Das Feynman‘sche Pfadintegral
Stefan Knirck
Zusammenfassung zum Vortrag vom 31.1.2014
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Einleitung oder Pfadintegral - Bitte was?

Die Feynman’sche Pfadintegralformulierung ist neben dem bekannten Matrix-Formalismus
und der Formulierung mit Wellenfunktionen und der Schroédinger-Gleichung eine weitere
Formulierung der Quantenmechanik.
Im Mittelpunkt dieses Formalismus steht der sogenannte Propagator:

K(b;a) = K(x,,t,; X,,t,)
Er steht im Gegensatz zu der Wellenfunktion in den bisher behandelten Formalismen:

Y(x,t)

Gibt das Betragsquadrat der Wellenfunktion eines Teilchens die Wahrscheinlichkeit an, das
Teilchen zum Zeitpunkt t am Ort x zu finden, so gibt das Betragsquadrat des Propagators die
Wahrscheinlichkeit an, das Teilchen am Ort x,, zur Zeit t, zu finden, sofern es zum Zeitpunkt
t, am Ort x, war.
Wir mochten im Folgenden einen Ausdruck fir K herleiten, was uns schliellich zum
Feynman’schen Pfadintegral fiihren wird.

Herleitung

Um einen Ausdruck flir den Propagator herzuleiten, stellen wir den
Zeitentwicklungsoperator im Ortsraum dar:

- tb
K%ty Xart) = (% [U (6, 1,) [ %,)  mit U(tb;ta):rexp(—%jdtH(t))
A
AuBerdem nehmen wir im Folgenden vereinfachend an:
2
H=T+v="1v(xt) (1)
2m

und setzen der Ubersichtlichkeit wegen a=1.
Wir mochten nun U in infinitesimalen Zeitschritten entwickeln. Dafir fihren wir ein:
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t,=t., 2t 2.2t >t =t
und ¢ =

Xy = X, 4 ; X, =X, n+1

t, —t

Damit ergibt sich fir K:
K(Xb’tb’ a't) < n+1|U(tn+1’t )U(tn’tn—l)'“U(tl’tO)|X0>

[HIdXJM xu )y @

=K (i,i-1)

Wobei wir im letzten Schritt n Einsen J.dxi |, }(X | =1 eingefiigt haben.
Fur einen infinitesimalen Zeitschritt erhalten wir nun:

K@,i-1)= <Xi |exp{—ig H )}|Xi_1>

T+V

=(x |exp{—ieV}exp{—ieT}exp{-ie2X}|x) ; mit X:%[\/,T]+(f)

Da wir & gegen 0 gehen lassen wollen, wird &2 schneller gegen 0 und damit die
Exponentialfunktion in X schneller gegen 1 gehen als die Exponentialfunktionen linear in &,

sofern V und T unendlich oft differenzierbare Funktionen ohne Singularitdaten sind. Fir
2

T :2— ist dies sicherlich erfiillt, fir V nicht unbedingt. Beispielsweise hat das Coulomb-
m

Potential bei x = 0 eine Singularitat; fur solche Potentiale siehe das Vorgehen nach Duru &
Kleinert (Wasserstoffatom).

Fur hinreichend kleines ¢ erhalten wir also:
K(i,i—1) ~ (x |exp{—ieV3}exp{-ieT}x )
dp. . )
= j2_2<xi |9Xp{_|5\/}| pi><pi |6Xp{_|5T}| Xi—1>

=| %exp{—ievixxi | p)exp{=ieT(p)}(pi|x.,) wobeiV, =V (x,t)
T —

\ﬂ_J
exp(ip|x|) exp(_ix|—1p|)
_dp, : p;?
= J.geXp{l [ P (% —X4) —5(% +Vi):|}

Setzt man diesen Ausdruck wieder in (2) ein, erhalt man:
K(b;a) = (X, |U (t,0.t,)U (&, 8, Xo)

170

[H Jdx ][HI b jexp{ns<“>}
mit: S‘“)=nz+1:({pi;(xi _1)___ }

i=1




s jst bei genauerer Betrachtung bereits eine diskretisierte Version der Wirkung als
Zeitintegral Uber die Lagrange-Funktion, wahrend die Lagrange-Funktion hier als Legendre-
Transformierte der Hamiltonfunktion steht.

Um einen einfacheren Ausdruck zu erhalten, kdnnen wir nun noch die Integrale Uber die p;
ausfihren und erhalten mit

dp, | / m )i i =X)
I exp{lp,(x—xI 1)—|g%}— i exp{lm 2 }

=A-1
folgenden Ausdruck fiir den Propagator:

o 32 0

0

S~(n) ist nun eine diskretisierte Version der Wirkung, die nur noch von der Lagrange-
Funktion L abhangt, also nur noch von x, der Zeitableitung von x und t.
Im kontinuierlichen Grenzfall erhalten wir damit

ty
S0 _tsba)=[dLe) mit L =Ime-V(
ta

sowie flir den gesamten Ausdruck:

K(b;a) ~ (fﬂdx,} Ai” exp{ls(“’}—‘”) K(b;a) = XJE Dx exp{i-S(b;a)}| (3)

Xa

Das |Integral in (3) ist das sogenannte
Pfadintegral. Seinen Namen hat es ausgehend
von der Tatsache, dass wir hier Gber alle Pfade
vom Punkt x, zum Punkt x, integrieren. Dieses
Integrieren Uber alle Pfade kann man sich
anschaulich leicht an nebenstehender Skizze klar
machen.
Fir jeden Zeitschritt t; integrieren wir im
¢ diskreten Fall einmal Gber alle Orte x;, was sich
im kontinuierlichen Fall zu einem Integral ber
alle Pfade vom Ort x, zum Zeitpunkt t, bis zum Ort x, zum Zeitpunkt t, ergibt.

Einige Bemerkungen:

o  Wir integrieren wirklich ber alle moglichen Pfade, das heifSt auch Pfade, bei denen das
Teilchen vollig nicht-klassische Pfade durchlauft, Zitterbewegungen ausfihrt oder
zwischenzeitlich mit Uberlichtgeschwindigkeit reisen muss.

o Die Pfade laufen nur vorwarts in der Zeit.

Verallgemeinert man das Pfadintegral relativistisch, muss die Zeitkoordinate als
gleichberechtigte Koordinate neben den Ortskoordinaten angesehen werden, so dass das
Teilchen auch riickwarts in der Zeit reisen kann (Antiteilchen).
Die Rolle der Zeit wird dann von einem Parameter t abgelost.
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e Andieser Stelle wird nichts tber das Konvergenzverhalten im kontinuierlichen Fall fir dieses
sogenannte Funktionalintegral gesagt; wer sich fir die mathematischen Hintergriinde

interessiert, dem sei Funktionalanalysis ans Herz gelegt.

Ein wichtiger Fakt ist auBerdem, dass wir Uber Wirkungen als Phasenfaktoren einer

Exponentialfunktion integrieren. Da fur
klassische Pfade die Variation der Wirkung
verschwindet, addieren sich die Beitrage,
die Pfade nahe dem klassischen Pfad
liefern, auf (konstruktive Interferenz). Flr
Pfade, die weit weg vom klassischen Pfad
liegen, verschwindet die Variation der
Wirkung  dagegen nicht und der
Phasenfaktor oszilliert sehr stark, sodass
sich Pfade, die weit weg vom klassischen
Pfad liegen, gegenseitig ausléschen.

X4

Xy

N\

0S#0

0S=0

Klassischer Pfad

b

Fir groBe Wirkungen wird der Bereich, in dem die Pfade um den klassischen Pfad
konstruktiv interferieren immer schmaler, sodass flir makroskopische Systeme, d.h. im
klassischen Grenzfall, nur noch der klassische Pfad erlaubt ist. Hier wird also unmittelbar der
Grenzubergang zur klassischen Mechanik deutlich.

Einige Eigenschaften des Propagators

Einige Wichtige Eigenschaften des Propagators, die hier nur kurz genannt sein sollen.

K(Xb’ta; Xa’ta) = <Xb|xa> = 5(Xb - Xa)
K(c;a) =(x, [U (L, t,)|x,)

= o5 (U )6 6 U Gt )

= j d3x, K(c;b) K(b;a)
Zusammenhang mit der Wellenfunktion:
K(Ei) = (x, [U (t,.t)]x)

:Z<xf ‘U (t 8| (P, %)
=3 (X |W,)(¥, | %) exp(-iE,T)

=3, (%, )P} (%) exp(~iE,T)
W) =[x, |U )] #0)

=Id3Xi <Xf ‘U (t, 1ti)|xi><xi |T(t')>

- j da3x K(Fi)¥(x)

Zn:|l}ln><\yn|=1

T=t, -t
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Aus dem Zusammenhang mit der Wellenfunktion wird unmittelbar deutlich, dass genau
dann der Propagator die Schrodingergleichung erflllt, wenn dies auch fir die
Wellenfunktion gilt:

—i 2
(—iat + ( zlz) + V(X)j‘{’(x) =0  (Schrodingergleichung fur die Wellenfunktion)

Dass der Propagator die Wellenfunktion erfiillt, [asst sich leicht zeigen, in dem man die
zeitliche Ableitung 0,K(t, X,t,, X,) mit Hilfe eines infinitesimalen Zeitschritts explizit

ausrechnet, mehr dazu findet man in [2] und [3].

Beispiel: Der Harmonische Oszillator

Im Folgenden betrachten wir den Formalismus anhand des Harmonischen Oszillators, fiir
den wir mit Hilfe des Pfadintegrals natiirlich den Propagator

K(F:i) = j Dx exp{i-S(F:i)}

i
berechnen méchten.
Dazu betrachten wir zunachst die Wirkung, die gegeben ist durch

S[X] = Idt[ %)

Aufgrund der Linearitit des Integrals und der Tatsache, dass die Wirkung nur von X? und X2
abhangt, wird unmittelbar deutlich, dass sie in eine Summe Uber die einzelnen Dimensionen

S[X] = Idt( j jdt( j jdt( _“’ij

Damit zerfallt der Propagator in ein Produkt
K(f;i)zK(Xl,f’tf;X i |) K(sztﬂx
=Ky
Es reicht also, das Problem zunachst Eindimensional zu behandeln.
Fir den Pfad wahlen wir zunachst folgenden Ansatz:

) K(X3f’tf’x |’ti)

X(t) = zZ(t) + y(t) , d.h. fordere: ﬁ[Z] =0
Klassischer Pfad  Quantenfluktuation OX
Der Vorteil dieses Ansatzes liegt darin, dass wir die Wirkung des Klassischen Pfads berechnen
konnen und deren Variation verschwindet. Aullerdem wissen wir, dass der klassische Pfad
am Anfangspunkt beginnen und am Endpunkt enden muss. Somit sind die

Quantenfluktuationen am Anfangs- und Endpunkt notwendigerweise 0.
z(t)=x z(t;) =X,

y(t)=0 y(t;)=0
Fiir die Wirkung gilt nun:




Yooz Lo by wy?
S[z+y]=mJ-dtT+mjdt(zy+w22y)+mjdt—
G 1] t
%/—/
=S =S
b 2Z 272 i b 2 y 2\/2 )
12— w?z y2—w?y
=m|dt————-m| dty(Z+w?z)+m| dt ———
[ nfatcrwn]
%/—/ %—J
ESZ ESy

Im zweiten Schritt haben wir ausgenutzt, dass die Quantenfluktuationen an den
Randpunkten verschwinden missen, sodass der Randterm der Partiellen Integration
verschwindet.
Daneben kdénnen wir die Wirkung S in einer Taylorreihe fiir Funktionale entwickeln und
erhalten:
B oS 1 ,0%S

S[z+V] S[z]+J‘dty §Z£z]+2Idty > [2]+...
Zunachst fallen alle Terme hoherer Ordnung weg, da die Wirkung nur quadratisch von x
abhangt. Dies ist der Vorteil des Harmonischen Oszillators und flihrt dazu, dass wir ihn hier
so vergleichsweise einfach berechnen kénnen.
AulRerdem sehen wir, dass der Term linear in y verschwinden muss, da die Variation der
Wirkung fiir den klassischen Pfad z verschwindet, dies eliminiert also den Mischterm in (4)
und fuhrt zu

t , t .
ZZ_a)Zzz y2_w2y2
S[z+y]=m|dt———+m| dt ————.
[z+Y] J ; J ;
ESZ ESY
Die Wirkung separiert also wieder in zwei unabhangige Summanden, sodass der Propagator
in ein Produkt zerfallt:

K, =exp(is, )| Dy exp(is, )
Dabei kénnen wir die klassische Wirkung und den klassischen Pfad mit Hilfe der Euler-
Lagrange-Gleichungen leicht berechnen:
X, sin(w(t—t.)) + X sin(e(t, —t
Z(t)= f ( ( I.)) i ( (f )),Tth—tI
sin(wT)

Mo
=S, =—
2sin(awT)

Es verbleibt also im Wesentlichen nur noch das Pfadintegral IDy exp(iS,) zu berechnen.

((x; 2+ x,2) cos(wT ) —2X, X;)

Um dieses Integral zu berechnen, verfahren wir so, wie wir bereits in der Herleitung des
Pfadintegrals vorgegangen sind und betrachten unser Problem in infinitesimalen
Zeitschritten.

Dazu betrachten wir zunachst die Wirkung

t 72 _ 2\2
s, =m[atX =%
t 2

Diese lasst sich wie folgt diskret schreiben:




SY(N) 3 8( yn+1 n . yn — yn—l +w2yn 2)
&

n=1

m N
:__Zyn(yn+1 (2 w*e 2)yn Y, 1)=_yMy

2¢
yMy ist hierbei ein Matrlxprodukt mit
(2 - w2e?) -1 0 0
-1 (2-w?e?) -1 0
M = 0 -1 (2- w2e?) -1
0 0 -1 (2 - w2&?)

Fiir den Propagator gilt dann

K, =exp(iS, )IDy exp(iS, ) = exp(iS, )jd y exp(l—yMy)

_ m
- eXD('Sz)\/%et(M)

Das Pfadintegral geht also im Diskreten in ein einfaches N-dimensionales GauRintegral tber
und es verbleit noch die Determinante von M zu berechnen.
Per Vollstandiger Induktion kann man zeigen, dass fir diese gilt:

d, =det(M,,) = 2— w?s?

d, = (2-w?e2)? -

d, = (2— @%?)3-2(2 - w?e?) =2d, —d, — w?¢?d,

N+1 (2 w’e z)d -1
Dies lasst sich etwas umstellen zu:
dN+1 — 2dN +dN—l
82

-w?d, =0
—)g =@ (6t2 -o?)d, =0
Die Determinante muss also eine Harmonische-Oszillator-Differentialgleichung erfillen.
Damit ergibt sich:
d =asin(wT)+ pgcos(wT)
Fir w = 0 muss diese Gleichung immer noch erfllt sein. Fiir w = 0 erhalten wir

dy,=N zg und somit bleibt fiir die Koeffizienten nur noch a = i,ﬁ =0 und wir
erhalten:

Mo
2risin(wT)
Setzen wir die klassische Wirkung von oben ein und gehen wieder ins Dreidimensionale, folgt
schliefRlich der endgiiltige Ausdruck fiir den Propagator des freien Harmonischen Oszillators:

o [me o[ ime g, () a%osine( <L
K(f;1) = 2isin(aT) expLsm( T)(X cos?( )+4X sin?( ))}

K, =exp(iS;)




—

x|

Y Xf_xi
mit X = ;
2 2

i
+

Xl
Il

Betrachten wir nun noch den Grenzfall w > 0 erhalten wir den Propagator fur ein freies
Teilchen:

3 .
. m im -
K(f;i)=,—— exp| — X2

451 27T p[ZT }

Eine ausfiihrliche Herleitung flir den gezwungenen Harmonischen Oszillator findet man
bei [2].

Ausblick - Anwendungen des Pfadintegrals

Die Feynman’sche Pfadintegralformulierung der Quantenmechanik liefert eine weitere,
anschauliche Formulierung der Quantenmechanik, die zunachst vielleicht unniitz oder
unnotig aufwandig erscheinen mag. Dennoch haben wir bereits gesehen, dass gerade diese
Formulierung sehr anschaulich ist und uns wie keine andere den Grenziibergang von der
Quantenmechanik zur klassischen Mechanik aufzeigen kann.

Die Tatsache, dass das elektromagnetische Feld als harmonische Oszillatoren beschrieben
wird (s. auch Vortrag ,Wechselwirkung mit dem Strahlungsfeld“ von Daniel Geiss), fihrt
dazu, dass sich das Pfadintegral als einfachsten Formalismus zur Formulierung der
Quantenfeldtheorie herausstellt. Mehr dazu ist unter [2], [5], [6] und [7] zu finden.

Daneben wird das Pfadintegral auch in der statistischen Physik eingesetzt. Hier geht die Zeit
in eine imaginare Zeit

i7
t—>—-——
KT
Uber und es wird iber geschlossene Pfade integriert. Mehr dazu findet man unter anderem

auch in [3].
Dariber hinaus wird das Pfadintegral auch in modernen Theorien wie der Quantum Loop
Theory und anderen gerne verwendet und bleibt damit weiterhin aktuell.
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