
Quanten-Hall-Effekt

Handout zum Seminarvortrag von Alexander Stoll im Rahmen des Seminars ”Probleme der Quanten-
mechanik” bei Prof. G. Wolschin.

1 Einleitung

Klaus von Klitzing entdeckte am 5. Februar 1980 den Quanten-Hall-Effekt. Er führte die Messungen in einem
Hochmagnetfeldlaboratorium in Grenoble an MOSFET’s bei Temperaturen von 1.5 K und hohen Feldern von bis
zu 18 T durch. Seine Messungen zeigten Abweichungen zu der klassischen Erwartung und wiesen plateauartige
Strukturen im Hallwiderstand und Oszillationen im Längswiderstand auf (siehe fig. 1). Für diese Entdeckung wurde
K. v. Klitzing mit dem Nobelpreis im Jahre 1985 geehrt. Das Folgende erklärt den Widerspruch zum Klassischen,
sowie die zugehörige Erklärung des Quanten-Hall-Effekts im Rahmen der Quantemechanik.

(a) Originalmessung von K. v. Kl-
itzing der Längs- (Upp) und Hallspan-
nung (UH) als Funktion der Gatespan-
nung VG .

(b) QHE gemessen in AlGaAs-GaAs-
Heterostrukturen unter moderneren
Laborbedingungen.

Figure 1: QHE-Messungen

2 Klassischer Quanten-Hall-Effekt

Edwin Herbert Hall entdeckte 1879 den nach ihm benannten Hall-Effekt. Er untersuchte hierbei den Einfluss eines
magnetischen Feldes auf einen stromdurchflossenen Leiter. Der Aufbau ist hierbei wie folgt: Es wird ein konstantes
Magnetfeld ~B erzeugt, das in z-Richtung weist. Währenddessen, fließe ein konstanter Strom in x-Richtung in einem
Leiterplättchen. Da wir es hier mit bewegter Ladung im Magnetfeld zu tun haben, wirkt die Lorentzkraft senkrecht zur
Bewegung der Ladungsträger und senkrecht zum B-Feld, also in y-Richtung. Dadurch wird ein Potentialunterschied
zwischen den beiden Enden in y-Richtung erzeugt, was dann schließlich als sogenannte Hall-Spannung registriert wird.

2.1 Drude-Theorie/Modell

Für die Bewegungsgleichungen der Ladungsträger, gehen wir von der Drude-Theorie aus. In diesem Modell betrachtet
man ein elektrischen Leiter als Ionenkristall, in dem sich die Elektronen frei bewegen können, ein Elektronengas
bilden und somit verantwortlich für die Stromleitung sind. Wird nun eine Elektrisches Feld ~E angelegt, erfahren
die Elektronen die Kraft ~Fel = q · ~E und werden dadurch diskontinuierlich beschleunigt, da das ohmsche Gesetz
gelten muss. Nach einer gewissen Zeit, stellt sich ein Gleichgewicht ein, in dem die mittlere Geschwindigkeit des
Elektrons, die sogenannte Driftgeschwindigkeit, proportional zur Feldstärke ist. Innerhalb des Modells erklärt sich
dies durch das Zusammenstoßen von Elektron mit Gitterion, was ein Abbremsen bewirkt. Die mittlere Stoßzeit τ ,
auch Relaxationszeit genannt, zwischen zwei Kollisionen beschreibt diesen Vorgang. Die Bewegungsgleichung lautet:

~Fges = ~Fel − ~FKollision ⇐⇒ m · ~̇v = −e · ~E − m

τ
· ~vD (1)
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Geht man nun zurück zum Hall-Effekt, so muss man zusätzlich noch durch das Magnetfeld B hervorgerufene Lorentzkraft
berücksichtigen:

m · ~̇v +
m

τ
· ~vD = −e( ~E + ~vD × ~B) (2)

Im stationären Zustand, ist die Driftgeschwindigkeit gegeben durch

~vD = −e τ
m

( ~E + ~vD × ~B) (3)

Im Folgenden nehmen wir weiterhin an, dass das ~B-Feld in z-Richtung weist und erhalten für die Stromdichte nach
dem ohmschen Gesetz und Umstellung nach den Komponenten von vD in (3) : jx

jy
jz

 =
−σ0

1 + ω2
cτ

2

 1 ωcτ 0
ωcτ 1 0
0 0 1 + ω2

cτ
2

 Ex
Ey
Ez

 (4)

wobei σ0 = ne2 τm die Leitfähigkeit ohne Magnetfeld beschreibt und ωc = eB
m die Zyklotronfrequenz.

Nun werden wir auch für die weitere Diskussion einen flachen Leiter mit rechteckigem Querschnitt betrachten, wodurch
sich der Strom und das elektrische Feld in z-Richtung vernachlässigen lässt. Damit wird (4) aufgelöst nach den
Elektrischen Feldern zu (

Ex
Ey

)
=

(
ρxx ρxy
−ρxy ρxx

)(
jx
jy

)
(5)

wobei die spezifischen Widerstandskomponenten gegeben sind durch

ρxx =
B

ne

1

ωcτ
=

m

ne2τ
= KH

m

eτ
, (6)

ρxy =
B

ne
= KHB. (7)

Figure 2: Klassische Er-
wartung

mit KH = 1
ne der Hall-Konstanten. Plottet man diese beiden Widerstandswerte in

Abhängigkeit des B-Feldes, so erhalten wir nach klassicher Erwartung die Struktur in
fig. 2. Dies erklärt warum der Verlauf, den Klitzing damals gemessen hat, äußerst
merkwürdig erschien (siehe fig. 1).

3 Zwei-dimensionales Elektronengas (2DEG)

Um nun den QHE zu realisieren, braucht man neben tiefen Temperaturen und hohen
Magnetfeldern ein sogenanntes zweidimensionales Elektronen Gas (2DEG). Man kann
diese in metal-oxide-semi-conductor-field-effect-transistors (MOSFET’s) beobachten
oder auch (und üblicher) in diversen Halbleiterheterostrukturen (z.B n-dotiertes Al-
GaAs und GaAs) erzeugen. Das 2DEG sind hierbei freie Elektronen, die in einer
Richtung eingeschränkt sind in ihrer Bewegung. Man kann dies durch ein schmalen Potentialtopf näherungsweise
erreichen, was zur Folge hat, dass die Energiewerte in dieser Richtung quantisiert sind. Ist nun dabei nur das unterste
Energieniveau besetzt, so sind die Elektronen frei in der zur eingeschränkten Richtung senkrechten Fläche.
Hierbei dient als Grundmaterial ein p-dotiertes Siliziumkristall (Substrat oder auch ,,Bulk”), in welches zwei n-dotierte
Gebiete mit hoher Leitfähigkeit eingelassen sind, die wiederum den Source- und Drain-Anschluss bilden. Man hat
also mit dem Substrat dazwischen eine npn-Struktur, die kein Stromfluss zulässt (siehe auch npn-Transistor). Im
Zwischenraum wird eine dünne Isolierschicht (Dielektrikum) aufgebracht. Dieses bewirkt eine Abtrennung der Gate-
Elektrode von dem darunterliegenden Substrat. Gate, Isolator und Bulk erzeugen dann ein Kondensator. Wird eine
Spannung zwischen Gate und Bulk angelegt, so wird durch das damit erzeugte elektrische Feld Elektronen an die
Grenzschicht gebracht, auch als n-Kanal bezeichnet, falls die Verdrängung der Majoritätsladungsträger so groß ist,
sodass keine Rekombination mehr möglich ist. Die Beziehung zwischen Anzahl der negativen Ladungsträger und der
Gate-Spannung ist hierbei proportional. Bei nun richtig eingestellter Gate-Spannung Ug ist es möglich, den n-Kanal
in ein 2DEG zu bilden.

4 Integraler Quanten-Hall-Effekt

Legt man am MOSFET nun ein Magnetfeld so an, dass dieser orthogonal zum n-Kanal weist, so ist es möglich eine
Hallspannung an den Elektroden, die senkrecht zum B-Feld sind, zu messen. Wie schon bereits beschrieben, ist
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(a) Schematischer Aufbau eines n-
Kanal MOSFETs. Autor: Markus A.
Hennig (17. Dezember 2005)

(b) Darstellung des Schichtaufbaus
der Heterostruktur.

(c) Bandstruktur des Schichtsystems.
Durch die Bandverbiegung entsteht
ein Potentialtopf, der Elektronen in
der Grenzschicht einsperrt.

Figure 3: a) MOSFET und b)/c) n-dotierte AlGaAs/GaAs-Heterostruktur

n ∼ Ug, woraus folgen müsste, dass die Hall-Spannung umgekehrt proportional zur Gate-Spannung ist. Klaus von
Kitzling beobachtete dies jedoch nicht (siehe fig.1 ). Während bei niedrigen Feldern der Längs- und Quer-Widerstand
der klassisch vorhergesagten Beziehung folgen, so sieht man bei höheren Feldstärken starke Abweichungen. Man
beobachtet mehrere Plateau-Strukturen, deren Widerstandswerte unabhängig von Geometrie der Probe und des B-
Feld-Wertes auftreten:

RH =
1

ν

h

e2
, ν ∈ Z (8)

Es fällt außerdem auf, dass die Minima, bei denen der Längswiderstand verschwindet, genau bei den Werten des
magnetischen Feldes liegt, bei denen auch die Plateaus auftreten (siehe fig.1).

4.1 Landau-Niveaus

Um nun diesen Effekt quantenmechanisch zu beschreiben, eignet es sich die Schrödingergleichung für ein Elektron
des 2DEG in der x-y-Ebene unter Einfluss eines äußeren Magnetfeldes zu betrachten. Wir werden hierbei für die
weitere Diskussion den Spin der Elektronen vernachlässigen, was in Näherung für die meisten Quanten-Hall-Systeme
gut möglich ist.
Die Schrödingergleichung ist im Ortsraum gegeben durch:(

(i~~∇+ e ~A(x, y))2

2m
+ U(x, y)

)
ψ(x, y) = Eψ(x, y) (9)

Wobei ~A(x, y) das Vektorpotential zum ~B-Feld ist (also ~B = ~∇ × ~A) und U(y) das Randpotential, das die Elektro-

nenbewegung einschränkt, beschreibt. Mit Hilfe der Landau-Eichung ~A = (−By, 0, 0) zeigt das ~B-Feld in z-Richtung.

Hierbei sei erwähnt dass dies eine Wahl ist und ~B invariant unter Translations- und Rotationssymmetrie ist in der
x-y-Ebene, wobei die Wahl von ~A es nicht ist, denn sie bricht sowohl Rotationssymmetrie als auch Translation-
ssymmetrie in y-Richtung. Unter Vernachlässigung des Randpotentials U(x, y), sowie dem Seperationsansatz nach
Landau ψ(x, y) = φ(x)χ(y) = 1√

L
exp(ikx)χ(y) erhalten wir als Lösung für χ(y) die Eigefunktionen eines verschobenen

harmonischen Oszillator:

χn,k(y) = exp(− (a+ ak)2

2
)Hn(a+ ak) (10)

mit a =
√

mωc

~ y, ak =
√

mωc

~ yk und Hn dem n-ten Hermiteschen Polynom. Der Seperationsansatz in der ver-
wendeten Form ist möglich, da wir eine manifeste Translationsinvarianz in x-Richtung haben, weshalb wir nach
Energie-Eigenzustände suchen können, die auch Eigenzustände zum Impulsoperator px sind. Das sind aber gerade
ebene Wellen in x-Richtung, was auch die Form von φ(x) erklärt. Die Energieeigenwerte des harmonischen Oszillator
sind diskret und unabhängig von k. Die Energieeigenwerte unseres Problems sind demnach gegeben durch:

En = (n+
1

2
)~ωc, n ∈ N0 (11)

Man bezeichnet diese diskreten Eigenwerte auch als Landau-Niveaus. Das Magnetfeld bewirkt also, dass die Subbänder
des 2DEG aufgespalten werden und es entstehen diskretisierte Energiewerte. Unsere Zustände im ~k-Raum werden nun
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auf Kreislinien gezwungen und unsere zuvor kontinuierliche Zustandsdichte zerfällt nun in eine Reihe von äquidistanten
δ-Peaks im Abstand von ~ωc. Klassisch lässt sich dies insofern veranschaulichen, dass sich die Elektronen auf Kreisbah-
nen mit Kreisfrequenz ωc bewegen, was sich wiederum durch die Überlagerung zweier senkrecht zueinander stehenden
harmonischen Schwingungen beschreiben lässt.

Das System ist des Weiteren entartet, denn obwohl die Wellenfunktion ψ von k abhängt, tun das die Energieeigenwerte
nicht.

Als Nächstes sind wir am Entartungsgrad der Landau-Niveaus interessiert, welche uns Auskunft über die Anzahl
der Elektronenzustände pro Niveau angibt. Wir wissen, dass yk durch die Länge Lx und Weite Ly beschränkt ist.
Zusätzlich nehmen wir periodische Randbedingungen an

kx = nx
2π

Lx
, nx ∈ Z (12)

Damit und dem Abstand ∆yk = ~
eB∆kx zwischen den Zentrumskoordinaten erhalten wir folgende Anzahl an Zuständen

in der Probe

N =
Ly

∆yk
= LxLy

eB

h
(13)

Wird das nun auf die Einheitsfläche normiert, erhalten wir den Entartungsgrad NL

NL =
eB

h
(14)

Dieser gibt an wie viel Zustände man auf einem Kreis mit Radius |~k| im ~k-Raum vorfindet. Eine weitere interessante

Größe ist der Füllfaktor ν, der die Anzahl der gefüllten Landau-Niveaus (also Kreise im ~k-Raum) angibt:

ν =
ne
NL

=
neh

eB
(15)

wobei ne die Elektronendichte ist. Setzt man das in die klassisch berechnete Hallresistivität, so erhalten wir folgendes:

ρxy =
B

νNLe
=

Bh

νe2B
=

1

ν

h

e2
(16)

Falls ν ganzzahlig sein soll, so muss demnach B äußerst fein geregelt sein, jedoch wird das nicht im QHE beobachtet,
denn die Plateaus erstrecken sich über eine gewisse Breite. Dies läasst sich durch die Fermi-Energie wiederum erklären.

Mit der Fermienergie EF bezeichnet man für T = 0K die Energiedifferenz zwischen Grundzustand zum höchstbesetzten
Zustand. Geht man nun von einem freien Elektronengas aus, so werden die Zustände im Impulsraum energetisch
nacheinander aufgefüllt, also beginnend mit ~k = 0 bis zu ~k = ~kF , dem Fermiwellenvektor. Hierbei sind nun alle
Zustände mit E < EF besetzt und liegen im Impulsraum innerhalb der Fermi-Kugel. Die Zustände die nun außerhalb
dieser Kugel sitzen, sind dabei unbesetzt. Die höchst besetzten Zustände sind somit diejenigen Zustände, die auf
der Oberfläche der Fermi-Kugel liegen. Wir wissen zusätzlich, dass die Landau-Niveaus der Elektronen im Mag-
netfeld energetisch getrennt sind mit dem Abstand ∆E = ~ωc = ~eB

m . Sei nun im Folgenden En die Energie des
höchstbesetzten Landau-Niveaus und man nehme an, dass En < EF < En+1 . Zusätzlich gilt für niedrige Tempera-
turen |En+~ωc−EF | � kBT , wodurch im Phasenraum im Umkreis δE v kBT keine freien Zustände vorhanden sind.
Auf Grund der geringen kinetischen Energie ist es den Elektronen auch nicht möglich die Energiedifferenz zwischen
Fermi-Energie und unbesetztem Landau-Niveau zu überwinden. In solch einem beschriebenen Fall, ist der Füllfaktor
ganzzahlig, da das höchsbesetzte Landau Niveau n voll besetzt ist, aber das Niveau n + 1 nicht. Diese Erklärung
unterliegt jedoch einem Denkfehler und zwar der Tatsache, dass EF gerade durch En definiert ist. Dies wird unter
4.3 weiter erläutert.

Noch zu erwähnen ist, dass wenn man es mit kleineren Magnetfeldern zu tun ( < 6 Tesla) hat, so ist die Aufs-
paltung der Spinniveaus gµBB (mit g dem Landé-Faktor) vernachlässigbar im Vergleich zur Aufspaltung der Landau-
Niveaus. Man sagt hier auch, dass die Landau-Niveaus spin-entartet sind und damit jeder Elektronenzustand aus
zwei Elektronen besteht (spin-up und spin-down).
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4.2 Randkanalmodell

Figure 4: Randpotential eines
rechteckigen Leiters.

Der elektrische Transport geschieht nur mit Elektronen nahe der Fermi-Kante
(siehe Sommerfeld-Theorie). Ein logischer Schluss wäre demnach zu behaupten,
dass der Widerstand sein kleinsten Wert erreicht, wenn die Fermi-Energie auf
eines der Landau-Niveaus fällt, denn in den voll besetzten Landau-Niveaus kann
keine Elektronenstreuung auftreten, die mittlere Stoßzeit τ ist daher unendlich.
Somit nehmen sowohl σxx als auch ρxx den Wert null an. Jedoch ist das nicht
der Fall im QHE (siehe auch fig. 1).
Um das zu erklären, ist es von Nöten die Abmessungen der Probe zu
berücksichtigen, was das Potential U(y) beschreibt, das wir bisher vernachlässigt
haben. In fig. 4 sieht man das Potential für einen rechteckigen Leiter, von dem
wir im Folgenden weiterhin ausgehen. Zurück zur Gleichung (12) ist es möglich
eine Lösung mit der Störungstheorie zu finden. Hiermit ergibt sich bis zur 1.
Ordnung:

En,k ≈ (n+
1

2
)~ωc + 〈n, k|U(y) |n, k〉 (17)

Mit den Zuständern |n, k〉 werden die Wellenfunktionen um die Zentrumskoordinaten yk gemeint. Nehmen wir
zusätzlich an, dass das Potential entlang der Ausdehnung der Zustände näherungsweise konstant ist, so erhalten
wir

En,k ≈ (n+
1

2
)~ωc + U(yk) mit yk =

~k
eB

(18)

Das hat nun zur Folge, dass die Landau-Niveaus an den Rändern nach oben gebogen werden, wobei an diesen Rändern
kontinuierliche Zustände entstehen, die die Fermi-Energie kreuzen. Die Gruppengeschwindigkeit der Elektronen mit
dieser Energie ist dann

v(n, k) =
1

~
∂E(n, k)

∂k
=

1

~
∂U(yk)

∂k
=

1

~
∂U(yk)

∂yk

∂yk)

∂k
=

1

eB

∂U(y)

∂y
(19)

Auf Grund des konstanten Potentials im Inneren ist leicht zu sehen, dass kein elektrischer Transport dort stattfindet,
da die partielle Ableitung und damit die Geschwindigkeit verschwindet. Wir haben als nur am Rand eine Grup-
pengeschwindigkeit ungleich 0, also haben wir nur ein Strom am Rand. Hierbei fließt der Strom an beiden Rändern
in entgegengesetzten Richtungen, da man ein Vorzeichenwechsel in der Ableitung hat. Ist nun die Fermi-Energie
innerhalb zweier Landau-Niveaus, haben wir zwei Stromkanäle an den Rändern, die räumlich getrennt sind. Da wir
im Inneren keine erlaubten Zuständen haben, ist es demnach auch nicht möglich ein Elektron von der einen Seite auf
die andere zu streuen. Auch der Überlapp zweier Wellenfunktion ist auf Grund der geringen räumlichen Ausdehnung
in guter Näherung 0. Man hat also effektiv die Rückstreuung unterdrückt, was zur Folge hat, dass der Widerstand
auf Null herabsinkt.

Weiterhin kann man auch den Stromfluss in x-Richtung nun berechnen, welcher gegeben ist durch die Integration
über alle besetzte Zustände innerhalb des Leitungsbandes:

Ix = −e
∫

dk

2π
v(k) =

e

2π

eB

~

∫
dy

1

eB

∂U

∂y
=
e

h
∆µ (20)

wobei ∆µ die Potentialdifferenz zwischen beiden Enden der Probe bezeichnet. Nutzt man nun auch die Hallspannung
UH aus mit eUH = ∆µ, so erhalten wir folgenden Wert für die Hallresistivität:

ρxy =
UH
Ix

=
h

e2
(21)

Dies entsprecht der Hallresistivität eines voll besetzten Landau-Niveaus.
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4.3 Störpotentiale und lokalisierte Zustände

(a) Der Einfluss von Defekten auf die
Landau-Niveaus

(b) Verbreiterte δ-Peaks unter
Störpotentialen.

Figure 5: Der Einfluss von
Störpotentialen

Im Allgemeinfall, können wir nicht davon ausgehen, dass die Fermi-Energie
zwischen zwei Landau-Niveaus liegt. Erfährt ein System ein Magnetfeld,
so kommt es zur Ausbildung von Landau-Niveaus. Werden zusätzlich
tiefe Temperaturen erzeugt, so sind die Landau-Niveaus bis zur Fermi-
Energie vollständig besetzt und die Fermi-Energie durch das höchste Landau-
Niveau definiert. Eine Erhöhung des Magnetfelds hierbei, bewirkt nicht
nur eine Vergrößerung der Abstände zwischen den Niveaus, sowie deren
Entartungsgrad, sondern auch eine Erhöhung der Landau-Niveaus selbst
und demnach auch der Fermi-Energie. Jedoch ist auf Grund des gle-
ichzeitig erhöhten Entartungsgrades, mehr ”Platz” in den unteren Niveaus,
was zur Entleerung des obersten Niveaus führt. Ist das oberste Niveau
vollständig entleert, so sinkt die Fermi-Energie abrupt in das nächst tief-
ere.
Unser Erklärungsmodell bedarf jedoch der Tatsache, dass die Fermi-Energie
zwischen den Landau-Niveaus liegen muss. Die durch das Potential verur-
sachten Randzustände sind jedoch im Vergleich zu den Landau-Niveaus in
ihrer Anzahl zu klein, als dass sie die Fermi-Energie dort stabilisieren
könnten.

Nichtsdestotrotz, besitzen reale Proben zusätzliche Störpotentiale, die auf Grund
von Verunreinigungen und/oder Defekte des Materials entstanden sind. Dadurch
kommt es zu Fluktuationen in unserer Energiedispersion. Das hat zur Folge, das
unsere bisherigen δ-förmigen Peaks der Landau-Niveaus sich energetisch verbre-
itern. Durch diese nun delokalisierten Zustände können nun auch im Inneren
der Probe Zustände die zwischen den Landau-Niveaus leben, vorkommen, die
Fermi-Energie stabilisieren und dadurch als weitere Leitungskanäle fungieren.
Diese Kanäle sind jedoch in sich geschlossen und dazu in der Lage Elektronen
von bestimmten räumlich getrennten Regionen der Probe einzufangen. Ener-
getisch betrachtet, weichen die Zustände dieser Känäle weit von den Niveaus ab, sodass man sie effektiv als lokalisiert
sehen kann. Auf Grund der räumlichen Lokalisierung tragen sie nicht zum Ladungstransport bei.
Die lokalisierten Zustände haben trotz allem einen Einfluss auf den Transport. Anhand von fig.7 ist zu sehen, wie sich

Figure 6: Das Randkanalmodell unter Störpotentialen und verschiedenen B-Feldern.

bei Zunahme des B-Felds ( von a) nach d) ) sich die Kanäle verändern. Da wir in a) nur 3 Randkanäle beobachten,die
zur widerstandsfreien Leitung beitragen, muss die Fermi-Energie zwischen dem 3. und 4. Landau-Niveau liegen,
wobei es hier zu den Minima in den Shubnikov-de Haas-Oszillationen und den Plateaus im Hallwiderstand kommt.
Die Zustände im Inneren tragen nicht bei. Mit steigendem Magnetfeld wandern die innersten Kanäle ins Innere (siehe
b)) bis es sogar zu Rückstreueffekten kommt ( siehe c) ). Anschließend befindet sich die Fermi-Energie bei genügen
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hohem B-Feld zwischen dem 2. und 3. Landau-Niveau und der innerste Kanal ist in ein lokalisierten Zustand aufge-
brochen (siehe c)). Dadurch existieren über die gesamte Probe kontinuierliche, erlaubte Zuständen, über welche die
Elektronen von Rand zu Rand streuen können. Man misst ein Maximum im Längswiderstand der Probe und er wird
umso größer je mehr Kanäle aufbrechen und nicht mehr zum widerstandsfreien Ladungstransport beitragen.

Der QHE ist also ein Produkt der Unreinheiten einer Probe. Der QHE ist umso schwächer ausgeprägt, wenn sowohl
die Probe wenige Störstellen mit hohen Beweglichkeiten aufweist, als auch bei zu vielen Störstellen.

5 Fraktionaler Quanten-Hall-Effekt

Wie bereits erwähnt, werden die integralen Hall-Plateus weniger ausgeprägt bei ”reineren” Proben. Trotz allem
tauchen jedoch neue Plateaus auf bei noch höheren Magnetfeldern und tieferen Temperaturen, die sich bei Füllfaktoren
von ganzzahligen Brüchen wiederfinden:

ν =
n

m
mit n ∈ Z und m ungerade. (22)

Tsui und Störmer entdeckten dieses Phänomen im Jahre 1982, wobei sie AlGaAs/GaAs-Proben genutzt haben. Die
gemessenen Widerstände sind in Abb. zu sehen. Das erste zusätzliche Plateau, das beobachtet wurde, war bei
ν = 1/3. Allgemein für ν < 1 ist nur noch das unterste Landau-Niveau bevölkert, jedoch nicht vollständig. Um
diese Phänomen nun zu beschreiben und zu erklären, reicht die Einteilchen-Näherung nicht mehr aus, sondern muss
von einem wechselwirkenden Vielteichen-System ausgehen. Man bezeichnet so ein korreliert bewegendes System
unter solchen Bedingungen als Quantenflüssigkeit, die inkompressibel und superfluide ist, was das Verschwinden des
Längswiderstands erklärt.

Einer der Theorien, die von Laughlin entwickelt wurde, ist der Ansatz über eine Wellenfunktion dieses Vielteilchen-
systems, die er numerisch löste durch Variationsrechnungen. Die Anregungen dieses sogenannten Laughlin-Zustandes
(Grundzustand) sind Quasi-Elektronen und Quasi-Löcher, die bruchzahlige Ladungen eeff = e/m tragen.

Eine andere Erklärung, dessen Betrachtungsweise von J. K. Kain stammt, ist das Modell der ”Composite Fermions”.
Dazu betrachtet man die Magnetooszillationen des Längswiderstandes. Diese Teilchen sind zusammengesetzt aus
einem Elektron und zwei magnetische Flussquanten. Das äußere B-Feld wird von diesem Teilchen effektiv als ver-
schwindend wahrgenommen. Das Feld wird dazu genutzt um zwei Flussquanten für jedes Elektron bereitzustellen.
Das Erhöhen des B-Feld bewirkt dann das Einbringen eines zusätzlichen Flussquants. Bei ν = 1/3 haben wir also ein
zusätzlichen Flussquant pro ”composite” Fermion. Das wiederum entspricht aber dem Füllfaktor ν = 1 für normale
Elektronen. Damit lässt sich zeigen, das ν = 2/5, 3/7, 4/9... den Füllfaktoren 2, 3, 4...entspricht. Bei kleineren Mag-
netfelder fehlt dann jewils ein Flussquant pro ”composite” Fermion bei ν = 1, pro 2 dieser Teilchen bei ν = 2/3, pro
3 dieser Teilchen bei ν = 3/5 usw. Analog lässt sich das Konzept übetragen auf geradzahlige Nenner und ist mit der
Laughlin-Theorie gut vereinbar.

Beider dieser Theorien sind bisher jedoch nicht experimentell bewiesen worden und sind auch noch heute Gegen-
stand aktueller Forschung.

6 Die Folgen der Entdeckung des QHE

Der QHE hat vor allem großen Nutzen in der Metrologie gefunden zur Untersuchung von Materialien, was damit zu tun
hat, dass die Plateaus als Funktion von Elektronendichte und/oder Magnetfeld flach verlaufen und der quantisierten
Hallwiderstand immer den fundamentalen Wert h/e2trägt, welcher weder von Probengeometrie noch Probenmaterial
abhängt, was wiederum die Größe exakt reproduzierbar macht. Auf Grund dessen wird die Von-Klitzing-Konstante
RK wird seit dem 1.1.1990 als Widerstandsnormal verwendet: RK = 25812, 807Ω und ist mit heutigen Messmethoden
mit einer relativen Unsicherheit von 10−10 bestimmt. Dies ermöglichte selbstverständlich eine weitere physikalische
Einheit auf elementare Naturkonstanten zurückzuführen.
Weiterhin wurde der QHE auch in Graphen beobachtet, was die 2-Dimensionalität dieses Stoffes beweist.
Von-Klitzing sah in seiner Publikation die Möglichkeit die Feinstrukturkonstante äußerst genau zu bestimmen. Denn
diese ist gegeben durch:

α =
1

2cε0

e2

h
=

1

2cε0

1

RK
(23)
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Das bedeutet die Messunsicherheit von α hängt nur von der Messunsicherheit der Klitzing-Konstante ab. Dies kann
dazu benutzt werden um die Werte für die Feinstrukturkonstante die von der QED und Festkörperphysik stammen,
zu vergleichen. Im Stand der Publikation von Klitzing im Jahre 1980, stimmen die Werte innerhalb einer Abweichung
der Größenordnung 10−7 überein.
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