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One- and Two-Dimensional Ising Model

Abstract

Statistical Physics is a field of physics which faces all the various types of phenomena with a
stochastic nature. Under this concept, a fundamental role is taken by the Ising model. It is one
the simplest models to describe large interacting systems that reveals the appearance of phase

transitions. This report provides

a short summary of the talk One- and Two-Dimensional Ising

Model given in the Statistical Physics seminar by Prof. Georg Wolschin in the summer term
2023. Using a transfer matrix approach, it will be shown that in one dimension no phase transi-
tion can occur. In two dimensions, however, the existence of a phase transition can be derived
by a simple geometrical argument. The outline will be an application of the Ising model for

nowadays challenges.
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i

Figure 1: The Ising model with interacting spins, red (up) and blue (down), in an external magnetic
field illustrated by the boxes

1 Introduction

1.1 The Model

In the Ising model (figure[I), we consider a d-dimensional lattice with a total of N lattice sites. At
each lattice site, a spin variable S; is placed with either the value S; = +1 (up) or S; = —1 (down).
The spins can interact with their nearest neighbours, and the interaction strength can be described
by a coupling constant J. A positive coupling means that neighbouring spins tend to align in the
same direction (ferromagnetic case), while a negative coupling favours an opposite alignment of
spins (antiferromagnetic case). Furthermore, the whole lattice shall be under the influence of an
external magnetic field B, which forces the spins to take a preferred direction. And, we will con-
sider the system in the regime of the canonical ensemble such that the Ising lattice can occupy
different states depending on the temperature 7.

The Ising model was firstly developed to answer the question of spontaneous magnetization by
ferromagnetic elements. This happens if the system goes from a disordered state to an ordered
state at finite temperature (in the thermodynamic limit N — oo0). To find out if the Ising model
undergoes such phase transition, we can describe the dynamics with following Hamilton function:

H=-] ) S;Sj—Bu).S; @
<ij> i
where < ij > are all nearest neighbours and p is the magnetic moments of the spins. The first
term in (1) is the interaction energy and the second one is the energy arising from the action by
the external field. With this, we can analyze the properties of the Ising modelind =1 and d =2
dimensions.
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1.2 Historical Background

The origin of the Ising model goes back to the early 20th
century. At this time, Pierre-Ernest Weiss discovered
the existence of magnetic domains in ferromagnetic el-
ements and tried to give a theory for ferromagnetism
3]. However, Weiss was not able to explain why certain
elements show the phenomenon of spontaneous mag-
netization.

To address this problem, Wilhem Lenz, a German
professor at Hamburg University, invented an own
idea for ferromagnetism , the Ising model, and
gave this model to his doctorate student Ernst Ising,
who published a solution for it in 1925 [5]. Ising
solved the model in one dimension and showed
there exists no phase transition at finite temper-
ature. He, however, wrongfully adapted this as-
sumption also to the case of two and three dimen-

sions. Figure 2: Ernst Ising

Due to this misleading result, Werner Heisenberg developed his own theory for describing ferro-
magnetism in 1928 [6] in which he generalized the Ising problem with a more complex spin-spin
interaction. Scientists were trying to explore this model first when they went back to investigate
the simpler Ising model.

After eight years, the physicist Rudolf Peierls was able to justify the existence of a phase transition
in the two dimensional model without an external field using a geometrical argument [7]. Even
though the original approach by Peierls contained an incorrect step as it has been discovered later
by Robert Griffiths [8], the idea still had a valid importance.

In 1941, a first quantitative number for the critical temperature has been found out by Hans
Kramers and Gregory Wannier using a duality argument that is based on the symmetry of the
high and low temperature expansion of the partition function [9} |[10]. Kramers and Wannier also
gave the motivation for the so called transfer matrix method which laid the foundations for solving
the 2D model exactly by Lars Onsager in 1944 [11].

Since then, no analytical solution for the 2D model with external magnetic field or the 3D Model
has been found, yet. Nonetheless, a lot of information can be gained by numerical simulations,
like Monte Carlo simulations [12]. Moreover, the Ising model is involved in a broad range of con-
cepts in physics, e.g. mean-field theory or renormalization-group theory (to learn more about
such theories in statistical physics, consider [13], [14]). In this sense, the Ising model has a great
importance.

Further historical facts about the Ising model and the life of Ernst Ising can be found in [1] and
[15].

We will now go on investigating the 1D and 2D problem.
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2 1D Ising Model

We will solve the Ising model with the transfer matrix approach and follow the proof explained as
in [16] or [17].

2.1 Transfer Matrix Method

v

1 2 3 N
(a) Linear Chain (b) Ring
Figure 3: The Ising model in one dimension

In the 1D case, the Ising lattice is a linear chain (figure[3a). If we apply periodic boundary condi-
tions to this chain (3b), the Hamiltonian (I) reduces to:

N N
H=-] ZSiSHl_B,UZSi- (2)
i=1 i=1

In the canonical ensemble, we are interested in the partition function

zZ=) e PH 3)
{S;}
where {S;} denotes the sum over all possible configurations and f = KlT is the inverse tempera-

ture with Boltzmann factor kg. The partition function contains all information about the relevant
thermodynamic quantities. To separate between order and disorder, we further need an order
parameter. In our case, the natural choice is the magnetization:

1 N
M==Y uS;e FH. (4)
Z i3
This can be rewritten as :
M= In”Z. (5)
0(BB)

Our goal is now to find an expression for Z such that we can derive the magnetization from it and
determine if the system shows a phase transition.

We start by rewriting the Hamiltonian in a slightly different way:
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N B
H=) (—]Sisiﬂ - ?u(Si + Si+1))- (6)
i=1

With this, we have extracted the summation to the left and split the sum in the magnetic field term,
which will turn out to be useful later.
Plugging this into the partition function (3) yields:

Z=) exp
{Sit

By writing the sum in the exponential as a product, we get:

. )

N B
-B) (—]Si5i+1 - 7” (Si+ Si+1))
i=1

8)

B
ﬁ(]SiSi+1 +7“(Si +Si+1))

N
Z=Y []exp
{Siti=1

N
=Y [1Tiin ©)

{Siti=1

where we have defined the so called transfer function

. (10)

B
ﬁ(]sisiﬂ " 7“(si+si+1))

Tij+1:=exp

The transfer function T; ;1 has the special property that it only depends on the spin values of S;
and S;4+;. We can now write out the possible outcomes for the transfer function:

ePIHB G = 41,801 =+1
o e P Si=+1,S1=-1 an
bl e B/ Si=—l,Si+1:+l.
ePITHB S = 1,811 =1
Using the quantum mechanical notation for spin variables, and identifying each spin state as a
vector:

1Si=+1) = ((1)) (12)
5:=-0=3). (13

the transfer function can be expressed in a more compact way, namely:
Tiiv1 = (Sil TISi+1) (14)
with the definition of the transfer matrix T:

PUB) o P)
r= e_ﬁ] eﬁ(]_I“LB) ’ (15)
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Putting this back into the partition function (9), we gain;

Z= ZH<S|T|81+1>— Z .Y (S1ITIS2)(SalTIS3)...(SNITISY). (16)

{Siti= =+1 SN +1
where we have expllcltly written out the sum over all configurations.

The crucial point is now that in between each transfer matrix there is a product |S;)(S;| which,
when performing the sum } s, _,,, yields an identity matrix. Thus, each spin sum except the sum
over the first spin will vanish and we get the simplified form:

Z=Y (&|TV|S1)=tr(T™). 17)
S1==+1

If the Eigenvalues 11, 1, of T exist, the partition function gets the form:
Z =AMVl (18)

So, we are left with solving an Eigenvalue problem for 7"

eﬁ(]"'”B) —_ /'L e_ﬁ] 1
From that we obtain:
A2 =eP’ |cosh BuB + \/cosh2 BuB —2e-2PJ sinhzﬁ]] : (20)

In the thermodynamic limit, only the larger eigenvalue 1, becomes relevant:

/IN
lim Z= lim AN(“_A_) AV, 21)

N—oo N—oo 1

With this, we get a final expression for the partition function:

Z = (eﬁ]

N
cosh BuB + \/cosh2 BuB —2e-2b) sinh2,6]] ) . (22)

Using (5) we derive the magnetization:

M(T.B) = Nusinh fuB

(23)

\/cosh2 BuB —2e~2P)sinh2]

In figure 23| a plot of the magnetization for different temperatures is given. The curve of the mag-
netization has a S-shape. For large values B, the magnetization will either go to the limit of uN
or uN. As we can see, if there is no magnetic field, B = 0, the magnetization is always 0 for finite
temperature. If the temperature gets less, the S-shape of the curve will get steeper. At the absolute
temperature of T = 0, the magnetization will turn into a step function. At this point, M # 0 and has
one of the discrete values +uN. So, only at this point, the symmetry of our system gets broken and
a phase transition occurs. Otherwise a phase transition is not existent at finite temperature.
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M(T, B)
lJN— Tl ...............................................
To<Ty
< 0 1
_uN- ................................................
0
B

Figure 4: Magnetization of the Ising chain

2.2 Ising’s Original Approach

The fact that there exist no phase transition in one dimension was already discovered by Ising. He
used a different approach than the transfer matrix method to calculate the partition function. We
will give a short overview of his solution.

++ ==t ———— +++ =+ ———
S— et Nvera—.  t— —

(a) Ising chain

21 (S [y

e 1’3— l ’vl~——— i (e—(2-9+tj)£%_'+ (rp—r1) -
‘ 5 s4+0—1/]"

(b) Ising’s partition sum, @ = SuB

Sino

Q—m-.n-

/ 2¢
V@ingoc L e KT

(c) Ising’s magnetization, m=u, n=N

Figure 5: Excerpts from Ising’s original solution [5]
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First of all, he associated the spins with plus and minus signs (figure and considered a chain
with solely plus spins, which is a ground state of the system. By fixing the first sign (left) with
a positive spin, he counted the possible ways of placing groups of negative spins into this chain
because only the borders of the arising gaps, where a plus sign meets a minus sign, would yield a
relevant contribution to the total energy (2) (assuming positive coupling /).

If s denotes the number of these gaps and v; shall be the total number of positive spins in a config-
uration, then there are (Vls_l) ways of placing such gaps into the chain. In each of these possibilities
there are ( 8125__11) ways of placing the total number v, of negative spins into these gaps depending
on the value 6 of the last spin in the chain where we define 6 := 0, 1 if this spin is positive or nega-
tive. By the interchange of v; — v,, we get the cases where the chain starts with a negative spin.

If the energy of the ground state is set to zero, then the total energy E of the system for a configu-
ration depending on v;,v,,s and 6 is:

E=@2s+0)e+ (vi—v2)uB (24)

where € ~ ] is a rescaled coupling constant (due to the zero energy condition).

Hence, Ising got the partition sum (compare figure5b):

B vi—1}|| va—1 vo—1|[ vi—1 -B(2s+6)e+(vi—v2)uB)
Z= Z (( s )(s+6—1)+( S )(s+5—1))e . 29

V1,V2,5,0

He then performed the summation explicitly (the details of the calculation can be found in his
dissertation). In this way, he was also able to get an expression for the magnetization (compare

figure[5¢):

sinha
M=uN (26)
Vsinh? @ + e—2Pe
with a := BuB. This is the same expression we got by the transfer matrix method if we identify
e=2]
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3 2D Ising Model

In contrast to the one dimensional case, for the two dimensional Ising lattice without a magnetic
field a phase transition can be found. We will show this using Peierls argument and give a small
insight to Onsager’s exact solution

3.1 Peierls Argument

Because the original Peierls argument was not quite rigorous, we will, based on Griffiths argumen-
tation [8], follow the proof for the existence of a phase transition given in [18] and [19] (where also
the Peierls argument in higher dimensions was discussed).
First, we define the average magnetization per site as:

M (Ny)—(N2)

mENTTN @7

with the thermal average of the number of positive (IV;) and negative (N_) spins. Note, due to
the absence of an external magnetic field, there is a symmetry in the system when flipping a spin
from +1 — —1 and vice versa. So, the average magnetization per site in the system would always be
zero when summing over all possible configurations since each configuration is equally probable
to its flipped counterpart. Therefore, we have to consider m in the limit of a vanishing magnetic
field B — 0 if we want to determine a phase transition. For this purpose, we consider a 2D square
lattice with N = n x n lattice sites and positive spins placed on the boundary of this lattice which
simulate the influence of such a vanishing magnetic field for N — co. Next, we rewrite by
using N= N, + N_:

=1- 2m (28)

N

In this formula for m, we can see that if the fraction ‘&= ‘> is smaller than % at some finite tempera-

ture, then the average magnetization is not zero anymore, which indicates the presence of a phase
transition. The key idea of Peierls argument is now to find such a limit for <N !, We will find this
limit by introducing domain walls y*.
Domain walls are continuous lines drawn in the 2D square lattice. They are defined in the sense
that they lie between two spins and always have a negative spin to their right and a positive spin
to their left. If there is an ambiguity, the domain wall will tend to the right. In this manner, no
two domain walls will cross, and, due to our boundary condition, every domain wall is a closed
loop. The length L of a domain wall is the number of lattice segments it contains. In figure[6|some
examples of domain walls are drawn.
Each domain wall encloses a certain number of negative spins. This number is given by the area
A(y"). In order to decide if a domain wall is present in a particular configuration, we define a
configuration parameter X(y’) which takes either the value X = 1 if the domain wall occurs or
X =0ifnot. The total number of negative spins N_ in a given configuration can then be estimated
by:

N_SZZA DX (yh (29)

L i=1

where we sum over all possible values of L, and the number #L of different domain walls at each
length.
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Figure 6: Domain walls of different lengths L

The sum in depends on the shape of the domain walls. However, we can show that this sum
can be expressed in terms of solely L.

Estimation for the area

Figure 7: Domain wall }/f enclosed by a rectangle of size R

A 4

A 4

A

First, we consider the area of a domain wall. For each domain wall y’, we can find a smallest pos-
sible rectangle of perimeter R which contains the domain wall (see figure[7). From our definition,
itis R < L. The area A(R) of the rectangle builds an upper limit for the area A(YL) of the domain

wall. The maximum area of the rectangle with a maximum perimeter L is ( )

relation holds:

Hence, following

1)\2
AlYH) = AR =< (Z) =: A(L). (30)
This turns to:
#L
N_<Y ALY X(rD. (31)
L i=1
Thanush Sivagnanalingam 10
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Estimation for the configuration parameter

Now, we switch to the thermal average (N_) as we would consider this for (28). The averaged
configuration parameter (X (yf)) has then an upper bound. It can be found by defining 2 as the
set of all configurations with the positive boundary, and ¥ as the set of the configurations which
contain the domain wall yf. Thus, we can write:

-BE(0)
<X(Yl )> - ZCE(g e_ﬁE(C) (32)

C

with the energy E(c) of a configuration c.

+++++ +++++
+=—} +4+ 4+ 4+
+|—[+— [+ + +[=|+ +
+—-=—+ +++++
+++++ +++++

(ac (b) ¢

Figure 8: Configuration with spins inside yf unflipped |a__1] and ﬂipped@

Let € = {¢|c € €} be the set of all configurations ¢ which result from c by flipping the spins inside
the domain wall yf (see ﬁgure. The energy E(¢) is related to E(c) via:

E(©)=E(c)-2]L (33)

because similar to the 1D Ising solution, the L spins at the domain wall yield a contribution to the
energy difference, which demonstrates the significance of domain walls.
Since ¥ is a subset of 2 as the boundary of the lattice remains the same, we have

) e PE@ < ) e PEC), (34)

ce€ ceERB
This means for (32):

Y e € PEO —p2LJ _
(X(rp) = TR L X(D) (35)
CEE

which simplifies to:

(N-y <) AL) X (L)#L. (36)

L

So, we are left with finding the number #L of possible domain walls at fixed L.
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Estimation for the number of domain walls

This is a combinatorial problem and #L can be approximated with following procedure (compare
figure[9).

([ ] (] (] [ J (] [ J [ J (] [ J (] [ J (] (] ([ ] (] (] [ J (]

([ ] (] ® [ J (] [ J (] (] [ J (] [} (] (] (]

[ J ( [ ] [ J [ ] [ J [ J [ ] (] [ J [ ]

[ J ( [ ] g [ J [ J [ ] (] [ J [ ]

[ ] (] (] [ J (] [ J [ J (] [ J [} [ J (] (]

[ ] (] (] [ J (] [ J (] [} [ J (] [ J [ J (] ([ ] (] [ J (]
(a) First edge (b) Second edge (c) Third edge

Figure 9: Counting the possible number of #L domain walls

There are at most 2 possibilities of placing the first edge of a domain wall . In the next step,
there are 3 possible ways of placing the second edge (9b). This one again has 3 choices for the up-
coming edge (9c). We can iterate through this L—2 times as the last edge must close the loop of the
domain wall. Furthermore, we can start a domain wall from each of its edges. As a consequence,
we have a degeneracy of L. Summing up all possibilities, the number of domain walls given L is
limited to:

2N3L=2
#L < . (37)
L
Putting this back into (36), we finally get:
L\? 2N3L~2

(N_) < Z(—) e P (38)

which, if we notice that L must be even and starts with L = 4, can be expressed as:
(Nos— 3 L{3e ). (39)

L=46,...

This is a geometric series, which converges if 3e 2/’ < 1. This happens at sufficiently low, but finite
temperature.
Performing the sum, we get:

L N ,2-Xx
L(Se_zﬁ]) = —x? 5 (40)
L=46,... 36 1-x
with )
x= (Se_zﬁ]) . 41)
And indeed, we have shown for low temperatures, the fraction UIX,—‘) will be less than % and the

magnetization m takes a value larger than zero (e.g. choose x = 7, then m = 0.97). Thereby, we
have proven the existence of a phase transition in the 2D sqaure lattice.
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3.2 Onsager’s Exact solution

To get a more concrete value for the critical temperature 7, at which the phase transition occcurs,
we will have a short view on Onsager’s exact solution.

A ' ' '
Q= Q- O=——b-0 1 I
~~—
® [ ]
@ >0 >0 >0
] )
® [ ]
(e e e ) ? 4 ®
® [ ]
@ [ }
_ _ _ [ ]
—>o—>0—>0 § 1
[ d )
b > O——>O i i
@ b S ]
[ ] [ ]
[ >0 >0 >0
[ ] b @
\¥
(a) Coupled linear chains (b) Cylinder of 1D chains

Figure 10: 2D square lattice Ising model

Note first that the 2D Ising model is nothing less than an arrangement of several 1D Ising chains
and each of this chains interact with its nearest neighbour (figure[I0a). Applying periodic bound-
ary conditions will yield a cylindrical lattice (figure[I0b). The fundamental idea is to use again the
transfer matrices. While in the linear chain the transfer matrix described the interaction energy
when going from one spin to the next one (compare (14)), the transfer matrix for the square lattice
illustrates the interaction energy between two neighbouring Ising chains. If we write Q. for the
configuration of one chain and Q. ; for the neighbour chain, then the transfer matrix P is defined
as:

(Qk|PIQg+1) = expl— P (E (Qk, Q+1) + E (Q))] (42)

with the chain interaction energy E (Qk, Qk+1) and the energy of a single chain E(Q)
Similar to and (17), we find the partition function:

Z(T)=)_{|P"|Q1) = TrP". (43)
Q1
So one more time, one has to solve the Eigenvalue equation for P. This is not a simple task as the
dimension of P is 2" x 2" (with n the size of one Ising chain). A simplification of this problem is in
the large N limit. Here, it can be shown that only the largest Eigenvalue A,,,, is relevant and:

. 1 1
J\III—I}cl)oNan(T) = lim ;ln?tmax. (44)

n—oo
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Onsager has found the appropriate Eigenvalue. Without further details on the exact solution (see
his publication [11] for more information), we state here the partition function he obtained ex-

pressed as the free energy per site F = —Niﬁ In Z (in the limit N — o00):
1 T T
—BF=In2- ﬁf f In [sinh?28] —sinh 28] (cosw — cos ) + 1] dwddp (45)
0o Jo

The free energy gets a singularity at the critical temperature T;.. This corresponds to the case when
the logarithm in is zero. Thus, we find that following relation must hold:

sinh2BJ = 1. (46)
The critical temperature reads then:
2] ]
Tp= —— ~2.269—. (47)
© In(1+v2)kg ks

Note that this critical temperature T, can be verified numerically (e.g. in [20] the value T, [é] =

2.269 +0.002 was obtained with Monte Carlo simulations of the 2D Ising model).
The magnetization per site derived from the above partition function is:

m=(1 —sinh_4(2ﬁ]))%. (48)

In figure 11| a plot of the magnetization is given. We can see that above the critical value T, m
is always zero. Going lower than (47), spontaneous symmetry breaking takes place and the mag-
netization will either tend to positive or negative values. Since the magnetization is a continuous
function, this is an example of a second order phase transition, which has a critical exponent of %.
At zero temperature, the magnetization is either +1.

m(T, B =0)

T

Figure 11: Magnetization of the 2D square lattice
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4 Applications of the Ising Model

The Ising model does not only have a big significance in physics, but also in other fields like politics
[21],[22], biology [23] or epidemiology [24]. Especially in a recent study by Mello et al. [25], the
spread of Covid-19 was analyzed based on the Ising model. In this article, they have associated
the spin variables S; = +1 of the Ising model with the status of a person being infected or not.
Moreover, they have used the coupling constant §¢ (equal to J in the ferromagnetic consideration)
to describe the social interaction between people and modelled Gaussian curves depending on e
for estimating the number of infected people over a period of time (figure[12).

They have also considered the Ising model on a Bethe lattice [26], which is like a constrained 2D
Ising model, to calculate the probability of a person in the Bethe lattice getting infected by a person
situated on the center, the zeroth shell, of the lattice (ﬁgure.

To sum up, this paper has displayed different ways on embedding the Ising model in solutions for
nowadays challenges like Covid, and illustrated the diverse applications of the Ising model.

10 s —
SouthKoreal 2
—~ [ ] =6
€ 8 *
— S 4
= ° =
n 6 © g2
Q y 5,
n e *
84_ o \®
2 °
[0 ° 'Y
c o @ °
62 [ 4 [ % o0 Y
E=3 - ° e ..o e0.0°
0-m‘° ® ;

0 5 10 15 20 25 30 35 40 45
t (days)

Figure 12: Gaussian fit to infection cases in South Korea. Depending on de the Gaussian gets
narrowed (strong interaction) or flattened (weak interaction) (figure 3.(a) in [25])

Sy
.

Figure 13: The Ising chain on a Bethe lattice. At each level of this tree, the number of people who
can get infected by one human is the same (figure 8.(a) and 9 in [25])
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5 Conclusion

In this report, we have reviewed the Ising model in the one- and two-dimesional case. By the trans-
fer matrix method, we have derived an expression for the magnetization of the linear system and
proved that there is no phase transition at finite temperature. Our result matched up with Ising’s
original approach. Then, we have considered the square lattice Ising model. We gave a rigorous
argument for the existence of a phase transition in this dimension. From Onsager’s exact solu-
tion, which also involved the transfer matrices, we adapted the value T, = 2.269# as the critical
temperature and have seen the spontaneous symmetry breaking of the magnetization. Finally, we
have looked on an application of the Ising model for estimating the spread of Covid 19.
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