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Einleitung oder Pfadintegral – Bitte was? 
Die Feynman’sche Pfadintegralformulierung ist neben dem bekannten Matrix-Formalismus 
und der Formulierung mit Wellenfunktionen und der Schrödinger-Gleichung eine weitere 
Formulierung der Quantenmechanik. 
Im Mittelpunkt dieses Formalismus steht der sogenannte Propagator: 

K(b;a) K( , ; , )b b a ax t x t  

Er steht im Gegensatz zu der Wellenfunktion in den bisher behandelten Formalismen: 
( , )x t  

Gibt das Betragsquadrat der Wellenfunktion eines Teilchens die Wahrscheinlichkeit an, das 
Teilchen zum Zeitpunkt t am Ort x zu finden, so gibt das Betragsquadrat des Propagators die 
Wahrscheinlichkeit an, das Teilchen am Ort xb zur Zeit tb zu finden, sofern es zum Zeitpunkt 
ta am Ort xa war. 
Wir möchten im Folgenden einen Ausdruck für K herleiten, was uns schließlich zum 
Feynman’schen Pfadintegral führen wird. 

Herleitung 
Um einen Ausdruck für den Propagator herzuleiten, stellen wir den 
Zeitentwicklungsoperator im Ortsraum dar: 
 

K( , ; , ) ( , )b b a a b b a ax t x t x U t t x  mit  

 

Außerdem nehmen wir im Folgenden vereinfachend an: 
²

( , )
2

p
H T V V x t

m
     (1) 

und setzen der Übersichtlichkeit wegen 1 . 
Wir möchten nun U in infinitesimalen Zeitschritten entwickeln. Dafür führen wir ein: 
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Damit ergibt sich für K: 

1 1 1 1 0 0
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 (2) 

 

Wobei wir im letzten Schritt n Einsen 1i i idx x x   eingefügt haben. 

Für einen infinitesimalen Zeitschritt erhalten wir nun: 
 

1

1

K( , 1) exp{ i )}

exp{ i }exp{ i }exp{ i ² }     ;     mit     [ , ]
2

i i

T V

i i

i i x H x

i
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  
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Da wir   gegen 0 gehen lassen wollen, wird  ² schneller gegen 0 und damit die 
Exponentialfunktion in X schneller gegen 1 gehen als die Exponentialfunktionen linear in  , 
sofern V und T unendlich oft differenzierbare Funktionen ohne Singularitäten sind. Für 

²

2

p
T

m
  ist dies sicherlich erfüllt, für V nicht unbedingt. Beispielsweise hat das Coulomb-

Potential bei x = 0 eine Singularität; für solche Potentiale siehe das Vorgehen nach Duru & 
Kleinert (Wasserstoffatom). 
 
Für hinreichend kleines  erhalten wir also: 
 

i 1 i
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1

1 i
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
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
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 
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 






 
 
 

 

 
Setzt man diesen Ausdruck wieder in (2) ein, erhält man: 

1 1 1 1 0 0

1
( )

1 1
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exp{ }
2
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n n
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S(n) ist bei genauerer Betrachtung bereits eine diskretisierte Version der Wirkung als 
Zeitintegral über die Lagrange-Funktion, während die Lagrange-Funktion hier als Legendre-
Transformierte der Hamiltonfunktion steht. 
 
Um einen einfacheren Ausdruck zu erhalten, können wir nun noch die Integrale über die pi 

ausführen und erhalten mit   

1
1

1

² ( )²
exp ( ) exp

2 2 2 2

i i i i
i i i

A

dp p x xm
ip x x i im

m i


   






   
     

   
  

folgenden Ausdruck für den Propagator: 

21
1

1
11

1
K(b;a) exp

2

( )

n n
i i

i in
ii

x xm
dx i V

A

nS










 
 

     
      

      
 
 

  

( )nS  ist nun eine diskretisierte Version der Wirkung, die nur noch von der Lagrange-
Funktion L abhängt, also nur noch von x, der Zeitableitung von x und t. 
Im kontinuierlichen Grenzfall erhalten wir damit 

( ) (b;a) ( )
b

a

t

nn

t

S S dt L t    mit  
1

( ) ² ( , )
2

L t mx V x t   

sowie für den gesamten Ausdruck: 

 ( )

1
1

1
K(b;a) exp

n
nn

i n
i

dx iS
A






 
  
 
 K(b;a) exp{i (b;a)}

b

a

x

x

x S   (3) 

 
Das Integral in (3) ist das sogenannte 
Pfadintegral. Seinen Namen hat es ausgehend 
von der Tatsache, dass wir hier über alle Pfade 
vom Punkt xa zum Punkt xb integrieren. Dieses 
Integrieren über alle Pfade kann man sich 
anschaulich leicht an nebenstehender Skizze klar 
machen. 
Für jeden Zeitschritt ti integrieren wir im 
diskreten Fall einmal über alle Orte xi, was sich 
im kontinuierlichen Fall zu einem Integral über 

alle Pfade vom Ort xa zum Zeitpunkt ta bis zum Ort xb zum Zeitpunkt tb ergibt. 
 
Einige Bemerkungen: 

 Wir integrieren wirklich über alle möglichen Pfade, das heißt auch Pfade, bei denen das 
Teilchen völlig nicht-klassische Pfade durchläuft, Zitterbewegungen ausführt oder 
zwischenzeitlich mit Überlichtgeschwindigkeit reisen muss. 

 Die Pfade laufen nur vorwärts in der Zeit. 
Verallgemeinert man das Pfadintegral relativistisch, muss die Zeitkoordinate als 
gleichberechtigte Koordinate neben den Ortskoordinaten angesehen werden, so dass das 
Teilchen auch rückwärts in der Zeit reisen kann (Antiteilchen). 
Die Rolle der Zeit wird dann von einem Parameter τ abgelöst. 
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ax

bx

at bt t

x

Klassischer Pfad   

0S 

  

0S 

 An dieser Stelle wird nichts über das Konvergenzverhalten im kontinuierlichen Fall für dieses 
sogenannte Funktionalintegral gesagt; wer sich für die mathematischen Hintergründe 
interessiert, dem sei Funktionalanalysis ans Herz gelegt. 

 
Ein wichtiger Fakt ist außerdem, dass wir über Wirkungen als Phasenfaktoren einer 
Exponentialfunktion integrieren. Da für 
klassische Pfade die Variation der Wirkung 
verschwindet, addieren sich die Beiträge, 
die Pfade nahe dem klassischen Pfad 
liefern, auf (konstruktive Interferenz). Für 
Pfade, die weit weg vom klassischen Pfad 
liegen, verschwindet die Variation der 
Wirkung dagegen nicht und der 
Phasenfaktor oszilliert sehr stark, sodass 
sich Pfade, die weit weg vom klassischen 
Pfad liegen, gegenseitig auslöschen. 
Für große Wirkungen wird der Bereich, in dem die Pfade um den klassischen Pfad 
konstruktiv interferieren immer schmäler, sodass für makroskopische Systeme, d.h. im 
klassischen Grenzfall, nur noch der klassische Pfad erlaubt ist. Hier wird also unmittelbar der 
Grenzübergang zur klassischen Mechanik deutlich. 
 

Einige Eigenschaften des Propagators 
Einige Wichtige Eigenschaften des Propagators, die hier nur kurz genannt sein sollen. 

K( , ; , ) ( )b a a a b a b ax t x t x x x x    

K(c;a) ( , )

³ ( , ) ( , )

³ K(c;b)K(b;a)
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b c c b b b b a a

b

x U t t x

d x x U t t x x U t t x

d x











 

Zusammenhang mit der Wellenfunktion: 

†
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f f i i
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n

f n n i n
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n
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
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   
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i i

x x U t t t
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  

 

 


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Aus dem Zusammenhang mit der Wellenfunktion wird unmittelbar deutlich, dass genau  
dann der Propagator die Schrödingergleichung erfüllt, wenn dies auch für die 
Wellenfunktion gilt: 

t

( )²
i V(x) ( ) 0

2

i
x

m

  
      
 

 (Schrödingergleichung für die Wellenfunktion) 

Dass der Propagator die Wellenfunktion erfüllt, lässt sich leicht zeigen, in dem man die 

zeitliche Ableitung 
t 0 0( , , , )K t x t x  mit Hilfe eines infinitesimalen Zeitschritts explizit 

ausrechnet, mehr dazu findet man in [2] und [3]. 
 

Beispiel: Der Harmonische Oszillator 
Im Folgenden betrachten wir den Formalismus anhand des Harmonischen Oszillators, für 
den wir mit Hilfe des Pfadintegrals natürlich den Propagator 

K(f;i) exp{i (f;i)}

f

i

x

x

x S   

berechnen möchten. 
Dazu betrachten wir zunächst die Wirkung, die gegeben ist durch 

² ² ²
[x]

2

f

i

t

t

x x
S dt m

 
  

 
 . 

Aufgrund der Linearität des Integrals und der Tatsache, dass die Wirkung nur von 2x  und 2x  
abhängt, wird unmittelbar deutlich, dass sie in eine Summe über die einzelnen Dimensionen 
zerfällt: 

3 31 1 2 2 ² ² ²² ² ² ² ² ²
[x]

2 2 2

f f f

i i i

t t t

t t t

x xx x x x
S dt m dt m dt m

        
       

     
    

Damit zerfällt der Propagator in ein Produkt 

1,f f 1,i i 2,f f 2,i i 3,f f 3,i iK(f;i) K(x , t ; x , t ) K(x , t ; x , t ) K(x , t ; x , t )

xK

    

Es reicht also, das Problem zunächst Eindimensional zu behandeln. 
Für den Pfad wählen wir zunächst folgenden Ansatz: 

Klassischer Pfad Quantenfluktuation

d.h. fordere:  ( ) ( ) ( ) , [ ] 0
S

x t z t y t z
x




    

Der Vorteil dieses Ansatzes liegt darin, dass wir die Wirkung des Klassischen Pfads berechnen 
können und deren Variation verschwindet. Außerdem wissen wir, dass der klassische Pfad 
am Anfangspunkt beginnen und am Endpunkt enden muss. Somit sind die 
Quantenfluktuationen am Anfangs- und Endpunkt notwendigerweise 0. 

( ) ( )

( ) 0 ( ) 0

i i f f

i f

z t x z t x

y t y t

 

 
 

Für die Wirkung gilt nun: 
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² ² ² ² ² ²
[z y] ( ² )

2 2

² ² ² ² ² ²
( ² )

2 2

f f f

i i i

f f f

i i i

t t t

t t t

t t t

t t t

y

y

z

z

S

S

S

S

z z y y
S m dt m dt zy zy m dt

z z y y
m dt m dt y z z m dt

 


 










 
    

 
   

  

  

   (4) 

Im zweiten Schritt haben wir ausgenutzt, dass die Quantenfluktuationen an den 
Randpunkten verschwinden müssen, sodass der Randterm der Partiellen Integration 
verschwindet.  
Daneben können wir die Wirkung S in einer Taylorreihe für Funktionale entwickeln und 
erhalten: 

0

1 ²S
[z y] [ ] [ ] ² [ ] ...

2 ²

S
S S z dty z dty z

z z

 

 


       

Zunächst fallen alle Terme höherer Ordnung weg, da die Wirkung nur quadratisch von x 
abhängt. Dies ist der Vorteil des Harmonischen Oszillators und führt dazu, dass wir ihn hier 
so vergleichsweise einfach berechnen können. 
Außerdem sehen wir, dass der Term linear in y verschwinden muss, da die Variation der 
Wirkung für den klassischen Pfad z verschwindet, dies eliminiert also den Mischterm in (4) 
und führt zu 

² ² ² ² ² ²
[z y]

2 2

f f

i i

t t

t t

YZ
SS

z z y y
S m dt m dt

 



 
    . 

Die Wirkung separiert also wieder in zwei unabhängige Summanden, sodass der Propagator 
in ein Produkt zerfällt: 

exp( ) exp( )x Z YK iS y iS   

Dabei können wir die klassische Wirkung und den klassischen Pfad mit Hilfe der Euler-
Lagrange-Gleichungen leicht berechnen: 

i f

f i

sin( (t t )) sin( (t t))
( ) ;T t t

sin( )

(( ² ²)cos( ) 2 )
2sin( )

f i

Z f i f i

x x
z t

T

m
S x x T x x

T

 








  
  

   



 

Es verbleibt also im Wesentlichen nur noch das Pfadintegral exp( )Yy iS  zu berechnen. 

 
Um dieses Integral zu berechnen, verfahren wir so, wie wir bereits in der Herleitung des 
Pfadintegrals vorgegangen sind und betrachten unser Problem in infinitesimalen 
Zeitschritten. 
Dazu betrachten wir zunächst die Wirkung 

² ² ²

2

f

i

t

Y

t

y y
S m dt


   

Diese lässt sich wie folgt diskret schreiben: 
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(N) 1 1
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1 1

1
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2
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2 2

N
n n n n

Y n

n

N
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n

y y y ym
S y

m m
y y y y yMy

 
 

 
 

 



 



  
     

 

     





 

yMy  ist hierbei ein Matrixprodukt mit 

(2 ² ²) 1 0 0

1 (2 ² ²) 1 0

0 1 (2 ² ²) 1

0 0 1 (2 ² ²)

M

 

 

 

 

 

  

  

 

 
 
 

  
 
 
 
 

. 

Für den Propagator gilt dann 

1

1
exp( ) exp( ) exp( ) exp( )

2

exp( )
2

N

x Z Y Z N

Z

m
K iS y iS iS d y i yMy

A

m
iS

i



 


 



 

det(M)

 

Das Pfadintegral geht also im Diskreten in ein einfaches N-dimensionales Gaußintegral über 
und es verbleit noch die Determinante von M zu berechnen. 
Per Vollständiger Induktion kann man zeigen, dass für diese gilt: 

1 1 1

2

3 2 1 2

1 1

det( ) 2 ² ²

(2 ² ²)² 1

(2 ² ²)³ 2(2 ² ²) 2 ² ²

(2 ² ²)N N N

d M

d

d d d d

d d d

 

 

     

 



 

  

  

      

  

 

Dies lässt sich etwas umstellen zu: 

1 1

21  

2
² 0

²

  ( ²) 0

N N N
N

Nt

d d d
d

d 






 



 
 

   

 

Die Determinante muss also eine Harmonische-Oszillator-Differentialgleichung erfüllen. 
Damit ergibt sich: 

sin( T) cos( T)d        

Für ω  0 muss diese Gleichung immer noch erfüllt sein. Für ω = 0 erhalten wir 

1N

T
d N


    und somit bleibt für die Koeffizienten nur noch 

1
, 0 


   und wir 

erhalten: 

exp( )
2 sin( )

x Z

m
K iS

i T



 
  

Setzen wir die klassische Wirkung von oben ein und gehen wieder ins Dreidimensionale, folgt 
schließlich der endgültige Ausdruck für den Propagator des freien Harmonischen Oszillators: 

3

K(f;i) exp (X²cos ²( ) 4X²sin ²( ))
2 sin( ) 2sin( ) 2 2

m im T T

i T T

   

  

 
  

 
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mit X    ;   X
2 2

f i f ix x x x 
   

 
Betrachten wir nun noch den Grenzfall ω  0 erhalten wir den Propagator für ein freies 
Teilchen: 

3

K(f;i) exp X ²
2 2

m im

iT T

 
  

 
 

 
Eine ausführliche Herleitung für den gezwungenen Harmonischen Oszillator findet man 
bei [2]. 

Ausblick – Anwendungen des Pfadintegrals 
Die Feynman’sche Pfadintegralformulierung der Quantenmechanik liefert eine weitere, 
anschauliche Formulierung der Quantenmechanik, die zunächst vielleicht unnütz oder 
unnötig aufwändig erscheinen mag. Dennoch haben wir bereits gesehen, dass gerade diese 
Formulierung sehr anschaulich ist und uns wie keine andere den Grenzübergang von der 
Quantenmechanik zur klassischen Mechanik aufzeigen kann. 
Die Tatsache, dass das elektromagnetische Feld als harmonische Oszillatoren beschrieben 
wird (s. auch Vortrag „Wechselwirkung mit dem Strahlungsfeld“ von Daniel Geiss), führt 
dazu, dass sich das Pfadintegral als einfachsten Formalismus zur Formulierung der 
Quantenfeldtheorie herausstellt. Mehr dazu ist unter [2], [5], [6] und [7] zu finden. 
Daneben wird das Pfadintegral auch in der statistischen Physik eingesetzt. Hier geht die Zeit 
in eine imaginäre Zeit 
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über und es wird über geschlossene Pfade integriert. Mehr dazu findet man unter anderem 
auch in [3]. 
Darüber hinaus wird das Pfadintegral auch in modernen Theorien wie der Quantum Loop 
Theory und anderen gerne verwendet und bleibt damit weiterhin aktuell. 
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