
STATISTICAL PHYSICS SEMINAR

FOKKER-PLANCK- AND LANGEVIN EQUATION

DECEMBER 10, 2021

NAME: DANIEL WALTER

SUPERVISOR: PROF. GEORG WOLSCHIN

1



2 Contents

Abstract

This report is associated with a presentation that I gave in the statistical physics

seminar of Prof. Georg Wolschin at Heidelberg University in November 2021. It provides

some background and derivations that were not presented in the talk and tries to give a

basic introduction into the topic of Fokker-Planck- and Langevin equations.

We start out by deriving the Fokker-Planck equation from the general Master equation

of time- and state-continuous Markov processes. In section 2 we give a (heuristic)

introduction into the topic stochastic differential equations and Langevin equations

and explore their connection to the Fokker-Planck equation. Finally we use some of the

developed tools to investigate the Ornstein-Uhlenbeck process and classical Brownian

motion.
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1 THE FOKKER-PLANCK EQUATION

In his famous 1905 paper "On the movement of small particles suspended in a stationary

liquid demanded by the molecular-kinetic theory of heat" [1], Albert Einstein manages to

derive experimentally verifiable predictions about the diffusion rates of Brownian particles

(that were later confirmed by Jean-Baptiste Perrin [3]). In his paper he uses the concept of

state transition probabilities to derive a partial differential equation (the diffusion equation)

that describes the probability density of the Brownian particle (or particle density if we are

dealing with many particles) and solves the equation to conclude that the average deviation

in position is given by λx =p
2Dt . Where D = RT

N
1

6πkP is the diffusion coefficient.

In the following sections we are going to use a very similar reasoning to derive the Fokker-

Planck equation. However, our derivation is going to be much more general and is going to

include Einstein’s diffusion equation as a special case.

1.1 Markov processes and the Master equation

We are going to derive the Fokker-Planck equation in the very general framework of Markov

processes. To that end, let us first introduce the concept of a stochastic process.

A stochastic process is a family of random variables xt over an index set t ∈ I . In our

specific case we are going to assume that xt ∈R and I = [0,∞), that is to say we are assuming

a state- and time-continuous process.

We say that a stochastic process has the Markov property if the probability of a future state

is independent of the past history, given knowledge about the most recent state. Formally:

Suppose we have past information about our system (x1, t1), . . . , (xn , tn) such that t1 < ·· · <
tn ∈ [0,∞) and suppose further that we want to predict the probability that our system is in

state x at time t with t > tn , then we have the conditional independence relation

p(x, t |xn , tn ; . . . ; x1, t1) = p(x, t |xn , tn). (1)

A stochastic process that has the Markov property is called a Markov process. From here on

we are going to assume that all processes in our discussion are state- and time-continuous

Markov processes.

The dynamics of the probability density of such a Markov process can be described by a

so-called Master equation (see e.g. [4])

∂p(x, t )

∂t
=

∫ +∞

−∞

[
Wt (x|x ′)p(x ′, t )−Wt (x ′|x)p(x, t )

]
d x ′, (2)
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where Wt (x|x ′) denotes the rate of state transitions from state x ′ to state x at time t . Notice

that the left term on the RHS sums over all transitions from some state x ′ to the (fixed) state

x. We can interpret this term as an "inflow" of states. The right term on the RHS sums over

all transitions from the state x to some other state x ′, we can therefore think of this as an

"outflow" of states. The Master equation can then be interpreted as follows: The change in

probability density of our system occupying a state x is given by the difference between the

inflow and outflow of this state.

1.2 The Kramers-Moyal expansion

The Master equation is an integro-differential equation that is generally hard to solve and in

many cases somewhat inaccessible. We would like to transform the Master equation into a

more accessible form, like a partial differential equation. As it turns out, this can be achieved

via the so-called Kramers-Moyal expansion (named after the physicists Hendrik Anthony

Kramers (1894-1952) and José Enrique Moyal (1910-1998)).

Before we discuss the expansion, let us slightly reformulate the Master equation as it is

stated in eq. (2). The transition rates are given in terms of an initial state x ′ and a final state x.

We are going to reparametrize the integral in terms of an initial state and a deviation from the

initial state r := x −x ′. Plugging this into eq. (2) and using d x ′ =−dr , we get:

∂p(x, t )

∂t
=

∫ +∞

−∞

[
Wt (x|x − r )p(x − r, t )−Wt (x − r |x)p(x, t )

]
dr. (3)

Now let us define W ∗
t (r, x) := Wt (r + x|x), than W ∗

t (r, x) gives us the rates at which state x

deviates by r from its initial position at time t . Putting this definition into eq. (3), we get:

∂p(x, t )

∂t
=

∫ +∞

−∞

[
W ∗

t (r, x − r )p(x − r, t )−W ∗
t (−r |x)p(x, t )

]
dr. (4)

Notice that we can omit the minus sign in the transition rate function on the right since we

are integrating over the region (−∞,+∞) (changing the sign just mirrors the function, which

results in the same definite integral):

∂p(x, t )

∂t
=

∫ +∞

−∞

[
W ∗

t (r, x − r )p(x − r, t )−W ∗
t (r |x)p(x, t )

]
dr. (5)

The idea of the Kramers-Moyal expansion is now to Taylor expand the the function W ∗
t (r, x −
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r )p(x − r, t ) in the state argument around x. Then we get

=
∫ +∞

−∞

[
W ∗

t (r, x)p(x, t )+
∞∑

k=1

(−r )k

k !

∂k

∂xk

(
W ∗

t (r, x)p(x, t )
)−W ∗

t (r |x)p(x, t )

]
dr (6)

=
∫ +∞

−∞

∞∑
k=1

(−r )k

k !

∂k

∂xk

[
W ∗

t (r, x)p(x, t )
]

dr. (7)

Notice that in general we will not be able to interchange the integral with the summation. We

will have to make some implicit assumptions about the distribution W ∗
t . In particular we are

going to assume that

∫ +∞

−∞

∞∑
k=1

|r |k
k !

∣∣∣∣ ∂k

∂xk

[
W ∗

t (r, x)p(x, t )
]∣∣∣∣dr <∞. (8)

Then by means of Fubini’s theorem [5, sec. 5.6] we are allowed to interchange the integral

with the sum:

=
∞∑

k=1

(−1)k

k !

∫ +∞

−∞
r k ∂k

∂xk

[
W ∗

t (r, x)p(x, t )
]

dr (9)

=
∞∑

k=1

(−1)k

k !

∂k

∂xk

[∫ +∞

−∞
r kW ∗

t (r, x)dr ·p(x, t )

]
(10)

Defining

a(k)
t (x) :=

∫ +∞

−∞
r kW ∗

t (r, x)dr, (11)

we finally get

=
∞∑

k=1

(−1)k

k !

∂k

∂xk

[
a(k)

t (x) ·p(x, t )
]

. (12)

This is the Kramers-Moyal expansion of the Master equation. a(k)
t (x) denotes the k-th sta-

tistical moment of the transition rate at time t and state x. Notice that the Kramers-Moyal

expansion allows us to fully specify the dynamics of the probability density via the moments

of the transition rates. In general this is of course only possible if the moments of the transi-

tion rates exist (remember the assumption for Fubini’s theorem). Imagine for example that
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W ∗
t was Cauchy distributed (in r ). Then of course non of the moments would exist and an

expansion of this kind would not be possible.

The Kramers-Moyal expansion yields a partial differential equation of infinite order. To

turn this into a PDE of finite order we are going to neglect all orders higher than 2 to get the

Fokker-Planck equation:

∂p(x, t )

∂t
=− ∂

∂x

[
a(1)

t (x) ·p(x, t )
]
+ 1

2

∂2

∂x2

[
a(2)

t (x) ·p(x, t )
]

. (13)

In general this is of course only an approximation. However, we can justify the omission of

higher orders in two ways: first, note that the higher orders are suppressed by a factor 1
k ! .

We can therefore in many cases assume that the higher orders are only going to give small

corrections to the Fokker-Planck equation. Secondly, Pawula’s theorem [8, p. 70 ff.] states that

there can only be three distinct cases. Either the expansion stops after the first term or it stops

after the second term or it contains an infinite number of non-vanishing terms. In particular

if a(2k)
t (x) = 0 for some k ∈N, then a(k)

t (x) = 0 ∀k ≥ 3. And indeed the Fokker-Planck equation

is exact in many cases.

2 THE LANGEVIN EQUATION

In 1908, three years after Einsteins Brownian motion paper, the french physicist Paul Langevin

published his own paper on Brownian motion that retrieved the same results, using a com-

pletely different mathematical framework [7]. He himself deemed the approach "infinitely

more simple" 1. And in fact Langevin’s method is much closer to the usual physics method-

ology. He modifies Newton’s equation of motion by adding a randomly fluctuating force,

accounting for the unpredictable "kicks" that the Brownian particle receives from the smaller

fluid particles. The resulting equation is something that we would nowadays recognize as a

stochastic differential equation (SDE).

In the following sections we are going to give a quick (non-rigorous) introduction into the

topic of SDE’s (also referred to as Langevin equations) and explore their connection to the

Fokker-Planck equation.

1translated by Anthony Gythiel; Department of History, Wichita State University
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2.1 The Wiener process

Before we can discuss the theory of stochastic differential equations, we have to introduce

the Wiener process, which is of fundamental importance for this subject.

Suppose Wt ∈R, t ∈ [0,∞) is a stochastic process (do not confuse Wt with the transition

rates of sec. 2). We call Wt a Wiener process if it fulfills the following four conditions [10]:

1. W0 = 0, a Wiener process always starts at the origin.

2. A Wiener process is time-continuous.

3. For s < t ∈ [0,∞) we have Wt −Ws ∼N (0, t−s). That is to say, the deviations of a Wiener

process are normally distributed with mean 0 and variance t − s.

4. For any 0 ≤ s < t ≤ u < v ∈ [0,∞) we have that Wt −Ws and Wv −Wu are statistically

independent. Intuitively this means that the random fluctuations of a Wiener process

are independent from one another.

It can be shown that such a process exists and is unique [10]. Fig. 1 shows seven samples

of the process that were created through a simple Monte-Carlo simulation. It is important

to note, that all of the curves belong to the same process (namely the Wiener process). This

is analogous to how we may sample different numbers from a normal distribution. The

resulting numbers may be different, but they all come from the same underlying distribution.

In sec. 3.1 we will see that the Wiener process can be directly used to describe Brownian

motion.

Condition 3 tells us that the difference of the Wiener process over a time-interval [t , t+∆t ]

is normally distributed and of magnitude ∼p
∆t . Now imagine we make this time interval

infinitesimally small, such that we have Wt+d t −Wt . Let us denote this quantity by

dWt :=Wt+d t −Wt (14)

We can think of this as an infinitesimal fluctuation of the Wiener process at time t . Notice

that condition 3 implies

〈dWt 〉 = 0 and 〈dW 2
t 〉 = d t . (15)

Mathematically, this quantity is of course only to be understood heuristically. dWt has no

well-defined meaning. Nevertheless it gives us the correct intuitions and is quite useful. In

the next section we are going to use this quantity to generalize the notion of an ordinary

differential equation to its stochastic analogue.
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Figure 1: Monte-Carlo simulation of seven random instances of the Wiener process. Notice that the
process always starts at W0 = 0. [11]

2.2 Stochastic differential equations

Notice that almost all interesting ordinary differential equations (ODE’s) of first order can be

reformulated into the general form

d x

d t
= A(x, t ). (16)

Where A denotes some general function of x and t . We can heuristically write this as an

equation of differentials:

d x = A(x, t )d t . (17)

Where we use the following interpretation: At every point in time t , a small change in x is

given by a product of a small time interval d t and the function A(x(t), t). The dynamics of

such a system are of course completely deterministic.

To turn this into a stochastic differential equation, we add a small random term to the

equation:

d x = A(x, t )d t +B(x, t )dWt . (18)

We are multiplying the stochastic noise by a function B(x, t ) to allow for varying fluctuations

that may depend on the state x and time t . In physics we will often "divide" by d t to turn the
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equation into a more familiar form:

d x

d t
= A(x, t )+B(x, t )

dWt

d t
. (19)

This is the general Langevin equation. Note that one has to be careful when using this

formalism. The Wiener process is not differentiable, the interpretation of the quantity dWt
d t is

therefore unclear. This is one of the reasons why mathematicians tend to prefer the notation

presented in eq. (18).

However, even eq. (18) is mathematically ill-defined. The rigorous formulation requires

the concept of the Itô integral [10], the introduction of which would exceed the scope of this

report. The SDE is then written in integral form as

x(t )−x(0) =
∫ t

0
d x =

∫ t

0
A(x, t )d t +

∫ t

0
B(x, t )dWt , (20)

where the rightmost term is interpreted as an Itô integral. This is then a mathematically

precise expression.

As it turns out, these kinds of equations have somewhat unusual properties that deviate

from the rules of classical calculus. Itô calculus extends the classical framework to the more

general case of SDE’s.

An example of this is Itô’s lemma, which generalizes the change of variables formula to

the stochastic case: suppose x(t) is the solution of a SDE as given in eq. (18). And suppose

further that f : R×R>0 → R is an arbitrary function (that is twice differentiable in the first

argument and differentiable in the second argument). Then Itô’s lemma states [6] (without

proof):

d f (x, t ) = ∂ f

∂t
d t + ∂ f

∂x
d x + 1

2

∂2 f

∂x2
d x2, (21)

where the stochastic differential d x2 will generally not vanish. Notice the second derivative,

which does not occur in the non-stochastic formula. In the next section we will use this

lemma to derive a connection between the SDE’s and the Fokker-Planck equation.

2.3 Connection to the Fokker-Planck equation

Looking at eq. (18) one notices that at every point in time, the next state x +d x is only

dependent on the current system state (and thereby conditionally independent of the pre-

vious states). From this we can deduce that every such process is a Markov process. In
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addition, note that the transition rates are going to be reasonably well-behaved since we are

assuming an underlying Wiener process. We can therefore deduce that there has to exist a

Fokker-Planck equation that describes the dynamics of the probability density of x.

To see this, consider the stochastic process

d x = A(x, t )d t +B(x, t )dWt (22)

and some function f :R>0×R→R (differentiable as described above). Then from Itô’s lemma

we know that

d f (x, t ) = ∂ f

∂t
d t + ∂ f

∂x
d x + 1

2

∂2 f

∂x2
d x2 (23)

= ∂ f

∂t
d t + ∂ f

∂x
· (A(x, t )d t +B(x, t )dWt )+ 1

2

∂2 f

∂x2
· (A(x, t )d t +B(x, t )dWt )2 (24)

=
(
∂ f

∂t
+ ∂ f

∂x
A(x, t )

)
d t + ∂ f

∂x
B(x, t )dWt + ∂2 f

∂x2
A(x, t )B(x, t )d tdWt + 1

2

∂2 f

∂x2
B(x, t )2dW 2

t ,

(25)

where we assumed d t 2 = 0. Taking the expectation yields

〈∂ f

∂x
B(x, t )dWt 〉 = 〈∂ f

∂x
B(x, t )〉〈dWt 〉 = 〈∂ f

∂x
B(x, t )〉 ·0 = 0 (26)

〈∂
2 f

∂x2
A(x, t )B(x, t )d tdWt 〉 = 〈∂

2 f

∂x2
A(x, t )B(x, t )d t〉〈dWt 〉 = 0 (27)

〈1

2

∂2 f

∂x2
B(x, t )2dW 2

t 〉 = 〈1

2

∂2 f

∂x2
B(x, t )2〉〈dW 2

t 〉 = 〈1

2

∂2 f

∂x2
B(x, t )2〉d t , (28)

here we used eq. (15). Plugging this back into eq. (25) gives us

〈d f 〉 =
[
〈∂ f

∂t
〉+〈∂ f

∂x
A(x, t )〉+〈1

2

∂2 f

∂x2
B(x, t )2〉

]
d t (29)
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=⇒ d

d t
〈 f 〉 = 〈d f 〉

d t
= 〈∂ f

∂t
〉+〈∂ f

∂x
A(x, t )〉+〈1

2

∂2 f

∂x2
B(x, t )2〉 (30)

=
∫ +∞

−∞
∂ f

∂t
p(x, t )d x +

∫ +∞

−∞
∂ f

∂x
A(x, t )p(x, t )d x + 1

2

∫ +∞

−∞
∂2 f

∂x2
B(x, t )2p(x, t )d x. (31)

On the other hand we have

d

d t
〈 f 〉 = d

d t

∫ +∞

−∞
f (x, t )p(x, t )d x =

∫ +∞

−∞
d

d t

(
f (x, t )p(x, t )

)
d x (32)

=
∫ +∞

−∞
∂ f

∂t
p(x, t )d x +

∫ +∞

−∞
f (x, t )

∂p

∂t
d x. (33)

Setting eq. (33) equal to eq. (31) yields

∫ +∞

−∞
f (x, t )

∂p

∂t
d x =

∫ +∞

−∞
∂ f

∂x
A(x, t )p(x, t )d x + 1

2

∫ +∞

−∞
∂2 f

∂x2
B(x, t )2p(x, t )d x (34)

(part. integr.)= −
∫ +∞

−∞
f (x, t )

∂

∂x

(
A(x, t )p(x, t )

)
d x + 1

2

∫ +∞

−∞
f (x, t )

∂2

∂x2

(
B(x, t )2p(x, t )

)
d x (35)

Since this equation has to hold for all functions f (x, t ), we can conclude

∂p

∂t
=− ∂

∂x

(
A(x, t )p(x, t )

)+ 1

2

∂2

∂x2

(
B(x, t )2p(x, t ),

)
(36)

which is the Fokker-Planck equation. Notice that this gives us a relationship between the SDE

coefficients A(x, t ) and B(x, t ) and the first and second moments of the transition rates:

a(1)
t (x) = A(x, t )

a(2)
t (x) = B(x, t )2

(37a)

(37b)

We can conclude that every SDE/Langevin equation is equivalent to a Fokker-Planck equa-

tion.
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3 EXAMPLES

In this section we are going to quickly discuss two of the most important processes that

can be investigated with the tools developed above: the Ornstein-Uhlenbeck process and

Brownian motion.

3.1 Ornstein-Uhlenbeck process

Consider a small particle submerged in a viscous fluid. If we assume that we are in a regime

where Stokes law of drag [9] applies, then we can describe the motion of the particle via

Newton’s equations of motion:

m
d v

d t
=−λv. (38)

However, if the particle is small enough, we will have to take collisions with the fluid particles

into account. Since there is no way for us to deterministically predict them, we think of

them as a random force acting on the particle. Let us further assume, that the bounces are

independent of time and velocity. Than we can turn Newton’s equation into a Langevin

equation:

m
d v

d t
=−λv +σdWt

d t
, (39)

whereσ is a constant that characterizes the strength of the stochastic bounces. We can rewrite

this equation in the usual SDE notation:

d v =− λ

m
vd t + σ

m
dWt , (40)

from which we gather

A(v, t ) =− λ

m
v and B(v, t ) = σ

m
(41)

=⇒ a(1)
t (v) = A(v, t ) =− λ

m
v and a(2)

t (v) = B(v, t )2 = σ2

m2
. (42)
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Plugging this into the Fokker-Planck equation yields

∂p(v, t )

∂t
= λ

m

∂

∂v

(
v ·p(v, t )

)+ σ2

2m2

∂2

∂v2

(
p(v, t )

)
. (43)

Depending on the initial conditions, the system is going to exhibit complicated dynamics

and we will not be able to find an analytic solution in the general case. However, it may be

interesting to investigate the special case of a stationary solution (if such a solution exists).

To that end let us assume ∂p(v,t )
∂t = 0. Notice that this leads to an ODE of second order:

0 = λ

m

∂

∂v

(
v ·p(v)

)+ σ2

2m2

∂2

∂v2

(
p(v)

)
. (44)

Integrating on both sides yields

C = λ

m
v ·p(v)+ σ2

2m2

∂p(v)

∂v
, (45)

where C is an integration constant. Not every solution to eq. (45) is going to be a probability

density. We will only consider positive and normalized solutions:

p(v) ≥ 0 ∀v ∈R and
∫ +∞

−∞
p(v)d v = 1. (46)

It turns out that this forces C = 0. Rearranging eq. (45) gives us

∂p(v)

∂v
=−2mλ

σ2
v ·p(v). (47)

The solution to this first order ODE is a Gaussian:

p(v) = 1p
2πα2

exp

(
− v2

2α2

)
with α := σp

2mλ
. (48)

Notice that the standard deviation α scales linearly with the strength of the collisions σ and

has an inverse relationship with the particles mass m and the magnitude of Stokes drag λ.

Fig. 2 shows Monte-Carlo simulations of several Ornstein-Uhlenbeck processes. Our

particle starts with different initial velocities but quickly transitions into a stationary state.

For large t the magnitude of fluctuations is going to be given by α= σp
2mλ

.
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Figure 2: Monte-Carlo simulation of five Ornstein-Uhlenbeck processes with different initial condi-
tions. [11]

3.2 Brownian motion

Suppose now that our process is dominated by the drag force term so that we can neglect the

inertial term: m d v
d t ≈ 0. We will then retrieve a SDE for the particle position:

λ
d x

d t
=σdWt

d t
(49)

⇐⇒ d x = σ

λ
dWt (50)

Notice that this implies, that our particles motion is a rescaled Wiener process. The coeffi-

cients take on a very simple form:

A(x, t ) = 0 and B(x, t ) = σ

λ
(51)

=⇒ a(1)
t (x) = 0 and a(2)

t (x) = σ2

λ2
. (52)
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And the Fokker-Planck equation turns into the diffusion equation (sometimes referred to as

heat equation):

∂p(x, t )

∂t
= D

∂2p(x, t )

∂x2
with D := σ2

2λ2
(53)

It is a well-known result that the diffusion equation has an exact solution for an initially

localized distribution (see eg. [2]). That is to say, assume p0(x) = δ(x − x0) as an initial

condition, then

p(x, t ) = 1p
4πDt

exp

(
− (x −xo)2

4Dt

)
(54)

solves the Fokker-Planck equation of the above form (the so-called fundamental solution).

Assuming that the drift dx of the particle is proportional to the standard deviation of the

(initially) localized solution, we get:

dx(t ) =
p

2Dt (55)

It is this result that Einstein used for his empirical prediction of Brownian motion and that

eventually lead to the confirmation of the existence of atoms [1].
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