Quanten-Hall-Effekt

Handout zum Seminarvortrag von Alexander Stoll im Rahmen des Seminars ”Probleme der Quanten-
mechanik” bei Prof. G. Wolschin.

1 Einleitung

Klaus von Klitzing entdeckte am 5. Februar 1980 den Quanten-Hall-Effekt. Er fithrte die Messungen in einem
Hochmagnetfeldlaboratorium in Grenoble an MOSFET’s bei Temperaturen von 1.5 K und hohen Feldern von bis
zu 18 T durch. Seine Messungen zeigten Abweichungen zu der klassischen Erwartung und wiesen plateauartige
Strukturen im Hallwiderstand und Oszillationen im Langswiderstand auf (siehe fig. 1). Fiir diese Entdeckung wurde
K. v. Klitzing mit dem Nobelpreis im Jahre 1985 geehrt. Das Folgende erklart den Widerspruch zum Klassischen,
sowie die zugehodrige Erklarung des Quanten-Hall-Effekts im Rahmen der Quantemechanik.
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Figure 1: QHE-Messungen

2 Klassischer Quanten-Hall-Effekt

Edwin Herbert Hall entdeckte 1879 den nach ihm benannten Hall-Effekt. Er untersuchte hierbei den Einfluss eines
magnetischen Feldes auf einen stromdurchflossenen Leiter. Der Aufbau ist hierbei wie folgt: Es wird ein konstantes
Magnetfeld B erzeugt, das in z-Richtung weist. Wahrenddessen, fliele ein konstanter Strom in x-Richtung in einem
Leiterpléattchen. Da wir es hier mit bewegter Ladung im Magnetfeld zu tun haben, wirkt die Lorentzkraft senkrecht zur
Bewegung der Ladungstriger und senkrecht zum B-Feld, also in y-Richtung. Dadurch wird ein Potentialunterschied
zwischen den beiden Enden in y-Richtung erzeugt, was dann schliellich als sogenannte Hall-Spannung registriert wird.

2.1 Drude-Theorie/Modell

Fiir die Bewegungsgleichungen der Ladungstrager, gehen wir von der Drude-Theorie aus. In diesem Modell betrachtet
man ein elektrischen Leiter als Ionenkristall, in dem sich die Elektronen frei bewegen koénnen, ein Elektronengas
bilden und somit verantwortlich fiir die Stromleitung sind. Wird nun eine Elektrisches Feld E angelegt, erfahren
die Elektronen die Kraft F_"el =q- E und werden dadurch diskontinuierlich beschleunigt, da das ohmsche Gesetz
gelten muss. Nach einer gewissen Zeit, stellt sich ein Gleichgewicht ein, in dem die mittlere Geschwindigkeit des
Elektrons, die sogenannte Driftgeschwindigkeit, proportional zur Feldstérke ist. Innerhalb des Modells erklart sich
dies durch das Zusammenstoflen von Elektron mit Gitterion, was ein Abbremsen bewirkt. Die mittlere Stofizeit T,
auch Relaxationszeit genannt, zwischen zwei Kollisionen beschreibt diesen Vorgang. Die Bewegungsgleichung lautet:
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Geht man nun zuriick zum Hall-Effekt, so muss man zusétzlich noch durch das Magnetfeld B hervorgerufene Lorentzkraft
berticksichtigen:

m-i+ 2. Gp = —e(E + 0p x B) (2)
T
Im stationdren Zustand, ist die Driftgeschwindigkeit gegeben durch

T = .
ip = —e(E+7p x B 3
D em( +vp x B) (3)

Im Folgenden nehmen wir weiterhin an, dass das B-Feld in z-Richtung weist und erhalten fiir die Stromdichte nach
dem ohmschen Gesetz und Umstellung nach den Komponenten von vp in (3) :
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wobei o¢ = 77,62% die Leitfahigkeit ohne Magnetfeld beschreibt und w. = % die Zyklotronfrequenz.
Nun werden wir auch fiir die weitere Diskussion einen flachen Leiter mit rechteckigem Querschnitt betrachten, wodurch
sich der Strom und das elektrische Feld in z-Richtung vernachlissigen ldsst. Damit wird (4) aufgelést nach den

Elektrischen Feldern zu
= . 5
( E, > <_pwy Paa Jy (5)

wobei die spezifischen Widerstandskomponenten gegeben sind durch
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pay =~ = KuB. (7)
mit Kg = i der Hall-Konstanten. Plottet man diese beiden Widerstandswerte in A

Abhéngigkeit des B-Feldes, so erhalten wir nach klassicher Erwartung die Struktur in
fig. 2. Dies erklart warum der Verlauf, den Klitzing damals gemessen hat, duflerst
merkwiirdig erschien (siehe fig. 1).

3 Zwei-dimensionales Elektronengas (2DEG)

Um nun den QHE zu realisieren, braucht man neben tiefen Temperaturen und hohen

Magnetfeldern ein sogenanntes zweidimensionales Elektronen Gas (2DEG). Man kann  Figure 2:  Klassische Er-
diese in metal-oxide-semi-conductor-field-effect-transistors (MOSFET’s) beobachten wartung

oder auch (und iiblicher) in diversen Halbleiterheterostrukturen (z.B n-dotiertes Al-

GaAs und GaAs) erzeugen. Das 2DEG sind hierbei freie Elektronen, die in einer

Richtung eingeschrankt sind in ihrer Bewegung. Man kann dies durch ein schmalen Potentialtopf naherungsweise
erreichen, was zur Folge hat, dass die Energiewerte in dieser Richtung quantisiert sind. Ist nun dabei nur das unterste
Energieniveau besetzt, so sind die Elektronen frei in der zur eingeschréankten Richtung senkrechten Fléche.

Hierbei dient als Grundmaterial ein p-dotiertes Siliziumkristall (Substrat oder auch ,,Bulk”), in welches zwei n-dotierte
Gebiete mit hoher Leitfdhigkeit eingelassen sind, die wiederum den Source- und Drain-Anschluss bilden. Man hat
also mit dem Substrat dazwischen eine npn-Struktur, die kein Stromfluss zuldsst (siehe auch npn-Transistor). Im
Zwischenraum wird eine diinne Isolierschicht (Dielektrikum) aufgebracht. Dieses bewirkt eine Abtrennung der Gate-
Elektrode von dem darunterliegenden Substrat. Gate, Isolator und Bulk erzeugen dann ein Kondensator. Wird eine
Spannung zwischen Gate und Bulk angelegt, so wird durch das damit erzeugte elektrische Feld Elektronen an die
Grenzschicht gebracht, auch als n-Kanal bezeichnet, falls die Verdrangung der Majoritatsladungstrager so grof3 ist,
sodass keine Rekombination mehr moglich ist. Die Beziehung zwischen Anzahl der negativen Ladungstréger und der
Gate-Spannung ist hierbei proportional. Bei nun richtig eingestellter Gate-Spannung U, ist es moglich, den n-Kanal
in ein 2DEG zu bilden.

4 Integraler Quanten-Hall-Effekt

Legt man am MOSFET nun ein Magnetfeld so an, dass dieser orthogonal zum n-Kanal weist, so ist es moglich eine
Hallspannung an den Elektroden, die senkrecht zum B-Feld sind, zu messen. Wie schon bereits beschrieben, ist
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Figure 3: a) MOSFET und b)/c) n-dotierte AlGaAs/GaAs-Heterostruktur

n ~ Uy, woraus folgen miisste, dass die Hall-Spannung umgekehrt proportional zur Gate-Spannung ist. Klaus von
Kitzling beobachtete dies jedoch nicht (siehe fig.1 ). Wahrend bei niedrigen Feldern der Langs- und Quer-Widerstand
der Kklassisch vorhergesagten Beziehung folgen, so sieht man bei hoheren Feldstéirken starke Abweichungen. Man
beobachtet mehrere Plateau-Strukturen, deren Widerstandswerte unabhéngig von Geometrie der Probe und des B-

Feld-Wertes auftreten:
Ry — Ll
H — v 62,
Es fallt auBerdem auf, dass die Minima, bei denen der Langswiderstand verschwindet, genau bei den Werten des
magnetischen Feldes liegt, bei denen auch die Plateaus auftreten (siehe fig.1).

vVETL (8)

4.1 Landau-Niveaus

Um nun diesen Effekt quantenmechanisch zu beschreiben, eignet es sich die Schrodingergleichung fiir ein Elektron
des 2DEG in der x-y-Ebene unter Einfluss eines dufleren Magnetfeldes zu betrachten. Wir werden hierbei fiir die
weitere Diskussion den Spin der Elektronen vernachlissigen, was in Néherung fiir die meisten Quanten-Hall-Systeme
gut moglich ist.

Die Schrédingergleichung ist im Ortsraum gegeben durch:

((mﬁ + eA(z,y))?

2m

Wobei A(z,y) das Vektorpotential zum B-Feld ist (also B = V x A) und U(y) das Randpotential, das die Elektro-
nenbewegung einschrankt, beschreibt. Mit Hilfe der Landau-Eichung A= (—By,0,0) zeigt das B-Feld in z-Richtung.
Hierbei sei erwiihnt dass dies eine Wahl ist und B invariant unter Translations- und Rotationssymmetrie ist in der
z-y-Ebene, wobei die Wahl von A es nicht ist, denn sie bricht sowohl Rotationssymmetrie als auch Translation-
ssymmetrie in y-Richtung. Unter Vernachldssigung des Randpotentials U(x,y), sowie dem Seperationsansatz nach
Landau ¢ (x,y) = é(x)x(y) = %exp(ikx)x(y) erhalten wir als Losung fiir x(y) die Eigefunktionen eines verschobenen
harmonischen Ostzillator:

a—+ ay 2
k@) = exp(~ A () (10)
mit a = /7=y, ap = /"5<yr und H, dem n-ten Hermiteschen Polynom. Der Seperationsansatz in der ver-

wendeten Form ist moglich, da wir eine manifeste Translationsinvarianz in x-Richtung haben, weshalb wir nach
Energie-Eigenzustéande suchen konnen, die auch Eigenzustdnde zum Impulsoperator p, sind. Das sind aber gerade
ebene Wellen in x-Richtung, was auch die Form von ¢(z) erklart. Die Energieeigenwerte des harmonischen Oszillator
sind diskret und unabhéngig von k. Die Energieeigenwerte unseres Problems sind demnach gegeben durch:
1

E, = (’I’L + i)hwc, n € Ny (11)
Man bezeichnet diese diskreten Eigenwerte auch als Landau-Niveaus. Das Magnetfeld bewirkt also, dass die Subbénder
des 2DEG aufgespalten werden und es entstehen diskretisierte Energiewerte. Unsere Zustédnde im k-Raum werden nun



auf Kreislinien gezwungen und unsere zuvor kontinuierliche Zustandsdichte zerfallt nun in eine Reihe von dquidistanten
6-Peaks im Abstand von fww,. Klassisch lasst sich dies insofern veranschaulichen, dass sich die Elektronen auf Kreisbah-
nen mit Kreisfrequenz w, bewegen, was sich wiederum durch die ﬂberlagerung zweier senkrecht zueinander stehenden
harmonischen Schwingungen beschreiben l&sst.

Das System ist des Weiteren entartet, denn obwohl die Wellenfunktion ) von k abhéngt, tun das die Energieeigenwerte
nicht.

Als Néchstes sind wir am Entartungsgrad der Landau-Niveaus interessiert, welche uns Auskunft iiber die Anzahl
der Elektronenzustdnde pro Niveau angibt. Wir wissen, dass y, durch die Lange L, und Weite L, beschrénkt ist.
Zusétzlich nehmen wir periodische Randbedingungen an

2
k. = nzL—:, Ng € 7 (12)

Damit und dem Abstand Ay = %Akaj zwischen den Zentrumskoordinaten erhalten wir folgende Anzahl an Zustéanden
in der Probe

L eB
N=-“Y=L,L,— 13
Wird das nun auf die Einheitsfliche normiert, erhalten wir den Entartungsgrad Ny,
eB

Dieser gibt an wie viel Zustdnde man auf einem Kreis mit Radius \E | im k-Raum vorfindet. Eine weitere interessante
Grofe ist der Fiillfaktor v, der die Anzahl der gefiillten Landau-Niveaus (also Kreise im k-Raum) angibt:

_ Ne _ neh
_NL_GB

14

(15)

wobei n. die Elektronendichte ist. Setzt man das in die klassisch berechnete Hallresistivitét, so erhalten wir folgendes:

B Bh _1h
pwy_VNLe_Ve2B_l/e2

(16)

Falls v ganzzahlig sein soll, so muss demnach B duflerst fein geregelt sein, jedoch wird das nicht im QHE beobachtet,
denn die Plateaus erstrecken sich iiber eine gewisse Breite. Dies ldasst sich durch die Fermi-Energie wiederum erkléren.

Mit der Fermienergie Er bezeichnet man fiir 7' = 0K die Energiedifferenz zwischen Grundzustand zum hichstbesetzten
Zustand. Geht man nun von einem freien Elektronengas aus, so werden die Zustdnde im Impulsraum energetisch
nacheinander aufgefiillt, also beginnend mit k =0 bis zu k = EF, dem Fermiwellenvektor. Hierbei sind nun alle
Zustéande mit E < Er besetzt und liegen im Impulsraum innerhalb der Fermi-Kugel. Die Zustéande die nun auflerhalb
dieser Kugel sitzen, sind dabei unbesetzt. Die hochst besetzten Zustdnde sind somit diejenigen Zustande, die auf
der Oberflache der Fermi-Kugel liegen. Wir wissen zusétzlich, dass die Landau-Niveaus der Elektronen im Mag-
netfeld energetisch getrennt sind mit dem Abstand AFE = hw, = %. Sei nun im Folgenden FE,, die Energie des
hochstbesetzten Landau-Niveaus und man nehme an, dass F, < Er < E,;1 . Zusitzlich gilt fiir niedrige Tempera-
turen |E,, +fuw. — Er| > kT, wodurch im Phasenraum im Umkreis § E «~ kpT keine freien Zusténde vorhanden sind.
Auf Grund der geringen kinetischen Energie ist es den Elektronen auch nicht méglich die Energiedifferenz zwischen
Fermi-Energie und unbesetztem Landau-Niveau zu iiberwinden. In solch einem beschriebenen Fall, ist der Fiillfaktor
ganzzahlig, da das hochsbesetzte Landau Niveau n voll besetzt ist, aber das Niveau n + 1 nicht. Diese Erklarung
unterliegt jedoch einem Denkfehler und zwar der Tatsache, dass Er gerade durch FE,, definiert ist. Dies wird unter
4.3 weiter erlautert.

Noch zu erwéhnen ist, dass wenn man es mit kleineren Magnetfeldern zu tun ( < 6 Tesla) hat, so ist die Aufs-
paltung der Spinniveaus gupB (mit g dem Landé-Faktor) vernachléssigbar im Vergleich zur Aufspaltung der Landau-
Niveaus. Man sagt hier auch, dass die Landau-Niveaus spin-entartet sind und damit jeder Elektronenzustand aus
zwel Elektronen besteht (spin-up und spin-down).



4.2 Randkanalmodell

Der elektrische Transport geschieht nur mit Elektronen nahe der Fermi-Kante Uy)
(siehe Sommerfeld-Theorie). Ein logischer Schluss wére demnach zu behaupten,
dass der Widerstand sein kleinsten Wert erreicht, wenn die Fermi-Energie auf
eines der Landau-Niveaus fallt, denn in den voll besetzten Landau-Niveaus kann
keine Elektronenstreuung auftreten, die mittlere Stofizeit 7 ist daher unendlich.
Somit nehmen sowohl 0., als auch p,, den Wert null an. Jedoch ist das nicht
der Fall im QHE (siehe auch fig. 1).

Um das zu erkldren, ist es von Noten die Abmessungen der Probe zu
berticksichtigen, was das Potential U(y) beschreibt, das wir bisher vernachléssigt
haben. In fig. 4 sieht man das Potential fiir einen rechteckigen Leiter, von dem
wir im Folgenden weiterhin ausgehen. Zuriick zur Gleichung (12) ist es moglich Figure 4:  Randpotential eines
eine Losung mit der Stérungstheorie zu finden. Hiermit ergibt sich bis zur 1. rechteckigen Leiters.

Ordnung;:

-wi2 0 -Wi2

Boi (04 )+ {n, kU () In, k) (1)

Mit den Zusténdern |n,k) werden die Wellenfunktionen um die Zentrumskoordinaten y; gemeint. Nehmen wir
zusétzlich an, dass das Potential entlang der Ausdehnung der Zustdnde niherungsweise konstant ist, so erhalten
wir

1 . hk
Enp=~(n+ i)hwc + Ul(yg) mit yp = B (18)

Das hat nun zur Folge, dass die Landau-Niveaus an den Réandern nach oben gebogen werden, wobei an diesen Réndern
kontinuierliche Zustande entstehen, die die Fermi-Energie kreuzen. Die Gruppengeschwindigkeit der Elektronen mit
dieser Energie ist dann

_10E(n,k) _ 19U(yx) _ 10U(yx) Oyk)

o(n, k) = _ 1 0U(y)

h 0k h 0k h Oy, Ok eB dy

(19)

Auf Grund des konstanten Potentials im Inneren ist leicht zu sehen, dass kein elektrischer Transport dort stattfindet,
da die partielle Ableitung und damit die Geschwindigkeit verschwindet. Wir haben als nur am Rand eine Grup-
pengeschwindigkeit ungleich 0, also haben wir nur ein Strom am Rand. Hierbei fliefit der Strom an beiden Réndern
in entgegengesetzten Richtungen, da man ein Vorzeichenwechsel in der Ableitung hat. Ist nun die Fermi-Energie
innerhalb zweier Landau-Niveaus, haben wir zwei Stromkanéle an den Réndern, die raumlich getrennt sind. Da wir
im Inneren keine erlaubten Zustédnden haben, ist es demnach auch nicht méglich ein Elektron von der einen Seite auf
die andere zu streuen. Auch der Uberlapp zweier Wellenfunktion ist auf Grund der geringen riumlichen Ausdehnung
in guter Naherung 0. Man hat also effektiv die Riickstreuung unterdriickt, was zur Folge hat, dass der Widerstand
auf Null herabsinkt.

Weiterhin kann man auch den Stromfluss in x-Richtung nun berechnen, welcher gegeben ist durch die Integration
iiber alle besetzte Zustdnde innerhalb des Leitungsbandes:

B[ 1
Iﬁz—e/dk k)= 22 ouv_¢ (20)

"W = 0w | Wepay T at
wobei Ap die Potentialdifferenz zwischen beiden Enden der Probe bezeichnet. Nutzt man nun auch die Hallspannung

Uy aus mit eUy = Ap, so erhalten wir folgenden Wert fiir die Hallresistivitét:

Uy h

Poy = T-= 2 (21)

Dies entsprecht der Hallresistivitét eines voll besetzten Landau-Niveaus.



4.3 Storpotentiale und lokalisierte Zustiande

Im Allgemeinfall, konnen wir nicht davon ausgehen, dass die Fermi-Energie
zwischen zwei Landau-Niveaus liegt. Erfahrt ein System ein Magnetfeld,
so kommt es zur Ausbildung von Landau-Niveaus.  Werden zusétzlich
tiefe Temperaturen erzeugt, so sind die Landau-Niveaus bis zur Fermi-
Energie vollstiandig besetzt und die Fermi-Energie durch das hochste Landau-
Niveau definiert. Eine Erhohung des Magnetfelds hierbei, bewirkt nicht
nur eine Vergroflerung der Abstdnde zwischen den Niveaus, sowie deren
Entartungsgrad, sondern auch eine Erhchung der Landau-Niveaus selbst
und demnach auch der Fermi-Energie. Jedoch ist auf Grund des gle-
ichzeitig erhohten Entartungsgrades, mehr ”Platz” in den unteren Niveaus,
was zur Entleerung des obersten Niveaus fiihrt. Ist das oberste Niveau
vollstandig entleert, so sinkt die Fermi-Energie abrupt in das néchst tief-
ere.

Unser Erklarungsmodell bedarf jedoch der Tatsache, dass die Fermi-Energie
zwischen den Landau-Niveaus liegen muss. Die durch das Potential verur-
sachten Randzustande sind jedoch im Vergleich zu den Landau-Niveaus in
ihrer Anzahl zu klein, als dass sie die Fermi-Energie dort stabilisieren
konnten.

Nichtsdestotrotz, besitzen reale Proben zuséatzliche Storpotentiale, die auf Grund
von Verunreinigungen und/oder Defekte des Materials entstanden sind. Dadurch
kommt es zu Fluktuationen in unserer Energiedispersion. Das hat zur Folge, das
unsere bisherigen §-férmigen Peaks der Landau-Niveaus sich energetisch verbre-
itern. Durch diese nun delokalisierten Zusténde kénnen nun auch im Inneren
der Probe Zustande die zwischen den Landau-Niveaus leben, vorkommen, die
Fermi-Energie stabilisieren und dadurch als weitere Leitungskanéle fungieren.
Diese Kanaéle sind jedoch in sich geschlossen und dazu in der Lage Elektronen
von bestimmten rdumlich getrennten Regionen der Probe einzufangen. FEner-

Energie £

Ortskoordinate v

(a) Der Einfluss von Defekten auf die
Landau-Niveaus

D(E) ausgedehnte Zustinde
lokalisierte Zustinde
Verbreiterte  §-Peaks  unter
Storpotentlalen
Figure 5: Der Einfluss von
Storpotentialen

getisch betrachtet, weichen die Zustédnde dieser Kénéle weit von den Niveaus ab, sodass man sie effektiv als lokalisiert
sehen kann. Auf Grund der rdumlichen Lokalisierung tragen sie nicht zum Ladungstransport bei.
Die lokalisierten Zustédnde haben trotz allem einen Einfluss auf den Transport. Anhand von fig.7 ist zu sehen, wie sich

Hy Hy Ky

o Ay 1

(a) (b) (c)

i

(&)

Figure 6: Das Randkanalmodell unter Storpotentialen und verschiedenen B-Feldern.

bei Zunahme des B-Felds ( von a) nach d) ) sich die Kanéle verdndern. Da wir in a) nur 3 Randkanéle beobachten,die
zur widerstandsfreien Leitung beitragen, muss die Fermi-Energie zwischen dem 3. und 4. Landau-Niveau liegen,
wobei es hier zu den Minima in den Shubnikov-de Haas-Oszillationen und den Plateaus im Hallwiderstand kommt.
Die Zustdnde im Inneren tragen nicht bei. Mit steigendem Magnetfeld wandern die innersten Kaniéle ins Innere (siehe
b)) bis es sogar zu Riickstreueffekten kommt ( siehe ¢) ). Anschlieflend befindet sich die Fermi-Energie bei geniigen



hohem B-Feld zwischen dem 2. und 3. Landau-Niveau und der innerste Kanal ist in ein lokalisierten Zustand aufge-
brochen (siehe c)). Dadurch existieren tiber die gesamte Probe kontinuierliche, erlaubte Zusténden, iiber welche die
Elektronen von Rand zu Rand streuen konnen. Man misst ein Maximum im Langswiderstand der Probe und er wird
umso grofler je mehr Kanéle aufbrechen und nicht mehr zum widerstandsfreien Ladungstransport beitragen.

Der QHE ist also ein Produkt der Unreinheiten einer Probe. Der QHE ist umso schwécher ausgepragt, wenn sowohl
die Probe wenige Storstellen mit hohen Beweglichkeiten aufweist, als auch bei zu vielen Storstellen.

5 Fraktionaler Quanten-Hall-Effekt

Wie bereits erwéhnt, werden die integralen Hall-Plateus weniger ausgeprégt bei ”reineren” Proben. Trotz allem
tauchen jedoch neue Plateaus auf bei noch hheren Magnetfeldern und tieferen Temperaturen, die sich bei Fiillfaktoren
von ganzzahligen Briichen wiederfinden:

v=""mit n€7Z und m ungerade. (22)
m

Tsui und Stérmer entdeckten dieses Phinomen im Jahre 1982, wobei sie AlGaAs/GaAs-Proben genutzt haben. Die
gemessenen Widerstdnde sind in Abb. zu sehen. Das erste zusétzliche Plateau, das beobachtet wurde, war bei
v = 1/3. Allgemein fiir v < 1 ist nur noch das unterste Landau-Niveau bevolkert, jedoch nicht vollstdndig. Um
diese Phénomen nun zu beschreiben und zu erklaren, reicht die Einteilchen-Naherung nicht mehr aus, sondern muss
von einem wechselwirkenden Vielteichen-System ausgehen. Man bezeichnet so ein korreliert bewegendes System
unter solchen Bedingungen als Quantenfliissigkeit, die inkompressibel und superfluide ist, was das Verschwinden des
Léangswiderstands erklart.

Einer der Theorien, die von Laughlin entwickelt wurde, ist der Ansatz {iber eine Wellenfunktion dieses Vielteilchen-
systems, die er numerisch 16ste durch Variationsrechnungen. Die Anregungen dieses sogenannten Laughlin-Zustandes
(Grundzustand) sind Quasi-Elektronen und Quasi-Locher, die bruchzahlige Ladungen ey = e/m tragen.

Eine andere Erklarung, dessen Betrachtungsweise von J. K. Kain stammt, ist das Modell der ” Composite Fermions”.
Dazu betrachtet man die Magnetooszillationen des Léangswiderstandes. Diese Teilchen sind zusammengesetzt aus
einem Elektron und zwei magnetische Flussquanten. Das duflere B-Feld wird von diesem Teilchen effektiv als ver-
schwindend wahrgenommen. Das Feld wird dazu genutzt um zwei Flussquanten fiir jedes Elektron bereitzustellen.
Das Erhohen des B-Feld bewirkt dann das Einbringen eines zusétzlichen Flussquants. Bei v = 1/3 haben wir also ein
zusétzlichen Flussquant pro ”composite” Fermion. Das wiederum entspricht aber dem Fiillfaktor v = 1 fiir normale
Elektronen. Damit lasst sich zeigen, das v = 2/5,3/7,4/9... den Filllfaktoren 2, 3, 4...entspricht. Bei kleineren Mag-
netfelder fehlt dann jewils ein Flussquant pro ”composite” Fermion bei v = 1, pro 2 dieser Teilchen bei v = 2/3, pro
3 dieser Teilchen bei v = 3/5 usw. Analog lasst sich das Konzept tibetragen auf geradzahlige Nenner und ist mit der
Laughlin-Theorie gut vereinbar.

Beider dieser Theorien sind bisher jedoch nicht experimentell bewiesen worden und sind auch noch heute Gegen-
stand aktueller Forschung.

6 Die Folgen der Entdeckung des QHE

Der QHE hat vor allem grolen Nutzen in der Metrologie gefunden zur Untersuchung von Materialien, was damit zu tun
hat, dass die Plateaus als Funktion von Elektronendichte und/oder Magnetfeld flach verlaufen und der quantisierten
Hallwiderstand immer den fundamentalen Wert h/e?trigt, welcher weder von Probengeometrie noch Probenmaterial
abhéngt, was wiederum die Grofle exakt reproduzierbar macht. Auf Grund dessen wird die Von-Klitzing-Konstante
Ry wird seit dem 1.1.1990 als Widerstandsnormal verwendet: Ry = 25812, 80712 und ist mit heutigen Messmethoden
mit einer relativen Unsicherheit von 10710 bestimmt. Dies ermdglichte selbstverstandlich eine weitere physikalische
Einheit auf elementare Naturkonstanten zuriickzufiihren.

Weiterhin wurde der QHE auch in Graphen beobachtet, was die 2-Dimensionalitat dieses Stoffes beweist.
Von-Klitzing sah in seiner Publikation die Moglichkeit die Feinstrukturkonstante auflerst genau zu bestimmen. Denn

diese ist gegeben durch:
1 e? 1 1
a=-—S - - - (23)
2ceq h 2ceg Ry



Das bedeutet die Messunsicherheit von a hangt nur von der Messunsicherheit der Klitzing-Konstante ab. Dies kann
dazu benutzt werden um die Werte fiir die Feinstrukturkonstante die von der QED und Festkorperphysik stammen,
zu vergleichen. Im Stand der Publikation von Klitzing im Jahre 1980, stimmen die Werte innerhalb einer Abweichung
der Groflenordnung 1077 iiberein.
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