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Quanten-Hall-Effekt

Beobachtungen Die Entdeckung und Formulierung des Quanten-Hall-Effekts
kann auf Versuche zurückverfolgt werden, bei denen die Verbesserung der
Feldeffekttransistoren (FET) als Ziel gesetzt wurde. Hierzu wurden Resisti-
vitātsmessungen in der Probe durchgeführt; die Messergebnisse zeigen eine
Struktur mit Plateaus in Abhängigkeit von Parametern, die die Elektronen-
anzahl bestimmen. Das Besondere, was von K. von Klitzing in seiner Publika-
tion beschrieben wurde, ist, dass die Resistivitātswerte auf diesen Plateaus
lediglich mithilfe von Naturkonstanten und einer ganzen Zahl ausgedrückt
werden können.

Abb. 1. Typische experimentelle Ergebnisse.[3]

Versuchsaufbau In dem von Klitzings Experiment wurden Si-MOSFETs
(”Metal-oxide-semiconductorFETs) verwendet. Beim Anlegen von einer Gate-
Spannung, entsteht zwischen dem Isolator (Oxid) und dem Halbleiter eine
Elektrongasschicht, deren Dicke einige Zehnerangström beträgt. Damit kann
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das Gas als zweidimensional angesehen werden. Wichtige Voraussetzungen
für das Entstehen des Effekts sind niedrige Temperaturen (< 4K) und große
B-Felder (s. Abb. 1).

Abb. 2. Schematische Darstellung vom MOSFET.[4]

Abb. 3. Messung von xx- und xy-Komponenten des Resistivitätstensors.
Für einen bestimmten Source-Drain Strom ist der Spannungsabfall zwischen
P-P und H-H proportional zu den Resistivitäten ρxx und ρxy. [5]

Wiederholung: Klassischer Hall-Effekt Aufgrund der Lorentzkraft,
bewegen sich die Elektronen, die auf der x-y-Ebene eingeschränkt sind, in
einem konstantem Bz-Feld auf kreisförmigen Trajektorien. Die Kreisfrequenz
ωB = eB

m
wird Zyklotronfrequenz genannt.

~j = −ne~v (1)

~j = σ ~E (2)

Falls in der Bewegungsgleichung weiterhin ein Ex-Feld und ein linearer
Reibungsterm −m

τ
~v (wobei τ - die mittlere Stoßzeit) berücksichtigt wird,

kann für das System im Gleichgewicht mithilfe von Gleichung 1 und 2 die
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Form des σ-Konduktivitäts- bzw. ρ-Resistivitätstensors bestimmt werden:
(ρ = σ−1)

ρ =

(
ρxx ρxy
−ρxy ρxx

)
=

(
m
ne2τ

B
ne

− B
ne

m
ne2τ

)
(3)

Daraus folgt das klassische Verhalten von ρxx und ρxy in Abhängigkeit
von B, wie in Abb. 4.

Abb. 4. ρxx und ρxy als Funktion von B.

Ganzzahliger Quanten-Hall-Effekt Die Energien von Elektronen in ei-
nem B-Feld bzw. B- und E-Felder sind quantisiert. Um das für den Fall eines
Bz-Feldes zu zeigen, findet man erst die Lagrange-Funktion und damit den
kanonischen Impuls:

L =
m

2
~̇x2 − e~̇x ~A (4)

~p =
∂L

∂~̇x
= m~̇x− e ~A (5)

Daraus folgt der Hamiltonian des Systems:

H = ~̇x · ~p− L =
1

2m
(~p+ e ~A)2 (6)

Mithilfe des mechanischen Impulses kann ein Ab- bzw. Aufsteigeoperator
(a und a†) definiert werden:

~π = ~p+ e ~A = m~̇x (7)

a =
1√

2e~B
(πx − iπy) (8)

Der Hamiltionian kann somit in einer Form geschrieben werden, die ana-
log zum HHO ist:
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H =
1

2m
~π2 = ~ωB(a†a+

1

2
) (9)

Die Energiewerte folgen mit ω gleich der Zyklotronfrequenz:

En = ~ωB(n+
1

2
) =

~eB
m

(n+
1

2
) (10)

Diese Energieniveaus werden Landau-Niveaus genannt. Um die entspre-
chenden Zustände zu bestimmen, wird oft die Landau-Eichung verwendet:

~A = xBŷ (11)

Da sowohl ~B als auch ~A translationsinvariant in y-Richtung sind, wird
der Ansatz ψk = eikyfk(x) verwendet. Mit

H =
1

2m
(p2x + (py + eBx)2) (12)

folgen die Lösungen der Schrödinger Gleichung; haben die Form des eindi-
mensionalen harmonischen Oszillators; die Verschiebung der Wellenfunktion
in x-Richtung ist durch k bestimmt.

ψn,k(x, y) ≈ eikyHn(x+ kl2)e−
(x+kl2)2

2l2 (13)

l =

√
~
eB

(14)

Wegen der k-Abhängigkeit der Wellenfunktionen, sind die Landau-Niveaus
entartet. Um die Größe der Entartung zu bestimmen, wird die endliche Aus-
dehnung des Gases berücksichtigt - Lx und Ly. Es folgt für k:

k =
2π

Ly
λ, λ ∈ N (15)

Da die x-Position der Wellenfunktionslokalisierung von k abhängt:

k ∈ [
−Lx
l2

, 0] (16)

Es folgt für die Anzahl der Zustände pro Landau-Niveau:

N =
Ly
2π

∫ 0

−Lx
l2

dk =
LxLy
2πl2

=
eAB

2π~
(17)

Die anschauliche Erklärung folgt: falls sich die Fermi-Energie des Systems
im Bereich zwischen zwei Landau-Niveaus sich befindet und die thermische
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Energie niedrig ist (kBT � ~ωB), gibt es keine besetzbaren Zustände für
weitere Elektronen.

Wenn man zusätzlich im Hamiltonoperator den Term für das E-Feld
berücksichtigt, kann derselbe Ansatz verwendet werden. Die Zustände ha-
ben die Form von (13) mit x → x + mE

eB2 . Die Energien sind nicht mehr
entartet und hängen linear von k ab:

En,k = ~ωZ(n+
1

2
)− eE(kl2 +

eE

mω2
B

) +
m

2

E2

B2
(18)

Bei der Erklärung dieses Phänomens werden mehrere Vereinfachungen
gemacht. Als erstes werden die Elektronen als spinlos bzgl. den Energienive-
aus betrachtet. Der Energieunterschied bei der Zeeman-Spaltung hängt von
der Stärke des B-Feldes ab,

4E = 2µBB =
e~
m
B (19)

Wegen der großen Feldstärken, die verwendet werden, ist auch die Ener-
giedifferenz groß und es finden keine Spin-Flips.

Randkanalmodell Die Energie-Quantisierung in dem System bietet
einen intuitiven Anfangspunkt für die Effekte, die bei der Resistivität bzw.
Konduktivität beobachtet wurden. Diese Intuition kann durch das sog. Rand-
kanalmodell entwickelt werden.

Im klassischen Fall stoßen die Zyklotronorbits neben Ränder mit dem
Rand - somit bewegen sich die Elektronen dort nur in einer (y bzw. -y) Rich-
tung. In der quantenmechanischem Bild sind die Ränder durch ein Potential
modelliert. Die Lokalisierung der durch k unterschiedenen Wellenfunktionen
ist durch ein x-Wert gegeben. Das Potential kann um den Lokalisierungs-
punkt X = −kl2 taylorentwickelt werden:

H =
1

2m
(p2x + (py + eBx)2) + V (X) +

∂V

∂x
(x−X) + ... (20)

Die Terme quadratischer und höherer Ordnungen werden weggelassen und
konstante Terme können vernachlässigt sein. Damit ist der Potentialterm
linear in x und die erhaltenen Energien analog zu 18. Wie auch beim E-Feld,
bewegen sich die Zustände mit einer Gruppengeschwindigkeit:

vy =
∂
En,k

~
∂k

= − 1

eB

∂V

∂x
(21)
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Abb. 5. Zustände im Potential im Zusammenhang mit der Fermi-Energie
des Systems.

Diese Geschwindigkeit beschreibt den Effekt, der im klassischen Fall be-
obachtet wird. Als intuitive Beschreibung gilt auch, dass wegen des Zusam-
menhangs zwischen der x-Position und dem Impuls der Wellenfunktionen,
die Zustände an den Rändern näher an der Fermi-Energie des Systems liegen
und sich somit bewegen können.

Mithilfe der Einführung einer Potentialdifferenz4µ zwischen den Rändern,
kann der Strom in y-Richtung berechnet werden.

Iy = −e
∫

dk

2π
vy(k) =

e

2πl2

∫
dx

1

eB

∂V

∂x
=

e

2π~
4 µ (22)

Die transversale Konduktivität folgt aus eVHall = 4µ:

σxy =
Iy
VH

=
e2

2π~
(23)

Dies entspricht der Konduktivität für ein Landau-Niveau und als Ele-
mente der inversen Matrix bei ρxx = 0 folgen die beobachteten Resisti-
vitätswerten. Auch das Verschwinden von ρxx folgt aus dem Modell: bei
gefüllten Landau-Niveaus finden keine dissipative Effekte statt, da die Elek-
tronen sich in entgegengesetzten Richtungen an verschiedenen Rändern der
Probe bewegen.
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Abb. 6. Experimentellen Ergebnisse vom fraktionalen QHE.

Fraktionaler QHE Die obige Begründung gilt für den Fall von ganz-
zahligen Vielfachen der Konduktivität bzw. Resistivität. Es werden trotzdem
Plateaus bei anderen, rationalen Koeffizienten beobachtet. Einige der Vor-
aussetzungen dieses fraktionalen QHE sind noch tiefere Temperaturen und
Proben, bei denen Verunreinigungen und andere Störungen eine geringere
Rolle spielen.

Konsequenzen Da diese Resistivitätswerte nur mit Fundamentalkon-
stanten zusammenhängen, und der ganzzahlige Vorfaktor bis auf eine Genau-
igkeit von 10−9 bestimmt werden kann, erlaubte es die Einführung eines neu-
en Resistenzstandards. Es basiert sich auf dem Resistenzquantum gegeben
durch die von-Klitzing-Konstante RK = h

e2
= 25812, 807557(18)Ω. Seit 1990

werden die daraus erhaltenen ”konventioneller Werte”RK-90 für die Eichung
von Resistenzen verwendet. Derselbe Zusammenhang bietet eine alternative
Möglichkeit zur Bestimmung des Wertes der Feinstrukturkonstante.
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