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Abstract

The following report represents a short introduction to the topic of phase
transitions and critical phenomena.
Matter can exist in several states differing in their respective properties. A
change between those phases is characterised by critical behaviour in the ther-
modynamic quantities of the system. A classification for different transitions
based on the Gibbs free energy is given.
Near the critical point the correlation length diverges leading to universal
behaviour. The divergence of characteristic quantities will result in scaling
laws from which parameters describing the behaviour can be obtained.
This report discusses only thermodynamic phenomena, although more general
examples are briefly mentioned.

1 Introduction
The history of phase transitions is strongly interwoven with the procession of differ-
ent materials like e. g. ceramics, which can be traced back 8000 years in the Near
East. With the discovery of magnetism first meticulously described by Thales of
Miletus and its useful applications thought of by Peregrinus of Maricourt the
first ferromagnetic materials were introduced to the scientific world. It still needed
another threehundred years until Galileo developed the first thermometer later su-
perseeded by Fahrenheit’s thermometer using alcohol until the foundation for the
theory of thermodynamics was laid. In the following century the successive discov-
eries of the thermodynamic properties of gases by Boyle, Mariotte, Amonton,
Gay-Lussac and Avogadro lead to the first formulation of an equation of state for
a thermodynamic system. With the detailed analysis of thermodynamic processes
by Carnot for example the way was paved for our modern day understanding
of thermodynamic systems and phase transitions. With the development of steam
engines the first applications of thermodynamic processes were made in the 19. cen-
tury. 1872 Van der Waals first introduced a fluid undergoing a phase transition,
albeit a second-order phase transition was already experimentally established by
Andrews 1869 in CO2. At the brink of the 20. century the loss of magnetisation
due to heating of magnetic materials was demonstrated by Pierre Curie in his sys-
tematic investigations later pursued by Weiss. At the beginning of the twentieth
century the technique to liquefying all gases allowed for intensive studies in the
realm of low-temperature physics leading to discoveries like the superconductivity
of mercury using liquid helium by Onnes in 1911. With the newborn possibilities of
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studying microscopic structures with X-rays the detailed investigation of metal al-
loys lead to the hypothesis of an ordered phase in alloys in 1919 by Tammann. This
was later confirmed in 1929 by Johannsen and Linde. Tamman demonstrated in
1926 the existence of a critical point in a bronze alloy. The introduction of the Ising
model in 1915 due to Ising and Ernst a simple system developing ferromagnetic
phase transitions under certain conditions lead to further fruitful development culmi-
nating in the solution of the two-dimensional Ising model by Onsager 1944. With
the first classification schemes for phase transitions by Ehrenfest and Landau
in the 1930s as well as the concept of long-range order by Bragg and Williams
the notion of an order parameter became manifest. The development of precision
thermometry at the beginning of the fifties allowed for detailed experimental verifi-
cation of the developed concepts as well as for the collection of data on which the
concepts of scaling and universality were based in the late sixties by Kadanoff,
Domb and Widom. The introduction of the renormalisation group by Wilson
at the same time opened up the possibilities of calculating the critical values for a
multitude of systems as made explicit by Fisher in the 1970s. The growing need
for new materials in industrial contexts stimulated a lot of further research on phase
transitions.
A lot more can and probably should be said on phase transitions and critical phe-
nomena, but due to the nature of this summary being only introductional, not all
details and the complete mathematical rigour can be taken into account. Following
the definition of phase transitions using the basic concepts of thermodynamics a
closer description of the critical behaviour will be given. The concept of critical ex-
ponents, the scaling laws and universality interpretable as consequence of the before
mentioned will be elaborated and emphasised using a particularly simple example.
This report will make heavy use of thermodynamic notation. Our thermodynamic
potential of choice will be the Gibbs free energy G(T, J) from which the exten-
sive state variables are directly derived via dG = −SdT −mdJ . The variable J
corresponds to an external source like a pressure or a magnetic field. A notion of
macroscopic structure is given by means of an order parameter m which corresponds
to the response of the Gibbs free energy to a source

m = −∂G

∂J
. (1)

The entropy is obtained in a similar manner as (negative) T -derivative of the Gibbs
free energy. In addition to the extensive state variables the response functions C, χ
and α measure how those variables change due to a change in one of the intrinsic
variables.

CJ = T

(
∂S

∂T

)
J

(2)

χT =

(
∂m

∂J

)
T

(3)

αm =

(
∂m

∂T

)
J

. (4)

Those variables should suffice for the purposes of this report. Due to implicit re-
lations (e. g. an equation of state) of the intrinsic state variables, the response
functions fulfill a variety of relations making them depend on each other. Also note
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Figure 1: Phase diagram for a (non-anomalous) fluid and a magnetic system. At
the critical point the phases can be continuously deformed into each other. Adapted
from [1].

how by choosing the (negative) pressure as a source, the order parameter can be
associated with the Volume or the density of the system and the response becomes
the compressibility while by choosing a magnetic field the order is denoted by the
magnetisation and the response becomes the susceptibility.
One remark should still be made. For a magnetic system the sign of C, χ and α can
not easily be claimed. Nevertheless, it can be shown that a (magnetic) system with
Hamiltonian

H = H0 − Jm̂, (5)
still has a concave Gibbs free energy thus rendering the thermodynamic approach
valid (Griffith 1964).[1–3]

2 Phase Transitions
Since humanity (industrially) mastered materials the observation is made that mat-
ter can exist in different states differing in their properties. The most ubiquitous
example being the solid, liquidous and gaseous states of ordinary substances found
on earth. Transitions between phases are characterised by rapid changes in the
properties of the system like the density rapidly decreasing during the vaporisation
of a liquid. Later it was found that there is a greater variety of phase transitions for
example regarding transitions between several crystalline configurations of a solid.
A phase transition is induced by an external change in the intrinsic thermodynamic
variables of the system of interest. To further analyse phase transitions of a system
a phase diagram can be drawn plotting the state variables against each other. One
example for this can be seen in Fig. 2. Each phase transition is characterised by a
set of critical quantities indicating the threshhold for the transition most notably
the critical temperature Tc.

There are different ways to distinguish phase transitions, all relying on the struc-
ture of the system’s quantities near the transition. The two relevant classifications
are by the degree of the corresponding derivatives of the thermodynamic potential
(Ehrenfest 1933) or by the symmetry of the different phases which allow for the
notion of an order parameter (Landau 1937).[1, 2]
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Figure 2: Phase diagram for a pure substance, adapted from [2].

(a) First order. (b) Second order.

Figure 3: Phase transitions.

2.1 Ehrenfest classification
In this classification scheme proposed by Ehrenfest in 1933 the distinction is made
between the order to which the critical thermodynamic quantity can be associated
to a derivative of a thermodynamic potential. If an irreguarity occurs in one of the
state variables (e. g. pressure, volume, magnetisation, temperature), the transition
is of first order. Phase transitions of first order show jump discontinuities in their
state variables. The size of this gap corresponds to the latent heat absorbed or being
released in these processes. One example of a phase transition of first order would
be a boiling fluid, where the volume increases drastically during the transition while
the temperature stays constant. The latent heat involved here corresponds to the
enthalpy of vaporisation of the fluid.
Phase transitions of second order are characterised by divergencies of the response
functions of the system while the state variables stay finite at the transition. Since
there is no latent heat (in a broader sense) involved in the process, both phases
can be deformed into each other continuously. Such a response function can be the
specific heat of a fluid or the susceptibility of a magnetic system. An example of
this would be the Ising model, where the susceptibility near the critical temperature
diverges as the magnetisation goes to zero (from below).
It is possible to associate higher order phase transitions in the Ehrenfest sense by
identifying higher derivatives of the potentials of the system, albeit most phase
transitions fall into one of the previous categories with the Kosterlitz-Thouless
transition being a famous exception.[1, 2]

2.2 Landau classification
In a different approach the symmetries of both phases involved in a transition can
be compared to each other bearing the advantage of not being limited to a thermo-
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dynamic description. This was first proposed by Landau in 1937.
If the symmetry groups of both phases can not be identified as one being contained
in the other, no order parameter can be defined and thus the transition is without
such a parameter. It can be shown that those transitions are always first-order in
the Ehrenfest sense.
If an order parameter (often denoted m) can be defined, the symmetry group of the
least symmetric phase is a subgroup of the symmetry group of the most symmetric
phase and a distinction between the unordered and ordered phase is possible. During
the transition symmetry breaking occurs, one example being the crystallisation of a
liquid where the continuous translation symmetry of the liquidous phase is broken to
a translational symmetry in a lattice that describes the spatial structure of the solid
phase. Often, the order parameter can be defined in such a way that it is zero in
the disordered phase and only nonzero below the critical point. If a phase transition
with order parameter falls into one category due to Ehrenfest or the other is related
to the behaviour of the parameter itself. A discontinuous order parameter hints
to a first-order transition while it being continuous corresponds to a second-order
transition.[2]

2.3 Correlation Length
To describe the formation of macroscopic order from the microscopic properties of
a system the correlation function is defined as the two-point correlator between two
sites of the system (e. g. lattice points):

G(r − r′) = ⟨m(r)m(r′)⟩ − ⟨m⟩2 . (6)

This correlator can be split into a part due to self-interaction ∝ δ(r − r′) and the
remaining interactions, denoted Γ(r − r′). Starting from this the structure function
Ŝ(q) is defined as the Fourier transform of the correlation function and takes on the
form:

Ŝ(q = n
(
1 + nΓ̂(q)

)
, (7)

where the quantity n corresponds to the characteristic particle density of the system.
There still remains an obstacle in the interactions governed by the term Γ(r − r′). It
contains the direct interactions of site r with site r′ as well as the interactions with
a third site say r′′ which interacts with the site r′. To extract the direct interaction
without these cumulated contributions the direct correlation function C(r) is needed.
Ornstein and Zernike showed how it can be obtained via its Fourier transform
as

Ĉ(q) = Γ̂(q)
1 + nΓ̂(q)

. (8)

From this the structure function follows as

Ŝ(q) = n

1− nĈ(q)
. (9)
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Assuming isotropy of the direct correlation and expanding up to second order the
structure function gains the Lorentz-like form

Ŝ(q) ∝ 1

κ2 + q2
(10)

⇒ G(r) ∝ e−κr

rd−2
. (11)

In the last line the inverse Fourier transform was applied. The quantity κ has
dimensions of an inverse length and from it the correlation length ξ is defined as
κ = ξ−1. In the correlator, now behaving as G ∝ r−(d−2)e−r/ξ, the correlation length
provides a characteristic length scale for the decay of correlations. This exponential
form is typical for macroscopically uncorrelated systems where nearest neighbours
are still influencing each other on small scales.
More generally the correlator behaves as

G(r) ∝ e−r/ξ

rϑ
, (12)

where the exponent ϑ accounts for other non-trivial contributions to the exact form
of the interaction.
Near the critical point the correlation length diverges and the system loses its only
relevant scale. This is one of the main reasons for the appearance of macroscopic
structures because previous small scale fluctuations can now appear on every scale.
This effect known as critical opalescence makes it quite difficult to observe systems
near the critical point experimentally.
At criticality the divergence of the correlation length leads to an algebraically de-
caying correlator:

G(r) ∝ 1

rd−2+η
. (13)

This indicates a correlation of the microscopic sites throughout the whole macro-
scopic system during a phase transition. It is of uttermost importance to note that
the exponents η and ϑ can differ and are not trivially related.[1]

3 Critical Exponents
To give a proper description for phase transitions of second order, the divergent
behaviour of the thermodynamic quantities must become comparable. Specifying a
dimensionless quantity related to the vicinity to the critical point,

t ≡ T

Tc
− 1, (14)

with t = 0 at T = Tc, the (divergent) behaviour of a quantity f(t) near the critical
point is described by its critical exponent λ defined by:

λ ≡ lim
t↘0

ln |f(t)|
ln t

. (15)

This implies that near Tc f behaves as f(t) = Atλ (1 +Btx + · · · ). The critical
exponent λ′ from below Tc is defined in a similar manner and can differ from λ:

λ′ ≡ lim
t↗0

ln |f(t)|
ln t

. (16)

6



Seminar on Statistical Physics Phase Transitions and Critical Phenomena

(a) Logarithmic divergence. (b) Cusp-like divergence.

Figure 4: Divergencies with vanishing critical exponent, adapted from [1].

This behaviour is denoted as f ∼ tλ from above and f ∼ (−t)λ
′ from below. It must

be emphasised that the case λ = 0 is not unique and can correspond to three different
cases: a logarithmic divergence like f(t) ∝ ln |t|+ · · · , a cusp-like (but still finite)
divergence f(t) ∝ A−Btx + · · · or perfectly analytical behaviour up to maybe a
jump discontinuity. This is seen in Fig. 4 and can be corrected1 for, albeit such
modifications are not that commonly used.
The most importand exponents (α(′), β, γ(′), δ, η, ν(′)) are defined as follows:

Cx ∼ t−α (18)
∼ (−t)−α′ (19)

m ∼ (−t)β (20)
∂m

∂J
∼ t−γ (21)

∼ (−t)−γ′ (22)
ξ ∼ t−ν (23)
∼ (−t)−ν′ (24)

G ∝ r−(d−2+η) (25)
m ∝ |J |1/δ . (26)

The last two exponents are only defined at the point of criticality, t = 0. Exper-
imentally it can be hard to determine the exponents due to the often unknown
exact critical point. To avoid this complication arbitrary powers of the measured
quantities are fitted to a straight line [1, 2, 4].

1 In this modification the extracted critical index is defined via

λs ≡ j + lim
t→0

ln
∣∣f (j)(t)

∣∣
ln |t|

, (17)

where the integer j corresponds to the numer of successive derivations needed for the quantity
to show a divergence at the critical point.
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3.1 Example Calculation for the Ising model in the Mean
Field Theory

Lets assume an Ising model on a lattice with sites i, spins si of magnitude µ pointing
up or down, σi = si/µ ∈ {±1}, an external magnetic field H and a coupling J of
nearest neighbours. The Hamiltonian for this model reads:

H [Ω] = −µH
∑
i

σi − J
∑
⟨i,j⟩

σiσj, (27)

here ⟨i, j⟩ stands for all pairs i, j who belong to neighbouring sites. To solve this,
spin fluctuations δσi around their mean value m = ⟨σ⟩ are considered. Insertion into
the Hamiltonian leads to:

H [Ω] = −µH
∑
i

σi − J
∑
⟨i,j⟩

(m+ δσi)(m+ δσj) (28)

= −µH
∑
i

σi − zJ
∑
i

(
m2 +m(δσi + δσj)

)
+O

(
δσ2

)
(29)

≃ −µH
∑
i

σi − zJ
∑
i

(
m(σi + σj)−m2

)
(30)

= − [µH + zJm]
∑
i

σi, (31)

in the last line we introduced the coordination number z, counting the number of
nearest neighbours, and evaluated the last two terms in the last sum, canceling each
other. The factor in front of the sum can be expressed as an effective magnetic field
Heff, due to an external contribution H and a contribution due to the magnetisation
m of the system. Evaluating the partition sum,

lnZ(β,H) = ln
∑
Ω

e−βH[Ω] (32)

= ln
∑

σ1=±1

· · ·
∑

σN=±1

e−βH[Ω] (33)

= N ln 2 +N ln cosh µH + zJm

kT
, (34)

the magnetisation can be deduced to be:

m = tanh µH + zJm

kT
. (35)

In the absence of an external field H a critical temperature Tc =
zJ
k

can be found
from simple graphical considerations. Therefore, this model shows a ferromagnetic
phase transition at the critical temperature Tc. Near the critical point, eq. (35) can
be expressed as

m = (1 + t) artanhm (36)

≃ (1 + t)

(
m+

1

3
m3

)
. (37)
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This can further be expanded to

m =

√
−3t

1 + t
(38)

≃ (−3t)1/2 [1 +O(t)] , (39)

from which we can conclude β = 1
2
. Additionally we can calculate the susceptibility

from eq. (35) by differentiating in H and reusing eq. (35) to obtain:

χ =
µ

zJ

1−m2

t+m2
. (40)

From above the Curie-Weiss law χ ∝ t−1 can easily be obtained by sending m
to 0. To see the behaviour from below eq. (39) can be inserted leading to the
same exponent and thus we deduce γ = γ′ = 1. Directly at the critical temperature,
eq. (35) can be written as

βcµH = −m+ artanhm (41)

≃ 1

3
m3

(
1 +O(m2)

)
, (42)

from which it can be concluded that m ∝ |H|1/3 and thus δ = 3. The other expo-
nents can be found by similar arguments.
If one takes a closer look at this model one can see that using this approach even the
Ising model in one dimension (z = 2) seems to show a phase transition when it was
proven by Ising himself that that can not be the case. Comparison with the critical
exponents in Onsagers famous solution shows that the values, calculated here, are
off somehow. There is a deep reason behind this. In the above introduced approach
by expanding around their mean value ⟨σ⟩ ∝

∑
i σi, the sites nearest-neighbour in-

teraction was promoted to an interaction throughout the whole lattice. This is
called an infinite-dimensional interaction, because the number of neighbours grows
infinitely by redefining the “distance” to nearest neighbours, while in the “ordinary”
cases it grows obeying a power law with exponent given by the dimensionality of
the model. The infinite-dimensional approach corresponds to viewing the mean field
value as the expectation value of a free massless scalar field. This property is typi-
cal for classical approximations and can also be found in the theory of a Van der
Waals-fluid, where it will lead to the same critical exponents. In this context one
can define a so called lower critical dimension from which on the solutions obtained
using the mean field method are equivalent and thus lead to the same results as the
exact solutions. Unfortunately, in most cases this critical dimension is 4 or 3. For
example the Ising model has lower critical dimension 4. Up to today there are quite
few analytically solved statistical models showing phase transitions that do not fall
into the classical category and from which the critical exponents can be derived.
This is sketched graphically in fig. 5 [2, 4].

3.2 Scaling Hypothesis
Near criticality due to the divergence of the correlation length the system loses its
only relevant scale and thus some form of scale invariance should hold. From this
Domb, Kadanoff and Widom proposed the scaling hypothesis, stating that near
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Figure 5: Diagram showing the positions of known statistical models due to their
dimensionality d (ε = 4− d) and the index of isotropy n. The only exact solution
known in the inner region is Onsager’s solution of the two-dimensional Ising model.
The boundaries of the diagram correspond to classical solutions. Taken from [5].

the critical point the thermodynamic quantities obey scaling laws, meaning that the
thermodynamic potentials, the extensive state variables and the response funtions
become homogeneous functions of the intrinsic state variables. In this context it is
sufficient to phrase this as2

GS(λ
pt, λqJ) = λGS(t, J), (43)

here GS corresponds to the part of the thermodynamic potential whose derivatives
develop critical (and thus singular) behaviour at criticality, the analytical part has
to be extracted resembling the fact, that the existance of a critical exponent does not
imply a strictly power law behaviour of the corresponding quantity but a more com-
plex form whose divergence is driven by a power law. This scale invariance allows
to associate a thermodynamic system to a conformal field theory. There the scaling
dimensions of the corresponding operators can be identified with the critical expo-
nents of the system. With the development of renormalisation group technics due
to Wilson 1971, critical exponents for a system became theoretically approachable
and for the first time could be predicted outside the analytically solvable models as
shown by Fisher 1974. The critical exponents only depend on the dimensionality
d of the system and the degree of isotropy n indicating the inner symmetries of the
system. With this at hand an expansion in the variables ε = 4− d and n−1 can be
made to leave the classical realm [1, 4, 5].

2 Note that choosing a power λr in front of GS does not correspond to a more general form since
by redefining λ → λ1/r eq. (43) can be recovered.
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Exponent MFT ISING 2D ISING 3D HEIS 3D
α 0 0 0.12 -0.14
β 1/2 1/8 0.31 0.3
γ 1 7/4 1.25 1.4
δ 3 15 5 [5.7]
ν 1/2 1 0.64 0.7
η 0 1/4 0.05 0.04

Table 1: Table with examples for critical exponents. Data taken from [6], value in
brackets manually calculated from the relations.

3.3 Exponent Relations
From the scaling hypothesis and the relations between the intrinsic state variables
(e. g. an equation of state) several relations regarding the critical exponents can be
derived by thorough dimensional analysis. One example of this will be demonstrated
here. Take eq. (43) and differentiate both sides with respect to J :

m(t, J) = λq−1m(λpt, λqJ), (44)

and analogously
S(t, J) = λp−1S(λpt, λqJ). (45)

In the case J = 0 using the definition of β and choosing λ = t−1/p eq. (44) implies
β = 1−q

p
. Of course, the response functions are obtained in the same way

C(t, J) = λ2p−1C(λpt, λqJ) (46)
χ(t, J) = λ2q−1χ(λpt, λqJ) (47)
α(t, J) = λp+q−1α(λpt, λqJ). (48)

Similarly we can conclude γ′ = 2q−1
p

. Therefore, via p and q all critical exponents can
be expressed using the scaling hypothesis. This leaves only two of them independent.
The most commonly used relations between the exponents are

2 = α′ + 2β + γ′ (49)
2 = α′ + β(1 + δ) (50)
γ = β(δ − 1) (51)
ν = ν ′ (52)
γ = (2− η)ν (53)
dν = 2− α. (54)

The last expression made use of the dimensionality d of the system. A Few examples
for critical exponents are given in tab. 1 [1, 4].

3.4 Universality
Experimentally it became clear early on that many different systems appear to have
the same critical exponents and thus show the same behaviour at the critical point.
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Rather wellknown examples of this include a Van der Waals-fluid and the Ising
model in dimensions greater three, or the liquid-gas transition of carbon dioxide or
xenon and the three-dimensional Ising model (Hocken/Moldover 1976). In the
context of scaling this is no big surprise, since only the scale invariant properties
of a system contribute to its critical behaviour and therefore the more delicate and
subtle differences in the models seem to blur when approaching criticality. Only the
broad symmetries leading to scaling dominate at the critical point implying that
different models can be grouped in so-called universality classes by their critical
exponents. The classes itself are defined by the broad symmetry groups leading to
specified scaling behaviour.
It should be noted that while seeming strongly related the concepts of scaling and
universality are not mutually inclusive, as there exist models featuring one of them
but not the other. Take for example the 8-vertex model were the critical exponents
vary continuously with the parameters in the Hamiltonian thus showing scaling but
violating universality [1, 4].

4 Conclusion

T(K)

Tλ =2.2 K

2

1

3
Cv/Nk

1

∼T
3

2 3 54

He II He I

Figure 6: λ-transition of helium at
2.2K. The name is related to the
shape of the curve. Adapted from [2].

We conclude this report about phase tran-
sitions and critical phenomena with a brief
discussion of the fundamental concepts and
an outlook an further applications.
In the previous sections we saw that phase
transitions characterise the rapid changes in
the properties of a system between distinct
states called phases. Near those transitions
the characterising quantities of the system
show critical behaviour like divergencies or
discontinuities being related to a change in
symmetry or configuration of the system.
For those quantities exponents describing
the nature of the divergence can be defined
and measured. Due to the divergence of
quantities like the correlation length the system loses its relevant scale and shows
universality. From the scaling behaviour of the system relations between the expo-
nents can be derived. The universality allows to group different models and system
showing the same behaviour at criticality into universality classes being defined by
a set of critical exponents related to the broad symmetry groups. It also became
apparent that there exist critical dimensions below which approximative solutions
of thermodynamic models will lead to vastly different results compared to the mea-
surements highlighting the need for the ability to determine the exponents using
other methods.
With the developments regarding conformal field theory, the renormalisation group
and the conformal bootstrap the tools were provided to calculate the critical ex-
ponents directly from the symmetries of the system, but there are still unsolved
problems arising in the calculation of specific exponents with one famous example
being the λ-transition of helium. The divergent behaviour of the specific heat of he-
lium near its transition (as seen in fig. 6) to its superfluent phase is experimentally
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well established as α = −0.0127(3) [7], but still most theoretical models predict it
with deviations outside the margin of error.
Most of the examples given here where of a thermodynamic origin, but that does
not express a restriction. Actually, there exist a great variety of models making
use of the thermodynamic limit but not bound to a thermodynamic point of view
with examples being applications in neural networks [8] or even sociology describing
human cooperation [9].
Finally it can be said that in the theory of phase transitions lies the foundation
for our modern day standards including the processing of materials with progres-
sively smaller structures for our industrial requirements as well as the theoretical
descripten of macroscopic effects due to microscopic interactions. With its everyday
applications and development a lot of future research will be dedicated to phase tran-
sitions and most definitely lead to further progress in humankinds understanding of
the microscopic structure of nature.
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