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Abstract

In statistical physics, it is usually easiest to describe the properties of a gas if

it is either in equilibrium, through thermodynamics, or, if it can be described in a

continuous way, through fluid dynamics. For gases not in equilibrium, a description on

particle-level would be the best, but becomes too complex due to the high number of

parameters. In this summary, an intermediate solution will be derived: The Boltzmann

equation, which treats the gas as a mass density function in phase space, with evolution

described by diffusion and collisions of particles. It is shown that, making the right

assumptions, it can be derived from first principles, and it can be used to find the

macroscopic Euler equations. Also, one finds that for a gas not in equilibrium, entropy

will always increase, and the final maximum entropy equilibrium state is described by

the Maxwell-Boltzmann Distribution.

1 Probability density functions

Assume a gas of N pointlike, identical, classical particles. The assumption of a classical

particle, described completely by its six-dimensional phase space vector xi =

qi

pi

, can

be justified as a large-N-limit of quantum mechanics (it does obviously not hold for very

low temperatures, where Fermi-Dirac and Bose-Einstein statistics take over). One can then
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introduce a probability distribution

FN({q}, {p}, t)
N∏
i=1

dqidpi (1)

Where FN({q}, {p}, t) is the probability of the system being in the phase space volume∏N
i=1 dqidpi

1. It is to be noted that, instead of trying to deterministically describe the time

evolution of a gas, an a priori probability distribution is used from the beginning. This does

not mean that the theory isn’t an exact theory (indeed, it becomes exact in the right limit),

but rather that it is a statistical one.

Since the exact phase space position of any particle isn’t known, and the particles are in-

distinguishable, F is symmetric in all arguments xi. Still, this is a very microscopic theory:

For a macroscopic gas, F is dependent on order of 6× 1023 parameters

2 Liouville’s Theorem

One important microscopic theorem that can be proven for these PDF is Liouville’s Theorem

dFN

dt
=
∂FN

∂t
+

N∑
i=1

[
∂FN

∂qi

· q̇i +
∂FN

∂pi

· ṗi

]
= 0 (2)

it states that, on a particles path in phase space, the density of phase space points stays

constant. It has been found first not by Liouville, but Gibbs [3], who in its derivation used

an identity found by Liouville [2].

To prove it, choose an arbitrary volume V in phase space with ηV = η
∫
V
FNdx particles in

it. The number of particles inside of it changes as

∂ηV
∂t

= η

∫
V

∂FN

∂t
dx (3)

1To make equations more readable, we write dpi = d3p, dqi = d3q, dxi = d3pd3q, ∂
∂qi

= ∇qi
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It can of course also be described by incoming and outgoing particle flux into the Volume,

using a surface integral.

dηV
dt

= −η
∫
S

dS(n̂ · ẋ)FN (4)

Using Gauss Theorem, this is equal to

dηV
dt

= −η
∫
V

dx∇x · (ẋFN) (5)

Subtracting both equations from each other

∂FN

∂t
+∇ (ẋFN) (6)

=
∂FN

∂t
+

N∑
i=1

(
∂FN

∂pi

· ṗi +
∂FN

∂qi

· q̇i

)
+

N∑
i=1

FN

(
∂ṗi

∂pi

+
∂q̇i

∂qi

)
= 0 (7)

The first two terms are the Liouville equation. The last term is zero, since

∂ṗi

∂pi

+
∂q̇i

∂qi

=
∂H

∂qi∂pi

− ∂H

∂pi∂qi

= 0 (8)

What is left is then Liouville’s Theorem. It is the basis for deriving the Boltzmann equation.

3 Reduced Probability Density Functions

To convert this microscopic description of a gas into a macroscopic one, one needs to eliminate

most degrees of freedom of FN . One way of doing this would be integrating out all the

unneeded variables

FR(x1, . . . ,xR, t) =

∫
dxR+1 . . . dxNFN(x1, . . . ,xN , t)

This naive way in this case is actually pretty efficient, since FN is symmetric in its parameters.

While one would intuitively describe F1dx1 as being the probability of finding particle 1 at

3



position x1 in phase space, due to symmetry, one can also describe it as the probability of any

other particle at this position. This means F1 is proportional to a particle density function.

A function F2 would then be a density function which also captures the impact that finding

one particle at a position x2 would have on the a posteriori distribution of another particle

x1. For example, assuming hard shell particles with some finite radius, F2(x1,x1, t) = 0,

since two hard shell particles cannot be in the same position.

4 The Boltzmann Gas Limit (BGL)

As for any other macroscopic statistical theory, the right assumptions are necessary for the

Boltzmann equation to be valid. They are quite specific for the Boltzmann equation, since it

assumes the existence of binary and no other collisions, with the binary collisions occurring

on average every finite time interval τ .

First, assume a macroscopic gas, with particle number N going to infinity. Then, particle

mass m and the characteristic force range σ need to be zero to avoid any macroscopic

divergences. The important quantities are the constant multiplicatives of these constants.

The easier one is

Nm =M = const

which just assumes a finite total mass. The less intuitive one is

Nσ2 = const

The quantity 1
Nσ2 is proportional to the average free path, which means this assumption

results in a finite time between collisions. Had one chosen Nσ = const, the free path would

be infinite. The limit is then the one of a Knudsen Gas, a gas so dilute that particles do not

collide. On the other hand, Nσ3 = const would result in the free path being zero, and many

particles constantly interacting, resulting in a very dense fluid. Both of these limits are not
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described by the Boltzmann Equation, which can only be proven in the BGL limit.

5 Truncated Reduced PDF

The final piece for the derivation is to focus on binary collisions between particles. While

integrating out variables, it is a good idea to define new, truncated reduced distribution

functions

F σ
1 (x1, t) =

∫
D1

dx2 . . . dxNFN (9)

F σ
2 (x1,x2, t) =

∫
D2

dx3 . . . dxNFN (10)

with integration limits

D1 = {{x2, . . . ,xn} : |xi − x1| ≥ σ, i ∈ {2, . . . , N}}} (11)

D2 = {{x3, . . . ,xn} : |xi − x1| ≥ σ, i ∈ {3, . . . , N}}} (12)

This means that F σ
1 (x, t) is the probability of particle 1 being at position x in phase space,

with no other particle being in range σ of it, and therefore without any particle interacting

with it. F2 only allows particle 2 being in range σ of particle 1, since they are both free

variables.

In the BGL, the error from integrating over these new volumes instead of the original phase

space is of order σ → 0. Therefore, it doesn’t matter which integration limits to choose for

the derivation. However, the two truncated functions consider only binary collisions, which

results in taking the correct limits naturally, instead of having to find them post derivation.
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6 Reduction of the Liouville Equation

It is possible to derive the Boltzmann equation from the Liouville equation by integrating

over all variables except x1, thereby reducing the microscopic probability density function

to a macroscopic particle density function, and the microscopic Liouville equation to the

kinetic Boltzmann equation.∫
D1

dx2 . . . dxN

∂FN

∂t︸ ︷︷ ︸
Part 1

+
N∑
i=1

∂FN

∂qi

· q̇i︸ ︷︷ ︸
Part 2

+
∂FN

∂pi

· ṗi︸ ︷︷ ︸
Part 3


 = 0 (13)

Since this is a rather long calculation, we will calculate the integral over each of the 3 parts

separately.

6.1 Part 1

This is the easiest part of the calculation, since the derivative ∂
∂t

commutes with the integral

∫
D1

dx2 . . . dxN
∂FN

∂t
=

∂

∂t

∫
D1

dx2 . . . dxNFN (14)

=
∂F σ

1

∂t
(15)

6.2 Part 2

The term

∫
D1

dx2 . . . dxN

N∑
i=1

[
∂FN

∂qi

· q̇i

]
(16)
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can be further separated into

∫
D1

dx2 . . . dxN

N∑
i=2

[
∂FN

∂qi

· q̇i

]
(17)

+

∫
D1

dx2 . . . dxN

[
∂FN

∂q1

· q̇1

]
(18)

These terms have to be treated differently, since q1 is not part of the integration, while

q2, . . . ,qN are.

The first part can be solved by partial integration for each element of the sum over qi.

∫
D1

dx2 . . . dxN

N∑
i=2

[
∂FN

∂qi

· q̇i

]
(19)

= −
∫
D1

dx2 . . . dxN

N∑
i=2

qiFN q̇i +

[
N∑
i=2

∫
D1

dx2 . . . dx̄i . . . dxNFN q̇i

]
xi(D1)

(20)

with x̄i not being integrated over. By analyzing boundary behavior, it can be seen that

the first term vanishes: The probability of infinite momenta is zero, so FN vanishes at that

boundary. Considering a system confined in a box large enough that boundary terms do not

play a role, but not infinitely large, FN will also vanish at infinite qi. Terms on the other

integration boundary, the sphere around q1 are proportional to its size σ → 0.

The second term can be reduced due to the indistinguishability of particles

[
N∑
i=2

∫
D1

dx2 . . . dx̄i . . . dxNFN q̇i

]
xi(D1)

= (N − 1)

[∫
D2

dx3 . . . dxNFN q̇2

]
x2(D1)

(21)

Since FN vanishes at infinity, evaluation of x2 on D1 yields only a surface integral over the

sphere S2 around q1.

(N − 1)

[∫
D2

dx3 . . . dxNFN q̇2

]
x2(D1)

= −(N − 1)

[∫
dS2dp2

∫
D2

dx3 . . . dxNFN q̇2

]
(22)

= −(N − 1)

∫
dS2dv2v2F

σ
2 (x1,x2, t) (23)
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This is the first boundary term resulting from the truncated phase space.

In equation 18, one cannot simply pull out the derivative from the integral, since, due to the

truncated phase space, the other coordinates xi are actually dependent on x1. This is easier

seen rewriting the integration as

∫
D1

dx2 . . . dxN

[
∂FN

∂q1

· q̇1

]
=

∫
dx2 . . . dxN

N∑
i=2

[Θ(|qi − q1| − σ)]
∂FN

∂q1

· q̇1 (24)

rewriting the truncation of the phase space using Heaviside step functions Θ. Pulling out

the derivative, derivatives of the Θ resulting from the product rule need to be subtracted.

∫
dx2 . . . dxN

N∏
i=2

[Θ(|qi − q1| − σ)]
∂FN

∂q1

· q̇1 (25)

= q̇1
∂

∂q1

∫
dx2 . . . dxN

N∏
i=2

[Θ(|qi − q̇1| − σ)]FN (26)

− q̇1

∫
dx2 . . . dxN

N∑
i=2

[
∂Θ(|qi − q1| − σ)

∂q1

N∏
j=2̸=i

Θ(|qj − q1| − σ)

]
FN (27)

= q̇1
∂F σ

1

∂q1

− q̇1(N − 1)

∫
dx2 . . . dxNδ(|q2 − q1| − σ)

N∏
i=3

Θ(|qi − q1| − σ)FN (28)

= q̇1
∂F σ

1

∂q1

+ q̇1

∫
dS2dp2

∫
D2

dx3 . . . dxNFN (29)

= q̇1
∂F σ

1

∂q1

+ q̇1

∫
dS2dp2F

σ
2 (30)

where again, the parameter symmetry of FN was used to convert x1,x2 into the only free

variables. The δ-function fixes one degree of freedom in the x2 integration and only leaves

the momentum and sphere integral. Putting the terms together, and replacing momentum

p with velocity v = q̇

∫
D1

dx2 . . . dxN

N∑
i=1

[
∂FN

∂qi

· q̇i

]
= v̇1

∂F σ
1

∂q1

+

∫
dS2dv2(v1 − v2)F

σ
2 (31)
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It is interesting to see how the boundary terms end up summing up symmetrically in this

way.

6.3 Part 3

In Part 3 ∫
D1

dx2 . . . dxN

N∑
i=2

[
∂FN

∂pi

ṗi

]
(32)

the term ṗi is a force. Disregarding external fields, all forces acting onto particle i stem from

the potentials of the other particles. Therefore, ṗi can be rewritten as a sum over potentials

ϕij

ṗi =
N∑

j=1̸=i

∂ϕij

∂qj

(33)

and the integral as ∫
D1

dx2 . . . dxN

N∑
i,j=1

[
∂FN

∂pi

∂ϕij

∂qi

]
(34)

with ϕii = 0, which separates into

∫
D1

dx2 . . . dxN

N∑
i=2,j=1

[
∂FN

∂pi

∂ϕij

∂qi

]
+

∫
D1

dx2 . . . dxN

N∑
j=2

[
∂FN

∂p1

∂ϕ1j

∂q1

]
(35)

After partial integration, the first term vanishes similar to eq. 20, but without boundary

terms. In D1, every particle is at least σ away from the first one, and therefore out of

its potential. Therefore, all ϕ1j and their derivatives disappear in the integration limits.

Therefore ∫
D1

dx2 . . . dxN

N∑
i=2

[
∂FN

∂pi

ṗi

]
= 0 (36)
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Figure 1: The double cover projection from the disk of a sphere onto its surface. Adapted
from Steward Harris - An introduction to the history of the Boltzmann equation (2012)

7 The Boltzmann equation

Putting all the parts together

∂F σ
1

∂t
+ q̇1

∂F σ
1

∂q1

= (N − 1)

∫
dS2dv2(v2 − v1)F

σ
2 (37)

The left hand side looks very much like the Boltzmann equation’s diffusion term already. To

transform the right hand side into the collision term, first, the sphere integral is converted

into a disk integral. This is done by realizing the sphere is a double cover of the disk (See

Fig 1), projecting onto coordinates x+ (top half of the sphere) and x− (bottom half of the

sphere), to rewrite the integral term as

∫
dS2dv2(v2 − v1)F

σ
2 = (N − 1)

∫
dωdv2|v2 − v1|

[
F σ
2 (x1,x

+
2 , t)− F σ

2 (x1,x
−
2 , t)

]
(38)
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with dω being the disk area element. Now, some assumptions need to be made to transform

the RHS. First, drop the index σ, which is allowed in the BGL, as explained earlier.

∫
dS2dv2(v2 − v1)F2 = (N − 1)

∫
dωdv2|v2 − v1|

[
F2(x1,x

+
2 , t)− F2(x1,x

−
2 , t)

]
(39)

Next, particles x1 and x+
2 should be uncorrelated. Since x1, x+

2 describe post collision

particles, they needs to be replaced by their most recent pre-collision phases X1, X2 at time

t− τ

F2(x1,x
+
2 , t) ≈ F2(X1,X2, t− τ) (40)

This is justified by considering that, in the small time τ particles 1 and 2 only interact with

each other. The two particle Liouville equation is therefore a good approximation on this

interval, and its solution is just F2 = const.

Now, the famous Stosszahlansatz is used.

F2(x1,x
−
2 , t) = F1(x1, t)F1(x

−
2 , t) (41)

F2(X1,X2, t− τ) = F1(X1, t− τ)F1(X2, t− τ) (42)

It states that the phase of particle 1 and 2 is uncorrelated, since they haven’t collided before.

This is exact in the BGL, where the error is of order 1/N = 0, and assuming particles collide

with random other particles. In reality, particles will ”forget” about each other after a few

collisions, and will lose their explicit phase dependence.

Finally, the approximations

N − 1 ≈ N (43)

τ ∝ σ = 0 (44)

X1 = X2 = x2 = x1 with error ∝ σ (45)
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are made, relative velocity V = |v2−v1| and mass density function f(x, t) = NmF (x, t) are

introduced. The Boltzmann equation is then found as

∂f

∂t
+ v1

∂f

∂q
=

1

m

∫
dωdv2V [f(q, v̄1, t)f(q, v̄2, t)− f(q,v1, t)f(q,v2, t)] (46)

The LHS is called the diffusion term, and corresponds to the movement of free, non colliding

particles. The RHS, from now on called J(f), is the collision term, and describes particles

with velocities v1.v2 at location q colliding into new post collision velocities v̄1, v̄2. This point

of view was what Boltzmann used to derive his equation heuristically, instead of formally

from the Liouville equation as done here. Through analysis of two particle collisions, one

often sees the disk integral replaced by a cross section term B(θ, ϕ)

J(f) =
1

m

∫
drdϕdv2V [f(q, v̄1, t)f(q, v̄2, t)− f(q,v1, t)f(q,v2, t)] (47)

=
1

m

∫
∂r(θ, ϕ)

∂θ
dθdϕdv2V [f(q, v̄1, t)f(q, v̄2, t)− f(q,v1, t)f(q,v2, t)] (48)

=
1

m

∫
B(θ, ϕ)dθdϕdv2 [f(q, v̄1, t)f(q, v̄2, t)− f(q,v1, t)f(q,v2, t)] (49)

Where the deflection angle during a collision is quantified by π − 2θ.

On the left hand side, a force term, corresponding to an external field, is added. This could

have been derived in eq. 33, by adding the external field to the binary force terms. It

however doesn’t add anything interesting in this summary, so it is omitted.

7.1 Symmetries

For further calculations, the symmetries of the collision term are important. Integrating over∫
dv1J(f(x1, t))ψ(v1), with ψ being any function of v1, the term becomes

∫
dv1J(f(x1, t))ψ(v1) =

∫
dθdϕdv1dv2 [f(q, v̄1, t)f(q, v̄2, t)− f(q,v1, t)f(q,v2, t)]ψ(v1)

(50)
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Introducing the new notation

f ′
1 = f(q, v̄1, t) (51)

f ′
2 = f(q, v̄2, t) (52)

f1 = f(q,v1, t) (53)

f2 = f(q,v2, t) (54)

the integral is symmetric in v1 and v2 and therefore, one can exchange

∫
dv1J(f1)ψ(v1) =

∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2]ψ(v1) (55)

=

∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2]ψ(v2) (56)

Through variable substitution, one can also find

∫
dv1J(f1)ψ(v1) =

∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2]ψ(v1) (57)

= −
∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2]ψ(v̄1) (58)

= −
∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2]ψ(v̄2) (59)

Putting everything together, the final symmetry is

∫
dv1J(f1)ψ(v1) =

1

4

∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2] (ψ(v1) + ψ(v2)− ψ(v̄1)− ψ(v̄2)) (60)

This symmetry produces some obvious invariants of the collision term integral setting ψ(v1) =

1, one finds

∫
dv1J(f1) =

1

4

∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2] (1 + 1− 1− 1) = 0 (61)
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Plugging in ψ(v1) = v1 or ψ(v1) = v2
1, one also finds

∫
dv1J(f1)v1 =

1

4

∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2] (v1 + v2 − v̄1 − v̄2) = 0 (62)∫

dv1J(f1)v
2
1 =

1

4

∫
dθdϕdv1dv2 [f

′
1f

′
2 − f1f2]

(
v2
1 + v2

2 − v̄2
1 − v̄2

2

)
= 0 (63)

(64)

due to momentum and energy conservation (assuming all identical mass particles, as before).

These are not only some obvious eigenvalue zero eigenfunctions of the operator
∫
dv1J(v1),

but one can also show (see [5]) that these are the only eigenfunctions with eigenvalue zero.

8 The H-Theorem and the Maxwell Distribution

The Boltzmann equation is a monstrously complex equation: It is partial differential in two

variables and integral in another two. Indeed, only 50 years after its first publication by

Boltzmann, a first approximate solution was found. However, even without being solved, it

provides a lot of information about the time evolution of gases. One of the most prominent

ones is the H-Theorem, which states that the entropy of any Boltzmann gas will increase

with time and the gas will reach the maximum entropy state, which is described by the

Maxwell-Boltzmann distribution.

The quantity H is defined as

H =

∫
dv1f ln f (65)

It is directly proportional to the negative entropy of a gas. The second law of thermodynamics

can easily be proven for a uniform gas f(q,v, t) = ρf(v, t). It is also possible for a non-

uniform gas, but this prove is out of scope for this summary. Calculating the time derivative
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of H, one finds

∂H

∂t
=

∫
dv1

[
∂f1
∂t

ln f1 +
∂f1
∂t

f1
f1

]
(66)

=

∫
dv1J(f) ln f1 (67)

The term ∂f
∂t

is equal to J(f1) since the other LHS term in the Boltzmann equation vanishes

for a uniform gas. The term
∫
dv1

∂f
∂t

=
∫
dv1J(f1) = 0 as seen in eq 61. Using the symmetry

from eq. 60, this transforms to

∂H

∂t
=

∫
dv1dv2dθdϕ [f

′
1f

′
2 − f1f2] (ln f1 + ln f2 − ln f ′

1 − ln f ′
2) (68)

= −
∫
dv1dv2dθdϕ [f1f2 − f ′

1f
′
2] ln

f1f2
f ′
1f

′
2

≤ 0 (69)

since the sign of the term in brackets is always the same as the sign of the logarithm. This

means H is always decreasing (and therefore, entropy is always increasing). H cannot diverge

to negative infinity, as it is bounded from below (See Fig 2). This means H must eventually

arrive at an equlibrium state where ∂H
∂t

= 0. At equilibrium

∫
dv2J(f) ln f1 = 0 (70)

As stated before, this integral has only three functions for which it vanishes, 1, v1 and v2.

Therefore, ln f1 must be a linear combination

ln f1 = A+Bv + Cv2 (71)

These parameters A,B,C are not arbitrary, but determined by the macroscopic invariants

density ρ =
∫
dvf(q,v, t), average momentum u =

∫
dvvf(q,v, t) and energy density E =∫

dvv2f(q,v, t). For a uniform gas, u will not be position dependent and is therefore 0 in a
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Figure 2: The function H cannot diverge to negative infinity, since f ln f is bounded from
below, and becomes 0 at f = 0, which is the boundary condition

center of mass frame. In this frame, one can then write

f = A′ exp
(
Cv2

)
(72)

This just leaves C as a free parameter, which then determines normalization factor A′. Know-

ing the root mean squared velocity vRMS =
√

kT
m

with Boltzmann constant k, Temperature

T , which can be derived from the equipartition theorem, one can then plug this into eq. 72

as the variance of the Gaussian, normalize and find

fM(v)dv =
( m

2πkT

) 3
2
exp

(
−v2m

2kT

)
dv (73)

This is the famous Maxwell-Boltzmann distribution for three dimensions (for a d-dimensional

gas, the exponent of the normalization factor changes to d/2). It describes the equilibrium

probability density for the velocity of a gas of classical particles. Of course, it is known

today that, especially for low temperatures, this distribution ceases to be accurate due to
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quantum effects and has to be replaced by the Bose-Einstein distribution for bosons, or

the Fermi-Dirac distribution for fermions. Nevertheless, at room temperature, the Maxwell

distribution describes gases very accurately.

9 Hydrodynamic equations

The zero-value eigenfunctions of the collision integral also allow integrating over both sides

of the Boltzmann equation, letting the collision term vanish, and getting a new, differential

and not integral, equation for each function. The easiest one to find is the integral over∫
dvm. One finds

∫
dvm

[
∂f(q,v, t)

∂t
+ v

∂f(q,v, t)

∂q

]
=
∂ρ

∂t
+
∂(ρu)

∂q
= 0 (74)

where after partial integration over the second term, this is the continuity equation for a

fluid with average velocity u(q). A more advanced integration, which will not be explicitly

done, yields results for the
∫
dvmv and

∫
dvmv2 integrals.

∂u

∂t
+ (u · ∇)u = g − 1

ρ
∇P +

1

ρ
∇ · π (75)

∂ϵ

∂t
+ u · ∇ϵ = −P

ρ
∇ · u− 1

ρ
∇ · F+

1

ρ
Ψ (76)

with u mean fluid velocity, ω particle random velocity, ρ density, P = 1
3
ρ⟨|w|2⟩ pressure,

πij = Pδij − ρ⟨ωiωj⟩ stress tensor, ϵ = 1
2
ρ⟨|ω|2⟩ specific internal energy, F = 1

2
ρ⟨ω|ω|2⟩

conduction heat flux, Ψ =
∑

i,j πij
∂ui

∂xj
viscous dissipation rate. These are sometimes called

the ”Navier-Stokes-equations”, although they do not resemble the Navier-Stokes-equation

exactly and its derivation from these is rather cumbersome. Since these are 5 equations

with a total of 13 degrees of freedom, the derivation of hydrodynamic equations will always

involve the fixing of some terms to transform these into a complete description of a fluid. An
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easy example are the Euler equations, which can be derived by dropping the diffuse terms

∂ρ

∂t
+∇ · (ρu) = 0 (77)

∂u

∂t
+ (u · ∇)u = g − 1

ρ
∇P (78)

∂ϵ

∂t
+ u · ∇ϵ = −P

ρ
∇ · u (79)

These equations describe adiabatic, non-viscous flow. We have now gone from a microscopic

description through the Liouville and Hamiltonian equations, to a kinetic Boltzmann equa-

tion, which treats the particle density function with a diffusion and a gain and loss collision

term, to a final, macroscopic description, treating the particle density as a continuous New-

tonian fluid. Each step, one makes approximations and loses information, but gains easier

solvability.

10 Quantum analogues

The Boltzmann equation was explicitly derived for a gas of classically behaving particles.

Quantum versions (mostly semiclassical, adding a Pauli blocking or density of states term)

of the equation exist, and have been shown to describe heavy-ion-collisions [1] and semi-

conductors [7]. A quantum H-Theorem is more difficult to propose. One might make the

semiclassical approach by modifying the derivation of the Maxwell-Distribution, to find the

Fermi-Dirac or Bose-Einstein distribution instead [4]. For a general quantum system, these

methods will not work. Instead, for a fully quantum version, one needs to introduce the

density matrix

ρ = |ψ⟩⟨ψ| (80)

for a pure quantum state psi. The density matrix formalism the advantage of being able to

describe probability distributions over quantum states and separating them from superposi-

tions, by introducing impure states, with the purity defined by the off-diagonal coherences,
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and the measurement probabilities described by the diagonal elements. Entropy for these

states is defined by the von-Neumann entropy

S = − tr ρ ln ρ (81)

For a completely decoherent state, the density matrix becomes diagonal and one recovers

the classical definition of entropy

H = −
∑
i

pi log pi (82)

For a pure state, the entropy is always zero. When looking for an H-Theorem, one runs into

the problem that, under standard unitary time evolution

S(UρU †) = S(U) (83)

This can be solved by looking at a subsystem S interacting with an environment E. The

density matrix of the system ρS is then defined by the partial trace

ρS = trE ρ (84)

where ρ is the full density matrix. The evolution of the system density matrix is then

not unitary, but described by quantum channels, completely positive trace preserving maps

between density matrices.

For a general environment, the H-Theorem can obviously not hold, since a warm system

inside a cold environment would decrease in entropy. One has to make the assumption of

negligible total energy exchange, such that only entanglement with the environment changes

the systems state.

A special kind of quantum channel are unital channels ϕ for which ϕ(1) = 1. The state 1,
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the identity matrix, is the maximum chaotic, and completely decoherent quantum state.

An H-Theorem can then be formulated as follows: The entropy gain during evolution is

nonnegative if the system evolution can be described by the unital channel [6].

A problem with this definition is that it is in some way circular: A map with a fixed point 1

will in most cases converge to this fixed point. However, it is a practical definition: A lot of

real-life quantum channels, such as dephasing and bit flips, leave the identity invariant. This

formulation of the H-Theorem therefore, in most cases, does describe the thermalization of

open quantum systems.
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