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Abstract

The Ising model is a theoretical model in statistical physics to describe ferromagnetism.
It simplifies the complex properties of solids by assuming only nearest neighbor
interaction between lattice sites and allowing only two opposite pointing orientations
of each lattice site’s magnetic moment. It is analytically exactly solvable in one
and two dimensions by means of different mathematical approaches. The Ising
model shows the expected phase transition for a ferromagnet only in two and higher

dimensions.
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1. Basic idea and motivation

The Ising model is a theoretical model in statistical physics that was developed to
describe ferromagnetism. The ferromagnet in one or two dimensions can be modeled
as a linear chain or rather a rectangular lattice with one molecule or atom at each
lattice site 7. To each molecule or atom a magnetic moment is assigned that is rep-
resented in the model by a discrete variable o;. The possible values of ¢; are +1 and
-1 which correspond to alignments of the magnetic moments parallel or anti-parallel
to some preferred axis. For a lattice with Ny lattice sites the two possible o;-values
lead to 2™Vtet possible configurations o of the arrangement of molecules. The original
Ising model further considers only nearest neighbor interaction since we assume that
the molecules exert only short-range forces. A system of two (neighboring) lattice
sites is considered to be in a lower energetic state if the two magnetic moments are
aligned, i.e. the o;-values are both either +1 or -1, and to be in a higher energetic
state if the magnetic moments point in opposite directions, i.e. the o;-values are
different. Due to this interaction the system tends to align all magnetic moments
in one direction in order to reach the lowest energetic state. If nearly all magnetic
moments point in the same direction the arrangement of molecules behaves like a
macroscopic magnet.

The attention of this seminar talk in Statistical Physics is focused on phase trans-
itions, i.e. a transition between an ordered and a disordered state. A ferromag-
net above a critical temperature T, also known as the Curie Temperature, is in a
disordered state that in the Ising model corresponds to a uniform but random dis-
tribution of the o;-values. Below the critical temperature T (nearly) all magnetic
moments are aligned even in the absence of an external applied magnetic field B.
In the regime below the critical temperature the magnetization M of a ferromagnet
at zero applied magnetic field is called the spontaneous magnetization M,. Heating
up a strongly cooled ferromagnet, the spontaneous magnetization vanishes at the
Curie point T and the ferromagnet switches from an ordered to a disordered state
which is the phase transition of second order that shall be investigated by the Ising
model [Gal72].



2. History of the Ising model

Figure 2.1: Photograph of Wilhelm
Lenz (left) and Ernst Ising (right).
Source: [Bru67].

In 1920, Wilhelm Lenz (figure 2.1, left) proposed the model nowadays known as
the Ising model to his PhD-student Ernst Ising (figure 2.1, right) [Bru67|. Ising
then worked on the problem of the one-dimensional model and found a combinat-
orial, exact solution in 1924 that he published in 1925. In Ising’s solution of the
one-dimensional ferromagnet there is no phase transition at any temperature. Ising
therefore assumed that the model can not describe ferromagnetic behavior and even
tried to extend the non-existence of spontaneous magnetization in his solution to two
dimensions [Isi25]. Due to Ising’s results for the one-dimensional problem, the model
was no longer of great interest for most physicists and only in 1928 Heisenberg cited
Ising’s original paper from 1925 once in order to justify the need for his more complex
Heisenberg model |Isil7]. Nonetheless, the model was studied in the following years
in the context of order-disorder transitions in alloys for example. In 1936, R. Peierls
published a paper in which he showed that although there is no phase transition in
one dimension, there is a phase transition in two dimensions [Pei36]. Shortly after
that, in 1941, H. A. Kramers and G. H. Wannier had developed an algebraic method
to calculate the exact solution of the two-dimensional Ising model. L. Onsager used
parts of this method to calculate the exact solution of the Ising model in two di-
mensions and published his results in 1942 [Ons44]. Since then there have been
successfully found various approaches for exactly solving the two-dimensional Ising
model and these results are nowadays used in different scientific fields.



3. Ising model

In this chapter, solutions for the Ising model in one and two dimensions are discussed.
For the one-dimensional model, E. Ising’s original solution as well as the transfer
matrix formalism are derived in detail. For the two-dimensional model, the transfer
matrix formalism is expanded to higher dimensions and the exact solution from
L. Onsager is given without further derivation.

As mentioned in the introduction (see chap. 1), the Ising model was invented to
describe the physical system of a ferromagnet and especially its behavior at the
critical point T¢. In order to describe the system, its thermodynamic quantities are
derived from the partition function

Z = exp(~BE(s)). (3.1)

Here, the sum is over all possible micro-states s, F/(s) is the energy of the correspond-
ing micro-state s and = 1/(kgT’). The energy of a micro-state F(s) is given in the
model by the energy of a certain configuration o of the magnetic moments [Bax89|:

E(o) = Eo(J,0) + E1(B,0)

= Ey(J,0) — BZJi . (3:2)

Here, the first term represents the energy due to the molecular interaction with
bond strength J. The second term corresponds to the energy of the system in an
external applied magnetic field B parallel to the preferred axis whereas here and in
the following the Bohr magneton is equal to unity. The free energy per site f in the
thermodynamic limit can be calculated by

f(B.T) = ~ksT lim %m(Z(B)). (3.3)

The magnetization M of the system is given by the average of the magnetic moments
0; per site:

1
M(B,T) = N<Ul + ...+ 0on)

L1 N (3.4)
= NE - ((71 +-.-+0'N) eXp[—ﬂ(E()(J,O') _B;UI)]
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Using equation (3.3), the magnetization can be calculated as the derivative of the
free energy f per site with respect to the magnetic field strength B:

)
M = ——=f(B.T). (3.5)

3.1 One-dimensional Ising model

3.1.1 Ernst Ising’s origianl solution

+b —m— o —m——— b — o —

" ——" = —

Figure 3.1: Configuration of a linear chain with N = 18 lattice sites i, each assigned with
a g;-value of +1 or -1. The number of groups of negative lattice sites embedded by positive
lattice sites (see brackets) is s = 3. Source: [Isi25].

E. Ising’s original solution [Isi25] for the linear chain (see figure 3.1) assumes a
configuration of N elements with vy positive and v, negative o;-values such that

N = v+ V. (36)

Further, the groups of connected lattice sites with o; = —1 that are embedded by
lattice sites with o; = +1 are counted by the variable s and shown in figure 3.1
by the curved brackets. The variable § is either 0 or 1, depending on whether the
chain ends on the right with o; = +1 or o; = —1. All possibilities to arrange a fixed
number of vy positive and v, negative lattice sites such that the chain always starts
with a positive lattice site on the left are given by

() () 61

Here, the first binomial coefficient counts the possibilities to choose the s gaps
between the vy positive lattice sites. The second binomial coefficient in equation
(3.7) counts the possibilities to distribute the v, negative lattice sites on s+ posi-
tions in the chain. If the linear chain starts with a negative lattice site instead of a
positive one on the left side, the number of possible configurations can be obtained
from equation (3.7) by replacing v, with v, and vice versa:

() () a9
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The energy Ej for a system of two neighboring magnetic moments in this approach
is considered to be zero if the moments are aligned. If the magnetic moments of two
neighboring lattice sites point in opposite direction, the energy of those two lattice
sites is €. This way, for a configuration o of certain s and 9, the energy becomes

Eo(o) = (25+6) €. (3.9)

The energy FE; of the system corresponding to the magnetic energy of the system in
an external applied magnetic field B is

Ey= (v, —1n)B. (3.10)

Combining equations (3.7), (3.8), (3.9) and (3.10), the partition function Z is ob-

tained as
v —1 vy — 1 vy — 1 vy —1
7 = .
SAC )G (U )
V1,02,8,0 (3.11)
. 6—6((25+5)€+(V2—V1)B)} ]

In equation (3.11), the sum is over all possible values of the considered variables
under the condition of (3.6). In order to solve this sum, the original approach of
E. Ising considers following function

F(z) =Y Z(N)", (3.12)

where z is a variable without physical meaning and Z(N) is regarded as function
only depending on the number of lattice sites N. The calculation of (3.12) gives

B 2z [ cosa — (1 — exp (—f¢€))z]
1 —2cosa-x+ (1 —exp(—283¢))x2’

F(z) (3.13)

with o = fB. By partial fraction decomposition, (3.13) is developed in orders of x

and the coefficients corresponding to = are

—2¢e —2¢

Z(N) = cl<cos(oz)+\/sin2(oz) + e’“BT)N—l—cz(cos(a) — \/Sin2(a) + e’“BT>N . (3.14)

The coefficients ¢; and ¢ do not enter into the solution since ¢; € O(1) for all a and

—2e
the second term (cos(a) — \/SinQ(oz) + ek?T) < 1 vanishes for large N. In this way,
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according to (3.5), the magnetization M of the one-dimensional ferromagnet is
N sin(«)

M= .
\/sinZ(Oz) + eFsT

(3.15)

For the external magnetic field B becoming zero, it is clear that a« — 0 and the
magnetization M therefore vanishes. This implies that the spontaneous magnetiz-
ation M, is zero at any temperature and the Ising model therefore shows no phase
transition in one dimension. This result can also be understood qualitatively by
following argument [Bru67|: if the linear chain of molecules would be in an ordered
state, i.e. all magnetic moments point in the same direction, at finite temperature
T, there could always occur a flip of one of the magnetic moments due to thermal
fluctuations. A flip of one magnetic moment somewhere in the middle of the chain
would allow the magnetic moments on one side or the other to entirely flip simultan-
eously since the Ising model considers only next neighbor interaction. Hence, in one
dimension, a single flip of a magnetic moment can break the communication between
one half of the chain and the other and therefore lead to a disordered state even at
low (but finite) temperature 7T'.

3.1.2 Transfer matrix formalism

In figure 3.2, a linear chain of molecules or atoms each assigned with a o;-value of +1
or -1 is shown. The bond strength of the molecular interaction is given by .J; and the
external applied magnetic field is B. In the following we assume periodic boundary
conditions (PBC). In order to examine the thermodynamic properties of the ferro-
magnet, the partition function Z of the physical system is required. According to

Figure 3.2: Linear chain of N = 3
lattice sites. To each lattice site a o;-
value of +1 or -1 is assigned. The in-
termolecular bond strength is given by
BT {1 The external applied magnetic field
B points in the direction of some pre-
ferred axis to which the magnetic mo-
- ment of each lattice site is aligned parallel

or anti-parallel.
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equations (3.1) and (3.2), the partition function is
Z =Y exp|-B(Ey(J1,0) + Ei(B,0))]. (3.16)
In one dimension, the intermolecular energy FEj is given by
EO = _leo-io-iJrl. (317)
The energy E; of the system in a magnetic field B is
Ey=-B> o;. (3.18)

From equations (3.17) and (3.18) the partition function can be derived as following

7 = Zexp (Kl Z O'Z'O'H_l) exp <H Z ai> , (3.19)

where K1 = 8J; and H = B and the sum is over all possible configurations o. The

expression:

idea of the transfer matrix formalism is to express the partition function Z in terms
of a matrix, the so called transfer matriz. In order to derive the transfer matrix for
the partition function in one dimension we rewrite equation (3.19) in the following
way:

7 = Z [exp(KlamQ)} [exp(0.5H(01 + 02)} e
- (3.20)

e [exp(KmNUlﬂ [exp(OﬁH(O‘N + 01)} .

Here, for the last terms, the PBC are applied and the N-th lattice site interacts
with the first lattice site as if the chain was bound together in a circle. The factor
[exp(K 101-01-“)} can be represented by the matrix V;:

o;=+1 o;=—1

o=+1[ eff1 7K1
—Ki K :

Vi = (3.21)

oi=—1|¢€ e

The factor [exp(0.5H (0; + 0i41)] is represented by the matrix Va:

o;=+1 o;=—1

g;—= H
V, = “[ ¢ v } . (3.22)
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Plugging V; and V5 in equation (3.20), the partition function Z becomes [Sch64]

7 =tr( Vo)V
1o (3.23)
= tr(VE V2 )Y =tV

This result shows that the partition function Z can be expressed as the trace of
N-times the transfer matriz V. If A; and A, are the eigenvalues of V' with

Ay > Ay, (324)
then the partition function Z is
Z =AY+ AY = AY(1+ (Ay/A)Y) (3.25)

and the smaller eigenvalue As is negligible for the thermodynamic limit N — oo. The
transfer matrix formalism in general reduces the problem of calculating the partition
function Z to finding the transfer matrix V' and determining its largest eigenvalue.
In the case of the one-dimensional Ising model, the eigenvalues of the transfer matrix
V are

Ayo = e® cosh(H) + \/€2K sinh?(H) + e—2K (3.26)
Using equations (3.3) and (3.5) yields the magnetization M as
ef1 sinh(H)
\/62K1 sinh?(H) 4 e=2 '

M(H,T) = (3.27)

This result is physically equivalent to E. Isings original solution and shows that the
Ising model has no spontaneous magnetization and therefore no phase transition of
the ferromagnet in one dimension.

3.2 Two-dimensional Ising model

3.2.1 Transfer matrix formalism

The transfer matrix formalism yielded the partition function Z of the one-dimensional
Ising model by finding the transfer matrix V' and determining its largest eigenvalue.
The transfer matrix V' in one dimension is decomposed into the matrices V; and V5:

ek

e K el 0
T R R CO 2
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These matrices (3.28) can be expressed in terms of the Pauli matrices 1, T, t and
T° by
Vi=1-M4rte™ (3.29)
and
Vo =1-cosh(H)+ t°sinh(H). (3.30)

For all Pauli matrices T and any number a
exp(at’) = 1 - cosh(a) + T'sinh(a) (3.31)
is valid. Using (3.31), V; and V, can be rewritten as
Vi=(2 sinh(QKl))% exp(Kit®) and Vo =exp(HT?), (3.32)
whereas K7 is defined by
tanh(K;) = e 2! and sinh(2K,;)sinh(2K}) = 1. (3.33)

The formulation of the decomposition matrices V; and V5 of the one dimensional
transfer matrix in terms of Pauli matrices T (see (3.32)) allows for the generaliza-
tion to the two dimensional lattice. For the Ising model in two dimensions, here,
two different bond strengths J; and J, within the lattice are considered (see fig-
ure 3.3) which is the reason why the lattice is called a rectangular lattice instead
of a square lattice (J; = J). In two dimensions, one has to sum over 2M possible
configurations of each row instead of the two possible orientations of the magnetic
moment. Therefore, the decomposition matrices Vi and V5 (3.32) in two dimensions
become [New53| [Sch64]:

Vi = (25inh(2K1)) * exp(KT Y T5) (3.34)

and
VY =exp(HY ), (3.35)

where the T/ are no longer the Pauli matrices, but the direct product

T o=1x---x1IxTx1lx---x1 (3.36)

m

with the Pauli matrix T° at the m-th position. In two dimensions not only the
molecular interaction between the N rows but also the interaction between the M
columns has to be taken into account. This is done by 1/3(2):

VP =exp(K2 Y Ti75,0). (3.37)
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; ; Figure 3.3: Rectangular lattice of

1 : : N = 3rows and M = 3 columns. To each

: : site of the lattice a o;-value of +1 or

-1 is assigned. The intermolecular bond

strength is given by J; between the rows

: and Jy between the columns. The ex-

BT ternal applied magnetic field B points

; in the direction of some preferred axis

to which the magnetic moment of each

_ + + lattice site is aligned parallel or anti-
parallel.

The matrices VI(Q), \/2(2) and %(2) are 2M x 2M matrices that yield the transfer matrix

V@ for the two-dimensional Ising model as
Ve = (Vv () (3.38)
The partition function is obtained immediately as

Z = [V (3.39)

Although the formulation of the partition function by the transfer matrix formalism
is finished, the exact result still has to be calculated. These calculations involve a
large amount of higher mathematics [Kra41b| [Krad4la] [Ons44| [Newb3| [Sch64] and

are not shown in this summary.

3.2.2 L. Onsager’s exact solution

An exact solution for the Ising model in two dimensions was calculated by L. On-
sager [Ons44]. L. Onsager diagonalized the transfer matrix by looking for irreducible
representations of the related matrix algebra and showed that the free energy f for
the zero-field Ising model in two dimensions in the thermodynamic limit is

21 2
6 =(2) + ¢ 0/ a6, 0/ Al cosh(26.) cosh(25.]2) (3.40)

— sinh(28.J;) cos(6;) — sinh(23.J5) cos(6,)]
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The solution reveals that for the Ising model in two dimensions there is a phase
transition at the critical temperature Ty defined by

2.J;
kBTC

2.Jy
k‘BTC

sinh ( ) sinh ( )=1. (3.41)

Equation (3.41) simplifies for a square lattice (J; = Jy = J) to

2J

T = PEL (3.42)

The spontaneous magnetization M, corresponding to the phase transition was pub-
lished by L. Onsager in 1948 without a rigorous proof:

8

My = (1 — [sinh(28.1, sinh(QBJz)]’2) (3.43)

The first derivation of the spontaneous magnetization M, was given later in 1952 by
C. N. Yang |[Yan52]|.



4. Numerical simulations of the Ising model

4.1 The Metropolis algorithm

The behavior of a two-dimensional ferromagnet in the description of the Ising model
can be numerically simulated by the Metropolis algorithm. The algorithm is also
known as the Metropolis-Hastings algorithm named after N. Metropolis who firstly
co-published the method in 1953 and W. K. Hastings who extended the algorithm
to more general cases in 1970 [Has70]. The algorithm treats the Ising model as
a Markov chain which in stochastics is a chain of events whose probabilities each
depend only on the state prior to that event. The probabilities P(o) of the system
to be in a certain state o and the probabilities P(¢ — ¢’) for the transition from
one state o to another state o’ have to be in a detailed balance:

P(oc — o')P(o) = P(¢’ — o)P(d'). (4.1)

The Metropolis algorithm for the Ising model sets the transition probabilities P(c — o”)
in dependence of the energies E(o) and E(o’) of the corresponding states ¢ and o
as

1 if E(0o’') < E(0)

, . 4.2
exp(—EZEE) it B(o') > E(o) “2)

Ploc — o) = {
At the beginning of a simulation run, an initial state oy according to a certain
configuration of the magnetic moments has to be put into the Metropolis algorithm.
In a next step, the algorithm chooses a random number i € {1,...,Ny, } with Ny
being the total number of lattice sites. For the randomly selected lattice site 1,
the probability of going from the state o = (01,...,04,...,0N10¢) to the state o/ =
(01,.eey — OiyeersOntor) Dy changing the discrete variable o; is calculated according to
(4.2). Next, another number r € [0,1] is randomly generated by the algorithm. Due
to this property, the Metropolis-Hastings algorithm is specified as a Marcov chain
Monte Carlo (MCMC) algorithm. By means of the random number r, the Metropolis
algorithm decides whether it changes the state in the time step from ¢,,c to tyc+ 1
by
o'(tye) ifr < Plo— o)

: (4.3)
o(tye) ifr>Plo— o)

O(Zch—l—l) = {

The routine of randomly choosing a lattice site 7 and attempting a flip of its magnetic
moment is repeated for a large amount of time steps t;;¢ in order to simulate the time

12



4.1. THE METROPOLIS ALGORITHM

-0.017 0.761
M

)

R
0.076 0983

evolution of the two-dimensional ferromagnet in the description of the Ising model
under certain conditions (initial state oy, temperature 7" and external magnetic field
H). In figure 4.1', the relaxation of the ferromagnet after quenching is visualized.
Here, a periodic square lattice of N x M = 540 x 540 lattice sites is taken at zero
magnetic field H = 0 and constant temperature 1" = const. < T. Figure 4.1 shows
that after the quenching the magnetic moments tend to align themselves in order to
reach a lower energetic state. Therefore large regimes of aligned magnetic moments

occur.

0.923  0.997

Figure 4.1: Visualization of the orient-
ations of atomic magnetic moments in a
ferromagnet simulated by the Metropolis
algorithm. The two possible orientations
of the magnetic moments are represented
by black and white squares. The figure
shows a quenched ferromagnet at the be-
ginning (tprc = 0) (a)) and at the end
(tyme = 3-108) (b)) of the simulation run.
The values of the parameters temperat-
ure T, external magnetic field H, mag-
netization M and order parameter 7 are
indicated at the sides of the pictures.

Figure 4.2: Visualization of the orient-
ations of atomic magnetic moments in
a ferromagnet simulated by the Metro-
polis algorithm. The two possible ori-
entations are represented by black and
white squares. The figure shows a fer-
romagnet being cooled down at the be-
ginning (tprc = 0) (a)) and at the end
(tyme = 3-108) (b)) of the simulation run.
The values of the parameters temperat-
ure T, external magnetic field H, mag-
netization M and order parameter 7 are
indicated at the sides of the pictures.

!Source code: https://github.com/CodingPhysics/Ising



14 CHAPTER 4. NUMERICAL SIMULATIONS OF THE ISING MODEL

In figure 4.2%, the cooling of a ferromagnet from Tiy = 3J/kp in steps of Tstep =
0.01J/kp to Teng = 0.01J/kp is visualized. The considered lattice consists again of
N x M = 540 %540 lattice sites and is located in a weak magnetic field H = 0.03J/pp.
As one can see, the ferromagnet starts in a disordered state and by passing the
critiacl point Ty transitions into an ordered state, where macroscopic regimes of
aligned magnetic moments appear and nearly all magnetic moments point in the
same direction (white regime).

2Source code: https://github.com/CodingPhysics/Ising



5. Summary and Outlook

The Ising model was proposed by Wilhelm Lenz to his PhD student Ernst Ising in
1920 as a theoretical description of ferromagnetism. The assumptions made by the
model were the strong simplifications of only nearest neighbor interaction and that
only two orientations of the atomic magnetic moments represented by the discrete
variable o; € {£1} are possible. E. Ising was able to solve the problem in one
dimension in 1925. In his approach he counted the possible configurations of a linear
chain with 1 positive and 15 negative lattice sites by means of combinatorial methods
which led him to the partition function Z. His result did not show the expected
phase transition at the critical point 7> but nonetheless was correct which can be
proofed by solving the one-dimensional model using the transfer matrix formalism.
In the transfer matrix formalism in general, the partition function Z of the physical
system is obtained by determining the transfer matrix V' and calculating its largest
eigenvalue (see section 3.1.2). In one dimension, the transfer matrix formalism yields
the partition function Z by applying simple algebra and confirms that there is no
phase transition for the linear chain. It was in 1936 that R. Peierls showed that
despite the results for the one dimensional model there is a phase transition in two
or more dimensions. The first exact solution of the two-dimensional Ising model was
calculated by Lars Onsager in 1941. He applied the transfer matrix formalism on the
Ising model in two dimensions involving higher mathematics and published an exact
formula for the free energy per site f as well as for the critical temperature T¢.

Nowadays, the Ising model is not only relevant in the field of solid state physics but
has also found applications in neuroscience, tumor modeling and the description of
critical gas-liquid phenomena. The relevance of the Ising model is evident given the
approximately 800 papers that are published on it every year [Isil7]. The import-
ance and the success of the Ising model are given by the fact that it is analytically
exactly solvable which makes it a powerful tool for benchmarking new models and
mathematical approaches. Further, the core of the Ising model that is the binary
description of the lattice sites allows for the exportation of it across the boundaries
of scientific disciplines and shows that often a scientific field can profit from results
of a distinct scientific field.

15
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