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Examining nonextensive statistics in relativistic heavy-ion collisions

A. Simon and G. Wolschin*

Institut für Theoretische Physik der Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany

(Received 22 November 2017; revised manuscript received 1 March 2018; published 24 April 2018)

We show in detailed numerical solutions of the nonlinear Fokker-Planck equation (FPE), which has been
associated with nonextensive q statistics, that the available data on rapidity distributions for stopping in relativistic
heavy-ion collisions cannot be reproduced with any permitted value of the nonextensivity parameter (1 < q <

1.5). This casts doubt on the nonextensivity concept that is widely used in relativistic heavy-ion physics.
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I. INTRODUCTION

Nonextensive statistics proposes an extension of Boltzmann
statistics through the concept of a nonadditive q entropy. It
has been used in a nonlinear Fokker-Planck equation (FPE)
for rapidity distributions and applied to calculate rapidity
and transverse momentum distributions for produced and
stopped charged particles in relativistic heavy-ion collisions. In
the corresponding experiments, the measured charged-hadron
rapidity distributions are found to be very broad compared to
thermal model predictions [1], and the discrepancy increases
strongly with energy. This finding, as well as correspond-
ingly broad net-proton (proton minus antiproton, or stopping)
distributions [2,3], indicates thermal diffusion plus collective
expansion.

Both effects may be accounted for phenomenologically in a
linear diffusion model [4] with expansion, or else in abundant
hydrodynamic approaches (see, e.g., Ref. [5] for a review). It
has, however, been stipulated that the so-called nonextensive
q statistics as proposed by Tsallis et al. [6] can simultaneously
account for thermal and collective effects merely through a
suitable choice of q [7–9].

With values of 1 < q < 1.5, the Fokker-Planck equation
that has been used to model rapidity distributions [4] becomes
nonlinear; it has an exponent (2 − q) in the diffusion term
[6–9]. This is supposed to account for long-range forces
that cause collective expansion and is considered to be a
fundamental property of the system, like the temperature T . It
goes along with a modified definition of the system’s entropy
[6], which is, however, controversial on fundamental grounds
[10,11]. This approach is quoted in Ref. [7] as having the
additional reward that the Einstein relation between drift and
diffusion coefficient—that is valid in the theory of Brownian
motion—could be maintained.

Indeed, it has been claimed in Refs. [7,8] that such a
procedure provides fits to stopping data in Pb-Pb and Au-Au
collisions at energies reached at the Super Proton Synchrotron
(SPS) and the Relativistic Heavy Ion Collider (RHIC) with val-
ues 1 < q < 1.5. [No stopping distributions will be available in
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the foreseeable future from the Large Hadron Collider (LHC)
due to the lack of a suitable forward spectrometer.] However,
the solutions of the nonlinear FPE in these calculations are
obtained by starting from the stationary solution as proposed
in Ref. [6] and then solving the problem for time-dependent
temperatures T (t) and mean values of the rapidity ym(t).

It is the aim of this work to solve the nonlinear FPE directly
with realistic physical initial conditions. We shall use several
independent numerical schemes but without a pre-determined
form of the solutions—such as taking the form of the stationary
solution as a basis for the time-dependent case as had been
done in Ref. [7]—and then try to fit the measured stopping
distributions at SPS and RHIC energies with a value of q > 1.

Some relevant model ingredients for the linear and nonlinear
cases are summarized in the next two sections. The numerical
calculations are prepared and tested in the subsequent section.
In particular, their implementation is compared to the exact
solution of the linear case and to a specific exact solution of
the nonlinear case found by Borland et al. [12]. The latter
provides a precise test of the numerical methods but it is not
useful for a solution of the physical problem with δ-function
initial conditions at the beam rapidities. We also compare three
completely independent solution schemes for the nonlinear
problem with each other.

In the final section, we apply the numerical solution of the
nonlinear FPE to the calculation of net-proton distributions in
Pb-Pb and Au-Au collisions at SPS and RHIC energies and
show that it is not possible to fit the data using solutions of the
nonlinear FPE with values of the nonextensivity coefficient
1 < q < 1.5. Instead, we fit the data in the linear model [13]
with an adjusted diffusion coefficient to account for both
nonequilibrium thermal broadening and collective expansion.
The results are then briefly summarized.

II. BASIC CONSIDERATIONS

In relativistic heavy-ion collisions, the relevant observable
in stopping and particle production is the Lorentz-invariant
cross section

E
d3N

dp3
= d2N

2πp⊥ dp⊥ dy
= d2N

2πm⊥ dm⊥ dy
(1)
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with the energy E = m⊥ cosh(y), the transverse momentum

p⊥ =
√

p2
x + p2

y , the transverse mass m⊥ =
√

m2 + p2
⊥, and

the rapidity y. In this work, we concentrate on rapidity
distributions of protons minus produced antiprotons, which
are indicative of the stopping process as described phenomeno-
logically in a relativistic diffusion model (RDM) [4,13] or in
a QCD-based approach [14]. The rapidity distribution is then
obtained by integrating over the transverse mass

dN

dy
(y,t) = C

∫
m⊥E

d3N

dp3
dm⊥ , (2)

with a normalization constant C that depends on the number of
participants at a given centrality. The experimentally observ-
able distribution dN/dy is calculated for the freeze-out time,
t = τf . The latter can be identified with the interaction time
t = τint of [4,13]: the time during which the system interacts
strongly.

We rely on Boltzmann-Gibbs statistics and hence adopt the
Maxwell-Jüttner distribution as the thermodynamic equilib-
rium distribution for t → ∞ at temperature T

E
d3N

dp3

∣∣∣
eq

∝ E exp (−E/T )

≡ m⊥ cosh(y) exp[−m⊥ cosh(y)/T ]. (3)

In thermodynamics, one makes the distinction between ex-
tensive and intensive properties. Intensive properties do not
depend on the size of the system or the amount of mass inside
the system. These are, for example, the temperature or the
mass density. Extensive properties, on the other hand, are
proportional to the mass and increase as the size of the system
increases. Typical examples are the volume and the mass itself.

In statistical physics, the entropy is also extensive:
The Boltzmann-Gibbs definition of the entropy is S =
−kB

∑�
i=1 pi ln(pi), where pi equals the probability of the

system to be in the microstate i. In the case of equal probabili-
ties and a total number of states �, it follows that pi = p = 1

�
and (with kB ≡ 1)

S = −
�∑

i=1

1

�
ln

(
1

�

)
= −

�∑
i=1

1

�
[0 − ln(�)]

= ln(�), (4)

which is the well-known expression for the entropy. To show
its extensivity, one takes two systems A and B which do not
interact. The number of available microstates in the combined
system is equal to the product of the ones in the individual
systems as they do not interact,

�(A + B) = �(A) �(B) . (5)

Inserting this into the definition of entropy, one gets

S(A + B) = ln[�(A + B)]

= S(A) + S(B). (6)

Hence, the Boltzmann-Gibbs entropy is an extensive property
of the system.

Although classical thermodynamics is a very successful
theory, discrepancies with respect to data can arise. This is

particularly relevant in the case of nonequilibrium systems,
such as relativistic heavy-ion collisions. However, statistical
mechanics is then still built upon the principle that the infor-
mation I is minimized with constraints that are appropriate
for the given physical situation, and the entropy is uniquely
defined as S = −kBI .

Nevertheless, different concepts of entropy have been de-
veloped for nonequilibrium systems. In particular, Tsallis has
proposed to resort to nonextensive statistics [6,15] where the
entropy does not fulfill Eq. (6) but is instead given by

Sq =
〈
lnq

1

pi

〉
=

∑
pi lnq

1

pi

=
∑

pi − ∑
p

q
i

q − 1
= 1 − ∑

p
q
i

q − 1
(7)

with the entropic index q ∈ R. Here, the logarithm which
causes the additivity of the entropy has been replaced by
the nonadditive q logarithm lnq(x) such that Sq(A + B) =
Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), and q measures the de-
gree of nonextensivity. The inverse of the q logarithm is the q
exponential ex

q that solves the differential equation dy/dx =
yq through

y = [1 + (1 − q) x ]1/(1−q) ≡ ex
q . (8)

In the limit q → 1, Sq is equal to S because

p
q
i = eq ln(pi ) = e(q−1) ln(pi )+ln(pi )

= e(q−1) ln(pi )pi = pi[1 + (q − 1) ln(pi)] + O(‖q − 1‖2),

(9)

provided the last term in Eq. (9) is neglected,

Sq→1 = 1 − ∑
pi[1 + (q − 1) ln(pi)]

q − 1

= 1 − ∑
pi + (q − 1)

∑
pi ln pi

q − 1

=
∑

pi ln pi = S . (10)

There is, however, no clearly defined physical process that
would warrant a generalization from S to Sq , and no theory
available to calculate the nonextensivity exponent q from first
principles. It can still successfully be used as an additional
fit parameter, in particular for p⊥ distributions in pp and AA
collisions at relativistic energies which show a transition from
exponential to power-law behavior that the ex

q function properly
describes with q ∈ (1,1.5). From a more fundamental point
of view, the approach is controversial [10,11]. In this work,
we test its applicability to rapidity distributions in relativistic
heavy-ion collisions.

III. FOKKER-PLANCK EQUATION

The general form of the linear Fokker-Planck equation
(FPE) is [16]

∂

∂t
W (y,t) = − ∂

∂y
[J (y,t)W (y,t)] + ∂2

∂y2
[D(y,t)W (y,t)],

(11)
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where J is called the drift coefficient and D is the diffusion
coefficient. Here we denote the independent variable as y
because it will later considered to be the rapidity. The FPE
can also be written in the form of a continuity equation for the
probability distribution W as

∂

∂t
W + ∂

∂y
j = 0 , (12)

with j (y,t) = [J (y,t) − ∂
∂y

D(y,t)]W , which is interpreted as
a probability current [16]. Even for coefficientsJ andD that are
not time dependent it is generally difficult—if not impossible—
to find analytical solutions. Two important analytically solv-
able examples are J (y,t) = 0, D(y,t) = D (Wiener process)
and J (y,t) = −αy, D(y,t) = D (Uhlenbeck-Ornstein process
[17]). For more complicated problems, numerical methods are
employed.

In the relativistic diffusion model, the time evolution of
the rapidity spectra has been modeled by a FPE. At first, an
Uhlenbeck-Ornstein (UO) ansatz has been tested in Ref. [4].
The stationary solution in such a case is determined as

∂

∂y

[
αyW + D

∂

∂y
W

]
= 0 ⇒ ∂W

∂y
∝ −yW + C . (13)

C has to be equal to zero because otherwise W < 0,∫
1

W
dW ∝

∫
−ydy ⇒ ln W ∝ −1

2
y2 + const.

⇒ W ∝ e− 1
2 y2

. (14)

This does not correspond to the equilibrium distribution from
Eq. (3) and therefore another drift term is needed. We see from
the above calculation that a stationary solution W ∝ e−V (y)

results from a drift term V ′(y). With the drift

J (y) = −A sinh(y) (15)

one gets the desired stationary solution [7,13] with

A = m⊥D

T
, (16)

which can be interpreted as a fluctuation-dissipation relation
similar to one known from Brownian motion, D = bT , with
the mobility b. Hence, the dissipation as described by the
amplitude of the drift term can be related to the diffusion
coefficient that is responsible for the fluctuations.

This particular sinh-drift term has also been investigated
in Ref. [13] and the result was—as in the simple UO model
[18]—that the fluctuation-dissipation relation is violated: The
diffusion is too small to account for the experimental data.

The canonical interpretation of this result is that collec-
tive expansion occurs in the quark-gluon-plasma phase and
enhances the width. One way to match the observation is
to increase the diffusion coefficient, attributing the effect to
collective expansion [13,18]. Indeed, a general form of the
fluctuation-dissipation theorem has been used in relativistic
hydrodynamic calculations that describe systems exhibiting
longitudinal collective expansion [19].

Within the Fokker-Planck framework, another possibility is
to change the underlying equation in order to account for the

“anomalous” diffusion [7–9]. In the latter approach which we
want to test here, one extends the model to a nonlinear FPE:

∂

∂t
W (y,t)μ = − ∂

∂y
[J (y,t)W (y,t)μ]

+ ∂2

∂y2
[D(y,t)W (y,t)ν] . (17)

Analytical solution strategies for this equation in case of
ν �= 1,μ �= 1 are not readily available. However, one can
connect Eq. (17) with the nonextensive entropy Eq. (7). Indeed,
Tsallis and Bukman have shown in Ref. [6] that the result of
maximizing the entropic form

Sq[p] = 1 − ∫
du[p(u)]q

q − 1
, (18)

leads to the function

pq(y,t) = {1 − β(t)(1 − q)[y − ym(t)]2}1/(1−q)

Zq(t)
. (19)

When assuming a drift term J (y,t) = −αy and a con-
stant diffusion coefficient D(y,t) = D, the function pq(y,t) ≡
W (y,t) solves the partial differential equation Eq. (17) with
additional conditions on β(t), ym(t), and Zq(t). One can
identify q from the entropic form with the exponents μ and
ν of Eq. (17) as q = 1 + μ − ν [6].

This identification is actually only justified in the case of the
above linear drift, which is not the one we will use because the
Boltzmann equilibrium form requires a sinh drift. It was also
shown in Ref. [6] that in order to conserve the norm, μ = 1 is
required, and since we model a probability distribution we set
μ to one, such that the exponent of the diffusion term becomes
ν = 2 − q. Rewriting the diffusion term as

∂2

∂y2
[DW 2−q] = ∂2

∂y2
[(DW 1−q) W ] , (20)

we can view the nonlinearity in the exponent as ordinary
diffusion extended by a nonlinear diffusion coefficient, namely
D′ = DW 1−q . It is visualized in Fig. 1. For function values of
less than one, the diffusion is increased and for values larger
than one it is suppressed. This leads to thinner peaks and faster
diffusion in the tails.

The width that we used for the simulation (σ = 0.1),
represented by the middle curve in Fig. 1, peaks at y = 4. This
results in diffusion coefficients of 0.5 and 0.75, depending on
the value of q. In the tails, the diffusion amplification peaks at a
factor of 5 or 6 before the distribution functions get negligibly
small.

IV. NUMERICAL CALCULATIONS

A. General procedure

To arrive at a usable form for the computer, we trans-
form the equation for W (y,t) into its dimensionless version
for f (y,t) by introducing a new timescale tc, resulting in
the dimensionless time variable τ = t/tc. It follows that
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FIG. 1. Comparison of the diffusion nonlinearity W 1−q for dif-
ferent q values. The coefficient is variable for q > 1 and depends on
the size of the probability distribution itself. Gauss curves with σ =
0.2,0.1,0.05 are plotted as a reference for the size of the normalized
probability distribution function.

∂
∂t

= ∂
∂τ

t−1
c and further

∂f

∂τ
= tc A

∂

∂y
[sinh(y) f (y,t)] + tc D

∂2

∂y2
[f (y,t)2−q] .

(21)

Since A = m⊥D/T , we set tc = T/(m⊥D) = A−1. The
result is the dimensionless Eq. (22) depending only on the ratio
γ = T/m⊥ of temperature T and transverse mass m⊥ which
is a measure of the strength of the diffusion,

∂f

∂τ
= ∂

∂y
[sinh(y) f (y,t)] + γ

∂2

∂y2
[f (y,t)2−q] . (22)

To get physical values for the drift and diffusion coefficients,
one has to specify a timescale (or the other way round).
Considering that it is only the drift term that is responsible
for determining the peak position, we are free to chose the
time τ such that the peak position of the experimental data
is reproduced. This leaves as free parameters the diffusion
strength γ and the nonextensivity parameter q.

We calculate the solution using two different methods in
order to gain insight about the accuracy. The more straightfor-
ward one was using MATLAB’s integration routines for solving
parabolic-elliptic PDEs. The second, more elaborate method,
was implementing it in a finite-element-method framework
(FEM) (DUNE [20] and FEniCS [21]).

To make use of the FEM, we have to convert our PDE
into the so-called weak formulation, which reformulates the
problem as an integral equation. This is done by integrating
the left-hand side (LHS) of Eq. (22) over the whole domain
� ⊂ R and multiplying it by a test function g(y) that vanishes
on the boundary ∂�,

∫
�

dy

{
g(y)

∂

∂y

[
sinh(y) f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
.

(23)

Integrating this by parts, we get[
g(y)

{
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

}]∣∣∣∣
∂�

−
∫

�

dy

{
∂g

∂y

[
sinh(y)f (y,t) + γ

∂

∂y
f (y,t)2−q

]}
. (24)

The first line in Eq. (24) vanishes because of g and the second
line contains only first derivatives. To approximate the time
derivative in Eq. (22) (LHS), we use the backward Euler
scheme

∂f (tn)

∂t
= f (tn) − f (tn−1)

�t
+ O(‖�t2‖) . (25)

For both methods, the chain rule is used to write ∂
∂y

f 2−q

as (2 − q)f 1−q ∂
∂y

f . Because we analyze cases for q > 0,
we have to take care of the singularity at f = 0. To get
around this issue, we add a small constant to the argument
stabilizing the computation: (f + ε)1−q . In MATLAB, we use
the routine pdepe to integrate the equation. It is suited for
parabolic-elliptic problems and we could directly insert the
PDE without modifying it.

To compare the simulation to experimental data, we have to
insert relevant values for T , m⊥, and the initial conditions,
most importantly y0. The value of the beam rapidity y0 is
determined by the center-of-mass energy per nucleon pair as
y0 = ln(

√
sNN/mp). Two Gaussian distributions centered at

±y0 with a small width σ that corresponds to the Fermi motion
represent the incoming ions before the collision. The exact
value of σ does not have a large effect on the time evolution
[13]; here we use a value of 0.1.

For the temperature, we take the critical value 160 MeV
for the transition between hadronic matter and quark-gluon
plasma. The actual freeze-out temperature is smaller (T =
118 ± 5 MeV for Pb-Pb at SPS energies [2]); overestimating
the temperature will increase the diffusion. For 17.2 GeV
Pb-Pb, the transverse mass is taken to be m⊥ = 1.17 GeV,
as the average transverse momentum p⊥ is around 0.7 GeV
[2]. The dimensionless diffusion strength γ is thus 0.137.
Corresponding values for 200-GeV Au-Au will be given later.

The results are then transformed to a rapidity distribution
[13]. Rewriting Eq. (2) and replacing d3N/dp3 with the
computed distribution f (y,t), we obtain

dN

dy
(y,t) = C

∫
m2

⊥ cosh(y)f (y,t)dm⊥ . (26)

Since the transverse mass m⊥ is mainly distributed around mp

[2], we introduce an upper integration limit m∗ such that the
second moment of m⊥ corresponds to the measured value [2]
at SPS energies, and accordingly at RHIC energies

〈m2
⊥〉 =

∫ m∗

mp

m2
⊥dm⊥ . (27)

The rapidity distribution for net protons can then approxi-
mately be written as

dN

dy
(y,t) ≈ C̃〈m2

⊥〉 cosh(y)f (y,t) . (28)

044913-4



EXAMINING NONEXTENSIVE STATISTICS IN … PHYSICAL REVIEW C 97, 044913 (2018)

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

W
(y

,
)

y

Analytic
q = 1.00
q = 1.15
q = 1.30

FIG. 2. Comparison of the analytic Uhlenbeck-Ornstein (UO)
model (crosses) and the corresponding numerical solution (q = 1,
dashed curve). The numerical solutions for two different values of
q are also shown (solid for q = 1.15, dash-dotted for q = 1.3). The
parameters are γ = 0.137, y0 = 2.9, σ = 0.1, τ = 1.2.

The constant C̃ is chosen such that the total number of particles
for 0–5% centrality corresponds to the number of participant
protons in this centrality bin.

B. Tests of the numerical implementation

In order to check the numerical implementation, we com-
pare it to analytically solvable problems. At first, we consider
the UO model and compare the numerical solution of Eq. (22)
for different values of q, first for q = 1 (where both should be
the same) and then for other values of q; see Fig. 2. This gives
us a first idea about the impact of the nonlinearity parameter
on the evolution.

The numerical result for q = 1 is identical with the an-
alytical solution, which validates the numerical method. By
increasing q, the peaks are slightly smeared out, giving an
overall flatter shape than before. This is expected since a larger
diffusion coefficient will spread out the profile faster.

As the next step, we consider the problem solved analyti-
cally by Borland et al. in Ref. [12]:

∂f

∂t
= ∂

∂y
(yf ) + ∂2

∂y2
f 2−q . (29)

The solution assumes that the initial condition is function-
ally equal to the stationary solution, except for time-dependent
coefficients. In particular, both the stationary solution and the
initial conditions are centered at y = 0, which is essential to
obtain the analytical solution of the time-dependent problem.

In the case of a heavy-ion collision, however, the initial
distributions are both off center at the values of the beam
rapidities, whereas the stationary solution that is obtained
for t → ∞ is centered at rapidity y = 0 in symmetric sys-
tems. Hence, the Borland et al. analytical solution cannot be
used: The time-dependent equation must be solved with the
beam rapidities ybeam = ±y0 defining the initial conditions
(δ-functions, or Gaussians with a width that is determined by
the Fermi motion), and the solution in the heavy-ion case drifts
with increasing time toward midrapidity. Although the Borland

0

0.2

0.4

0.6

0.8

1

1.2

-4 -2 0 2 4

W
(y

,τ
)

y

Analytic
Numeric

FIG. 3. Comparison of the analytical (solid curves) and numerical
(crosses) solutions for q = 1.3 at different dimensionless times τ =
0.2, 0.5, and 0.8 (top to bottom at y = 0).

solution cannot describe our physical situation, it offers the
possibility to compare the anomalous diffusion to an analytic
solution.

The agreement between analytical and numerical solution
(see Fig. 3) in the case of initial conditions that are centered at
y = 0 further supports the correctness of the implementation.
We have now three numerical schemes at our disposal to
calculate the evolution. Since they are based upon two different
mathematical methods (finite elements and finite differences),
it is unlikely that a hypothetical programming error occurred
in all of them. Having this in mind, we simulated the full PDE
using each of the packages and compared the results. The time
evolution of two Gaussian peaks with y0 = 2.9 and σ = 0.1 at
the time τ = 1 is shown in Fig. 4.

The relative difference between the solutions using the three
numerical schemes is around 1% and mostly concentrated at
the peaks. Possible origins of the slight discrepancies are the
different step sizes used in each discretization and the basis
functions used in the FEM interpolation. In any case, the
differences are very small, from which we conclude that the
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0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

W
(y

,
)

y

DUNE
MATLAB
FEniCS

0.35

0.4

-0.5 0

0.35

0.4

-0.5 0

FIG. 4. Comparison of the three numerical solution methods for
τ = 1 and γ = 0.137.
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FIG. 5. Numerical solutions of the nonlinear FPE for central PbPb
at 17.2 GeV with three different values of q ∈ [1,1.5], and NA49
data [2].

calculations are correct. Since further data analysis is easiest
in MATLAB, we use it in the following calculations.

V. COMPARISON OF NUMERICAL RESULTS
AND EXPERIMENTAL DATA

The results of the calculation for different values of q are
shown in Fig. 5 for Pb-Pb at 17.2 GeV. While a larger q does
broaden the distribution, the effect is by far too small to come
close to the experimental results.

In order to reproduce the measured data for Pb-Pb, we
have to adopt a diffusion strength of around 1.5 while the
one predicted by the fluctuation-dissipation relation Eq. (16)
is around 0.137, the difference being a factor 11; see the upper
frame of Fig. 6. As we mentioned earlier and as can be seen
in Fig. 1, such a large enhancement in the required broadening
cannot be compensated by the proposed nonlinearity due to q
statistics.

The comparison with Au-Au stopping data at the maximum
energy of 200 GeV reached at RHIC shows that here the dis-
crepancy between the diffusion strength from the fluctuation-
dissipation relation (γ = 0.12) and the one required to fit the
data (γ = 8) with an adjusted value of time is even larger;
see lower frame of Fig. 6. This means that introducing a
nonlinearity into the diffusion term cannot account for the
observed rapidity spectra at SPS and RHIC energies. Since the
widths are too narrow, there has to be an additional expansion
process that takes place during the reaction that cannot be
accounted for by q statistics. This result is in obvious contrast
to the findings of Refs. [7–9], where an approximate solution
of Eq. (22) had been used.

We have also solved the nonlinear diffusion equation sep-
arately for initial conditions centered at ybeam = +y0 and at
ybeam = −y0 to assess how much the superposition principle
is violated in the nonlinear case. Adding the results shows
that the difference with respect to the full numerical solution
remains, however, below 5% at midrapidity.

As the numerical solution of the nonlinear Eq. (22) does
not explain the experimental data, we return to the model
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FIG. 6. Comparison of the linear (q = 1) model without (dashed)
and with (solid) adjusted diffusion term with NA49 data for 0–5%
central Pb-Pb at

√
sNN = 17.2 GeV [2], upper frame, and with

BRAHMS data for central Au-Au at
√

sNN = 200 GeV [3], lower
frame. The values of the dimensionless diffusion strengths are γ =
0.137 and 0.12 from the fluctuation-dissipation relation (see text),
whereas γ = 1.5 and 8.0 are adjusted to the SPS and the RHIC data,
respectively, and account also for collective expansion. The values
of the freeze-out time have been adjusted in both cases. A numerical
solution of the nonlinear diffusion equation with q > 1 does not fit
the data for any value of γ and time.

with linear diffusion q = 1, and the drift term imposed by
the stationary solution [13]. By fitting experimental data
to this linear model, we can find physical values for the
drift and diffusion coefficients in stopping using the two
data sets from NA49 [2] at

√
sNN = 17.2 GeV with beam

rapidity ybeam = ±2.91, and from BRAHMS [3] at
√

sNN =
200 GeV with ybeam = ±5.36 in central collisions of Pb-Pb
and Au-Au, respectively. With a freeze-out time of 8 fm/c,
we obtain the results shown in Table I. Corresponding values
with energy-dependent freeze-out times had been obtained in
Ref. [13].

The failure to interpret the broad rapidity distributions
observed in the stopping process of relativistic heavy-ion
collisions within q statistics refers specifically to the solution
of the nonlinear Fokker-Planck equation, Eq. (17), which arises
within nonextensive statistics [6,15]. Among the abundant
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TABLE I. Fitted values for the drift and diffusion coefficients in
the case of normal (q = 1) diffusion.

System
√

sNN (GeV) A (1024 s−1) D (1024 s−1)

Pb-Pb 17.2 4.06 6.67
Au-Au 200 5.17 53.4

publications that compare q statistics with data in particular
for p⊥ distributions (e.g., Refs. [22–24]), but also for rapidity
distributions [23], only a few such as Refs. [7,8] refer to an
explicit—but approximate—solution of the basic nonlinear
FPE. The result that was derived there makes use of the form
of the stationary solution, replacing temperature and mean
rapidity by time-dependent quantities. The outcome of this
procedure does not agree with our numerical results for the
explicit solution of the nonlinear FPE.

VI. CONCLUSION

We have tested the nonextensive paradigm in a well-defined
application to rapidity distributions in relativistic heavy-ion
collisions. For this problem, a nonlinear Fokker-Planck equa-
tion is available which had been solved previously by Lavagno
et al. [7–9] using an approximate solution scheme.

In our numerical solution, we can reproduce neither the
available data at SPS and RHIC energies for any value of

q ∈ (1,1.5) nor the corresponding solutions from Refs. [7–9].
The use of three different numerical methods with coinciding
outcome and various cross checks with exact analytical results
ensure the accuracy of our numerical calculations.

This result casts doubt on the validity of the nonextensivity
concept in statistical physics, which has often been applied to
interpret observables in relativistic heavy-ion collisions. Nev-
ertheless, formulas derived from nonextensive statistics may
still be used in phenomenological fits of transverse momentum
distributions in relativistic collisions because they allow to
account for the observed transition from exponential to power
law distributions that the ex

q function properly describes with
q ∈ (1,1.5). This transition had already earlier been modeled
by Hagedorn in Ref. [25] using an equivalent but QCD-inspired
formula.

The data for rapidity distributions in stopping and particle
production can be described using an unmodified Fokker-
Planck equation with a linear diffusion term as in Boltzmann
statistics. Here we determine empirical values of the diffusion
coefficient that are necessary to reproduce the measured data,
thus accounting phenomenologically for both nonequilibrium
thermal processes and collective expansion, without a nonlin-
ear diffusion term.
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