)
the probability for the quantum tunneling of a particle between two potential wells is increased
when the energies of the initial and final states of the process coincide. In the one-dimensional
double potential barrier of Figure 11.1b, the narrow central potential well has weakly quantized (or
quasistationary) bound states, of which the energies are denoted by E1 and E2 in Figure 11.1. If
the energy E of electrons incident on the barrier coincides with these energies, the electrons may
tunnel through both barriers without any attenuation. The transmission coefficient reaches unity at
the electron energy E = E1 or E = E2. It is interesting that while the transmission coefficient of a
potential barrier is always lower than one, two barriers in a row can be completely transparent for
certain energies of the incident particle.

In the early 1970s, Tsu, Esaki, and Chang computed the two terminal current–voltage charac-
teristics of a finite superlattice, and predicted that RET to be observed not only in the transmission
coefficient but also in the current-voltage characteristic [2,3]. Resonant tunneling also occurs in
potential profiles with more than two barriers. Technical advances led to the observation of neg-
ative differential conductance at terahertz frequencies and triggered a considerable research effort
to study tunneling through multibarrier structures. Owing to the fundamental nature of this effect
and the practical interest [4], in the last few years much progress has been made in constructing
solid-state systems such as superlattices [5–7], quantum wells [8], and waveguide arrays [9] which
enable the controlled observation and application of RET. The potential profiles required for reso-
nant tunneling and realized in semiconductor system using heterojunctions allowed the manufacture
of resonant-tunneling diodes. These devices have important applications such as in high-frequency
signal generation and multivalued data storage, as reviewed in Mizuta and Tanoue (1995) [10].

In the last decade, the experimental techniques used in atom and quantum optics have made it
possible to control the external and internal degrees of freedoms of ultracold atoms with a very high
degree of precision. Thus, ultracold bosons or fermions loaded into the periodic optical potential
created by interfering laser beams (double-well, lattices and superlattices) are optimal realizations
of quantum mechanical processes and phenomena proposed and studied in other contexts of solid-
state physics. Ultracold atoms and Bose–Einstein condensates (BEC), for instance, have been used
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FIGURE 11.1 (a) Schematic representation of the energy levels within an asymmetric double well. The
unperturbed energies within the left and right wells are indicated by the continuous lines. Because of the
resonant tunneling between the ground state in the left well and the first excited one in the right well, the
asymmetric and antisymmetric states are energy indicated by the dashed lines. (b) Schematic band diagram
of a resonant-tunneling diode structure under a voltage bias between the incoming (left) and outgoing (right)
regions.
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to simulate phenomena such as Bloch oscillations in tilted periodic potentials [11–15] and to study
quantum phase transitions driven by atom–atom interactions [16].

RET-like effects have been observed in a number of experiments till date. In Teo et al.
(2002) [17], resonant tunneling was observed for cold atoms trapped by an optical lattice when
an applied magnetic field produced a Zeeman splitting of the energy levels. Resonant tunneling has
been observed in a Mott insulator within an optical lattice, where a finite amount of energy given by
the on-site interaction energy is required to create a particle–hole excitation [18]. Tunneling of the
atoms is therefore suppressed. If the lattice potential is tilted by application of a potential gradient,
RET is allowed whenever the energy difference between neighboring lattice sites due to the poten-
tial gradient matches the on-site interaction energy. This RET control in a Mott insulator allowed
Fölling et al. to observe a second-order coherence, that is, a two-atom RET [19].

Most of the quantum transport phenomena investigated with Bose–Einstein condensates within
periodic optical lattices focused on the atomic motion in the ground state band of the periodic lat-
tice. Only a few experiments examined the quantum transport associated with interband transitions
“vertical” in the energy space. Interband transitions were induced by additional electromagnetic
fields, as in the case of the spectroscopy of Wannier–Stark levels [20], or by quantum tunneling
between the bands. Tunneling between otherwise uncoupled energy bands occurs when the bands
are coupled by an additional force, which can be a static Stark force (tilting the otherwise peri-
odic lattice) [14], or also by strong atom–atom interactions as observed for fermions in Köhl et al.
(2005) [21] and discussed for bosons in Lee et al. (2007) [22]. The quantum tunneling between the
ground and the first excited band is particularly pronounced in the presence of degeneracies of the
single-well energy levels within the optical lattice leading to RET. In Sias et al. (2007) [23] and
Zenesini et al. (2008) [24] such a type of RET was investigated for a Bose–Einstein condensate in
a one-dimensional optical lattice, which allows for a high level of control on the potential depth
and the lattice tilt. Those experimental investigations concentrated on the regime of parameters
for which the tilting force—at RET conditions equal to the energy difference between neighbor-
ing wells—dominated the dynamics of the condensate. The RET tunneling of the ground band and
the first two excited energy bands were measured in a wide range of experimental conditions. In
addition the RET process is modified by the atom–atom interactions, bringing new physics to the
quantum tunneling.

This chapter is organized as follows. Section 11.2 sets the stage discussing optical lattices and
giving the necessary background. While Section 11.3 reports on RET in closed two- and three-well
systems, Section 11.4 focuses on our main subject, the control of tunneling by RET in open quantum
systems. Section 11.4 reports on our experimental data in the linear tunneling regime—that is, in
the absence of atom–atom interactions, as well as on interaction induced effects. In Section 11.5, a
model for many-body tunneling is introduced before we summarize the recent advances concerning
RET in Section 11.6.

11.2 OPTICAL LATTICES

The investigations of tunneling for cold/ultracold atoms (Bose–Einstein condensates or Fermi
degenerate gases) are based on the use of optical lattices [14,25]. For a 1D optical lattice a standing
wave is created by the interference of two linearly polarized traveling waves counter-propagating
along the x-axis with frequency ωL and wave-vector λL. The amplitude of the generated electric
field is E(r, t) = 2E0 sin(ωLt)sin(2πx/λL). When the laser detuning from the atomic transition is
large enough to neglect the excited state spontaneous emission decay, the atom experiences a peri-
odically varying conservative potential

Vol(x) = V0 sin2
(
πx
dL

)
, (11.1)
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FIGURE 11.2 (a) In an optical lattice without additional external forces, the ground-state levels are resonantly
coupled, leading to a tunneling energy J. (b) When a linear potential is applied, for example, by applying a force
F , the levels are shifted out of resonance and tunneling is suppressed (Wannier–Stark localization). (c) If an
additional potential energy oscillating at an appropriate frequency ω is applied, the levels can again be coupled
through photons of energy h̄ω and tunneling is partially restored.

schematically represented in Figure 11.2a. The amplitude V0 depends on the laser detuning from the
atomic transition and on the square of the E0 electric field amplitude [26]. The periodic potential
has a spacing dL = λL/2. This potential derives from the quantum mechanical interaction between
atom and optical lattice photons. Therefore, the lattice quantities are linked to the recoil momentum
prec = 2πh̄/λL acquired by an atom after the absorption or the emission of one photon. V0 will be
expressed in units of Erec, the recoil energy acquired by an atom having mass M following one
photon exchange

Erec =
h2

2Mλ2
L

. (11.2)

Neglecting the atom–atom interactions in a Bose–Einstein condensate, our 1D system is described
by the following Hamiltonian

H = − h̄2

2M
d2

dx2 + V0 sin2
(
πx
dL

)
. (11.3)

For this periodic potential, the associated single-particle eigenstates in the lowest band are Bloch
plane waves with quasimomentum q. The energies En(q) of the Bloch waves for the lowest bands
n = 1,2,3 are plotted in Figure 11.3 versus quasimomentum. Ultracold atoms are loaded into the
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FIGURE 11.3 Plot of the energies for the energy bands En(q) versus quasimomentum q for an optical lattice
with optical depth V0 = 4Erec.

ground-state band having a minimum gap Δ at the edge of the Brillouin zone. The atomic evolution
within that band or the excitation to a higher band is typically investigated.

If a force F is applied to the atom, as schematized in Figure 11.2b, the following Hamil-
tonian describes the atomic evolution neglecting for a moment atom–atom interactions in a
Bose–Einstein condensate

H = − h̄2

2M
d2

dx2 + V0 sin2
(
πx
dL

)
+ Fx. (11.4)

This Hamiltonian defines the well-known Wannier–Stark problem for the electrons moving within a
crystal lattice in the presence of an external electric field [27–29]. For small Stark forces F , one can
picture the evolution of a momentum eigenstate induced by Equation 11.4 as an oscillatory motion
in the ground energy band of the periodic lattice with Bloch period TB [14,28,29], where

TB =
2πh̄
FdL

. (11.5)

At stronger applied forces, a wave packet prepared in the ground band has a significant probabil-
ity to tunnel at the band edge to the first excited band. This process of the quantum tunnel across an
energy gap at an avoided crossing of the system’s energy levels is described by the Landau–Zener
tunneling [30,31]. For a single tunneling event, the Landau–Zener tunneling probability is [29]

PLZ = e
− π2

8F0
( Δ

Erec )
2

, (11.6)

where we introduced the F0 dimensionless force

F0 =
FdL

Erec
. (11.7)

In the presence of a sequence of Landau–Zener tunneling events, the Landau–Zener rate ΓLZ to
the excited band is obtained by multiplying PLZ with the Bloch frequency νB = 1/TB [28]. By
introducing the recoil frequency νrec = Erec/h, ΓLZ may be written

ΓLZ = νrecF0e
− π2

8F0
( Δ

Erec
)2

. (11.8)
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For the optical lattice periodic potential, an alternative single-particle basis useful for describing the
tunneling of particles among discrete lattice sites is provided by Wannier functions [16,27–29,32].
The jth Wannier function | j〉 is centered around the j lattice site, and the functions are orthonormal.
In a given energy band, the Hamiltonian for free motion on the periodic lattice is determined by
hopping matrix elements, which in general connect lattice sites arbitrarily spaced. However, because
the hopping amplitude decreases rapidly with the distance, the tunneling Hamiltonian may include
only the J tunneling hopping between neighboring lattice sites

H =∑
j

Ej| j >< j|− J∑
j

(| j >< j + 1| + | j + 1 >< j|) , (11.9)

where Ej defines the energy of the jth site. For ultracold atoms in an optical lattice with depth
V0 � Erec, the nearest-neighbor tunneling energy J is given by [33]

J =
4√
π

Erec

(
V0

Erec

)3/4

exp

(
−2

√
V0

Erec

)
. (11.10)

In the presence of an applied force F , supposing E j ≡ E0 = 0, the Hamiltonian becomes

H = FdL∑
j

j| j >< j|− J∑
j

(| j >< j + 1| + | j + 1 >< j|). (11.11)

However, this Hamiltonian may be used to describe the atomic evolution in the ground band only
when the Landau–Zener tunneling to the excited band can be neglected. Figure 11.4 reports for a
given value of the dimensionless force F0, the V0 optical depth where the hopping constant J is 10
times larger than ΓLZ.

The simulation of the temporal evolution of the Bose–Einstein condensate wavefunction is based
either on the Gross–Pitaevskii equation based on a global mean-field description or on a many-body
approach where the atomic number of the lattices sites is quantized [16,34,35]. Apart from the
theoretical results reported in Section 11.5, we will concentrate here on the mean-field approach
applied to describe experimental configurations and results reviewed in detail in Section 11.4. For
a realistic description of those experiments, the Gross–Pitaevskii equation was used to simulate the
temporal evolution of the condensate wave function ψ(�r, t) subjected to the optical lattice and to a
confining harmonic potential, for instance with cylindrical symmetry

ih̄
∂
∂t
ψ(�r, t) =

[
− h̄2

2M
∇2 +

1
2

M
(
ω2

xx2 + ω2
r ρ

2)+ V0 sin2
(
πx
dL

)
+ Fx + g |ψ(�r, t)|2

]
ψ(�r, t).

(11.12)
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FIGURE 11.4 Plots of the line in the space of the optical lattice depth V0, in Erec units, and the dimensionless
force F0 dividing the upper (lower) region where the interwell tunneling is ten times larger (smaller) than the
Landau–Zener tunneling to the upper band.
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The frequencies ωx and ωr characterize the longitudinal and transverse harmonic confinement. The
atom–atom interactions are modeled by the nonlinear term in Equation 11.12, with the nonlinear
coupling constant given by g = 4πh̄2as/M, where as is the s-wave scattering length [34,35]. Morsch
and Oberthaler (2006) and Cristiani et al. (2002) [14,25] introduced the g̃ dimensionless nonlinearity
parameter

g̃ =
gn0

8Erec
, (11.13)

computed from the peak density n0 of the condensate initial state, to describe the nonlinear coupling
relevant for optical lattice experiments. In the Thomas–Fermi regime of the condensate [34,35], for
given ωx and ωr the density n0, and therefore, g̃, is proportional to N2/5 where N is the number of
atoms in the condensate.

11.3 RESONANT TUNNELING IN CLOSED SYSTEMS

11.3.1 TWO LEVELS

Quantum tunneling of a two-level system takes place in the double-well potential. The quantum
mechanical solution shows that the wave packet initially localized in one of the wells performs
oscillations between the two classically allowed regions. The period of these oscillations is related
to the inverse of the energy difference between the symmetric and antisymmetric quantum states of
the double-well system, that is, to the energy corresponding to the tunneling splitting. That energy
is equal to the interaction Hamiltonian between the eigenstates of the two wells. In an asymmetric
double well as that shown in Figure 11.1a, an energy matching between a ground state on one side
and an excited state on the other side leads to a RET between those states. The dashed lines in
Figure 11.1a denote the eigenenergies for the symmetric and antisymmetric quantum superposition
of the wavefunctions in left and right wells. The tunneling evolution is described by the following
Hamiltonian:

H = ∑
j=1,2

Ej| j >< j|− J (|1 >< 2| + |1 >< 2|) + U ∑
j=1,2

nj(nj −1), (11.14)

where |1 > and |2 > denote the wavefunctions of the resonant states in the left and right wells,
Δ = E1 −E2 is the energy difference between the two wells, and J is the tunneling energy, U is the
interatomic interaction energy and nj is the atom number in the left or right well. For the following
analysis U represents a shift in energy of the left or right well. By treating at first the U = 0 case,
the atomic wavefunction may be expanded as a superposition of the |1,2〉 states

|Ψ(t) >= ∑
j=1,2

Cj(t)| j〉, (11.15)

the atomic evolution is characterized by Rabi oscillations between the two wells. For instance by
supposing as initial condition C1(0) = 1 and C2(0) = 0, the occupation probabilities of the left well
at time t are given by

|C2(t)|2 =
J2

Δ2 + J2 sin2

√
J2 +

Δ2

4
, (11.16)

|C1(t)|2 = 1−|C2(t)|2. (11.17)

Therefore for the Δ = 0 resonance condition of RET, a complete oscillation between the two wells
at frequency 2J/h̄ takes place. The atomic interaction term U shifting the Ei=1,2 energies of the two
wells may be included into the above equations for the occupation probabilities as a contribution
to the Δ energy difference. Therefore, the presence of the U interatomic energy modifies the RET
condition.
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Periodic double-well structures may be created in properly chosen optical lattice or superlattice
geometries. For cold atoms theoretical and experimental investigations were performed by Teo et al.
(2002) [17], Castin et al. (1994) [36], Dutta et al. (1999) [37], and Haycock et al. (2000) [38]. For
cold atoms the coherence length of the atomic wavefunction is comparable to the extent of each
double well, so that the long range periodicity of the optical lattice plays a minor role on the tun-
neling properties. Therefore, those investigations will be mentioned here. Those studies examined
the new features appearing when the double-well potential depends on the internal atomic structure,
for instance on the two electron spin states. This case was theoretically analyzed by Castin et al.
(1994) [36] within the context of two dimensional Sisyphus cooling. Resonant tunneling between
the adjacent potential wells of the periodic potential for the two internal states, not present in a 1D
geometry, contributes with quantum processes to the cooling phenomena in optical lattices. Dutta
et al. (1999) [37] studied periodic well-to-well tunneling of 87Rb atoms on adiabatic potential sur-
faces of a 1D optical lattice. Atoms that tunnel between neighboring wells of the lattice are an
excellent tool for a careful study of topological potentials associated to the optical lattice. RET-like
effects have been observed in a number of experiments to date. In Teo et al. (2002) [17], resonant
tunneling was observed for cold atoms trapped by an optical lattice when an applied magnetic field
produced a Zeeman splitting of the energy levels. At certain values of the applied magnetic field,
the states in the up-shifting and down-shifting energy levels were tuned into resonance with one
another. This led to RET drastically altering the quantum dynamics of the system and producing
a modulation of the magnetization and lifetime of the atoms trapped by the optical lattice. Hacock
et al. (2000) [38] observed the quantum coherent dynamics of atomic spinor wave packets in the
double-well potentials. With appropriate initial conditions the atomic system performed Rabi oscil-
lations between the left and right localized states of the ground doublet, with the atomic wavepacket
corresponding to a coherent superposition of these mesoscopically distinct quantum states.

For ultracold atoms, Rabi oscillations in double-well geometries have been investigated and
measured by Fölling et al. (2007) [19] and Kierig et al. (2008) [39]. A highly parallel structure of
double wells is created using optical lattice or optical superlattice configurations. In the superlattice
configuration of [19] the periodic potentials created by two laser standing waves at wavelength
λL and λL/2 are applied to create a large set of individual wells. By changing the intensity of the
standing wave lasers at the two wavelengths and their relative spatial phase, any configuration of
symmetric or asymmetric double wells is created. In that experiment the double-well investigation
was performed with ultracold atoms in a Mott-insulator configuration having single atom occupation
of the wells [16]. The modification of the optical lattice potential from a periodic structure of single
wells to a periodic structure of double wells, by adiabatically raising an energy bump within each
single well, allowed to produce the asymmetric loading of each double well.

Figure 11.5 summarizes experimental results obtained in Fölling et al. (2007) [19] for the RET
features in symmetric and asymmetric double wells. The tunneling of the ultracold atoms was mea-
sured as a function of the energy bias Δ between the wells. The left upper inset schematizes the case
of single atom tunneling. The right lower one schematizes the tunneling of one atom in the presence
of an energy shift produced by the atomic interaction (U term in Equation 11.14). A conditional res-
onant tunneling resonance occurs, where a single atom can tunnel only in the presence of a second
atom and the interaction energy U is matched by the bias. For these two cases the measured atomic
Rabi-type dynamical evolution between the two wells is shown in the right upper inset. Because the
presence of an atom in the left well shifts by U the level energies, a bias Δ= −U is applied in order
to compensate the shift. Thus, a resonant tunneling condition is verified and the gray data denote the
periodic occupation of the left well and right well, located at positions −1 and 0, respectively. In the
absence of an atom in the left well and without application of the bias, the tunneling is not resonant
and the Rabi oscillations take place with a reduced amplitude and at a higher frequency, in agree-
ment with the description of Equations 11.16 and 11.17. The left lower inset schematizes the case
of a correlated atomic pair tunneling, as produced in a second-order tunneling process. The central
part of that figure reports the amplitude of the Rabi oscillations versus the Δ bias for the different
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FIGURE 11.5 Tunneling configuration and experimental results for the resonant tunneling of single and
double atoms in a superlattice. The periodic double-well potential for ultracold rubidium atoms was realized
by superimposing two periodic potentials with periodicities of λL = 765.0 nm (long lattice) and λL/2 = 382.5
nm (short lattice), and controllable intensities and relative phase. The depth was V0 = 12Erec for the short
optical lattice, V0 = 9.5Erec for the long lattice. The upper right, lower left and lower right insets describe the
resonant tunneling configurations for one or two atoms per well. The upper left inset describes the oscillating
motion of the atoms between the the two wells for the conditional resonant tunneling resonance where a single
atom can tunnel only in the presence of a second atom and the interaction energy U is matched by an applied
bias. In the central part the amplitude of the tunneling Rabi oscillations, and the Lorentzian fit, are shown as a
function of the bias energy Δ for each of the tunneling configurations represented in the insets, black dots and
Lorentzian centered at Δ= 0 for upper left one, light gray dots and Lorentzian centered at Δ= 0 for lower left
one, and gray dots and Lorentzian centered at Δ = 0.78Erec for lower right one. (From S. Fölling et al. Nature
448, 1029, 2007. With permission by MacMillan.)

tunneling configurations, and their fits by the Lorentzian line shapes predicted by Equation 11.16.
The tunneling amplitude versus the potential bias is measured for the case of single atoms (black
data points) and initially doubly occupied lattice sites (gray line and light gray data points). The gray
data points and the Lorentzian fitted to the data point with center at Δ = 0.78(2)Erec correspond to
the conditional resonant tunneling resonance. The correlated pair tunneling (light gray circles) and
the Lorentzian fit are resonant for zero bias because energies of both left and right wells are modified
by the interaction energy U .

While the previous description applies to single particle tunneling, quantum tunneling of macro-
scopic N-body atomic systems introduces qualitatively new aspects to the quantum evolution of
ultracold atoms, as investigated in Dounas-Frazer et al. (2007) [40] for Bose–Einstein condensate
in a tilted multilevel double-well potential. For a double well without tilt as experimentally investi-
gated by Albiez et al. (2005) [41], the so-called self trapping regimes is realized where the bosonic
nonlinear interaction term of the equation, Equation 11.12 modifies the level energies and inhibits
the resonant tunneling between the wells. Khomeriki et al. (2006) [42] demonstrated that for a
double-well structure by a pulse-wise change of the intermediate barrier height, it is possible to
switch between the tunneling regime and the self-trapped one.
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11.3.2 THREE LEVELS

The idea of controlling the tunneling rate between two states has led several researchers to consider
the effect of external forces on the tunneling oscillations. Because the tunneling rate is related to
the difference in the energies of the quantum states, a number of complicated scenarios arise when
one of the states undergoes interaction with a third state, and that interaction may be controlled
by an external parameter, for instance a magnetic or electric field. The tunneling wavepacket is
described as a linear combination of the three initial states. Their interaction can drastically affect
the eigenenergies of the Hamiltonian and it would be possible to explore different regimes, from
strong suppression to enhancement of tunneling.

This three-level control was theoretically investigated in Averbukh et al. (2002) [43] and
Hensinger et al. (2004) [44] in connection to the dynamical tunneling produced by time-dependent
potentials and for conditions as in an experiment by Raizen’s group in 2001 [45] and at NIST [46].
The tunneling period in the time-dependent systems is related to the differences between quasiener-
gies of the Floquet states, just as the tunneling period in the time-independent case has to do with
the energy differences between the stationary states. The experimental and theoretical investigations
considered the case of the tunneling doublet interacting with a third state associated with a chaotic
region. The underlying classical phase space of the systems had a mixed regular-chaotic structure,
giving the scenario of chaos-assisted [47] or, more generally speaking, of dynamical tunneling [1].

We present here the basic of the three-level tunneling in the case of time independent potentials.
Figure 11.6 schematizes the dependence on an external parameter for the Ej energies for the | j〉
states, with j = 1 . . .3, in the absence of interactions between them. We will discuss the modifica-
tions to those energies produced by atomic interactions between states, supposing the presence of
the interactions U12 between states |1〉 and |2〉, and U23 between states |2〉 and |3〉, and supposing
no interaction between states |1〉 and |3〉. Notice that these interactions modify the Ej energies in
the regions close to the energy crossings, boxes 1, 2, and 3 in the Figure 11.6, and that the tunneling
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FIGURE 11.6 Unperturbed energies Ej, with j = (1.3) (in arbitrary units) of three states experiencing cross-
ings and anticrossings as a function of a parameter (also in arbitrary units). Continuous lines corresponds to
state |1〉, the dotted one to state |2〉 and the dot-dashed to state |3〉. The boxes marked with 1 and 3 denote
regions where the tunneling is dominated by two-state interactions. The box marked 2 denotes a region where
the three-state interaction may modify the tunneling rate between state |2〉 and |3〉. In region 3 without direct
interaction between states |1〉 and |3〉 a locking of tunneling, corresponding to a level crossing with E1 = E3,
takes place.
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frequency is determined by the splitting of the perturbed energies. In the box with number 1 the
E1 −E2 energy separation, that is, the tunneling, is dominated by the interaction between states
|1〉 and |2〉. In the box denoted as 2, a three-state interaction takes place and the amplitude of the
interaction between states |1〉 and |2〉 may be used to enhance or suppress the tunneling frequency
between the states |2〉 and |3〉. Within the region denoted as 3, in the absence of a direct interaction
between the |1〉 and |3〉 states a E1 = E3 crossing point exists. This crossing produces an absence
of tunneling, this configuration being indicated as locking of the wavefunction in the initial state of
preparation [43].

11.4 TUNNELING IN OPEN SYSTEMS

11.4.1 OPTICAL LATTICE WITHOUT/WITH TILT

An optical lattice is composed of an infinite number of neighboring wells uniformly distributed
along one direction and spacing dL = λ/2 between the minima, where λ is the wavelength of the
standing wave laser required to create the periodic potential for the atoms [14]. This configuration
corresponds to Figure 11.2a. The tunneling in this system has strong similarities to the double well
discussed above, when the presence of physical boundaries, as in the physical realizations, plays no
role.

For a more general treatment we consider the case where an applied external force F produces
an energy difference FdL between neighboring wells, see Figure 11.2b. The atomic evolution may
be studied by considering the localized Wannier wavefunction |i > and the perturbations originat-
ing from the atomic occupation in neighboring sites [32]. This approximation is valid when the
overlap of atomic wavefunctions introduces corrections to the localized atom picture, but they are
not large enough to render the single site description irrelevant. The H Wannier–Stark Hamiltonian
determining the atomic evolution in the absence of the interatomic interactions U is given by

H = −J∑
j

(| j >< j + 1| + | j + 1 >< j|) + FdL∑
j

j| j >< j|. (11.18)

In analogy to Equation 11.15 the generic atomic wave function can be written as a superposition of
the | j > localized wavefunctions where the sum extends over all lattice sites. The temporal evolution
for the Ci coefficients under the Hamiltonian H is given by

ih̄
dCj

dt
= jFdLCj − J

(
Cj+1 + Cj−1

)
, (11.19)

and in the following the ground state energy E0 will be supposed to be equal to zero. The solution
of these coupled equations with t = 0 initial condition of atomic occupation of the i = 0 site—that
is, Cj(t = 0) = δ j=0, leads to [48]

|Cj(t)|2 = J 2
j

[
2JTR

h̄
sin

(
πt
TR

)]
, (11.20)

having introduced the Bessel functions Jj of jth order. The argument of the Bessel functions in
Equation 11.20 is an oscillatory function of time. TR represents the recurrence time for the evolution
of the atomic wavefunction. For the present case of the resonant tunneling modified by the presence
of a force F , TR = TB whence the recurrence time coincides with the Bloch period TB defined in
Equation 11.5 and is inversely proportional to the applied external force. The temporal recurrence of
the atomic wavefunction is shown in Figure 11.7 for different times expressed in units of TR. Notice
that the parameter 2JTR/h̄ of the Bessel function determines the range of lattice sites occupied by
the periodic wavefunction expansion. The corresponding atomic mean-square displacement is

√
< m2(t) >

dL
=

2
√

2JTR

πh̄

∣∣∣∣sin

(
πt
TR

)∣∣∣∣ . (11.21)
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FIGURE 11.7 Temporal recurrence of the occupation probability |Cn|2 versus the n position of the lattice
site at different interactions times. From (a) to (e) interaction times are 0, 0.2, 0.5, 0.95, 1 measured in units of
TR. The occupation probabilities are connected by lines. Notice the reduced vertical scale at the intermediate
times. The plots are obtained for the parameter 2JTR/h̄ = 28.

In the limit of FdL � J the mean-square displacement is largely decreased because of the suppres-
sion of the resonant tunneling, as schematized in Figure 11.2b. This suppression and the related
Wannier–Stark localization of the wavefunction have been intensively discussed in the solid-state
physics theoretical literature [28,49]. Korsch and coworkers [50,51] have considered the case of an
atomic distribution not initially concentrated on a single site, and instead described by a Gaussian
distribution with root mean-square σ0. For that case the temporal evolution of the mean-square
displacement is given by

< m2(t) >

d2
L

=

(
σ0

dL

)2

+ 8

(
JTR

πh̄

)2

sin2
(
πt
TR

)[
1− e−d2

L/2σ2
0 cos

(
2πt
TR

)
−2e−d2

L/8σ2
0 sin2

(
πt
TR

)]
.

(11.22)

In the absence of external force, taking the limit of F → 0, we recover the result of a diffusion
process for the atomic wavefunction

|Cj(t)|2 = J 2
j

[
2Jt
h̄

]
, (11.23)

√
< m2 >

dL
=

√
2Jt
h̄

. (11.24)

11.4.2 PHOTON-ASSISTED TUNNELING

The above analysis can be applied also to the photon-assisted tunneling occurring when the ground
states of adjacent potential wells tuned out of resonance by the FdL static potential are coupled by
photons at frequency ω as schematized in Figure 11.2c. When the photon energy bridges the gap
created by the static potential, tunneling is (partly) restored. The resonant tunneling is restored by a
photon-assisted process when the energy provided by n photons matches the separation energy FdL

between neighboring wells. The energy resonance condition for the frequency ωR is given by

nh̄ωR = FdL, (11.25)

with the integer n denoting the order of the photon-assisted resonance. This resonance may be
expressed as ωR = 2πνB/n in terms of the Bloch frequency. The frequency detuning from the reso-
nance is Δω = ω−ωR.
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In solid-state systems, the photons are typically in the microwave frequency range and the static
potential is provided by an electric bias field applied to the structure. Photon-assisted tunneling has
been observed in superconducting diodes [52], semiconductor superlattices [53,54], and quantum
dots [55,56].

For the photon-assisted tunneling of cold and ultracold atoms, a theoretical analysis was per-
formed by Eckardt et al. (2005) [57] and by Kolovsky and Korsch (2009) [58], with experiments
performed by Sias et al. (2008) [59], Ivanov et al. (2008) [60], Alberti et al. (2009) [61], and Haller
et al. (2010) [62]. In these experiments a periodic time-dependent potential was applied to the cold
atoms through a periodic spatial oscillation of the optical lattice minima/maxima, to be referred to
as shaking in the following. In the lattice reference frame such a backward and forward motion
of the periodic potential at frequency ω ≈ ωR along one direction is equivalent to a periodic force
Fω cos(ωt) applied to the atoms. Thus, using the localized Wannier wavefunction introduced above
for a deep lattice the atomic evolution is determined by the following Hamiltonian:

Hshaking = −J∑
j

(| j >< j + 1| + | j + 1 >< j|) + [FdL + K cos(ωt)]∑
j

j| j >< j|, (11.26)

once again not including the U interaction term. Here K = FωdL, denoted as shaking amplitude,
is the shaking energy difference between neighboring sites of the linear chain associated to the
shaking. The theory of Eckardt et al. (2005) [57] predicts that when the driving takes place at the
frequency ωR � J/Erec and the resonance condition of Equation 11.25 is satisfied, the shaking leads
to an effective tunneling rate

Jeff(K,ωR) = JJn

(
K

h̄ωR

)
. (11.27)

Therefore, a modification of the tunneling rate is obtained when the ratio of the rescaled shaking
amplitude K = FωdL and the shaking frequency times h̄ is varied. In the experimental realization [59]
the shaking frequency was fixed and the shaking amplitude was scanned to verify the relation of
Equation 11.27.

The previous analysis for the evolution of the atomic wavefunction under resonant tunneling can
be applied also to the photon-assisted tunneling by using the approximation of a resonant dynamics
introduced by Thommen et al. (2002) [63] or equivalently by restricting our attention to the resonant
Floquet states [64]. In the presence of a driving at frequency ω and taking into account the static
energy difference FdL between neighboring wells, we write for the atomic wavefunction

|Ψ(t) >=∑
j,m

C̃j,me−i( jFdL+mh̄ω)t/h̄| j >, (11.28)

where the j index labels the well and the m index the component in the Floquet spectrum. For ω
close to the nth order resonance condition we may restrict the terms to the resonant ones in two
sums of the above expansion

|Ψ(t) >=∑
j

e−ijΔωtC̃n
j | j >, (11.29)

where we have simplified the notation introducing the resonant coefficients C̃n
j .

The temporal evolution of the C̃n
j is described by an equation similar to Equation 11.19 where

Jeff determines the tunneling energy of the nth order resonance. Therefore, for the photon-assisted
tunneling, the occupation of the jth lattice site and the mean-square displacement of the atoms are
the analogs to those derived previously

|Cn
j (t)|2 = J 2

j

[
2JeffTR

h̄
sin

(
πt
TR

)]
, (11.30)

√
< m2 >

dL
=

2
√

2JeffTR

πh̄

∣∣∣∣sin

(
πt
TR

)∣∣∣∣ , (11.31)
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with TR the recurrence time for this process given by

TR = 2π/Δω. (11.32)

This recurrence process was named as super-Bloch oscillations in Kolovsky and Korsch (2009) [58]
and Haller et al. (2010) [62]. For the resonant case Δω = 0, the mean-square displacement is given
by Equation 11.24 and the occupation probabilities are given by Equation 11.23. Notice that for both
Wannier–Stark localization and photon-assisted tunneling, the mean-square displacement and the
occupation probabilities have the same functional dependence if we introduce a unifying parameter
for the detuning from the resonant tunneling. This parameter is FdL for the case of an applied
external force and h̄Δω for the case of the photon-assisted tunneling. Thus, the data of Figure 11.7
applies also to the occupation probabilities in the photon-assisted tunneling.

A few recent experiments on optical lattices have verified or made use of the theoretical predic-
tions of this Section. In the following the experiments will be characterized by the depth V0 of the
optical lattice expressed in units Erec, and the photon-assisted frequency detuning Δω0.

The linear time dependence of atomic mean-square displacement predicted by Equation 11.24
in the conditions of F = 0 was applied by Lignier et al. (2007) [65] to measure the J tunneling
energy and to verify that the experimental procedure reproduced the J dependence on the lattice
depth V0 predicted by Equation 11.10. The photon-assisted tunneling experiments [59,60] made use
of that linear dependence to measure the effective tunneling rate. In these experiments, the linear
dependence was tested for a total time larger than 10,000 tunneling times. Notice that in all these
experimental observations the initial distribution of the atomic wavefunction was not concentrated
on a single well as in our theoretical analysis and instead covered several wells. Nevertheless, a
Gaussian convolution of the initial wavefunction spread and of the linearly expanding mean-square
displacement represented a good fit of the experimental observations, even at earlier times where
the initial width is comparable to the tunneling spread.

The Wannier–Stark localization of the atomic cloud in the presence of an applied force F was
examined by Sias et al. (2008) [59] as a reduction of the mean-square displacement increasing
the force amplitude at a given interrogation time. Figure 11.8a reports the temporal dependence of√

< m2 >/dL as predicted by Equation 11.21, at different values of the parameter FdL/J scanned
in that experiment within the interval (0,1). In order to provide a unified description the time is
measured in units of TB. It appears that

√
< m2 > is periodic in time with period TB while the
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FIGURE 11.8 (a) Mean-square displacement versus time for different values of the unified RET energy
mismatch, FdL/J for the Wannier–Stark localization and h̄Δω/J for the photon assisted tunneling. Results for
values 0.2, 0.4, 0.6, 0.8, and 1.0 of the detuning parameter, with the displacement maximum decreasing at
higher values. The time dependence of

√
< m2 > is periodic in time with period TB. In (b) the maximum of

the mean-square displacement is plotted versus FdL/J. The mean-square displacements are measured in units
of the dL lattice spacing.
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amplitude of the oscillation decreases with the force until the Wannier–Stark localization regime is
reached where the atomic motion is blocked. Figure 11.8b shows the amplitude of the oscillation
predicted by Equation 11.24 versus the FdL/J parameter. By comparing this dependence to the
Lorentzian one occurring for a two-level system of the previous Section, it appears that for an
infinite systems of wells the oscillation amplitude decreases more rapidly increasing FdL/J. For
different values of the applied force, the maximum of the oscillation occurs at a different value of
t. Therefore, the experiment of Sias et al. (2008) [59] that measured the oscillation amplitude at a
given interaction time, obtained results similar to those of Figure 11.8b, not precisely fitted by the
inverse law as sketched in Figure 11.8.

For the photon-assisted tunneling the functional dependence on time of the wavefunction spread-
ing on the lattice and the mean-square displacement was measured in Alberti et al. (2009) [61] for
a total time equivalent up to seven recurrence times in the case of a drive detuned by Δω/2π = ±5
Hz and up to one recurrence time for the Δω/2π = ±0.260 Hz detuning. The measured sinusoidal
evolutions are in reasonable agreement with the sinusoidal function predicted by our model and
represented in Figures 11.7 and 11.8a. Our model does not take into account the initial atomic
distribution over several optical lattice sites, and in Alberti et al. (2009) [61], because the atomic
de Broglie wavelength was shorter than the lattice period, the coherence degree among adjacent
Wannier–Stark eigenstates was negligible. The quantum–mechanical evolution of the atomic wave-
function under the tunneling Hamiltonian described by our analysis is limited by the presence of
decoherence processes, and in Alberti et al. (2009) [61] a decoherence time of 28 s was measured. It
would be interesting to investigate theoretically the role of a decoherence process on the tunneling
evolution.

For the photon-assisted tunneling the mean-square amplitude dependence on the detuning Δω is
given by Equation 11.21 with TR = 2π/Δω. That functional dependence predicts that the full width
of the resonance line-shape ΔωFW, defined by the first zeros of the sin function, is determined by
the experimental interrogation time T

ΔωFW =
π
T

. (11.33)

For interrogation times between 0.5 and 2 s of the experimental investigations line widths in the few
Hertz range were measured. In the investigation of Ivanov et al. (2008) [60] where the external force
was gravity, the measurement of the resonance frequency for the photon-assisted tunneling with the
accuracy reached by the above interrogation time allowed those authors to measure the gravity
acceleration with ppm resolution. This shows that sensitive RET effects have a great potential for
applications, for example, for precision measurements.

The recurrence process of super-Bloch oscillations was recently investigated by Haller et al.
(2010) [62] for V0/Erec values in the 3–7 range, and Δω/2π in the 0.1 = 2 Hz range. The recurrence
oscillations were measured up to 2.5 s.

11.4.3 RET IN OPTICAL LATTICES WITH TILT

In spite of the fundamental RET nature and of its practical interest, for a long time the experimen-
tal observation was restricted to the motion of electrons in superlattice structures [6]. In 2007 Sias
et al. [23] observed resonant tunneling using Bose–Einstein condensates in accelerated optical lat-
tice potentials. The nearly perfect control over the parameters of this system allowed the authors to
prepare the condensates with arbitrary initial conditions and also to study the effects of nonlinearity
and a loss of coherence. Such observation can be generalized to studying noise and thermal effects
in resonant tunneling and underlines the usefulness of Bose–Einstein condensates in optical lattices
as model systems for the solid state.

A schematic representation of RET is shown in Figure 11.9. In a tilted periodic potential,
atoms can escape by tunneling to the continuum via higher-lying levels. The tilt of the potential
is proportional to the applied force F acting on the atoms, and the tunneling rate ΓLZ can be calcu-
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FIGURE 11.9 Schematic of the RET process between second nearest-neighboring wells, that is, for Δi = 2.
The tunneling of atoms is resonantly enhanced when the energy difference between lattice wells matches the
separation between the energy levels in different potential wells.

lated using the Landau–Zener formula of Equation 11.8. The actual rates can dramatically deviate
from Equation 11.8 when two Wannier–Stark levels in different potentials wells are strongly cou-
pled owing to the accidental degeneracy of Figure 11.9 where the tilt-induced energy difference
between wells i and i + Δi matches the separation between two quantized energy levels, as pointed
out for cold atoms by Bharucha et al. (1997) [66]. Indeed, the tunneling probability can be enhanced
by a large factor over the Landau–Zener prediction (see theoretical and experimental results of
Figure 11.10).
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FIGURE 11.10 Resonant tunneling in the linear regime. Shown here is the tunneling rate from the lowest
energy bands of the lattice as a function of the normalized inverse force F−1

0 for V0 = 2.5Erec lattice depth.
The straight line represents the prediction of the Landau–Zener theory. Inset: Deviation from the Landau–Zener
prediction of Equation 11.6. (Adapted from C. Sias et al. Phys. Rev. Lett. 98, 120403, 2007. Copyright 2007 of
American Physical Society.)
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By imposing an energy resonance between the Wannier–Stark levels in different wells of an
optical lattice shifted by the potential of the external force, one finds that the energy degeneracies
occur at the values F at which FdLΔi (Δi integer) is close to the mean band gap between two
coupled bands of the F = 0 problem [7,28]. The actual peak positions are slightly shifted with
respect to this simplified estimate, because the Wannier–Stark levels in the potential wells are only
approximately defined by the averaged band gap of the F = 0 problem, a consequence of field-
induced level shifts [28].

11.4.3.1 Linear Regime and Decay Rates

Although the finite and positive scattering length of 87Rb atoms means that the linear Hamiltonian
of Equation 11.4 is never exactly realized in experiments, the approximation of a noninteracting
BEC is valid if the condensate density is maintained low. In that case, the interaction energy can
be made much smaller than all the other energy scales of the system (recoil energy, bandwidth, gap
width) and hence it is negligible for the present analysis of RET in a condensate.

Figure 11.10 shows the results of Sias et al. (2007) [23] for experimental investigations with low-
density condensates and the nonlinearity parameter g̃ less than ≈ 1× 10−2, defined as the limit of
the linear regime. The tunneling rate Γ1 out of the first band is shown as a function of F−1

0 . Super-
imposed on the overall exponential dependence of Γ1/F0 on F−1

0 , one clearly sees the resonant
tunneling peaks corresponding to the various resonances Δi = 1,2,3,4. Which of the resonances
were visible in the experiment depended on the choice of lattice parameters and the finite experi-
mental resolution. The limit n = 3 for the highest band explored in Sias et al. (2007) [23] was given
by the maximum lattice depth achievable.

By measuring the positions of the Δi = 1,2,3 tunneling resonances for different values of the
lattice depth V0, it appeared that the resonances were shifted according to the variation of the energy
levels. For deep enough lattices, the resonance positions may be derived from a numerical simula-
tion but can also be approximately calculated by making a harmonic approximation in the lattice
wells, which predicts a separation of the two lowest energy levels (n = 1 and n = 2) of

ΔE2−1 = 2Erec

√
V0

Erec
. (11.34)

By imposing the resonance condition ΔE2−1 = F resdLΔi, the calculated F res resonance position
results in good approximation with that predicted in Glück et al. (2002) [28] and Wimberger et al.
(2005) [67].

11.4.3.2 Avoided Crossings

The accessibility of higher energy levels allowed an experimental measurement of the tunneling
rates around RET conditions of two strongly coupled bands. The dependence of those rates on the
system parameters was phrased into the frame of level crossing for states experiencing a loss rate.
The modification of the level tunneling rate by the presence of a degeneracy may be described by a
simple model of a two-level Hamiltonian with an energy separation ε described by an energy cross-
ing splitting ε= 0 and with a single level characterized by a decay rate [68,69]. Real and imaginary
parts of the Hamiltonian eigenvalues are different for ε �= 0, and two different scenarios take place
with crossings or anticrossings of the real and imaginary part of the Hamiltonian eigenvalues. In
one case, denoted as type-I crossing, the imaginary parts of the eigenvalues cross while the real
parts anticross. In the second case, denoted as type-II crossing, the eigenvalues anticross while the
real parts cross. The numerical simulations of Zenesini et al. (2008) [24] pointed out that the large
majority of the RET explored experimentally correspond to type-II crossings. As a consequence if
a resonance takes place between the energy of the lower state and that of the decaying upper level,
the tunneling rate of the lower state increases significantly. In addition the upper state experiences
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FIGURE 11.11 In (a) real parts of the eigenenergies and in (b) tunneling rate Γ in ωrec units for a lattice
depth of V0/Erec = 10 and the Hamiltonian from Equation 11.4. The eigenenergies and the tunneling rates are
associated with two Wannier–Stark ladders or, equivalently, with two energy bands: ground state (thick black
lines) and first excited state (thin gray lines). The maxima of the ground-state tunneling rates corresponds to
Δi = 1,2,3, and 4. (Reproduced from A. Zenesini et al. NJP 10, 0530388, 2008. With permission. Copyright
Institute of Physics.)

a resonantly stabilized tunneling (RST) with a decrease of its tunneling rate. Figure 11.11a shows
theoretical predictions for type-II crossing and anticrossings for the real parts of the eigenenergies
associated with a RET configuration investigated experimentally as a function of the experimental
control parameter, the Stark force determined by the F0 dimensionless parameter of Equation 11.7.
The associated Wannier–Stark states tunneling rates are shown in Figure 11.11b as a function of F0.
The strong modulations on top of the global exponential decrease arise from RET processes origi-
nated by the energy crossings. The resonance eigenstates and eigenenergies for the noninteracting
atoms described by Equation 11.4 were obtained in Zenesini et al. (2008) [24] by diagonalizing an
open version of the Hamiltonian [28,70–73].

Experimental data on anticrossings in the tunneling rates are in Figure 11.12 taken from Sias et al.
(2007) [23]. Although a direct observation of the discussed anticrossing scenario in two different
levels for the same set of parameters was not possible, the experimental investigation compared
the ground and excited state tunneling rates Γ1 and Γ2 with the theoretical predictions for two
different parameter sets, as shown in Figure 11.12. This figure nicely reveals the anticrossing of the
corresponding tunneling rates of strongly coupled levels as a function of the control parameter F0

around RET conditions.

11.4.3.3 Nonlinearity

This section discusses how the experimental investigation of RET in tilted optical lattices are
modified by the atom–atom interactions in the Bose–Einstein condensate. We focus on a param-
eter regime where the Stark force essentially dominates the dynamics of the condensate. Here the
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quantum tunneling between the energy bands is significant and most easily detected experimentally.
The critical field values for which such excitations are relevant can be estimated by comparing,
for instance, the potential energy difference between neighboring wells, FdL, with the coupling
parameters of the many-body Bose–Hubbard model, that is, the hopping constant J and interaction
constant U [14].

Our analysis will exclude the regime of F0 ≤ J/Erec ≈U/Erec where a quantum chaotic system
is realized [74–78]. The origin of quantum chaos, that is, of the strongly force-dependent and non-
perturbative mixing of energy levels can be understood as a consequence of the interaction-induced
lifting of the degeneracy of the multiparticle Wannier–Stark levels in the crossover regime from
Bloch to Wannier spectra, making nearby levels strongly interact, for comparable magnitudes of
hopping matrix elements and Stark shifts.

For the regime of F0 � J/Erec, the effect of weak atomic interactions is just a perturbative shifting
and a small splitting of many-body energy levels [71,77]. In order to access the tunneling rates
measured in the experiment of Sias et al. [23], we determine the temporal evolution of the survival
probability Psur(t) for the condensate to remain in the energy band, in which it has been prepared
initially. As proposed in Wimberger et al. (2005) [67] and applied in the experimental investigation,
such a survival probability is best measured in momentum space, since, experimentally, the most
easily measurable quantity is the momentum distribution of the condensate obtained from a free
expansion after the evolution inside the lattice. Such probability decays exponentially

Psur(t) = Psur(t = 0)exp(−Γt) . (11.35)

In the absence of interatomic interactions in the Gross–Pitaevskii equation, for example, for
nonlinearity parameter g = 0 in Equation 11.12, the individual tunneling events occurring when the
condensate crosses the band edge are independent. Hence Psur(t) globally, that is, fitted over many
Bloch periods, has a purely exponential form, apart from the t → 0 limit [79]. When the nonlinear
interaction term is present, the condensate density decays with time too. As a consequence, the rates
Γ are at best defined locally in time, and in the presence of RET a sharp nonexponential decay
may occur, as discussed in Schlagheck and Wimberger (2007) [72] and Carr et al. (2005) [80].
Nevertheless, for short evolution times and the weak nonlinear coupling strengths g̃ experimentally
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accessible (g̃ defined in Equation 11.13, the global decay of the condensate is well fitted by an
exponential law [23,81])

Psur(t) = Psur(t = 0)exp(−Γnt) , (11.36)

with rates Γn for the band n = 1 (ground band), 2 (first excited band), 3 (second excited band), in
which the atoms are initially prepared.

We start our study of the tunneling rate in presence of a nonlinearity by discussing the position of
RET peaks. These peaks, whose positions for the single-particle evolution are studied in the previous
part of this Section 11.4.3, are affected by the nonlinear interaction term appearing in the Gross–
Pitaevskii Equation 11.12 for BEC. The RET resonances originate from an exact matching of energy
levels in neighboring potential wells, and hence they are very sensitive to slight perturbations. A
shift of the RET peaks in energy or in the position of the Stark force, predicted in Wimberger
et al. (2006) [71] for large value of the g̃ parameter, is negligible for the experimental investigated
nonlinearities g̃ < 0.06, the resonance shift corresponding to the extremely small ΔF0 < 5× 10−4

value [71].
The g̃ � 1× 10−2 regime was entered by carrying out the acceleration experiments in radially

tighter traps (radial frequency � 100Hz) and hence at larger condensate densities. Figure 11.13a
shows the Δi = 2 and Δi = 3 resonance peaks of the ground-state band (n = 1) for increasing val-
ues of g̃, starting from the linear case and going up to g̃ ≈ 3×10−2. As the nonlinearity increases,
two effects occur. First, the overall (off-resonant) level of Γ1 increases linearly with g̃. This is
in agreement with earlier experiments on nonlinear Landau–Zener tunneling [82,83] and can be
modeled by a condensate evolution taking place within a nonlinearity-dependent effective poten-
tial Veff = V0/(1 + 4g̃) [84]. Second, with increasing nonlinearity, the contrast of the RET peak is
decreased and the peak eventually vanishes, as evident from the different on-resonance and off-
resonance dependence of the tunneling rate as a function of the atom number N (and hence the
nonlinearity) (cf. Figure 11.13b).

The critical value of g̃ for which the nonlinearity affects the resonance peak is estimated by
comparing the width of the RET peaks of a band n (which essentially is determined by the tunneling
width Γn+1 of the band into which the atoms tunnel) with the energy scale of the nonlinearity. In
the experimental investigation of Sias et al. (2007) [23] atomic nonlinearities corresponding to
this order-of-magnitude argument were reached. For the parameters of Figures 11.10 and 11.13a
and the RET peak with Δi = 2, the typical width Γ2 of the decaying state to which the atoms
tunneling energy is of the order of 0.2 . . .0.5 × Erec. Since g̃ reflects the nonlinearity expressed
in units of 8×Erec, this means that substantial deviations from the linear behavior are expected
when g̃ � 0.025 . . .0.06. The experimental observations confirmed that this threshold is a good
estimate for the onset of the destruction of the RET peak, observed to occur around g̃ = 0.02 in
Figure 11.13a.

The role of nonlinearity on the time evolution of an Wannier–Stark state localized in a single site
of the optical lattice was also studied by Krimer et al. (2009) [85]. They predict that the nonlinearity
strength leads to different regimes, where the nonlinearity induced shift in the energy of the lattice
may enhance or inhibit RET.

11.5 MANY-BODY TUNNELING

In state-of-the-art experiments the interatomic interactions can be tuned by the transversal con-
finement and by Feshbach resonances [16], resulting in strong interaction-induced correlations.
A good starting point for the discussion of true many-body effects is to use a lattice model,
as introduced above for a single particle (cf. Equation 11.11) and widely used in the con-
text of strongly correlated ultracold quantum gases [16]. Such a lattice description has the
great advantage that the number of degrees of freedom automatically is bounded as com-
pared to field theoretical approaches (see, e.g., Kühner and Monien (1998) [86] and Duine
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FIGURE 11.13 Resonant tunneling in the nonlinear regime. (a) The tunneling rates for Δi = 3 from the
lowest energy band of the optical lattice as a function of the normalized inverse force F−1

0 for a lattice depth
V0/Erec = 2.5 and different values of the nonlinearity parameter, g̃≈ 0.01,0.022,0.033 from bottom to top. The
continuous line is the theoretical prediction in the linear regime. The dashed lines connect the data obtained
at large g̃ values. As the nonlinearity increases, the overall tunneling rate increases and the resonance peak
becomes less pronounced. (b) Dependence of the tunneling rate on the nonlinear parameter g̃ at the position
F−1

0 = 1.21 (solid symbols) of the RET spectrum peak and at F−1
0 = 1.03 (open symbols) a the RET spectrum

local minimum, for V0/Erec = 3.0. (Adapted from C. Sias et al. Phys. Rev. Lett. 98, 120403, 2007. Copyright
2007 of American Physical Society.)

and Stoof (2003) [87] and references therein), and one can use it for practical numerical
simulations.

Using a single-band model, the regime of strong correlations in the Wannier–Stark system was
addressed in Buchleitner and Kolovsky (2003) [74], Tomadin et al. (2007) [76], Tomadin et al.
(2008) [77], Buonsante and Wimberger (2008) [78], and Kolovsky and Buchleitner (2003) [88],
revealing the sensitive dependence of the system’s dynamics on the Stark force F . The single-band
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Bose–Hubbard system of Buchleitner and Kolovsky (2003) [74] and Kolovsky and Buchleitner
(2003) [88] is defined by the following Hamiltonian with the creation a†

l , annihilation al , and num-
ber operators na

l for the first band of a lattice with sites l = 1 . . .L:

H1B =
L

∑
l=1

[
F0Ereclna

l −
Ja

2

(
a†

l+1al + h.c.
)

+
Ua

2
na

l (n
a
l −1) + εana

l

]
, (11.37)

where the last term describes the on-site energy.
In order to describe interband tunneling and phenomena related to those discussed in the previous

Section 11.4, such a model has to be extended to include at least the equivalent of two single-
particle energy bands (as plotted in Figure 11.3). In the presence of strong interatomic interactions
parameterized by U terms, the single-band model of Equation 11.37 should be extended to allow for
interband transitions, as for example, realized at F0 = 0 in experiments with fermionic interacting
atoms [21]. Doing so, Tomadin et al. [77] and Plöte et al. [89] arrived at the following full model
Hamiltonian for a closed two-band system schematically sketched in Figure 11.14:

H(t) = εa

L

∑
l=1

na
l + εb

L

∑
l=1

nb
l onsite energy + F0DErec

L

∑
l=1

(b†
l al + h.c.) force coupling

− 1
2

Ja ∑
l=1

(ei2πt/TBa†
l+1al + h.c.) +

1
2

Jb∑
l

(ei2πt/TBb†
l+1bl + h.c.) hopping in the bands

+
1
2

Ua

L

∑
l=1

na
l (n

a
l −1) +

1
2

Ub ∑
l=1

nb
l (n

b
l −1) onsite interaction

+ 2Ux

L

∑
l=1

na
l nb

l +
1
2

Ux

L

∑
l=1

(b†
l b†

l alal + h.c.) interband interaction, (11.38)

where the b index and the bl ,b
†
l creation/annihilation operators are associated to the terms of the sec-

ond band. D is the “dipole” matrix element between the ground and excited single-particle states in
a single lattice site (measured in 2π/dL length units, cf. the appendix A of Tomadin et al. (2008) [77]
for a detailed explanation of how parameters are computed from the physical model).

Within this full two-band system, two dominating mechanisms promote to the second band parti-
cles starting from the ground band. The first one is a single-particle coupling arising from the force
term

H1 = F0DErec

L

∑
l=1

(
b†

l al + h.c.
)

, (11.39)

where the dipole matrix element D depends only on the lattice depth V0 (measured in recoil ener-
gies according to the definition above, cf. Equation 11.2). The second one is a many-body effect,

Hopping
Interband 
interaction

Intraband 
interaction

Force 
coupling

FIGURE 11.14 Sketch of most of the terms of the Hamiltonian Equation 11.38. This model can be used to
fully describe RET, since it contains excited levels in each potential well, in contrast to the effective model of
Section 11.5.1.
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describing cotunneling of two particles from the first band into the second band

H2 =
Ux

2

L

∑
l=1

(
b†

l b†
l alal + h.c.

)
. (11.40)

In Equation 11.38 the tilting terms arising from the Stark force F0 have been transformed into a
phase factor e±i2πt/TB for the hopping terms by changing into the accelerated frame of Kolovsky and
Buchleitner (2003) [88]. This transformation nicely shows that the present problem is intrinsically
time-dependent. Since H(t) = H(t + TB) is periodic with the Bloch period TB, a Floquet analysis
can be used to derive the eigenbasis of the one-period evolution operator generated by H(t). This
trick allows also the application of periodic boundary conditions, which is reasonable in order to
model large experimental systems, typically extending over a large number of lattice sites. The
Hamiltonian of Equation 11.38 contains hopping terms linking nearest-neighboring wells in both
bands (Ja and Jb), and terms couplings different bands at a fixed lattice site l either by the force
presence (F0D) or by interactions (Ux). Other terms can, in principle, be included, yet they turn
out to be exponentially suppressed for sufficiently deep lattices which are well described by Bose–
Hubbard like models [16].

Because of its complex form and the large number of participating many-particle states, the above
Hamiltonian is hard to interprete and to treat even numerically, for reasonable numbers of atoms N
and lattice sites L. Two approximate treatments will be presented in the following. Section 11.5.1
uses an effective one band model which nevertheless takes the coupling terms between the bands of
Equation 11.38 into account. While this model is valid for small interband couplings, Section 11.5.2
presents analytical and numerical results for the full model Equation 11.38, which on the other hand
is valid for arbitrary interband couplings but is perturbative in the atom–atom interaction terms Ua,
Ub, and Ux.

11.5.1 OPEN ONE-BAND MODEL

Instead of using a numerically hardly tractable complete many-band model, we introduce here a
perturbative decay of the many-particle modes in the ground band to a second energy band. This
novel approach when applied to the Landau–Zener-like tunneling between the first and the second
band [23,25,66,67,82,83] predicts the expected tunneling rates and their statistical distributions.

To justify this perturbative approach, it is crucial to realize that the terms of Equations 11.39 and
11.40 must be small compared with the band gap ΔE ≡ εb − εa and indeed F0D,Ux � ΔE for the
parameters of Figure 11.15. As exercised in detail by Tomadin et al. [76,77], from these two cou-
pling terms by using Fermi’s golden rule one can compute analytically the corresponding tunneling
rates Γ1(s) and Γ2(s) for each basis state labeled by s. Those rates allow the computation of the total
width Γ(s) = Γ1(s) + Γ2(s) defined by the two analyzed coupling processes for each basis state |s〉
of the single-band problem given in Equation 11.37. The Γ(s) are inserted as complex potentials
in the diagonal of the single-band Hamiltonian matrix. Along with the statistics of the level spac-
ings defined by the real parts of its eigenspectrum Re{E j} studied in Buchleitner and Kolovsky
(2003) [74], Tomadin et al. (2007) [76], Tomadin et al. (2008) [77], Buonsante and Wimberger
(2008) [78], and Kolovsky and Buchleitner (2003) [88], the statistical distributions of the tunneling
rates Γ j =−2Im{E j} may be analyzed, as done in Figure 11.15. For the regime where the motion of
the atoms is localized along the lattice [28] that distribution is in good agreement with the expected
log-normal distribution of tunneling rates (or of the similarly behaving conductance) [90]. In that
regime the Stark force dominates and the system shows nearly perfect single-particle Bloch oscil-
lations [74], the distributions agreeing with those predicted from the localization theory [90,91].
On the other hand, when the Stark force is comparable with Ja and Ua and all modes of our Bose–
Hubbard model are strongly coupled, the rate distribution of Figure 11.15b follows the expected
power-law for open quantum chaotic systems in the diffusive regime [91]. This regime shows strong
signatures of quantum chaos [74,76–78,88], which manifest also in the rate distributions [76,77].

5.1. 315



280 Dynamical Tunneling

–4.5 –4 –3.5 –3
log10Γ

0

0.5

1

1.5

2
P 

(l
og

10
Γ)

10–5 10–4 10–3 10–2

Γ

100

102

104

P(
Γ)

~Γ −2 

(a) (b)

FIGURE 11.15 Rate distributions for the spectrum of an open one-band Bose–Hubbard model in (a) for
F0 � 0.47,Ja/Erec = 0.22,Ua/Erec = 0.2,Ux/Erec � 0.1 (for system size (N,L) = (7,6)) and in (b) for
F0 � 0.17,Ja/Erec = 0.22,Ua/Erec = 0.2,Ux/Erec � 0.1 ((N,L) = (9,8)). In the regime where the Stark force
dominates a log-normal distribution fits well the data (dotted in (a)), whilst a power-law P(Γ) ∝ Γ−x distribu-
tion is found with x ≈ 2 in the strongly coupled case (dashed line in (b)).

11.5.2 CLOSED TWO-BAND MODEL

Since the model introduced in the previous Section 11.5.1 cannot account for resonant tunneling
between a ground level of one well and an excited level of another well, a different model which
applies also for strong transitions between the bands was investigated by Plötz et al. (2010) [89].
This model is based on the full Hamiltonian of Equation 11.38 sketched schematically in Fig-
ure 11.14.

When the Stark force is tuned to the value where RET occurs for the single particle problem (cf.
Section 11.4.3), the strong coupling of the atoms prepared in the ground band into the excited band
plays an important role. Since the model is closed, that is, higher bands are neglected, there is no
asymptotic tunneling as in the experimental situation described in Section 11.4.3. As a consequence,
we observe an oscillation of the probability of occupying the lower and upper band, respectively,
which is particularly pronounced at RET conditions. For a single particle in our lattice model, such
RET oscillations can be understood easily, since in Floquet space (remembering that our Hamilto-
nian of Equation 11.38 is periodically time-dependent) the problem reduces to an effective two-state
model of resonantly coupled states [89,92]. In this effective description, the evolution corresponds
to the two-level Rabi problem of quantum optics of Plötz et al. (2010) [93]. For nonvanishing
atom–atom interaction, the situation complicates, of course, and we expect a degradation of those
single-particle Rabi oscillations. This is illustrated in Figure 11.16. The period of the single-particle
interband oscillation is given by the following formula derived in Plötz et al. (2010) [89]:

tosc

TBloch
≈ 1∣∣∣2DJΔi

(
Jb−Ja

F0

)∣∣∣
, (11.41)

where Δi is the resonance order introduced in Section 11.4.3 and JΔi the Bessel function of the same
order.

For a Stark force F0 not satisfying the RET conditions, the coupling to the upper band is strongly
suppressed, and almost negligible at least for small particle–particle interband interactions Ux. On
the other hand if Ux dominates, strong interband coupling is possible even for small forces F0. The
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FIGURE 11.16 Population in the upper band as a function of time for the rescaling parameter α = 0 (black
dotted line), 0.2 (faint gray line) and 0.5 (gray thick line) in a closed two-band model. Clearly visible are the
interaction induced collapes and revivals of the RET oscillations between the bands. Other parameters are F0 =

1.87 (dominating energy scale!) and Ja = 0.1,Jb = 0.77,Ua = 0.023,Ub = 0.014,Ux = 0.01,εb − εa = 3.38
(all in recoil energy units) and D = −0.16 in length units, and (N,L) = (5,6).

latter strongly correlated regime of two energy bands is extremely hard to deal with, especially if one
is searching for analytical predictions for the interband dynamics. The results shown in Figure 11.16
are just a small step in this direction. In the limit of small atom–atom interactions, the observed
collapse and revival times can be determined analytically in good approximation. We quantify small
interactions by artificially rescaling the parameters Ua,Ub,Ux, which would be obtained by a given
scattering length and a given depth of the optical lattice potential [16], by a constant factor 0 <
α < 1. From the results of Figure 11.16, α was chosen to be zero (black dotted line), 0.2 (faint
gray line) and 0.5 (gray thick line). The analogy with the Rabi oscillation problem even carries over
to those values of interaction strength, since we observe a collapse and later on a revival of the
periodic oscillation of the population. Collapse and revival timescale inversely proportional with
the strength factor α, as shown in Figure 11.17, where the revival time is well approximated by the
formula derived in Plötz et al. (2010) [89]

trevival

TBloch
≈ 2F0

αUxJ2
0

(
Ja

F0

)
J2

0

(
Jb

F0

) , (11.42)

with the zeroth-order Bessel function J0. This formula arises from a perturbative calculation of the
effect of atom–atom interactions for small αUa,b,x � F0 starting from the single-particle solution,
which itself is known within the effective two-state model, and assuming a delocalized initial state
along the lattice. From Equation 11.42 the collapse time was estimated in Meystre and Sargent
(2007) [93] as tcollapse ≈ trevival/(πσs), with the effective number σs of additionally coupled many-
particle states as compared to the single-particle two-state model. This collapse is analogous to that
of the Rabi oscillations in the presence of atomic interactions, or to the collapse arising whenever
the phase evolution of each s basis state is nonlinear in the particle number. Notice that the collapse
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FIGURE 11.17 Collapse and revival times extracted from data (symbols for two different system param-
eter sets) as shown in Figure 11.16 versus the inverse of the atom–atom interaction rescaling factor α. As
expected for a two-state Rabi problem perturbed by a coupling to additional states, both times scale inverse
proportionally to α. The dashed lines should guide the eye.

and revival phenomena of Figure 11.16 stem from a degradation (arising from interactions) of single
particle interband oscillations (with original period given by Equation 11.41 which just depends on
the force F0). So, even if there are analogies to the collapses and revivals observed in BEC [18,
94–96], their origins are different. In the BEC investigations the collapse-revival oscillations were
produced by the interaction within a single-band (in Will et al. (2009) [96] by atomic interactions
depending on higher power of the well occupation number). Therefore, those oscillations would not
at all occur when the lower band nonlinear interaction(s) is (are) suppressed, equivalent to Ua = 0
in the model here discussed.

The above steps may be expanded in different directions within the realm of true many-body
dynamics and tunneling, with great perspectives for many-body induced RET effects. Remaining
questions are, for instance, the study of the strongly correlated regime of strong particle and strong
interband interactions simultaneously, and the enlargement of our closed two band model in order
to allow for a realistic description of experiments similar to the ones reported in Section 11.4.3 now
carried over into the realm of strong many-body interactions.

11.6 CONCLUSIONS AND PERSPECTIVES ON RET

This chapter has presented and discussed the RET investigations performed with cold and ultracold
atoms. Owing to the reached high level of control on the atom initial preparation and on the realiza-
tion of potentials with arbitrary shapes, the atomic physics community has reproduced and analyzed
basic quantum mechanics phenomena well established, and with important applications, within the
solid-state physics community. An important feature associated to the investigations on the atoms,
compared to those on electrons in a solid, is the absence of decoherence phenomena. Therefore,
quantum interference phenomena may play an enormous role on the tunneling temporal evolution
of the cold atoms. For the ultracold atoms an additional characteristic is the presence of inter-
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atomic interactions, that modify the position of the energy levels and therefore greatly influence the
RET. In more complex configurations the atomic interactions lead to a very complex Hamiltonian
whose action on the atoms requires large computational efforts or analyses based on perturbation
approaches.

Our analysis was restricted to potentials which are either not explicitly time-dependent or lead
to a temporal evolution of the atomic wavefunction corresponding to an adiabatic evolution of the
atomic system. Tunneling processes produced by a nonadiabatic atomic evolution are described in
other chapters of this volume.

Macroscopic quantum tunneling is an important direction of research well investigated by the
solid-state physics community. Up to now no clear evidence of that tunneling was reported by
the BEC community even if configurations for the occurrence of macroscopic quantum tunneling
in Bose–Einstein condensates have been proposed by different authors. Ueda and Leggett [97,98]
examined the instability of a collective mode in a BEC with attractive interaction induced by macro-
scopic tunneling. Thus, a collective variable, the spatial width of BEC is analyzed as a tunneling
variable. Carr et al. [80] studied BEC in a potential of finite depth, harmonic for small radii and
decaying as a Gaussian for large radii, which supports both bound and quasibound states. The
atomic nonlinearity transforming bound states into quasibound ones, leads to macroscopic quantum
tunneling. The experimental observation of such macroscopic tunneling would enlarge the quantum
simulation configurations explored with ultracold atoms.
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Abstract

We review the concept and applications of a semi-classical (ǫ-classical or pseudo-
classical) approximation to the resonant dynamics of an atom “kicked” by a pulsed,
periodic potential. This powerful method allows us to derive analytical results in the
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deep quantum limit of the kicked rotor. Additionally, classical phase space portraits
may be used to represent the dynamics even though the system is fundamentally
quantum mechanical. The technique has been successfully adapted for systems in-
cluding noise and decoherence, as well as systems for which the initial state is a
nontrivial quantum superposition (leading to directed transport at quantum reso-
nance). For almost a decade, theoretical investigations and experimental investiga-
tions have been proceeding hand–in-hand in this field, which has been stimulated
regularly by experimental progress in controlling driven dynamical systems. Here
we review both theoretical and experimental advances, which in turn may inspire
future applications of the presented pseudo-classical method.

Key words: Semi-classical methods, quantum kicked rotor, nonlinear dynamics,
(ultra)cold atoms, noise and decoherence

Notation

M atomic mass

kL laser wavevector

T laser pulse period

ωrec recoil angular frequency

p atomic momentum in 2~kL units

β rescaled atomic quasimomentum

τ kicking period in dimensionless units

t total number of kicks and kick total time in units of τ

k kicking strength in dimensionless units

ǫ detuning from resonance value

k̃ ≡ |ǫ|k
ω =

√
k̃

2

5.2. 325



1 Introduction

1.1 The quantum kicked rotor

The kicked rotor is a model system in the study of chaos. It is physically
embodied by a “Gedankenexperiment” in which a rigid pendulum is subject
to periodic, sharp pulses from gravity (referred to as momentum “kicks”) and
evolves freely between those pulses. Its formal classical description is known as
the standard map (Chirikov, 1979), and it is arguably the simplest Hamiltonian
system in which to study the onset of chaotic dynamics (Lichtenberg and
Lieberman, 1992).

Given its status as a paradigm system, it is natural that studies of the quantum
dynamics of chaotic systems (vulgo quantum chaos) have focused heavily on
the quantized standard map or, equivalently, the quantum kicked rotor (QKR).
It became apparent in early numerical studies of the QKR that quantization
of the system produced two particularly notable divergences from the classical
dynamics of the standard map. Most well known is the appearance of dynam-
ical localization (DL) in the generic quantum dynamics, that is, the freezing
of diffusive energy growth after a characteristic quantum break time (Casati
et al., 1979; Fishman, 1993; Izrailev, 1990). It was later demonstrated that
the quantized standard map could be mapped onto a disordered tight-binding
model in solid-state physics, demonstrating a link between the DL effect in the
QKR and spatial Anderson localization in disordered solids (Fishman et al.,
1982). Recently, this analogy between the QKR and solid-state systems was
used to demonstrate a dynamical analog of the famous metal-insulator tran-
sition using cold atoms (Chabé et al., 2008; Lemarié et al., 2010).

Aside from the celebrated phenomenon of DL, the quantization of the standard
map produces another notable qualitative difference between the classical and
quantum dynamics. Quantization of the rotor momentum introduces a natural
time scale to the system which is absent in the usual standard map. As the
strength of the kicks is increased in the classical picture, chaos results and
finally all invariant tori in phase space are completely destroyed by this strong
perturbation of the pendulum dynamics. Among other things, this global chaos
prevents the possibility of resonant driving by the kicks. However, in the quan-
tum system, even in this chaotic limit, momentum quantization guarantees
that the kick frequency remains an independent parameter along with the
kick strength. This allows for resonant driving of discrete quantized states at
certain kick periods, realizing the so-called quantum resonances (QRs) of the
QKR (Izrailev, 1990; Izrailev and Shepelyansky, 1979, 1980; Guarneri, 2009;
Dana and Dorofeev, 2006; Tian and Altland, 2010). In the present review, we
will concern ourselves with the properties of the most prominent QRs (the
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so-called principal QRs) and, more precisely, with the dynamics of ensembles
of cold atoms in the close vicinity of those resonances.

For a system rich enough to encompass dynamics analogous to Anderson-
localization (Anderson, 1958; Lee and Ramakrishnan, 1985), it is not surpris-
ing that analytical results predicting the behaviour of the QKR are few and far
between. Kick-to-kick correlations remain analytically tractable only for small
times (Shepelyansky, 1987; Daley and Parkins, 2002), and DL itself has only
recently been rigorously demonstrated to exist for the QKR (Bourgain, 2002;
Jitomirskaya, 2002). Whilst numerical simulations of the system are relatively
easy to perform, they usually provide little insight. In this review, we will de-
tail one of the few approaches to the QKR that simplifies understanding and
generates true physical insight about the system, in this case in the vicinity
of the principal QRs. The so-called ǫ-classical method that we study accom-
plishes this insight by taking advantage of the fundamental periodicities of the
quantum system to produce a pseudo-classical model for the near-resonant dy-
namics. The first insight this allows is that due to the pseudo-classical phase
space description, we can simply illustrate the dynamics of the system near to
the QRs. The second insight, which stems from these phase space portraits,
is the existence of closed form analytical scaling functions. The derivation of
these scaling functions marks one of the few analytical and, at the same time,
experimentally useful results available for the QKR. Furthermore, the simplest
of these scaling functions (in the absence of noise and external perturbations)
is given as a function of a single parameter which combines time, detuning
from resonance and strength of the kicks, providing a unified understanding
of the effect of parameter changes on the quantum dynamics.

Since the original derivation of the ǫ−classical standard map (Fishman et al.,
2002; Wimberger et al., 2004), it has been adapted to provide analytical theo-
ries for the QKR with decoherence (Wimberger et al., 2003), amplitude fluctu-
ations (Sadgrove et al., 2008), for highly non-classical initial states (Sadgrove
and Wimberger, 2009) (as in the directed diffusion experiments discussed in
section 3.4), and also for the stability of wavepackets with respect to deter-
ministic variations of the kick strength (via fidelity) (Abb et al., 2009). In
each case, as we will discuss, understanding comes from first examining the
ǫ-classical phase space and its changes when varying parameters, and then
adapting the theory to take account of those changes.

1.2 The atom-optics realization of the quantum kicked rotor

Aside from the addition of elegant analytical results to the canon of quantum
chaos, the principle interest of the pseudo-classical method which we review
here is that it was developed in response to and alongside experiments. Indeed,
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the initial development of the theory in refs. (Fishman et al., 2002; Wimberger
et al., 2004, 2003) was in response to experimentally observed phenomena
(Oberthaler et al., 1999; d’Arcy et al., 2001). It is therefore necessary to give
a brief account of the experimental setup in which observations of the kicked
rotor typically take place (Raizen, 1999).

The QKR was first realized experimentally using cold noninteracting sodium
atoms exposed to a pulsed optical standing wave (with spatial period π/kL,
kL being the wavevector of the laser creating the potential), far detuned from
the nearest atomic transition (Moore et al., 1995; Latka and West, 1995).
Before this publication, DL had been studied in the context of driven Rydberg
atoms (Casati et al., 1988; Krug et al., 2003; Galvez et al., 1988; Bayfield
et al., 1989; Arndt et al., 1991) and atoms in a modulated standing wave
potential (Moore et al., 1994). However, in (Moore et al., 1995), the realization
of effective δ−like pulses (i.e. pulses much shorter than the pulsing period
T ) created a very good experimental realization of the standard map. This
realization became known as the atom optics kicked rotor (AOKR). Although
the atom-optics setting swaps angular for linear momentum, it still makes the
unique aspects of the QKR more clear. The atomic system may be represented
by the following scaled Hamiltonian (Graham et al., 1992)

H(t′) =
p2

2
+ k cos(z)

t−1∑

j=0

δ(t′ − jτ) , (1)

where p is the atomic momentum in units of 2~kL, z is the atomic position
scaled by 2kL = 4π/λ, t′ is time. t is an integer which counts the total number
of kicks, and in units of the kicking period τ it represents the total time.
The scaled kicking period τ is defined by τ = 8ωrecT , where ωrec = Erec/~ =
~k2L/2M is the angular recoil frequency for atoms of mass M and Erec the recoil
energy. The kicking strength k is proportional to the optical standing wave
intensity. An important time scale when studying QRs is defined by the Talbot
time TT = π~/(2Erec), since QRs can be seen to arise from nothing other than
the Talbot effect (Talbot, 1836; Dubetsky and Berman, 1997; Deng et al.,
1999; Lepers et al., 2008) (albeit in the time domain) for atomic matterwaves
diffracted from the “grating” induced by the flashed periodic potential. We
will motivate this analogy further in Section 2.1. The state evolution of an
atom from one kick to immediately after the next kick is determined by the
unitary one-cycle Floquet operator (Wimberger et al., 2003):

Ûβ,k = e−ik cos(θ̂) e−i τ
2
(N̂+β)2 , (2)

where θ ≡ zmod 2π. The Floquet operator of Eq. (2) differs from the Floquet
operator of the original model of the QKR by the phase β, which represents
the rescaled quasi-momentum of the atom moving along a line in contrast

5

328 KAPITEL 5. EINGELADENE BUCHBEITRÄGE (REVIEWS)



Fig. 1. Diagram of the most basic experimental configuration of the atom-optics
kicked rotor. Thin arrows represent counter-propagating, co-polarized laser beams
which intersect with a sample of cold atoms which are released from a magneto-op-
tical trap (MOT). (Note that only two of the six MOT beams are shown in this
diagram). The laser beams are periodically gated to create a pulsed potential with
a form controlled precisely by the experimenter.

to a rotor which would move on a circle. By translational invariance of the
potential, quasi-momentum is conserved for all times and, therefore, it acts
just as a continuous index defined by the fractional part of the real momentum
p (Wimberger et al., 2003). N̂ then corresponds to the integer part of p and
can be interpreted as an angular momentum operator in the θ−representation,
N̂ = −id/dθ, with periodic boundary conditions.

As shown schematically in Fig. 1, all AOKR experiments using cold atoms fol-
low roughly the same common sequence, first realized in (Moore et al., 1995):
(1) A sample of atoms is laser cooled in a magneto-optical trap (MOT), (2)

6
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Fig. 2. (a) Schematic depiction of the atom diffraction over a few kicks from the in-
tersected optical standing wave, following just first order diffraction into momentum
eigenstates separated by 2~k (from an initial zero momentum eigenstate). Each ball
represents a momentum eigenstate with value m in units of 2~k. The importance of
interference effects (whenever two lines intersect in the diagram) becomes clear, and
the difficulty of making analytical predictions in the general case is thus apparent.
(b) shows the predicted momentum distribution over 15 successive kicks for an atom
starting from an initial zero momentum state and kicked at QR.

7
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the cooled atomic sample is released from the trap (all optical and magnetic
fields are turned off), (3) the released atoms are subject to a number of peri-
odic pulses (“kicks”) from an optical standing wave which intersects with the
sample and (4) the kicked atoms are allowed to expand for some milli-seconds
before being exposed to near resonant light and having the consequent fluo-
rescence distribution imaged on a charge coupled device (CCD) camera. This
recipe gives access to the atoms’ momentum distribution after t kicks, as
shown in Fig. 2. The mean energy of the atomic ensemble may be inferred
by calculating the second moment of the momentum distribution. Since the
first realization of the AOKR in (Moore et al., 1995), however, a number of
variations on steps (1-3) in the experiment have been implemented includ-
ing the use of a diluted Bose-Einstein condensate (BEC) as the initial state
(Duffy et al., 2004b; Ryu et al., 2006; Currivan et al., 2009), kicking of trapped
samples (Duffy et al., 2004a) and non-periodic kicking fields (Monteiro et al.,
2002; Jones et al., 2007), amongst other innovations as we will discuss now
briefly.

One of the earliest variations on the AOKR experiment was the addition of
noise in various forms in order to observe decoherence effects. In (Ammann
et al., 1998), a controllable, non-zero spontaneous emission rate was intro-
duced leading to the destruction of DL. Experiments with a randomly fluc-
tuating standing wave amplitude (Klappauf et al., 1998; Milner et al., 2000)
or temporal period between kicks (Oskay et al., 2003; Sadgrove et al., 2004)
demonstrated similar decoherence effects, seen in the changing lineshape of
atomic momentum distributions. However, when the effects of spontaneous
emission were tested at QR in (d’Arcy et al., 2001), it was found that rather
than destroying the quantum energy resonances, the addition of spontaneous
emission enhanced their visibility. This unusual result, similar to behaviour
noticed in other investigations (Daley et al., 2002), was explained in (d’Arcy
et al., 2004), and also in (Wimberger et al., 2003) using ǫ-classical theory as we
will explain in detail in Section 3.3.1. The unusual response of the QR peaks
to noise was confirmed in (Sadgrove et al., 2004), where the robustness of
the QR peak structure in the presence of amplitude fluctuations was demon-
strated and explained in terms of ǫ-classical stability of the near-resonant
dynamics. More recently, the stability of the resonance behaviour has been
quantified more rigorously in experiments where fidelity of quantum states
was measured directly (Tonyushkin et al., 2009; Wu et al., 2009).

Another fruitful variation on the kicked rotor is the kicked accelerator, where
the standing wave is oriented in the vertical direction. This allows so-called
accelerator modes to emerge – narrow momentum classes of atoms which gain
energy in a resonant fashion from the pulsed standing wave (Oberthaler et al.,
1999). These accelerator modes and their stability (Schlunk et al., 2003a)
inspired the first ǫ-classical treatment of kicked atoms in (Fishman et al.,
2002), and investigations of this rich system have also extended to higher
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order accelerator modes (Guarneri and Rebuzzini, 2008; Ramareddy et al.,
2010), accelerator mode decay (Sheinman et al., 2006), and to study so-called
Arnol’d Tongues (Guarneri et al., 2006). At this point, however, we note that
the present review is concerned only with the “horizontal kicking” system
as used in the original kicked rotor experiments (Moore et al., 1995). The
behaviour found when the kicks are administered in the vertical direction and
acceleration due to gravity is non-negligible is an interesting topic worthy of
review in its own right.

Perhaps the single greatest experimental advance in the investigation of kicked
atoms involved the use of atoms sourced from a degenerate quantum gas rather
than a thermal MOT source. The first such experiments using a dilute BEC
(for which atom-atom interactions can be neglected (Wimberger et al., 2005a))
subject to standing wave pulses were performed at NIST in Gaithersburg in
a strictly atom-optics setting (Deng et al., 1999). Both atom diffraction into
discrete orders and the time-domain Talbot effect were demonstrated in these
early studies. Other investigations probed QR and the opposite regime of anti-
resonance (at which the system oscillates between states instead of absorbing
energy (Izrailev, 1990)) more carefully using a BEC (Duffy et al., 2004b) and
also investigated the kicking of a BEC in situ with the magnetic trap still
on (Duffy et al., 2004a). BEC studies of the AOKR, along with nondegenerate
ultra-cold samples (Kanem et al., 2007), also finally allowed such central pre-
dictions about QR as ballistic energy growth and some fractional resonances
to be successfully demonstrated in the laboratory (Ryu et al., 2006).

In Fig. 3, manifestations of QR behaviour are shown in two different atom
optics settings. Fig. 3(a) and (b) show raw absorption images of a dilute BEC
subject to anti-resonant (half-Talbot time) and resonant (Talbot-time) kicking
respectively. When the time between pulses equals half of the Talbot time, we
see oscillations in the atomic energy from one kick to the next (seen here as
alternate expansion and contraction of the atomic momentum distribution),
whilst when the period matches the Talbot time, ballistic growth is seen and
the momentum distribution expands with each kick. Fig. 3(c) shows mean
energies for a kicked atomic ensemble for which the initial momentum distri-
bution is much larger than 2~k. In this case, individual momentum orders are
not resolvable and the effect of resonant kicking on the atomic momentum
distribution is more subtle. However, a strong signature of QR is still seen in
the mean energies at integer or half integer multiples of the Talbot time. It
is interesting to note that these energy peaks are indistinguishable between
the anti-resonant and resonant cases, due to the fact that the broad quasi-
momentum distribution allows resonant transport in both cases. In both of
the experimental situations shown in Fig. 3, ultra-cold atoms were kicked by
standing-wave pulses which satisfied the Raman-Nath condition (Nath, 1936),
which, physically speaking, requires that the pulse time is short compared to
the time it takes for atoms to traverse a single period of the standing wave.

9
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Fig. 3. Manifestations of QR phenomena in cold atom experiments. (a) (τ ≈ 2π)
and (b) (τ ≈ 4π) show absorption images for a kicked Bose-Einstein condensate
demonstrating the clearly distinguishable cases of anti-resonance and resonance re-
spectively. This behaviour is seen for an atomic ensemble with an initial momentum
width σ ≪ 2~kL. The absorption images reproduce the atomic momentum distri-
bution after t kicks, schematically introduced in Fig. 2(a). At anti-resonance, atoms
oscillate between 0 and non-zero energy from kick to kick. At resonance, the atoms
gain energy quadratically as the kick number increases. (c) shows the case for atoms
where σ ≫ 2~kL. In this case, we see peaks in the mean energy ( on the y-axis) near
the resonance and anti-resonance values at τ = 4π and 2π respectively in (c).
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Outside the Raman-Nath regime, momentum transfer to atoms is curtailed
(Bharucha et al., 1999; Vant et al., 1999; Blümel et al., 1986), the extreme
case being an optical lattice in which the standing wave is always on and the
atoms do not absorb energy as from a flashed lattice. We also note in pass-
ing that the half-Talbot time effect was recently used to demonstrate fidelity
decay in cold atoms perturbed by standing wave kicks (Wu et al., 2009). We
will have more to say on the topic of fidelity later in this review (see Section
3.5).

Still further intriguing variations on the basic AOKR experiment are possible
when deviations from strict periodicity of the kicking are introduced. Double
kicks were first used to probe the dynamics of atoms in the presence of classical
phase space structures (Vant et al., 1999), but the introduction of multiple
kicking frequencies yielded more surprising results in (Lemarié et al., 2010).
In these experiments, resonances were found depending on the ratio between
two kicking frequencies. These resonances were further shown to possess a sub-
Fourier nature, suggesting possible applications to signal processing. The QRs
were later shown to possess a similar sub-Fourier narrowing of the mean energy
with time, as will be discussed below in Section 3.1. Interestingly, an analysis
of the fidelity overlap of two states kicked with slightly different periods shows
such a sub-Fourier scaling, which is yet another manifestation of the stability
of QR motion useful for applications (see the recent papers (McDowall et al.,
2009; Talukdar et al., 2010)).

Finally, at the intersection between non-periodic driving and studies performed
with a BEC, investigations of directed transport have recently taken place.
The goal to create a Hamiltonian ratchet (Flach et al., 2000; Schanz et al.,
2001; Hänggi and Marchesoni, 2009) using a variant of the kicked rotor system
was first investigated using thermal atoms (Monteiro et al., 2002; Jones et al.,
2007) but a more surprising variation on ratchet motion was found using
a BEC prepared in an initial superposition of momentum eigenstates and
subjected to kicking at QR (Sadgrove et al., 2007; Dana et al., 2008; Lundh and
Wallin, 2005; Gong and Brumer, 2006). It is also interesting to note that in the
first true “ratchet” for cold atoms, achieved using an approximate saw-tooth
potential combined with modulation of the standing wave, a significant current
was only observed when the modulation frequency was close to QR (Salger
et al., 2009).

Historically, the motivation to study the QKR experimentally was to observe
DL, thus demonstrating the restriction on chaotic motion expected in quantum
systems arising from a stabilizing interference effect. However, as the AOKR
was extended to different initial conditions and driving fields, the QRs have
become more compelling phenomena of study, due to the possible applications
to precision measurements, atomic transport and stable quantum behaviour
that they represent (Madroñero et al., 2006). Thus, we believe it is timely
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to review the tools provided by the pseudo-classical description of the quasi-
resonant regime embodied by the ǫ-classical theory of QR. For reasons of
compactness, we restrict our overview to the principal QRs of the QKR and
mainly, but not exclusively, discuss our own research work on the topic.

2 The pseudo-classical method for nearly resonant quantum mo-
tion

This Section introduces the theoretical concepts of the pseudo-classical method
which has proven very useful for the description of experiments and applica-
tions such as those detailed in the following Section 3. We start out with a
short review of the dynamical regimes of the QKR, in particular, the QR
regime at which the rotor maximally absorbs energy from the kicking field,
essentially because of a revival of its wave function in momentum space in-
between two kicks. The reported pseudo-classical method (see Section 2.3)
allows us to characterize the QKR and its experimental realization by kicked
cold or ultra-cold noninteracting atoms (see Section 1) in the vicinity of these
QRs.

2.1 Dynamical localization and quantum resonances

As mentioned in the introduction, the QKR – at first glance a system seem-
ingly too simple to be of practical use – became famous because it reproduces
in a clear way the predictions made by P.W. Anderson on the transport of
single-particles wave packets across disordered samples (Anderson, 1958; Lee
and Ramakrishnan, 1985). While the original idea of Anderson – recently ver-
ified in an ingenious experiment by Billy et al. (2008) – describes transport in
real space, the QKR realizes the same situation in momentum space (Fishman
et al., 1982; Fishman, 1993). Kicking the system with periods such that τ/4π
is sufficiently far from a rational number leads to what is known as “dynamical
localization” (DL) of a spreading wave packet, stressing its dynamical origin 1 .
DL, as a purely quantum effect, suppresses the classically expected diffusion
in systems such as the QKR which have a classically chaotic counterpart. It
is a ubiquitous effect which also occurs in other periodically driven quantum
chaotic systems, such as microwave driven hydrogen or alkali Rydberg states
of electronic wave packets (Casati et al., 1988; Wimberger and Buchleitner,

1 The notion dynamic or dynamical localization is unfortunately also used in differ-
ent contexts, one example being the suppression of tunneling by a periodic driving
force (Dunlap and Kenkre, 1986), for experimental realizations of this effect see,
e.g. (Lignier et al., 2007; Kierig et al., 2008).
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2001) (for which DL was indeed observed for the very first time in the labo-
ratory (Galvez et al., 1988; Bayfield et al., 1989; Arndt et al., 1991)). While
for driven Rydberg states the effect of localization manifests itself only indi-
rectly in the measurable ionization yield, the experimental realization of the
QKR allowed the observation of localized momentum space wave functions
in situ along with the extraction of the average energy of the kicked atoms
(Moore et al., 1995; Bharucha et al., 1999) (i.e. the second moment of the
wave packet in momentum space) long before its real space analogue could
be directly observed (Billy et al., 2008). Since we aim at describing motion
close to QR for the QKR, here we provide only an intuitive description of
DL: for τ/4π irrational, the phases of the free part of the QKR evolution in
momentum representation, i.e. from exp(− i τn2/2) (see Eq. (2) for β = 0),
in-between two kicks are essentially randomly distributed between the differ-
ent momentum classes. Even if deterministically defined, these phases have a
pseudo-random character, which is discussed, e.g., in (Brenner and Fishman,
1992). This pseudo-randomness substitutes the spatial disorder in the real-
space Anderson problem, and it essentially leads to a destructive interference
in the temporal evolution of the QKR hindering the spread of the wave packet
in momentum space (after some transient time which is known as the “break
time” (Shepelyansky, 1987)).

The above mentioned phases exp(− iτn2/2) allow us to understand the origin
of quantum resonant motion as well. QRs occur for rational values of τ/4π
leading to a complete (i.e. for all momenta n) or partial (i.e. for a subset
of momenta) phase revivals in-between two successive kicks. Those revivals
are analogous to the Talbot effect or the fractional Talbot effect, respectively,
of interfering light or matter waves diffracted and recombined at a series of
gratings, see, e.g., (Talbot, 1836; Dubetsky and Berman, 1997) for a discus-
sion of this constructive interference effect. In the following we concentrate
on the principal QRs of the QKR at which a complete revival happens, i.e.,
exp(− i τn2/2) ≡ 1 for all n ∈ Z, or for real atoms moving along a line,
exp(− i τ(n + β)2/2) ≡ 1, which occurs at τ = 2πℓ (ℓ a positive integer) and
β = 1/2 + j/ℓmod(1), j = 0, ℓ, . . . , ℓ− 1 (Wimberger et al., 2003).

2.2 Exact results at quantum resonance

The existence of QRs in the QKR was noticed by Izrailev and Shepelyansky
(Izrailev and Shepelyansky, 1979, 1980) shortly after the discovery of DL. They
obtained the exact quasi-momentum spectrum for some major resonances.
This spectrum must be continuous in order to support unlimited ballistic
growth with the number of kicks t for the mean energy of the QKR, i.e.
E(t) = E(t = 0) + αt + γt2, for appropriate values of the α and γ constants
(Izrailev, 1990; Guarneri, 2009). For the principal QR at τ = 4π and β = 0,
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one can immediately see from Eq. (2) that the spectrum is given by e(θ) =
k cos(θ) for θ ∈ [0, 2π). Hence it is a continuous function of the θ angle variable
of the rotor. Nevertheless exact results at QR have been rare until recently
(Izrailev, 1990; Guarneri, 2009; Tian and Altland, 2010), not least because the
resonances were regarded as a rather peculiar property of the QKR. Inspired
by experiments by d’Arcy et al. (2001), new theoretical as well as experimental
progress has been made over the last decade. As a background for the pseudo-
classical theory introduced in the next Subsection, we review briefly some
aspects of this theoretical progress at exact QR for δ−kicked noninteracting
atoms having a flat uniform distribution f(β) of quasimomenta β ∈ [0, 1). As
derived in detail in (Wimberger et al., 2003), the average energy of such an
atomic ensemble at τ = 2πℓ (ℓ ∈ N) increases linearly with the number of
kicks t

〈E(n0, β, t)〉n0,β ∼ 〈E(β, t = 0)〉n0,β +
k2t

4
, (3)

where n0 are the integer parts of the atomic momenta at time t = 0. For the
momentum distribution of the kicked ensemble we have the asymptotic result
valid at large t → ∞ and for n ≫ n0

P (n) ∼ 4k

π3n2
. (4)

In essence, the contribution of many nonresonant rotors or nonresonant values
of β and very few resonant ones (see end of previous Subsection) averages to a
linear increase of the mean energy. This continued increase of the energy means
that higher and higher momentum classes become populated with increasing
time. This builds up the algebraic distribution of momenta (which, at finite t,
shows a time-dependent cutoff momentum ncut ≈ πkt/2 up to which Eq. (4)
faithfully describes the actual distribution (Wimberger et al., 2003)).

The experimental possibilities to add noise to the system (d’Arcy et al., 2001;
Ammann et al., 1998; Klappauf et al., 1998; Milner et al., 2000; Oskay et al.,
2003; Sadgrove et al., 2004; d’Arcy et al., 2004) inspired a number of theoretical
treatments yielding exact results, which typically are rare for noisy dynamical
systems. Here we quickly review two interesting cases of noise which will be
extended later on in Sections 3.3.2 and 3.3.1 for values of τ not exactly but
close to QR condition. The first of these results at exact QR describes the effect
of amplitude noise in the kick pulse on the dynamical evolution of the atoms
(Sadgrove et al., 2008; Brouard and Plata, 2003). It predicts a linear increase of
the average energy of an atomic ensemble under the same assumptions as made
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above (now averaged over the ensemble and over many noise realizations):

〈E(n0, β, t)〉n0,β,δk ∼ 〈E(β, t = 0)〉n0,β +
k2t

4

(
1 +

L2

12

)
, (5)

where the actual kick strength is k + δk, with δk uniformly distributed in
[−L/2, L/2]. The second term on the right side of the equation is now corrected
with respect to Eq. (3) by the standard deviation of the noise L2/12. Since
the conditions for QRs do not depend on the kick strength but just on τ and
β, this case of amplitude noise is still fairly simple to analyze.

More work is needed to extend the above Eqs. (3) and (4) to a perturba-
tion arising from spontaneous emission acting on the kicked atoms. For the
specific realization of such an experiment at Oxford by d’Arcy et al. (2001,
2004), spontaneous emission was induced in a very controlled way by an ad-
ditional light field independently of the kicking laser. It was then shown in
Wimberger et al. (2003) that this kind of spontaneous emission acts as addi-
tional kicks (with random distributions of kick strengths) on the atoms, which
occur in-between successive δ−kicks of the original model. The result is that
the average energy of an ensemble (averaged over many realizations of the
random spontaneous emission events) again increases linearly in time. The
momentum distribution approaches a Gaussian form with zero mean and a
standard deviation k2t/2 + Dt (as long as the initial – at t = 0 – momen-
tum distribution of the atoms is symmetric around zero), where D is now the
diffusion constant given by the mean square momentum change per period τ
due to spontaneous emission. These results are based on exact proofs to be
found in Wimberger et al. (2003), but one may intuitively understand them
as describing a diffusive process in momentum space driven by the random
kicks from spontaneous emission.

2.3 Pseudo-classical theory for principal quantum resonances

This Subsection presents the essentials of the pseudo-classical theory which has
proven very powerful for describing the QKR and its experimental realizations
in the vicinity of the QRs. This method allows us to extend our theoretical
understanding to a regime for which direct quantum calculations would be
extremely difficult in general. The pseudo-classical approach is inspired by
a rescaling usually done for the standard semi-classical limit of the QKR.
The latter is obtained by simultaneously letting the kick period τ → 0 and
the kick strength k → ∞ but keeping their product Ks ≡ τk fixed. Fixing
the “stochasticity parameter” Ks fixes also the classical phase space structure
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described by the standard map, the classical correspondence of the QKR:

It+1 = It +Ks sin(θt+1) , θt+1 = θt + It mod(2π) . (6)

Here the momentum I is rescaled with respect to the physical momentum p
I = τp, just as the kick strength above. In the standard semi-classical limit,
the quantum version of the rotor now has less and less time for free phase
evolutions while the kicks dominate more and more over theses phases, c.f.
the Floquet operator in Eq. (2). Nevertheless, the classical phase space is not
at all affected since Ks is kept constant, and it can either describe regular
(for sufficiently small Ks ≪ 1), chaotic (for Ks & 5), or mixed regular-chaotic
motion (for intermediate values of Ks).

The same idea of rescaling variables can now be applied for kick periods which
are not at all small, i.e. far away from the standard classical limit, but for
τ = 2πℓ+ ǫ (ℓ ∈ N and ǫ small) in the vicinity of the QR condition on τ . The
crucial difference to the scaling for the standard semi-classical limit is that the
scaling factor is not directly τ but ǫ = τ − 2πℓ, the detuning from the exact
resonant value (Hogg and Huberman, 1983). As we will see below, this gives a
pseudo-classical map which is always integrable in the limit ǫ → 0, even if the
system has a completely chaotic classical analogue in the unscaled coordinates
p and θ. Rescaling I ≡ |ǫ|N (for p = N + β) and k̃ ≡ |ǫ|k, we can rewrite the
Floquet operator of the quantum map, c.f. Eq. (2), in the following way:

Ûβ,k(t) = e−
i
|ǫ| k̃ cos(θ̂) e−

i
|ǫ| Ĥβ , (7)

with

Ĥβ(Î , t) =
1

2
sign(ǫ)Î2 + Î(πℓ+ τβ) . (8)

To arrive at Eq. (7) we have just rewritten the free evolution part of the
Floquet operator for the β−rotor given in Eq. (2) as follows:

e− i τ
2
(n+β)2 = e− iπℓn2

e− i ǫ
2
n2

e− iτnβe− i τ
2
β2

= e− iπℓ I
|ǫ| e− i sign(ǫ) I2

2|ǫ| e− iτβ I
|ǫ| e− i τ

2
β2

, (9)

where the last factor does not depend on I and may be omitted.

If |ǫ| is now regarded as the Planck constant, then Eq. (7) formally defines
just the quantized version of either of the following classical maps:

It+1 = It + k̃ sin(θt+1) , θt+1 = θt ± It + πℓ+ τβ mod(2π) , (10)
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Fig. 4. Atomic mean energy vs. τ , after t = 30 kicks, for k = 0.8π near the QR at
τ = 2π. Quantum data (solid lines) are compared with ǫ−classical results (circles)
for the same initial momentum distribution.

where ± has to be chosen according to the sign of ǫ. We stress that “classical”
here is not related to the τ → 0 limit but to the limit ǫ → 0 instead. The
small−|ǫ| asymptotics of the quantum β−rotor is thus equivalent to a quasi-
classical approximation based on the “classical” dynamics given by Eq. (10),
that has been dubbed ǫ-classical in (Fishman et al., 2002; Wimberger et al.,
2003). Changing variables to J = ±I+πℓ+ τβ, ϑ = θ+π(1− sign(ǫ))/2 turns
the maps in Eq. (10) into a single standard map (c.f. Eq. (6)), known as the
ǫ-classical standard map (ǫSM), independent of the value of β:

Jt+1 = Jt + k̃ sin(ϑt+1) , ϑt+1 = ϑt + Jt . (11)

As we have already noted above, the semi-classical limit of the ǫSM is quite
different from the one for the usual standard map of Eq. (6). Eq. (11) always
describes a completely integrable system for ǫ → 0, since the effective kick
strength k̃ ∝ ǫ also tends to zero in this limit.

To get a feeling for how powerful the method just introduced actually is, we
compare in Fig. 4 the average energies of an ensemble of rotors as a function
of τ in a neighbourhood of the QR at τ = 2π. All data are obtained from
numerical simulations of the quantum map, Eq. (2), and the ǫ−classical map,
Eq. (10), respectively, for the same initial ensemble of momenta and quasimo-
menta. For any given particle in the initial ensemble, the map in Eq. (10), with
β equal to the quasi-momentum of the particle, was used to compute a set of
trajectories started at I = n0|ǫ| with uniformly distributed θ0 ∈ [0, 2π). The
final energies ǫ−2I2t /2 at t = 30 of the individual trajectories were averaged
over θ0, β, n0 with the appropriate weights. This is equivalent to using the ǫSM
in all cases, with different initial ensembles J0 = const = ±n0|ǫ| + πℓ+ τβ.
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The main qualitative features emerging of Fig. 4 are: (i) on a larger scale along
the τ axis, the curves are shaped in the form of a basin with a high, narrow
spike in the centre, closely flanked by a much smaller peak on either side.
(ii) quantum and ǫ−classical curves agree very well at small |ǫ|, in particular
the structure of the spike is the same. Their behaviour at large |ǫ|, i.e. for
τ & 6.6 and τ . 6 is qualitatively similar but quantitatively different. This
overall behaviour may be explained in ǫ-classical terms, and an approximate
scaling law for the t, k, ǫ dependence of the average energy close to the QRs
can be obtained, as shown in the Section 3.1. The ǫ−classical standard map
is different from the map obtained in the classical limit proper τ ∝ ~ →
0. In particular, if τk > 1, then the classical and the ǫ-classical dynamics
are at sharp variance whenever k̃ < 1. In the former unbounded diffusion
occurs, while in the latter the dynamics is quasi-integrable instead. In this
quasi-integrable system, the ǫ−classical trajectories remain trapped forever in-
between impenetrable phase space barriers, which survive small perturbations
according to the Kolmogorov-Arnold-Moser (KAM) theorem (Lichtenberg and
Lieberman, 1992). It is exactly the change occurring in the ǫ−classical phase
space (see Fig. 5) as τ is varied at constant k that accounts for the energy vs.
τ dependence at fixed time (Fig. 4).

In the following, we show that the introduced ǫ−classical technique allows
us to fully recover the exact quantum result for the average energy reviewed
above, see Eq. (3), at exact QR. We assume for simplicity an initially flat
distribution of p0 ∈ [0, 1); then I0 = 0, and J0 = πℓ + τβ0 with β0 uniformly
distributed in [0, 1) and n0 = 0. Without loss of generality we only consider
ℓ = 1. Hence if |ǫ| ≪ 1 then J0 is practically uniformly distributed over one
period (in action) (π, 3π) of the ǫSM. Since Jt = ±It + π + τβ, and I0 = 0,
the mean energy of the rotor after a titak number of kicks t is:

〈Et,ǫ〉 = ǫ−2〈I2t 〉/2 =
〈(δJt)2〉

2ǫ2
, with δJt = Jt − J0 . (12)

The exact QR at ǫ = 0 corresponds to the integrable limit of the ǫSM, where
δJt = 0. However, 〈Et,ǫ〉 is scaled by ǫ−2, so in order to compute it at ǫ = 0
one has to compute δJt at first order in ǫ. This is done by substituting the
0-th ǫ-order of the second part of Eq. (11), i.e. ϑt ≃ ϑ0, into the first part of
Eq. (11). This leads to

δJt = |ǫ|k
t−1∑

s=0

sin(θ0 + J0s) + r(ǫ, t) , (13)

where r(ǫ, t) = O(ǫ) as ǫ → 0 at any fixed t. The energy at time t is found
from Eq. (13) by taking squares, averaging over θ0, J0, dividing by 2|ǫ|2, and
finally letting ǫ → 0:
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Fig. 5. Poincaré surfaces of section for the standard map of Eq. (11), and k = 0.8π,
ǫ = 0.01 (a), ǫ = 0.1 (b). As ǫ increases, the invariant curves (right panels) become
more and more distorted, with a primary resonance island (left panels) having a
width of δJres ≈ 4(k̃)1/2. The black boxes in the right panels represent the Planck
cell of area 2π|ǫ|.
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〈Et,ǫ〉 =
1

8π2

2π∫

0

dθ0

3π∫

π

dJ0
(δJt)

2

ǫ2
ǫ→0−→

k2

8π2

2π∫

0

dθ0

3π∫

π

dJ0

(
t−1∑

s=0

sin(θ0 + J0s)

)2

=
k2

8π

3π∫

π

dJ0
sin2(J0t/2)

sin2(J0/2)
. (14)

With the help of
∫ 2π
0 dx sin2(tx)/ sin2(x) = 2πt, this yields:

〈Et,0〉 = 〈E(β, t = 0)〉β +
k2

4
t , (15)

where we have added in the first term on the right hand side the small contri-
bution of the initial quasimomenta in energies which we had neglected so far.
Eq. (15) reproduces the quantum behaviour at exact QR, given by Eq. (3) of
Section 2.2.
The integral over J0 in Eq. (14) collects contributions from all the invariant
curves J0 = const of the ǫSM at ǫ = 0. Of these, the one at J0 = 2π leads to
quadratic energy growth because it consists of (period 1) fixed points (Licht-
enberg and Lieberman, 1992). This is called a classical nonlinear resonance
and it can be seen clearly in Fig. 5. It is responsible for the linear growth of
energy in Eq. (15), because the main contribution to the integral in Eq. (14)
comes from a small interval ∼ 2π/t of actions around J0 = 2π. Note that
J0 = 2π corresponds to β0 = 1/2, the resonant value of quasi-momentum at
the QR at τ = 2π. It is hence seen that the ǫ− or pseudo-classical approxi-
mation explains the quantum resonances of the QKR in terms of the principal
classical resonance of a quasi-integrable standard map.

Before we come to actual applications of the pseudo-classical method, we
briefly discuss its range of validity. The ǫ−quasi-classical approximation is ex-
act at all times for ǫ = 0, as shown above. At nonzero ǫ, it is valid when the
number of kicks t is not too large, and in the long run it is spoiled by quantum,
non ǫ-classical effects. At |ǫ| < |ǫ|cr the ǫ-classical motion is bounded by KAM
curves, so the main quantum mechanism leading to non-ǫ-classical behaviour
is tunnelling across the regular regions. Estimating the related time scales is
not at all easy, because the 2π-periodicity in action of the ǫ-classical phase
space may enhance tunnelling, and even result in delocalisation, depending
on the degree of commensuration between 2π and the “Planck constant” |ǫ|.
For instance, if |ǫ|/2π is rational, then the quantum motion will be ballistic
at some stage asymptotically in time (it would just realize a high-order QR).
In order that such a resonance with |ǫ| = 4πs/q exists at |ǫ| less than some
|ǫ0|, it is necessary that the order q of the QR obeys q > 4π/|ǫ0|. It will show
up after a time roughly estimated by |ǫ| times the inverse bandwidth of the
continuous quasienergy spectrum at this QR (Guarneri, 2009). The bandwidth
is estimated to decrease faster than exponentially at large q (Izrailev, 1990;
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Fig. 6. A depiction of the construction of the ǫ-classical scaling function in phase
space. In (a), the entire phase space is shown as generated by iterating the ǫSM of
Eq. (11). The regions outside the influence of the central nonlinear resonance are
shaded grey. The dynamics in the unshaded region where the dynamical resonance
is seen are well modelled by the function G introduced in Eq. 18 which calculates
the mean energy due of the analogous pendulum trajectories. On the other hand,
(b) shows the “flat” phase space when the rotor is perfectly on resonance and the
mean energy is simply (k2/4)t as given by Eq. (15). The shaded region in (b) shows
the area which will be affected by the nonlinear resonance for the parameters used
in (a). The energy in this shaded region is represented by the Φ function introduced
in Eq. 16. The figure (c) shows an approximation to the true phase space (a) found
by taking (b), subtracting the shaded region and adding in the unshaded region (i.e.
the resonance portion) of (a). This is the graphical equivalent of Eq. (16) which is
used to derive the scaling function.

Guarneri, 2009), so one may infer that the time of validity of the ǫ-quasi-
classical approximation is at least exponentially increasing with 1/|ǫ| as the
exact resonance at ǫ = 0 is approached. At |ǫ| > |ǫ|cr the ǫ−classical mo-
tion is unbounded, and the difference between ǫ-classical and quantum energy
curves vs. τ is basically set by various quantum localization effects, including
localization by cantori close to the |ǫ|cr (Grempel et al., 1984; Fishman et al.,
1987). As a consequence, if t is large enough, then the ǫ-classical curve lies
higher than the quantum one (see Fig. 4 at the very right and left).
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3 Application of the pseudo-classical method

3.1 Scaling functions for mean energy of the AKOR

Having reviewed the fundamentals of the ǫ-classical method, we now turn to
one of the most useful corollaries of the theory. By approximating the near-
resonant quantum dynamics of the AOKR with a classical standard map of
small kicking strength, the ǫ-classical model allows a pendulum approximation
(Lichtenberg and Lieberman, 1992) to the dynamics to be made. It turns
out that the near resonant quantum dynamics can be captured by a single
parameter description, so long as appropriate scaling of the momentum or
energy is made - a fact which has been confirmed experimentally (Wimberger
et al., 2005b). We now derive this so-called scaling law with emphasis on
a heuristic explanation which arises from inspection of the ǫ-classical phase
space (see Fig. 6).

We start by considering the difference in the phase space for on-resonant
and off-resonant kicked rotors. Fig. 6(b) shows the on - resonant (ǫ = 0)
phase space – a continuum of flat “orbits” which give rise to the maximum
energy at quantum resonance. In contrast, away from resonance (|ǫ| > 0) a
nonlinear resonance island disturbs the phase space as shown in Fig. 6(a).
Inspecting the change in the phase space structure as |ǫ| is increased suggests
the following relation between the off-resonant energy Eǫ,t and the on-resonant
energy 〈Eǫ=0,t〉 = k2t/4:

〈Eǫ,t〉 ≈ k2t

4
− Φ(t) + 〈Et〉res, (16)

where the term Φ(t) corresponds to the energy associated with the shaded
region in Fig. 6(b). (Note that we neglect any initial energy of the atoms in
the above treatment; initial momentum does not change the periodic structure
of the phase space, and the relevant energy can simply be added on to the
final result, or subtracted from experimental and simulation results before
comparison with theory). Off-resonance, this region is destroyed by the phase
space island and so the Φ(t) term must be subtracted from the resonant energy
and replaced with a term which gives the energy in the portion of phase space
disturbed by the island. This term is 〈Et〉res – the energy associated with the
resonance island itself in Fig. 6(a). In fact, the approximation in Eq. (16)
can be seen as corresponding to the approximation of the off-resonant phase
space as shown in Fig. 6(a) by adding the unshaded portions of Fig. 6(b) and
Fig. 6(a) to give Fig. 6(c).

We can extract analytic expressions for Φ(t) and 〈Et〉res from considerations of
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the portion of the entire phase space cell the island occupies and the solutions
to the pendulum equations of motion. The latter solutions describe continuous
time motion induced by the pendulum Hamiltonian

Hres =
1

2
(J ′)2 + k̃ cos(ϑ) , (17)

in the canonical variable J ′ and ϑ of Eq. (11), where J ′ measures the devi-
ation from the island centre. The resonance width of the principal nonlinear
island δJres is estimated by the separation (in action) between the separatri-
ces of the pendulum motion (Lichtenberg and Lieberman, 1992). The period
of the small pendulum oscillations is 2πtres where tres = k̃−1/2 (Lichtenberg
and Lieberman, 1992), so tres defines a characteristic time scale for the elliptic
motion in the resonant zone. One may altogether remove |ǫ| from Hamilton’s
equations as induced by Eq. (17), by scaling momentum and time by factors
k̃−1/2 = 4/δJres, k̃

1/2 = 1/tres respectively. Therefore,

〈(δJt)2〉 = 〈(J ′
t − J ′

0)
2〉 ∼ k̃G(t

√
k̃) , (18)

for an ensemble of orbits started inside the resonant zone, where G(.) is a
parameter-free function, whose explicit expression involves elliptic integrals.
G(.) represents the average energy contribution from trajectories in the pri-
mary island of the ǫSM. Hence, this function results from averaging over non-
linear pendulum motions with a continuum of different periods, so it saturates
to a constant value when its argument ≫ 1. At small values (≪ 1) of the ar-
gument, it behaves quadratically. This behaviour is illustrated in Fig. 7 below,
where G is plotted vs. the scaled variable x ≡ t/tres. The contribution to the
total energy is then obtained on multiplying Eq. (18) by |ǫ|−2δJres/(4π), be-
cause only a fraction ∼ δJres/(2π) of the initial ensemble is trapped in the
resonant zone. As a result

〈Et,ǫ〉res ∼ δJres
4π

〈(δJt)2〉
2ǫ2

∼ k2

πk̃
G
(
t

√
k̃
)
. (19)

Furthermore, if we divide through by the peak energy k2t/4 (c.f. Eqs. (3) and
(15)), it turns out the right hand side of Eq. (16) can be written solely as a
function of the scaled time variable x, as we expect given the scaling property
of the pendulum. The scaling function we finally arrive at is

〈Eǫ,t〉
〈Et,0〉

≈ H(x) ≡ 1 − Φ0(x) +
4

πx
G(x) . (20)

Explicit expressions for Φ0(x) and G(x) may be found in refs. (Wimberger
et al., 2003; Wimberger, 2004; Sadgrove, 2005; Sadgrove et al., 2005) together
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with methods for calculating these functions.
To gain an appreciation for the convenience of the scaling function formu-
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Fig. 7. G(x) used in Eq. (20) (solid line) is shown along with Gcl from Eq. (26)
(dashed line). The differences between the two scaling functions arise due to the
different initial conditions in phase space in the classical and ǫ–classical limits.

lation from an experimental point of view, consider the experimental data
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Fig. 8. ǫ-classical simulation energies (left panel) and experimental results (right
panel) demonstrating the change in the QR peaks as the total number of kicks is
increased from 5 (circles), 10 (triangles) to 15 (squares) for similar values of kicking
strength. Note both the narrowing of the peak and the appearance of small peaks to
the side of the main resonance. In the right panel we show a representative error bar
which gives the standard error of the mean over five experimental runs. (Adapted
figure from Wimberger et al. (2005b).
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Fig. 9. Experimental (discrete points) and analytical results (solid) for the scaled
data near the first and second QRs. The plus, star and diamond symbols show
points taken near the first primary QR at τ = 2π for 5, 10 and 15 kicks respectively.
Circles, triangles and squares show data near τ = 4π for the same respective kick
numbers as the τ = 2π case. Note again the representative error bar as explained
in Fig. 8. (Adapted figure from Wimberger et al. (2005b).)
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shown in Fig. 8 (Wimberger et al., 2005b). In the left panel, simulation ener-
gies are shown, and in the right panel experimental energies were measured
for 3 different kick numbers. Both simulations and experimental results make
clear that the peaks have different widths and even different structures, with
side-peaks flanking the main quantum resonance being visible in the case of
15 kicks. Nonetheless, the three different experimental data sets, when scaled
by the peak energy, all collapse onto a single curve as shown in Fig. 9 2 .

Considering that comparison of experimental data with theory typically re-
quires the estimation of the theoretical parameter k along with time-consuming
quantum simulations, for all values of t and ǫ used in the experiment, the scal-
ing function can immediately be seen to be a huge boon for experimentalists,
who now need only compare data with a single analytical function of one
variable.

3.2 Comparison of near-resonant method with the standard semi-classical
limit

We now consider an intuitive question regarding the ǫ-classical standard map:
Since it describes the pseudo-classical limit near exact quantum resonance so
well, can it also describe dynamics in the standard semi-classical limit, that is,
when ǫ = τ → 0? As might be expected, the answer is indeed “yes”. However,
there are some interesting differences between the dynamics in the ǫ-classical
and standard semi-classical limit.

To investigate the regime of vanishing τ , we can use the ǫ-classical standard
map as derived in Section 2 with ℓ = 0 (i.e. choosing the “zeroth” quantum
resonance) and setting ǫ = τ . The appropriate map is then again given by
Eq. (11), but now with k̃ = kτ = Ks. Plotting the phase space of the map
of Eq. 11 for various values of ǫ = τ , as done in Fig. 10, immediately reveals
differences with the standard ǫ-classical phase space. In particular, we note
that all trajectories are now contained within the central phase space island.
This means that in calculating the off resonant energy, only the kinetic energy
from the pendulum approximation to the motion within the island needs to be
considered and not that due to the regular phase space outside the island. We
proceed to find a version of the scaling function as follows: Scaling momentum
by 1/tres = 1/

√
τk as before, the mean energy due to the nonlinear resonance

2 Because of imperfect experimental detection, the wings of momentum distribu-
tions where resonant atoms are concentrated are inevitably underestimated in mea-
surements, leading to deviation from the exact theory for very small |ǫ|. When com-
paring to the scaling function, we typically suppress these points as in Wimberger
et al. (2005b).
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island may be written as

〈Et〉res,cl =
〈(J ′

t − J ′
0)

2〉
2τ 2

= k
Gcl(t

√
τk)

2τ
, (21)

where the subscript “cl” denotes “classical” and the Gcl function depends
weakly on the ratio of τ and k. As τ → 0, Gcl tends to

Gcl,τ=0(x) =
1

2π

2π∫

0

dϑ0J
′(x, ϑ0, J

′
0 = 0)2 , (22)

for x = t
√
τk.

In the limits of small and “large τ”, two interesting results can be derived for
the mean energy (Sadgrove et al., 2005). Firstly, as shown in Fig. 7, as τ → 0,
Gcl(x) ≈ x2/2 and thus the energy in this limit is

〈Et,τ→0〉 =
k2t2

4
, (23)

that is, the energy grows quadratically with the number of kicks t. Such ballistic
energy growth occurs in this case just as it does for quantum resonance for
an ideal kicked rotor in an initial momentum eigenstate. This growth is much
faster than the linear increase predicted for the quantum resonance peaks for
the same broad initial momentum distribution. From Fig. 7, it may be seen
that ballistic growth occurs only for x . 1 which implies that

tball. . 1√
τk

= tres , (24)

which shows that ballistic energy growth may occur so long as t is less than
the characteristic resonance period of the pendulum approximation.

Additionally, for large τ , Fig. 7 shows thatGcl(x) saturates to a value α ≈ 0.75.
Thus the mean energy is

〈Et,τ≫0〉 ≃ k

2τ
α. (25)

This result implies that, after gaining energy in the first kick, the kicked rotor
ensemble ceases to absorb energy from subsequent kicks – energy growth is
frozen. This result is as one would expect in the presence of DL except here we
have a completely classical explanation for the frozen energy growth (Sadgrove
et al., 2005).
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Fig. 11. Experimental (symbols) and analytical results (solid line) for the scaled data
near the semi-classical limit. The data shown is for 5 kicks (circles), 10 kicks (trian-
gles) and 15 kicks (squares). Experimental data (diamonds) and theory (dashed line)
for the first primary quantum resonance are reproduced from Fig. 9 for comparison.
(Adapted figure from Wimberger et al. (2005b).)

Finally, ignoring the small τ dependence of the Gcl function, a scaling function
for the τ → 0 resonance may be written as for the quantum resonance peaks:

〈Et,τ 〉
〈Et,τ=0〉

≈ R(x) ≡ 2Gcl(x)

x2
. (26)

Fig. 11 shows experimental data (discrete points) and theory for the standard
ǫ-classical and the τ → 0 limit cases (Wimberger et al., 2005b). The exper-
imental data for the two different limits clearly lie on different curves and
in particular are in good agreement with their respective theoretical scaling
functions.

Once again, we would like to emphasize that extending the scaling function
to a new domain is not an inconsequential theoretical exercise; rather it can
reveal new physics “hiding” in the opaque quantum formulation, such as the
ballistic and frozen growth regimes seen in the semi-classical limit.
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3.3 Noise and decoherence

Surprisingly, the pseudo-classical description and the scaling of the mean en-
ergy introduced in Section 3.1 works in the presence of perturbations of the
quantum evolution as well. In the following we show this for two special cases
where noise acts on the kicking strength (amplitude noise) and, even more
interestingly, mainly on the phase evolution of the free rotational parts of the
Floquet operator (i.e. on the second factor on the right hand side of Eq. (2)).
We start out with the latter in the next Subsection.

3.3.1 Spontaneous emission

Early experiments which perturbed the phase evolution of kicked cold atoms in
a controlled manner used a kicking beam closer to resonance with the internal
atomic transition of the atoms. This enhanced the spontaneous emission (SE)
rate of the atoms, leading to random momentum kicks in additional to the
conservative part of the potential (Ammann et al., 1998; Daley et al., 2002).
Better control on the impact of SE is obtained by separating both effects,
the kicks and the SE events. This was implemented at Oxford some time
ago, using a second laser (again closer to resonance than the kick laser) to
induce SE events after each kick and in a short time interval compared to
the kicking period (d’Arcy et al., 2001, 2004). Such SE events not only lead
to a dephasing of the unperturbed quantum evolution of the kicked particle,
but also to a heating of its centre of mass motion (since they correspond to
additional kicks). Both can be taken into account in an amended version of
the classical mapping describing the evolution close to quantum resonance (i.e.
small ǫ). The amended mapping is given by

It+1 = It + |ǫ|δt+1 + k̃ sin(θt+1) ,

θt+1 = θt ± It + πℓ+ 2πℓηt ,

ηt+1 = ηt + δt+1 with η0 =
τβ

2πℓ
. (27)

β is the initial quasi-momentum which is effectively shifted by the SE events
(see third equation). Also the momenta It (corresponding to the ǫ-rescaled
integer parts of momentum in the original physical system) are affected which
is taken into account by the term |ǫ|δt+1 in the first equation. The δt describe
the sum of momentum changes arising from SE up to the number of kicks t and
they are independent random variables, whose distribution is determined by
the statistics of SE. Numerical simulations using Eq. (27) are shown in Fig. 12,
and the results are found to match the true quantum evolution very well at
small |ǫ|. Under the substitution Jt = ±It + πℓ + 2πℓηt, the map of Eq. 27
reduces to a noisy pseudo-classical standard map, which differs from Eq. (11)
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Fig. 12. Mean energies of the same initial ensemble of atoms as shown in Fig. 4 as a
function of the kicking period τ scanned over the quantum resonance at τ = 2π; for
k = 0.8π and in the presence of SE. Results of full quantum calculations (circles)
and of ǫ−classical ones using the map of Eq. (27) (solid lines) are compared for
different SE rates (a) nSE ≈ 0.1, t = 50 and (b) nSE ≈ 0.2, t = 50. We note the
asymmetry of the peaks which is best visible for larger nSE. Its origin has not yet
been discussed in the literature but it certainly lies in the asymmetry of the initial
ensemble in the pseudo-classical phase space with respect to the sign of ǫ, which
enters into the term τβ of the mappings of Eqs. (10) and (27).

by a random shift τδt of the action J at each step. The scaling law of Eq. (20)
shows that the only relevant time scale for the evolution of the quantum

motion sufficiently near to τ = 2πℓ (ℓ ∈ N) is given by tres = 1/
√
k̃. The noisy

time evolution brings an additional time scale into play that characterises the
strength of the noise. In the following, we indeed find an equivalent of the
scaling law of Eq. 20 in the presence of SE, which is based on the two time
scales tres and tc, where tc is the mean waiting time between two SE events.
Then, the structure of the resonance peak in the mean energy in the presence
of SE may be analytically studied, using essentially the same ideas developed
above in Section 3.1.

Let us assume an initially uniform quasi-momentum distribution. At any SE
event, the distribution of the ensemble in the phase space of the pseudo-
classical standard map is reshuffled by the random action change. Under the
assumption of homogeneous distribution of single SEs in an interval of integer
length (in units of two photon recoils), the resulting distribution of Jmod(2π)
is approximately homogeneous over the unit cell of the map of Eq. (11). Such
randomisation may be assumed to wash out correlations between the past and
the subsequent random dynamics. Hence the scaling of Eq. (20) may be used
to write the energy after a number of kicks t as

〈Et,ǫ〉 ∼ k2

4

〈Nt−1∑

j=0

∆j H(∆j/tres)

〉
+

1

2
DnSEt , (28)
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where 〈.〉 stands for the average over all realisations of the times of SE events
and Nt−1 is is the number of SE events up to a number of kicks t − 1. nSE is
the average number of SE per period, and D = nSE

−1〈δ2t 〉 is the mean square
momentum imparted by a single SE. For an individual realisation, Eq. (28)
states that the energy is given by the sum of the SE-free scaling function H of
the evolutions over time intervals ∆j. The SE resets the evolution after each
event at times ∆j, apart from the momentum shift contained in the second
term in Eq. (28). If tc is sufficiently large compared to 1, one may replace
the random process of SE events by a continuous time Poisson process with
the characteristic time tc = 1/nSE (Wimberger et al., 2003). This process has
delays ∆ distributed with density t−1

c exp(−∆/tc). Its statistic reduces to that
of the unit Poisson process (with tc = 1) by just rescaling all times by the
factor 1/tc. This reasoning allows the following approximation

〈Nt−1∑

j=0

∆j H(∆j/tres)

〉
≈ 4tcQ(t/tc, tc/tres) , (29)

where

Q(u, v) ≡ 1

4

〈N1
u∑

j=0

∆1
j H(∆1

jv)

〉
. (30)

The superscript 1 specifies that the average is now over the realisations of
the unit Poisson process: each realisation has a continuous time interval [0, u]
divided in subintervals ∆1

j by a random number N1
u of Poisson events. We are

hence led to the following scaling law:

〈Et,ǫ〉 ∼ D′ t

2tc
+ k2tcQ(

t

tc
,
tc
tres

) (31)

or, equivalently introducing u = t/tc, v = tc/tres,

2〈Et,ǫ〉 −D′t/tc
2k2tc

∼ Q(u, v). (32)

The scaling function Q(u, v) may be explicitely written in terms of the function
H(x). This is shown in detail in appendix D of Wimberger et al. (2003) and
it gives:

4Q(u, v) = uH(uv)e−u +

u∫

0

dx e−xxH(xv)(2 + u− x) . (33)
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Limiting behaviours of the scaling function Q(u, v) immediately follow from
this equation, or from Eq. (30) itself. On one hand, for u = t/tc ≫ 1 the
right-hand side in Eq. (30) is a sum of a large number ∼ t/tc of terms. In that
limit, such terms are weakly correlated and can be averaged independently
which gives

u ≫ 1 : Q(u, v) ∼ 1

4
u

∞∫

0

dx H(vx)xe−x . (34)

On the other hand, for t/tc ≪ 1, the sum reduces to the single term j = 0,
with ∆1

0 = t/tc; hence

u ≪ 1 : Q(u, v) ∼ 1

4
uH(uv) . (35)

In particular, Eq. (35) shows that Eq. (31) coincides with Eq. (20) in the SE-
free limit tc → ∞. In the opposite limit, Eq. (34) shows that, if k is fixed,
then the width in ǫ of the resonant peak will not shrink any more with time
when t ≫ tc, and its width thereafter scales like (t2ck)−1. The spike is therefore
erased (i.e. it is absorbed in the background) in the strong noise limit tc ∼ 1. In
the latter limit, the method developed above breaks down, because on average
after each kick an SE event happens, which does not let the time evolution
recover for some time interval. The result is then a completely random motion
which does not depend on the system specific dynamics, and hence not on the
chosen value of the kicking period τ .

The spreading of the resonance peaks with increasing noise, as can be seen in
Fig. 12, explains why they are more stable and easier to observe experimentally
than in the case without noise for broadly distributed initial momenta of the
atoms (d’Arcy et al., 2001, 2004). An intuitive argument for the spreading
of the resonance peaks is that for a fixed value of ǫ, due to SE there is an
enhanced chance to find a quasi-momentum β, such that the free evolution
part of the Floquet operator is approximately the identity. This is the condition
for quantum resonant motion.

Numerical simulations in Fig. 13 support the scaling law of Eq. (31). Data
were obtained in a similar manner to the case without SE; however, one of the
parameters u, v is varied, while keeping fixed either the other parameter or the
ratio u/v. The theoretical scaling function Q(u, v) was calculated numerically
using in Eq. (33) the function H(x) introduced above in Section 3.1.
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Fig. 13. Demonstrating the scaling law of Eq. (31) in a right neighbourhood of
τ = 2π. In (a), (b) the Q(u, v) quantity on the left-hand side of Eq. (32) is plotted
vs. one of the parameters u = t/tc or v = tc/tres while keeping the other fixed:
(a) v = 2, (b) u = 4. In (c) the ratio u/v = 4 is fixed. Open circles correspond
to different values of the parameters t, tc, k, ǫ, randomly generated in the ranges
1 < t < 200, 5 < tc < 60, 0.001 < ǫ < 0.1, 0.1 < k < 20, with the constraints
0.001 < kǫ < 0.2 and tc

√
kǫ = 2 in (a), t/tc = 4 in (b), t = 4t2c

√
kǫ in (c). In each

case an ensemble of 2×106 ǫ−classical rotors was used, with a uniform distribution
of initial momenta in [0, 1) and a uniform distribution of initial θ in [0, 2π). The
random momentum shifts at each step of the ǫ−classical evolution of Eq. (27) were
generated from the uniform distribution in [−1/2, 1/2]. Crosses represent the results
of quantum simulations for k = 0.8π, and ǫ = 0.01 in (a), ǫ = 0.05 in (c), and t = 50
and t = 100 in (b). The solid lines correspond to the theoretical prediction of
Eq. (33). Adapted figure from Wimberger et al. (2003).
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Fig. 14. In (a) diagram illustrating the experimental setup used for amplitude noise
experiments. The important difference in comparison to the system of Fig. 1 is the
time varying pulse amplitudes. In (b) experimental measurements for the E atomic
mean kinetic energy (y axis) vs. the ǫ detuning from quantum resonance(x axis)
demonstrating QR peaks broadened under the influence of amplitude noise. The
noise level ranged from 0 (squares), 0.5 (cicles), 1.0 (triangles), 1.5 (plus sign) and
2.0 (stars). (Adapted figure with permission from Sadgrove et al. (2008). Copyright
2008 of the American Physical Society.)

3.3.2 Amplitude noise

Spontaneous emission is a dissipative noise process directly altering the mo-
mentum of individual atoms, and thus altering the otherwise coherent dy-
namics associated with the AOKR. But other types of noise processes are also
present in experimental implementations of the kicked rotor – particularly
noise in the kicking parameters themselves. An example of some interest is
caused by fluctuating laser power which gives rise to so-called amplitude noise
– that is noise due to the strength of kicking fluctuating randomly.

In order to analyse the effects of this non-dissipative noise, fluctuations are
typically added in a controlled manner using a random number generator
along with an optical attenuator to create a pulse amplitude with any desired
noise distribution and noise strength. In studies up to now, it has been typical
to use a uniform noise distribution and vary the noise from 0 to 200% – the
latter indicating that pulses can vary in strength from 0 to twice the nominal
kicking strength. Fig. 14(a) depicts a kicked rotor experiment for which pulses
with amplitude noise are applied.
The ǫ-classical method was coopted for use in amplitude noise studies in

order to explain the following puzzling observation: although in general the
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amplitude noise was found to completely destroy the AOKR quantum cor-
relations (Klappauf et al., 1998; Milner et al., 2000), Sadgrove et al. (2004)
demonstrated that in the vicinity of the quantum resonance, the peak struc-
ture is not destroyed even by maximum noise, as shown in Fig. 14(b). One
intuitive interpretation of this phenomenon is to note that quantum resonance
is dependent on the frequency of the applied pulses, and not their amplitude,
and so the resonance condition itself is robust against amplitude fluctuations.
This does not, however, explain why for a range of kicking frequencies which
are merely close to quantum resonance, the effect of amplitude noise is mini-
mal.

To explain the stability of the peak, we modify the ǫ-classical map as follows.
Given a uniform noise level L ∈ [0, 2], we introduce a stochastic parameter Rt

which is drawn from [−L/2,+L/2] for each pulse as labelled by the discrete
time (i.e. the total number of kicks) t. We then simply multiply the kicking
strength k by (1 + Rt) to give uniform random fluctuations in the kicking
strength about a mean of k. The modified ǫSM is then

Jt+1 = Jt + ǫk(1 +Rt) sin(θt+1), θt+1 = θt + Jt. (36)

From this map, we can immediately plot the phase space for various ǫ and look
for answers regarding the stability of the quantum resonance in the changing
phase space structure. Fig 15(a) shows the phase space away from resonance
for a high level of noise – specifically for L = 1.5 (150% amplitude noise). The
important thing to note is that even away from perfect quantum resonance
(ǫ = 0) the broad structure of the phase space is undamaged by noise, meaning
that an energy peak is still present even at high noise levels.

We can formalize this intuition regarding the phase space and the associated
stability of quantum correlations near resonance by seeking to extend the ǫ-
classical scaling function to the amplitude noise case. Fig 15(b) shows the
pendulum phase space which approximates the phase space in Fig 15(a). The
shaded gray area marks the region of the phase space around the separatrix
which is most affected by the noise, as calculated by considering the fluctua-
tions in k which directly determines the separatrix position (Sadgrove et al.,
2008). Modification of trajectories near the separatrix has the largest effect
on the near resonant energy since stable librations may become higher energy
rotation orbits if the separatrix becomes transparent. Applying this reasoning,
an approximate scaling law for the AOKR quantum resonances in the presence
of amplitude noise can be derived, specifically (Sadgrove et al., 2008):

〈Et,ǫ〉 ≈ 1 +
L2

12
− [1 − L/(8π)]Φ0(x) +

4

πx
G(x) , (37)

where the average is taken over the initial conditions in the pseudo-classical
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Fig. 15. (a) The ǫ-classical phase space in the presence of amplitude noise. (Compare
with Fig. 6(c)). (b) Shows the pendulum phase space approximation to (a) with the
area around the separatrix shaded. It is trajectories in this area (for a noise level
L = 1.5 in (b)) which have the most effect on the energy when amplitude noise is
added to the system. (Adapted figure with permission from Sadgrove et al. (2008).
Copyright 2008 of the American Physical Society.)
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Fig. 16. The ǫ-classical scaling function is compared with simulation data (a,c) and
experimental data (b,d). In (a) simulation data for L = 1 (squares) and L = 2
(circles) are compared to the scaling functions (solid line, dash-dotted line) for the
same respective noise values. (c) Experimental data, and scaling functions, using
the same symbols for the same parameters as in (a). In (b), simulation data for
L = 0.5 (crosses) and L = 1.5 (stars) are compared to the scaling functions (dashed
line, dotted line) for the same respective noise values. In (d), experimental data and
scaling functions with the same symbols corresponding to the same parameters as
in (b). The scaling function in this case is augmented by additional terms dependent
on the noise level L, although to a good approximation the energy contribution from
the nonlinear resonance (the last term on the right hand side of Eq. (37)) is not
affected. Note that in all figures, the thick black line shows the standard (zero-noise)
scaling function for comparison.

phase space.

In Fig. 16 the modified scaling law is compared with experimental data (left
column) and simulation results (right column) showing good agreement. Thus,
with the addition of an additional parameter L, we find that the stability of the
quantum resonances in the presence of amplitude noise may be characterised
by a scaling law as in the noise free case, and all of the usual benefits of a
scaling law for data analysis and consolidation of experimental parameters are
still available even in the noisy system.
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Fig. 17. Depiction of the experimental system used to realize directed motion at QR.
A BEC is created and split into two momentum components by an initial Bragg
pulse, where counter-propagating beams have a frequency difference δ. After a phase
evolution period, standard kicks (where both beams have frequency f) are applied
giving rise to a momentum current.

3.4 Directed transport at quantum resonance

This Subsection and the following one present new theoretical results which
have not all been tested experimentally yet. Specifically, in the present Sub-
section, we consider a scaling function explanation for the results published
in (Sadgrove et al., 2007; Dana et al., 2008), but we also use the pseudo-
classical theory to predict new effects (Sadgrove and Wimberger, 2009).

Numerous reasons exist for studying directed transport due to non-biased forc-
ing in quantum systems. These range from the motivation to explore funda-
mental physics (in particular thermodynamics which Feynman famously used
as a motivator for the study of the ratchet and pawl system (Feynman, 1963))
to the more practical desire to find new ways to transport atoms and other
quantum objects. Reviews of the broad area of ratchet dynamics are avail-
able (see, e.g., (Reimann, 2002; Hänggi and Marchesoni, 2009)). Here we will
restrict our discussion to cold atom ratchet systems and focus in particular
on the “resonance ratchet” system (Sadgrove et al., 2007; Dana et al., 2008)
where ǫ-classical techniques may be used.

The resonance ratchet system, as realized in refs. (Sadgrove et al., 2007; Dana
et al., 2008) uses ultra-cold atoms (so far sourced from a BEC) which are
initially coherently split into two momentum components using a momentum
conserving Bragg pulse. The quantum phase between the two components may
be adjusted by allowing a free evolution period after the Bragg pulse. After
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Fig. 18. Left panel: Absorption images for the momentum components of a Bose-E-
instein condensate following a resonance ratchet experiment. In this case the mo-
mentum components show a momentum current towards negative momentum. For
each sub-panel the total number of kicks t, is indicated on the y axis. Initially, a
coherent atomic superposition of the p = 0 and p = −2~k = −2h/λ momentum
components was created using a Bragg pulse. In this initial absorption image (at
t = 0) that superposition appears as two “spots” with the momentum components
labelled. The experimental data were taken at exact quantum resonance and with
φ = 0. The right panel shows experimentally measured mean momenta for the same
experiment for two different phases 0 (triangles) and π (squares) which give oppo-
site momentum currents. Dashed lines show linear fits to the data. The circles show
measured mean momenta for a standard AOKR experiment (i.e. with no initial su-
perposition). The results are for a kicking strength k ≈ 0.1. (Adapted figure with
permission from Sadgrove et al. (2007). Copyright 2007 of the American Physical
Society.)

this preparation phase, kicks are delivered to the atoms with period equal to
the Talbot time. Fig. 17 depicts the experimental setup used in Sadgrove et al.
(2007), where a BEC was created on an “atom chip” before being exposed to
an optical standing wave giving rise to the ratchet effect.

Unlike the usual case for the kicked rotor, where atoms are always found to
gain energy symmetrically about zero momentum, in the resonance ratchet
configuration the mean momentum of the atoms increases linearly with each
kick with a direction and coefficient determined by the phase between the
two initial momentum components. Fig. 18 shows the ratchet behaviour as a
function of the number of pulses applied to the split condensate with both
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the raw data (left panel) and the measured mean momentum clearly showing
a momentum current (right panel). With this brief background on the effect,
we now turn to the ǫ-classical analysis of the resonance ratchet phenomenon,
and show what additional light the method can shed on the conditions for and
nature of the momentum current.

Because the ratchet effect takes place at or very near to quantum resonance,
the system may be analysed using an ǫ-classical treatment with a focus on the
mean momentum of the atoms rather than their energy. There is, however,
an important point to consider before diving into the analysis: how should we
represent the initial momentum superposition state in the ǫ-classical formal-
ism. Strictly, this is a problem without a clear answer: the difference between
quantum mechanics and classical mechanics arises precisely because of the
existence of classically impermissible superpositions in the quantum theory,
and the ǫ-classical theory which contains no operators and treats atoms as
classical particles cannot accommodate the quantum initial state any better
than a standard classical treatment could. For now we delay discussion of this
issue and simply present our method which produces useful ǫ-classical results
in agreement with quantum simulations.

After the initial Bragg pulse, the atomic wavefunction is split into two mo-
mentum components. We can represent such an initial condition classically
(i.e. non-coherently) by the distribution

P (p0) =
1

2
(δp0,0 + δp0,1). (38)

where, as in Subsection 1.2, θ ≡ zmod 2π. Fourier transforming the mo-
mentum space wavefunction gives the position space wavefunction. For the
ǫ-classical atoms, we can choose the position space distribution to be the
norm squared of this quantum wavefunction:

P (θ) = |ψ(θ)|2 =
1

2π
(1 + cos(θ + φ)). (39)

Note that the role of the quantum phase is captured by adding the phase φ in
the cosine term of Eq. (39), physically signifying a phase difference between
the (classical) atomic density distribution and the sinusoidal driving field.

Having made these choices, we now proceed as in Section 2.3, arriving at the
on-resonance result (this time for momentum rather than energy) averaged
over the initial conditions given in Eqs. (39) and (38)

〈pt,ǫ〉 =
kt

2|ǫ| cos(φ). (40)

41

364 KAPITEL 5. EINGELADENE BUCHBEITRÄGE (REVIEWS)



Fig. 19. ǫ-classical phase space for the ratchet system at 25 and 100 kicks with k = 1
and ǫ = 5 × 10−4. The asymmetry in the phase space gives rise to the momentum
current. (Adapted figure with permission from Sadgrove and Wimberger (2009).
Copyright 2009 of the New Journal of Physics.)

This result agrees with the purely quantum expressions found in (Sadgrove
et al., 2007; Dana et al., 2008). Furthermore, the result can also be modified
to predict the effects of an arbitrary initial quasi-momentum, as explored
experimentally in (Dana et al., 2008). The emergence of a momentum current
is seen in the ǫ-classical phase space (see Fig. 19) as an asymmetry in the
trajectories at finite times.

Next, we consider a question which has not yet been experimentally investi-
gated: what happens to the momentum current if the pulse rate moves off-
resonance? Once again, we proceed as in Section 3.1, and with our new initial
conditions. Intriguingly, we find that the off-resonant momentum scales just
as the energy does as a function of the scaled time x = t/tres.
Fig. 20 shows the ǫ-classical scaling function for the momentum which is ar-

rived at by dividing Eq. (40) by −kt cos(φ) to give a single parameter scaling
law on the RHS:

〈pt,ǫ〉
−kt sin(φ)

≈ A(x)/x, (41)

where A(x) is a function derived from the average momentum over general
solutions of the pendulum dynamics (Sadgrove and Wimberger, 2009). More
explicitly, it is given by the expression

A(x) =
1

2π

π∫

−π

dθ0 [sin(θ0) × J ′(θ0, J
′
0 = 0, x)]. (42)
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Fig. 20. The absolute value of the ǫ-classical scaling function (solid line) from
Eq. (41). Here we compare the theory with simulation results for a range of parame-
ters (symbols) as indicated in the legend. (Adapted figure with permission from Sad-
grove and Wimberger (2009). Copyright 2009 of the New Journal of Physics.)
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The one parameter scaling may be seen to capture the full dynamics of the
resonance ratchet system. Indeed, Eq. (41) reveals a non-trivial feature of the
off-resonant dynamics: current reversal (that is a negative mean momentum)
is possible for certain parameter regimes independent of the quantum phase φ.
This intriguing prediction has yet to be tested experimentally.

We now briefly return to the question of why replacing quantum superposition
states with their associated classical probability distributions was a successful
strategy here, when typically it would lead to a loss of the very quantum ef-
fects that are being modelled. One answer arises from a consideration of the
role that momentum plays in ǫ-classical formalism. Say we start by setting
the classical atomic position distribution to Eq. (39), as above. The problem
is that with no uncertainty principle in play, the fixing of the position space
distribution does not constrain the momentum distribution in the ǫ-classical
system, as it does in the quantum system (according to the Fourier trans-
form). Thus our choice of Eq. (38) is rather arbitrary. However, when the
quasi-momentum distribution is very narrow (or τ → 0) and, more impor-
tantly, when ǫ is small, the precise details of the momentum distribution are
unimportant in the ǫ-classical model, as inspection of Eq. (11) along with the
definition of I = |ǫ|N shows. Thus, our choice of the classical analog to the
quantum position distribution rewards us by successfully capturing position
space correlations important to the ratchet dynamics, and the ǫ-classical for-
malism’s indifference to the exact details of the momentum distribution mean
that we do not have to pay any price for its ill-defined nature.

3.5 Fidelity as a measure of stability

In this Section we present a further tool to characterize the stability of the QR
and near QR motion of the QKR, supporting our results in Sections 3.1–3.3.

Entanglement measures or witnesses have become modern tools of correla-
tion analysis in multipartite quantum systems (Horodecki et al., 2009). For
single-particle systems some correlations can only build up during their tem-
poral evolution, just like the kick-to-kick correlations for the QKR (see Section
1.1). It is then the evolution of relative phases and the superposition princi-
ple which distinguish quantum from classical dynamics. Correlation functions
may be used to monitor phase evolutions (Walls and Milburn, 2008). A re-
lated quantity which has gained much interest in the last decade is fidelity
(Gorin et al., 2006), defined as the overlap of two wavefunctions subjected to
slightly different temporal evolutions. The temporal evolution of this quan-
tum fidelity crucially depends on evolving relative phases. For many-particle
systems, fidelity can be viewed as a Hilbert space measure to study quantum
phase transitions (Buonsante and Vezzani, 2007) or local and global spec-
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tral properties (Plötz et al., in press). Fidelity was introduced originally as a
measure for the stability of quantum motion with respect to changes in some
control parameter of the Hamiltonian (Peres, 1984). In our case this parame-
ter will be the kicking strength. The predicted saturation of fidelity at exact
QR (Wimberger and Buchleitner, 2006) reported in the following Subsection
has only recently been confirmed experimentally (Wu et al., 2009), while our
predictions for finite detunings (Abb et al., 2009) of Subsection 3.6 still await
experimental verification.

3.5.1 Fidelity at exact quantum resonance

Using the kick-to-kick operator from Eq. (2), the fidelity can be written (Wim-
berger, 2004; Wimberger and Buchleitner, 2006)

F (k1, k2, t) =
∣∣∣∣

1∫

0

dβ ρ(β)〈Û t
β,k1

Ψβ|Û t
β,k2

Ψβ〉
∣∣∣∣
2

, (43)

where we note that the kick-to-kick operator is applied t times, and the kicking
strengths k1 and k2 have distinct values, their difference giving the strength
of the relative perturbation under the two time evolutions. The fidelity re-
sults from averaging the scalar product under the integral sign over β with
the weight ρ(β). Note that the rotor’s fidelity is the squared modulus of this
quantity, so the fidelity of Eq. (43) of atomic evolution does not coincide with
the β-average of the rotors’ fidelities (Wimberger and Buchleitner, 2006). In
good approximation of experiments, the initial rotor states Ψβ can be taken to
be plane waves. Ψβ(θ) = (2π)−1/2 if only the zero momentum class is initially
populated (which we will assume in the following discussion). For kicking peri-
ods at exact QR, i.e. τ = 2πℓ (ℓ ∈ N), the fidelity may be derived analytically

to be
∣∣∣∣〈Û t

β,k1
Ψβ|Û t

β,k2
Ψβ〉

∣∣∣∣
2

= J2
0 (|Wt|∆k) , where J0 is the Bessel function of

1st kind and order 0, ∆k = k2 − k1 and |Wt| = | sin(πtℓ(β − 1
2
) csc(πℓ(β − 1

2
)|

(Wimberger et al., 2003; Wimberger and Buchleitner, 2006). With |Wt| = t
for resonant quasimomenta β and using the asymptotic expansion formula
[9.2.1] from (Abramowitz and Stegun, 1972) for Bessel function J0, one fur-

ther arrives at Fβres(t) ≃ 2
π∆kt

cos2
(
∆kt− π

4

)
. This shows that the fidelity

decay is very slow obeying a power law ∝ 1/t for the resonant β-states. For an
ensemble of initial atoms representing a broad quasi-momentum distribution
with ρ(β) = 1, an interesting freeze or saturation of fidelity occurs, typically
already after a small number of kicks which immediately made this result
accessible to experiments performed by the Harvard group (Wu et al., 2009):

F (k1, k2, t → ∞) → F ∗(∆k) ≡ 1

(2π)2




2π∫

0

dy J2
0

(
∆k

2 sin(y)

)


2

. (44)
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Fig. 21. F ∗(∆k) from Eq. (44) (solid line), compared with numerical data (red
squares) obtained by evolving ensembles of 104 β−rotors with an initially uni-
form momentum distribution in [0, 1), at τ = 2π and t = 50. Inset: numerically
computed fidelity (F (t) ≡ F (k1, k2, t)) vs. t∆k for τ = 2π, k1 = 0.8π, and fixed
∆k = 0.6283 (triangles), 1.257 (circles), 1.885 (diamonds). The position of the min-
ima corresponds to the time 3.83/∆k. The fidelity saturates for times t∆k & 20
at ∆k-dependent, constant values, indicated by the thin horizontal lines. Data for
finite detunings ǫ = 0.025 (red dashed) and 0.1 (blue thick solid line) are shown for
∆k = 0.6283. (Figure adapted from Wimberger and Buchleitner (2006)).

This result is strictly true only in the limit of a large number of kicks, but
practically the saturation is reached after t ∼ ∆k−1 kicks. This follows from
the minima in the inset in Fig. 21 which are found by differentiating the time-
dependent fidelity with respect to ∆k. Then, the first zero of the 1st order
Bessel function J1(t∆k) at t∆k ≃ 3.83 is essentially responsible for the ob-
served minima. Interestingly, F ∗(∆k) oscillates quasiperiodically rather than
dropping monotonically as a function of the perturbation ∆k, another feature
which highlights the stability of the QR dynamics of the QKR. The afore-
mentioned features are all illustrated in Fig. 21 which also shows that strict
saturation is destroyed by arbitrarily small detunings ǫ ≡ 2πℓ − τ from reso-
nance. However, the temporal decay of the fidelity depends continuously on ǫ
and is again slow for small ǫ. This implies that the predicted saturation is an
experimentally robust observable (Wu et al., 2009). In the following Subsec-
tion, we will use the pseudo-classical approach of Section 2.3 to compute the
long-time hehaviour of fidelity for near resonant rotors.
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3.6 Pseudo-classical theory for fidelity

We have seen above in Section 2.3 that the resonant rotor dynamics essen-
tially corresponds to the pseudo-classical motion astride a nonlinear resonance
island, provided ǫ is sufficiently small. We consider from now on only initial
atomic states with a narrow distribution of momenta near p = 0. This means
that we restrict ourselves to a portion of the pseudo-classical phase space that
contains only the principal resonance island which is located at J = 2π or
I = 0 (assuming ℓ = 1 for the rest of this Subsection). At the centre of that is-
land we have a stable elliptic fixed point of the pseudo-classical standard map,
and the motion around it can be locally approximated by a simple harmonic
oscillator Hamiltonian

H(I, θ) =
1

2
(I + β̄)2 +

ω2

2
θ2, (45)

where ω ≡
√
k̃, β̄ ≡ τβ − π ≈ τ(β − 0.5), and a shift of θ by π is understood.

Using this approximation of the dynamics along the nonlinear resonance is-
land, we can directly compute the fidelity using semi-classical wavefunctions
of the form

Û t
β,kΨβ(θ) ∼ 1√

2π

∑

s

∣∣∣∣∣
∂θ

∂θ′

∣∣∣∣∣

−1/2

θ′=θ′s

e
i
ǫ
Φs(θ,t)−iπ

2
νs , (46)

where we chose as initial state a zero momentum plane wave Ψβ(θ) = (2π)−1/2

and ǫ > 0 is assumed with no limitation of generality. The sum is over all
trajectories (labeled by the index s) which start with I = 0 at t = 0 and reach
position θ at after a number of kicks t. θ′ = θ′s are their initial positions, and
the function whose derivative is taken in the pre-factor yields θ at time t as
a function of position θ′ at t = 0, given that the initial momentum I ′ = 0.
Finally, the function Φs(θ, t) = S(θ, θ′s, t) is the action of the s-th trajectory
and νs is the Morse-Maslov index (Haake, 2000; Schulman, 1981). Except at
exact multiples of the period, there is one harmonic oscillator trajectory in the
sum in Eq. (46); moreover, Maslov indices do not depend on the trajectory
in this case. Straightforward calculation of the action integral (Abb, 2009)
yields θ′(θ, t) = sec(ωt)(θ − β̄ω−1 sin(ωt)) and Φ(θ, t) = β̄θ (sec(ωt) − 1) −
(ω−1β̄2 + ωθ2) tan(ωt)/2, giving

〈Û t
β,k1

Ψβ|Û t
β,k2

Ψβ〉 ∼ eiλ(t)

2π
√

| cos(ω1t) cos(ω2t)|

π∫

−π

dθ e
i
2ǫ

{A(t)θ2+C(t)β̄2−2β̄θB(t)},(47)
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where ω1,2 ≡
√
k̃1,2. Additionally, we have defined A(t) = ω2 tan(ω2t) −

ω1 tan(ω1t), B(t) = sec(ω2t)−sec(ω1t), and C(t) = ω−1
2 tan(ω2t)−ω−1

1 tan(ω1t).
λ(t) is a phase factor accumulated by the Maslov indices which depends only
on time, rendering it irrelevant to the computation of fidelity. We next insert
Eq. (47) in Eq. (43) and choose for ρ(β) a uniform distribution in some interval
[1
2
−b, 1

2
+b), with 0 ≤ b ≤ 1/2. It is necessary to assume that b is smaller than

the halfwidth of the pseudo-classical resonant island, because the harmonic
approximation we have started from is, of course, valid just inside the island.
Then

F (k1, k2, t) ∼

∣∣∣∣
∫ π
−π dθ e

− i
2ǫ

Λ1(θ,ǫ,t)
∫ τb
−τb dβ̄ e

− i
2ǫ

Λ2(β̄,θ,ǫ,t)

∣∣∣∣
2

16π2b2τ 2| cos (ω1t) cos (ω2t)|
, (48)

where Λ1(θ, ǫ, t) = (A(t) − B2(t)C(t)−1)θ2 and Λ2(β̄, θ, ǫ, t) = (β̄
√
C(t) −

B(t)C(t)−1/2θ)2. As Λ2 ∼ ǫ−1/2 in the limit when ǫ → 0 and t
√
ǫ ∼const., the

limits in the β̄-integral in Eq. (48) can be taken to ±∞ to yield

τb∫

−τb

dβ̄ e−
i
2ǫ

Λ2(β̄,θ,ǫ,t) ∼ (2π)1/2ǫ1/2C(t)−1/2e−iπ/4 .

Due to this approximation, Eq. (49) below is valid in the regime where ǫ is
small compared to b2. The remaining θ-integral is dealt with similarly, because
the pre-factor of θ2 in Λ1 is ∼ ǫ−1/2. Thus finally

F (k1, k2, t) ∼ ǫ2

16π2b2|C(t)A(t) −B(t)2|| cos(ω1t) cos(ω2t)|

=
ǫ2ω1ω2

8π2b2|4ω1ω2 − ω2
+ cos(ω−t) − ω2

− cos(ω+t)|
, (49)

where ω± = ω1 ± ω2. Singularities of this expression are artifacts of the ap-
proximations used in evaluating the integrals in Eq. (48), which indeed break
down when the divisor in Eq. (49) is small compared to ǫ. However, they ac-
count for the “revivals” of the fidelity occurring periodically with the beating
period T12 = 2π/|ω−|. For purely resonant rotors (here β = 1/2), the revivals
occur with the period T12/2. This can be seen by evaluating Eq. (48) with just
one, the purely resonant β, to arrive at

F (k1, k2, t) ≡ Fres(k1, k2, t)

∼ ǫ/(2π)

|ω2 cos(ω1t) sin(ω2t) − ω1 cos(ω2t) sin(ω1t)|
, (50)
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Fig. 22. (a) Fidelity as predicted by Eq. (50) – because of the singularities of the
analytical formula the curve is folded with normalized Gaussians with a standard
deviation of t ≈ 6 kicks (dashed black line) – and numerical data for a single
resonant rotor (grey/green curve) and a coherent initial state built up for fixed
resonant β = 1/2 and centred at the elliptic fixed point of the island (solid red/dark
line), for k1 = 0.8π, k2 = 0.6π and detuning ǫ = 0.01 from τ − ǫ = 2π. The
coherent state shows almost perfect revivals at T12 and slightly smaller ones at
the intermediate peaks. (b) Same as in (a) for an ensemble of 5000 equidistantly
chosen rotors (grey/green curve) with a width of ∆β = 0.05 (or ∆β̄ ≈ 0.31) around
the resonant value, covering half the width of the resonance island in the phase
space induced by Eq. (11) compared with the smoothed version of Eq. (49) (dashed
black line). The intermediate revival peaks observed in (a) disappear as predicted
by Eq. (49).

which has singularities with the mentioned periodicity of T12/2. This behaviour
of resonant rotors has a simple qualitative explanation. The stationary-phase
trajectories of the two harmonic oscillators, which were started at I = 0,
exactly return to I = 0 whenever time is a multiple of the half-period T12/2,
and so fully contribute to fidelity, in spite of their angles being different by π
in the case of odd multiples. At β 6= 0 this symmetry is lost, which suppresses
each second revival according to Eq. (49).

Comparing numerical data (obtained by repeated application of the Floquet
operator to the initial wavefunction) with the analytical predictions we find
fairly good agreement. We observe the expected peak structure of the revivals
in Fig. 22(a) and the loss of intermediate revival peaks at T12/2 in Fig. 22(b).
An experimental observation of these revivals is quite challenging since a good
control over a narrow initial distribution of quasimomenta and a stable exper-
iment over a relatively large number of kicks are both required. The time scale
on which the revivals occur is proportional to ǫ−1/2 and of crucial impact to
experimental measurements. A conservation of coherence has been shown for
up to 150 kicks (see e.g. ref. (Schlunk et al., 2003b)) with cold atoms, making
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an observation of the revivals for reasonable ǫ . 0.01 possible. Earlier real-
izations of the QKR were implemented using cold atoms (Moore et al., 1995;
Ammann et al., 1998; Bharucha et al., 1999; d’Arcy et al., 2001; Sadgrove
et al., 2005; d’Arcy et al., 2004) with broad distributions in quasi-momentum.
Nowadays, much better control of quasi-momentum is provided by using BECs
(see (Duffy et al., 2004b; Ryu et al., 2006; Ramareddy et al., 2010)), which
allows for a restriction in β up to 0.2 % of the Brillouin zone (as achieved,
e.g., in (Ryu et al., 2006)). This would allow the verification of our results
by reducing the intervals in quasi-momentum and thus retracing the revivals
with period T12/2 to the exactly resonant and the revivals with period T12
to the near-resonant rotors. There exists a second possibility to measure the
transition from Eq. (50) to Eq. (49) with just cold atoms, since the β̄ we
use scales with the kicking period, i.e. β̄ ≈ τ(β − 1/2). Due to this scaling,
the limit τ → 0 (automatically implying also ǫ → 0, c.f. Section 3.2) per-
mits a measurement of Eq. (50), even with an ensemble of cold atoms whose
quasimomenta occupy the full Brillouin zone. This Subsection exclusively fo-
cused on the evolution of fidelity corresponding to librational motion within
the nonlinear resonance island of the pseudo-classical phase space. Ongoing
research is currently extending our understanding to non-resonant values of
quasi-momentum corresponding to rotational orbits in phase space (Probst,
2010). It remains to combine these two classes of motion in order to provide
a full account of the behaviour seen in the inset of Fig. 21 for finite ǫ.

4 Conclusions and outlook

4.1 Review of the state of the art

While the principle aim of this review is to introduce the ǫ-classical method
to a wider audience, we would also like to think that it serves to illustrate
the way that physics progresses in a microcosm. The interplay between theory
and experiment in this particular field has driven the method well beyond the
tasks for which it was originally conceived. At times, the desire to verify new
details turned up by the theory has been the driving force of investigations.
Just as often, the observation of new phenomena, or the modification of an
experiment has motivated the extension of the theory.

Below, we recap the uses to which the ǫ-classical theory has so far been put
in list form:

(1) Analysis of quantum accelerator modes. Although outside the scope
of this review, we note that these studies marked the invention of the ǫ-
classical map (Fishman et al., 2002).
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(2) Reduction of near-resonant quantum dynamics to a one-para-
meter scaling law. The quantum kicked rotor until very recently re-
mained a theoretically opaque system in that quantum correlations be-
tween kicks could only be evaluated precisely up to N ∼ 5 and the exact
behaviour was sensitive to three principle parameters – kick strength,
kick number, and the period of the kicks. The application of a pendulum
approximation to the ǫ-classical approximation allowed the entire prob-
lem to be reduced to a one parameter scaling function for the dynamics
near to resonance.
New features predicted and measured by the scaling law. The
ǫ-classical scaling law for dynamics of the AOKR near QR predicted some
features which had not been noticed before in experimental or numerical
studies. In particular, side peaks around the quantum resonance where
predicted and measured, and anomalous behaviour including frozen and
ballistic energy growth near the actual semi-classical limit were predicted
and observed experimentally. The observation of these effects also served
to demonstrate that quantum resonance peaks exhibit sub-Fourier nar-
rowing with respect to the applied pulse train – a phenomenon predicted
clearly by the scaling law for the resonances.

(3) Modelling of the effect of spontaneous emission near quantum
resonance. The study of spontaneous emission in the kicked rotor near
quantum resonance showed that the effect on the dynamics of a decoher-
ence process could be captured using a quasi-classical model.

(4) Explanation of stability of QR against large amplitude fluctua-
tions. The puzzle of why amplitude fluctuations destroy some quantum
coherent effects (notably dynamical localization) but leave near resonant
dynamics largely unchanged was solved by modifying the ǫ-classical map
to include amplitude fluctuations. However, such fluctuations have little
effect on the phase space, explaining why the quantum resonance peaks
are robust.
Scaling law in the presence of amplitude fluctuations. An ex-
planation of the stability of the QR peaks in the presence of amplitude
noise was finally given in terms of a scaling law. By observing that the
noise changed the phase space predominantly around the separatrix, an
approximate scaling law was derived, extending analytical results to the
system in the presence of a common source of decoherence.

(5) Scaling law for directed transport experiments (quantum reso-
nance ratchets). Choosing the appropriate classical initial conditions
allows the pseudo-classical method to be extended to the case where the
initial state is a quantum superposition of momentum states. Once again,
extending the scaling law to this variant of the kicked rotor predicts new
dynamics such as current reversal for slight detunings from exact QR.

(6) Fidelity of kicked rotors described pseudo-classically. Although
the concept of fidelity is inherently quantum mechanical, the pseudo-
classical method was once again extended to describing the evolution of
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the phase sensitive fidelity in the AOKR near QR.

4.2 Future perspectives for the pseudo-classical method

The state of the art in AOKR experiments is arguably represented by exper-
iments on atoms with very narrow initial momentum distributions (typically
sourced from a BEC) and indeed for the last two topics listed above, a BEC
would be necessary to fully test the new phenomena suggested by the the-
ory. We note that, of course, there are topics outside of quantum resonance
where studies of the kicked rotor are being extended and even thermal atoms
still allow the measurement of very interesting new results (such as the metal-
insulator transition reported in Chabé et al. (2008)). Such studies are outside
the scope of the present review.

However, we tend to believe that the quantum resonance phenomenon in the
AOKR provides the most fertile ground for new applications of cold atoms
in time dependent optical lattices. It is interesting to note, for example, that
the momentum current in the first “atom motor” (i.e. Hamiltonian quantum
ratchet) experiment was sharply peaked around quantum resonance (Salger
et al., 2009). Additionally, the extension of the pseudo-classical method to
quantum fidelity and the fact that the Talbot effect has been used to perform
factorization (Bigourd et al., 2008; Mack et al., 2002) suggests that the ǫ-
classical method might be applicable in quantum information settings.

Slightly more prosaically, it should be noted that the extension of the ǫ-
classical theory to fractional quantum resonances still represents a challenge
(c.f. results in this direction for the accelerator modes in the amended QKR
(Guarneri and Rebuzzini, 2008)), even though the fractional resonances have
been measured carefully in both ultra-cold by Ryu et al. (2006) and cold atom
settings by Kanem et al. (2007). That this task represents more of a challenge
than extending the theory to some of the interesting variants of the AOKR
explored above, serves as a reminder that the derivation of analytical results
in the AOKR system is still not a trivial task in general.

Qualitatively new directions of research would include the effects of either
atom-atom interactions (Rebuzzini et al., 2005, 2007; Monteiro et al., 2009;
Wimberger et al., 2005a) or the dissipative opening of kicked atomic systems
(Carlo et al., 2006; Benenti et al., 2001; Schomerus and Tworzyd lo, 2004;
Tomadin et al., 2006; Facchini et al., 2007; Romanelli, 2009). For instance,
the stability of QR motion with respect to typical values of a mean-field non-
linearity arising from atom-atom interactions in a BEC was numerically pre-
dicted in Wimberger et al. (2005a) and experimentally tested in Ryu et al.
(2006), yet an extension to near resonant motion is desirable, in particular by
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analytical means. New ideas based on the pseudo-classical method may allow
us to take into account such complications in a more or less rigorous way.
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tät Munich and Università degli Studi dell’Insubria, available online at
http://edoc.ub.uni-muenchen.de/archive/00001687.

Wimberger, S., Buchleitner, A., 2001. Signatures of anderson localization in
the ionization rates of periodically driven rydberg states. Journal of Physics
A: Mathematical and General 34 (36), 7181.

Wimberger, S., Buchleitner, A., 2006. Saturation of fidelity in the atom-optics
kicked rotor. Journal of Physics B: Atomic, Molecular and Optical Physics

59

382 KAPITEL 5. EINGELADENE BUCHBEITRÄGE (REVIEWS)



39 (7), L145.
Wimberger, S., Guarneri, I., Fishman, S., 2003. Quantum resonances and de-

coherence for -kicked atoms. Nonlinearity 16 (4), 1381.
Wimberger, S., Guarneri, I., Fishman, S., Feb 2004. Classical scaling theory

of quantum resonances. Phys. Rev. Lett. 92 (8), 084102.
Wimberger, S., Mannella, R., Morsch, O., Arimondo, E., Apr 2005a. Reso-

nant nonlinear quantum transport for a periodically kicked bose condensate.
Phys. Rev. Lett. 94 (13), 130404.

Wimberger, S., Sadgrove, M., Parkins, S., Leonhardt, R., May 2005b. Exper-
imental verification of a one-parameter scaling law for the quantum and
“classical” resonances of the atom-optics kicked rotor. Phys. Rev. A 71 (5),
053404.

Wu, S., Tonyushkin, A., Prentiss, M. G., Jul 2009. Observation of saturation
of fidelity decay with an atom interferometer. Phys. Rev. Lett. 103 (3),
034101.

60

5.2. 383



384 KAPITEL 5. EINGELADENE BUCHBEITRÄGE (REVIEWS)



385

Kapitel 6
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in der vorliegenden Schrift nicht abgedruckt sind.

Editierte Sonderausgabe einer Fachzeitschrift
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S. Wimberger and T. Paul,
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Eingeladene Konferenzberichte
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• Engineering quantum tunneling in extended periodic potentials
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