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Abstract

This summary is an outline of the talk given in the summer semester 2023 in the context of the statistical
physics seminar by Prof. Dr. Wolschin in Heidelberg.

We give an intfroduction to the Fokker-Planck equation by an approximation to the Master equation
with the Kramers-Moyal expansion. We give an argument why this approximation should be done by
infroducing Pawulas theorem and proofing it.

The Langevin equation is presented in a non-rigerous form, before formalizing it with the Wiener pro-
cess and the notion of a stochastic differential equation. With I[to’s lemma a mapping from a stochastic
differential equation to the Fokker-Planck equation and vice versa is presented, where on sees that the
two formalism basically describe the same systems.

In the end the Fokker-Planck formalism is used to analyze the Ornstein-Uhlenbeck process. It is
shown that the process is stationary with a gaussian stationary function. Lastly it is presented, where
the Ornstein-Uhlenbeck process is used in a modern physics application. The dynamics of the velocity
distribution of heavy particles colliding with each other is a non equilibrium process and therefore a
Fokker-Planck equation is used to describe it.
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1 HISTORY

1 History

The theory of stochastic processes is a mathematical framework that allows for the modeling and anal-
ysis of random phenomena. One of the earliest examples of such a phenomenon is Brownian maotion,
which refers to the random movement of particles suspended in a fluid. The tfemperature of the fluid
influences the motion of these particles, and the movement appears random because of the many
inferactions between the particles and the fluid molecules.

In 1827, Robert Brown first observed this phenomenon while examining pollen particles in water [1].
He noted that the particles did not follow predetermined trajectories but instead moved randomly.
However, it wasn’t until 1905 that Albert Einstein mathematically investigated the motion of these par-
ficles [2]]. He modeled the water as consisting of individual particles and calculated the motion of the
pollen particles. From his calculations, he could derive the random nature of the motion. His finding
was experimentally confirmed by Jean Perrin in 1908, who was later awarded the Nobel Prize in 1926
"for his work on the discontinuous structure of matter" [3]]. Einstein’s work was also significant because
it provided evidence for the theory of molecules and atoms, which was not widely accepted at that
fime.

In 1908, Paul Langevin learned of Einstein’s work on Brownian motion and formalized it in the form
of the Langevin equation [4] [5]. This equation is used to describe the motion of particles in a viscous
fluid and has made it possible to formalize a whole category of physical and stochastic processes that
utilize some form of random motion.

Adriaan Fokker developed the Fokker-Planck equation in his thesis in 1913 parallel to Max Planck as
another formulation for solving stochastic problems [6]. This equation provides a broader context for
solving Brownian motion problems and can also resolve mathematical ambiguities. Instead of solving
for the trajectory for every molecule, the Fokker-Planck equation allows for the calculation of the prob-
ability distribution of particle positions over time. Therefore, a higher number of particles can be solved
directly. Furthermore, we will show, that every Langevin equation can be equivalently formulated in
terms of a Fokker-Planck equation, demonstrating the close relationship between the two equations.

In modern science the use of Langevin and Fokker-Planck equations is used a lot and has applica-
fions in statistical physics, financial sciences, machine learning, biology and more.
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2 KRAMERS-MOYAL EXPANSION

2 Kramers-Moyal expansion

In this section we derive the Fokker-Planck equation as an approximation to a master equation. To do
this, the master equation is fransformed into a partial differential equation, which can be approximated
using the usual arguments of the order of the derivatives. We will start by reinfroducing the master
equation.

The master equation for a given Markov process (for given transition amplitudes Wy (z|z’)) is:

0 t
p(x,t) _ / Wi(z|2 p(2',t) — Wy(2'|x)p(x, t) da’ M
R ~~
gain loss

This equation describes the dynamics of the probability distribution p(z, t) of a stochastic parameter x
governing a Markov process. The fime derivative of the probability distribution is given by a gain/loss
structure like the Boltzsnann equation. The first ferm in the integral can be interpreted as a probability
flow from a point 2’ to z, and the second term is a probability flow away from x to z’. In the end the
infegral over these terms must be taken, since we have a continuous state space and every position
needs fo be hit.

This master equation is an integro-differential equation and is hard to solve analytically, as a conse-
guence we want to transform it into a partial differential equation, to use the mathematical machinery,
which is developed in PDEs. To do this the gain term in the master equation is Taylor expanded.

To make the Taylor expansion easier the transition amplitudes are redefined with r := = — 2’ and
W/ (r,z) = Wi(r + z|x). the master equation changes accordingly:

t) = /RW{(T, z—7r)p(x —r,t) — W/(r,z)p(z,t)dr @)

The new transition rates W} can be understood to be the transition rates, by which a state x will deviate
by r. The gain term is now Taylor expanded around z:

W/(r,x—r)p(x—r,t) = Z (=r n‘) aann W(r,z)p(z,t) = W/(r,z)p(z,t) + Z )nag:W{(r, x)p(x,t)
n=0 ’ n=1
)

If this term is reinserted into the master equation, the constant order terms will drop out inside the integral,
and we are left with:

/Z o Wt(r x)p(z,t)dr 4)

To get the probability distribution outside the integral, the integral can be exchanged with the sum,
giving us now the PDE formulation of the master equation:

[e.9] 8” ,
Z n! py [ (x,t)/Rr”Wt('r, x)dr] 5)

n=1

Defining now the coefficients a, () and reinserting the definition of the auxiliary variable r gives rise to
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2 KRAMERS-MOYAL EXPANSION

the so called Kramers-Moyal expansion [[/]] of the master equation:

op(z,1) )y on - / /
px Zl n! g (7 Danl@)l; an() = /R(x—ff)Wt(x [2)de (©)

In this form of a series expansion of the master equation, we can canonically define an approximation of
the master equation, by cutting of after specific orders of derivatives. If we forget about every derivative
order higher than two, we are left with the Fokker-Planck equation:
op(z,t) 0 1 9
% 92 [ (z)p(2,t)] + 2922 [az(2)p(z,1)] /)
This equation now describes the approximate dynamics induced by the master equation. And indeed

this approximation is really a good one. Because from mathematics we know the so called Pawula
theorem [8]:

If a coefficient a.,, = 0 for one n > 3, then every coefficient a; = 0,Vi > 3. And if a coefficient a,, # 0
for one n > 3, then there are an infinity number of confributions.

A proof of this theorem can be found in the next subsection. The theorem basically means, that if we
approximate the master equation by the Fokker-Planck equation we have two situations:

1. The coefficients a,, are zero for n > 2, then the Fokker-Planck equation is an exact solution to the
problem.

2. There is an infinite amount of non-vanishing coefficients, here the Fokker-Planck equation is a
good approximation.

In the end we have found that the dynamics of a master equation can be approximated by the Fokker-
Planck equation, and in a lot of cases the Fokker-Planck equation is even an exact description of the
system.

2.1 Pawulas Theorem

The proof of Pawulas theorem is a direct consequence of the Cauchy-Schwarz inequality in the case

[ / g(w)f(x)P(w)dwr < [ ¢#@P@as [ P p@ @

If one now sets f(z) = (x—2")", g(x) = (x—2")"*" and P(x) = Wy(z|z'). then the inequality becomes

of probability theory:

an inequality in the Kramers coefficients given in the previous section:

2
Qoppm < Q2 02n42m @

Now we insert the n! from the Kramers-Moyal expansion into the definition of the coefficients and go
from 8, = % The inequality changes to be the following:
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2 KRAMERS-MOYAL EXPANSION

Now one argues two folds:
1. If Bop, = 0then Bopiy, =0.Vm > 1
2. If B2n+2m = 0 then ,BQner =0,Vm>1

The first point says, that every coefficient with index bigger than 2n is zero if one index s, = 0. Therefore
the one direction of the argument is done.

Now we need to argue for indices smaller than 2n. For this we use the second point. If one defines
r=n-+m > 2, withtherangesr > 2 and r > m > 1. The proposition in the second point changes to:

ayr =0=a9—pm =0, 7>m>1. an

Recursively we can lower the index till a,, = 0 withn > 3, forone r > 2 a,, = 0. Now we have lowered
the index fill «, and the statement is proven.
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3 INTRODUCTION TO THE LANGEVIN EQUATION

3 Introduction to the Langevin Equation

In this section we want to discuss an infroductory model to describe the theory of Brownian motion. The
situation is now, that we have bigger particles in a fluid consistent of molecules, which push the bigger
particles around. The model, which we are introducing here, is not mathematically rigorous, and we
make it more strict in the next section.

The idea behind the Langevin equation as a model to describe Brownian motion is the following:
We want to generalize Newtons equation of motion in a way, to describe stochastic systems. To do this
we will add a stochastic term into Newtons equation of motion as follows:

m% = —&v+ on(t) (12
dt T =~

. stochastic
classic

This is called the Langevin equation. Its classical part describes the motion of a particle in a fluid. The
linear ferm in the differential equation describes the viscous force from the fluid with a drag coefficient
&, (Stokes Law)

The added stochastic part of the equation describes a random force 7(t), which should describe
the random pushes from the fluid molecules onto the particles. These random pushes of the fluid parti-
cles onto the bigger particles, gives arise to the Brownian motion of the bigger particles. The ¢ is now a
measure of how large this random force is. The random force is defined implicitly by stating its statistical
properties:

1. (n(t)) = 0 the mean value of the random force is zero. This is a symmetry property, since we
assume the pushes to come from each side equivalently

2. (n(t)n(t")) = 26(t — t') the correlation function between the random force should be a delta dis-
tribution. This means that two pushes should be stochastically independent if they are happening
at different tfimes. Therefore, we assume the process to be a markovian process.

In the next step we want to analyze this model and gather statistical information about the Brownian
motion.
In the case of the Langevin equation, one can give a formal solution

m

_t L s o
v(t) =e " [vo -l—/ dseto 77(5)] , (13)
0

where we defined a timescale ty; = % One should take this result with a grain of salt, because to
show, that the formal solution is really a solution to the Langevin equation one needs to differentiate
the integral. But because we don’t know what mathematical object the random force is, it is not clear
that the fundamental theorem of calculus holds. This and more issues are addressed in the end of this
section.

Because we have only defined the random force implicitly by its statistical properties, the formal
solution has not a direct mathematical meaning. To gather information about the model, we can only
calculate statistical properties of the formal solutions. The first property is the mean velocity:

t

<n<s>>] — e a4

39

(w(t)) = [vo v "dset
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3 INTRODUCTION TO THE LANGEVIN EQUATION

Here the expectation value is put inside the integral since only the random force has statistical proper-
ties. By definition the statistical part vanishes, and we are left with the classical part of the solution to
the Langevin equation.

The correlation function between the velocities at two different times ¢ and ¢’ can also be calcu-
lated, by using the defining properties of the random force:

, 9 _ttt oN2 _tet! [t ¢ , sts! ,
(v(t)v(t)) =vge o + (E) e / ds / ds'e o 20(s— ) (15)
0 0
s 2 2 g
= (B ) 4 e (16

To understand the correlation function in more detail, we make some approximation arguments. First we
assume the times t + t' > t( 1o be a lot larger than the timescale tg. In this approximation the classical
part of the Langevin equation can be neglected, and the correlation function is only the consequence
of the statistical properties. In this case the first ferm in the correlation function vanishes, because of
the negative exponent. Furthermore, we calculate the same time t = t’ correlation function (mean of
the velocity squared):

(v(t)?) = (17)

mé
In the next step we use this property of (v(t)?) to make a connection between the random force and

a statistical physics property namely the temperature. To do this, we use the equipartition theorem of

o2

statistical physics in one dimension and insert (v?) = e

1 1
§m<v2> = §/~cBT = o2 =¢kgT (18)

Here T is the temperature and kp the Boltzmann constant. Here we found a connection between a
statistical quantity, the temperature T', with the random force strength . This is what one would expect,
since we think of the Brownian motion as an emerging phenomenon caused by the kinetic energy of
the fluid particles, namely the temperature.

In the next step the trajectories of the particles are investigated. Here the same approximation is
made as in the last calculation £ > ty. As a consequence the Langevin equation is now

f’l) = Un(t)a (19)
which can be solved by a formal solution:
1 t
x(t) = zo + / dson(s) (20)
€ Jo
Similar to the velocity case, we are calculating the mean position

(x(t)) =z 2n
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3 INTRODUCTION TO THE LANGEVIN EQUATION

and not the correlation function but the so-called mean squared difference:

1/t t 1
{(x(t) — 20)*) = = / dt’ / dt" 20%5(t' — t") = 20% (22)
& Jo 0 §
This quantity is a measure of how far away from the mean value the particles can be found. Here we
see that this quantity rises linearly by the time, therefore the parficles can be found further and further
away from the mean position. Such a process is called a diffusion process. And if we identify the mean
squared difference with the diffusion coefficient D

We get the Einstein relation for the diffusion coefficient, which he already calculated in [2].

(23)

Now that we have seen, how the random forces arises from the temperature and that the Brownian
motion is a diffusion process, we state the mathematical problems, which arise in this formal calculation.
Basically we don’t know what kind of mathematical object the random force n is, but we use a lot of
mathematical results from calculus, which we don’t know hold in this case. To make this model more
rigorous we want to switch out the notion of a random force by a mathematical well-defined object.
In the next section this problem is answered.
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4 STOCHASTIC PROCESSES

4 Stochastic processes

In the last section we have seen, how one can use the Langevin equation to model stochastic sys-
tems like the system of Brownian motion. It was only a formal calculation since we have never defined
the random force, we used. In this section the Langevin equation is made mathematical rigorous, by
exchanging the notion of a random force by a stochastic process. The stochastfic used here is the
so-called Wiener process, which is defined in the next subsection.

4.1 Wiener Process

The Wiener Process W, € R, t € Rg is a real valued stochastic process with positive time parameter.
Analogous to the random force it is defined implicitly by its mathematical properties:

1. Wy = 0 The startpoint of the process is the origin
2. for 0 <tg < t1 < t2 < t3 the increments Wy, — W, , Wy, — Wy, are stochastically independent

3. For0 < s < t the increments W, — W, «x N(0,t — s), this means the increments are normal
distributed, with variance ¢t — s

4. the paths are continuous in the time parameter

Point two in the definition is the generalization of the correlation function of the random force. And in
point three we can see the mean value set to be zero, like in the random force case. Also, the variance
should rise with longer time differences, which mimics the diffusion property we calculated with the
Langevin equation.

- A A ‘
= 0 ‘ ;hﬁ* *‘, J «i W \p’ “‘\~ Nv.“ M )‘v

k" Aok ,‘
61 o

| e

Time t

Figure 1: Simulation of the Wiener process

In figure [4.T]you can see how such a process might look like. There the trajectories were simulated by a
python program.
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4 STOCHASTIC PROCESSES

4.2 Stochastic differential equation

With the definition of the Wiener process, we can generadlize the notion of ordinary differential equations
to stochastic differential equations, like we did in the Langevin case. A general stochastic differential
equation of a stochastic parameter x with respect to the Wiener process W, is written in the following
way:

dz = A(z,t)dt + B(x,t)dW; (24)

For a physicist it is probably more intuitive if one writes it in the form of a differential equation by dividing

the dt out: d d
X ”t
— = A(x,t B(x,t)—

One should keep in mind, that this formulation as a differential equation should just be intuition, since

(25)

the Wiener process almost nowhere differentiable. As an example: the Langevin equation can now be
written in the form of a stochastic differential equation:
dv

My = —&v+oV2

dW;

T (26)

Here one can see that the random force is switched with the Wiener process.

As another side note: one should notice that these two equations are also mathematically not really
rigorous but a shorthand notation for writing out the following integral equation:

t t
(1) — a(s) = / Az, 7)dr + / B(a, t)dW, @7
s s

Here one sees that the difference in the stochastic parameter x is given by a part, which is the Lebesgue
integral over the function A and another part, which is an integral with respect to the Wiener process
W, of B. The second integral is a so-called stochastic integral (e.g. [fo-integral), and one needs to
define it, to make finish the definition of a stochastic differential equation. But in favor of the scope of
this summary this field is not further explained.

With the definition of the stochastic differential equation one could in principle go back to the
calculation of the Langevin equation and see that the results are now mathematical rigorous.

4.3 Ito’s lemma and the Fokker-Planck equation

In the next section we derive a connection between a general stochastic differential equations and
the Fokker-Planck equation. The stochastic differential equation describes the particles trajectories,
but if one would like fo model the system as a whole one needs to find a differential equation, which
describes the dynamics of the probability distribution of the system. In this part the dynamics of the
probability distribution is derived from a general stochastic differential equation.

To make the connection between the probability distribution and the stochastic differential equa-
fion, we need a mathematical tool called Ito’s Lemma [9]:

Now f is a function of the process x and the time t. The process x is given by:

dz = A(z,t)dt + B(x,t)dW; (28)
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4 STOCHASTIC PROCESSES

Then the differential d f is given as:

0 0 B? 0?
df = |:8{+A(w,t)8£+ (;’t) 837];

} dt + B(z, t)%th 29)

This is basically a generalization of the chain from calculus, now reformulated in the sense of probability
theory. This can be seen more clearly if one writes it as a differential equation:

05w,
Oxr dt

47 _ [&f of | B(z,t)0°f 0

T E%—A(az,t)a—x—l- 5 8:52] + B(z,t)

To introduce the probability distribution in the picture, first the Ito Lemmma is used on a general time-
independent function f(x). Then the expectation of the differential equation is tfaken:

Lo~ () () (o) (2222w
&)

=0

Here we used The Expectation value of (dW;) = 0 is zero per definition and the stochastic part therefore
vanishes.

If one writes down the expectation value explicitly the probability distribution p(z,t) can be identi-
fied:

0 2 0?
/Rd:rf(x)(?tp(x,t) :/RdxA(x,t)aip(x,t)+/Rde (QﬂU,t) Txép(x’t) (32)

Here we used the fact, that the total derivative can be put inside the integral. Since we want to know

about the dynamics of the probability distribution, we need an equation with the derivatives of the
probability distribution. Consequently, we want to shift the derivatives of the function f onto the proba-
bility distribution p. This can be done with partial integration and the fact that p(x, t), Oz p(z, t), 02p(z, t) —
0 with x — Zo0:

[ s f@ountet) = [ ao fle) |-0u(A o) + 302w Opta0) @)
R R

Since the function f(x) was arbitrary, we can infer with the fundamental lemma of calculus of variations,
that the integrands of the equation above must be equal:

O, ) = ~0(Ala, Op(a, ) + 502 B(a, e, 1) 34)

This is now the equation, which describes the dynamics of the probability distribution under a general
stochastic differential equation. If we compare this equation with the Fokker-Planck equation (7)), we
can see a connection between the coefficients a1, as and the functions A(x, t) and B(x, t):

o = Az, t), ay = B*(x,t) (35)

With this identification we have made a one to one connection between the systems, a stochastic
differential equation can describe, and the systems a Fokker-Planck equation can describe. This means
these two approaches to describe stochastic systems are equivalent. The difference is that a stochastic
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4 STOCHASTIC PROCESSES

differential equation describes frajectories in state space and the Fokker-Planck equation describes the
dynamics of the system as a whole.

4.3.1 Formal proof: Ito’s Lemmma

In this subsection we give a formal non-rigorous proof to the Ito’s lemma. Basically the statement is a
direct consequence of a Taylor series and the definition of a Wiener process.
The proof starts with the function f(x, t) of which we want to calculate the differential. We write d f
as a Taylor series:
of 19f* 5 of 19f*
df = =dt + - —dt“* + ... =d ——=d 36
J= el g dt + o gl t g gpede + (36)

Now we can insert the stochastic process for dx = A(x, t)dt + B(z,t)dW;. And we get:

_of 19f* 5 of
2
%% (A(z,t)dt? + 2A(z, ) B(z, t)dtdW; + B(z,t)*dW7) +... (38)
X

Now in the Limit d¢ — 0 the terms dt? and dtdW; go to zero faster than dW2, which is of Order dt. The
higher order terms are set to zero. And if we use that th2 = dt, by the definition of the Wiener process,

we get the result:
_|of of B%*(x,t)0*f af
df = T + A(ZL‘,t)a:U + 5 9.2 dt + B(xz,t) 8xth (39)
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5 EXAMPLE PROCESSES

5 Example processes

Now that we have infroduced the mathematical tools, which describes stochastic differential equations
and build the connection between stochastic differential equations and the Fokker-Planck equation,
we calculate the Langevin equation from the point of view of the Fokker-Planck equation. In the SDE
formulation the Langevin equation was given as follows:

dv

M= —&v+ 0\@%

T (40)

Before we investigate the full equation in the Ornstein-Uhlenbeck process we discuss the limit where the
inertial term in the SDE can be neglected. This Situation is called Brownian motion.

5.1 Brownian motion

As already stated, the case of Brownian motion arises from the Langevin equation if the inertial term
of the equation can be neglected and only the stochastic part matters. This is analogous to the non-
rigerous case, where we demanded that the time should be a lof bigger than the timescale t;. If we
neglect the inertial ferm the differential equation becomes:

dzx NG dW; dz V20 AW,

5= - — =Y @

¢ T T @ € dt

In the next step we want to reformulate the equation into Fokker-Planck form. If we compare 1)) with
the general stochastic process we get the functions:

A(z,t) =0, B(z,t)= \/?J (42)
With this identification we can calculate the Fokker-Planck coefficients for this specific situation:
a1 =0, ay= 2522 (43)
With these coefficients, the corresponding Fokker-Planck equation is given as:
Op(z,t) _ o O°p(x,t) (44)

ot £ 0x2

This is now the equation, which defines the dynamics of the probability distribution of the system. And
indeed we got back the diffusion properties, we calculated in the non-rigerous case. If we compare
this, to the general diffusion equation:

Op(z, t) 0*p(a, 1)

ot =D oz (49

we can identify the diffusion coefficient directly as D = ‘5’—; which coincides with the result we have
gotten in the first section.
The diffusion property of the specific Fokker-Planck equation, can be understood by investigating
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5 EXAMPLE PROCESSES

the solutions to this system. The model can be solved by a fundamental solution and is given as:

1 (z —y)?
x,t) = dx e —_
p(@,) Vam Dt /]R P [ 4Dt

1@ (@)

Where f(z) = p(z,0) is the initial condition of the probability distribution. Here one can see the gaussian
property of the solution and one sees that the variance rises with further time, which directly leads to
the diffusion property.

Now that the simpler Brownian motion case has been calculated by the Fokker-Planck equation,
the whole Langevin problem is discussed in the next subsection.

5.2 Ornstein-Uhlenbeck process

In this subsection the whole Langevin problem is calculated with the Fokker-Planck formalism. This set-
fing is also called the Ornstein-Uhlenbeck process, where the SDE is given as:
dv v 20 dW,
_ & + Lit (47)

ma_ m m dt

Analogous to the Brownian motion case, we can identify the functions from the general stochastic
differential equation:

2
A(v,t) = —f—v, B(v,t) = Q (48)
m m
Such that the Fokker Planck formulation of the problem is the following:
ap(v,t) € 9 o 9%p(v,1)
ot~ mow PO T (9

In the next step we want to calculate, first if the process is stationary and second how the stationary
solution looks like. To calculate the stationary distribution, one can set the partial derivative of the prob-
ability distribution with respect to time, equal to zero and is left with the following differential equation:

o 9%p(v)

0
0=25 [vp(v)] + mé o’

(50)

If this equation has a solution we know that the process is stationary. This equation can be integrated

to get the following equation:
a* 9p(v)
m& Ov

Here we needed to infroduce an integration constant C, which can be set zero by the arguments in

C = vp(v) +

Gl

the following. Now we use that the solution to this equation is a probability distribution, therefore we
know:

p(v) > 0,Yv € R; / dvp(v) =1 (52)
R

We also know that the function p(v) is differentiable at every pointin R, therefore we know the function is
bounded. With the condition, that the function is bounded, and the probability distribution is symmetric
around v, we know that the integration constant must be C' = 0.
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5 EXAMPLE PROCESSES
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Figure 2. Simulation of the Ornstein-Uhlenbeck process

Therefore, our differential equation simplifies to:

Ov o2

Op(v) + mgvp(v) =0 (53)

The solution to this differential equation is a Gaussian:

1 v? o

therefore we found, that the Ornstein-Uhlenbeck process is a stationary process with a gaussian station-
ary function. And essentially this is what one would expect, because we know from statistical physics is
distributed via the Maxwell-Boltzmnann distribution, and if we investigate the stationary solution we see,
that they coincide. The stationary solution to the Ornstein-Unhlenbeck process is the Maxwell-Boltzmann
distribution.

The stationarity can be seenin figurewhere this process is simulated with various initial conditions.
For completeness the general solution for the Ornstein-Uhlenbeck process is written here in the form of
a Greens function.

9 9 (U _ ,Ulefa(tft,))Q
Y AN -
Po, t|v', ') = \/27rD(1 20010y P | Top T — g2000) (53)

Here = £ and D = ‘g—j This result is used in the next section, where the Ornstein-Uhlenbeck process is

m

used to model velocity distributions of colliding heavy particles.
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5 EXAMPLE PROCESSES

5.3 Application: Heavy lon collisions

Now, we want to infroduce an application to stochastic processes and specifically the Ornstein-Uhlenbeck-
process. In the case of relativistic heavy ion collisions, the velocity distribution of the colliding particles
after the collision can be modeled by a distribution following an Ornstein-Uhlenbeck-process. For this
we follow the work done by Hoelck and Wolschin in [[10].

The Situation is the following: We have heavy ion particles which a colliding info one another. Be-
cause they are colliding relativistically, a lot of new particles are generated. The kinetic energy of the
colliding particles decreases as side effect therefore we can expect the distribution of the velocities par-
allel to the beam axis to be in a non-equilibrium state. Since we expect the velocities to have a small
component in the transverse direction, we assume the velocities in this direction to be in equilibrium.

The idea is now to describe the dynamics of the longitudinal velocities by a Fokker-Planck equation
which follows an Ornstein-Uhlenbeck process. Since the velocity of a particle in special relativity is
a bounded parameter, we can not use the standard notion of stochastic processes to describe the
velocity directly. The Wiener process is an unbounded process and can therefore only describe non-
bounded quantities. We need to find a quantity describing the velocity of a relativistic particle, which
is not bounded and additive.

The rapidity

1 E—|—p||>
=-In(="" (56)
y 2 (E—p”

is a parameter with the demanded properties and can therefore be used to be described by a stochas-
tic differential equation. (Here p) is the momentum parallel fo the beam axis and FE the energy of the
particle) The Fokker-Planck equation of the Ornstein-Uhlenbeck process describing the rapidity distribu-
tion R(y, t) is now given by

2
L) — L2 RG] + 55 (D, RG] &N

ot Ty Oy
Here one can see the linear drift tferm with parameter % and the Diffusion coefficient D,,. If one solves
the equation with the initial condition R(y,t = 0) = d(y £ ), which describes two particle bunches
with the same velocity magnitude and opposite direction, one gets

A\ 2 e [ 2
Rpnt) = [vVar2a,0)] [ ew _(“ybze:;t()—@)) exp L ybz(f;(t() 2 - 9

with the variance:

O';(t) = Dy, [1 — exp <—72_t)] (59)

Y

This solufion describes two gaussian functions, which drift towards zero and diffuse. The Drifting behavior
can be seen in the exponential function in the exponent of the Gaussian function. If the time gets larger
and larger y, exp (—%) gets smaller and smaller. This is the behavior one would expect. Since energy
is converted into particles the kinetic energy of the particles gets lower and therefore the velocities get
smaller.

In the end, this is a model, which needs to be tested with experimental data. If one fits the model to
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Figure 3: Time evolution of net-profon rapidity distribution function in 2%Pb collisions [10]. Here the
numerical solution to the real stochastic differential equation is plotted and not the approximation by
an Ornstein-Uhlenbeck process

the data provided by a particle accelerator one can see that the data can be described well with this
kind of stochastic process. This can be seen in figure[5.3] In the color gradient one sees the dynamical
evolution of the initial rapidity distributions in bright blue. The initial conditions are more sophisticated
than a simple delta function, and for the scope of this summary this is not described further. For more
detail you can read up in [10]. Another point one should note is, that in the paper [10] the stochastic
process is not exactly an Ornstein-Uhlenbeck process but a more sophisticated equation, which can
be approximated by an Ornstein-Uhlenbeck process.

At larger times the data points line up with the model and can conclude that a diffusion coefficient

with linear drift can accurately describe this kind of data.
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6 CONCLUSION

6 Conclusion

We have started with a short historical introduction into the field of Brownian motion and stochastic dif-
ferential equations. Before we derived the Fokker-Planck equation as an approximation to the Master
equation. The Master equation was transformed from the integro-differential form into the form of a
partial differential equation, the Kramers-Moyal expansion. Here one could canonically define an ap-
proximation, where the Fokker-Planck equation arrived. With the Pawulas theorem this approximation
was justified, and we saw that the Fokker-Planck approximation was in a lot of cases even an exact
description of the situation.

The Langevin equation was infroduced in a non-rigerous form with the notion of a random force. We
used this model to calculate the Einstein relation to the diffusion coefficient and saw that the Langevin
equation gives rise to a diffusion process. Because this approach was mathematical not well-defined,
we used the notion of stochastic processes and especially the Wiener process to exchange the ran-
dom force with a mathematical well-defined object. This also gave arise to the formulation of stochastic
problems as stochastic differential equations, which are generalizations of ordinary differential equa-
fions, and can be used to model a whole range of interesting systems. Thereafter, Ito’s lemma was used
to establish a connection between stochastic differential equation and the dynamics of the probability
distribution by the Fokker-Planck equation. We saw that the models can be translated into each other,
therefore they can be used to model the same systems. The differences are that the SDE models tra-
jectories of stochastic parameters and the Fokker-Planck formulation directly models the dynamics of
the whole system by describing its probability density.

In the last step the Langevin problem was analyzed with the Fokker-Planck formulation. We saw
that the Brownian motion case gave arise to a diffusion PDE. We showed that the Ornstein-Unhlenbeck
process was stationary before describing the general solution to the problem in the Form of a Greens
function. And at the end the Ornstein-Uhlenbeck process was used to model the non-equilibrium dy-
namics of the velocity distribution in heavy ion collisions.

To conclude one can say that the theory of Brownian motion gave arise to a rich and powerful
theory, using stochastic differential equations and the Fokker-Planck equation. And today it is indis-
pensable in modern research in physics, biophysics, finance and even machine learning.
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