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Al

WKB = Wentzel, Kramers, Brillouin in 1926
+Jeffreys (In 1923)? = WBK, BWK, WKBJ, JWKB and BWKJ ...



The classical WKB
approximation



e Schrodinger equation

d>y  2m

ot (E-Vw=0



e Schrodinger equation

d?y

Gz TPy =0



e Schrodinger equation

dzi/) 2
—z Tk =0
e Substitution
2m .
k(x) = ﬁ(E -V) if E>V(x)
k(x) =i 2FT’2”(V — E) = ik(x) if E<V(x)



e Schrodinger equation

d?y

2
e + k(x)*p =0
e Substitution
2m .
k(x) = ﬁ(E -V) if E>V(x)
. [2m . "
k(x) =i ﬁ(V—E):IH(X) if E<V(x)
e Solution
k = ko = 1(x) = exp(Likox)
k = k(x) = In general no analytical solutions



e Schrodinger equation

d?y

W + k(X)21/) =0

e What if k varies very solwly?  k’(x) < 1
We expect solutions in this form

exp(£ikox) = exp {i i/ k(x)dx}

e Does this new “solution” satisfies the Schrodinger equation?



Tunneling



Potential barrier

V(x)

Potential Barrier

D. Griffiths, Introduction to Quantum Me-

chanics
wl _ Aeikx + Be—ikx x<0
by S elimodr D s 0<x<a
VA(x) K(x)
e Fe'kx X > a



Transmission probability

’I/Jl _ Aeikx + Befikx x <0

1/]2 ~ efox K’(t)dt + Le_ fox K(t)dt O S X § a
K(x) K(x)

3 = Fe'™ x> a

How does the transmission probability look like?
Expectation: Continuous + Decreasing

Qualitative structure of the wave function of the alpha decay
D. Griffiths, Introduction to Quantum Mechanics



Transmission probability

1/]1 _ Aeikx + Be—ikx x<0

Wy Lefg r(t)dt | Le— o MO 0<x<a
K(x) K(x)

1/}3 _ Feikx X > a

How does the transmission probability look like?
Expectation: Continuous + Decreasing

FP?

= T= AR o< exp [ — 2/0 K(t)dt)]

Example: Alpha decay



Transmission probability

LOG,, ALPHA-HALF -LIFE IN YEARS
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Logarithm of the lifetime versus energy
I. Perlman, A. Ghiorso, and G. Seaborg, “Relation between half-life and energy in
alpha-decay”



The connection formula



At the turning point

1 it 1

V(x)

Schematic diagram

of the WKB solu-

tion

""" J. J. Sakurai, Modern
Quantum mechanics
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I t)dt =1 Jy t)dt
1/}()() = K Be'. + k() Ce
1( )D67 j;)X K(t)dt

We want ONE solution over all three regions
= Relation between the coefficients



At the turning point

Linearized
potential
AV(X)

Turning : :
point

Patching
region
X
Classical 0 Nonclassical
region region

Approximation at the turning point
D. Griffiths, Introduction to Quantum Mechanics



At the turning point

Linearized
potential
gl | General WKB solutions of both sides
point
£ 1 Be//j k(t)yde 4 _ 1 Cefiff k(t)dt
WY(x) = k(x) k(x)
- 1 De~ Jo m(t)dt
region H(X)
region

e Approximated Schrodinger equation at the turning point

d2
qu‘”/’:o

2m

hQV’(O)} >0

z=oax and a:[



At the turning point

Linearized
potential

gl | General WKB solutions of both sides
£ 1 Be//j k(t)yde 4 _ 1 Cefiff k(t)dt
WY(x) = k(x) Vk(x)
- 1 De~ Jo m(t)dt
rogon 1(x)
Classical DW

e Approximated Schrodinger equation at the turning point

3
z=ax and a= [hQV’(O)} >0

e [xact solution to this potential = Airy function



At the turning point
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Airy functions
from Wikipedia “Airy function”
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https://en.wikipedia.org/wiki/Airy_function?oldformat=true

At the turning point

Linearized o ]
potential To find out the relation between B,

C and D:

e Using WKB to solve the
Schrédinger equation with the

/ linear potential

e Comparing it with the

V(%)

Turning
point

Patching A i
region asymptotic behaviour of the

x o q
Classical 0 Nonclassical Ai ry functions.
region region
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Comparing the coefficients

e Schrodinger equation

1
2m 3

2
dw—zw:O with z=ax and a—{hZV'(O)} >0

dz?

12



Comparing the coefficients

e Schrodinger equation

1
3

d?1 . 2m_,
P z) =0 with z=ax and a= {th (0)} >0
e WKB x >0

NIw.

}

D 2
Y(xX)wks = BA1/A exp {* g(ozx)

e Airy function x > 1

b 2
2/ (ax) exp [g(ax)

3
2

(x) airy & } +

Nlw
[ I

a 2
2 /m(ax)/s P [ —3(@)

12



Comparing the coefficients

e Schrodinger equation

1
3

§ 2
CZITZ) —zip=0 with z=ax and a= {;IV'(O)} >0
e WKB x>0

D 2 3
Y(xX)wke = B/igi/a exp {* g(ax)Z}
e Airy function x > 1

w(X)Airy ~

ax)

a
2 /m(ax)/s P [ 3

e Result
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Comparing the coefficients

e WKB x <0

Y(X)wks = W{Bexp [Ié(—ax)%}—f—Cexp {—ii(—ax)i}}

e Airy function x < —1

a

W(x) ainy = \/E(—ax)l/42ll{ exp [/% + i%(fax)%}

12



Comparing the coefficients

e WKB x <0

Y(X)wks = W{Bexp [Ié(—ax)%}—f—Cexp {—ii(—ax)i}}

e Airy function x < —1

a

W(x) ainy = \/E(—ax)l/“21i{ exp [/% + i%(fax)%}

e Result

B a : C a _5
el7r/4 _ e iw/4
Ja 2T Ja 2T
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Comparing the coefficients

L Bei L2 k(t)dt + Ce—iff k(t)dt

_ V k(x)

1/}()() - L P Jo w(t)dt
#(x)

e Final result: The connection formulas

B=—ie™/*.D
C=—ie"™*.D
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Comparing the coefficients

o8- Bi(z)

MMA ﬁ\ | ;
WA syl
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Comparing the exact solution of the Airy functlon and the WKB
approximated solution E. Merzbacher, Quantum mechanics

Bi(2), WKB

3
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New development & Applications




Application on quantum field theor

Cosmological particle production and the precision of the WKB approximation

Sergei Winitzki
Department of Physics, Ludwig-Mazimilians University, 80333 Munich, Germany
(Dated: February 7, 2008)

Particle production by slow-changing gravitational fields is usually described using quantum field
theory in curved spacetime. Calculations require a definition of the vacuum state, which can be
given using the adiabatic (WKB) approximation. I investigate the best attainable precision of
the resulting approximate definition of the particle number. The standard WKB ansatz yields a
divergent asymptotic series in the adiabatic parameter. I derive a novel formula for the optimal
number of terms in that series and demonstrate that the error of the optimally truncated WKB
series is exponentially small. This precision is still insufficient to describe particle production from
vacuum, which is typically also exponentially small. An adequately precise approximation can be
found by improving the WKB ansatz through perturbation theory. I show quantitatively that the
fundamentally unavoidable imprecision in the definition of particle number in a time-dependent
background is equal to the particle production expected to occur during that epoch. The results are
illustrated by analytic and numerical examples.
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Content of the article

e Under the assumption of an expanding universe:
Vaccum defined at ty # Vaccum defined at t;
= particle production

e WKB can be applied to the Klein Gordon equation to calculate the
particle production

e Problem:
First order WKB: No reasonable result
Higher order WKB: Divergent after ng.x

e Improvement:
Pertubation of the coefficients = convergent
Estimating the error term of higher order WKB

16



Particle production in expanding universe

e Field quantisation using a mode expansion

3 .
X(t,x) = /(;jr;;/z\%(ﬁke'k'ka(t)-l- H.e.)

e The mode functions vi(t) are complex-valued solutions of
/!

vy + KRam— 2 )y =0
a

e The vacuum state |0) is defined by & |0) = 0 for all k
Vk 2(t) is the vacuum defined at t = ¢
Vi p(t) is the vacuum defined at t = t;
Particle production: vy p(t1) # vi,a(t1) = U(t1, to) vk a(to)

17



Particle production in expanding universe

e Rewriting the Klein Gordon equation
v +wi(t)vk =0
e In a flat minkowski space time:
w=const and vy oc e Wkt/€

e In expanding universe (treated as curved space in QFT):

Vivkg(t) = ve exp ( - i/tw(t/)dt/)

w(t) @

e We can use WKB to define v,(ty) and vp(t1)

18



Particle production in expanding universe

Goal: Calculating the particle number density |3|? with

va(t)ve(tr) — va(t)vp(t1)
2i

P =

Need v.(t1)
Applying first order WKB again?

Result: No particle production = Contradiction

Requiring higher order WKB

19



Higher orders of WKB approximation

e Equation
2 d%
P hallh
dt?
e Assumption (W and B real functions)

+ w(t)21/J =0

P(x) = exp {:i: i/ W(t) + iB(t)dt} W(t) ~ w(t)
e Substituting in the equation

B-B2=w?—- W2

W —-2WB =0

20



Higher orders of WKB approximation

e Equation
2 d%
P hallh
dt?
e Assumption (W and B real functions)

+ w(t)21/J =0

W) = [i//W(t)wB(t)dt} W(t) ~ w(t)

e Substituting in the equation

20



Higher orders of WKB approximation

e Substituting B in, we have

W(t) = exp [j: i/ W(t)dt]

W 3We2
— 2 _ —
W= \/“’ Gw ~ aw?)

e How can we solve W?

with

21



Higher orders of WKB approximation

e Substituting B in, we have

W(t) = 5 {ii/W(t)dt]

W 3We2
— 2 _ —
W= \/“’ Gw ~ aw?)

e Assuming W has the following power series expansion:

with

W(t) = w+ eSi(t) + Sa(t) + - -- (%)

e Substituting () in the function
Solve it by collecting terms with equal powers of ¢ iteratively
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Higher orders of WKB approximation

Solution of higher order WKB
1o 32
Wt)=w—e|-— — ——
() =w (4 w2 8 w3>
L2 1 w® 5 E0 13w2+99azw2 297 &*
“\16 W' 8wt 3207 32 Wb 1287
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Higher orders of WKB approximation

e Solution in the form:
W(t) =w+ eSi(t) + S(t) + - -
Problem:
e Estimation of the series

1Sl o ( et))Q" (2n)

2&}( |t7 t1|2n+1

Divergent !!

e The estimated order n, which gives the best accuracy
n, oc e tw(t)|t — ti]

S, x

\/Eexp(f2n*)
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Improvement of WKB approximation

e Classical WKB approximation

x(t) = GXL(D)+GCX_(t) with Xg = exp [ii / tw(t’)dt’]

to

o=
=

e Perturbation of the coefficients

x(t) = p(£)X:(£) + q(t)X_(t)
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Improvement of WKB approximation

Classical WKB approximation

x(t) = GXL(D)+GCX_(t) with Xg = exp [ii / tw(t’)dt’]

to

o=
=

Perturbation of the coefficients

x(t) = p(£)X:(£) + q(t)X_(t)

Two degrees of freedeom = another constraint

dx(t)
dt

= iw(t) | = p(£)X(2) + a(£)X-(1)]

Solving p(t) and q(t), represented as series of X, and X_
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Improvement of WKB approximation

e Representing p(t) and ¢g(t) by X, and X_

toX_
=1 t')dt
p(t) +2.t0wx+()

1 td']XJr / /
t) = = t')dt
a0y = [ Sxe)

e Repeting the successive procedure

> wX_
p(t) =1+ ; uzn(t) un(t) = > /to X, ———upp_1dt’
. 1 [TaX, ,
q(t) = nz:; uzp-1(t) Uny1(t) = 5 WX Uopdt

e Bremer series (convergent)
X(t) = X+ + Zﬁil(uzn_lX_ + Uan+)
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Precision of the WKB series

Goal: Estimating the precision of WKB series

Procedure

e Representing the exact solution x(t) by Bremer series
e Comparing it with the WKB series

Optimal order
ot
I—.— mintl.|/ w(t)dt|
to

Error of optimally truncated WKB series

exp(—2nmax)

nmax
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Precision of the WKB series

led

1e3

e2y

[Sn]/So

4

1e-054

1e-06+

1e-07+

1e-08+

1e-09-

w(t) = wo (1 + Atanh %)

Nmax ~ WO‘tO‘(l iA)

Magnitudes of first 10 terms S,,
n=12"---,10, of the WKB se-
ries for w(t) and different values of
to. Crosses indicate the error esti-
mates.

W. Winitzki, “Cosmological particle pro-
duction and the precision of the WKB ap-
proximation” 2008
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Common approximating procedure

Four steps of doing approximation

1. Assuming a general form of the solution
(eiu(x/))

2. Substituting in the equation
(Schrodinger equation)

3. Solving the variables or functions

4. Estimating the error

Thank you !
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