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Motivation

A Markov process assumes that the next state of a process only
depends on the present state and not the past states.

Figure 1: Markov process
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Origin of Markov

The weak law of large numbers states that if you have a sample of
independent and identically distributed random variables, as the
sample size grows larger, the sample mean will tend toward the
population mean. .
Nekrasow’s claim - independence is a necessary condition for the
weak law of large numbers.
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Markov’s modification of Bernoulli’s experiment

Markov proved that dependence of variables on previous state can
also lead to convergence.

Figure 2: An example of a stochastic process with dependence on the last
example
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Markov process

Definition: A stochastic process where the future state only depends
on the present state and all the past states are eliminated.

P1|n−1 (yn, tn | y1, t1; . . . ; yn−1, tn−1) = P1|1 (yn, tn | yn−1, tn−1)

P3 (y1, t1; y2, t2; y3, t3) = P2 (y1, t1; y2, t2)P1|2 (y3, t3 | y1, t1; y2, t2)
= P1 (y1, t1)P1|1 (y2, t2 | y1, t1)P1|1 (y3, t3 | y2, t2)

where t1 < t2 < t3
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Chapman Kolmogorov

Figure 3: Two step transition probability

[3]

The Chapman–Kolmogorov equation provides the two step transition
probability

P2 (y1, t1; y3, t3) = P1 (y1, t1)
∫
P1|1 (y2, t2 | y1, t1)P1|1 (y3, t3 | y2, t2)dy2
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Chapman Kolmogorov

P2 (y1, t1; y3, t3) = P1 (y1, t1)
∫
P2|1 (y2, t2 | y1, t1)P1|1 (y3, t3 | y2, t2)dy2

Use Bayes theorem
[5] Divide both sides by P1(y1, t1)

P11 (y3 |t3| y1, t1)P1 (y1t1) =
∫
P1|1 (y3, t3 | y2, t2)P1|1 (y2, t2 | y1, t1)dy2

P1|1 (y3, t3 | y1, t1) =
∫
P1|1 (y3, t3 | y2, t2)P1|1 (y2, t2 | y1, t1)dy2
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Stationary Markov process

When the states of the system P1(t) is not affected by a time shift ,
then P1(t) is a stationary Markov process . origin of time does not
matter since it is a function of elapsed time .[4]

Transition probability depends on time interval between two states

P1|1 (y2, t2 | y1, t1) = Tτ (y2 | y1) with τ = t2 − t1, τ ′ = t3 − t2
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Stationary Markov process

Chapman-kolmogorov equation is
P1|1 (y3, t3 | y1, t1) =

∫
P1|1 (y3, t3 | y2, t2)P1|1 (y2, t2 | y1, t1)dy2

Chapman-Kolmogorov equation then becomes (τ, τ ′ > 0)

Tτ+τ ′ (y3 | y1) =
∫
Tτ ′ (y3 | y2) Tτ (y2 | y1) dy2

since it is already product of two matrices

Tτ+τ ′ = Tτ ′Tτ (τ, τ ′ > 0)

P2 (y1, t1; y2, t2) = Tτ (y2 | y1)P1 (y1)

As t→ ∞ P2 (y2, t2 − t1 | y1) = P1 (y2)
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Homogeneous Markov Process

A stationary process Y(t) such that P1 (y1) and Tτ (y2 | y1) is given. t0
and y0 is a fixed time and fixed value. Y∗(t) is a non stationary
markov process for y ⩾ t0 [4]

P∗1 (y1, t1) = Tt1−t0 (y1 | y0)
P∗1|1 (y2, t2 | y1, t1) = Tt2−t1 (y2 | y1)
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Homogeneous Markov Process

One can extract a processY(0) at t0from P(0) and are distributed
according to P(y0)

P∗1 (y1, t1) =
∫
Tt1−t0 (y1 | y0)p (y0)dy0

P∗1|1 (y2, t2 | y1, t1) = Tt2−t1 (y2 | y1)

These processes being non stationary but their transition probability
depends on time difference,hence it is homogenous markov process
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Markov chain

We have three states A,B and C where the particle can travel . PAB is
the probability of a particle to go from state A to state B.

Figure 4: Markov chain
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Transition Probability matrix

The transition probability Tτ (y2 | y1) is a N×N matrix . The Transition
Probability matrix is given asPAA PAB PAC

PBA PBB PBC
PCA PCB PCC



PAA + PAB + PAC = 1 where all rows add up to 1
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The Markovian Master equation

dpn(t)
dt =

∑
n {Wnn′pn′(t)−Wn′npn(t)}

They are differential equations that describe the evoultion of
probability with respect to time . The master equation is a gain loss
equation for the probabilities of seperate states n.[5]

Long Time Limit

As t→ ∞ all solutions tend to the stationary solution.

For a closed isolated system in equilibrium , all transitions per unit
time into any state n must be balanced by transitions into n’.[5]
Wnn′pe

n′ = Wn′npe
n
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Non Markovian Processes

Any process that depends on all the past states is a non Markovian
process, which implies that the memory of the previously visited
sites changes the distribution.
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Lindblad Master Equation

Describes a non-unitary evolution of the density operator ρ

ρ = |ψ⟩⟨ψ|

For shorter time interaction with the environment compared to the
internal time scale of system, we use the Markovian assumption[1]
∂ρ(t)
∂t = L[ρ(t)]

H is the Hamiltonian of the system and Lµ are called Lindblad
operators. The superoperator L is called Liouvilian.

L[ρ] = −i[H, ρ] +
∑
µ

[
LµρL†µ − 1

2

{
L↑jiLµ, ρ

}]

The Markovian approximation is not accurate when the interactions
inside the environment have comparable strengths to the
interactions inside the system.
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Nakajima Zwangzig master equation

NZ is used as non Markovian master equation[1]

∂ρ(t)
∂t = −i[H, ρ(t)] +

∫ t

0
dsK−Nz

r−s [ρ(s)] + I(t)

KNZ
t is memory kernel the above equation describes non-Markovian

processes, because the state at time t +dt depends not only ρ(t) but
also on the states ρ(s) for s < t

∂ρ(t)
∂t = −i[H, ρ(t)] +

∫ t

0
dsN−2(x)

t→−1[ρ(t)] + I(t)
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Summary

1. Defined Markov Prcoess, stationary and homogenous process
2. Derived Chapman Kolmogorov and Master Equation
3. Proved that system weakly coupled by the heat bath gives
similar transition probability to Fermi’s Golden rule

4. Non Markov process defined
5. Lindblad’s Master Equation
6. Nakajima Zwangzig master equation defined
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